vfs: switch ->show_options() to struct dentry *
[linux-2.6-block.git] / fs / namespace.c
CommitLineData
1da177e4
LT
1/*
2 * linux/fs/namespace.c
3 *
4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
6 *
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
10
1da177e4 11#include <linux/syscalls.h>
d10577a8 12#include <linux/export.h>
16f7e0fe 13#include <linux/capability.h>
6b3286ed 14#include <linux/mnt_namespace.h>
1da177e4
LT
15#include <linux/namei.h>
16#include <linux/security.h>
73cd49ec 17#include <linux/idr.h>
d10577a8
AV
18#include <linux/acct.h> /* acct_auto_close_mnt */
19#include <linux/ramfs.h> /* init_rootfs */
20#include <linux/fs_struct.h> /* get_fs_root et.al. */
21#include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
22#include <linux/uaccess.h>
07b20889 23#include "pnode.h"
948730b0 24#include "internal.h"
1da177e4 25
13f14b4d
ED
26#define HASH_SHIFT ilog2(PAGE_SIZE / sizeof(struct list_head))
27#define HASH_SIZE (1UL << HASH_SHIFT)
28
5addc5dd 29static int event;
73cd49ec 30static DEFINE_IDA(mnt_id_ida);
719f5d7f 31static DEFINE_IDA(mnt_group_ida);
99b7db7b 32static DEFINE_SPINLOCK(mnt_id_lock);
f21f6220
AV
33static int mnt_id_start = 0;
34static int mnt_group_start = 1;
1da177e4 35
fa3536cc 36static struct list_head *mount_hashtable __read_mostly;
e18b890b 37static struct kmem_cache *mnt_cache __read_mostly;
390c6843 38static struct rw_semaphore namespace_sem;
1da177e4 39
f87fd4c2 40/* /sys/fs */
00d26666
GKH
41struct kobject *fs_kobj;
42EXPORT_SYMBOL_GPL(fs_kobj);
f87fd4c2 43
99b7db7b
NP
44/*
45 * vfsmount lock may be taken for read to prevent changes to the
46 * vfsmount hash, ie. during mountpoint lookups or walking back
47 * up the tree.
48 *
49 * It should be taken for write in all cases where the vfsmount
50 * tree or hash is modified or when a vfsmount structure is modified.
51 */
52DEFINE_BRLOCK(vfsmount_lock);
53
1da177e4
LT
54static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry)
55{
b58fed8b
RP
56 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
57 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
13f14b4d
ED
58 tmp = tmp + (tmp >> HASH_SHIFT);
59 return tmp & (HASH_SIZE - 1);
1da177e4
LT
60}
61
3d733633
DH
62#define MNT_WRITER_UNDERFLOW_LIMIT -(1<<16)
63
99b7db7b
NP
64/*
65 * allocation is serialized by namespace_sem, but we need the spinlock to
66 * serialize with freeing.
67 */
b105e270 68static int mnt_alloc_id(struct mount *mnt)
73cd49ec
MS
69{
70 int res;
71
72retry:
73 ida_pre_get(&mnt_id_ida, GFP_KERNEL);
99b7db7b 74 spin_lock(&mnt_id_lock);
15169fe7 75 res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
f21f6220 76 if (!res)
15169fe7 77 mnt_id_start = mnt->mnt_id + 1;
99b7db7b 78 spin_unlock(&mnt_id_lock);
73cd49ec
MS
79 if (res == -EAGAIN)
80 goto retry;
81
82 return res;
83}
84
b105e270 85static void mnt_free_id(struct mount *mnt)
73cd49ec 86{
15169fe7 87 int id = mnt->mnt_id;
99b7db7b 88 spin_lock(&mnt_id_lock);
f21f6220
AV
89 ida_remove(&mnt_id_ida, id);
90 if (mnt_id_start > id)
91 mnt_id_start = id;
99b7db7b 92 spin_unlock(&mnt_id_lock);
73cd49ec
MS
93}
94
719f5d7f
MS
95/*
96 * Allocate a new peer group ID
97 *
98 * mnt_group_ida is protected by namespace_sem
99 */
4b8b21f4 100static int mnt_alloc_group_id(struct mount *mnt)
719f5d7f 101{
f21f6220
AV
102 int res;
103
719f5d7f
MS
104 if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
105 return -ENOMEM;
106
f21f6220
AV
107 res = ida_get_new_above(&mnt_group_ida,
108 mnt_group_start,
15169fe7 109 &mnt->mnt_group_id);
f21f6220 110 if (!res)
15169fe7 111 mnt_group_start = mnt->mnt_group_id + 1;
f21f6220
AV
112
113 return res;
719f5d7f
MS
114}
115
116/*
117 * Release a peer group ID
118 */
4b8b21f4 119void mnt_release_group_id(struct mount *mnt)
719f5d7f 120{
15169fe7 121 int id = mnt->mnt_group_id;
f21f6220
AV
122 ida_remove(&mnt_group_ida, id);
123 if (mnt_group_start > id)
124 mnt_group_start = id;
15169fe7 125 mnt->mnt_group_id = 0;
719f5d7f
MS
126}
127
b3e19d92
NP
128/*
129 * vfsmount lock must be held for read
130 */
83adc753 131static inline void mnt_add_count(struct mount *mnt, int n)
b3e19d92
NP
132{
133#ifdef CONFIG_SMP
68e8a9fe 134 this_cpu_add(mnt->mnt_pcp->mnt_count, n);
b3e19d92
NP
135#else
136 preempt_disable();
68e8a9fe 137 mnt->mnt_count += n;
b3e19d92
NP
138 preempt_enable();
139#endif
140}
141
b3e19d92
NP
142/*
143 * vfsmount lock must be held for write
144 */
83adc753 145unsigned int mnt_get_count(struct mount *mnt)
b3e19d92
NP
146{
147#ifdef CONFIG_SMP
f03c6599 148 unsigned int count = 0;
b3e19d92
NP
149 int cpu;
150
151 for_each_possible_cpu(cpu) {
68e8a9fe 152 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
b3e19d92
NP
153 }
154
155 return count;
156#else
68e8a9fe 157 return mnt->mnt_count;
b3e19d92
NP
158#endif
159}
160
b105e270 161static struct mount *alloc_vfsmnt(const char *name)
1da177e4 162{
c63181e6
AV
163 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
164 if (mnt) {
73cd49ec
MS
165 int err;
166
c63181e6 167 err = mnt_alloc_id(mnt);
88b38782
LZ
168 if (err)
169 goto out_free_cache;
170
171 if (name) {
c63181e6
AV
172 mnt->mnt_devname = kstrdup(name, GFP_KERNEL);
173 if (!mnt->mnt_devname)
88b38782 174 goto out_free_id;
73cd49ec
MS
175 }
176
b3e19d92 177#ifdef CONFIG_SMP
c63181e6
AV
178 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
179 if (!mnt->mnt_pcp)
b3e19d92
NP
180 goto out_free_devname;
181
c63181e6 182 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
b3e19d92 183#else
c63181e6
AV
184 mnt->mnt_count = 1;
185 mnt->mnt_writers = 0;
b3e19d92
NP
186#endif
187
c63181e6
AV
188 INIT_LIST_HEAD(&mnt->mnt_hash);
189 INIT_LIST_HEAD(&mnt->mnt_child);
190 INIT_LIST_HEAD(&mnt->mnt_mounts);
191 INIT_LIST_HEAD(&mnt->mnt_list);
192 INIT_LIST_HEAD(&mnt->mnt_expire);
193 INIT_LIST_HEAD(&mnt->mnt_share);
194 INIT_LIST_HEAD(&mnt->mnt_slave_list);
195 INIT_LIST_HEAD(&mnt->mnt_slave);
2504c5d6
AG
196#ifdef CONFIG_FSNOTIFY
197 INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
d3ef3d73 198#endif
1da177e4 199 }
c63181e6 200 return mnt;
88b38782 201
d3ef3d73 202#ifdef CONFIG_SMP
203out_free_devname:
c63181e6 204 kfree(mnt->mnt_devname);
d3ef3d73 205#endif
88b38782 206out_free_id:
c63181e6 207 mnt_free_id(mnt);
88b38782 208out_free_cache:
c63181e6 209 kmem_cache_free(mnt_cache, mnt);
88b38782 210 return NULL;
1da177e4
LT
211}
212
3d733633
DH
213/*
214 * Most r/o checks on a fs are for operations that take
215 * discrete amounts of time, like a write() or unlink().
216 * We must keep track of when those operations start
217 * (for permission checks) and when they end, so that
218 * we can determine when writes are able to occur to
219 * a filesystem.
220 */
221/*
222 * __mnt_is_readonly: check whether a mount is read-only
223 * @mnt: the mount to check for its write status
224 *
225 * This shouldn't be used directly ouside of the VFS.
226 * It does not guarantee that the filesystem will stay
227 * r/w, just that it is right *now*. This can not and
228 * should not be used in place of IS_RDONLY(inode).
229 * mnt_want/drop_write() will _keep_ the filesystem
230 * r/w.
