more conversions to namespace_unlock()
[linux-2.6-block.git] / fs / namespace.c
CommitLineData
1da177e4
LT
1/*
2 * linux/fs/namespace.c
3 *
4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
6 *
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
10
1da177e4 11#include <linux/syscalls.h>
d10577a8 12#include <linux/export.h>
16f7e0fe 13#include <linux/capability.h>
6b3286ed 14#include <linux/mnt_namespace.h>
771b1371 15#include <linux/user_namespace.h>
1da177e4
LT
16#include <linux/namei.h>
17#include <linux/security.h>
73cd49ec 18#include <linux/idr.h>
d10577a8
AV
19#include <linux/acct.h> /* acct_auto_close_mnt */
20#include <linux/ramfs.h> /* init_rootfs */
21#include <linux/fs_struct.h> /* get_fs_root et.al. */
22#include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
23#include <linux/uaccess.h>
8823c079 24#include <linux/proc_fs.h>
07b20889 25#include "pnode.h"
948730b0 26#include "internal.h"
1da177e4 27
13f14b4d
ED
28#define HASH_SHIFT ilog2(PAGE_SIZE / sizeof(struct list_head))
29#define HASH_SIZE (1UL << HASH_SHIFT)
30
5addc5dd 31static int event;
73cd49ec 32static DEFINE_IDA(mnt_id_ida);
719f5d7f 33static DEFINE_IDA(mnt_group_ida);
99b7db7b 34static DEFINE_SPINLOCK(mnt_id_lock);
f21f6220
AV
35static int mnt_id_start = 0;
36static int mnt_group_start = 1;
1da177e4 37
fa3536cc 38static struct list_head *mount_hashtable __read_mostly;
84d17192 39static struct list_head *mountpoint_hashtable __read_mostly;
e18b890b 40static struct kmem_cache *mnt_cache __read_mostly;
390c6843 41static struct rw_semaphore namespace_sem;
1da177e4 42
f87fd4c2 43/* /sys/fs */
00d26666
GKH
44struct kobject *fs_kobj;
45EXPORT_SYMBOL_GPL(fs_kobj);
f87fd4c2 46
99b7db7b
NP
47/*
48 * vfsmount lock may be taken for read to prevent changes to the
49 * vfsmount hash, ie. during mountpoint lookups or walking back
50 * up the tree.
51 *
52 * It should be taken for write in all cases where the vfsmount
53 * tree or hash is modified or when a vfsmount structure is modified.
54 */
55DEFINE_BRLOCK(vfsmount_lock);
56
1da177e4
LT
57static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry)
58{
b58fed8b
RP
59 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
60 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
13f14b4d
ED
61 tmp = tmp + (tmp >> HASH_SHIFT);
62 return tmp & (HASH_SIZE - 1);
1da177e4
LT
63}
64
3d733633
DH
65#define MNT_WRITER_UNDERFLOW_LIMIT -(1<<16)
66
99b7db7b
NP
67/*
68 * allocation is serialized by namespace_sem, but we need the spinlock to
69 * serialize with freeing.
70 */
b105e270 71static int mnt_alloc_id(struct mount *mnt)
73cd49ec
MS
72{
73 int res;
74
75retry:
76 ida_pre_get(&mnt_id_ida, GFP_KERNEL);
99b7db7b 77 spin_lock(&mnt_id_lock);
15169fe7 78 res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
f21f6220 79 if (!res)
15169fe7 80 mnt_id_start = mnt->mnt_id + 1;
99b7db7b 81 spin_unlock(&mnt_id_lock);
73cd49ec
MS
82 if (res == -EAGAIN)
83 goto retry;
84
85 return res;
86}
87
b105e270 88static void mnt_free_id(struct mount *mnt)
73cd49ec 89{
15169fe7 90 int id = mnt->mnt_id;
99b7db7b 91 spin_lock(&mnt_id_lock);
f21f6220
AV
92 ida_remove(&mnt_id_ida, id);
93 if (mnt_id_start > id)
94 mnt_id_start = id;
99b7db7b 95 spin_unlock(&mnt_id_lock);
73cd49ec
MS
96}
97
719f5d7f
MS
98/*
99 * Allocate a new peer group ID
100 *
101 * mnt_group_ida is protected by namespace_sem
102 */
4b8b21f4 103static int mnt_alloc_group_id(struct mount *mnt)
719f5d7f 104{
f21f6220
AV
105 int res;
106
719f5d7f
MS
107 if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
108 return -ENOMEM;
109
f21f6220
AV
110 res = ida_get_new_above(&mnt_group_ida,
111 mnt_group_start,
15169fe7 112 &mnt->mnt_group_id);
f21f6220 113 if (!res)
15169fe7 114 mnt_group_start = mnt->mnt_group_id + 1;
f21f6220
AV
115
116 return res;
719f5d7f
MS
117}
118
119/*
120 * Release a peer group ID
121 */
4b8b21f4 122void mnt_release_group_id(struct mount *mnt)
719f5d7f 123{
15169fe7 124 int id = mnt->mnt_group_id;
f21f6220
AV
125 ida_remove(&mnt_group_ida, id);
126 if (mnt_group_start > id)
127 mnt_group_start = id;
15169fe7 128 mnt->mnt_group_id = 0;
719f5d7f
MS
129}
130
b3e19d92
NP
131/*
132 * vfsmount lock must be held for read
133 */
83adc753 134static inline void mnt_add_count(struct mount *mnt, int n)
b3e19d92
NP
135{
136#ifdef CONFIG_SMP
68e8a9fe 137 this_cpu_add(mnt->mnt_pcp->mnt_count, n);
b3e19d92
NP
138#else
139 preempt_disable();
68e8a9fe 140 mnt->mnt_count += n;
b3e19d92
NP
141 preempt_enable();
142#endif
143}
144
b3e19d92
NP
145/*
146 * vfsmount lock must be held for write
147 */
83adc753 148unsigned int mnt_get_count(struct mount *mnt)
b3e19d92
NP
149{
150#ifdef CONFIG_SMP
f03c6599 151 unsigned int count = 0;
b3e19d92
NP
152 int cpu;
153
154 for_each_possible_cpu(cpu) {
68e8a9fe 155 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
b3e19d92
NP
156 }
157
158 return count;
159#else
68e8a9fe 160 return mnt->mnt_count;
b3e19d92
NP
161#endif
162}
163
b105e270 164static struct mount *alloc_vfsmnt(const char *name)
1da177e4 165{
c63181e6
AV
166 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
167 if (mnt) {
73cd49ec
MS
168 int err;
169
c63181e6 170 err = mnt_alloc_id(mnt);
88b38782
LZ
171 if (err)
172 goto out_free_cache;
173
174 if (name) {
c63181e6
AV
175 mnt->mnt_devname = kstrdup(name, GFP_KERNEL);
176 if (!mnt->mnt_devname)
88b38782 177 goto out_free_id;
73cd49ec
MS
178 }
179
b3e19d92 180#ifdef CONFIG_SMP
c63181e6
AV
181 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
182 if (!mnt->mnt_pcp)
b3e19d92
NP
183 goto out_free_devname;
184
c63181e6 185 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
b3e19d92 186#else
c63181e6
AV
187 mnt->mnt_count = 1;
188 mnt->mnt_writers = 0;
b3e19d92
NP
189#endif
190
c63181e6
AV
191 INIT_LIST_HEAD(&mnt->mnt_hash);
192 INIT_LIST_HEAD(&mnt->mnt_child);
193 INIT_LIST_HEAD(&mnt->mnt_mounts);
194 INIT_LIST_HEAD(&mnt->mnt_list);
195 INIT_LIST_HEAD(&mnt->mnt_expire);
196 INIT_LIST_HEAD(&mnt->mnt_share);
197 INIT_LIST_HEAD(&mnt->mnt_slave_list);
198 INIT_LIST_HEAD(&mnt->mnt_slave);
2504c5d6
AG
199#ifdef CONFIG_FSNOTIFY
200 INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
d3ef3d73 201#endif
1da177e4 202 }
c63181e6 203 return mnt;
88b38782 204
d3ef3d73 205#ifdef CONFIG_SMP
206out_free_devname:
c63181e6 207 kfree(mnt->mnt_devname);
d3ef3d73 208#endif
88b38782 209out_free_id:
c63181e6 210 mnt_free_id(mnt);
88b38782 211out_free_cache:
c63181e6 212 kmem_cache_free(mnt_cache, mnt);
88b38782 213 return NULL;
1da177e4
LT
214}
215
3d733633
DH
216/*
217 * Most r/o checks on a fs are for operations that take
218 * discrete amounts of time, like a write() or unlink().
219 * We must keep track of when those operations start
220 * (for permission checks) and when they end, so that
221 * we can determine when writes are able to occur to
222 * a filesystem.
223 */
224/*
225 * __mnt_is_readonly: check whether a mount is read-only
226 * @mnt: the mount to check for its write status
227 *
228 * This shouldn't be used directly ouside of the VFS.
229 * It does not guarantee that the filesystem will stay
230 * r/w, just that it is right *now*. This can not and
231 * should not be used in place of IS_RDONLY(inode).
232 * mnt_want/drop_write() will _keep_ the filesystem
233 * r/w.
234 */
235int __mnt_is_readonly(struct vfsmount *mnt)
236{
2e4b7fcd
DH
237 if (mnt->mnt_flags & MNT_READONLY)
238 return 1;
239 if (mnt->mnt_sb->s_flags & MS_RDONLY)
240 return 1;
241 return 0;
3d733633
DH
242}
243EXPORT_SYMBOL_GPL(__mnt_is_readonly);
244
83adc753 245static inline void mnt_inc_writers(struct mount *mnt)
d3ef3d73 246{
247#ifdef CONFIG_SMP
68e8a9fe 248 this_cpu_inc(mnt->mnt_pcp->mnt_writers);
d3ef3d73 249#else
68e8a9fe 250 mnt->mnt_writers++;
d3ef3d73 251#endif
252}
3d733633 253
83adc753 254static inline void mnt_dec_writers(struct mount *mnt)
3d733633 255{
d3ef3d73 256#ifdef CONFIG_SMP
68e8a9fe 257 this_cpu_dec(mnt->mnt_pcp->mnt_writers);
d3ef3d73 258#else
68e8a9fe 259 mnt->mnt_writers--;
d3ef3d73 260#endif
3d733633 261}
3d733633 262
83adc753 263static unsigned int mnt_get_writers(struct mount *mnt)
3d733633 264{
d3ef3d73 265#ifdef CONFIG_SMP
266 unsigned int count = 0;
3d733633 267 int cpu;
3d733633
DH
268
269 for_each_possible_cpu(cpu) {
68e8a9fe 270 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
3d733633 271 }
3d733633 272
d3ef3d73 273 return count;
274#else
275 return mnt->mnt_writers;
276#endif
3d733633
DH
277}
278
4ed5e82f
MS
279static int mnt_is_readonly(struct vfsmount *mnt)
280{
281 if (mnt->mnt_sb->s_readonly_remount)
282 return 1;
283 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
284 smp_rmb();
285 return __mnt_is_readonly(mnt);
286}
287
8366025e 288/*
eb04c282
JK
289 * Most r/o & frozen checks on a fs are for operations that take discrete
290 * amounts of time, like a write() or unlink(). We must keep track of when
291 * those operations start (for permission checks) and when they end, so that we
292 * can determine when writes are able to occur to a filesystem.
8366025e
DH
293 */
294/**
eb04c282 295 * __mnt_want_write - get write access to a mount without freeze protection
83adc753 296 * @m: the mount on which to take a write
8366025e 297 *
eb04c282
JK
298 * This tells the low-level filesystem that a write is about to be performed to
299 * it, and makes sure that writes are allowed (mnt it read-write) before
300 * returning success. This operation does not protect against filesystem being
301 * frozen. When the write operation is finished, __mnt_drop_write() must be
302 * called. This is effectively a refcount.
8366025e 303 */
eb04c282 304int __mnt_want_write(struct vfsmount *m)
8366025e 305{
83adc753 306 struct mount *mnt = real_mount(m);
3d733633 307 int ret = 0;
3d733633 308
d3ef3d73 309 preempt_disable();
c6653a83 310 mnt_inc_writers(mnt);
d3ef3d73 311 /*
c6653a83 312 * The store to mnt_inc_writers must be visible before we pass
d3ef3d73 313 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
314 * incremented count after it has set MNT_WRITE_HOLD.
315 */
316 smp_mb();
1e75529e 317 while (ACCESS_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
d3ef3d73 318 cpu_relax();
319 /*
320 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
321 * be set to match its requirements. So we must not load that until
322 * MNT_WRITE_HOLD is cleared.
323 */
324 smp_rmb();
4ed5e82f 325 if (mnt_is_readonly(m)) {
c6653a83 326 mnt_dec_writers(mnt);
3d733633 327 ret = -EROFS;
3d733633 328 }
d3ef3d73 329 preempt_enable();
eb04c282
JK
330
331 return ret;
332}
333
334/**
335 * mnt_want_write - get write access to a mount
336 * @m: the mount on which to take a write
337 *
338 * This tells the low-level filesystem that a write is about to be performed to
339 * it, and makes sure that writes are allowed (mount is read-write, filesystem
340 * is not frozen) before returning success. When the write operation is
341 * finished, mnt_drop_write() must be called. This is effectively a refcount.
342 */
343int mnt_want_write(struct vfsmount *m)
344{
345 int ret;
346
347 sb_start_write(m->mnt_sb);
348 ret = __mnt_want_write(m);
349 if (ret)
350 sb_end_write(m->mnt_sb);
3d733633 351 return ret;
8366025e
DH
352}
353EXPORT_SYMBOL_GPL(mnt_want_write);
354
96029c4e 355/**
356 * mnt_clone_write - get write access to a mount
357 * @mnt: the mount on which to take a write
358 *
359 * This is effectively like mnt_want_write, except
360 * it must only be used to take an extra write reference
361 * on a mountpoint that we already know has a write reference
362 * on it. This allows some optimisation.
363 *
364 * After finished, mnt_drop_write must be called as usual to
365 * drop the reference.
