vfs: keep list of mounts for each superblock
[linux-2.6-block.git] / fs / namespace.c
CommitLineData
1da177e4
LT
1/*
2 * linux/fs/namespace.c
3 *
4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
6 *
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
10
1da177e4 11#include <linux/syscalls.h>
d10577a8 12#include <linux/export.h>
16f7e0fe 13#include <linux/capability.h>
6b3286ed 14#include <linux/mnt_namespace.h>
1da177e4
LT
15#include <linux/namei.h>
16#include <linux/security.h>
73cd49ec 17#include <linux/idr.h>
d10577a8
AV
18#include <linux/acct.h> /* acct_auto_close_mnt */
19#include <linux/ramfs.h> /* init_rootfs */
20#include <linux/fs_struct.h> /* get_fs_root et.al. */
21#include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
22#include <linux/uaccess.h>
07b20889 23#include "pnode.h"
948730b0 24#include "internal.h"
1da177e4 25
13f14b4d
ED
26#define HASH_SHIFT ilog2(PAGE_SIZE / sizeof(struct list_head))
27#define HASH_SIZE (1UL << HASH_SHIFT)
28
5addc5dd 29static int event;
73cd49ec 30static DEFINE_IDA(mnt_id_ida);
719f5d7f 31static DEFINE_IDA(mnt_group_ida);
99b7db7b 32static DEFINE_SPINLOCK(mnt_id_lock);
f21f6220
AV
33static int mnt_id_start = 0;
34static int mnt_group_start = 1;
1da177e4 35
fa3536cc 36static struct list_head *mount_hashtable __read_mostly;
e18b890b 37static struct kmem_cache *mnt_cache __read_mostly;
390c6843 38static struct rw_semaphore namespace_sem;
1da177e4 39
f87fd4c2 40/* /sys/fs */
00d26666
GKH
41struct kobject *fs_kobj;
42EXPORT_SYMBOL_GPL(fs_kobj);
f87fd4c2 43
99b7db7b
NP
44/*
45 * vfsmount lock may be taken for read to prevent changes to the
46 * vfsmount hash, ie. during mountpoint lookups or walking back
47 * up the tree.
48 *
49 * It should be taken for write in all cases where the vfsmount
50 * tree or hash is modified or when a vfsmount structure is modified.
51 */
52DEFINE_BRLOCK(vfsmount_lock);
53
1da177e4
LT
54static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry)
55{
b58fed8b
RP
56 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
57 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
13f14b4d
ED
58 tmp = tmp + (tmp >> HASH_SHIFT);
59 return tmp & (HASH_SIZE - 1);
1da177e4
LT
60}
61
3d733633
DH
62#define MNT_WRITER_UNDERFLOW_LIMIT -(1<<16)
63
99b7db7b
NP
64/*
65 * allocation is serialized by namespace_sem, but we need the spinlock to
66 * serialize with freeing.
67 */
b105e270 68static int mnt_alloc_id(struct mount *mnt)
73cd49ec
MS
69{
70 int res;
71
72retry:
73 ida_pre_get(&mnt_id_ida, GFP_KERNEL);
99b7db7b 74 spin_lock(&mnt_id_lock);
15169fe7 75 res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
f21f6220 76 if (!res)
15169fe7 77 mnt_id_start = mnt->mnt_id + 1;
99b7db7b 78 spin_unlock(&mnt_id_lock);
73cd49ec
MS
79 if (res == -EAGAIN)
80 goto retry;
81
82 return res;
83}
84
b105e270 85static void mnt_free_id(struct mount *mnt)
73cd49ec 86{
15169fe7 87 int id = mnt->mnt_id;
99b7db7b 88 spin_lock(&mnt_id_lock);
f21f6220
AV
89 ida_remove(&mnt_id_ida, id);
90 if (mnt_id_start > id)
91 mnt_id_start = id;
99b7db7b 92 spin_unlock(&mnt_id_lock);
73cd49ec
MS
93}
94
719f5d7f
MS
95/*
96 * Allocate a new peer group ID
97 *
98 * mnt_group_ida is protected by namespace_sem
99 */
4b8b21f4 100static int mnt_alloc_group_id(struct mount *mnt)
719f5d7f 101{
f21f6220
AV
102 int res;
103
719f5d7f
MS
104 if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
105 return -ENOMEM;
106
f21f6220
AV
107 res = ida_get_new_above(&mnt_group_ida,
108 mnt_group_start,
15169fe7 109 &mnt->mnt_group_id);
f21f6220 110 if (!res)
15169fe7 111 mnt_group_start = mnt->mnt_group_id + 1;
f21f6220
AV
112
113 return res;
719f5d7f
MS
114}
115
116/*
117 * Release a peer group ID
118 */
4b8b21f4 119void mnt_release_group_id(struct mount *mnt)
719f5d7f 120{
15169fe7 121 int id = mnt->mnt_group_id;
f21f6220
AV
122 ida_remove(&mnt_group_ida, id);
123 if (mnt_group_start > id)
124 mnt_group_start = id;
15169fe7 125 mnt->mnt_group_id = 0;
719f5d7f
MS
126}
127
b3e19d92
NP
128/*
129 * vfsmount lock must be held for read
130 */
83adc753 131static inline void mnt_add_count(struct mount *mnt, int n)
b3e19d92
NP
132{
133#ifdef CONFIG_SMP
68e8a9fe 134 this_cpu_add(mnt->mnt_pcp->mnt_count, n);
b3e19d92
NP
135#else
136 preempt_disable();
68e8a9fe 137 mnt->mnt_count += n;
b3e19d92
NP
138 preempt_enable();
139#endif
140}
141
b3e19d92
NP
142/*
143 * vfsmount lock must be held for write
144 */
83adc753 145unsigned int mnt_get_count(struct mount *mnt)
b3e19d92
NP
146{
147#ifdef CONFIG_SMP
f03c6599 148 unsigned int count = 0;
b3e19d92
NP
149 int cpu;
150
151 for_each_possible_cpu(cpu) {
68e8a9fe 152 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
b3e19d92
NP
153 }
154
155 return count;
156#else
68e8a9fe 157 return mnt->mnt_count;
b3e19d92
NP
158#endif
159}
160
b105e270 161static struct mount *alloc_vfsmnt(const char *name)
1da177e4 162{
c63181e6
AV
163 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
164 if (mnt) {
73cd49ec
MS
165 int err;
166
c63181e6 167 err = mnt_alloc_id(mnt);
88b38782
LZ
168 if (err)
169 goto out_free_cache;
170
171 if (name) {
c63181e6
AV
172 mnt->mnt_devname = kstrdup(name, GFP_KERNEL);
173 if (!mnt->mnt_devname)
88b38782 174 goto out_free_id;
73cd49ec
MS
175 }
176
b3e19d92 177#ifdef CONFIG_SMP
c63181e6
AV
178 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
179 if (!mnt->mnt_pcp)
b3e19d92
NP
180 goto out_free_devname;
181
c63181e6 182 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
b3e19d92 183#else
c63181e6
AV
184 mnt->mnt_count = 1;
185 mnt->mnt_writers = 0;
b3e19d92
NP
186#endif
187
c63181e6
AV
188 INIT_LIST_HEAD(&mnt->mnt_hash);
189 INIT_LIST_HEAD(&mnt->mnt_child);
190 INIT_LIST_HEAD(&mnt->mnt_mounts);
191 INIT_LIST_HEAD(&mnt->mnt_list);
192 INIT_LIST_HEAD(&mnt->mnt_expire);
193 INIT_LIST_HEAD(&mnt->mnt_share);
194 INIT_LIST_HEAD(&mnt->mnt_slave_list);
195 INIT_LIST_HEAD(&mnt->mnt_slave);
2504c5d6
AG
196#ifdef CONFIG_FSNOTIFY
197 INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
d3ef3d73 198#endif
1da177e4 199 }
c63181e6 200 return mnt;
88b38782 201
d3ef3d73 202#ifdef CONFIG_SMP
203out_free_devname:
c63181e6 204 kfree(mnt->mnt_devname);
d3ef3d73 205#endif
88b38782 206out_free_id:
c63181e6 207 mnt_free_id(mnt);
88b38782 208out_free_cache:
c63181e6 209 kmem_cache_free(mnt_cache, mnt);
88b38782 210 return NULL;
1da177e4
LT
211}
212
3d733633
DH
213/*
214 * Most r/o checks on a fs are for operations that take
215 * discrete amounts of time, like a write() or unlink().
216 * We must keep track of when those operations start
217 * (for permission checks) and when they end, so that
218 * we can determine when writes are able to occur to
219 * a filesystem.
220 */
221/*
222 * __mnt_is_readonly: check whether a mount is read-only
223 * @mnt: the mount to check for its write status
224 *
225 * This shouldn't be used directly ouside of the VFS.
226 * It does not guarantee that the filesystem will stay
227 * r/w, just that it is right *now*. This can not and
228 * should not be used in place of IS_RDONLY(inode).
229 * mnt_want/drop_write() will _keep_ the filesystem
230 * r/w.
231 */
232int __mnt_is_readonly(struct vfsmount *mnt)
233{
2e4b7fcd
DH
234 if (mnt->mnt_flags & MNT_READONLY)
235 return 1;
236 if (mnt->mnt_sb->s_flags & MS_RDONLY)
237 return 1;
238 return 0;
3d733633
DH
239}
240EXPORT_SYMBOL_GPL(__mnt_is_readonly);
241
83adc753 242static inline void mnt_inc_writers(struct mount *mnt)
d3ef3d73 243{
244#ifdef CONFIG_SMP
68e8a9fe 245 this_cpu_inc(mnt->mnt_pcp->mnt_writers);
d3ef3d73 246#else
68e8a9fe 247 mnt->mnt_writers++;
d3ef3d73 248#endif
249}
3d733633 250
83adc753 251static inline void mnt_dec_writers(struct mount *mnt)
3d733633 252{
d3ef3d73 253#ifdef CONFIG_SMP
68e8a9fe 254 this_cpu_dec(mnt->mnt_pcp->mnt_writers);
d3ef3d73 255#else
68e8a9fe 256 mnt->mnt_writers--;
d3ef3d73 257#endif
3d733633 258}
3d733633 259
83adc753 260static unsigned int mnt_get_writers(struct mount *mnt)
3d733633 261{
d3ef3d73 262#ifdef CONFIG_SMP
263 unsigned int count = 0;
3d733633 264 int cpu;
3d733633
DH
265
266 for_each_possible_cpu(cpu) {
68e8a9fe 267 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
3d733633 268 }
3d733633 269
d3ef3d73 270 return count;
271#else
272 return mnt->mnt_writers;
273#endif
3d733633
DH
274}
275
8366025e
DH
276/*
277 * Most r/o checks on a fs are for operations that take
278 * discrete amounts of time, like a write() or unlink().
279 * We must keep track of when those operations start
280 * (for permission checks) and when they end, so that
281 * we can determine when writes are able to occur to
282 * a filesystem.
283 */
284/**
285 * mnt_want_write - get write access to a mount
83adc753 286 * @m: the mount on which to take a write
8366025e
DH
287 *
288 * This tells the low-level filesystem that a write is
289 * about to be performed to it, and makes sure that
290 * writes are allowed before returning success. When
291 * the write operation is finished, mnt_drop_write()
292 * must be called. This is effectively a refcount.
293 */
83adc753 294int mnt_want_write(struct vfsmount *m)
8366025e 295{
83adc753 296 struct mount *mnt = real_mount(m);
3d733633 297 int ret = 0;
3d733633 298
d3ef3d73 299 preempt_disable();
c6653a83 300 mnt_inc_writers(mnt);
d3ef3d73 301 /*
c6653a83 302 * The store to mnt_inc_writers must be visible before we pass
d3ef3d73 303 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
304 * incremented count after it has set MNT_WRITE_HOLD.
305 */
306 smp_mb();
83adc753 307 while (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
d3ef3d73 308 cpu_relax();
309 /*
310 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
311 * be set to match its requirements. So we must not load that until
312 * MNT_WRITE_HOLD is cleared.
313 */
314 smp_rmb();
83adc753 315 if (__mnt_is_readonly(m)) {
c6653a83 316 mnt_dec_writers(mnt);
3d733633
DH
317 ret = -EROFS;
318 goto out;
319 }
3d733633 320out:
d3ef3d73 321 preempt_enable();
3d733633 322 return ret;
8366025e
DH
323}
324EXPORT_SYMBOL_GPL(mnt_want_write);
325
96029c4e 326/**
327 * mnt_clone_write - get write access to a mount
328 * @mnt: the mount on which to take a write
329 *
330 * This is effectively like mnt_want_write, except
331 * it must only be used to take an extra write reference
332 * on a mountpoint that we already know has a write reference
333 * on it. This allows some optimisation.
334 *
335 * After finished, mnt_drop_write must be called as usual to
336 * drop the reference.