231 */
232int __mnt_is_readonly(struct vfsmount *mnt)
233{
2e4b7fcd
DH
234 if (mnt->mnt_flags & MNT_READONLY)
235 return 1;
236 if (mnt->mnt_sb->s_flags & MS_RDONLY)
237 return 1;
238 return 0;
3d733633
DH
239}
240EXPORT_SYMBOL_GPL(__mnt_is_readonly);
241
83adc753 242static inline void mnt_inc_writers(struct mount *mnt)
d3ef3d73 243{
244#ifdef CONFIG_SMP
68e8a9fe 245 this_cpu_inc(mnt->mnt_pcp->mnt_writers);
d3ef3d73 246#else
68e8a9fe 247 mnt->mnt_writers++;
d3ef3d73 248#endif
249}
3d733633 250
83adc753 251static inline void mnt_dec_writers(struct mount *mnt)
3d733633 252{
d3ef3d73 253#ifdef CONFIG_SMP
68e8a9fe 254 this_cpu_dec(mnt->mnt_pcp->mnt_writers);
d3ef3d73 255#else
68e8a9fe 256 mnt->mnt_writers--;
d3ef3d73 257#endif
3d733633 258}
3d733633 259
83adc753 260static unsigned int mnt_get_writers(struct mount *mnt)
3d733633 261{
d3ef3d73 262#ifdef CONFIG_SMP
263 unsigned int count = 0;
3d733633 264 int cpu;
3d733633
DH
265
266 for_each_possible_cpu(cpu) {
68e8a9fe 267 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
3d733633 268 }
3d733633 269
d3ef3d73 270 return count;
271#else
272 return mnt->mnt_writers;
273#endif
3d733633
DH
274}
275
8366025e
DH
276/*
277 * Most r/o checks on a fs are for operations that take
278 * discrete amounts of time, like a write() or unlink().
279 * We must keep track of when those operations start
280 * (for permission checks) and when they end, so that
281 * we can determine when writes are able to occur to
282 * a filesystem.
283 */
284/**
285 * mnt_want_write - get write access to a mount
83adc753 286 * @m: the mount on which to take a write
8366025e
DH
287 *
288 * This tells the low-level filesystem that a write is
289 * about to be performed to it, and makes sure that
290 * writes are allowed before returning success. When
291 * the write operation is finished, mnt_drop_write()
292 * must be called. This is effectively a refcount.
293 */
83adc753 294int mnt_want_write(struct vfsmount *m)
8366025e 295{
83adc753 296 struct mount *mnt = real_mount(m);
3d733633 297 int ret = 0;
3d733633 298
d3ef3d73 299 preempt_disable();
c6653a83 300 mnt_inc_writers(mnt);
d3ef3d73 301 /*
c6653a83 302 * The store to mnt_inc_writers must be visible before we pass
d3ef3d73 303 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
304 * incremented count after it has set MNT_WRITE_HOLD.
305 */
306 smp_mb();
83adc753 307 while (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
d3ef3d73 308 cpu_relax();
309 /*
310 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
311 * be set to match its requirements. So we must not load that until
312 * MNT_WRITE_HOLD is cleared.
313 */
314 smp_rmb();
83adc753 315 if (__mnt_is_readonly(m)) {
c6653a83 316 mnt_dec_writers(mnt);
3d733633
DH
317 ret = -EROFS;
318 goto out;
319 }
3d733633 320out:
d3ef3d73 321 preempt_enable();
3d733633 322 return ret;
8366025e
DH
323}
324EXPORT_SYMBOL_GPL(mnt_want_write);
325
96029c4e 326/**
327 * mnt_clone_write - get write access to a mount
328 * @mnt: the mount on which to take a write
329 *
330 * This is effectively like mnt_want_write, except
331 * it must only be used to take an extra write reference
332 * on a mountpoint that we already know has a write reference
333 * on it. This allows some optimisation.
334 *
335 * After finished, mnt_drop_write must be called as usual to
336 * drop the reference.
337 */
338int mnt_clone_write(struct vfsmount *mnt)
339{
340 /* superblock may be r/o */
341 if (__mnt_is_readonly(mnt))
342 return -EROFS;
343 preempt_disable();
83adc753 344 mnt_inc_writers(real_mount(mnt));
96029c4e 345 preempt_enable();
346 return 0;
347}
348EXPORT_SYMBOL_GPL(mnt_clone_write);
349
350/**
351 * mnt_want_write_file - get write access to a file's mount
352 * @file: the file who's mount on which to take a write
353 *
354 * This is like mnt_want_write, but it takes a file and can
355 * do some optimisations if the file is open for write already
356 */
357int mnt_want_write_file(struct file *file)
358{
2d8dd38a
OH
359 struct inode *inode = file->f_dentry->d_inode;
360 if (!(file->f_mode & FMODE_WRITE) || special_file(inode->i_mode))
96029c4e 361 return mnt_want_write(file->f_path.mnt);
362 else
363 return mnt_clone_write(file->f_path.mnt);
364}
365EXPORT_SYMBOL_GPL(mnt_want_write_file);
366
8366025e
DH
367/**
368 * mnt_drop_write - give up write access to a mount
369 * @mnt: the mount on which to give up write access
370 *
371 * Tells the low-level filesystem that we are done
372 * performing writes to it. Must be matched with
373 * mnt_want_write() call above.
374 */
375void mnt_drop_write(struct vfsmount *mnt)
376{
d3ef3d73 377 preempt_disable();
83adc753 378 mnt_dec_writers(real_mount(mnt));
d3ef3d73 379 preempt_enable();
8366025e
DH
380}
381EXPORT_SYMBOL_GPL(mnt_drop_write);
382
2a79f17e
AV
383void mnt_drop_write_file(struct file *file)
384{
385 mnt_drop_write(file->f_path.mnt);
386}
387EXPORT_SYMBOL(mnt_drop_write_file);
388
83adc753 389static int mnt_make_readonly(struct mount *mnt)
8366025e 390{
3d733633
DH
391 int ret = 0;
392
99b7db7b 393 br_write_lock(vfsmount_lock);
83adc753 394 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
3d733633 395 /*
d3ef3d73 396 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
397 * should be visible before we do.
3d733633 398 */
d3ef3d73 399 smp_mb();
400
3d733633 401 /*
d3ef3d73 402 * With writers on hold, if this value is zero, then there are
403 * definitely no active writers (although held writers may subsequently
404 * increment the count, they'll have to wait, and decrement it after
405 * seeing MNT_READONLY).
406 *
407 * It is OK to have counter incremented on one CPU and decremented on
408 * another: the sum will add up correctly. The danger would be when we
409 * sum up each counter, if we read a counter before it is incremented,
410 * but then read another CPU's count which it has been subsequently
411 * decremented from -- we would see more decrements than we should.
412 * MNT_WRITE_HOLD protects against this scenario, because
413 * mnt_want_write first increments count, then smp_mb, then spins on
414 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
415 * we're counting up here.
3d733633 416 */
c6653a83 417 if (mnt_get_writers(mnt) > 0)
d3ef3d73 418 ret = -EBUSY;
419 else
83adc753 420 mnt->mnt.mnt_flags |= MNT_READONLY;
d3ef3d73 421 /*
422 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
423 * that become unheld will see MNT_READONLY.
424 */
425 smp_wmb();
83adc753 426 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
99b7db7b 427 br_write_unlock(vfsmount_lock);
3d733633 428 return ret;
8366025e 429}
8366025e 430
83adc753 431static void __mnt_unmake_readonly(struct mount *mnt)
2e4b7fcd 432{
99b7db7b 433 br_write_lock(vfsmount_lock);
83adc753 434 mnt->mnt.mnt_flags &= ~MNT_READONLY;
99b7db7b 435 br_write_unlock(vfsmount_lock);
2e4b7fcd
DH
436}
437
b105e270 438static void free_vfsmnt(struct mount *mnt)
1da177e4 439{
52ba1621 440 kfree(mnt->mnt_devname);
73cd49ec 441 mnt_free_id(mnt);
d3ef3d73 442#ifdef CONFIG_SMP
68e8a9fe 443 free_percpu(mnt->mnt_pcp);
d3ef3d73 444#endif
b105e270 445 kmem_cache_free(mnt_cache, mnt);
1da177e4
LT
446}
447
448/*
a05964f3
RP
449 * find the first or last mount at @dentry on vfsmount @mnt depending on
450 * @dir. If @dir is set return the first mount else return the last mount.
99b7db7b 451 * vfsmount_lock must be held for read or write.
1da177e4 452 */
c7105365 453struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry,
a05964f3 454 int dir)
1da177e4 455{
b58fed8b
RP
456 struct list_head *head = mount_hashtable + hash(mnt, dentry);
457 struct list_head *tmp = head;
c7105365 458 struct mount *p, *found = NULL;
1da177e4 459
1da177e4 460 for (;;) {
a05964f3 461 tmp = dir ? tmp->next : tmp->prev;
1da177e4
LT
462 p = NULL;
463 if (tmp == head)
464 break;
1b8e5564 465 p = list_entry(tmp, struct mount, mnt_hash);
a73324da 466 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry) {
a05964f3 467 found = p;
1da177e4
LT
468 break;
469 }
470 }
1da177e4
LT
471 return found;
472}
473
a05964f3
RP
474/*
475 * lookup_mnt increments the ref count before returning
476 * the vfsmount struct.