366 */
367int mnt_clone_write(struct vfsmount *mnt)
368{
369 /* superblock may be r/o */
370 if (__mnt_is_readonly(mnt))
371 return -EROFS;
372 preempt_disable();
83adc753 373 mnt_inc_writers(real_mount(mnt));
96029c4e 374 preempt_enable();
375 return 0;
376}
377EXPORT_SYMBOL_GPL(mnt_clone_write);
378
379/**
eb04c282 380 * __mnt_want_write_file - get write access to a file's mount
96029c4e 381 * @file: the file who's mount on which to take a write
382 *
eb04c282 383 * This is like __mnt_want_write, but it takes a file and can
96029c4e 384 * do some optimisations if the file is open for write already
385 */
eb04c282 386int __mnt_want_write_file(struct file *file)
96029c4e 387{
496ad9aa 388 struct inode *inode = file_inode(file);
eb04c282 389
2d8dd38a 390 if (!(file->f_mode & FMODE_WRITE) || special_file(inode->i_mode))
eb04c282 391 return __mnt_want_write(file->f_path.mnt);
96029c4e 392 else
393 return mnt_clone_write(file->f_path.mnt);
394}
eb04c282
JK
395
396/**
397 * mnt_want_write_file - get write access to a file's mount
398 * @file: the file who's mount on which to take a write
399 *
400 * This is like mnt_want_write, but it takes a file and can
401 * do some optimisations if the file is open for write already
402 */
403int mnt_want_write_file(struct file *file)
404{
405 int ret;
406
407 sb_start_write(file->f_path.mnt->mnt_sb);
408 ret = __mnt_want_write_file(file);
409 if (ret)
410 sb_end_write(file->f_path.mnt->mnt_sb);
411 return ret;
412}
96029c4e 413EXPORT_SYMBOL_GPL(mnt_want_write_file);
414
8366025e 415/**
eb04c282 416 * __mnt_drop_write - give up write access to a mount
8366025e
DH
417 * @mnt: the mount on which to give up write access
418 *
419 * Tells the low-level filesystem that we are done
420 * performing writes to it. Must be matched with
eb04c282 421 * __mnt_want_write() call above.
8366025e 422 */
eb04c282 423void __mnt_drop_write(struct vfsmount *mnt)
8366025e 424{
d3ef3d73 425 preempt_disable();
83adc753 426 mnt_dec_writers(real_mount(mnt));
d3ef3d73 427 preempt_enable();
8366025e 428}
eb04c282
JK
429
430/**
431 * mnt_drop_write - give up write access to a mount
432 * @mnt: the mount on which to give up write access
433 *
434 * Tells the low-level filesystem that we are done performing writes to it and
435 * also allows filesystem to be frozen again. Must be matched with
436 * mnt_want_write() call above.
437 */
438void mnt_drop_write(struct vfsmount *mnt)
439{
440 __mnt_drop_write(mnt);
441 sb_end_write(mnt->mnt_sb);
442}
8366025e
DH
443EXPORT_SYMBOL_GPL(mnt_drop_write);
444
eb04c282
JK
445void __mnt_drop_write_file(struct file *file)
446{
447 __mnt_drop_write(file->f_path.mnt);
448}
449
2a79f17e
AV
450void mnt_drop_write_file(struct file *file)
451{
452 mnt_drop_write(file->f_path.mnt);
453}
454EXPORT_SYMBOL(mnt_drop_write_file);
455
83adc753 456static int mnt_make_readonly(struct mount *mnt)
8366025e 457{
3d733633
DH
458 int ret = 0;
459
962830df 460 br_write_lock(&vfsmount_lock);
83adc753 461 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
3d733633 462 /*
d3ef3d73 463 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
464 * should be visible before we do.
3d733633 465 */
d3ef3d73 466 smp_mb();
467
3d733633 468 /*
d3ef3d73 469 * With writers on hold, if this value is zero, then there are
470 * definitely no active writers (although held writers may subsequently
471 * increment the count, they'll have to wait, and decrement it after
472 * seeing MNT_READONLY).
473 *
474 * It is OK to have counter incremented on one CPU and decremented on
475 * another: the sum will add up correctly. The danger would be when we
476 * sum up each counter, if we read a counter before it is incremented,
477 * but then read another CPU's count which it has been subsequently
478 * decremented from -- we would see more decrements than we should.
479 * MNT_WRITE_HOLD protects against this scenario, because
480 * mnt_want_write first increments count, then smp_mb, then spins on
481 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
482 * we're counting up here.
3d733633 483 */
c6653a83 484 if (mnt_get_writers(mnt) > 0)
d3ef3d73 485 ret = -EBUSY;
486 else
83adc753 487 mnt->mnt.mnt_flags |= MNT_READONLY;
d3ef3d73 488 /*
489 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
490 * that become unheld will see MNT_READONLY.
491 */
492 smp_wmb();
83adc753 493 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
962830df 494 br_write_unlock(&vfsmount_lock);
3d733633 495 return ret;
8366025e 496}
8366025e 497
83adc753 498static void __mnt_unmake_readonly(struct mount *mnt)
2e4b7fcd 499{
962830df 500 br_write_lock(&vfsmount_lock);
83adc753 501 mnt->mnt.mnt_flags &= ~MNT_READONLY;
962830df 502 br_write_unlock(&vfsmount_lock);
2e4b7fcd
DH
503}
504
4ed5e82f
MS
505int sb_prepare_remount_readonly(struct super_block *sb)
506{
507 struct mount *mnt;
508 int err = 0;
509
8e8b8796
MS
510 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
511 if (atomic_long_read(&sb->s_remove_count))
512 return -EBUSY;
513
962830df 514 br_write_lock(&vfsmount_lock);
4ed5e82f
MS
515 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
516 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
517 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
518 smp_mb();
519 if (mnt_get_writers(mnt) > 0) {
520 err = -EBUSY;
521 break;
522 }
523 }
524 }
8e8b8796
MS
525 if (!err && atomic_long_read(&sb->s_remove_count))
526 err = -EBUSY;
527
4ed5e82f
MS
528 if (!err) {
529 sb->s_readonly_remount = 1;
530 smp_wmb();
531 }
532 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
533 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
534 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
535 }
962830df 536 br_write_unlock(&vfsmount_lock);
4ed5e82f
MS
537
538 return err;
539}
540
b105e270 541static void free_vfsmnt(struct mount *mnt)
1da177e4 542{
52ba1621 543 kfree(mnt->mnt_devname);
73cd49ec 544 mnt_free_id(mnt);
d3ef3d73 545#ifdef CONFIG_SMP
68e8a9fe 546 free_percpu(mnt->mnt_pcp);
d3ef3d73 547#endif
b105e270 548 kmem_cache_free(mnt_cache, mnt);
1da177e4
LT
549}
550
551/*
a05964f3
RP
552 * find the first or last mount at @dentry on vfsmount @mnt depending on
553 * @dir. If @dir is set return the first mount else return the last mount.
99b7db7b 554 * vfsmount_lock must be held for read or write.
1da177e4 555 */
c7105365 556struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry,
a05964f3 557 int dir)
1da177e4 558{
b58fed8b
RP
559 struct list_head *head = mount_hashtable + hash(mnt, dentry);
560 struct list_head *tmp = head;
c7105365 561 struct mount *p, *found = NULL;
1da177e4 562
1da177e4 563 for (;;) {
a05964f3 564 tmp = dir ? tmp->next : tmp->prev;
1da177e4
LT
565 p = NULL;
566 if (tmp == head)
567 break;
1b8e5564 568 p = list_entry(tmp, struct mount, mnt_hash);
a73324da 569 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry) {
a05964f3 570 found = p;
1da177e4
LT
571 break;
572 }
573 }
1da177e4
LT
574 return found;
575}
576
a05964f3 577/*
f015f126
DH
578 * lookup_mnt - Return the first child mount mounted at path
579 *
580 * "First" means first mounted chronologically. If you create the
581 * following mounts:
582 *
583 * mount /dev/sda1 /mnt
584 * mount /dev/sda2 /mnt
585 * mount /dev/sda3 /mnt
586 *
587 * Then lookup_mnt() on the base /mnt dentry in the root mount will
588 * return successively the root dentry and vfsmount of /dev/sda1, then
589 * /dev/sda2, then /dev/sda3, then NULL.
590 *
591 * lookup_mnt takes a reference to the found vfsmount.
a05964f3 592 */
1c755af4 593struct vfsmount *lookup_mnt(struct path *path)
a05964f3 594{
c7105365 595 struct mount *child_mnt;
99b7db7b 596
962830df 597 br_read_lock(&vfsmount_lock);
c7105365
AV
598 child_mnt = __lookup_mnt(path->mnt, path->dentry, 1);
599 if (child_mnt) {
600 mnt_add_count(child_mnt, 1);
962830df 601 br_read_unlock(&vfsmount_lock);
c7105365
AV
602 return &child_mnt->mnt;
603 } else {
962830df 604 br_read_unlock(&vfsmount_lock);
c7105365
AV
605 return NULL;
606 }
a05964f3
RP
607}
608
84d17192
AV
609static struct mountpoint *new_mountpoint(struct dentry *dentry)
610{
611 struct list_head *chain = mountpoint_hashtable + hash(NULL, dentry);
612 struct mountpoint *mp;
613
614 list_for_each_entry(mp, chain, m_hash) {
615 if (mp->m_dentry == dentry) {
616 /* might be worth a WARN_ON() */
617 if (d_unlinked(dentry))
618 return ERR_PTR(-ENOENT);
619 mp->m_count++;
620 return mp;
621 }
622 }
623
624 mp = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
625 if (!mp)
626 return ERR_PTR(-ENOMEM);
627
628 spin_lock(&dentry->d_lock);
629 if (d_unlinked(dentry)) {
630 spin_unlock(&dentry->d_lock);
631 kfree(mp);
632 return ERR_PTR(-ENOENT);
633 }
634 dentry->d_flags |= DCACHE_MOUNTED;
635 spin_unlock(&dentry->d_lock);
636 mp->m_dentry = dentry;
637 mp->m_count = 1;
638 list_add(&mp->m_hash, chain);
639 return mp;
640}
641
642static void put_mountpoint(struct mountpoint *mp)
643{
644 if (!--mp->m_count) {
645 struct dentry *dentry = mp->m_dentry;
646 spin_lock(&dentry->d_lock);
647 dentry->d_flags &= ~DCACHE_MOUNTED;
648 spin_unlock(&dentry->d_lock);
649 list_del(&mp->m_hash);
650 kfree(mp);
651 }
652}
653
143c8c91 654static inline int check_mnt(struct mount *mnt)
1da177e4 655{
6b3286ed 656 return mnt->mnt_ns == current->nsproxy->mnt_ns;
1da177e4
LT
657}
658
99b7db7b
NP
659/*
660 * vfsmount lock must be held for write
661 */
6b3286ed 662static void touch_mnt_namespace(struct mnt_namespace *ns)
5addc5dd
AV
663{
664 if (ns) {
665 ns->event = ++event;
666 wake_up_interruptible(&ns->poll);
667 }
668}
669
99b7db7b
NP
670/*
671 * vfsmount lock must be held for write
672 */
6b3286ed 673static void __touch_mnt_namespace(struct mnt_namespace *ns)
5addc5dd
AV
674{
675 if (ns && ns->event != event) {
676 ns->event = event;
677 wake_up_interruptible(&ns->poll);
678 }
679}
680
99b7db7b
NP
681/*
682 * vfsmount lock must be held for write
683 */
419148da
AV
684static void detach_mnt(struct mount *mnt, struct path *old_path)
685{
a73324da 686 old_path->dentry = mnt->mnt_mountpoint;
0714a533
AV
687 old_path->mnt = &mnt->mnt_parent->mnt;
688 mnt->mnt_parent = mnt;
a73324da 689 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
6b41d536 690 list_del_init(&mnt->mnt_child);
1b8e5564 691 list_del_init(&mnt->mnt_hash);
84d17192
AV
692 put_mountpoint(mnt->mnt_mp);
693 mnt->mnt_mp = NULL;
1da177e4
LT
694}
695
99b7db7b
NP
696/*
697 * vfsmount lock must be held for write
698 */
84d17192
AV
699void mnt_set_mountpoint(struct mount *mnt,
700 struct mountpoint *mp,
44d964d6 701 struct mount *child_mnt)
b90fa9ae 702{
84d17192 703 mp->m_count++;
3a2393d7 704 mnt_add_count(mnt, 1); /* essentially, that's mntget */
84d17192 705 child_mnt->mnt_mountpoint = dget(mp->m_dentry);
3a2393d7 706 child_mnt->mnt_parent = mnt;
84d17192 707 child_mnt->mnt_mp = mp;
b90fa9ae
RP
708}
709
99b7db7b
NP
710/*
711 * vfsmount lock must be held for write
712 */
84d17192
AV
713static void attach_mnt(struct mount *mnt,
714 struct mount *parent,
715 struct mountpoint *mp)
1da177e4 716{
84d17192 717 mnt_set_mountpoint(parent, mp, mnt);
1b8e5564 718 list_add_tail(&mnt->mnt_hash, mount_hashtable +
84d17192
AV
719 hash(&parent->mnt, mp->m_dentry));
720 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
b90fa9ae
RP
721}
722
723/*
99b7db7b 724 * vfsmount lock must be held for write
b90fa9ae 725 */
4b2619a5 726static void commit_tree(struct mount *mnt)
b90fa9ae 727{
0714a533 728 struct mount *parent = mnt->mnt_parent;
83adc753 729 struct mount *m;
b90fa9ae 730 LIST_HEAD(head);
143c8c91 731 struct mnt_namespace *n = parent->mnt_ns;
b90fa9ae 732
0714a533 733 BUG_ON(parent == mnt);
b90fa9ae 734