337 */
338int mnt_clone_write(struct vfsmount *mnt)
339{
340 /* superblock may be r/o */
341 if (__mnt_is_readonly(mnt))
342 return -EROFS;
343 preempt_disable();
83adc753 344 mnt_inc_writers(real_mount(mnt));
96029c4e 345 preempt_enable();
346 return 0;
347}
348EXPORT_SYMBOL_GPL(mnt_clone_write);
349
350/**
351 * mnt_want_write_file - get write access to a file's mount
352 * @file: the file who's mount on which to take a write
353 *
354 * This is like mnt_want_write, but it takes a file and can
355 * do some optimisations if the file is open for write already
356 */
357int mnt_want_write_file(struct file *file)
358{
2d8dd38a
OH
359 struct inode *inode = file->f_dentry->d_inode;
360 if (!(file->f_mode & FMODE_WRITE) || special_file(inode->i_mode))
96029c4e 361 return mnt_want_write(file->f_path.mnt);
362 else
363 return mnt_clone_write(file->f_path.mnt);
364}
365EXPORT_SYMBOL_GPL(mnt_want_write_file);
366
8366025e
DH
367/**
368 * mnt_drop_write - give up write access to a mount
369 * @mnt: the mount on which to give up write access
370 *
371 * Tells the low-level filesystem that we are done
372 * performing writes to it. Must be matched with
373 * mnt_want_write() call above.
374 */
375void mnt_drop_write(struct vfsmount *mnt)
376{
d3ef3d73 377 preempt_disable();
83adc753 378 mnt_dec_writers(real_mount(mnt));
d3ef3d73 379 preempt_enable();
8366025e
DH
380}
381EXPORT_SYMBOL_GPL(mnt_drop_write);
382
2a79f17e
AV
383void mnt_drop_write_file(struct file *file)
384{
385 mnt_drop_write(file->f_path.mnt);
386}
387EXPORT_SYMBOL(mnt_drop_write_file);
388
83adc753 389static int mnt_make_readonly(struct mount *mnt)
8366025e 390{
3d733633
DH
391 int ret = 0;
392
99b7db7b 393 br_write_lock(vfsmount_lock);
83adc753 394 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
3d733633 395 /*
d3ef3d73 396 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
397 * should be visible before we do.
3d733633 398 */
d3ef3d73 399 smp_mb();
400
3d733633 401 /*
d3ef3d73 402 * With writers on hold, if this value is zero, then there are
403 * definitely no active writers (although held writers may subsequently
404 * increment the count, they'll have to wait, and decrement it after
405 * seeing MNT_READONLY).
406 *
407 * It is OK to have counter incremented on one CPU and decremented on
408 * another: the sum will add up correctly. The danger would be when we
409 * sum up each counter, if we read a counter before it is incremented,
410 * but then read another CPU's count which it has been subsequently
411 * decremented from -- we would see more decrements than we should.
412 * MNT_WRITE_HOLD protects against this scenario, because
413 * mnt_want_write first increments count, then smp_mb, then spins on
414 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
415 * we're counting up here.
3d733633 416 */
c6653a83 417 if (mnt_get_writers(mnt) > 0)
d3ef3d73 418 ret = -EBUSY;
419 else
83adc753 420 mnt->mnt.mnt_flags |= MNT_READONLY;
d3ef3d73 421 /*
422 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
423 * that become unheld will see MNT_READONLY.
424 */
425 smp_wmb();
83adc753 426 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
99b7db7b 427 br_write_unlock(vfsmount_lock);
3d733633 428 return ret;
8366025e 429}
8366025e 430
83adc753 431static void __mnt_unmake_readonly(struct mount *mnt)
2e4b7fcd 432{
99b7db7b 433 br_write_lock(vfsmount_lock);
83adc753 434 mnt->mnt.mnt_flags &= ~MNT_READONLY;
99b7db7b 435 br_write_unlock(vfsmount_lock);
2e4b7fcd
DH
436}
437
b105e270 438static void free_vfsmnt(struct mount *mnt)
1da177e4 439{
52ba1621 440 kfree(mnt->mnt_devname);
73cd49ec 441 mnt_free_id(mnt);
d3ef3d73 442#ifdef CONFIG_SMP
68e8a9fe 443 free_percpu(mnt->mnt_pcp);
d3ef3d73 444#endif
b105e270 445 kmem_cache_free(mnt_cache, mnt);
1da177e4
LT
446}
447
448/*
a05964f3
RP
449 * find the first or last mount at @dentry on vfsmount @mnt depending on
450 * @dir. If @dir is set return the first mount else return the last mount.
99b7db7b 451 * vfsmount_lock must be held for read or write.
1da177e4 452 */
c7105365 453struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry,
a05964f3 454 int dir)
1da177e4 455{
b58fed8b
RP
456 struct list_head *head = mount_hashtable + hash(mnt, dentry);
457 struct list_head *tmp = head;
c7105365 458 struct mount *p, *found = NULL;
1da177e4 459
1da177e4 460 for (;;) {
a05964f3 461 tmp = dir ? tmp->next : tmp->prev;
1da177e4
LT
462 p = NULL;
463 if (tmp == head)
464 break;
1b8e5564 465 p = list_entry(tmp, struct mount, mnt_hash);
a73324da 466 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry) {
a05964f3 467 found = p;
1da177e4
LT
468 break;
469 }
470 }
1da177e4
LT
471 return found;
472}
473
a05964f3
RP
474/*
475 * lookup_mnt increments the ref count before returning
476 * the vfsmount struct.
477 */
1c755af4 478struct vfsmount *lookup_mnt(struct path *path)
a05964f3 479{
c7105365 480 struct mount *child_mnt;
99b7db7b
NP
481
482 br_read_lock(vfsmount_lock);
c7105365
AV
483 child_mnt = __lookup_mnt(path->mnt, path->dentry, 1);
484 if (child_mnt) {
485 mnt_add_count(child_mnt, 1);
486 br_read_unlock(vfsmount_lock);
487 return &child_mnt->mnt;
488 } else {
489 br_read_unlock(vfsmount_lock);
490 return NULL;
491 }
a05964f3
RP
492}
493
143c8c91 494static inline int check_mnt(struct mount *mnt)
1da177e4 495{
6b3286ed 496 return mnt->mnt_ns == current->nsproxy->mnt_ns;
1da177e4
LT
497}
498
99b7db7b
NP
499/*
500 * vfsmount lock must be held for write
501 */
6b3286ed 502static void touch_mnt_namespace(struct mnt_namespace *ns)
5addc5dd
AV
503{
504 if (ns) {
505 ns->event = ++event;
506 wake_up_interruptible(&ns->poll);
507 }
508}
509
99b7db7b
NP
510/*
511 * vfsmount lock must be held for write
512 */
6b3286ed 513static void __touch_mnt_namespace(struct mnt_namespace *ns)
5addc5dd
AV
514{
515 if (ns && ns->event != event) {
516 ns->event = event;
517 wake_up_interruptible(&ns->poll);
518 }
519}
520
5f57cbcc
NP
521/*
522 * Clear dentry's mounted state if it has no remaining mounts.
523 * vfsmount_lock must be held for write.
524 */
aa0a4cf0 525static void dentry_reset_mounted(struct dentry *dentry)
5f57cbcc
NP
526{
527 unsigned u;
528
529 for (u = 0; u < HASH_SIZE; u++) {
d5e50f74 530 struct mount *p;
5f57cbcc 531
1b8e5564 532 list_for_each_entry(p, &mount_hashtable[u], mnt_hash) {
a73324da 533 if (p->mnt_mountpoint == dentry)
5f57cbcc
NP
534 return;
535 }
536 }
537 spin_lock(&dentry->d_lock);
538 dentry->d_flags &= ~DCACHE_MOUNTED;
539 spin_unlock(&dentry->d_lock);
540}
541
99b7db7b
NP
542/*
543 * vfsmount lock must be held for write
544 */
419148da
AV
545static void detach_mnt(struct mount *mnt, struct path *old_path)
546{
a73324da 547 old_path->dentry = mnt->mnt_mountpoint;
0714a533
AV
548 old_path->mnt = &mnt->mnt_parent->mnt;
549 mnt->mnt_parent = mnt;
a73324da 550 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
6b41d536 551 list_del_init(&mnt->mnt_child);
1b8e5564 552 list_del_init(&mnt->mnt_hash);
aa0a4cf0 553 dentry_reset_mounted(old_path->dentry);
1da177e4
LT
554}
555
99b7db7b
NP
556/*
557 * vfsmount lock must be held for write
558 */
14cf1fa8 559void mnt_set_mountpoint(struct mount *mnt, struct dentry *dentry,
44d964d6 560 struct mount *child_mnt)
b90fa9ae 561{
3a2393d7 562 mnt_add_count(mnt, 1); /* essentially, that's mntget */
a73324da 563 child_mnt->mnt_mountpoint = dget(dentry);
3a2393d7 564 child_mnt->mnt_parent = mnt;
5f57cbcc
NP
565 spin_lock(&dentry->d_lock);
566 dentry->d_flags |= DCACHE_MOUNTED;
567 spin_unlock(&dentry->d_lock);
b90fa9ae
RP
568}
569
99b7db7b
NP
570/*
571 * vfsmount lock must be held for write
572 */
419148da 573static void attach_mnt(struct mount *mnt, struct path *path)
1da177e4 574{
14cf1fa8 575 mnt_set_mountpoint(real_mount(path->mnt), path->dentry, mnt);
1b8e5564 576 list_add_tail(&mnt->mnt_hash, mount_hashtable +
1a390689 577 hash(path->mnt, path->dentry));
6b41d536 578 list_add_tail(&mnt->mnt_child, &real_mount(path->mnt)->mnt_mounts);
b90fa9ae
RP
579}
580
83adc753 581static inline void __mnt_make_longterm(struct mount *mnt)
7e3d0eb0
AV
582{
583#ifdef CONFIG_SMP
68e8a9fe 584 atomic_inc(&mnt->mnt_longterm);
7e3d0eb0
AV
585#endif
586}
587
588/* needs vfsmount lock for write */
83adc753 589static inline void __mnt_make_shortterm(struct mount *mnt)
7e3d0eb0
AV
590{
591#ifdef CONFIG_SMP
68e8a9fe 592 atomic_dec(&mnt->mnt_longterm);
7e3d0eb0
AV
593#endif
594}
595
b90fa9ae 596/*
99b7db7b 597 * vfsmount lock must be held for write
b90fa9ae 598 */
4b2619a5 599static void commit_tree(struct mount *mnt)
b90fa9ae 600{
0714a533 601 struct mount *parent = mnt->mnt_parent;
83adc753 602 struct mount *m;
b90fa9ae 603 LIST_HEAD(head);
143c8c91 604 struct mnt_namespace *n = parent->mnt_ns;
b90fa9ae 605
0714a533 606 BUG_ON(parent == mnt);
b90fa9ae 607
1a4eeaf2
AV
608 list_add_tail(&head, &mnt->mnt_list);
609 list_for_each_entry(m, &head, mnt_list) {
143c8c91 610 m->mnt_ns = n;
7e3d0eb0 611 __mnt_make_longterm(m);
f03c6599
AV
612 }
613
b90fa9ae
RP
614 list_splice(&head, n->list.prev);
615
1b8e5564 616 list_add_tail(&mnt->mnt_hash, mount_hashtable +
a73324da 617 hash(&parent->mnt, mnt->mnt_mountpoint));
6b41d536 618 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
6b3286ed 619 touch_mnt_namespace(n);
1da177e4
LT
620}
621
909b0a88 622static struct mount *next_mnt(struct mount *p, struct mount *root)
1da177e4 623{
6b41d536
AV
624 struct list_head *next = p->mnt_mounts.next;
625 if (next == &p->mnt_mounts) {
1da177e4 626 while (1) {
909b0a88 627 if (p == root)
1da177e4 628 return NULL;
6b41d536
AV
629 next = p->mnt_child.next;
630 if (next != &p->mnt_parent->mnt_mounts)
1da177e4 631 break;
0714a533 632 p = p->mnt_parent;
1da177e4
LT
633 }
634 }
6b41d536 635 return list_entry(next, struct mount, mnt_child);
1da177e4
LT
636}
637
315fc83e 638static struct mount *skip_mnt_tree(struct mount *p)
9676f0c6 639{
6b41d536
AV
640 struct list_head *prev = p->mnt_mounts.prev;
641 while (prev != &p->mnt_mounts) {
642 p = list_entry(prev, struct mount, mnt_child);
643 prev = p->mnt_mounts.prev;
9676f0c6
RP
644 }
645 return p;
646}
647
9d412a43
AV
648struct vfsmount *
649vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
650{
b105e270 651 struct mount *mnt;
9d412a43
AV
652 struct dentry *root;
653
654 if (!type)
655 return ERR_PTR(-ENODEV);
656
657 mnt = alloc_vfsmnt(name);
658 if (!mnt)
659 return ERR_PTR(-ENOMEM);
660
661 if (flags & MS_KERNMOUNT)
b105e270 662 mnt->mnt.mnt_flags = MNT_INTERNAL;
9d412a43
AV
663
664 root = mount_fs(type, flags, name, data);
665 if (IS_ERR(root)) {
666 free_vfsmnt(mnt);
667 return ERR_CAST(root);
668 }
669
b105e270
AV
670 mnt->mnt.mnt_root = root;
671 mnt->mnt.mnt_sb = root->d_sb;
a73324da 672 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
0714a533 673 mnt->mnt_parent = mnt;
39f7c4db
MS
674 br_write_lock(vfsmount_lock);
675 list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
676 br_write_unlock(vfsmount_lock);
b105e270 677 return &mnt->mnt;
9d412a43
AV
678}
679EXPORT_SYMBOL_GPL(vfs_kern_mount);
680
87129cc0 681static struct mount *clone_mnt(struct mount *old, struct dentry *root,
36341f64 682 int flag)
1da177e4 683{
87129cc0 684 struct super_block *sb = old->mnt.mnt_sb;
52ba1621 685 struct mount *mnt = alloc_vfsmnt(old->mnt_devname);
1da177e4
LT
686
687 if (mnt) {
719f5d7f 688 if (flag & (CL_SLAVE | CL_PRIVATE))
15169fe7 689 mnt->mnt_group_id = 0; /* not a peer of original */
719f5d7f 690 else
15169fe7 691 mnt->mnt_group_id = old->mnt_group_id;
719f5d7f 692
15169fe7 693 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
b105e270 694 int err = mnt_alloc_group_id(mnt);
719f5d7f
MS
695 if (err)
696 goto out_free;
697 }
698
87129cc0 699 mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~MNT_WRITE_HOLD;
1da177e4 700 atomic_inc(&sb->s_active);
b105e270
AV
701 mnt->mnt.mnt_sb = sb;
702 mnt->mnt.mnt_root = dget(root);
a73324da 703 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
0714a533 704 mnt->mnt_parent = mnt;
39f7c4db
MS
705 br_write_lock(vfsmount_lock);
706 list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
707 br_write_unlock(vfsmount_lock);
b90fa9ae 708
5afe0022 709 if (flag & CL_SLAVE) {
6776db3d 710 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
32301920 711 mnt->mnt_master = old;
fc7be130 712 CLEAR_MNT_SHARED(mnt);
8aec0809 713 } else if (!(flag & CL_PRIVATE)) {
fc7be130 714 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
6776db3d 715 list_add(&mnt->mnt_share, &old->mnt_share);
d10e8def 716 if (IS_MNT_SLAVE(old))
6776db3d 717 list_add(&mnt->mnt_slave, &old->mnt_slave);
d10e8def 718 mnt->mnt_master = old->mnt_master;
5afe0022 719 }
b90fa9ae 720 if (flag & CL_MAKE_SHARED)
0f0afb1d 721 set_mnt_shared(mnt);
1da177e4
LT
722
723 /* stick the duplicate mount on the same expiry list
724 * as the original if that was on one */
36341f64 725 if (flag & CL_EXPIRE) {
6776db3d
AV
726 if (!list_empty(&old->mnt_expire))
727 list_add(&mnt->mnt_expire, &old->mnt_expire);
36341f64 728 }
1da177e4 729 }
cb338d06 730 return mnt;
719f5d7f
MS
731
732 out_free:
733 free_vfsmnt(mnt);
734 return NULL;
1da177e4
LT
735}
736
83adc753 737static inline void mntfree(struct mount *mnt)
1da177e4 738{
83adc753
AV
739 struct vfsmount *m = &mnt->mnt;
740 struct super_block *sb = m->mnt_sb;
b3e19d92 741
3d733633
DH
742 /*
743 * This probably indicates that somebody messed
744 * up a mnt_want/drop_write() pair. If this
745 * happens, the filesystem was probably unable
746 * to make r/w->r/o transitions.