477 */
1c755af4 478struct vfsmount *lookup_mnt(struct path *path)
a05964f3 479{
c7105365 480 struct mount *child_mnt;
99b7db7b
NP
481
482 br_read_lock(vfsmount_lock);
c7105365
AV
483 child_mnt = __lookup_mnt(path->mnt, path->dentry, 1);
484 if (child_mnt) {
485 mnt_add_count(child_mnt, 1);
486 br_read_unlock(vfsmount_lock);
487 return &child_mnt->mnt;
488 } else {
489 br_read_unlock(vfsmount_lock);
490 return NULL;
491 }
a05964f3
RP
492}
493
143c8c91 494static inline int check_mnt(struct mount *mnt)
1da177e4 495{
6b3286ed 496 return mnt->mnt_ns == current->nsproxy->mnt_ns;
1da177e4
LT
497}
498
99b7db7b
NP
499/*
500 * vfsmount lock must be held for write
501 */
6b3286ed 502static void touch_mnt_namespace(struct mnt_namespace *ns)
5addc5dd
AV
503{
504 if (ns) {
505 ns->event = ++event;
506 wake_up_interruptible(&ns->poll);
507 }
508}
509
99b7db7b
NP
510/*
511 * vfsmount lock must be held for write
512 */
6b3286ed 513static void __touch_mnt_namespace(struct mnt_namespace *ns)
5addc5dd
AV
514{
515 if (ns && ns->event != event) {
516 ns->event = event;
517 wake_up_interruptible(&ns->poll);
518 }
519}
520
5f57cbcc
NP
521/*
522 * Clear dentry's mounted state if it has no remaining mounts.
523 * vfsmount_lock must be held for write.
524 */
aa0a4cf0 525static void dentry_reset_mounted(struct dentry *dentry)
5f57cbcc
NP
526{
527 unsigned u;
528
529 for (u = 0; u < HASH_SIZE; u++) {
d5e50f74 530 struct mount *p;
5f57cbcc 531
1b8e5564 532 list_for_each_entry(p, &mount_hashtable[u], mnt_hash) {
a73324da 533 if (p->mnt_mountpoint == dentry)
5f57cbcc
NP
534 return;
535 }
536 }
537 spin_lock(&dentry->d_lock);
538 dentry->d_flags &= ~DCACHE_MOUNTED;
539 spin_unlock(&dentry->d_lock);
540}
541
99b7db7b
NP
542/*
543 * vfsmount lock must be held for write
544 */
419148da
AV
545static void detach_mnt(struct mount *mnt, struct path *old_path)
546{
a73324da 547 old_path->dentry = mnt->mnt_mountpoint;
0714a533
AV
548 old_path->mnt = &mnt->mnt_parent->mnt;
549 mnt->mnt_parent = mnt;
a73324da 550 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
6b41d536 551 list_del_init(&mnt->mnt_child);
1b8e5564 552 list_del_init(&mnt->mnt_hash);
aa0a4cf0 553 dentry_reset_mounted(old_path->dentry);
1da177e4
LT
554}
555
99b7db7b
NP
556/*
557 * vfsmount lock must be held for write
558 */
14cf1fa8 559void mnt_set_mountpoint(struct mount *mnt, struct dentry *dentry,
44d964d6 560 struct mount *child_mnt)
b90fa9ae 561{
3a2393d7 562 mnt_add_count(mnt, 1); /* essentially, that's mntget */
a73324da 563 child_mnt->mnt_mountpoint = dget(dentry);
3a2393d7 564 child_mnt->mnt_parent = mnt;
5f57cbcc
NP
565 spin_lock(&dentry->d_lock);
566 dentry->d_flags |= DCACHE_MOUNTED;
567 spin_unlock(&dentry->d_lock);
b90fa9ae
RP
568}
569
99b7db7b
NP
570/*
571 * vfsmount lock must be held for write
572 */
419148da 573static void attach_mnt(struct mount *mnt, struct path *path)
1da177e4 574{
14cf1fa8 575 mnt_set_mountpoint(real_mount(path->mnt), path->dentry, mnt);
1b8e5564 576 list_add_tail(&mnt->mnt_hash, mount_hashtable +
1a390689 577 hash(path->mnt, path->dentry));
6b41d536 578 list_add_tail(&mnt->mnt_child, &real_mount(path->mnt)->mnt_mounts);
b90fa9ae
RP
579}
580
83adc753 581static inline void __mnt_make_longterm(struct mount *mnt)
7e3d0eb0
AV
582{
583#ifdef CONFIG_SMP
68e8a9fe 584 atomic_inc(&mnt->mnt_longterm);
7e3d0eb0
AV
585#endif
586}
587
588/* needs vfsmount lock for write */
83adc753 589static inline void __mnt_make_shortterm(struct mount *mnt)
7e3d0eb0
AV
590{
591#ifdef CONFIG_SMP
68e8a9fe 592 atomic_dec(&mnt->mnt_longterm);
7e3d0eb0
AV
593#endif
594}
595
b90fa9ae 596/*
99b7db7b 597 * vfsmount lock must be held for write
b90fa9ae 598 */
4b2619a5 599static void commit_tree(struct mount *mnt)
b90fa9ae 600{
0714a533 601 struct mount *parent = mnt->mnt_parent;
83adc753 602 struct mount *m;
b90fa9ae 603 LIST_HEAD(head);
143c8c91 604 struct mnt_namespace *n = parent->mnt_ns;
b90fa9ae 605
0714a533 606 BUG_ON(parent == mnt);
b90fa9ae 607
1a4eeaf2
AV
608 list_add_tail(&head, &mnt->mnt_list);
609 list_for_each_entry(m, &head, mnt_list) {
143c8c91 610 m->mnt_ns = n;
7e3d0eb0 611 __mnt_make_longterm(m);
f03c6599
AV
612 }
613
b90fa9ae
RP
614 list_splice(&head, n->list.prev);
615
1b8e5564 616 list_add_tail(&mnt->mnt_hash, mount_hashtable +
a73324da 617 hash(&parent->mnt, mnt->mnt_mountpoint));
6b41d536 618 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
6b3286ed 619 touch_mnt_namespace(n);
1da177e4
LT
620}
621
909b0a88 622static struct mount *next_mnt(struct mount *p, struct mount *root)
1da177e4 623{
6b41d536
AV
624 struct list_head *next = p->mnt_mounts.next;
625 if (next == &p->mnt_mounts) {
1da177e4 626 while (1) {
909b0a88 627 if (p == root)
1da177e4 628 return NULL;
6b41d536
AV
629 next = p->mnt_child.next;
630 if (next != &p->mnt_parent->mnt_mounts)
1da177e4 631 break;
0714a533 632 p = p->mnt_parent;
1da177e4
LT
633 }
634 }
6b41d536 635 return list_entry(next, struct mount, mnt_child);
1da177e4
LT
636}
637
315fc83e 638static struct mount *skip_mnt_tree(struct mount *p)
9676f0c6 639{
6b41d536
AV
640 struct list_head *prev = p->mnt_mounts.prev;
641 while (prev != &p->mnt_mounts) {
642 p = list_entry(prev, struct mount, mnt_child);
643 prev = p->mnt_mounts.prev;
9676f0c6
RP
644 }
645 return p;
646}
647
9d412a43
AV
648struct vfsmount *
649vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
650{
b105e270 651 struct mount *mnt;
9d412a43
AV
652 struct dentry *root;
653
654 if (!type)
655 return ERR_PTR(-ENODEV);
656
657 mnt = alloc_vfsmnt(name);
658 if (!mnt)
659 return ERR_PTR(-ENOMEM);
660
661 if (flags & MS_KERNMOUNT)
b105e270 662 mnt->mnt.mnt_flags = MNT_INTERNAL;
9d412a43
AV
663
664 root = mount_fs(type, flags, name, data);
665 if (IS_ERR(root)) {
666 free_vfsmnt(mnt);
667 return ERR_CAST(root);
668 }
669
b105e270
AV
670 mnt->mnt.mnt_root = root;
671 mnt->mnt.mnt_sb = root->d_sb;
a73324da 672 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
0714a533 673 mnt->mnt_parent = mnt;
b105e270 674 return &mnt->mnt;
9d412a43
AV
675}
676EXPORT_SYMBOL_GPL(vfs_kern_mount);
677
87129cc0 678static struct mount *clone_mnt(struct mount *old, struct dentry *root,
36341f64 679 int flag)
1da177e4 680{
87129cc0 681 struct super_block *sb = old->mnt.mnt_sb;
52ba1621 682 struct mount *mnt = alloc_vfsmnt(old->mnt_devname);
1da177e4
LT
683
684 if (mnt) {
719f5d7f 685 if (flag & (CL_SLAVE | CL_PRIVATE))
15169fe7 686 mnt->mnt_group_id = 0; /* not a peer of original */
719f5d7f 687 else
15169fe7 688 mnt->mnt_group_id = old->mnt_group_id;
719f5d7f 689
15169fe7 690 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
b105e270 691 int err = mnt_alloc_group_id(mnt);
719f5d7f
MS
692 if (err)
693 goto out_free;
694 }
695
87129cc0 696 mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~MNT_WRITE_HOLD;
1da177e4 697 atomic_inc(&sb->s_active);
b105e270
AV
698 mnt->mnt.mnt_sb = sb;
699 mnt->mnt.mnt_root = dget(root);
a73324da 700 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
0714a533 701 mnt->mnt_parent = mnt;
b90fa9ae 702
5afe0022 703 if (flag & CL_SLAVE) {
6776db3d 704 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
32301920 705 mnt->mnt_master = old;
fc7be130 706 CLEAR_MNT_SHARED(mnt);
8aec0809 707 } else if (!(flag & CL_PRIVATE)) {
fc7be130 708 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
6776db3d 709 list_add(&mnt->mnt_share, &old->mnt_share);
d10e8def 710 if (IS_MNT_SLAVE(old))
6776db3d 711 list_add(&mnt->mnt_slave, &old->mnt_slave);
d10e8def 712 mnt->mnt_master = old->mnt_master;
5afe0022 713 }
b90fa9ae 714 if (flag & CL_MAKE_SHARED)
0f0afb1d 715 set_mnt_shared(mnt);
1da177e4
LT
716
717 /* stick the duplicate mount on the same expiry list
718 * as the original if that was on one */
36341f64 719 if (flag & CL_EXPIRE) {
6776db3d
AV
720 if (!list_empty(&old->mnt_expire))
721 list_add(&mnt->mnt_expire, &old->mnt_expire);
36341f64 722 }
1da177e4 723 }
cb338d06 724 return mnt;
719f5d7f
MS
725
726 out_free:
727 free_vfsmnt(mnt);
728 return NULL;
1da177e4
LT
729}
730
83adc753 731static inline void mntfree(struct mount *mnt)
1da177e4 732{
83adc753
AV
733 struct vfsmount *m = &mnt->mnt;
734 struct super_block *sb = m->mnt_sb;
b3e19d92 735
3d733633
DH
736 /*
737 * This probably indicates that somebody messed
738 * up a mnt_want/drop_write() pair. If this
739 * happens, the filesystem was probably unable
740 * to make r/w->r/o transitions.