1a4eeaf2 735 list_add_tail(&head, &mnt->mnt_list);
f7a99c5b 736 list_for_each_entry(m, &head, mnt_list)
143c8c91 737 m->mnt_ns = n;
f03c6599 738
b90fa9ae
RP
739 list_splice(&head, n->list.prev);
740
1b8e5564 741 list_add_tail(&mnt->mnt_hash, mount_hashtable +
a73324da 742 hash(&parent->mnt, mnt->mnt_mountpoint));
6b41d536 743 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
6b3286ed 744 touch_mnt_namespace(n);
1da177e4
LT
745}
746
909b0a88 747static struct mount *next_mnt(struct mount *p, struct mount *root)
1da177e4 748{
6b41d536
AV
749 struct list_head *next = p->mnt_mounts.next;
750 if (next == &p->mnt_mounts) {
1da177e4 751 while (1) {
909b0a88 752 if (p == root)
1da177e4 753 return NULL;
6b41d536
AV
754 next = p->mnt_child.next;
755 if (next != &p->mnt_parent->mnt_mounts)
1da177e4 756 break;
0714a533 757 p = p->mnt_parent;
1da177e4
LT
758 }
759 }
6b41d536 760 return list_entry(next, struct mount, mnt_child);
1da177e4
LT
761}
762
315fc83e 763static struct mount *skip_mnt_tree(struct mount *p)
9676f0c6 764{
6b41d536
AV
765 struct list_head *prev = p->mnt_mounts.prev;
766 while (prev != &p->mnt_mounts) {
767 p = list_entry(prev, struct mount, mnt_child);
768 prev = p->mnt_mounts.prev;
9676f0c6
RP
769 }
770 return p;
771}
772
9d412a43
AV
773struct vfsmount *
774vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
775{
b105e270 776 struct mount *mnt;
9d412a43
AV
777 struct dentry *root;
778
779 if (!type)
780 return ERR_PTR(-ENODEV);
781
782 mnt = alloc_vfsmnt(name);
783 if (!mnt)
784 return ERR_PTR(-ENOMEM);
785
786 if (flags & MS_KERNMOUNT)
b105e270 787 mnt->mnt.mnt_flags = MNT_INTERNAL;
9d412a43
AV
788
789 root = mount_fs(type, flags, name, data);
790 if (IS_ERR(root)) {
791 free_vfsmnt(mnt);
792 return ERR_CAST(root);
793 }
794
b105e270
AV
795 mnt->mnt.mnt_root = root;
796 mnt->mnt.mnt_sb = root->d_sb;
a73324da 797 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
0714a533 798 mnt->mnt_parent = mnt;
962830df 799 br_write_lock(&vfsmount_lock);
39f7c4db 800 list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
962830df 801 br_write_unlock(&vfsmount_lock);
b105e270 802 return &mnt->mnt;
9d412a43
AV
803}
804EXPORT_SYMBOL_GPL(vfs_kern_mount);
805
87129cc0 806static struct mount *clone_mnt(struct mount *old, struct dentry *root,
36341f64 807 int flag)
1da177e4 808{
87129cc0 809 struct super_block *sb = old->mnt.mnt_sb;
be34d1a3
DH
810 struct mount *mnt;
811 int err;
1da177e4 812
be34d1a3
DH
813 mnt = alloc_vfsmnt(old->mnt_devname);
814 if (!mnt)
815 return ERR_PTR(-ENOMEM);
719f5d7f 816
7a472ef4 817 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
be34d1a3
DH
818 mnt->mnt_group_id = 0; /* not a peer of original */
819 else
820 mnt->mnt_group_id = old->mnt_group_id;
b90fa9ae 821
be34d1a3
DH
822 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
823 err = mnt_alloc_group_id(mnt);
824 if (err)
825 goto out_free;
1da177e4 826 }
be34d1a3
DH
827
828 mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~MNT_WRITE_HOLD;
829 atomic_inc(&sb->s_active);
830 mnt->mnt.mnt_sb = sb;
831 mnt->mnt.mnt_root = dget(root);
832 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
833 mnt->mnt_parent = mnt;
834 br_write_lock(&vfsmount_lock);
835 list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
836 br_write_unlock(&vfsmount_lock);
837
7a472ef4
EB
838 if ((flag & CL_SLAVE) ||
839 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
be34d1a3
DH
840 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
841 mnt->mnt_master = old;
842 CLEAR_MNT_SHARED(mnt);
843 } else if (!(flag & CL_PRIVATE)) {
844 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
845 list_add(&mnt->mnt_share, &old->mnt_share);
846 if (IS_MNT_SLAVE(old))
847 list_add(&mnt->mnt_slave, &old->mnt_slave);
848 mnt->mnt_master = old->mnt_master;
849 }
850 if (flag & CL_MAKE_SHARED)
851 set_mnt_shared(mnt);
852
853 /* stick the duplicate mount on the same expiry list
854 * as the original if that was on one */
855 if (flag & CL_EXPIRE) {
856 if (!list_empty(&old->mnt_expire))
857 list_add(&mnt->mnt_expire, &old->mnt_expire);
858 }
859
cb338d06 860 return mnt;
719f5d7f
MS
861
862 out_free:
863 free_vfsmnt(mnt);
be34d1a3 864 return ERR_PTR(err);
1da177e4
LT
865}
866
83adc753 867static inline void mntfree(struct mount *mnt)
1da177e4 868{
83adc753
AV
869 struct vfsmount *m = &mnt->mnt;
870 struct super_block *sb = m->mnt_sb;
b3e19d92 871
3d733633
DH
872 /*
873 * This probably indicates that somebody messed
874 * up a mnt_want/drop_write() pair. If this
875 * happens, the filesystem was probably unable
876 * to make r/w->r/o transitions.
877 */
d3ef3d73 878 /*
b3e19d92
NP
879 * The locking used to deal with mnt_count decrement provides barriers,
880 * so mnt_get_writers() below is safe.
d3ef3d73 881 */
c6653a83 882 WARN_ON(mnt_get_writers(mnt));
83adc753
AV
883 fsnotify_vfsmount_delete(m);
884 dput(m->mnt_root);
885 free_vfsmnt(mnt);
1da177e4
LT
886 deactivate_super(sb);
887}
888
900148dc 889static void mntput_no_expire(struct mount *mnt)
b3e19d92 890{
b3e19d92 891put_again:
f03c6599 892#ifdef CONFIG_SMP
962830df 893 br_read_lock(&vfsmount_lock);
f7a99c5b
AV
894 if (likely(mnt->mnt_ns)) {
895 /* shouldn't be the last one */
aa9c0e07 896 mnt_add_count(mnt, -1);
962830df 897 br_read_unlock(&vfsmount_lock);
f03c6599 898 return;
b3e19d92 899 }
962830df 900 br_read_unlock(&vfsmount_lock);
b3e19d92 901
962830df 902 br_write_lock(&vfsmount_lock);
aa9c0e07 903 mnt_add_count(mnt, -1);
b3e19d92 904 if (mnt_get_count(mnt)) {
962830df 905 br_write_unlock(&vfsmount_lock);
99b7db7b
NP
906 return;
907 }
b3e19d92 908#else
aa9c0e07 909 mnt_add_count(mnt, -1);
b3e19d92 910 if (likely(mnt_get_count(mnt)))
99b7db7b 911 return;
962830df 912 br_write_lock(&vfsmount_lock);
f03c6599 913#endif
863d684f
AV
914 if (unlikely(mnt->mnt_pinned)) {
915 mnt_add_count(mnt, mnt->mnt_pinned + 1);
916 mnt->mnt_pinned = 0;
962830df 917 br_write_unlock(&vfsmount_lock);
900148dc 918 acct_auto_close_mnt(&mnt->mnt);
b3e19d92 919 goto put_again;
7b7b1ace 920 }
962830df 921
39f7c4db 922 list_del(&mnt->mnt_instance);
962830df 923 br_write_unlock(&vfsmount_lock);
b3e19d92
NP
924 mntfree(mnt);
925}
b3e19d92
NP
926
927void mntput(struct vfsmount *mnt)
928{
929 if (mnt) {
863d684f 930 struct mount *m = real_mount(mnt);
b3e19d92 931 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
863d684f
AV
932 if (unlikely(m->mnt_expiry_mark))
933 m->mnt_expiry_mark = 0;
934 mntput_no_expire(m);
b3e19d92
NP
935 }
936}
937EXPORT_SYMBOL(mntput);
938
939struct vfsmount *mntget(struct vfsmount *mnt)
940{
941 if (mnt)
83adc753 942 mnt_add_count(real_mount(mnt), 1);
b3e19d92
NP
943 return mnt;
944}
945EXPORT_SYMBOL(mntget);
946
7b7b1ace
AV
947void mnt_pin(struct vfsmount *mnt)
948{
962830df 949 br_write_lock(&vfsmount_lock);
863d684f 950 real_mount(mnt)->mnt_pinned++;
962830df 951 br_write_unlock(&vfsmount_lock);
7b7b1ace 952}
7b7b1ace
AV
953EXPORT_SYMBOL(mnt_pin);
954
863d684f 955void mnt_unpin(struct vfsmount *m)
7b7b1ace 956{
863d684f 957 struct mount *mnt = real_mount(m);
962830df 958 br_write_lock(&vfsmount_lock);
7b7b1ace 959 if (mnt->mnt_pinned) {
863d684f 960 mnt_add_count(mnt, 1);
7b7b1ace
AV
961 mnt->mnt_pinned--;
962 }
962830df 963 br_write_unlock(&vfsmount_lock);
7b7b1ace 964}
7b7b1ace 965EXPORT_SYMBOL(mnt_unpin);
1da177e4 966
b3b304a2
MS
967static inline void mangle(struct seq_file *m, const char *s)
968{
969 seq_escape(m, s, " \t\n\\");
970}
971
972/*
973 * Simple .show_options callback for filesystems which don't want to
974 * implement more complex mount option showing.
975 *
976 * See also save_mount_options().
977 */
34c80b1d 978int generic_show_options(struct seq_file *m, struct dentry *root)
b3b304a2 979{
2a32cebd
AV
980 const char *options;
981
982 rcu_read_lock();
34c80b1d 983 options = rcu_dereference(root->d_sb->s_options);
b3b304a2
MS
984
985 if (options != NULL && options[0]) {
986 seq_putc(m, ',');
987 mangle(m, options);
988 }
2a32cebd 989 rcu_read_unlock();
b3b304a2
MS
990
991 return 0;
992}
993EXPORT_SYMBOL(generic_show_options);
994
995/*
996 * If filesystem uses generic_show_options(), this function should be
997 * called from the fill_super() callback.
998 *
999 * The .remount_fs callback usually needs to be handled in a special
1000 * way, to make sure, that previous options are not overwritten if the
1001 * remount fails.
1002 *
1003 * Also note, that if the filesystem's .remount_fs function doesn't
1004 * reset all options to their default value, but changes only newly
1005 * given options, then the displayed options will not reflect reality
1006 * any more.
1007 */
1008void save_mount_options(struct super_block *sb, char *options)
1009{
2a32cebd
AV
1010 BUG_ON(sb->s_options);
1011 rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
b3b304a2
MS
1012}
1013EXPORT_SYMBOL(save_mount_options);
1014
2a32cebd
AV
1015void replace_mount_options(struct super_block *sb, char *options)
1016{
1017 char *old = sb->s_options;
1018 rcu_assign_pointer(sb->s_options, options);
1019 if (old) {
1020 synchronize_rcu();
1021 kfree(old);
1022 }
1023}
1024EXPORT_SYMBOL(replace_mount_options);
1025
a1a2c409 1026#ifdef CONFIG_PROC_FS
0226f492 1027/* iterator; we want it to have access to namespace_sem, thus here... */
1da177e4
LT
1028static void *m_start(struct seq_file *m, loff_t *pos)
1029{
6ce6e24e 1030 struct proc_mounts *p = proc_mounts(m);
1da177e4 1031
390c6843 1032 down_read(&namespace_sem);
a1a2c409 1033 return seq_list_start(&p->ns->list, *pos);
1da177e4
LT
1034}
1035
1036static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1037{
6ce6e24e 1038 struct proc_mounts *p = proc_mounts(m);
b0765fb8 1039
a1a2c409 1040 return seq_list_next(v, &p->ns->list, pos);
1da177e4
LT
1041}
1042
1043static void m_stop(struct seq_file *m, void *v)
1044{
390c6843 1045 up_read(&namespace_sem);
1da177e4
LT
1046}
1047
0226f492 1048static int m_show(struct seq_file *m, void *v)
2d4d4864 1049{
6ce6e24e 1050 struct proc_mounts *p = proc_mounts(m);
1a4eeaf2 1051 struct mount *r = list_entry(v, struct mount, mnt_list);
0226f492 1052 return p->show(m, &r->mnt);
1da177e4
LT
1053}
1054
a1a2c409 1055const struct seq_operations mounts_op = {
1da177e4
LT
1056 .start = m_start,
1057 .next = m_next,
1058 .stop = m_stop,
0226f492 1059 .show = m_show,
b4629fe2 1060};
a1a2c409 1061#endif /* CONFIG_PROC_FS */
b4629fe2 1062
1da177e4
LT
1063/**
1064 * may_umount_tree - check if a mount tree is busy
1065 * @mnt: root of mount tree
1066 *
1067 * This is called to check if a tree of mounts has any
1068 * open files, pwds, chroots or sub mounts that are
1069 * busy.
1070 */
909b0a88 1071int may_umount_tree(struct vfsmount *m)
1da177e4 1072{
909b0a88 1073 struct mount *mnt = real_mount(m);
36341f64
RP
1074 int actual_refs = 0;
1075 int minimum_refs = 0;
315fc83e 1076 struct mount *p;
909b0a88 1077 BUG_ON(!m);
1da177e4 1078
b3e19d92 1079 /* write lock needed for mnt_get_count */
962830df 1080 br_write_lock(&vfsmount_lock);
909b0a88 1081 for (p = mnt; p; p = next_mnt(p, mnt)) {
83adc753 1082 actual_refs += mnt_get_count(p);
1da177e4 1083 minimum_refs += 2;
1da177e4 1084 }
962830df 1085 br_write_unlock(&vfsmount_lock);
1da177e4
LT
1086
1087 if (actual_refs > minimum_refs)
e3474a8e 1088 return 0;
1da177e4 1089
e3474a8e 1090 return 1;
1da177e4
LT
1091}
1092
1093EXPORT_SYMBOL(may_umount_tree);
1094
1095/**
1096 * may_umount - check if a mount point is busy
1097 * @mnt: root of mount
1098 *
1099 * This is called to check if a mount point has any
1100 * open files, pwds, chroots or sub mounts. If the
1101 * mount has sub mounts this will return busy
1102 * regardless of whether the sub mounts are busy.