747 */
d3ef3d73 748 /*
b3e19d92
NP
749 * The locking used to deal with mnt_count decrement provides barriers,
750 * so mnt_get_writers() below is safe.
d3ef3d73 751 */
c6653a83 752 WARN_ON(mnt_get_writers(mnt));
83adc753
AV
753 fsnotify_vfsmount_delete(m);
754 dput(m->mnt_root);
755 free_vfsmnt(mnt);
1da177e4
LT
756 deactivate_super(sb);
757}
758
900148dc 759static void mntput_no_expire(struct mount *mnt)
b3e19d92 760{
b3e19d92 761put_again:
f03c6599
AV
762#ifdef CONFIG_SMP
763 br_read_lock(vfsmount_lock);
68e8a9fe 764 if (likely(atomic_read(&mnt->mnt_longterm))) {
aa9c0e07 765 mnt_add_count(mnt, -1);
b3e19d92 766 br_read_unlock(vfsmount_lock);
f03c6599 767 return;
b3e19d92 768 }
f03c6599 769 br_read_unlock(vfsmount_lock);
b3e19d92 770
99b7db7b 771 br_write_lock(vfsmount_lock);
aa9c0e07 772 mnt_add_count(mnt, -1);
b3e19d92 773 if (mnt_get_count(mnt)) {
99b7db7b
NP
774 br_write_unlock(vfsmount_lock);
775 return;
776 }
b3e19d92 777#else
aa9c0e07 778 mnt_add_count(mnt, -1);
b3e19d92 779 if (likely(mnt_get_count(mnt)))
99b7db7b 780 return;
b3e19d92 781 br_write_lock(vfsmount_lock);
f03c6599 782#endif
863d684f
AV
783 if (unlikely(mnt->mnt_pinned)) {
784 mnt_add_count(mnt, mnt->mnt_pinned + 1);
785 mnt->mnt_pinned = 0;
b3e19d92 786 br_write_unlock(vfsmount_lock);
900148dc 787 acct_auto_close_mnt(&mnt->mnt);
b3e19d92 788 goto put_again;
7b7b1ace 789 }
39f7c4db 790 list_del(&mnt->mnt_instance);
99b7db7b 791 br_write_unlock(vfsmount_lock);
b3e19d92
NP
792 mntfree(mnt);
793}
b3e19d92
NP
794
795void mntput(struct vfsmount *mnt)
796{
797 if (mnt) {
863d684f 798 struct mount *m = real_mount(mnt);
b3e19d92 799 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
863d684f
AV
800 if (unlikely(m->mnt_expiry_mark))
801 m->mnt_expiry_mark = 0;
802 mntput_no_expire(m);
b3e19d92
NP
803 }
804}
805EXPORT_SYMBOL(mntput);
806
807struct vfsmount *mntget(struct vfsmount *mnt)
808{
809 if (mnt)
83adc753 810 mnt_add_count(real_mount(mnt), 1);
b3e19d92
NP
811 return mnt;
812}
813EXPORT_SYMBOL(mntget);
814
7b7b1ace
AV
815void mnt_pin(struct vfsmount *mnt)
816{
99b7db7b 817 br_write_lock(vfsmount_lock);
863d684f 818 real_mount(mnt)->mnt_pinned++;
99b7db7b 819 br_write_unlock(vfsmount_lock);
7b7b1ace 820}
7b7b1ace
AV
821EXPORT_SYMBOL(mnt_pin);
822
863d684f 823void mnt_unpin(struct vfsmount *m)
7b7b1ace 824{
863d684f 825 struct mount *mnt = real_mount(m);
99b7db7b 826 br_write_lock(vfsmount_lock);
7b7b1ace 827 if (mnt->mnt_pinned) {
863d684f 828 mnt_add_count(mnt, 1);
7b7b1ace
AV
829 mnt->mnt_pinned--;
830 }
99b7db7b 831 br_write_unlock(vfsmount_lock);
7b7b1ace 832}
7b7b1ace 833EXPORT_SYMBOL(mnt_unpin);
1da177e4 834
b3b304a2
MS
835static inline void mangle(struct seq_file *m, const char *s)
836{
837 seq_escape(m, s, " \t\n\\");
838}
839
840/*
841 * Simple .show_options callback for filesystems which don't want to
842 * implement more complex mount option showing.
843 *
844 * See also save_mount_options().
845 */
34c80b1d 846int generic_show_options(struct seq_file *m, struct dentry *root)
b3b304a2 847{
2a32cebd
AV
848 const char *options;
849
850 rcu_read_lock();
34c80b1d 851 options = rcu_dereference(root->d_sb->s_options);
b3b304a2
MS
852
853 if (options != NULL && options[0]) {
854 seq_putc(m, ',');
855 mangle(m, options);
856 }
2a32cebd 857 rcu_read_unlock();
b3b304a2
MS
858
859 return 0;
860}
861EXPORT_SYMBOL(generic_show_options);
862
863/*
864 * If filesystem uses generic_show_options(), this function should be
865 * called from the fill_super() callback.
866 *
867 * The .remount_fs callback usually needs to be handled in a special
868 * way, to make sure, that previous options are not overwritten if the
869 * remount fails.
870 *
871 * Also note, that if the filesystem's .remount_fs function doesn't
872 * reset all options to their default value, but changes only newly
873 * given options, then the displayed options will not reflect reality
874 * any more.
875 */
876void save_mount_options(struct super_block *sb, char *options)
877{
2a32cebd
AV
878 BUG_ON(sb->s_options);
879 rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
b3b304a2
MS
880}
881EXPORT_SYMBOL(save_mount_options);
882
2a32cebd
AV
883void replace_mount_options(struct super_block *sb, char *options)
884{
885 char *old = sb->s_options;
886 rcu_assign_pointer(sb->s_options, options);
887 if (old) {
888 synchronize_rcu();
889 kfree(old);
890 }
891}
892EXPORT_SYMBOL(replace_mount_options);
893
a1a2c409 894#ifdef CONFIG_PROC_FS
0226f492 895/* iterator; we want it to have access to namespace_sem, thus here... */
1da177e4
LT
896static void *m_start(struct seq_file *m, loff_t *pos)
897{
0226f492 898 struct proc_mounts *p = container_of(m, struct proc_mounts, m);
1da177e4 899
390c6843 900 down_read(&namespace_sem);
a1a2c409 901 return seq_list_start(&p->ns->list, *pos);
1da177e4
LT
902}
903
904static void *m_next(struct seq_file *m, void *v, loff_t *pos)
905{
0226f492 906 struct proc_mounts *p = container_of(m, struct proc_mounts, m);
b0765fb8 907
a1a2c409 908 return seq_list_next(v, &p->ns->list, pos);
1da177e4
LT
909}
910
911static void m_stop(struct seq_file *m, void *v)
912{
390c6843 913 up_read(&namespace_sem);
1da177e4
LT
914}
915
0226f492 916static int m_show(struct seq_file *m, void *v)
2d4d4864 917{
0226f492 918 struct proc_mounts *p = container_of(m, struct proc_mounts, m);
1a4eeaf2 919 struct mount *r = list_entry(v, struct mount, mnt_list);
0226f492 920 return p->show(m, &r->mnt);
1da177e4
LT
921}
922
a1a2c409 923const struct seq_operations mounts_op = {
1da177e4
LT
924 .start = m_start,
925 .next = m_next,
926 .stop = m_stop,
0226f492 927 .show = m_show,
b4629fe2 928};
a1a2c409 929#endif /* CONFIG_PROC_FS */
b4629fe2 930
1da177e4
LT
931/**
932 * may_umount_tree - check if a mount tree is busy
933 * @mnt: root of mount tree
934 *
935 * This is called to check if a tree of mounts has any
936 * open files, pwds, chroots or sub mounts that are
937 * busy.
938 */
909b0a88 939int may_umount_tree(struct vfsmount *m)
1da177e4 940{
909b0a88 941 struct mount *mnt = real_mount(m);
36341f64
RP
942 int actual_refs = 0;
943 int minimum_refs = 0;
315fc83e 944 struct mount *p;
909b0a88 945 BUG_ON(!m);
1da177e4 946
b3e19d92
NP
947 /* write lock needed for mnt_get_count */
948 br_write_lock(vfsmount_lock);
909b0a88 949 for (p = mnt; p; p = next_mnt(p, mnt)) {
83adc753 950 actual_refs += mnt_get_count(p);
1da177e4 951 minimum_refs += 2;
1da177e4 952 }
b3e19d92 953 br_write_unlock(vfsmount_lock);
1da177e4
LT
954
955 if (actual_refs > minimum_refs)
e3474a8e 956 return 0;
1da177e4 957
e3474a8e 958 return 1;
1da177e4
LT
959}
960
961EXPORT_SYMBOL(may_umount_tree);
962
963/**
964 * may_umount - check if a mount point is busy
965 * @mnt: root of mount
966 *
967 * This is called to check if a mount point has any
968 * open files, pwds, chroots or sub mounts. If the
969 * mount has sub mounts this will return busy
970 * regardless of whether the sub mounts are busy.
971 *
972 * Doesn't take quota and stuff into account. IOW, in some cases it will
973 * give false negatives. The main reason why it's here is that we need
974 * a non-destructive way to look for easily umountable filesystems.