741 */
d3ef3d73 742 /*
b3e19d92
NP
743 * The locking used to deal with mnt_count decrement provides barriers,
744 * so mnt_get_writers() below is safe.
d3ef3d73 745 */
c6653a83 746 WARN_ON(mnt_get_writers(mnt));
83adc753
AV
747 fsnotify_vfsmount_delete(m);
748 dput(m->mnt_root);
749 free_vfsmnt(mnt);
1da177e4
LT
750 deactivate_super(sb);
751}
752
900148dc 753static void mntput_no_expire(struct mount *mnt)
b3e19d92 754{
b3e19d92 755put_again:
f03c6599
AV
756#ifdef CONFIG_SMP
757 br_read_lock(vfsmount_lock);
68e8a9fe 758 if (likely(atomic_read(&mnt->mnt_longterm))) {
aa9c0e07 759 mnt_add_count(mnt, -1);
b3e19d92 760 br_read_unlock(vfsmount_lock);
f03c6599 761 return;
b3e19d92 762 }
f03c6599 763 br_read_unlock(vfsmount_lock);
b3e19d92 764
99b7db7b 765 br_write_lock(vfsmount_lock);
aa9c0e07 766 mnt_add_count(mnt, -1);
b3e19d92 767 if (mnt_get_count(mnt)) {
99b7db7b
NP
768 br_write_unlock(vfsmount_lock);
769 return;
770 }
b3e19d92 771#else
aa9c0e07 772 mnt_add_count(mnt, -1);
b3e19d92 773 if (likely(mnt_get_count(mnt)))
99b7db7b 774 return;
b3e19d92 775 br_write_lock(vfsmount_lock);
f03c6599 776#endif
863d684f
AV
777 if (unlikely(mnt->mnt_pinned)) {
778 mnt_add_count(mnt, mnt->mnt_pinned + 1);
779 mnt->mnt_pinned = 0;
b3e19d92 780 br_write_unlock(vfsmount_lock);
900148dc 781 acct_auto_close_mnt(&mnt->mnt);
b3e19d92 782 goto put_again;
7b7b1ace 783 }
99b7db7b 784 br_write_unlock(vfsmount_lock);
b3e19d92
NP
785 mntfree(mnt);
786}
b3e19d92
NP
787
788void mntput(struct vfsmount *mnt)
789{
790 if (mnt) {
863d684f 791 struct mount *m = real_mount(mnt);
b3e19d92 792 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
863d684f
AV
793 if (unlikely(m->mnt_expiry_mark))
794 m->mnt_expiry_mark = 0;
795 mntput_no_expire(m);
b3e19d92
NP
796 }
797}
798EXPORT_SYMBOL(mntput);
799
800struct vfsmount *mntget(struct vfsmount *mnt)
801{
802 if (mnt)
83adc753 803 mnt_add_count(real_mount(mnt), 1);
b3e19d92
NP
804 return mnt;
805}
806EXPORT_SYMBOL(mntget);
807
7b7b1ace
AV
808void mnt_pin(struct vfsmount *mnt)
809{
99b7db7b 810 br_write_lock(vfsmount_lock);
863d684f 811 real_mount(mnt)->mnt_pinned++;
99b7db7b 812 br_write_unlock(vfsmount_lock);
7b7b1ace 813}
7b7b1ace
AV
814EXPORT_SYMBOL(mnt_pin);
815
863d684f 816void mnt_unpin(struct vfsmount *m)
7b7b1ace 817{
863d684f 818 struct mount *mnt = real_mount(m);
99b7db7b 819 br_write_lock(vfsmount_lock);
7b7b1ace 820 if (mnt->mnt_pinned) {
863d684f 821 mnt_add_count(mnt, 1);
7b7b1ace
AV
822 mnt->mnt_pinned--;
823 }
99b7db7b 824 br_write_unlock(vfsmount_lock);
7b7b1ace 825}
7b7b1ace 826EXPORT_SYMBOL(mnt_unpin);
1da177e4 827
b3b304a2
MS
828static inline void mangle(struct seq_file *m, const char *s)
829{
830 seq_escape(m, s, " \t\n\\");
831}
832
833/*
834 * Simple .show_options callback for filesystems which don't want to
835 * implement more complex mount option showing.
836 *
837 * See also save_mount_options().
838 */
34c80b1d 839int generic_show_options(struct seq_file *m, struct dentry *root)
b3b304a2 840{
2a32cebd
AV
841 const char *options;
842
843 rcu_read_lock();
34c80b1d 844 options = rcu_dereference(root->d_sb->s_options);
b3b304a2
MS
845
846 if (options != NULL && options[0]) {
847 seq_putc(m, ',');
848 mangle(m, options);
849 }
2a32cebd 850 rcu_read_unlock();
b3b304a2
MS
851
852 return 0;
853}
854EXPORT_SYMBOL(generic_show_options);
855
856/*
857 * If filesystem uses generic_show_options(), this function should be
858 * called from the fill_super() callback.
859 *
860 * The .remount_fs callback usually needs to be handled in a special
861 * way, to make sure, that previous options are not overwritten if the
862 * remount fails.
863 *
864 * Also note, that if the filesystem's .remount_fs function doesn't
865 * reset all options to their default value, but changes only newly
866 * given options, then the displayed options will not reflect reality
867 * any more.
868 */
869void save_mount_options(struct super_block *sb, char *options)
870{
2a32cebd
AV
871 BUG_ON(sb->s_options);
872 rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
b3b304a2
MS
873}
874EXPORT_SYMBOL(save_mount_options);
875
2a32cebd
AV
876void replace_mount_options(struct super_block *sb, char *options)
877{
878 char *old = sb->s_options;
879 rcu_assign_pointer(sb->s_options, options);
880 if (old) {
881 synchronize_rcu();
882 kfree(old);
883 }
884}
885EXPORT_SYMBOL(replace_mount_options);
886
a1a2c409 887#ifdef CONFIG_PROC_FS
0226f492 888/* iterator; we want it to have access to namespace_sem, thus here... */
1da177e4
LT
889static void *m_start(struct seq_file *m, loff_t *pos)
890{
0226f492 891 struct proc_mounts *p = container_of(m, struct proc_mounts, m);
1da177e4 892
390c6843 893 down_read(&namespace_sem);
a1a2c409 894 return seq_list_start(&p->ns->list, *pos);
1da177e4
LT
895}
896
897static void *m_next(struct seq_file *m, void *v, loff_t *pos)
898{
0226f492 899 struct proc_mounts *p = container_of(m, struct proc_mounts, m);
b0765fb8 900
a1a2c409 901 return seq_list_next(v, &p->ns->list, pos);
1da177e4
LT
902}
903
904static void m_stop(struct seq_file *m, void *v)
905{
390c6843 906 up_read(&namespace_sem);
1da177e4
LT
907}
908
0226f492 909static int m_show(struct seq_file *m, void *v)
2d4d4864 910{
0226f492 911 struct proc_mounts *p = container_of(m, struct proc_mounts, m);
1a4eeaf2 912 struct mount *r = list_entry(v, struct mount, mnt_list);
0226f492 913 return p->show(m, &r->mnt);
1da177e4
LT
914}
915
a1a2c409 916const struct seq_operations mounts_op = {
1da177e4
LT
917 .start = m_start,
918 .next = m_next,
919 .stop = m_stop,
0226f492 920 .show = m_show,
b4629fe2 921};
a1a2c409 922#endif /* CONFIG_PROC_FS */
b4629fe2 923
1da177e4
LT
924/**
925 * may_umount_tree - check if a mount tree is busy
926 * @mnt: root of mount tree
927 *
928 * This is called to check if a tree of mounts has any
929 * open files, pwds, chroots or sub mounts that are
930 * busy.