1103 *
1104 * Doesn't take quota and stuff into account. IOW, in some cases it will
1105 * give false negatives. The main reason why it's here is that we need
1106 * a non-destructive way to look for easily umountable filesystems.
1107 */
1108int may_umount(struct vfsmount *mnt)
1109{
e3474a8e 1110 int ret = 1;
8ad08d8a 1111 down_read(&namespace_sem);
962830df 1112 br_write_lock(&vfsmount_lock);
1ab59738 1113 if (propagate_mount_busy(real_mount(mnt), 2))
e3474a8e 1114 ret = 0;
962830df 1115 br_write_unlock(&vfsmount_lock);
8ad08d8a 1116 up_read(&namespace_sem);
a05964f3 1117 return ret;
1da177e4
LT
1118}
1119
1120EXPORT_SYMBOL(may_umount);
1121
e3197d83
AV
1122static LIST_HEAD(unmounted); /* protected by namespace_sem */
1123
b90fa9ae 1124void release_mounts(struct list_head *head)
70fbcdf4 1125{
d5e50f74 1126 struct mount *mnt;
bf066c7d 1127 while (!list_empty(head)) {
1b8e5564
AV
1128 mnt = list_first_entry(head, struct mount, mnt_hash);
1129 list_del_init(&mnt->mnt_hash);
676da58d 1130 if (mnt_has_parent(mnt)) {
70fbcdf4 1131 struct dentry *dentry;
863d684f 1132 struct mount *m;
99b7db7b 1133
962830df 1134 br_write_lock(&vfsmount_lock);
a73324da 1135 dentry = mnt->mnt_mountpoint;
863d684f 1136 m = mnt->mnt_parent;
a73324da 1137 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
0714a533 1138 mnt->mnt_parent = mnt;
7c4b93d8 1139 m->mnt_ghosts--;
962830df 1140 br_write_unlock(&vfsmount_lock);
70fbcdf4 1141 dput(dentry);
863d684f 1142 mntput(&m->mnt);
70fbcdf4 1143 }
d5e50f74 1144 mntput(&mnt->mnt);
70fbcdf4
RP
1145 }
1146}
1147
e3197d83
AV
1148static void namespace_unlock(void)
1149{
1150 LIST_HEAD(head);
1151 list_splice_init(&unmounted, &head);
1152 up_write(&namespace_sem);
1153 release_mounts(&head);
1154}
1155
99b7db7b
NP
1156/*
1157 * vfsmount lock must be held for write
1158 * namespace_sem must be held for write
1159 */
761d5c38 1160void umount_tree(struct mount *mnt, int propagate, struct list_head *kill)
1da177e4 1161{
7b8a53fd 1162 LIST_HEAD(tmp_list);
315fc83e 1163 struct mount *p;
1da177e4 1164
909b0a88 1165 for (p = mnt; p; p = next_mnt(p, mnt))
1b8e5564 1166 list_move(&p->mnt_hash, &tmp_list);
1da177e4 1167
a05964f3 1168 if (propagate)
7b8a53fd 1169 propagate_umount(&tmp_list);
a05964f3 1170
1b8e5564 1171 list_for_each_entry(p, &tmp_list, mnt_hash) {
6776db3d 1172 list_del_init(&p->mnt_expire);
1a4eeaf2 1173 list_del_init(&p->mnt_list);
143c8c91
AV
1174 __touch_mnt_namespace(p->mnt_ns);
1175 p->mnt_ns = NULL;
6b41d536 1176 list_del_init(&p->mnt_child);
676da58d 1177 if (mnt_has_parent(p)) {
863d684f 1178 p->mnt_parent->mnt_ghosts++;
84d17192
AV
1179 put_mountpoint(p->mnt_mp);
1180 p->mnt_mp = NULL;
7c4b93d8 1181 }
0f0afb1d 1182 change_mnt_propagation(p, MS_PRIVATE);
1da177e4 1183 }
7b8a53fd 1184 list_splice(&tmp_list, kill);
1da177e4
LT
1185}
1186
b54b9be7 1187static void shrink_submounts(struct mount *mnt);
c35038be 1188
1ab59738 1189static int do_umount(struct mount *mnt, int flags)
1da177e4 1190{
1ab59738 1191 struct super_block *sb = mnt->mnt.mnt_sb;
1da177e4 1192 int retval;
70fbcdf4 1193 LIST_HEAD(umount_list);
1da177e4 1194
1ab59738 1195 retval = security_sb_umount(&mnt->mnt, flags);
1da177e4
LT
1196 if (retval)
1197 return retval;
1198
1199 /*
1200 * Allow userspace to request a mountpoint be expired rather than
1201 * unmounting unconditionally. Unmount only happens if:
1202 * (1) the mark is already set (the mark is cleared by mntput())
1203 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1204 */
1205 if (flags & MNT_EXPIRE) {
1ab59738 1206 if (&mnt->mnt == current->fs->root.mnt ||
1da177e4
LT
1207 flags & (MNT_FORCE | MNT_DETACH))
1208 return -EINVAL;
1209
b3e19d92
NP
1210 /*
1211 * probably don't strictly need the lock here if we examined
1212 * all race cases, but it's a slowpath.
1213 */
962830df 1214 br_write_lock(&vfsmount_lock);
83adc753 1215 if (mnt_get_count(mnt) != 2) {
962830df 1216 br_write_unlock(&vfsmount_lock);
1da177e4 1217 return -EBUSY;
b3e19d92 1218 }
962830df 1219 br_write_unlock(&vfsmount_lock);
1da177e4 1220
863d684f 1221 if (!xchg(&mnt->mnt_expiry_mark, 1))
1da177e4
LT
1222 return -EAGAIN;
1223 }
1224
1225 /*
1226 * If we may have to abort operations to get out of this
1227 * mount, and they will themselves hold resources we must
1228 * allow the fs to do things. In the Unix tradition of
1229 * 'Gee thats tricky lets do it in userspace' the umount_begin
1230 * might fail to complete on the first run through as other tasks
1231 * must return, and the like. Thats for the mount program to worry
1232 * about for the moment.
1233 */
1234
42faad99 1235 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
42faad99 1236 sb->s_op->umount_begin(sb);
42faad99 1237 }
1da177e4
LT
1238
1239 /*
1240 * No sense to grab the lock for this test, but test itself looks
1241 * somewhat bogus. Suggestions for better replacement?
1242 * Ho-hum... In principle, we might treat that as umount + switch
1243 * to rootfs. GC would eventually take care of the old vfsmount.
1244 * Actually it makes sense, especially if rootfs would contain a
1245 * /reboot - static binary that would close all descriptors and
1246 * call reboot(9). Then init(8) could umount root and exec /reboot.
1247 */
1ab59738 1248 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1da177e4
LT
1249 /*
1250 * Special case for "unmounting" root ...
1251 * we just try to remount it readonly.
1252 */
1253 down_write(&sb->s_umount);
4aa98cf7 1254 if (!(sb->s_flags & MS_RDONLY))
1da177e4 1255 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1da177e4
LT
1256 up_write(&sb->s_umount);
1257 return retval;
1258 }
1259
390c6843 1260 down_write(&namespace_sem);
962830df 1261 br_write_lock(&vfsmount_lock);
5addc5dd 1262 event++;
1da177e4 1263
c35038be 1264 if (!(flags & MNT_DETACH))
b54b9be7 1265 shrink_submounts(mnt);
c35038be 1266
1da177e4 1267 retval = -EBUSY;
a05964f3 1268 if (flags & MNT_DETACH || !propagate_mount_busy(mnt, 2)) {
1a4eeaf2 1269 if (!list_empty(&mnt->mnt_list))
e3197d83 1270 umount_tree(mnt, 1, &unmounted);
1da177e4
LT
1271 retval = 0;
1272 }
962830df 1273 br_write_unlock(&vfsmount_lock);
e3197d83 1274 namespace_unlock();
1da177e4
LT
1275 return retval;
1276}
1277
9b40bc90
AV
1278/*
1279 * Is the caller allowed to modify his namespace?
1280 */
1281static inline bool may_mount(void)
1282{
1283 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1284}
1285
1da177e4
LT
1286/*
1287 * Now umount can handle mount points as well as block devices.
1288 * This is important for filesystems which use unnamed block devices.
1289 *
1290 * We now support a flag for forced unmount like the other 'big iron'
1291 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1292 */
1293
bdc480e3 1294SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1da177e4 1295{
2d8f3038 1296 struct path path;
900148dc 1297 struct mount *mnt;
1da177e4 1298 int retval;
db1f05bb 1299 int lookup_flags = 0;
1da177e4 1300
db1f05bb
MS
1301 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1302 return -EINVAL;
1303
9b40bc90
AV
1304 if (!may_mount())
1305 return -EPERM;
1306
db1f05bb
MS
1307 if (!(flags & UMOUNT_NOFOLLOW))
1308 lookup_flags |= LOOKUP_FOLLOW;
1309
1310 retval = user_path_at(AT_FDCWD, name, lookup_flags, &path);
1da177e4
LT
1311 if (retval)
1312 goto out;
900148dc 1313 mnt = real_mount(path.mnt);
1da177e4 1314 retval = -EINVAL;
2d8f3038 1315 if (path.dentry != path.mnt->mnt_root)
1da177e4 1316 goto dput_and_out;
143c8c91 1317 if (!check_mnt(mnt))
1da177e4
LT
1318 goto dput_and_out;
1319
900148dc 1320 retval = do_umount(mnt, flags);
1da177e4 1321dput_and_out:
429731b1 1322 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
2d8f3038 1323 dput(path.dentry);
900148dc 1324 mntput_no_expire(mnt);
1da177e4
LT
1325out:
1326 return retval;
1327}
1328
1329#ifdef __ARCH_WANT_SYS_OLDUMOUNT
1330
1331/*
b58fed8b 1332 * The 2.0 compatible umount. No flags.
1da177e4 1333 */
bdc480e3 1334SYSCALL_DEFINE1(oldumount, char __user *, name)
1da177e4 1335{
b58fed8b 1336 return sys_umount(name, 0);
1da177e4
LT
1337}
1338
1339#endif
1340
8823c079
EB
1341static bool mnt_ns_loop(struct path *path)
1342{
1343 /* Could bind mounting the mount namespace inode cause a
1344 * mount namespace loop?
1345 */
1346 struct inode *inode = path->dentry->d_inode;
1347 struct proc_inode *ei;
1348 struct mnt_namespace *mnt_ns;
1349
1350 if (!proc_ns_inode(inode))
1351 return false;
1352
1353 ei = PROC_I(inode);
1354 if (ei->ns_ops != &mntns_operations)
1355 return false;
1356
1357 mnt_ns = ei->ns;
1358 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1359}
1360
87129cc0 1361struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
36341f64 1362 int flag)
1da177e4 1363{
84d17192 1364 struct mount *res, *p, *q, *r, *parent;
1da177e4 1365
fc7be130 1366 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(mnt))
be34d1a3 1367 return ERR_PTR(-EINVAL);
9676f0c6 1368
36341f64 1369 res = q = clone_mnt(mnt, dentry, flag);
be34d1a3
DH
1370 if (IS_ERR(q))
1371 return q;
1372
a73324da 1373 q->mnt_mountpoint = mnt->mnt_mountpoint;
1da177e4
LT
1374
1375 p = mnt;
6b41d536 1376 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
315fc83e 1377 struct mount *s;
7ec02ef1 1378 if (!is_subdir(r->mnt_mountpoint, dentry))
1da177e4
LT
1379 continue;
1380
909b0a88 1381 for (s = r; s; s = next_mnt(s, r)) {
fc7be130 1382 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(s)) {
9676f0c6
RP
1383 s = skip_mnt_tree(s);
1384 continue;
1385 }
0714a533
AV
1386 while (p != s->mnt_parent) {
1387 p = p->mnt_parent;
1388 q = q->mnt_parent;
1da177e4 1389 }
87129cc0 1390 p = s;
84d17192 1391 parent = q;
87129cc0 1392 q = clone_mnt(p, p->mnt.mnt_root, flag);
be34d1a3
DH
1393 if (IS_ERR(q))
1394 goto out;
962830df 1395 br_write_lock(&vfsmount_lock);
1a4eeaf2 1396 list_add_tail(&q->mnt_list, &res->mnt_list);
84d17192 1397 attach_mnt(q, parent, p->mnt_mp);
962830df 1398 br_write_unlock(&vfsmount_lock);
1da177e4
LT
1399 }
1400 }
1401 return res;
be34d1a3 1402out:
1da177e4 1403 if (res) {
70fbcdf4 1404 LIST_HEAD(umount_list);
962830df 1405 br_write_lock(&vfsmount_lock);
761d5c38 1406 umount_tree(res, 0, &umount_list);
962830df 1407 br_write_unlock(&vfsmount_lock);
70fbcdf4 1408 release_mounts(&umount_list);
1da177e4 1409 }
be34d1a3 1410 return q;
1da177e4
LT
1411}
1412
be34d1a3
DH
1413/* Caller should check returned pointer for errors */
1414
589ff870 1415struct vfsmount *collect_mounts(struct path *path)
8aec0809 1416{
cb338d06 1417 struct mount *tree;
1a60a280 1418 down_write(&namespace_sem);
87129cc0
AV
1419 tree = copy_tree(real_mount(path->mnt), path->dentry,
1420 CL_COPY_ALL | CL_PRIVATE);
1a60a280 1421 up_write(&namespace_sem);
be34d1a3
DH
1422 if (IS_ERR(tree))
1423 return NULL;
1424 return &tree->mnt;
8aec0809
AV
1425}
1426
1427void drop_collected_mounts(struct vfsmount *mnt)
1428{
1a60a280 1429 down_write(&namespace_sem);
962830df 1430 br_write_lock(&vfsmount_lock);
3ab6abee 1431 umount_tree(real_mount(mnt), 0, &unmounted);
962830df 1432 br_write_unlock(&vfsmount_lock);
3ab6abee 1433 namespace_unlock();
8aec0809
AV
1434}
1435
1f707137
AV
1436int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1437 struct vfsmount *root)
1438{
1a4eeaf2 1439 struct mount *mnt;
1f707137
AV
1440 int res = f(root, arg);
1441 if (res)
1442 return res;
1a4eeaf2
AV
1443 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1444 res = f(&mnt->mnt, arg);
1f707137
AV
1445 if (res)
1446 return res;
1447 }
1448 return 0;
1449}
1450
4b8b21f4 1451static void cleanup_group_ids(struct mount *mnt, struct mount *end)
719f5d7f 1452{
315fc83e 1453 struct mount *p;
719f5d7f 1454
909b0a88 1455 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
fc7be130 1456 if (p->mnt_group_id && !IS_MNT_SHARED(p))
4b8b21f4 1457 mnt_release_group_id(p);
719f5d7f
MS
1458 }
1459}
1460
4b8b21f4 1461static int invent_group_ids(struct mount *mnt, bool recurse)
719f5d7f 1462{
315fc83e 1463 struct mount *p;
719f5d7f 1464
909b0a88 1465 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
fc7be130 1466 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
4b8b21f4 1467 int err = mnt_alloc_group_id(p);
719f5d7f 1468 if (err) {
4b8b21f4 1469 cleanup_group_ids(mnt, p);
719f5d7f
MS
1470 return err;
1471 }
1472 }
1473 }
1474
1475 return 0;
1476}
1477
b90fa9ae
RP
1478/*
1479 * @source_mnt : mount tree to be attached
21444403
RP
1480 * @nd : place the mount tree @source_mnt is attached
1481 * @parent_nd : if non-null, detach the source_mnt from its parent and
1482 * store the parent mount and mountpoint dentry.