975 */
976int may_umount(struct vfsmount *mnt)
977{
e3474a8e 978 int ret = 1;
8ad08d8a 979 down_read(&namespace_sem);
b3e19d92 980 br_write_lock(vfsmount_lock);
1ab59738 981 if (propagate_mount_busy(real_mount(mnt), 2))
e3474a8e 982 ret = 0;
b3e19d92 983 br_write_unlock(vfsmount_lock);
8ad08d8a 984 up_read(&namespace_sem);
a05964f3 985 return ret;
1da177e4
LT
986}
987
988EXPORT_SYMBOL(may_umount);
989
b90fa9ae 990void release_mounts(struct list_head *head)
70fbcdf4 991{
d5e50f74 992 struct mount *mnt;
bf066c7d 993 while (!list_empty(head)) {
1b8e5564
AV
994 mnt = list_first_entry(head, struct mount, mnt_hash);
995 list_del_init(&mnt->mnt_hash);
676da58d 996 if (mnt_has_parent(mnt)) {
70fbcdf4 997 struct dentry *dentry;
863d684f 998 struct mount *m;
99b7db7b
NP
999
1000 br_write_lock(vfsmount_lock);
a73324da 1001 dentry = mnt->mnt_mountpoint;
863d684f 1002 m = mnt->mnt_parent;
a73324da 1003 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
0714a533 1004 mnt->mnt_parent = mnt;
7c4b93d8 1005 m->mnt_ghosts--;
99b7db7b 1006 br_write_unlock(vfsmount_lock);
70fbcdf4 1007 dput(dentry);
863d684f 1008 mntput(&m->mnt);
70fbcdf4 1009 }
d5e50f74 1010 mntput(&mnt->mnt);
70fbcdf4
RP
1011 }
1012}
1013
99b7db7b
NP
1014/*
1015 * vfsmount lock must be held for write
1016 * namespace_sem must be held for write
1017 */
761d5c38 1018void umount_tree(struct mount *mnt, int propagate, struct list_head *kill)
1da177e4 1019{
7b8a53fd 1020 LIST_HEAD(tmp_list);
315fc83e 1021 struct mount *p;
1da177e4 1022
909b0a88 1023 for (p = mnt; p; p = next_mnt(p, mnt))
1b8e5564 1024 list_move(&p->mnt_hash, &tmp_list);
1da177e4 1025
a05964f3 1026 if (propagate)
7b8a53fd 1027 propagate_umount(&tmp_list);
a05964f3 1028
1b8e5564 1029 list_for_each_entry(p, &tmp_list, mnt_hash) {
6776db3d 1030 list_del_init(&p->mnt_expire);
1a4eeaf2 1031 list_del_init(&p->mnt_list);
143c8c91
AV
1032 __touch_mnt_namespace(p->mnt_ns);
1033 p->mnt_ns = NULL;
83adc753 1034 __mnt_make_shortterm(p);
6b41d536 1035 list_del_init(&p->mnt_child);
676da58d 1036 if (mnt_has_parent(p)) {
863d684f 1037 p->mnt_parent->mnt_ghosts++;
a73324da 1038 dentry_reset_mounted(p->mnt_mountpoint);
7c4b93d8 1039 }
0f0afb1d 1040 change_mnt_propagation(p, MS_PRIVATE);
1da177e4 1041 }
7b8a53fd 1042 list_splice(&tmp_list, kill);
1da177e4
LT
1043}
1044
692afc31 1045static void shrink_submounts(struct mount *mnt, struct list_head *umounts);
c35038be 1046
1ab59738 1047static int do_umount(struct mount *mnt, int flags)
1da177e4 1048{
1ab59738 1049 struct super_block *sb = mnt->mnt.mnt_sb;
1da177e4 1050 int retval;
70fbcdf4 1051 LIST_HEAD(umount_list);
1da177e4 1052
1ab59738 1053 retval = security_sb_umount(&mnt->mnt, flags);
1da177e4
LT
1054 if (retval)
1055 return retval;
1056
1057 /*
1058 * Allow userspace to request a mountpoint be expired rather than
1059 * unmounting unconditionally. Unmount only happens if:
1060 * (1) the mark is already set (the mark is cleared by mntput())
1061 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1062 */
1063 if (flags & MNT_EXPIRE) {
1ab59738 1064 if (&mnt->mnt == current->fs->root.mnt ||
1da177e4
LT
1065 flags & (MNT_FORCE | MNT_DETACH))
1066 return -EINVAL;
1067
b3e19d92
NP
1068 /*
1069 * probably don't strictly need the lock here if we examined
1070 * all race cases, but it's a slowpath.
1071 */
1072 br_write_lock(vfsmount_lock);
83adc753 1073 if (mnt_get_count(mnt) != 2) {
bf9faa2a 1074 br_write_unlock(vfsmount_lock);
1da177e4 1075 return -EBUSY;
b3e19d92
NP
1076 }
1077 br_write_unlock(vfsmount_lock);
1da177e4 1078
863d684f 1079 if (!xchg(&mnt->mnt_expiry_mark, 1))
1da177e4
LT
1080 return -EAGAIN;
1081 }
1082
1083 /*
1084 * If we may have to abort operations to get out of this
1085 * mount, and they will themselves hold resources we must
1086 * allow the fs to do things. In the Unix tradition of
1087 * 'Gee thats tricky lets do it in userspace' the umount_begin
1088 * might fail to complete on the first run through as other tasks
1089 * must return, and the like. Thats for the mount program to worry
1090 * about for the moment.
1091 */
1092
42faad99 1093 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
42faad99 1094 sb->s_op->umount_begin(sb);
42faad99 1095 }
1da177e4
LT
1096
1097 /*
1098 * No sense to grab the lock for this test, but test itself looks
1099 * somewhat bogus. Suggestions for better replacement?
1100 * Ho-hum... In principle, we might treat that as umount + switch
1101 * to rootfs. GC would eventually take care of the old vfsmount.
1102 * Actually it makes sense, especially if rootfs would contain a
1103 * /reboot - static binary that would close all descriptors and
1104 * call reboot(9). Then init(8) could umount root and exec /reboot.
1105 */
1ab59738 1106 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1da177e4
LT
1107 /*
1108 * Special case for "unmounting" root ...
1109 * we just try to remount it readonly.
1110 */
1111 down_write(&sb->s_umount);
4aa98cf7 1112 if (!(sb->s_flags & MS_RDONLY))
1da177e4 1113 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1da177e4
LT
1114 up_write(&sb->s_umount);
1115 return retval;
1116 }
1117
390c6843 1118 down_write(&namespace_sem);
99b7db7b 1119 br_write_lock(vfsmount_lock);
5addc5dd 1120 event++;
1da177e4 1121
c35038be 1122 if (!(flags & MNT_DETACH))
1ab59738 1123 shrink_submounts(mnt, &umount_list);
c35038be 1124
1da177e4 1125 retval = -EBUSY;
a05964f3 1126 if (flags & MNT_DETACH || !propagate_mount_busy(mnt, 2)) {
1a4eeaf2 1127 if (!list_empty(&mnt->mnt_list))
1ab59738 1128 umount_tree(mnt, 1, &umount_list);
1da177e4
LT
1129 retval = 0;
1130 }
99b7db7b 1131 br_write_unlock(vfsmount_lock);
390c6843 1132 up_write(&namespace_sem);
70fbcdf4 1133 release_mounts(&umount_list);
1da177e4
LT
1134 return retval;
1135}
1136
1137/*
1138 * Now umount can handle mount points as well as block devices.
1139 * This is important for filesystems which use unnamed block devices.
1140 *
1141 * We now support a flag for forced unmount like the other 'big iron'
1142 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1143 */
1144
bdc480e3 1145SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1da177e4 1146{
2d8f3038 1147 struct path path;
900148dc 1148 struct mount *mnt;
1da177e4 1149 int retval;
db1f05bb 1150 int lookup_flags = 0;
1da177e4 1151
db1f05bb
MS
1152 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1153 return -EINVAL;
1154
1155 if (!(flags & UMOUNT_NOFOLLOW))
1156 lookup_flags |= LOOKUP_FOLLOW;
1157
1158 retval = user_path_at(AT_FDCWD, name, lookup_flags, &path);
1da177e4
LT
1159 if (retval)
1160 goto out;
900148dc 1161 mnt = real_mount(path.mnt);
1da177e4 1162 retval = -EINVAL;
2d8f3038 1163 if (path.dentry != path.mnt->mnt_root)
1da177e4 1164 goto dput_and_out;
143c8c91 1165 if (!check_mnt(mnt))
1da177e4
LT
1166 goto dput_and_out;
1167
1168 retval = -EPERM;
1169 if (!capable(CAP_SYS_ADMIN))
1170 goto dput_and_out;
1171
900148dc 1172 retval = do_umount(mnt, flags);
1da177e4 1173dput_and_out:
429731b1 1174 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
2d8f3038 1175 dput(path.dentry);
900148dc 1176 mntput_no_expire(mnt);
1da177e4
LT
1177out:
1178 return retval;
1179}
1180
1181#ifdef __ARCH_WANT_SYS_OLDUMOUNT
1182
1183/*
b58fed8b 1184 * The 2.0 compatible umount. No flags.
1da177e4 1185 */
bdc480e3 1186SYSCALL_DEFINE1(oldumount, char __user *, name)
1da177e4 1187{
b58fed8b 1188 return sys_umount(name, 0);
1da177e4
LT
1189}
1190
1191#endif
1192
2d92ab3c 1193static int mount_is_safe(struct path *path)
1da177e4
LT
1194{
1195 if (capable(CAP_SYS_ADMIN))
1196 return 0;
1197 return -EPERM;
1198#ifdef notyet
2d92ab3c 1199 if (S_ISLNK(path->dentry->d_inode->i_mode))
1da177e4 1200 return -EPERM;
2d92ab3c 1201 if (path->dentry->d_inode->i_mode & S_ISVTX) {
da9592ed 1202 if (current_uid() != path->dentry->d_inode->i_uid)
1da177e4
LT
1203 return -EPERM;
1204 }
2d92ab3c 1205 if (inode_permission(path->dentry->d_inode, MAY_WRITE))
1da177e4
LT
1206 return -EPERM;
1207 return 0;
1208#endif
1209}
1210
87129cc0 1211struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
36341f64 1212 int flag)
1da177e4 1213{
a73324da 1214 struct mount *res, *p, *q, *r;
1a390689 1215 struct path path;
1da177e4 1216
fc7be130 1217 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(mnt))
9676f0c6
RP
1218 return NULL;
1219
36341f64 1220 res = q = clone_mnt(mnt, dentry, flag);
1da177e4
LT
1221 if (!q)
1222 goto Enomem;
a73324da 1223 q->mnt_mountpoint = mnt->mnt_mountpoint;
1da177e4
LT
1224
1225 p = mnt;
6b41d536 1226 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
315fc83e 1227 struct mount *s;
7ec02ef1 1228 if (!is_subdir(r->mnt_mountpoint, dentry))
1da177e4
LT
1229 continue;
1230
909b0a88 1231 for (s = r; s; s = next_mnt(s, r)) {
fc7be130 1232 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(s)) {
9676f0c6
RP
1233 s = skip_mnt_tree(s);
1234 continue;
1235 }
0714a533
AV
1236 while (p != s->mnt_parent) {
1237 p = p->mnt_parent;
1238 q = q->mnt_parent;
1da177e4 1239 }
87129cc0 1240 p = s;
cb338d06 1241 path.mnt = &q->mnt;
a73324da 1242 path.dentry = p->mnt_mountpoint;
87129cc0 1243 q = clone_mnt(p, p->mnt.mnt_root, flag);
1da177e4
LT
1244 if (!q)
1245 goto Enomem;
99b7db7b 1246 br_write_lock(vfsmount_lock);
1a4eeaf2 1247 list_add_tail(&q->mnt_list, &res->mnt_list);
cb338d06 1248 attach_mnt(q, &path);
99b7db7b 1249 br_write_unlock(vfsmount_lock);
1da177e4
LT
1250 }
1251 }
1252 return res;
b58fed8b 1253Enomem:
1da177e4 1254 if (res) {
70fbcdf4 1255 LIST_HEAD(umount_list);
99b7db7b 1256 br_write_lock(vfsmount_lock);
761d5c38 1257 umount_tree(res, 0, &umount_list);
99b7db7b 1258 br_write_unlock(vfsmount_lock);
70fbcdf4 1259 release_mounts(&umount_list);
1da177e4
LT
1260 }
1261 return NULL;
1262}
1263
589ff870 1264struct vfsmount *collect_mounts(struct path *path)
8aec0809 1265{
cb338d06 1266 struct mount *tree;
1a60a280 1267 down_write(&namespace_sem);
87129cc0
AV
1268 tree = copy_tree(real_mount(path->mnt), path->dentry,
1269 CL_COPY_ALL | CL_PRIVATE);
1a60a280 1270 up_write(&namespace_sem);
cb338d06 1271 return tree ? &tree->mnt : NULL;
8aec0809
AV
1272}
1273
1274void drop_collected_mounts(struct vfsmount *mnt)
1275{
1276 LIST_HEAD(umount_list);
1a60a280 1277 down_write(&namespace_sem);
99b7db7b 1278 br_write_lock(vfsmount_lock);
761d5c38 1279 umount_tree(real_mount(mnt), 0, &umount_list);
99b7db7b 1280 br_write_unlock(vfsmount_lock);
1a60a280 1281 up_write(&namespace_sem);
8aec0809
AV
1282 release_mounts(&umount_list);
1283}
1284
1f707137
AV
1285int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1286 struct vfsmount *root)
1287{
1a4eeaf2 1288 struct mount *mnt;
1f707137
AV
1289 int res = f(root, arg);
1290 if (res)
1291 return res;
1a4eeaf2
AV
1292 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1293 res = f(&mnt->mnt, arg);
1f707137
AV
1294 if (res)
1295 return res;
1296 }
1297 return 0;
1298}
1299
4b8b21f4 1300static void cleanup_group_ids(struct mount *mnt, struct mount *end)
719f5d7f 1301{
315fc83e 1302 struct mount *p;
719f5d7f 1303
909b0a88 1304 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
fc7be130 1305 if (p->mnt_group_id && !IS_MNT_SHARED(p))
4b8b21f4 1306 mnt_release_group_id(p);
719f5d7f
MS
1307 }
1308}
1309
4b8b21f4 1310static int invent_group_ids(struct mount *mnt, bool recurse)
719f5d7f 1311{
315fc83e 1312 struct mount *p;
719f5d7f 1313
909b0a88 1314 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
fc7be130 1315 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
4b8b21f4 1316 int err = mnt_alloc_group_id(p);
719f5d7f 1317 if (err) {
4b8b21f4 1318 cleanup_group_ids(mnt, p);
719f5d7f
MS
1319 return err;
1320 }
1321 }
1322 }
1323
1324 return 0;
1325}
1326
b90fa9ae
RP
1327/*
1328 * @source_mnt : mount tree to be attached
21444403
RP
1329 * @nd : place the mount tree @source_mnt is attached
1330 * @parent_nd : if non-null, detach the source_mnt from its parent and
1331 * store the parent mount and mountpoint dentry.