931 */
909b0a88 932int may_umount_tree(struct vfsmount *m)
1da177e4 933{
909b0a88 934 struct mount *mnt = real_mount(m);
36341f64
RP
935 int actual_refs = 0;
936 int minimum_refs = 0;
315fc83e 937 struct mount *p;
909b0a88 938 BUG_ON(!m);
1da177e4 939
b3e19d92
NP
940 /* write lock needed for mnt_get_count */
941 br_write_lock(vfsmount_lock);
909b0a88 942 for (p = mnt; p; p = next_mnt(p, mnt)) {
83adc753 943 actual_refs += mnt_get_count(p);
1da177e4 944 minimum_refs += 2;
1da177e4 945 }
b3e19d92 946 br_write_unlock(vfsmount_lock);
1da177e4
LT
947
948 if (actual_refs > minimum_refs)
e3474a8e 949 return 0;
1da177e4 950
e3474a8e 951 return 1;
1da177e4
LT
952}
953
954EXPORT_SYMBOL(may_umount_tree);
955
956/**
957 * may_umount - check if a mount point is busy
958 * @mnt: root of mount
959 *
960 * This is called to check if a mount point has any
961 * open files, pwds, chroots or sub mounts. If the
962 * mount has sub mounts this will return busy
963 * regardless of whether the sub mounts are busy.
964 *
965 * Doesn't take quota and stuff into account. IOW, in some cases it will
966 * give false negatives. The main reason why it's here is that we need
967 * a non-destructive way to look for easily umountable filesystems.
968 */
969int may_umount(struct vfsmount *mnt)
970{
e3474a8e 971 int ret = 1;
8ad08d8a 972 down_read(&namespace_sem);
b3e19d92 973 br_write_lock(vfsmount_lock);
1ab59738 974 if (propagate_mount_busy(real_mount(mnt), 2))
e3474a8e 975 ret = 0;
b3e19d92 976 br_write_unlock(vfsmount_lock);
8ad08d8a 977 up_read(&namespace_sem);
a05964f3 978 return ret;
1da177e4
LT
979}
980
981EXPORT_SYMBOL(may_umount);
982
b90fa9ae 983void release_mounts(struct list_head *head)
70fbcdf4 984{
d5e50f74 985 struct mount *mnt;
bf066c7d 986 while (!list_empty(head)) {
1b8e5564
AV
987 mnt = list_first_entry(head, struct mount, mnt_hash);
988 list_del_init(&mnt->mnt_hash);
676da58d 989 if (mnt_has_parent(mnt)) {
70fbcdf4 990 struct dentry *dentry;
863d684f 991 struct mount *m;
99b7db7b
NP
992
993 br_write_lock(vfsmount_lock);
a73324da 994 dentry = mnt->mnt_mountpoint;
863d684f 995 m = mnt->mnt_parent;
a73324da 996 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
0714a533 997 mnt->mnt_parent = mnt;
7c4b93d8 998 m->mnt_ghosts--;
99b7db7b 999 br_write_unlock(vfsmount_lock);
70fbcdf4 1000 dput(dentry);
863d684f 1001 mntput(&m->mnt);
70fbcdf4 1002 }
d5e50f74 1003 mntput(&mnt->mnt);
70fbcdf4
RP
1004 }
1005}
1006
99b7db7b
NP
1007/*
1008 * vfsmount lock must be held for write
1009 * namespace_sem must be held for write
1010 */
761d5c38 1011void umount_tree(struct mount *mnt, int propagate, struct list_head *kill)
1da177e4 1012{
7b8a53fd 1013 LIST_HEAD(tmp_list);
315fc83e 1014 struct mount *p;
1da177e4 1015
909b0a88 1016 for (p = mnt; p; p = next_mnt(p, mnt))
1b8e5564 1017 list_move(&p->mnt_hash, &tmp_list);
1da177e4 1018
a05964f3 1019 if (propagate)
7b8a53fd 1020 propagate_umount(&tmp_list);
a05964f3 1021
1b8e5564 1022 list_for_each_entry(p, &tmp_list, mnt_hash) {
6776db3d 1023 list_del_init(&p->mnt_expire);
1a4eeaf2 1024 list_del_init(&p->mnt_list);
143c8c91
AV
1025 __touch_mnt_namespace(p->mnt_ns);
1026 p->mnt_ns = NULL;
83adc753 1027 __mnt_make_shortterm(p);
6b41d536 1028 list_del_init(&p->mnt_child);
676da58d 1029 if (mnt_has_parent(p)) {
863d684f 1030 p->mnt_parent->mnt_ghosts++;
a73324da 1031 dentry_reset_mounted(p->mnt_mountpoint);
7c4b93d8 1032 }
0f0afb1d 1033 change_mnt_propagation(p, MS_PRIVATE);
1da177e4 1034 }
7b8a53fd 1035 list_splice(&tmp_list, kill);
1da177e4
LT
1036}
1037
692afc31 1038static void shrink_submounts(struct mount *mnt, struct list_head *umounts);
c35038be 1039
1ab59738 1040static int do_umount(struct mount *mnt, int flags)
1da177e4 1041{
1ab59738 1042 struct super_block *sb = mnt->mnt.mnt_sb;
1da177e4 1043 int retval;
70fbcdf4 1044 LIST_HEAD(umount_list);
1da177e4 1045
1ab59738 1046 retval = security_sb_umount(&mnt->mnt, flags);
1da177e4
LT
1047 if (retval)
1048 return retval;
1049
1050 /*
1051 * Allow userspace to request a mountpoint be expired rather than
1052 * unmounting unconditionally. Unmount only happens if:
1053 * (1) the mark is already set (the mark is cleared by mntput())
1054 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1055 */
1056 if (flags & MNT_EXPIRE) {
1ab59738 1057 if (&mnt->mnt == current->fs->root.mnt ||
1da177e4
LT
1058 flags & (MNT_FORCE | MNT_DETACH))
1059 return -EINVAL;
1060
b3e19d92
NP
1061 /*
1062 * probably don't strictly need the lock here if we examined
1063 * all race cases, but it's a slowpath.
1064 */
1065 br_write_lock(vfsmount_lock);
83adc753 1066 if (mnt_get_count(mnt) != 2) {
bf9faa2a 1067 br_write_unlock(vfsmount_lock);
1da177e4 1068 return -EBUSY;
b3e19d92
NP
1069 }
1070 br_write_unlock(vfsmount_lock);
1da177e4 1071
863d684f 1072 if (!xchg(&mnt->mnt_expiry_mark, 1))
1da177e4
LT
1073 return -EAGAIN;
1074 }
1075
1076 /*
1077 * If we may have to abort operations to get out of this
1078 * mount, and they will themselves hold resources we must
1079 * allow the fs to do things. In the Unix tradition of
1080 * 'Gee thats tricky lets do it in userspace' the umount_begin
1081 * might fail to complete on the first run through as other tasks
1082 * must return, and the like. Thats for the mount program to worry
1083 * about for the moment.
1084 */
1085
42faad99 1086 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
42faad99 1087 sb->s_op->umount_begin(sb);
42faad99 1088 }
1da177e4
LT
1089
1090 /*
1091 * No sense to grab the lock for this test, but test itself looks
1092 * somewhat bogus. Suggestions for better replacement?
1093 * Ho-hum... In principle, we might treat that as umount + switch
1094 * to rootfs. GC would eventually take care of the old vfsmount.
1095 * Actually it makes sense, especially if rootfs would contain a
1096 * /reboot - static binary that would close all descriptors and
1097 * call reboot(9). Then init(8) could umount root and exec /reboot.
1098 */
1ab59738 1099 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1da177e4
LT
1100 /*
1101 * Special case for "unmounting" root ...
1102 * we just try to remount it readonly.
1103 */
1104 down_write(&sb->s_umount);
4aa98cf7 1105 if (!(sb->s_flags & MS_RDONLY))
1da177e4 1106 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1da177e4
LT
1107 up_write(&sb->s_umount);
1108 return retval;
1109 }
1110
390c6843 1111 down_write(&namespace_sem);
99b7db7b 1112 br_write_lock(vfsmount_lock);
5addc5dd 1113 event++;
1da177e4 1114
c35038be 1115 if (!(flags & MNT_DETACH))
1ab59738 1116 shrink_submounts(mnt, &umount_list);
c35038be 1117
1da177e4 1118 retval = -EBUSY;
a05964f3 1119 if (flags & MNT_DETACH || !propagate_mount_busy(mnt, 2)) {
1a4eeaf2 1120 if (!list_empty(&mnt->mnt_list))
1ab59738 1121 umount_tree(mnt, 1, &umount_list);
1da177e4
LT
1122 retval = 0;
1123 }
99b7db7b 1124 br_write_unlock(vfsmount_lock);
390c6843 1125 up_write(&namespace_sem);
70fbcdf4 1126 release_mounts(&umount_list);
1da177e4
LT
1127 return retval;
1128}
1129
1130/*
1131 * Now umount can handle mount points as well as block devices.
1132 * This is important for filesystems which use unnamed block devices.