1483 * (done when source_mnt is moved)
b90fa9ae
RP
1484 *
1485 * NOTE: in the table below explains the semantics when a source mount
1486 * of a given type is attached to a destination mount of a given type.
9676f0c6
RP
1487 * ---------------------------------------------------------------------------
1488 * | BIND MOUNT OPERATION |
1489 * |**************************************************************************
1490 * | source-->| shared | private | slave | unbindable |
1491 * | dest | | | | |
1492 * | | | | | | |
1493 * | v | | | | |
1494 * |**************************************************************************
1495 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1496 * | | | | | |
1497 * |non-shared| shared (+) | private | slave (*) | invalid |
1498 * ***************************************************************************
b90fa9ae
RP
1499 * A bind operation clones the source mount and mounts the clone on the
1500 * destination mount.
1501 *
1502 * (++) the cloned mount is propagated to all the mounts in the propagation
1503 * tree of the destination mount and the cloned mount is added to
1504 * the peer group of the source mount.
1505 * (+) the cloned mount is created under the destination mount and is marked
1506 * as shared. The cloned mount is added to the peer group of the source
1507 * mount.
5afe0022
RP
1508 * (+++) the mount is propagated to all the mounts in the propagation tree
1509 * of the destination mount and the cloned mount is made slave
1510 * of the same master as that of the source mount. The cloned mount
1511 * is marked as 'shared and slave'.
1512 * (*) the cloned mount is made a slave of the same master as that of the
1513 * source mount.
1514 *
9676f0c6
RP
1515 * ---------------------------------------------------------------------------
1516 * | MOVE MOUNT OPERATION |
1517 * |**************************************************************************
1518 * | source-->| shared | private | slave | unbindable |
1519 * | dest | | | | |
1520 * | | | | | | |
1521 * | v | | | | |
1522 * |**************************************************************************
1523 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
1524 * | | | | | |
1525 * |non-shared| shared (+*) | private | slave (*) | unbindable |
1526 * ***************************************************************************
5afe0022
RP
1527 *
1528 * (+) the mount is moved to the destination. And is then propagated to
1529 * all the mounts in the propagation tree of the destination mount.
21444403 1530 * (+*) the mount is moved to the destination.
5afe0022
RP
1531 * (+++) the mount is moved to the destination and is then propagated to
1532 * all the mounts belonging to the destination mount's propagation tree.
1533 * the mount is marked as 'shared and slave'.
1534 * (*) the mount continues to be a slave at the new location.
b90fa9ae
RP
1535 *
1536 * if the source mount is a tree, the operations explained above is
1537 * applied to each mount in the tree.
1538 * Must be called without spinlocks held, since this function can sleep
1539 * in allocations.
1540 */
0fb54e50 1541static int attach_recursive_mnt(struct mount *source_mnt,
84d17192
AV
1542 struct mount *dest_mnt,
1543 struct mountpoint *dest_mp,
1544 struct path *parent_path)
b90fa9ae
RP
1545{
1546 LIST_HEAD(tree_list);
315fc83e 1547 struct mount *child, *p;
719f5d7f 1548 int err;
b90fa9ae 1549
fc7be130 1550 if (IS_MNT_SHARED(dest_mnt)) {
0fb54e50 1551 err = invent_group_ids(source_mnt, true);
719f5d7f
MS
1552 if (err)
1553 goto out;
1554 }
84d17192 1555 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
719f5d7f
MS
1556 if (err)
1557 goto out_cleanup_ids;
b90fa9ae 1558
962830df 1559 br_write_lock(&vfsmount_lock);
df1a1ad2 1560
fc7be130 1561 if (IS_MNT_SHARED(dest_mnt)) {
909b0a88 1562 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
0f0afb1d 1563 set_mnt_shared(p);
b90fa9ae 1564 }
1a390689 1565 if (parent_path) {
0fb54e50 1566 detach_mnt(source_mnt, parent_path);
84d17192 1567 attach_mnt(source_mnt, dest_mnt, dest_mp);
143c8c91 1568 touch_mnt_namespace(source_mnt->mnt_ns);
21444403 1569 } else {
84d17192 1570 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
0fb54e50 1571 commit_tree(source_mnt);
21444403 1572 }
b90fa9ae 1573
1b8e5564
AV
1574 list_for_each_entry_safe(child, p, &tree_list, mnt_hash) {
1575 list_del_init(&child->mnt_hash);
4b2619a5 1576 commit_tree(child);
b90fa9ae 1577 }
962830df 1578 br_write_unlock(&vfsmount_lock);
99b7db7b 1579
b90fa9ae 1580 return 0;
719f5d7f
MS
1581
1582 out_cleanup_ids:
fc7be130 1583 if (IS_MNT_SHARED(dest_mnt))
0fb54e50 1584 cleanup_group_ids(source_mnt, NULL);
719f5d7f
MS
1585 out:
1586 return err;
b90fa9ae
RP
1587}
1588
84d17192 1589static struct mountpoint *lock_mount(struct path *path)
b12cea91
AV
1590{
1591 struct vfsmount *mnt;
84d17192 1592 struct dentry *dentry = path->dentry;
b12cea91 1593retry:
84d17192
AV
1594 mutex_lock(&dentry->d_inode->i_mutex);
1595 if (unlikely(cant_mount(dentry))) {
1596 mutex_unlock(&dentry->d_inode->i_mutex);
1597 return ERR_PTR(-ENOENT);
b12cea91
AV
1598 }
1599 down_write(&namespace_sem);
1600 mnt = lookup_mnt(path);
84d17192
AV
1601 if (likely(!mnt)) {
1602 struct mountpoint *mp = new_mountpoint(dentry);
1603 if (IS_ERR(mp)) {
1604 up_write(&namespace_sem);
1605 mutex_unlock(&dentry->d_inode->i_mutex);
1606 return mp;
1607 }
1608 return mp;
1609 }
b12cea91
AV
1610 up_write(&namespace_sem);
1611 mutex_unlock(&path->dentry->d_inode->i_mutex);
1612 path_put(path);
1613 path->mnt = mnt;
84d17192 1614 dentry = path->dentry = dget(mnt->mnt_root);
b12cea91
AV
1615 goto retry;
1616}
1617
84d17192 1618static void unlock_mount(struct mountpoint *where)
b12cea91 1619{
84d17192
AV
1620 struct dentry *dentry = where->m_dentry;
1621 put_mountpoint(where);
b12cea91 1622 up_write(&namespace_sem);
84d17192 1623 mutex_unlock(&dentry->d_inode->i_mutex);
b12cea91
AV
1624}
1625
84d17192 1626static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
1da177e4 1627{
95bc5f25 1628 if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER)
1da177e4
LT
1629 return -EINVAL;
1630
84d17192 1631 if (S_ISDIR(mp->m_dentry->d_inode->i_mode) !=
95bc5f25 1632 S_ISDIR(mnt->mnt.mnt_root->d_inode->i_mode))
1da177e4
LT
1633 return -ENOTDIR;
1634
84d17192 1635 return attach_recursive_mnt(mnt, p, mp, NULL);
1da177e4
LT
1636}
1637
7a2e8a8f
VA
1638/*
1639 * Sanity check the flags to change_mnt_propagation.
1640 */
1641
1642static int flags_to_propagation_type(int flags)
1643{
7c6e984d 1644 int type = flags & ~(MS_REC | MS_SILENT);
7a2e8a8f
VA
1645
1646 /* Fail if any non-propagation flags are set */
1647 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
1648 return 0;
1649 /* Only one propagation flag should be set */
1650 if (!is_power_of_2(type))
1651 return 0;
1652 return type;
1653}
1654
07b20889
RP
1655/*
1656 * recursively change the type of the mountpoint.
1657 */
0a0d8a46 1658static int do_change_type(struct path *path, int flag)
07b20889 1659{
315fc83e 1660 struct mount *m;
4b8b21f4 1661 struct mount *mnt = real_mount(path->mnt);
07b20889 1662 int recurse = flag & MS_REC;
7a2e8a8f 1663 int type;
719f5d7f 1664 int err = 0;
07b20889 1665
2d92ab3c 1666 if (path->dentry != path->mnt->mnt_root)
07b20889
RP
1667 return -EINVAL;
1668
7a2e8a8f
VA
1669 type = flags_to_propagation_type(flag);
1670 if (!type)
1671 return -EINVAL;
1672
07b20889 1673 down_write(&namespace_sem);
719f5d7f
MS
1674 if (type == MS_SHARED) {
1675 err = invent_group_ids(mnt, recurse);
1676 if (err)
1677 goto out_unlock;
1678 }
1679
962830df 1680 br_write_lock(&vfsmount_lock);
909b0a88 1681 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
0f0afb1d 1682 change_mnt_propagation(m, type);
962830df 1683 br_write_unlock(&vfsmount_lock);
719f5d7f
MS
1684
1685 out_unlock:
07b20889 1686 up_write(&namespace_sem);
719f5d7f 1687 return err;
07b20889
RP
1688}
1689
1da177e4
LT
1690/*
1691 * do loopback mount.
1692 */
808d4e3c 1693static int do_loopback(struct path *path, const char *old_name,
2dafe1c4 1694 int recurse)
1da177e4 1695{
b12cea91 1696 LIST_HEAD(umount_list);
2d92ab3c 1697 struct path old_path;
84d17192
AV
1698 struct mount *mnt = NULL, *old, *parent;
1699 struct mountpoint *mp;
57eccb83 1700 int err;
1da177e4
LT
1701 if (!old_name || !*old_name)
1702 return -EINVAL;
815d405c 1703 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
1da177e4
LT
1704 if (err)
1705 return err;
1706
8823c079
EB
1707 err = -EINVAL;
1708 if (mnt_ns_loop(&old_path))
1709 goto out;
1710
84d17192
AV
1711 mp = lock_mount(path);
1712 err = PTR_ERR(mp);
1713 if (IS_ERR(mp))
b12cea91
AV
1714 goto out;
1715
87129cc0 1716 old = real_mount(old_path.mnt);
84d17192 1717 parent = real_mount(path->mnt);
87129cc0 1718
1da177e4 1719 err = -EINVAL;
fc7be130 1720 if (IS_MNT_UNBINDABLE(old))
b12cea91 1721 goto out2;
9676f0c6 1722
84d17192 1723 if (!check_mnt(parent) || !check_mnt(old))
b12cea91 1724 goto out2;
1da177e4 1725
ccd48bc7 1726 if (recurse)
87129cc0 1727 mnt = copy_tree(old, old_path.dentry, 0);
ccd48bc7 1728 else
87129cc0 1729 mnt = clone_mnt(old, old_path.dentry, 0);
ccd48bc7 1730
be34d1a3
DH
1731 if (IS_ERR(mnt)) {
1732 err = PTR_ERR(mnt);
e9c5d8a5 1733 goto out2;
be34d1a3 1734 }
ccd48bc7 1735
84d17192 1736 err = graft_tree(mnt, parent, mp);
ccd48bc7 1737 if (err) {
962830df 1738 br_write_lock(&vfsmount_lock);
761d5c38 1739 umount_tree(mnt, 0, &umount_list);
962830df 1740 br_write_unlock(&vfsmount_lock);
5b83d2c5 1741 }
b12cea91 1742out2:
84d17192 1743 unlock_mount(mp);
b12cea91 1744 release_mounts(&umount_list);
ccd48bc7 1745out:
2d92ab3c 1746 path_put(&old_path);
1da177e4
LT
1747 return err;
1748}
1749
2e4b7fcd
DH
1750static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
1751{
1752 int error = 0;
1753 int readonly_request = 0;
1754
1755 if (ms_flags & MS_RDONLY)
1756 readonly_request = 1;
1757 if (readonly_request == __mnt_is_readonly(mnt))
1758 return 0;
1759
1760 if (readonly_request)
83adc753 1761 error = mnt_make_readonly(real_mount(mnt));
2e4b7fcd 1762 else
83adc753 1763 __mnt_unmake_readonly(real_mount(mnt));
2e4b7fcd
DH
1764 return error;
1765}
1766
1da177e4
LT
1767/*
1768 * change filesystem flags. dir should be a physical root of filesystem.
1769 * If you've mounted a non-root directory somewhere and want to do remount
1770 * on it - tough luck.