1332 * (done when source_mnt is moved)
b90fa9ae
RP
1333 *
1334 * NOTE: in the table below explains the semantics when a source mount
1335 * of a given type is attached to a destination mount of a given type.
9676f0c6
RP
1336 * ---------------------------------------------------------------------------
1337 * | BIND MOUNT OPERATION |
1338 * |**************************************************************************
1339 * | source-->| shared | private | slave | unbindable |
1340 * | dest | | | | |
1341 * | | | | | | |
1342 * | v | | | | |
1343 * |**************************************************************************
1344 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1345 * | | | | | |
1346 * |non-shared| shared (+) | private | slave (*) | invalid |
1347 * ***************************************************************************
b90fa9ae
RP
1348 * A bind operation clones the source mount and mounts the clone on the
1349 * destination mount.
1350 *
1351 * (++) the cloned mount is propagated to all the mounts in the propagation
1352 * tree of the destination mount and the cloned mount is added to
1353 * the peer group of the source mount.
1354 * (+) the cloned mount is created under the destination mount and is marked
1355 * as shared. The cloned mount is added to the peer group of the source
1356 * mount.
5afe0022
RP
1357 * (+++) the mount is propagated to all the mounts in the propagation tree
1358 * of the destination mount and the cloned mount is made slave
1359 * of the same master as that of the source mount. The cloned mount
1360 * is marked as 'shared and slave'.
1361 * (*) the cloned mount is made a slave of the same master as that of the
1362 * source mount.
1363 *
9676f0c6
RP
1364 * ---------------------------------------------------------------------------
1365 * | MOVE MOUNT OPERATION |
1366 * |**************************************************************************
1367 * | source-->| shared | private | slave | unbindable |
1368 * | dest | | | | |
1369 * | | | | | | |
1370 * | v | | | | |
1371 * |**************************************************************************
1372 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
1373 * | | | | | |
1374 * |non-shared| shared (+*) | private | slave (*) | unbindable |
1375 * ***************************************************************************
5afe0022
RP
1376 *
1377 * (+) the mount is moved to the destination. And is then propagated to
1378 * all the mounts in the propagation tree of the destination mount.
21444403 1379 * (+*) the mount is moved to the destination.
5afe0022
RP
1380 * (+++) the mount is moved to the destination and is then propagated to
1381 * all the mounts belonging to the destination mount's propagation tree.
1382 * the mount is marked as 'shared and slave'.
1383 * (*) the mount continues to be a slave at the new location.
b90fa9ae
RP
1384 *
1385 * if the source mount is a tree, the operations explained above is
1386 * applied to each mount in the tree.
1387 * Must be called without spinlocks held, since this function can sleep
1388 * in allocations.
1389 */
0fb54e50 1390static int attach_recursive_mnt(struct mount *source_mnt,
1a390689 1391 struct path *path, struct path *parent_path)
b90fa9ae
RP
1392{
1393 LIST_HEAD(tree_list);
a8d56d8e 1394 struct mount *dest_mnt = real_mount(path->mnt);
1a390689 1395 struct dentry *dest_dentry = path->dentry;
315fc83e 1396 struct mount *child, *p;
719f5d7f 1397 int err;
b90fa9ae 1398
fc7be130 1399 if (IS_MNT_SHARED(dest_mnt)) {
0fb54e50 1400 err = invent_group_ids(source_mnt, true);
719f5d7f
MS
1401 if (err)
1402 goto out;
1403 }
a8d56d8e 1404 err = propagate_mnt(dest_mnt, dest_dentry, source_mnt, &tree_list);
719f5d7f
MS
1405 if (err)
1406 goto out_cleanup_ids;
b90fa9ae 1407
99b7db7b 1408 br_write_lock(vfsmount_lock);
df1a1ad2 1409
fc7be130 1410 if (IS_MNT_SHARED(dest_mnt)) {
909b0a88 1411 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
0f0afb1d 1412 set_mnt_shared(p);
b90fa9ae 1413 }
1a390689 1414 if (parent_path) {
0fb54e50
AV
1415 detach_mnt(source_mnt, parent_path);
1416 attach_mnt(source_mnt, path);
143c8c91 1417 touch_mnt_namespace(source_mnt->mnt_ns);
21444403 1418 } else {
14cf1fa8 1419 mnt_set_mountpoint(dest_mnt, dest_dentry, source_mnt);
0fb54e50 1420 commit_tree(source_mnt);
21444403 1421 }
b90fa9ae 1422
1b8e5564
AV
1423 list_for_each_entry_safe(child, p, &tree_list, mnt_hash) {
1424 list_del_init(&child->mnt_hash);
4b2619a5 1425 commit_tree(child);
b90fa9ae 1426 }
99b7db7b
NP
1427 br_write_unlock(vfsmount_lock);
1428
b90fa9ae 1429 return 0;
719f5d7f
MS
1430
1431 out_cleanup_ids:
fc7be130 1432 if (IS_MNT_SHARED(dest_mnt))
0fb54e50 1433 cleanup_group_ids(source_mnt, NULL);
719f5d7f
MS
1434 out:
1435 return err;
b90fa9ae
RP
1436}
1437
b12cea91
AV
1438static int lock_mount(struct path *path)
1439{
1440 struct vfsmount *mnt;
1441retry:
1442 mutex_lock(&path->dentry->d_inode->i_mutex);
1443 if (unlikely(cant_mount(path->dentry))) {
1444 mutex_unlock(&path->dentry->d_inode->i_mutex);
1445 return -ENOENT;
1446 }
1447 down_write(&namespace_sem);
1448 mnt = lookup_mnt(path);
1449 if (likely(!mnt))
1450 return 0;
1451 up_write(&namespace_sem);
1452 mutex_unlock(&path->dentry->d_inode->i_mutex);
1453 path_put(path);
1454 path->mnt = mnt;
1455 path->dentry = dget(mnt->mnt_root);
1456 goto retry;
1457}
1458
1459static void unlock_mount(struct path *path)
1460{
1461 up_write(&namespace_sem);
1462 mutex_unlock(&path->dentry->d_inode->i_mutex);
1463}
1464
95bc5f25 1465static int graft_tree(struct mount *mnt, struct path *path)
1da177e4 1466{
95bc5f25 1467 if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER)
1da177e4
LT
1468 return -EINVAL;
1469
8c3ee42e 1470 if (S_ISDIR(path->dentry->d_inode->i_mode) !=
95bc5f25 1471 S_ISDIR(mnt->mnt.mnt_root->d_inode->i_mode))
1da177e4
LT
1472 return -ENOTDIR;
1473
b12cea91
AV
1474 if (d_unlinked(path->dentry))
1475 return -ENOENT;
1da177e4 1476
95bc5f25 1477 return attach_recursive_mnt(mnt, path, NULL);
1da177e4
LT
1478}
1479
7a2e8a8f
VA
1480/*
1481 * Sanity check the flags to change_mnt_propagation.
1482 */
1483
1484static int flags_to_propagation_type(int flags)
1485{
7c6e984d 1486 int type = flags & ~(MS_REC | MS_SILENT);
7a2e8a8f
VA
1487
1488 /* Fail if any non-propagation flags are set */
1489 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
1490 return 0;
1491 /* Only one propagation flag should be set */
1492 if (!is_power_of_2(type))
1493 return 0;
1494 return type;
1495}
1496
07b20889
RP
1497/*
1498 * recursively change the type of the mountpoint.
1499 */
0a0d8a46 1500static int do_change_type(struct path *path, int flag)
07b20889 1501{
315fc83e 1502 struct mount *m;
4b8b21f4 1503 struct mount *mnt = real_mount(path->mnt);
07b20889 1504 int recurse = flag & MS_REC;
7a2e8a8f 1505 int type;
719f5d7f 1506 int err = 0;
07b20889 1507
ee6f9582
MS
1508 if (!capable(CAP_SYS_ADMIN))
1509 return -EPERM;
1510
2d92ab3c 1511 if (path->dentry != path->mnt->mnt_root)
07b20889
RP
1512 return -EINVAL;
1513
7a2e8a8f
VA
1514 type = flags_to_propagation_type(flag);
1515 if (!type)
1516 return -EINVAL;
1517
07b20889 1518 down_write(&namespace_sem);
719f5d7f
MS
1519 if (type == MS_SHARED) {
1520 err = invent_group_ids(mnt, recurse);
1521 if (err)
1522 goto out_unlock;
1523 }
1524
99b7db7b 1525 br_write_lock(vfsmount_lock);
909b0a88 1526 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
0f0afb1d 1527 change_mnt_propagation(m, type);
99b7db7b 1528 br_write_unlock(vfsmount_lock);
719f5d7f
MS
1529
1530 out_unlock:
07b20889 1531 up_write(&namespace_sem);
719f5d7f 1532 return err;
07b20889
RP
1533}
1534
1da177e4
LT
1535/*
1536 * do loopback mount.
1537 */
0a0d8a46 1538static int do_loopback(struct path *path, char *old_name,
2dafe1c4 1539 int recurse)
1da177e4 1540{
b12cea91 1541 LIST_HEAD(umount_list);
2d92ab3c 1542 struct path old_path;
87129cc0 1543 struct mount *mnt = NULL, *old;
2d92ab3c 1544 int err = mount_is_safe(path);
1da177e4
LT
1545 if (err)
1546 return err;
1547 if (!old_name || !*old_name)
1548 return -EINVAL;
815d405c 1549 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
1da177e4
LT
1550 if (err)
1551 return err;
1552
b12cea91
AV
1553 err = lock_mount(path);
1554 if (err)
1555 goto out;
1556
87129cc0
AV
1557 old = real_mount(old_path.mnt);
1558
1da177e4 1559 err = -EINVAL;
fc7be130 1560 if (IS_MNT_UNBINDABLE(old))
b12cea91 1561 goto out2;
9676f0c6 1562
143c8c91 1563 if (!check_mnt(real_mount(path->mnt)) || !check_mnt(old))
b12cea91 1564 goto out2;
1da177e4 1565
ccd48bc7
AV
1566 err = -ENOMEM;
1567 if (recurse)
87129cc0 1568 mnt = copy_tree(old, old_path.dentry, 0);
ccd48bc7 1569 else
87129cc0 1570 mnt = clone_mnt(old, old_path.dentry, 0);
ccd48bc7
AV
1571
1572 if (!mnt)
b12cea91 1573 goto out2;
ccd48bc7 1574
95bc5f25 1575 err = graft_tree(mnt, path);
ccd48bc7 1576 if (err) {
99b7db7b 1577 br_write_lock(vfsmount_lock);
761d5c38 1578 umount_tree(mnt, 0, &umount_list);
99b7db7b 1579 br_write_unlock(vfsmount_lock);
5b83d2c5 1580 }
b12cea91
AV
1581out2:
1582 unlock_mount(path);
1583 release_mounts(&umount_list);
ccd48bc7 1584out:
2d92ab3c 1585 path_put(&old_path);
1da177e4
LT
1586 return err;
1587}
1588
2e4b7fcd
DH
1589static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
1590{
1591 int error = 0;
1592 int readonly_request = 0;
1593
1594 if (ms_flags & MS_RDONLY)
1595 readonly_request = 1;
1596 if (readonly_request == __mnt_is_readonly(mnt))
1597 return 0;
1598
1599 if (readonly_request)
83adc753 1600 error = mnt_make_readonly(real_mount(mnt));
2e4b7fcd 1601 else
83adc753 1602 __mnt_unmake_readonly(real_mount(mnt));
2e4b7fcd
DH
1603 return error;
1604}
1605
1da177e4
LT
1606/*
1607 * change filesystem flags. dir should be a physical root of filesystem.