1133 *
1134 * We now support a flag for forced unmount like the other 'big iron'
1135 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1136 */
1137
bdc480e3 1138SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1da177e4 1139{
2d8f3038 1140 struct path path;
900148dc 1141 struct mount *mnt;
1da177e4 1142 int retval;
db1f05bb 1143 int lookup_flags = 0;
1da177e4 1144
db1f05bb
MS
1145 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1146 return -EINVAL;
1147
1148 if (!(flags & UMOUNT_NOFOLLOW))
1149 lookup_flags |= LOOKUP_FOLLOW;
1150
1151 retval = user_path_at(AT_FDCWD, name, lookup_flags, &path);
1da177e4
LT
1152 if (retval)
1153 goto out;
900148dc 1154 mnt = real_mount(path.mnt);
1da177e4 1155 retval = -EINVAL;
2d8f3038 1156 if (path.dentry != path.mnt->mnt_root)
1da177e4 1157 goto dput_and_out;
143c8c91 1158 if (!check_mnt(mnt))
1da177e4
LT
1159 goto dput_and_out;
1160
1161 retval = -EPERM;
1162 if (!capable(CAP_SYS_ADMIN))
1163 goto dput_and_out;
1164
900148dc 1165 retval = do_umount(mnt, flags);
1da177e4 1166dput_and_out:
429731b1 1167 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
2d8f3038 1168 dput(path.dentry);
900148dc 1169 mntput_no_expire(mnt);
1da177e4
LT
1170out:
1171 return retval;
1172}
1173
1174#ifdef __ARCH_WANT_SYS_OLDUMOUNT
1175
1176/*
b58fed8b 1177 * The 2.0 compatible umount. No flags.
1da177e4 1178 */
bdc480e3 1179SYSCALL_DEFINE1(oldumount, char __user *, name)
1da177e4 1180{
b58fed8b 1181 return sys_umount(name, 0);
1da177e4
LT
1182}
1183
1184#endif
1185
2d92ab3c 1186static int mount_is_safe(struct path *path)
1da177e4
LT
1187{
1188 if (capable(CAP_SYS_ADMIN))
1189 return 0;
1190 return -EPERM;
1191#ifdef notyet
2d92ab3c 1192 if (S_ISLNK(path->dentry->d_inode->i_mode))
1da177e4 1193 return -EPERM;
2d92ab3c 1194 if (path->dentry->d_inode->i_mode & S_ISVTX) {
da9592ed 1195 if (current_uid() != path->dentry->d_inode->i_uid)
1da177e4
LT
1196 return -EPERM;
1197 }
2d92ab3c 1198 if (inode_permission(path->dentry->d_inode, MAY_WRITE))
1da177e4
LT
1199 return -EPERM;
1200 return 0;
1201#endif
1202}
1203
87129cc0 1204struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
36341f64 1205 int flag)
1da177e4 1206{
a73324da 1207 struct mount *res, *p, *q, *r;
1a390689 1208 struct path path;
1da177e4 1209
fc7be130 1210 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(mnt))
9676f0c6
RP
1211 return NULL;
1212
36341f64 1213 res = q = clone_mnt(mnt, dentry, flag);
1da177e4
LT
1214 if (!q)
1215 goto Enomem;
a73324da 1216 q->mnt_mountpoint = mnt->mnt_mountpoint;
1da177e4
LT
1217
1218 p = mnt;
6b41d536 1219 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
315fc83e 1220 struct mount *s;
7ec02ef1 1221 if (!is_subdir(r->mnt_mountpoint, dentry))
1da177e4
LT
1222 continue;
1223
909b0a88 1224 for (s = r; s; s = next_mnt(s, r)) {
fc7be130 1225 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(s)) {
9676f0c6
RP
1226 s = skip_mnt_tree(s);
1227 continue;
1228 }
0714a533
AV
1229 while (p != s->mnt_parent) {
1230 p = p->mnt_parent;
1231 q = q->mnt_parent;
1da177e4 1232 }
87129cc0 1233 p = s;
cb338d06 1234 path.mnt = &q->mnt;
a73324da 1235 path.dentry = p->mnt_mountpoint;
87129cc0 1236 q = clone_mnt(p, p->mnt.mnt_root, flag);
1da177e4
LT
1237 if (!q)
1238 goto Enomem;
99b7db7b 1239 br_write_lock(vfsmount_lock);
1a4eeaf2 1240 list_add_tail(&q->mnt_list, &res->mnt_list);
cb338d06 1241 attach_mnt(q, &path);
99b7db7b 1242 br_write_unlock(vfsmount_lock);
1da177e4
LT
1243 }
1244 }
1245 return res;
b58fed8b 1246Enomem:
1da177e4 1247 if (res) {
70fbcdf4 1248 LIST_HEAD(umount_list);
99b7db7b 1249 br_write_lock(vfsmount_lock);
761d5c38 1250 umount_tree(res, 0, &umount_list);
99b7db7b 1251 br_write_unlock(vfsmount_lock);
70fbcdf4 1252 release_mounts(&umount_list);
1da177e4
LT
1253 }
1254 return NULL;
1255}
1256
589ff870 1257struct vfsmount *collect_mounts(struct path *path)
8aec0809 1258{
cb338d06 1259 struct mount *tree;
1a60a280 1260 down_write(&namespace_sem);
87129cc0
AV
1261 tree = copy_tree(real_mount(path->mnt), path->dentry,
1262 CL_COPY_ALL | CL_PRIVATE);
1a60a280 1263 up_write(&namespace_sem);
cb338d06 1264 return tree ? &tree->mnt : NULL;
8aec0809
AV
1265}
1266
1267void drop_collected_mounts(struct vfsmount *mnt)
1268{
1269 LIST_HEAD(umount_list);
1a60a280 1270 down_write(&namespace_sem);
99b7db7b 1271 br_write_lock(vfsmount_lock);
761d5c38 1272 umount_tree(real_mount(mnt), 0, &umount_list);
99b7db7b 1273 br_write_unlock(vfsmount_lock);
1a60a280 1274 up_write(&namespace_sem);
8aec0809
AV
1275 release_mounts(&umount_list);
1276}
1277
1f707137
AV
1278int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1279 struct vfsmount *root)
1280{
1a4eeaf2 1281 struct mount *mnt;
1f707137
AV
1282 int res = f(root, arg);
1283 if (res)
1284 return res;
1a4eeaf2
AV
1285 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1286 res = f(&mnt->mnt, arg);
1f707137
AV
1287 if (res)
1288 return res;
1289 }
1290 return 0;
1291}
1292
4b8b21f4 1293static void cleanup_group_ids(struct mount *mnt, struct mount *end)
719f5d7f 1294{
315fc83e 1295 struct mount *p;
719f5d7f 1296
909b0a88 1297 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
fc7be130 1298 if (p->mnt_group_id && !IS_MNT_SHARED(p))
4b8b21f4 1299 mnt_release_group_id(p);
719f5d7f
MS
1300 }
1301}
1302
4b8b21f4 1303static int invent_group_ids(struct mount *mnt, bool recurse)
719f5d7f 1304{
315fc83e 1305 struct mount *p;
719f5d7f 1306
909b0a88 1307 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
fc7be130 1308 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
4b8b21f4 1309 int err = mnt_alloc_group_id(p);
719f5d7f 1310 if (err) {
4b8b21f4 1311 cleanup_group_ids(mnt, p);
719f5d7f
MS
1312 return err;
1313 }
1314 }
1315 }
1316
1317 return 0;
1318}
1319
b90fa9ae
RP
1320/*
1321 * @source_mnt : mount tree to be attached
21444403
RP
1322 * @nd : place the mount tree @source_mnt is attached
1323 * @parent_nd : if non-null, detach the source_mnt from its parent and
1324 * store the parent mount and mountpoint dentry.
1325 * (done when source_mnt is moved)
b90fa9ae
RP
1326 *
1327 * NOTE: in the table below explains the semantics when a source mount
1328 * of a given type is attached to a destination mount of a given type.
9676f0c6
RP
1329 * ---------------------------------------------------------------------------
1330 * | BIND MOUNT OPERATION |
1331 * |**************************************************************************
1332 * | source-->| shared | private | slave | unbindable |
1333 * | dest | | | | |
1334 * | | | | | | |
1335 * | v | | | | |
1336 * |**************************************************************************
1337 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1338 * | | | | | |
1339 * |non-shared| shared (+) | private | slave (*) | invalid |
1340 * ***************************************************************************
b90fa9ae
RP
1341 * A bind operation clones the source mount and mounts the clone on the
1342 * destination mount.
1343 *
1344 * (++) the cloned mount is propagated to all the mounts in the propagation
1345 * tree of the destination mount and the cloned mount is added to
1346 * the peer group of the source mount.
1347 * (+) the cloned mount is created under the destination mount and is marked
1348 * as shared. The cloned mount is added to the peer group of the source
1349 * mount.
5afe0022
RP
1350 * (+++) the mount is propagated to all the mounts in the propagation tree
1351 * of the destination mount and the cloned mount is made slave
1352 * of the same master as that of the source mount. The cloned mount
1353 * is marked as 'shared and slave'.
1354 * (*) the cloned mount is made a slave of the same master as that of the
1355 * source mount.
1356 *
9676f0c6
RP
1357 * ---------------------------------------------------------------------------
1358 * | MOVE MOUNT OPERATION |
1359 * |**************************************************************************
1360 * | source-->| shared | private | slave | unbindable |
1361 * | dest | | | | |
1362 * | | | | | | |
1363 * | v | | | | |
1364 * |**************************************************************************
1365 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
1366 * | | | | | |
1367 * |non-shared| shared (+*) | private | slave (*) | unbindable |
1368 * ***************************************************************************
5afe0022
RP
1369 *
1370 * (+) the mount is moved to the destination. And is then propagated to
1371 * all the mounts in the propagation tree of the destination mount.