1771 */
0a0d8a46 1772static int do_remount(struct path *path, int flags, int mnt_flags,
1da177e4
LT
1773 void *data)
1774{
1775 int err;
2d92ab3c 1776 struct super_block *sb = path->mnt->mnt_sb;
143c8c91 1777 struct mount *mnt = real_mount(path->mnt);
1da177e4 1778
143c8c91 1779 if (!check_mnt(mnt))
1da177e4
LT
1780 return -EINVAL;
1781
2d92ab3c 1782 if (path->dentry != path->mnt->mnt_root)
1da177e4
LT
1783 return -EINVAL;
1784
ff36fe2c
EP
1785 err = security_sb_remount(sb, data);
1786 if (err)
1787 return err;
1788
1da177e4 1789 down_write(&sb->s_umount);
2e4b7fcd 1790 if (flags & MS_BIND)
2d92ab3c 1791 err = change_mount_flags(path->mnt, flags);
57eccb83
AV
1792 else if (!capable(CAP_SYS_ADMIN))
1793 err = -EPERM;
4aa98cf7 1794 else
2e4b7fcd 1795 err = do_remount_sb(sb, flags, data, 0);
7b43a79f 1796 if (!err) {
962830df 1797 br_write_lock(&vfsmount_lock);
143c8c91
AV
1798 mnt_flags |= mnt->mnt.mnt_flags & MNT_PROPAGATION_MASK;
1799 mnt->mnt.mnt_flags = mnt_flags;
962830df 1800 br_write_unlock(&vfsmount_lock);
7b43a79f 1801 }
1da177e4 1802 up_write(&sb->s_umount);
0e55a7cc 1803 if (!err) {
962830df 1804 br_write_lock(&vfsmount_lock);
143c8c91 1805 touch_mnt_namespace(mnt->mnt_ns);
962830df 1806 br_write_unlock(&vfsmount_lock);
0e55a7cc 1807 }
1da177e4
LT
1808 return err;
1809}
1810
cbbe362c 1811static inline int tree_contains_unbindable(struct mount *mnt)
9676f0c6 1812{
315fc83e 1813 struct mount *p;
909b0a88 1814 for (p = mnt; p; p = next_mnt(p, mnt)) {
fc7be130 1815 if (IS_MNT_UNBINDABLE(p))
9676f0c6
RP
1816 return 1;
1817 }
1818 return 0;
1819}
1820
808d4e3c 1821static int do_move_mount(struct path *path, const char *old_name)
1da177e4 1822{
2d92ab3c 1823 struct path old_path, parent_path;
676da58d 1824 struct mount *p;
0fb54e50 1825 struct mount *old;
84d17192 1826 struct mountpoint *mp;
57eccb83 1827 int err;
1da177e4
LT
1828 if (!old_name || !*old_name)
1829 return -EINVAL;
2d92ab3c 1830 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
1da177e4
LT
1831 if (err)
1832 return err;
1833
84d17192
AV
1834 mp = lock_mount(path);
1835 err = PTR_ERR(mp);
1836 if (IS_ERR(mp))
cc53ce53
DH
1837 goto out;
1838
143c8c91 1839 old = real_mount(old_path.mnt);
fc7be130 1840 p = real_mount(path->mnt);
143c8c91 1841
1da177e4 1842 err = -EINVAL;
fc7be130 1843 if (!check_mnt(p) || !check_mnt(old))
1da177e4
LT
1844 goto out1;
1845
1da177e4 1846 err = -EINVAL;
2d92ab3c 1847 if (old_path.dentry != old_path.mnt->mnt_root)
21444403 1848 goto out1;
1da177e4 1849
676da58d 1850 if (!mnt_has_parent(old))
21444403 1851 goto out1;
1da177e4 1852
2d92ab3c
AV
1853 if (S_ISDIR(path->dentry->d_inode->i_mode) !=
1854 S_ISDIR(old_path.dentry->d_inode->i_mode))
21444403
RP
1855 goto out1;
1856 /*
1857 * Don't move a mount residing in a shared parent.
1858 */
fc7be130 1859 if (IS_MNT_SHARED(old->mnt_parent))
21444403 1860 goto out1;
9676f0c6
RP
1861 /*
1862 * Don't move a mount tree containing unbindable mounts to a destination
1863 * mount which is shared.
1864 */
fc7be130 1865 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
9676f0c6 1866 goto out1;
1da177e4 1867 err = -ELOOP;
fc7be130 1868 for (; mnt_has_parent(p); p = p->mnt_parent)
676da58d 1869 if (p == old)
21444403 1870 goto out1;
1da177e4 1871
84d17192 1872 err = attach_recursive_mnt(old, real_mount(path->mnt), mp, &parent_path);
4ac91378 1873 if (err)
21444403 1874 goto out1;
1da177e4
LT
1875
1876 /* if the mount is moved, it should no longer be expire
1877 * automatically */
6776db3d 1878 list_del_init(&old->mnt_expire);
1da177e4 1879out1:
84d17192 1880 unlock_mount(mp);
1da177e4 1881out:
1da177e4 1882 if (!err)
1a390689 1883 path_put(&parent_path);
2d92ab3c 1884 path_put(&old_path);
1da177e4
LT
1885 return err;
1886}
1887
9d412a43
AV
1888static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
1889{
1890 int err;
1891 const char *subtype = strchr(fstype, '.');
1892 if (subtype) {
1893 subtype++;
1894 err = -EINVAL;
1895 if (!subtype[0])
1896 goto err;
1897 } else
1898 subtype = "";
1899
1900 mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
1901 err = -ENOMEM;
1902 if (!mnt->mnt_sb->s_subtype)
1903 goto err;
1904 return mnt;
1905
1906 err:
1907 mntput(mnt);
1908 return ERR_PTR(err);
1909}
1910
9d412a43
AV
1911/*
1912 * add a mount into a namespace's mount tree
1913 */
95bc5f25 1914static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
9d412a43 1915{
84d17192
AV
1916 struct mountpoint *mp;
1917 struct mount *parent;
9d412a43
AV
1918 int err;
1919
1920 mnt_flags &= ~(MNT_SHARED | MNT_WRITE_HOLD | MNT_INTERNAL);
1921
84d17192
AV
1922 mp = lock_mount(path);
1923 if (IS_ERR(mp))
1924 return PTR_ERR(mp);
9d412a43 1925
84d17192 1926 parent = real_mount(path->mnt);
9d412a43 1927 err = -EINVAL;
84d17192 1928 if (unlikely(!check_mnt(parent))) {
156cacb1
AV
1929 /* that's acceptable only for automounts done in private ns */
1930 if (!(mnt_flags & MNT_SHRINKABLE))
1931 goto unlock;
1932 /* ... and for those we'd better have mountpoint still alive */
84d17192 1933 if (!parent->mnt_ns)
156cacb1
AV
1934 goto unlock;
1935 }
9d412a43
AV
1936
1937 /* Refuse the same filesystem on the same mount point */
1938 err = -EBUSY;
95bc5f25 1939 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
9d412a43
AV
1940 path->mnt->mnt_root == path->dentry)
1941 goto unlock;
1942
1943 err = -EINVAL;
95bc5f25 1944 if (S_ISLNK(newmnt->mnt.mnt_root->d_inode->i_mode))
9d412a43
AV
1945 goto unlock;
1946
95bc5f25 1947 newmnt->mnt.mnt_flags = mnt_flags;
84d17192 1948 err = graft_tree(newmnt, parent, mp);
9d412a43
AV
1949
1950unlock:
84d17192 1951 unlock_mount(mp);
9d412a43
AV
1952 return err;
1953}
b1e75df4 1954
1da177e4
LT
1955/*
1956 * create a new mount for userspace and request it to be added into the
1957 * namespace's tree
1958 */
0c55cfc4 1959static int do_new_mount(struct path *path, const char *fstype, int flags,
808d4e3c 1960 int mnt_flags, const char *name, void *data)
1da177e4 1961{
0c55cfc4 1962 struct file_system_type *type;
9b40bc90 1963 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
1da177e4 1964 struct vfsmount *mnt;
15f9a3f3 1965 int err;
1da177e4 1966
0c55cfc4 1967 if (!fstype)
1da177e4
LT
1968 return -EINVAL;
1969
0c55cfc4
EB
1970 type = get_fs_type(fstype);
1971 if (!type)
1972 return -ENODEV;
1973
1974 if (user_ns != &init_user_ns) {
1975 if (!(type->fs_flags & FS_USERNS_MOUNT)) {
1976 put_filesystem(type);
1977 return -EPERM;
1978 }
1979 /* Only in special cases allow devices from mounts
1980 * created outside the initial user namespace.
1981 */
1982 if (!(type->fs_flags & FS_USERNS_DEV_MOUNT)) {
1983 flags |= MS_NODEV;
1984 mnt_flags |= MNT_NODEV;
1985 }
1986 }
1987
1988 mnt = vfs_kern_mount(type, flags, name, data);
1989 if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
1990 !mnt->mnt_sb->s_subtype)
1991 mnt = fs_set_subtype(mnt, fstype);
1992
1993 put_filesystem(type);
1da177e4
LT
1994 if (IS_ERR(mnt))
1995 return PTR_ERR(mnt);
1996
95bc5f25 1997 err = do_add_mount(real_mount(mnt), path, mnt_flags);
15f9a3f3
AV
1998 if (err)
1999 mntput(mnt);
2000 return err;
1da177e4
LT
2001}
2002
19a167af
AV
2003int finish_automount(struct vfsmount *m, struct path *path)
2004{
6776db3d 2005 struct mount *mnt = real_mount(m);
19a167af
AV
2006 int err;
2007 /* The new mount record should have at least 2 refs to prevent it being
2008 * expired before we get a chance to add it
2009 */
6776db3d 2010 BUG_ON(mnt_get_count(mnt) < 2);
19a167af
AV
2011
2012 if (m->mnt_sb == path->mnt->mnt_sb &&
2013 m->mnt_root == path->dentry) {
b1e75df4
AV
2014 err = -ELOOP;
2015 goto fail;
19a167af
AV
2016 }
2017
95bc5f25 2018 err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
b1e75df4
AV
2019 if (!err)
2020 return 0;
2021fail:
2022 /* remove m from any expiration list it may be on */
6776db3d 2023 if (!list_empty(&mnt->mnt_expire)) {
b1e75df4 2024 down_write(&namespace_sem);
962830df 2025 br_write_lock(&vfsmount_lock);
6776db3d 2026 list_del_init(&mnt->mnt_expire);
962830df 2027 br_write_unlock(&vfsmount_lock);
b1e75df4 2028 up_write(&namespace_sem);
19a167af 2029 }
b1e75df4
AV
2030 mntput(m);
2031 mntput(m);
19a167af
AV
2032 return err;
2033}
2034
ea5b778a
DH
2035/**
2036 * mnt_set_expiry - Put a mount on an expiration list
2037 * @mnt: The mount to list.
2038 * @expiry_list: The list to add the mount to.
2039 */
2040void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2041{
2042 down_write(&namespace_sem);
962830df 2043 br_write_lock(&vfsmount_lock);
ea5b778a 2044
6776db3d 2045 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
ea5b778a 2046
962830df 2047 br_write_unlock(&vfsmount_lock);
ea5b778a
DH
2048 up_write(&namespace_sem);
2049}
2050EXPORT_SYMBOL(mnt_set_expiry);
2051
1da177e4
LT
2052/*
2053 * process a list of expirable mountpoints with the intent of discarding any
2054 * mountpoints that aren't in use and haven't been touched since last we came
2055 * here
2056 */
2057void mark_mounts_for_expiry(struct list_head *mounts)
2058{
761d5c38 2059 struct mount *mnt, *next;
1da177e4
LT
2060 LIST_HEAD(graveyard);
2061
2062 if (list_empty(mounts))
2063 return;
2064
bcc5c7d2 2065 down_write(&namespace_sem);
962830df 2066 br_write_lock(&vfsmount_lock);
1da177e4
LT
2067
2068 /* extract from the expiration list every vfsmount that matches the
2069 * following criteria:
2070 * - only referenced by its parent vfsmount
2071 * - still marked for expiry (marked on the last call here; marks are
2072 * cleared by mntput())
2073 */
6776db3d 2074 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
863d684f 2075 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
1ab59738 2076 propagate_mount_busy(mnt, 1))
1da177e4 2077 continue;
6776db3d 2078 list_move(&mnt->mnt_expire, &graveyard);
1da177e4 2079 }
bcc5c7d2 2080 while (!list_empty(&graveyard)) {
6776db3d 2081 mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
143c8c91 2082 touch_mnt_namespace(mnt->mnt_ns);
3ab6abee 2083 umount_tree(mnt, 1, &unmounted);
bcc5c7d2 2084 }
962830df 2085 br_write_unlock(&vfsmount_lock);
3ab6abee 2086 namespace_unlock();
5528f911
TM
2087}
2088
2089EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2090
2091/*
2092 * Ripoff of 'select_parent()'
2093 *
2094 * search the list of submounts for a given mountpoint, and move any
2095 * shrinkable submounts to the 'graveyard' list.
2096 */
692afc31 2097static int select_submounts(struct mount *parent, struct list_head *graveyard)
5528f911 2098{
692afc31 2099 struct mount *this_parent = parent;
5528f911
TM
2100 struct list_head *next;
2101 int found = 0;
2102
2103repeat:
6b41d536 2104 next = this_parent->mnt_mounts.next;
5528f911 2105resume:
6b41d536 2106 while (next != &this_parent->mnt_mounts) {
5528f911 2107 struct list_head *tmp = next;
6b41d536 2108 struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
5528f911
TM
2109
2110 next = tmp->next;
692afc31 2111 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
1da177e4 2112 continue;
5528f911
TM
2113 /*
2114 * Descend a level if the d_mounts list is non-empty.