1608 * If you've mounted a non-root directory somewhere and want to do remount
1609 * on it - tough luck.
1610 */
0a0d8a46 1611static int do_remount(struct path *path, int flags, int mnt_flags,
1da177e4
LT
1612 void *data)
1613{
1614 int err;
2d92ab3c 1615 struct super_block *sb = path->mnt->mnt_sb;
143c8c91 1616 struct mount *mnt = real_mount(path->mnt);
1da177e4
LT
1617
1618 if (!capable(CAP_SYS_ADMIN))
1619 return -EPERM;
1620
143c8c91 1621 if (!check_mnt(mnt))
1da177e4
LT
1622 return -EINVAL;
1623
2d92ab3c 1624 if (path->dentry != path->mnt->mnt_root)
1da177e4
LT
1625 return -EINVAL;
1626
ff36fe2c
EP
1627 err = security_sb_remount(sb, data);
1628 if (err)
1629 return err;
1630
1da177e4 1631 down_write(&sb->s_umount);
2e4b7fcd 1632 if (flags & MS_BIND)
2d92ab3c 1633 err = change_mount_flags(path->mnt, flags);
4aa98cf7 1634 else
2e4b7fcd 1635 err = do_remount_sb(sb, flags, data, 0);
7b43a79f 1636 if (!err) {
99b7db7b 1637 br_write_lock(vfsmount_lock);
143c8c91
AV
1638 mnt_flags |= mnt->mnt.mnt_flags & MNT_PROPAGATION_MASK;
1639 mnt->mnt.mnt_flags = mnt_flags;
99b7db7b 1640 br_write_unlock(vfsmount_lock);
7b43a79f 1641 }
1da177e4 1642 up_write(&sb->s_umount);
0e55a7cc 1643 if (!err) {
99b7db7b 1644 br_write_lock(vfsmount_lock);
143c8c91 1645 touch_mnt_namespace(mnt->mnt_ns);
99b7db7b 1646 br_write_unlock(vfsmount_lock);
0e55a7cc 1647 }
1da177e4
LT
1648 return err;
1649}
1650
cbbe362c 1651static inline int tree_contains_unbindable(struct mount *mnt)
9676f0c6 1652{
315fc83e 1653 struct mount *p;
909b0a88 1654 for (p = mnt; p; p = next_mnt(p, mnt)) {
fc7be130 1655 if (IS_MNT_UNBINDABLE(p))
9676f0c6
RP
1656 return 1;
1657 }
1658 return 0;
1659}
1660
0a0d8a46 1661static int do_move_mount(struct path *path, char *old_name)
1da177e4 1662{
2d92ab3c 1663 struct path old_path, parent_path;
676da58d 1664 struct mount *p;
0fb54e50 1665 struct mount *old;
1da177e4
LT
1666 int err = 0;
1667 if (!capable(CAP_SYS_ADMIN))
1668 return -EPERM;
1669 if (!old_name || !*old_name)
1670 return -EINVAL;
2d92ab3c 1671 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
1da177e4
LT
1672 if (err)
1673 return err;
1674
b12cea91 1675 err = lock_mount(path);
cc53ce53
DH
1676 if (err < 0)
1677 goto out;
1678
143c8c91 1679 old = real_mount(old_path.mnt);
fc7be130 1680 p = real_mount(path->mnt);
143c8c91 1681
1da177e4 1682 err = -EINVAL;
fc7be130 1683 if (!check_mnt(p) || !check_mnt(old))
1da177e4
LT
1684 goto out1;
1685
f3da392e 1686 if (d_unlinked(path->dentry))
21444403 1687 goto out1;
1da177e4
LT
1688
1689 err = -EINVAL;
2d92ab3c 1690 if (old_path.dentry != old_path.mnt->mnt_root)
21444403 1691 goto out1;
1da177e4 1692
676da58d 1693 if (!mnt_has_parent(old))
21444403 1694 goto out1;
1da177e4 1695
2d92ab3c
AV
1696 if (S_ISDIR(path->dentry->d_inode->i_mode) !=
1697 S_ISDIR(old_path.dentry->d_inode->i_mode))
21444403
RP
1698 goto out1;
1699 /*
1700 * Don't move a mount residing in a shared parent.
1701 */
fc7be130 1702 if (IS_MNT_SHARED(old->mnt_parent))
21444403 1703 goto out1;
9676f0c6
RP
1704 /*
1705 * Don't move a mount tree containing unbindable mounts to a destination
1706 * mount which is shared.
1707 */
fc7be130 1708 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
9676f0c6 1709 goto out1;
1da177e4 1710 err = -ELOOP;
fc7be130 1711 for (; mnt_has_parent(p); p = p->mnt_parent)
676da58d 1712 if (p == old)
21444403 1713 goto out1;
1da177e4 1714
0fb54e50 1715 err = attach_recursive_mnt(old, path, &parent_path);
4ac91378 1716 if (err)
21444403 1717 goto out1;
1da177e4
LT
1718
1719 /* if the mount is moved, it should no longer be expire
1720 * automatically */
6776db3d 1721 list_del_init(&old->mnt_expire);
1da177e4 1722out1:
b12cea91 1723 unlock_mount(path);
1da177e4 1724out:
1da177e4 1725 if (!err)
1a390689 1726 path_put(&parent_path);
2d92ab3c 1727 path_put(&old_path);
1da177e4
LT
1728 return err;
1729}
1730
9d412a43
AV
1731static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
1732{
1733 int err;
1734 const char *subtype = strchr(fstype, '.');
1735 if (subtype) {
1736 subtype++;
1737 err = -EINVAL;
1738 if (!subtype[0])
1739 goto err;
1740 } else
1741 subtype = "";
1742
1743 mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
1744 err = -ENOMEM;
1745 if (!mnt->mnt_sb->s_subtype)
1746 goto err;
1747 return mnt;
1748
1749 err:
1750 mntput(mnt);
1751 return ERR_PTR(err);
1752}
1753
79e801a9 1754static struct vfsmount *
9d412a43
AV
1755do_kern_mount(const char *fstype, int flags, const char *name, void *data)
1756{
1757 struct file_system_type *type = get_fs_type(fstype);
1758 struct vfsmount *mnt;
1759 if (!type)
1760 return ERR_PTR(-ENODEV);
1761 mnt = vfs_kern_mount(type, flags, name, data);
1762 if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
1763 !mnt->mnt_sb->s_subtype)
1764 mnt = fs_set_subtype(mnt, fstype);
1765 put_filesystem(type);
1766 return mnt;
1767}
9d412a43
AV
1768
1769/*
1770 * add a mount into a namespace's mount tree
1771 */
95bc5f25 1772static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
9d412a43
AV
1773{
1774 int err;
1775
1776 mnt_flags &= ~(MNT_SHARED | MNT_WRITE_HOLD | MNT_INTERNAL);
1777
b12cea91
AV
1778 err = lock_mount(path);
1779 if (err)
1780 return err;
9d412a43
AV
1781
1782 err = -EINVAL;
143c8c91 1783 if (!(mnt_flags & MNT_SHRINKABLE) && !check_mnt(real_mount(path->mnt)))
9d412a43
AV
1784 goto unlock;
1785
1786 /* Refuse the same filesystem on the same mount point */
1787 err = -EBUSY;
95bc5f25 1788 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
9d412a43
AV
1789 path->mnt->mnt_root == path->dentry)
1790 goto unlock;
1791
1792 err = -EINVAL;
95bc5f25 1793 if (S_ISLNK(newmnt->mnt.mnt_root->d_inode->i_mode))
9d412a43
AV
1794 goto unlock;
1795
95bc5f25 1796 newmnt->mnt.mnt_flags = mnt_flags;
9d412a43
AV
1797 err = graft_tree(newmnt, path);
1798
1799unlock:
b12cea91 1800 unlock_mount(path);
9d412a43
AV
1801 return err;
1802}
b1e75df4 1803
1da177e4
LT
1804/*
1805 * create a new mount for userspace and request it to be added into the
1806 * namespace's tree
1807 */
0a0d8a46 1808static int do_new_mount(struct path *path, char *type, int flags,
1da177e4
LT
1809 int mnt_flags, char *name, void *data)
1810{
1811 struct vfsmount *mnt;
15f9a3f3 1812 int err;
1da177e4 1813
eca6f534 1814 if (!type)
1da177e4
LT
1815 return -EINVAL;
1816
1817 /* we need capabilities... */
1818 if (!capable(CAP_SYS_ADMIN))
1819 return -EPERM;
1820
1821 mnt = do_kern_mount(type, flags, name, data);
1822 if (IS_ERR(mnt))
1823 return PTR_ERR(mnt);
1824
95bc5f25 1825 err = do_add_mount(real_mount(mnt), path, mnt_flags);
15f9a3f3
AV
1826 if (err)
1827 mntput(mnt);
1828 return err;
1da177e4
LT
1829}
1830
19a167af
AV
1831int finish_automount(struct vfsmount *m, struct path *path)
1832{
6776db3d 1833 struct mount *mnt = real_mount(m);
19a167af
AV
1834 int err;
1835 /* The new mount record should have at least 2 refs to prevent it being
1836 * expired before we get a chance to add it
1837 */
6776db3d 1838 BUG_ON(mnt_get_count(mnt) < 2);
19a167af
AV
1839
1840 if (m->mnt_sb == path->mnt->mnt_sb &&
1841 m->mnt_root == path->dentry) {
b1e75df4
AV
1842 err = -ELOOP;
1843 goto fail;
19a167af
AV
1844 }
1845
95bc5f25 1846 err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
b1e75df4
AV
1847 if (!err)
1848 return 0;
1849fail:
1850 /* remove m from any expiration list it may be on */
6776db3d 1851 if (!list_empty(&mnt->mnt_expire)) {
b1e75df4
AV
1852 down_write(&namespace_sem);
1853 br_write_lock(vfsmount_lock);
6776db3d 1854 list_del_init(&mnt->mnt_expire);
b1e75df4
AV
1855 br_write_unlock(vfsmount_lock);
1856 up_write(&namespace_sem);
19a167af 1857 }
b1e75df4
AV
1858 mntput(m);
1859 mntput(m);
19a167af
AV
1860 return err;
1861}
1862
ea5b778a
DH
1863/**
1864 * mnt_set_expiry - Put a mount on an expiration list
1865 * @mnt: The mount to list.
1866 * @expiry_list: The list to add the mount to.
1867 */
1868void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
1869{
1870 down_write(&namespace_sem);
1871 br_write_lock(vfsmount_lock);
1872
6776db3d 1873 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
ea5b778a
DH
1874
1875 br_write_unlock(vfsmount_lock);
1876 up_write(&namespace_sem);
1877}
1878EXPORT_SYMBOL(mnt_set_expiry);
1879
1da177e4
LT
1880/*
1881 * process a list of expirable mountpoints with the intent of discarding any
1882 * mountpoints that aren't in use and haven't been touched since last we came
1883 * here
1884 */
1885void mark_mounts_for_expiry(struct list_head *mounts)
1886{
761d5c38 1887 struct mount *mnt, *next;
1da177e4 1888 LIST_HEAD(graveyard);
bcc5c7d2 1889 LIST_HEAD(umounts);
1da177e4
LT
1890
1891 if (list_empty(mounts))
1892 return;
1893
bcc5c7d2 1894 down_write(&namespace_sem);
99b7db7b 1895 br_write_lock(vfsmount_lock);
1da177e4
LT
1896
1897 /* extract from the expiration list every vfsmount that matches the
1898 * following criteria:
1899 * - only referenced by its parent vfsmount
1900 * - still marked for expiry (marked on the last call here; marks are
1901 * cleared by mntput())
1902 */
6776db3d 1903 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
863d684f 1904 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
1ab59738 1905 propagate_mount_busy(mnt, 1))
1da177e4 1906 continue;
6776db3d 1907 list_move(&mnt->mnt_expire, &graveyard);
1da177e4 1908 }
bcc5c7d2 1909 while (!list_empty(&graveyard)) {
6776db3d 1910 mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
143c8c91 1911 touch_mnt_namespace(mnt->mnt_ns);
bcc5c7d2
AV
1912 umount_tree(mnt, 1, &umounts);
1913 }
99b7db7b 1914 br_write_unlock(vfsmount_lock);
bcc5c7d2
AV
1915 up_write(&namespace_sem);
1916
1917 release_mounts(&umounts);
5528f911
TM
1918}
1919
1920EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
1921
1922/*
1923 * Ripoff of 'select_parent()'
1924 *
1925 * search the list of submounts for a given mountpoint, and move any
1926 * shrinkable submounts to the 'graveyard' list.
1927 */
692afc31 1928static int select_submounts(struct mount *parent, struct list_head *graveyard)
5528f911 1929{
692afc31 1930 struct mount *this_parent = parent;
5528f911
TM
1931 struct list_head *next;
1932 int found = 0;
1933
1934repeat:
6b41d536 1935 next = this_parent->mnt_mounts.next;
5528f911 1936resume:
6b41d536 1937 while (next != &this_parent->mnt_mounts) {
5528f911 1938 struct list_head *tmp = next;
6b41d536 1939 struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
5528f911
TM
1940
1941 next = tmp->next;
692afc31 1942 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
1da177e4 1943 continue;
5528f911
TM
1944 /*
1945 * Descend a level if the d_mounts list is non-empty.