21444403 1372 * (+*) the mount is moved to the destination.
5afe0022
RP
1373 * (+++) the mount is moved to the destination and is then propagated to
1374 * all the mounts belonging to the destination mount's propagation tree.
1375 * the mount is marked as 'shared and slave'.
1376 * (*) the mount continues to be a slave at the new location.
b90fa9ae
RP
1377 *
1378 * if the source mount is a tree, the operations explained above is
1379 * applied to each mount in the tree.
1380 * Must be called without spinlocks held, since this function can sleep
1381 * in allocations.
1382 */
0fb54e50 1383static int attach_recursive_mnt(struct mount *source_mnt,
1a390689 1384 struct path *path, struct path *parent_path)
b90fa9ae
RP
1385{
1386 LIST_HEAD(tree_list);
a8d56d8e 1387 struct mount *dest_mnt = real_mount(path->mnt);
1a390689 1388 struct dentry *dest_dentry = path->dentry;
315fc83e 1389 struct mount *child, *p;
719f5d7f 1390 int err;
b90fa9ae 1391
fc7be130 1392 if (IS_MNT_SHARED(dest_mnt)) {
0fb54e50 1393 err = invent_group_ids(source_mnt, true);
719f5d7f
MS
1394 if (err)
1395 goto out;
1396 }
a8d56d8e 1397 err = propagate_mnt(dest_mnt, dest_dentry, source_mnt, &tree_list);
719f5d7f
MS
1398 if (err)
1399 goto out_cleanup_ids;
b90fa9ae 1400
99b7db7b 1401 br_write_lock(vfsmount_lock);
df1a1ad2 1402
fc7be130 1403 if (IS_MNT_SHARED(dest_mnt)) {
909b0a88 1404 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
0f0afb1d 1405 set_mnt_shared(p);
b90fa9ae 1406 }
1a390689 1407 if (parent_path) {
0fb54e50
AV
1408 detach_mnt(source_mnt, parent_path);
1409 attach_mnt(source_mnt, path);
143c8c91 1410 touch_mnt_namespace(source_mnt->mnt_ns);
21444403 1411 } else {
14cf1fa8 1412 mnt_set_mountpoint(dest_mnt, dest_dentry, source_mnt);
0fb54e50 1413 commit_tree(source_mnt);
21444403 1414 }
b90fa9ae 1415
1b8e5564
AV
1416 list_for_each_entry_safe(child, p, &tree_list, mnt_hash) {
1417 list_del_init(&child->mnt_hash);
4b2619a5 1418 commit_tree(child);
b90fa9ae 1419 }
99b7db7b
NP
1420 br_write_unlock(vfsmount_lock);
1421
b90fa9ae 1422 return 0;
719f5d7f
MS
1423
1424 out_cleanup_ids:
fc7be130 1425 if (IS_MNT_SHARED(dest_mnt))
0fb54e50 1426 cleanup_group_ids(source_mnt, NULL);
719f5d7f
MS
1427 out:
1428 return err;
b90fa9ae
RP
1429}
1430
b12cea91
AV
1431static int lock_mount(struct path *path)
1432{
1433 struct vfsmount *mnt;
1434retry:
1435 mutex_lock(&path->dentry->d_inode->i_mutex);
1436 if (unlikely(cant_mount(path->dentry))) {
1437 mutex_unlock(&path->dentry->d_inode->i_mutex);
1438 return -ENOENT;
1439 }
1440 down_write(&namespace_sem);
1441 mnt = lookup_mnt(path);
1442 if (likely(!mnt))
1443 return 0;
1444 up_write(&namespace_sem);
1445 mutex_unlock(&path->dentry->d_inode->i_mutex);
1446 path_put(path);
1447 path->mnt = mnt;
1448 path->dentry = dget(mnt->mnt_root);
1449 goto retry;
1450}
1451
1452static void unlock_mount(struct path *path)
1453{
1454 up_write(&namespace_sem);
1455 mutex_unlock(&path->dentry->d_inode->i_mutex);
1456}
1457
95bc5f25 1458static int graft_tree(struct mount *mnt, struct path *path)
1da177e4 1459{
95bc5f25 1460 if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER)
1da177e4
LT
1461 return -EINVAL;
1462
8c3ee42e 1463 if (S_ISDIR(path->dentry->d_inode->i_mode) !=
95bc5f25 1464 S_ISDIR(mnt->mnt.mnt_root->d_inode->i_mode))
1da177e4
LT
1465 return -ENOTDIR;
1466
b12cea91
AV
1467 if (d_unlinked(path->dentry))
1468 return -ENOENT;
1da177e4 1469
95bc5f25 1470 return attach_recursive_mnt(mnt, path, NULL);
1da177e4
LT
1471}
1472
7a2e8a8f
VA
1473/*
1474 * Sanity check the flags to change_mnt_propagation.
1475 */
1476
1477static int flags_to_propagation_type(int flags)
1478{
7c6e984d 1479 int type = flags & ~(MS_REC | MS_SILENT);
7a2e8a8f
VA
1480
1481 /* Fail if any non-propagation flags are set */
1482 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
1483 return 0;
1484 /* Only one propagation flag should be set */
1485 if (!is_power_of_2(type))
1486 return 0;
1487 return type;
1488}
1489
07b20889
RP
1490/*
1491 * recursively change the type of the mountpoint.
1492 */
0a0d8a46 1493static int do_change_type(struct path *path, int flag)
07b20889 1494{
315fc83e 1495 struct mount *m;
4b8b21f4 1496 struct mount *mnt = real_mount(path->mnt);
07b20889 1497 int recurse = flag & MS_REC;
7a2e8a8f 1498 int type;
719f5d7f 1499 int err = 0;
07b20889 1500
ee6f9582
MS
1501 if (!capable(CAP_SYS_ADMIN))
1502 return -EPERM;
1503
2d92ab3c 1504 if (path->dentry != path->mnt->mnt_root)
07b20889
RP
1505 return -EINVAL;
1506
7a2e8a8f
VA
1507 type = flags_to_propagation_type(flag);
1508 if (!type)
1509 return -EINVAL;
1510
07b20889 1511 down_write(&namespace_sem);
719f5d7f
MS
1512 if (type == MS_SHARED) {
1513 err = invent_group_ids(mnt, recurse);
1514 if (err)
1515 goto out_unlock;
1516 }
1517
99b7db7b 1518 br_write_lock(vfsmount_lock);
909b0a88 1519 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
0f0afb1d 1520 change_mnt_propagation(m, type);
99b7db7b 1521 br_write_unlock(vfsmount_lock);
719f5d7f
MS
1522
1523 out_unlock:
07b20889 1524 up_write(&namespace_sem);
719f5d7f 1525 return err;
07b20889
RP
1526}
1527
1da177e4
LT
1528/*
1529 * do loopback mount.
1530 */
0a0d8a46 1531static int do_loopback(struct path *path, char *old_name,
2dafe1c4 1532 int recurse)
1da177e4 1533{
b12cea91 1534 LIST_HEAD(umount_list);
2d92ab3c 1535 struct path old_path;
87129cc0 1536 struct mount *mnt = NULL, *old;
2d92ab3c 1537 int err = mount_is_safe(path);
1da177e4
LT
1538 if (err)
1539 return err;
1540 if (!old_name || !*old_name)
1541 return -EINVAL;
815d405c 1542 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
1da177e4
LT
1543 if (err)
1544 return err;
1545
b12cea91
AV
1546 err = lock_mount(path);
1547 if (err)
1548 goto out;
1549
87129cc0
AV
1550 old = real_mount(old_path.mnt);
1551
1da177e4 1552 err = -EINVAL;
fc7be130 1553 if (IS_MNT_UNBINDABLE(old))
b12cea91 1554 goto out2;
9676f0c6 1555
143c8c91 1556 if (!check_mnt(real_mount(path->mnt)) || !check_mnt(old))
b12cea91 1557 goto out2;
1da177e4 1558
ccd48bc7
AV
1559 err = -ENOMEM;
1560 if (recurse)
87129cc0 1561 mnt = copy_tree(old, old_path.dentry, 0);
ccd48bc7 1562 else
87129cc0 1563 mnt = clone_mnt(old, old_path.dentry, 0);
ccd48bc7
AV
1564
1565 if (!mnt)
b12cea91 1566 goto out2;
ccd48bc7 1567
95bc5f25 1568 err = graft_tree(mnt, path);
ccd48bc7 1569 if (err) {
99b7db7b 1570 br_write_lock(vfsmount_lock);
761d5c38 1571 umount_tree(mnt, 0, &umount_list);
99b7db7b 1572 br_write_unlock(vfsmount_lock);
5b83d2c5 1573 }
b12cea91
AV
1574out2:
1575 unlock_mount(path);
1576 release_mounts(&umount_list);
ccd48bc7 1577out:
2d92ab3c 1578 path_put(&old_path);
1da177e4
LT
1579 return err;
1580}
1581
2e4b7fcd
DH
1582static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
1583{
1584 int error = 0;
1585 int readonly_request = 0;
1586
1587 if (ms_flags & MS_RDONLY)
1588 readonly_request = 1;
1589 if (readonly_request == __mnt_is_readonly(mnt))
1590 return 0;
1591
1592 if (readonly_request)
83adc753 1593 error = mnt_make_readonly(real_mount(mnt));
2e4b7fcd 1594 else
83adc753 1595 __mnt_unmake_readonly(real_mount(mnt));
2e4b7fcd
DH
1596 return error;
1597}
1598
1da177e4
LT
1599/*
1600 * change filesystem flags. dir should be a physical root of filesystem.