2115 */
6b41d536 2116 if (!list_empty(&mnt->mnt_mounts)) {
5528f911
TM
2117 this_parent = mnt;
2118 goto repeat;
2119 }
1da177e4 2120
1ab59738 2121 if (!propagate_mount_busy(mnt, 1)) {
6776db3d 2122 list_move_tail(&mnt->mnt_expire, graveyard);
5528f911
TM
2123 found++;
2124 }
1da177e4 2125 }
5528f911
TM
2126 /*
2127 * All done at this level ... ascend and resume the search
2128 */
2129 if (this_parent != parent) {
6b41d536 2130 next = this_parent->mnt_child.next;
0714a533 2131 this_parent = this_parent->mnt_parent;
5528f911
TM
2132 goto resume;
2133 }
2134 return found;
2135}
2136
2137/*
2138 * process a list of expirable mountpoints with the intent of discarding any
2139 * submounts of a specific parent mountpoint
99b7db7b
NP
2140 *
2141 * vfsmount_lock must be held for write
5528f911 2142 */
b54b9be7 2143static void shrink_submounts(struct mount *mnt)
5528f911
TM
2144{
2145 LIST_HEAD(graveyard);
761d5c38 2146 struct mount *m;
5528f911 2147
5528f911 2148 /* extract submounts of 'mountpoint' from the expiration list */
c35038be 2149 while (select_submounts(mnt, &graveyard)) {
bcc5c7d2 2150 while (!list_empty(&graveyard)) {
761d5c38 2151 m = list_first_entry(&graveyard, struct mount,
6776db3d 2152 mnt_expire);
143c8c91 2153 touch_mnt_namespace(m->mnt_ns);
b54b9be7 2154 umount_tree(m, 1, &unmounted);
bcc5c7d2
AV
2155 }
2156 }
1da177e4
LT
2157}
2158
1da177e4
LT
2159/*
2160 * Some copy_from_user() implementations do not return the exact number of
2161 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
2162 * Note that this function differs from copy_from_user() in that it will oops
2163 * on bad values of `to', rather than returning a short copy.
2164 */
b58fed8b
RP
2165static long exact_copy_from_user(void *to, const void __user * from,
2166 unsigned long n)
1da177e4
LT
2167{
2168 char *t = to;
2169 const char __user *f = from;
2170 char c;
2171
2172 if (!access_ok(VERIFY_READ, from, n))
2173 return n;
2174
2175 while (n) {
2176 if (__get_user(c, f)) {
2177 memset(t, 0, n);
2178 break;
2179 }
2180 *t++ = c;
2181 f++;
2182 n--;
2183 }
2184 return n;
2185}
2186
b58fed8b 2187int copy_mount_options(const void __user * data, unsigned long *where)
1da177e4
LT
2188{
2189 int i;
2190 unsigned long page;
2191 unsigned long size;
b58fed8b 2192
1da177e4
LT
2193 *where = 0;
2194 if (!data)
2195 return 0;
2196
2197 if (!(page = __get_free_page(GFP_KERNEL)))
2198 return -ENOMEM;
2199
2200 /* We only care that *some* data at the address the user
2201 * gave us is valid. Just in case, we'll zero
2202 * the remainder of the page.
2203 */
2204 /* copy_from_user cannot cross TASK_SIZE ! */
2205 size = TASK_SIZE - (unsigned long)data;
2206 if (size > PAGE_SIZE)
2207 size = PAGE_SIZE;
2208
2209 i = size - exact_copy_from_user((void *)page, data, size);
2210 if (!i) {
b58fed8b 2211 free_page(page);
1da177e4
LT
2212 return -EFAULT;
2213 }
2214 if (i != PAGE_SIZE)
2215 memset((char *)page + i, 0, PAGE_SIZE - i);
2216 *where = page;
2217 return 0;
2218}
2219
eca6f534
VN
2220int copy_mount_string(const void __user *data, char **where)
2221{
2222 char *tmp;
2223
2224 if (!data) {
2225 *where = NULL;
2226 return 0;
2227 }
2228
2229 tmp = strndup_user(data, PAGE_SIZE);
2230 if (IS_ERR(tmp))
2231 return PTR_ERR(tmp);
2232
2233 *where = tmp;
2234 return 0;
2235}
2236
1da177e4
LT
2237/*
2238 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2239 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2240 *
2241 * data is a (void *) that can point to any structure up to
2242 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2243 * information (or be NULL).
2244 *
2245 * Pre-0.97 versions of mount() didn't have a flags word.
2246 * When the flags word was introduced its top half was required
2247 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2248 * Therefore, if this magic number is present, it carries no information
2249 * and must be discarded.
2250 */
808d4e3c
AV
2251long do_mount(const char *dev_name, const char *dir_name,
2252 const char *type_page, unsigned long flags, void *data_page)
1da177e4 2253{
2d92ab3c 2254 struct path path;
1da177e4
LT
2255 int retval = 0;
2256 int mnt_flags = 0;
2257
2258 /* Discard magic */
2259 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2260 flags &= ~MS_MGC_MSK;
2261
2262 /* Basic sanity checks */
2263
2264 if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
2265 return -EINVAL;
1da177e4
LT
2266
2267 if (data_page)
2268 ((char *)data_page)[PAGE_SIZE - 1] = 0;
2269
a27ab9f2
TH
2270 /* ... and get the mountpoint */
2271 retval = kern_path(dir_name, LOOKUP_FOLLOW, &path);
2272 if (retval)
2273 return retval;
2274
2275 retval = security_sb_mount(dev_name, &path,
2276 type_page, flags, data_page);
2277 if (retval)
2278 goto dput_out;
2279
57eccb83
AV
2280 if (!may_mount())
2281 return -EPERM;
2282
613cbe3d
AK
2283 /* Default to relatime unless overriden */
2284 if (!(flags & MS_NOATIME))
2285 mnt_flags |= MNT_RELATIME;
0a1c01c9 2286
1da177e4
LT
2287 /* Separate the per-mountpoint flags */
2288 if (flags & MS_NOSUID)
2289 mnt_flags |= MNT_NOSUID;
2290 if (flags & MS_NODEV)
2291 mnt_flags |= MNT_NODEV;
2292 if (flags & MS_NOEXEC)
2293 mnt_flags |= MNT_NOEXEC;
fc33a7bb
CH
2294 if (flags & MS_NOATIME)
2295 mnt_flags |= MNT_NOATIME;
2296 if (flags & MS_NODIRATIME)
2297 mnt_flags |= MNT_NODIRATIME;
d0adde57
MG
2298 if (flags & MS_STRICTATIME)
2299 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
2e4b7fcd
DH
2300 if (flags & MS_RDONLY)
2301 mnt_flags |= MNT_READONLY;
fc33a7bb 2302
7a4dec53 2303 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
d0adde57
MG
2304 MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
2305 MS_STRICTATIME);
1da177e4 2306
1da177e4 2307 if (flags & MS_REMOUNT)
2d92ab3c 2308 retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
1da177e4
LT
2309 data_page);
2310 else if (flags & MS_BIND)
2d92ab3c 2311 retval = do_loopback(&path, dev_name, flags & MS_REC);
9676f0c6 2312 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2d92ab3c 2313 retval = do_change_type(&path, flags);
1da177e4 2314 else if (flags & MS_MOVE)
2d92ab3c 2315 retval = do_move_mount(&path, dev_name);
1da177e4 2316 else
2d92ab3c 2317 retval = do_new_mount(&path, type_page, flags, mnt_flags,
1da177e4
LT
2318 dev_name, data_page);
2319dput_out:
2d92ab3c 2320 path_put(&path);
1da177e4
LT
2321 return retval;
2322}
2323
771b1371
EB
2324static void free_mnt_ns(struct mnt_namespace *ns)
2325{
98f842e6 2326 proc_free_inum(ns->proc_inum);
771b1371
EB
2327 put_user_ns(ns->user_ns);
2328 kfree(ns);
2329}
2330
8823c079
EB
2331/*
2332 * Assign a sequence number so we can detect when we attempt to bind
2333 * mount a reference to an older mount namespace into the current
2334 * mount namespace, preventing reference counting loops. A 64bit
2335 * number incrementing at 10Ghz will take 12,427 years to wrap which
2336 * is effectively never, so we can ignore the possibility.
2337 */
2338static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
2339
771b1371 2340static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns)
cf8d2c11
TM
2341{
2342 struct mnt_namespace *new_ns;
98f842e6 2343 int ret;
cf8d2c11
TM
2344
2345 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
2346 if (!new_ns)
2347 return ERR_PTR(-ENOMEM);
98f842e6
EB
2348 ret = proc_alloc_inum(&new_ns->proc_inum);
2349 if (ret) {
2350 kfree(new_ns);
2351 return ERR_PTR(ret);
2352 }
8823c079 2353 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
cf8d2c11
TM
2354 atomic_set(&new_ns->count, 1);
2355 new_ns->root = NULL;
2356 INIT_LIST_HEAD(&new_ns->list);
2357 init_waitqueue_head(&new_ns->poll);
2358 new_ns->event = 0;
771b1371 2359 new_ns->user_ns = get_user_ns(user_ns);
cf8d2c11
TM
2360 return new_ns;
2361}
2362
741a2951
JD
2363/*
2364 * Allocate a new namespace structure and populate it with contents
2365 * copied from the namespace of the passed in task structure.
2366 */
e3222c4e 2367static struct mnt_namespace *dup_mnt_ns(struct mnt_namespace *mnt_ns,
771b1371 2368 struct user_namespace *user_ns, struct fs_struct *fs)
1da177e4 2369{
6b3286ed 2370 struct mnt_namespace *new_ns;
7f2da1e7 2371 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
315fc83e 2372 struct mount *p, *q;
be08d6d2 2373 struct mount *old = mnt_ns->root;
cb338d06 2374 struct mount *new;
7a472ef4 2375 int copy_flags;
1da177e4 2376
771b1371 2377 new_ns = alloc_mnt_ns(user_ns);
cf8d2c11
TM
2378 if (IS_ERR(new_ns))
2379 return new_ns;
1da177e4 2380
390c6843 2381 down_write(&namespace_sem);
1da177e4 2382 /* First pass: copy the tree topology */
7a472ef4
EB
2383 copy_flags = CL_COPY_ALL | CL_EXPIRE;
2384 if (user_ns != mnt_ns->user_ns)
2385 copy_flags |= CL_SHARED_TO_SLAVE;
2386 new = copy_tree(old, old->mnt.mnt_root, copy_flags);
be34d1a3 2387 if (IS_ERR(new)) {
390c6843 2388 up_write(&namespace_sem);
771b1371 2389 free_mnt_ns(new_ns);
be34d1a3 2390 return ERR_CAST(new);
1da177e4 2391 }
be08d6d2 2392 new_ns->root = new;
962830df 2393 br_write_lock(&vfsmount_lock);
1a4eeaf2 2394 list_add_tail(&new_ns->list, &new->mnt_list);
962830df 2395 br_write_unlock(&vfsmount_lock);
1da177e4
LT
2396
2397 /*
2398 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2399 * as belonging to new namespace. We have already acquired a private
2400 * fs_struct, so tsk->fs->lock is not needed.
2401 */
909b0a88 2402 p = old;
cb338d06 2403 q = new;
1da177e4 2404 while (p) {
143c8c91 2405 q->mnt_ns = new_ns;
1da177e4 2406 if (fs) {
315fc83e
AV
2407 if (&p->mnt == fs->root.mnt) {
2408 fs->root.mnt = mntget(&q->mnt);
315fc83e 2409 rootmnt = &p->mnt;
1da177e4 2410 }
315fc83e
AV
2411 if (&p->mnt == fs->pwd.mnt) {
2412 fs->pwd.mnt = mntget(&q->mnt);
315fc83e 2413 pwdmnt = &p->mnt;
1da177e4 2414 }
1da177e4 2415 }
909b0a88
AV
2416 p = next_mnt(p, old);
2417 q = next_mnt(q, new);
1da177e4 2418 }
390c6843 2419 up_write(&namespace_sem);
1da177e4 2420
1da177e4 2421 if (rootmnt)
f03c6599 2422 mntput(rootmnt);
1da177e4 2423 if (pwdmnt)
f03c6599 2424 mntput(pwdmnt);
1da177e4 2425
741a2951
JD
2426 return new_ns;
2427}
2428
213dd266 2429struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
771b1371 2430 struct user_namespace *user_ns, struct fs_struct *new_fs)
741a2951 2431{
6b3286ed 2432 struct mnt_namespace *new_ns;
741a2951 2433
e3222c4e 2434 BUG_ON(!ns);
6b3286ed 2435 get_mnt_ns(ns);
741a2951
JD
2436
2437 if (!(flags & CLONE_NEWNS))
e3222c4e 2438 return ns;
741a2951 2439
771b1371 2440 new_ns = dup_mnt_ns(ns, user_ns, new_fs);
741a2951 2441
6b3286ed 2442 put_mnt_ns(ns);
e3222c4e 2443 return new_ns;
1da177e4
LT
2444}
2445
cf8d2c11
TM
2446/**
2447 * create_mnt_ns - creates a private namespace and adds a root filesystem
2448 * @mnt: pointer to the new root filesystem mountpoint
2449 */
1a4eeaf2 2450static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
cf8d2c11 2451{
771b1371 2452 struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns);
cf8d2c11 2453 if (!IS_ERR(new_ns)) {
1a4eeaf2
AV
2454 struct mount *mnt = real_mount(m);
2455 mnt->mnt_ns = new_ns;
be08d6d2 2456 new_ns->root = mnt;
1a4eeaf2 2457 list_add(&new_ns->list, &mnt->mnt_list);
c1334495 2458 } else {
1a4eeaf2 2459 mntput(m);
cf8d2c11
TM
2460 }
2461 return new_ns;
2462}
cf8d2c11 2463
ea441d11
AV
2464struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
2465{
2466 struct mnt_namespace *ns;
d31da0f0 2467 struct super_block *s;
ea441d11
AV
2468 struct path path;
2469 int err;
2470
2471 ns = create_mnt_ns(mnt);
2472 if (IS_ERR(ns))
2473 return ERR_CAST(ns);
2474
2475 err = vfs_path_lookup(mnt->mnt_root, mnt,
2476 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
2477
2478 put_mnt_ns(ns);
2479
2480 if (err)
2481 return ERR_PTR(err);
2482
2483 /* trade a vfsmount reference for active sb one */
d31da0f0
AV
2484 s = path.mnt->mnt_sb;
2485 atomic_inc(&s->s_active);
ea441d11
AV
2486 mntput(path.mnt);
2487 /* lock the sucker */
d31da0f0 2488 down_write(&s->s_umount);
ea441d11
AV
2489 /* ... and return the root of (sub)tree on it */
2490 return path.dentry;
2491}
2492EXPORT_SYMBOL(mount_subtree);
2493
bdc480e3
HC
2494SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
2495 char __user *, type, unsigned long, flags, void __user *, data)
1da177e4 2496{
eca6f534
VN
2497 int ret;
2498 char *kernel_type;
91a27b2a 2499 struct filename *kernel_dir;
eca6f534 2500 char *kernel_dev;
1da177e4 2501 unsigned long data_page;
1da177e4 2502
eca6f534
VN
2503 ret = copy_mount_string(type, &kernel_type);
2504 if (ret < 0)
2505 goto out_type;
1da177e4 2506
eca6f534
VN
2507 kernel_dir = getname(dir_name);
2508 if (IS_ERR(kernel_dir)) {
2509 ret = PTR_ERR(kernel_dir);
2510 goto out_dir;
2511 }
1da177e4 2512
eca6f534
VN
2513 ret = copy_mount_string(dev_name, &kernel_dev);
2514 if (ret < 0)
2515 goto out_dev;
1da177e4 2516
eca6f534
VN
2517 ret = copy_mount_options(data, &data_page);
2518 if (ret < 0)
2519 goto out_data;
1da177e4 2520
91a27b2a 2521 ret = do_mount(kernel_dev, kernel_dir->name, kernel_type, flags,
eca6f534 2522 (void *) data_page);
1da177e4 2523
eca6f534
VN
2524 free_page(data_page);
2525out_data:
2526 kfree(kernel_dev);
2527out_dev:
2528 putname(kernel_dir);
2529out_dir:
2530 kfree(kernel_type);
2531out_type:
2532 return ret;
1da177e4
LT
2533}
2534
afac7cba
AV
2535/*
2536 * Return true if path is reachable from root
2537 *
2538 * namespace_sem or vfsmount_lock is held
2539 */
643822b4 2540bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
afac7cba
AV
2541 const struct path *root)
2542{
643822b4 2543 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
a73324da 2544 dentry = mnt->mnt_mountpoint;
0714a533 2545 mnt = mnt->mnt_parent;
afac7cba 2546 }
643822b4 2547 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
afac7cba
AV
2548}
2549
2550int path_is_under(struct path *path1, struct path *path2)
2551{
2552 int res;
962830df 2553 br_read_lock(&vfsmount_lock);
643822b4 2554 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
962830df 2555 br_read_unlock(&vfsmount_lock);
afac7cba
AV
2556 return res;
2557}
2558EXPORT_SYMBOL(path_is_under);
2559
1da177e4
LT
2560/*
2561 * pivot_root Semantics:
2562 * Moves the root file system of the current process to the directory put_old,
2563 * makes new_root as the new root file system of the current process, and sets
2564 * root/cwd of all processes which had them on the current root to new_root.