1946 */
6b41d536 1947 if (!list_empty(&mnt->mnt_mounts)) {
5528f911
TM
1948 this_parent = mnt;
1949 goto repeat;
1950 }
1da177e4 1951
1ab59738 1952 if (!propagate_mount_busy(mnt, 1)) {
6776db3d 1953 list_move_tail(&mnt->mnt_expire, graveyard);
5528f911
TM
1954 found++;
1955 }
1da177e4 1956 }
5528f911
TM
1957 /*
1958 * All done at this level ... ascend and resume the search
1959 */
1960 if (this_parent != parent) {
6b41d536 1961 next = this_parent->mnt_child.next;
0714a533 1962 this_parent = this_parent->mnt_parent;
5528f911
TM
1963 goto resume;
1964 }
1965 return found;
1966}
1967
1968/*
1969 * process a list of expirable mountpoints with the intent of discarding any
1970 * submounts of a specific parent mountpoint
99b7db7b
NP
1971 *
1972 * vfsmount_lock must be held for write
5528f911 1973 */
692afc31 1974static void shrink_submounts(struct mount *mnt, struct list_head *umounts)
5528f911
TM
1975{
1976 LIST_HEAD(graveyard);
761d5c38 1977 struct mount *m;
5528f911 1978
5528f911 1979 /* extract submounts of 'mountpoint' from the expiration list */
c35038be 1980 while (select_submounts(mnt, &graveyard)) {
bcc5c7d2 1981 while (!list_empty(&graveyard)) {
761d5c38 1982 m = list_first_entry(&graveyard, struct mount,
6776db3d 1983 mnt_expire);
143c8c91 1984 touch_mnt_namespace(m->mnt_ns);
afef80b3 1985 umount_tree(m, 1, umounts);
bcc5c7d2
AV
1986 }
1987 }
1da177e4
LT
1988}
1989
1da177e4
LT
1990/*
1991 * Some copy_from_user() implementations do not return the exact number of
1992 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
1993 * Note that this function differs from copy_from_user() in that it will oops
1994 * on bad values of `to', rather than returning a short copy.
1995 */
b58fed8b
RP
1996static long exact_copy_from_user(void *to, const void __user * from,
1997 unsigned long n)
1da177e4
LT
1998{
1999 char *t = to;
2000 const char __user *f = from;
2001 char c;
2002
2003 if (!access_ok(VERIFY_READ, from, n))
2004 return n;
2005
2006 while (n) {
2007 if (__get_user(c, f)) {
2008 memset(t, 0, n);
2009 break;
2010 }
2011 *t++ = c;
2012 f++;
2013 n--;
2014 }
2015 return n;
2016}
2017
b58fed8b 2018int copy_mount_options(const void __user * data, unsigned long *where)
1da177e4
LT
2019{
2020 int i;
2021 unsigned long page;
2022 unsigned long size;
b58fed8b 2023
1da177e4
LT
2024 *where = 0;
2025 if (!data)
2026 return 0;
2027
2028 if (!(page = __get_free_page(GFP_KERNEL)))
2029 return -ENOMEM;
2030
2031 /* We only care that *some* data at the address the user
2032 * gave us is valid. Just in case, we'll zero
2033 * the remainder of the page.
2034 */
2035 /* copy_from_user cannot cross TASK_SIZE ! */
2036 size = TASK_SIZE - (unsigned long)data;
2037 if (size > PAGE_SIZE)
2038 size = PAGE_SIZE;
2039
2040 i = size - exact_copy_from_user((void *)page, data, size);
2041 if (!i) {
b58fed8b 2042 free_page(page);
1da177e4
LT
2043 return -EFAULT;
2044 }
2045 if (i != PAGE_SIZE)
2046 memset((char *)page + i, 0, PAGE_SIZE - i);
2047 *where = page;
2048 return 0;
2049}
2050
eca6f534
VN
2051int copy_mount_string(const void __user *data, char **where)
2052{
2053 char *tmp;
2054
2055 if (!data) {
2056 *where = NULL;
2057 return 0;
2058 }
2059
2060 tmp = strndup_user(data, PAGE_SIZE);
2061 if (IS_ERR(tmp))
2062 return PTR_ERR(tmp);
2063
2064 *where = tmp;
2065 return 0;
2066}
2067
1da177e4
LT
2068/*
2069 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2070 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2071 *
2072 * data is a (void *) that can point to any structure up to
2073 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2074 * information (or be NULL).
2075 *
2076 * Pre-0.97 versions of mount() didn't have a flags word.
2077 * When the flags word was introduced its top half was required
2078 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2079 * Therefore, if this magic number is present, it carries no information
2080 * and must be discarded.
2081 */
b58fed8b 2082long do_mount(char *dev_name, char *dir_name, char *type_page,
1da177e4
LT
2083 unsigned long flags, void *data_page)
2084{
2d92ab3c 2085 struct path path;
1da177e4
LT
2086 int retval = 0;
2087 int mnt_flags = 0;
2088
2089 /* Discard magic */
2090 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2091 flags &= ~MS_MGC_MSK;
2092
2093 /* Basic sanity checks */
2094
2095 if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
2096 return -EINVAL;
1da177e4
LT
2097
2098 if (data_page)
2099 ((char *)data_page)[PAGE_SIZE - 1] = 0;
2100
a27ab9f2
TH
2101 /* ... and get the mountpoint */
2102 retval = kern_path(dir_name, LOOKUP_FOLLOW, &path);
2103 if (retval)
2104 return retval;
2105
2106 retval = security_sb_mount(dev_name, &path,
2107 type_page, flags, data_page);
2108 if (retval)
2109 goto dput_out;
2110
613cbe3d
AK
2111 /* Default to relatime unless overriden */
2112 if (!(flags & MS_NOATIME))
2113 mnt_flags |= MNT_RELATIME;
0a1c01c9 2114
1da177e4
LT
2115 /* Separate the per-mountpoint flags */
2116 if (flags & MS_NOSUID)
2117 mnt_flags |= MNT_NOSUID;
2118 if (flags & MS_NODEV)
2119 mnt_flags |= MNT_NODEV;
2120 if (flags & MS_NOEXEC)
2121 mnt_flags |= MNT_NOEXEC;
fc33a7bb
CH
2122 if (flags & MS_NOATIME)
2123 mnt_flags |= MNT_NOATIME;
2124 if (flags & MS_NODIRATIME)
2125 mnt_flags |= MNT_NODIRATIME;
d0adde57
MG
2126 if (flags & MS_STRICTATIME)
2127 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
2e4b7fcd
DH
2128 if (flags & MS_RDONLY)
2129 mnt_flags |= MNT_READONLY;
fc33a7bb 2130
7a4dec53 2131 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
d0adde57
MG
2132 MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
2133 MS_STRICTATIME);
1da177e4 2134
1da177e4 2135 if (flags & MS_REMOUNT)
2d92ab3c 2136 retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
1da177e4
LT
2137 data_page);
2138 else if (flags & MS_BIND)
2d92ab3c 2139 retval = do_loopback(&path, dev_name, flags & MS_REC);
9676f0c6 2140 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2d92ab3c 2141 retval = do_change_type(&path, flags);
1da177e4 2142 else if (flags & MS_MOVE)
2d92ab3c 2143 retval = do_move_mount(&path, dev_name);
1da177e4 2144 else
2d92ab3c 2145 retval = do_new_mount(&path, type_page, flags, mnt_flags,
1da177e4
LT
2146 dev_name, data_page);
2147dput_out:
2d92ab3c 2148 path_put(&path);
1da177e4
LT
2149 return retval;
2150}
2151
cf8d2c11
TM
2152static struct mnt_namespace *alloc_mnt_ns(void)
2153{
2154 struct mnt_namespace *new_ns;
2155
2156 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
2157 if (!new_ns)
2158 return ERR_PTR(-ENOMEM);
2159 atomic_set(&new_ns->count, 1);
2160 new_ns->root = NULL;
2161 INIT_LIST_HEAD(&new_ns->list);
2162 init_waitqueue_head(&new_ns->poll);
2163 new_ns->event = 0;
2164 return new_ns;
2165}
2166
f03c6599
AV
2167void mnt_make_longterm(struct vfsmount *mnt)
2168{
83adc753 2169 __mnt_make_longterm(real_mount(mnt));
f03c6599
AV
2170}
2171
83adc753 2172void mnt_make_shortterm(struct vfsmount *m)
f03c6599 2173{
7e3d0eb0 2174#ifdef CONFIG_SMP
83adc753 2175 struct mount *mnt = real_mount(m);
68e8a9fe 2176 if (atomic_add_unless(&mnt->mnt_longterm, -1, 1))
f03c6599
AV
2177 return;
2178 br_write_lock(vfsmount_lock);
68e8a9fe 2179 atomic_dec(&mnt->mnt_longterm);
f03c6599 2180 br_write_unlock(vfsmount_lock);
7e3d0eb0 2181#endif
f03c6599
AV
2182}
2183
741a2951
JD
2184/*
2185 * Allocate a new namespace structure and populate it with contents
2186 * copied from the namespace of the passed in task structure.
2187 */
e3222c4e 2188static struct mnt_namespace *dup_mnt_ns(struct mnt_namespace *mnt_ns,
6b3286ed 2189 struct fs_struct *fs)
1da177e4 2190{
6b3286ed 2191 struct mnt_namespace *new_ns;
7f2da1e7 2192 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
315fc83e 2193 struct mount *p, *q;
be08d6d2 2194 struct mount *old = mnt_ns->root;
cb338d06 2195 struct mount *new;
1da177e4 2196
cf8d2c11
TM
2197 new_ns = alloc_mnt_ns();
2198 if (IS_ERR(new_ns))
2199 return new_ns;
1da177e4 2200
390c6843 2201 down_write(&namespace_sem);
1da177e4 2202 /* First pass: copy the tree topology */
909b0a88 2203 new = copy_tree(old, old->mnt.mnt_root, CL_COPY_ALL | CL_EXPIRE);
cb338d06 2204 if (!new) {
390c6843 2205 up_write(&namespace_sem);
1da177e4 2206 kfree(new_ns);
5cc4a034 2207 return ERR_PTR(-ENOMEM);
1da177e4 2208 }
be08d6d2 2209 new_ns->root = new;
99b7db7b 2210 br_write_lock(vfsmount_lock);
1a4eeaf2 2211 list_add_tail(&new_ns->list, &new->mnt_list);
99b7db7b 2212 br_write_unlock(vfsmount_lock);
1da177e4
LT
2213
2214 /*
2215 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2216 * as belonging to new namespace. We have already acquired a private
2217 * fs_struct, so tsk->fs->lock is not needed.
2218 */
909b0a88 2219 p = old;
cb338d06 2220 q = new;
1da177e4 2221 while (p) {
143c8c91 2222 q->mnt_ns = new_ns;
83adc753 2223 __mnt_make_longterm(q);
1da177e4 2224 if (fs) {
315fc83e
AV
2225 if (&p->mnt == fs->root.mnt) {
2226 fs->root.mnt = mntget(&q->mnt);
83adc753 2227 __mnt_make_longterm(q);
315fc83e
AV
2228 mnt_make_shortterm(&p->mnt);
2229 rootmnt = &p->mnt;
1da177e4 2230 }
315fc83e
AV
2231 if (&p->mnt == fs->pwd.mnt) {
2232 fs->pwd.mnt = mntget(&q->mnt);
83adc753 2233 __mnt_make_longterm(q);
315fc83e
AV
2234 mnt_make_shortterm(&p->mnt);
2235 pwdmnt = &p->mnt;
1da177e4 2236 }
1da177e4 2237 }
909b0a88
AV
2238 p = next_mnt(p, old);
2239 q = next_mnt(q, new);
1da177e4 2240 }
390c6843 2241 up_write(&namespace_sem);
1da177e4 2242
1da177e4 2243 if (rootmnt)
f03c6599 2244 mntput(rootmnt);
1da177e4 2245 if (pwdmnt)
f03c6599 2246 mntput(pwdmnt);
1da177e4 2247
741a2951
JD
2248 return new_ns;
2249}
2250
213dd266 2251struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
e3222c4e 2252 struct fs_struct *new_fs)
741a2951 2253{
6b3286ed 2254 struct mnt_namespace *new_ns;
741a2951 2255
e3222c4e 2256 BUG_ON(!ns);
6b3286ed 2257 get_mnt_ns(ns);
741a2951
JD
2258
2259 if (!(flags & CLONE_NEWNS))
e3222c4e 2260 return ns;
741a2951 2261
e3222c4e 2262 new_ns = dup_mnt_ns(ns, new_fs);
741a2951 2263
6b3286ed 2264 put_mnt_ns(ns);
e3222c4e 2265 return new_ns;
1da177e4
LT
2266}
2267
cf8d2c11
TM
2268/**
2269 * create_mnt_ns - creates a private namespace and adds a root filesystem
2270 * @mnt: pointer to the new root filesystem mountpoint
2271 */
1a4eeaf2 2272static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
cf8d2c11 2273{
1a4eeaf2 2274 struct mnt_namespace *new_ns = alloc_mnt_ns();
cf8d2c11 2275 if (!IS_ERR(new_ns)) {
1a4eeaf2
AV
2276 struct mount *mnt = real_mount(m);
2277 mnt->mnt_ns = new_ns;
2278 __mnt_make_longterm(mnt);
be08d6d2 2279 new_ns->root = mnt;
1a4eeaf2 2280 list_add(&new_ns->list, &mnt->mnt_list);
c1334495 2281 } else {
1a4eeaf2 2282 mntput(m);
cf8d2c11
TM
2283 }
2284 return new_ns;
2285}
cf8d2c11 2286
ea441d11
AV
2287struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
2288{
2289 struct mnt_namespace *ns;
d31da0f0 2290 struct super_block *s;
ea441d11
AV
2291 struct path path;
2292 int err;
2293
2294 ns = create_mnt_ns(mnt);
2295 if (IS_ERR(ns))
2296 return ERR_CAST(ns);
2297
2298 err = vfs_path_lookup(mnt->mnt_root, mnt,
2299 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
2300
2301 put_mnt_ns(ns);
2302
2303 if (err)
2304 return ERR_PTR(err);
2305
2306 /* trade a vfsmount reference for active sb one */
d31da0f0
AV
2307 s = path.mnt->mnt_sb;
2308 atomic_inc(&s->s_active);
ea441d11
AV
2309 mntput(path.mnt);
2310 /* lock the sucker */
d31da0f0 2311 down_write(&s->s_umount);
ea441d11
AV
2312 /* ... and return the root of (sub)tree on it */
2313 return path.dentry;
2314}
2315EXPORT_SYMBOL(mount_subtree);
2316
bdc480e3
HC
2317SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
2318 char __user *, type, unsigned long, flags, void __user *, data)
1da177e4 2319{
eca6f534
VN
2320 int ret;
2321 char *kernel_type;
2322 char *kernel_dir;
2323 char *kernel_dev;
1da177e4 2324 unsigned long data_page;
1da177e4 2325
eca6f534
VN
2326 ret = copy_mount_string(type, &kernel_type);
2327 if (ret < 0)
2328 goto out_type;
1da177e4 2329
eca6f534
VN
2330 kernel_dir = getname(dir_name);
2331 if (IS_ERR(kernel_dir)) {
2332 ret = PTR_ERR(kernel_dir);
2333 goto out_dir;
2334 }
1da177e4 2335
eca6f534
VN
2336 ret = copy_mount_string(dev_name, &kernel_dev);
2337 if (ret < 0)
2338 goto out_dev;
1da177e4 2339
eca6f534
VN
2340 ret = copy_mount_options(data, &data_page);
2341 if (ret < 0)
2342 goto out_data;
1da177e4 2343
eca6f534
VN
2344 ret = do_mount(kernel_dev, kernel_dir, kernel_type, flags,
2345 (void *) data_page);
1da177e4 2346
eca6f534
VN
2347 free_page(data_page);
2348out_data:
2349 kfree(kernel_dev);
2350out_dev:
2351 putname(kernel_dir);
2352out_dir:
2353 kfree(kernel_type);
2354out_type:
2355 return ret;
1da177e4
LT
2356}
2357
afac7cba
AV
2358/*
2359 * Return true if path is reachable from root
2360 *
2361 * namespace_sem or vfsmount_lock is held
2362 */
643822b4 2363bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
afac7cba
AV
2364 const struct path *root)
2365{
643822b4 2366 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
a73324da 2367 dentry = mnt->mnt_mountpoint;
0714a533 2368 mnt = mnt->mnt_parent;
afac7cba 2369 }
643822b4 2370 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
afac7cba
AV
2371}
2372
2373int path_is_under(struct path *path1, struct path *path2)
2374{
2375 int res;
2376 br_read_lock(vfsmount_lock);
643822b4 2377 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
afac7cba
AV
2378 br_read_unlock(vfsmount_lock);
2379 return res;
2380}
2381EXPORT_SYMBOL(path_is_under);
2382
1da177e4
LT
2383/*
2384 * pivot_root Semantics:
2385 * Moves the root file system of the current process to the directory put_old,
2386 * makes new_root as the new root file system of the current process, and sets
2387 * root/cwd of all processes which had them on the current root to new_root.
2388 *
2389 * Restrictions:
2390 * The new_root and put_old must be directories, and must not be on the
2391 * same file system as the current process root. The put_old must be
2392 * underneath new_root, i.e. adding a non-zero number of /.. to the string
2393 * pointed to by put_old must yield the same directory as new_root. No other
2394 * file system may be mounted on put_old. After all, new_root is a mountpoint.
2395 *
4a0d11fa
NB
2396 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
2397 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
2398 * in this situation.
2399 *
1da177e4
LT
2400 * Notes:
2401 * - we don't move root/cwd if they are not at the root (reason: if something
2402 * cared enough to change them, it's probably wrong to force them elsewhere)
2403 * - it's okay to pick a root that isn't the root of a file system, e.g.
2404 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
2405 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
2406 * first.
2407 */
3480b257
HC
2408SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
2409 const char __user *, put_old)
1da177e4 2410{
2d8f3038 2411 struct path new, old, parent_path, root_parent, root;
419148da 2412 struct mount *new_mnt, *root_mnt;
1da177e4
LT
2413 int error;
2414
2415 if (!capable(CAP_SYS_ADMIN))
2416 return -EPERM;
2417
2d8f3038 2418 error = user_path_dir(new_root, &new);
1da177e4
LT
2419 if (error)
2420 goto out0;
1da177e4 2421
2d8f3038 2422 error = user_path_dir(put_old, &old);
1da177e4
LT
2423 if (error)
2424 goto out1;
2425
2d8f3038 2426 error = security_sb_pivotroot(&old, &new);
b12cea91
AV
2427 if (error)
2428 goto out2;
1da177e4 2429
f7ad3c6b 2430 get_fs_root(current->fs, &root);
b12cea91
AV
2431 error = lock_mount(&old);
2432 if (error)
2433 goto out3;
2434
1da177e4 2435 error = -EINVAL;
419148da
AV
2436 new_mnt = real_mount(new.mnt);
2437 root_mnt = real_mount(root.mnt);
fc7be130
AV
2438 if (IS_MNT_SHARED(real_mount(old.mnt)) ||
2439 IS_MNT_SHARED(new_mnt->mnt_parent) ||
2440 IS_MNT_SHARED(root_mnt->mnt_parent))
b12cea91 2441 goto out4;
143c8c91 2442 if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
b12cea91 2443 goto out4;
1da177e4 2444 error = -ENOENT;
f3da392e 2445 if (d_unlinked(new.dentry))
b12cea91 2446 goto out4;
f3da392e 2447 if (d_unlinked(old.dentry))
b12cea91 2448 goto out4;
1da177e4 2449 error = -EBUSY;
2d8f3038
AV
2450 if (new.mnt == root.mnt ||
2451 old.mnt == root.mnt)
b12cea91 2452 goto out4; /* loop, on the same file system */
1da177e4 2453 error = -EINVAL;
8c3ee42e 2454 if (root.mnt->mnt_root != root.dentry)
b12cea91 2455 goto out4; /* not a mountpoint */
676da58d 2456 if (!mnt_has_parent(root_mnt))
b12cea91 2457 goto out4; /* not attached */
2d8f3038 2458 if (new.mnt->mnt_root != new.dentry)
b12cea91 2459 goto out4; /* not a mountpoint */
676da58d 2460 if (!mnt_has_parent(new_mnt))
b12cea91 2461 goto out4; /* not attached */
4ac91378 2462 /* make sure we can reach put_old from new_root */
643822b4 2463 if (!is_path_reachable(real_mount(old.mnt), old.dentry, &new))
b12cea91 2464 goto out4;
27cb1572 2465 br_write_lock(vfsmount_lock);
419148da
AV
2466 detach_mnt(new_mnt, &parent_path);
2467 detach_mnt(root_mnt, &root_parent);
4ac91378 2468 /* mount old root on put_old */
419148da 2469 attach_mnt(root_mnt, &old);
4ac91378 2470 /* mount new_root on / */
419148da 2471 attach_mnt(new_mnt, &root_parent);
6b3286ed 2472 touch_mnt_namespace(current->nsproxy->mnt_ns);
99b7db7b 2473 br_write_unlock(vfsmount_lock);
2d8f3038 2474 chroot_fs_refs(&root, &new);
1da177e4 2475 error = 0;
b12cea91
AV
2476out4:
2477 unlock_mount(&old);
2478 if (!error) {
2479 path_put(&root_parent);
2480 path_put(&parent_path);
2481 }
2482out3:
8c3ee42e 2483 path_put(&root);
b12cea91 2484out2:
2d8f3038 2485 path_put(&old);
1da177e4 2486out1:
2d8f3038 2487 path_put(&new);
1da177e4 2488out0:
1da177e4 2489 return error;
1da177e4
LT
2490}
2491
2492static void __init init_mount_tree(void)
2493{
2494 struct vfsmount *mnt;
6b3286ed 2495 struct mnt_namespace *ns;
ac748a09 2496 struct path root;
1da177e4
LT
2497
2498 mnt = do_kern_mount("rootfs", 0, "rootfs", NULL);
2499 if (IS_ERR(mnt))
2500 panic("Can't create rootfs");
b3e19d92 2501
3b22edc5
TM
2502 ns = create_mnt_ns(mnt);
2503 if (IS_ERR(ns))
1da177e4 2504 panic("Can't allocate initial namespace");
6b3286ed
KK
2505
2506 init_task.nsproxy->mnt_ns = ns;
2507 get_mnt_ns(ns);
2508
be08d6d2
AV
2509 root.mnt = mnt;
2510 root.dentry = mnt->mnt_root;
ac748a09
JB
2511
2512 set_fs_pwd(current->fs, &root);
2513 set_fs_root(current->fs, &root);
1da177e4
LT
2514}
2515
74bf17cf 2516void __init mnt_init(void)
1da177e4 2517{
13f14b4d 2518 unsigned u;
15a67dd8 2519 int err;
1da177e4 2520
390c6843
RP
2521 init_rwsem(&namespace_sem);
2522
7d6fec45 2523 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
20c2df83 2524 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
1da177e4 2525
b58fed8b 2526 mount_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
1da177e4
LT
2527
2528 if (!mount_hashtable)
2529 panic("Failed to allocate mount hash table\n");
2530
80cdc6da 2531 printk(KERN_INFO "Mount-cache hash table entries: %lu\n", HASH_SIZE);
13f14b4d
ED
2532
2533 for (u = 0; u < HASH_SIZE; u++)
2534 INIT_LIST_HEAD(&mount_hashtable[u]);
1da177e4 2535
99b7db7b
NP
2536 br_lock_init(vfsmount_lock);
2537
15a67dd8
RD
2538 err = sysfs_init();
2539 if (err)
2540 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
8e24eea7 2541 __func__, err);
00d26666
GKH
2542 fs_kobj = kobject_create_and_add("fs", NULL);
2543 if (!fs_kobj)
8e24eea7 2544 printk(KERN_WARNING "%s: kobj create error\n", __func__);
1da177e4
LT
2545 init_rootfs();
2546 init_mount_tree();
2547}
2548
616511d0 2549void put_mnt_ns(struct mnt_namespace *ns)
1da177e4 2550{
70fbcdf4 2551 LIST_HEAD(umount_list);
616511d0 2552
d498b25a 2553 if (!atomic_dec_and_test(&ns->count))
616511d0 2554 return;
390c6843 2555 down_write(&namespace_sem);
99b7db7b 2556 br_write_lock(vfsmount_lock);
be08d6d2 2557 umount_tree(ns->root, 0, &umount_list);
99b7db7b 2558 br_write_unlock(vfsmount_lock);
390c6843 2559 up_write(&namespace_sem);
70fbcdf4 2560 release_mounts(&umount_list);
6b3286ed 2561 kfree(ns);
1da177e4 2562}
9d412a43
AV
2563
2564struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
2565{
423e0ab0
TC
2566 struct vfsmount *mnt;
2567 mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
2568 if (!IS_ERR(mnt)) {
2569 /*
2570 * it is a longterm mount, don't release mnt until
2571 * we unmount before file sys is unregistered
2572 */
2573 mnt_make_longterm(mnt);
2574 }
2575 return mnt;
9d412a43
AV
2576}
2577EXPORT_SYMBOL_GPL(kern_mount_data);
423e0ab0
TC
2578
2579void kern_unmount(struct vfsmount *mnt)
2580{
2581 /* release long term mount so mount point can be released */
2582 if (!IS_ERR_OR_NULL(mnt)) {
2583 mnt_make_shortterm(mnt);
2584 mntput(mnt);
2585 }
2586}
2587EXPORT_SYMBOL(kern_unmount);
02125a82
AV
2588
2589bool our_mnt(struct vfsmount *mnt)
2590{
143c8c91 2591 return check_mnt(real_mount(mnt));
02125a82 2592}