2565 *
2566 * Restrictions:
2567 * The new_root and put_old must be directories, and must not be on the
2568 * same file system as the current process root. The put_old must be
2569 * underneath new_root, i.e. adding a non-zero number of /.. to the string
2570 * pointed to by put_old must yield the same directory as new_root. No other
2571 * file system may be mounted on put_old. After all, new_root is a mountpoint.
2572 *
4a0d11fa
NB
2573 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
2574 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
2575 * in this situation.
2576 *
1da177e4
LT
2577 * Notes:
2578 * - we don't move root/cwd if they are not at the root (reason: if something
2579 * cared enough to change them, it's probably wrong to force them elsewhere)
2580 * - it's okay to pick a root that isn't the root of a file system, e.g.
2581 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
2582 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
2583 * first.
2584 */
3480b257
HC
2585SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
2586 const char __user *, put_old)
1da177e4 2587{
2d8f3038 2588 struct path new, old, parent_path, root_parent, root;
84d17192
AV
2589 struct mount *new_mnt, *root_mnt, *old_mnt;
2590 struct mountpoint *old_mp, *root_mp;
1da177e4
LT
2591 int error;
2592
9b40bc90 2593 if (!may_mount())
1da177e4
LT
2594 return -EPERM;
2595
2d8f3038 2596 error = user_path_dir(new_root, &new);
1da177e4
LT
2597 if (error)
2598 goto out0;
1da177e4 2599
2d8f3038 2600 error = user_path_dir(put_old, &old);
1da177e4
LT
2601 if (error)
2602 goto out1;
2603
2d8f3038 2604 error = security_sb_pivotroot(&old, &new);
b12cea91
AV
2605 if (error)
2606 goto out2;
1da177e4 2607
f7ad3c6b 2608 get_fs_root(current->fs, &root);
84d17192
AV
2609 old_mp = lock_mount(&old);
2610 error = PTR_ERR(old_mp);
2611 if (IS_ERR(old_mp))
b12cea91
AV
2612 goto out3;
2613
1da177e4 2614 error = -EINVAL;
419148da
AV
2615 new_mnt = real_mount(new.mnt);
2616 root_mnt = real_mount(root.mnt);
84d17192
AV
2617 old_mnt = real_mount(old.mnt);
2618 if (IS_MNT_SHARED(old_mnt) ||
fc7be130
AV
2619 IS_MNT_SHARED(new_mnt->mnt_parent) ||
2620 IS_MNT_SHARED(root_mnt->mnt_parent))
b12cea91 2621 goto out4;
143c8c91 2622 if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
b12cea91 2623 goto out4;
1da177e4 2624 error = -ENOENT;
f3da392e 2625 if (d_unlinked(new.dentry))
b12cea91 2626 goto out4;
1da177e4 2627 error = -EBUSY;
84d17192 2628 if (new_mnt == root_mnt || old_mnt == root_mnt)
b12cea91 2629 goto out4; /* loop, on the same file system */
1da177e4 2630 error = -EINVAL;
8c3ee42e 2631 if (root.mnt->mnt_root != root.dentry)
b12cea91 2632 goto out4; /* not a mountpoint */
676da58d 2633 if (!mnt_has_parent(root_mnt))
b12cea91 2634 goto out4; /* not attached */
84d17192 2635 root_mp = root_mnt->mnt_mp;
2d8f3038 2636 if (new.mnt->mnt_root != new.dentry)
b12cea91 2637 goto out4; /* not a mountpoint */
676da58d 2638 if (!mnt_has_parent(new_mnt))
b12cea91 2639 goto out4; /* not attached */
4ac91378 2640 /* make sure we can reach put_old from new_root */
84d17192 2641 if (!is_path_reachable(old_mnt, old.dentry, &new))
b12cea91 2642 goto out4;
84d17192 2643 root_mp->m_count++; /* pin it so it won't go away */
962830df 2644 br_write_lock(&vfsmount_lock);
419148da
AV
2645 detach_mnt(new_mnt, &parent_path);
2646 detach_mnt(root_mnt, &root_parent);
4ac91378 2647 /* mount old root on put_old */
84d17192 2648 attach_mnt(root_mnt, old_mnt, old_mp);
4ac91378 2649 /* mount new_root on / */
84d17192 2650 attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp);
6b3286ed 2651 touch_mnt_namespace(current->nsproxy->mnt_ns);
962830df 2652 br_write_unlock(&vfsmount_lock);
2d8f3038 2653 chroot_fs_refs(&root, &new);
84d17192 2654 put_mountpoint(root_mp);
1da177e4 2655 error = 0;
b12cea91 2656out4:
84d17192 2657 unlock_mount(old_mp);
b12cea91
AV
2658 if (!error) {
2659 path_put(&root_parent);
2660 path_put(&parent_path);
2661 }
2662out3:
8c3ee42e 2663 path_put(&root);
b12cea91 2664out2:
2d8f3038 2665 path_put(&old);
1da177e4 2666out1:
2d8f3038 2667 path_put(&new);
1da177e4 2668out0:
1da177e4 2669 return error;
1da177e4
LT
2670}
2671
2672static void __init init_mount_tree(void)
2673{
2674 struct vfsmount *mnt;
6b3286ed 2675 struct mnt_namespace *ns;
ac748a09 2676 struct path root;
0c55cfc4 2677 struct file_system_type *type;
1da177e4 2678
0c55cfc4
EB
2679 type = get_fs_type("rootfs");
2680 if (!type)
2681 panic("Can't find rootfs type");
2682 mnt = vfs_kern_mount(type, 0, "rootfs", NULL);
2683 put_filesystem(type);
1da177e4
LT
2684 if (IS_ERR(mnt))
2685 panic("Can't create rootfs");
b3e19d92 2686
3b22edc5
TM
2687 ns = create_mnt_ns(mnt);
2688 if (IS_ERR(ns))
1da177e4 2689 panic("Can't allocate initial namespace");
6b3286ed
KK
2690
2691 init_task.nsproxy->mnt_ns = ns;
2692 get_mnt_ns(ns);
2693
be08d6d2
AV
2694 root.mnt = mnt;
2695 root.dentry = mnt->mnt_root;
ac748a09
JB
2696
2697 set_fs_pwd(current->fs, &root);
2698 set_fs_root(current->fs, &root);
1da177e4
LT
2699}
2700
74bf17cf 2701void __init mnt_init(void)
1da177e4 2702{
13f14b4d 2703 unsigned u;
15a67dd8 2704 int err;
1da177e4 2705
390c6843
RP
2706 init_rwsem(&namespace_sem);
2707
7d6fec45 2708 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
20c2df83 2709 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
1da177e4 2710
b58fed8b 2711 mount_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
84d17192 2712 mountpoint_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
1da177e4 2713
84d17192 2714 if (!mount_hashtable || !mountpoint_hashtable)
1da177e4
LT
2715 panic("Failed to allocate mount hash table\n");
2716
80cdc6da 2717 printk(KERN_INFO "Mount-cache hash table entries: %lu\n", HASH_SIZE);
13f14b4d
ED
2718
2719 for (u = 0; u < HASH_SIZE; u++)
2720 INIT_LIST_HEAD(&mount_hashtable[u]);
84d17192
AV
2721 for (u = 0; u < HASH_SIZE; u++)
2722 INIT_LIST_HEAD(&mountpoint_hashtable[u]);
1da177e4 2723
962830df 2724 br_lock_init(&vfsmount_lock);
99b7db7b 2725
15a67dd8
RD
2726 err = sysfs_init();
2727 if (err)
2728 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
8e24eea7 2729 __func__, err);
00d26666
GKH
2730 fs_kobj = kobject_create_and_add("fs", NULL);
2731 if (!fs_kobj)
8e24eea7 2732 printk(KERN_WARNING "%s: kobj create error\n", __func__);
1da177e4
LT
2733 init_rootfs();
2734 init_mount_tree();
2735}
2736
616511d0 2737void put_mnt_ns(struct mnt_namespace *ns)
1da177e4 2738{
d498b25a 2739 if (!atomic_dec_and_test(&ns->count))
616511d0 2740 return;
390c6843 2741 down_write(&namespace_sem);
962830df 2742 br_write_lock(&vfsmount_lock);
3ab6abee 2743 umount_tree(ns->root, 0, &unmounted);
962830df 2744 br_write_unlock(&vfsmount_lock);
3ab6abee 2745 namespace_unlock();
771b1371 2746 free_mnt_ns(ns);
1da177e4 2747}
9d412a43
AV
2748
2749struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
2750{
423e0ab0
TC
2751 struct vfsmount *mnt;
2752 mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
2753 if (!IS_ERR(mnt)) {
2754 /*
2755 * it is a longterm mount, don't release mnt until
2756 * we unmount before file sys is unregistered
2757 */
f7a99c5b 2758 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
423e0ab0
TC
2759 }
2760 return mnt;
9d412a43
AV
2761}
2762EXPORT_SYMBOL_GPL(kern_mount_data);
423e0ab0
TC
2763
2764void kern_unmount(struct vfsmount *mnt)
2765{
2766 /* release long term mount so mount point can be released */
2767 if (!IS_ERR_OR_NULL(mnt)) {
f7a99c5b
AV
2768 br_write_lock(&vfsmount_lock);
2769 real_mount(mnt)->mnt_ns = NULL;
2770 br_write_unlock(&vfsmount_lock);
423e0ab0
TC
2771 mntput(mnt);
2772 }
2773}
2774EXPORT_SYMBOL(kern_unmount);
02125a82
AV
2775
2776bool our_mnt(struct vfsmount *mnt)
2777{
143c8c91 2778 return check_mnt(real_mount(mnt));
02125a82 2779}
8823c079
EB
2780
2781static void *mntns_get(struct task_struct *task)
2782{
2783 struct mnt_namespace *ns = NULL;
2784 struct nsproxy *nsproxy;
2785
2786 rcu_read_lock();
2787 nsproxy = task_nsproxy(task);
2788 if (nsproxy) {
2789 ns = nsproxy->mnt_ns;
2790 get_mnt_ns(ns);
2791 }
2792 rcu_read_unlock();
2793
2794 return ns;
2795}
2796
2797static void mntns_put(void *ns)
2798{
2799 put_mnt_ns(ns);
2800}
2801
2802static int mntns_install(struct nsproxy *nsproxy, void *ns)
2803{
2804 struct fs_struct *fs = current->fs;
2805 struct mnt_namespace *mnt_ns = ns;
2806 struct path root;
2807
0c55cfc4 2808 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
5e4a0847
EB
2809 !nsown_capable(CAP_SYS_CHROOT) ||
2810 !nsown_capable(CAP_SYS_ADMIN))
ae11e0f1 2811 return -EPERM;
8823c079
EB
2812
2813 if (fs->users != 1)
2814 return -EINVAL;
2815
2816 get_mnt_ns(mnt_ns);
2817 put_mnt_ns(nsproxy->mnt_ns);
2818 nsproxy->mnt_ns = mnt_ns;
2819
2820 /* Find the root */
2821 root.mnt = &mnt_ns->root->mnt;
2822 root.dentry = mnt_ns->root->mnt.mnt_root;
2823 path_get(&root);
2824 while(d_mountpoint(root.dentry) && follow_down_one(&root))
2825 ;
2826
2827 /* Update the pwd and root */
2828 set_fs_pwd(fs, &root);
2829 set_fs_root(fs, &root);
2830
2831 path_put(&root);
2832 return 0;
2833}
2834
98f842e6
EB
2835static unsigned int mntns_inum(void *ns)
2836{
2837 struct mnt_namespace *mnt_ns = ns;
2838 return mnt_ns->proc_inum;
2839}
2840
8823c079
EB
2841const struct proc_ns_operations mntns_operations = {
2842 .name = "mnt",
2843 .type = CLONE_NEWNS,
2844 .get = mntns_get,
2845 .put = mntns_put,
2846 .install = mntns_install,
98f842e6 2847 .inum = mntns_inum,
8823c079 2848};