1601 * If you've mounted a non-root directory somewhere and want to do remount
1602 * on it - tough luck.
1603 */
0a0d8a46 1604static int do_remount(struct path *path, int flags, int mnt_flags,
1da177e4
LT
1605 void *data)
1606{
1607 int err;
2d92ab3c 1608 struct super_block *sb = path->mnt->mnt_sb;
143c8c91 1609 struct mount *mnt = real_mount(path->mnt);
1da177e4
LT
1610
1611 if (!capable(CAP_SYS_ADMIN))
1612 return -EPERM;
1613
143c8c91 1614 if (!check_mnt(mnt))
1da177e4
LT
1615 return -EINVAL;
1616
2d92ab3c 1617 if (path->dentry != path->mnt->mnt_root)
1da177e4
LT
1618 return -EINVAL;
1619
ff36fe2c
EP
1620 err = security_sb_remount(sb, data);
1621 if (err)
1622 return err;
1623
1da177e4 1624 down_write(&sb->s_umount);
2e4b7fcd 1625 if (flags & MS_BIND)
2d92ab3c 1626 err = change_mount_flags(path->mnt, flags);
4aa98cf7 1627 else
2e4b7fcd 1628 err = do_remount_sb(sb, flags, data, 0);
7b43a79f 1629 if (!err) {
99b7db7b 1630 br_write_lock(vfsmount_lock);
143c8c91
AV
1631 mnt_flags |= mnt->mnt.mnt_flags & MNT_PROPAGATION_MASK;
1632 mnt->mnt.mnt_flags = mnt_flags;
99b7db7b 1633 br_write_unlock(vfsmount_lock);
7b43a79f 1634 }
1da177e4 1635 up_write(&sb->s_umount);
0e55a7cc 1636 if (!err) {
99b7db7b 1637 br_write_lock(vfsmount_lock);
143c8c91 1638 touch_mnt_namespace(mnt->mnt_ns);
99b7db7b 1639 br_write_unlock(vfsmount_lock);
0e55a7cc 1640 }
1da177e4
LT
1641 return err;
1642}
1643
cbbe362c 1644static inline int tree_contains_unbindable(struct mount *mnt)
9676f0c6 1645{
315fc83e 1646 struct mount *p;
909b0a88 1647 for (p = mnt; p; p = next_mnt(p, mnt)) {
fc7be130 1648 if (IS_MNT_UNBINDABLE(p))
9676f0c6
RP
1649 return 1;
1650 }
1651 return 0;
1652}
1653
0a0d8a46 1654static int do_move_mount(struct path *path, char *old_name)
1da177e4 1655{
2d92ab3c 1656 struct path old_path, parent_path;
676da58d 1657 struct mount *p;
0fb54e50 1658 struct mount *old;
1da177e4
LT
1659 int err = 0;
1660 if (!capable(CAP_SYS_ADMIN))
1661 return -EPERM;
1662 if (!old_name || !*old_name)
1663 return -EINVAL;
2d92ab3c 1664 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
1da177e4
LT
1665 if (err)
1666 return err;
1667
b12cea91 1668 err = lock_mount(path);
cc53ce53
DH
1669 if (err < 0)
1670 goto out;
1671
143c8c91 1672 old = real_mount(old_path.mnt);
fc7be130 1673 p = real_mount(path->mnt);
143c8c91 1674
1da177e4 1675 err = -EINVAL;
fc7be130 1676 if (!check_mnt(p) || !check_mnt(old))
1da177e4
LT
1677 goto out1;
1678
f3da392e 1679 if (d_unlinked(path->dentry))
21444403 1680 goto out1;
1da177e4
LT
1681
1682 err = -EINVAL;
2d92ab3c 1683 if (old_path.dentry != old_path.mnt->mnt_root)
21444403 1684 goto out1;
1da177e4 1685
676da58d 1686 if (!mnt_has_parent(old))
21444403 1687 goto out1;
1da177e4 1688
2d92ab3c
AV
1689 if (S_ISDIR(path->dentry->d_inode->i_mode) !=
1690 S_ISDIR(old_path.dentry->d_inode->i_mode))
21444403
RP
1691 goto out1;
1692 /*
1693 * Don't move a mount residing in a shared parent.
1694 */
fc7be130 1695 if (IS_MNT_SHARED(old->mnt_parent))
21444403 1696 goto out1;
9676f0c6
RP
1697 /*
1698 * Don't move a mount tree containing unbindable mounts to a destination
1699 * mount which is shared.
1700 */
fc7be130 1701 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
9676f0c6 1702 goto out1;
1da177e4 1703 err = -ELOOP;
fc7be130 1704 for (; mnt_has_parent(p); p = p->mnt_parent)
676da58d 1705 if (p == old)
21444403 1706 goto out1;
1da177e4 1707
0fb54e50 1708 err = attach_recursive_mnt(old, path, &parent_path);
4ac91378 1709 if (err)
21444403 1710 goto out1;
1da177e4
LT
1711
1712 /* if the mount is moved, it should no longer be expire
1713 * automatically */
6776db3d 1714 list_del_init(&old->mnt_expire);
1da177e4 1715out1:
b12cea91 1716 unlock_mount(path);
1da177e4 1717out:
1da177e4 1718 if (!err)
1a390689 1719 path_put(&parent_path);
2d92ab3c 1720 path_put(&old_path);
1da177e4
LT
1721 return err;
1722}
1723
9d412a43
AV
1724static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
1725{
1726 int err;
1727 const char *subtype = strchr(fstype, '.');
1728 if (subtype) {
1729 subtype++;
1730 err = -EINVAL;
1731 if (!subtype[0])
1732 goto err;
1733 } else
1734 subtype = "";
1735
1736 mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
1737 err = -ENOMEM;
1738 if (!mnt->mnt_sb->s_subtype)
1739 goto err;
1740 return mnt;
1741
1742 err:
1743 mntput(mnt);
1744 return ERR_PTR(err);
1745}
1746
79e801a9 1747static struct vfsmount *
9d412a43
AV
1748do_kern_mount(const char *fstype, int flags, const char *name, void *data)
1749{
1750 struct file_system_type *type = get_fs_type(fstype);
1751 struct vfsmount *mnt;
1752 if (!type)
1753 return ERR_PTR(-ENODEV);
1754 mnt = vfs_kern_mount(type, flags, name, data);
1755 if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
1756 !mnt->mnt_sb->s_subtype)
1757 mnt = fs_set_subtype(mnt, fstype);
1758 put_filesystem(type);
1759 return mnt;
1760}
9d412a43
AV
1761
1762/*
1763 * add a mount into a namespace's mount tree
1764 */
95bc5f25 1765static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
9d412a43
AV
1766{
1767 int err;
1768
1769 mnt_flags &= ~(MNT_SHARED | MNT_WRITE_HOLD | MNT_INTERNAL);
1770
b12cea91
AV
1771 err = lock_mount(path);
1772 if (err)
1773 return err;
9d412a43
AV
1774
1775 err = -EINVAL;
143c8c91 1776 if (!(mnt_flags & MNT_SHRINKABLE) && !check_mnt(real_mount(path->mnt)))
9d412a43
AV
1777 goto unlock;
1778
1779 /* Refuse the same filesystem on the same mount point */
1780 err = -EBUSY;
95bc5f25 1781 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
9d412a43
AV
1782 path->mnt->mnt_root == path->dentry)
1783 goto unlock;
1784
1785 err = -EINVAL;
95bc5f25 1786 if (S_ISLNK(newmnt->mnt.mnt_root->d_inode->i_mode))
9d412a43
AV
1787 goto unlock;
1788
95bc5f25 1789 newmnt->mnt.mnt_flags = mnt_flags;
9d412a43
AV
1790 err = graft_tree(newmnt, path);
1791
1792unlock:
b12cea91 1793 unlock_mount(path);
9d412a43
AV
1794 return err;
1795}
b1e75df4 1796
1da177e4
LT
1797/*
1798 * create a new mount for userspace and request it to be added into the
1799 * namespace's tree
1800 */
0a0d8a46 1801static int do_new_mount(struct path *path, char *type, int flags,
1da177e4
LT
1802 int mnt_flags, char *name, void *data)
1803{
1804 struct vfsmount *mnt;
15f9a3f3 1805 int err;
1da177e4 1806
eca6f534 1807 if (!type)
1da177e4
LT
1808 return -EINVAL;
1809
1810 /* we need capabilities... */
1811 if (!capable(CAP_SYS_ADMIN))
1812 return -EPERM;
1813
1814 mnt = do_kern_mount(type, flags, name, data);
1815 if (IS_ERR(mnt))
1816 return PTR_ERR(mnt);
1817
95bc5f25 1818 err = do_add_mount(real_mount(mnt), path, mnt_flags);
15f9a3f3
AV
1819 if (err)
1820 mntput(mnt);
1821 return err;
1da177e4
LT
1822}
1823
19a167af
AV
1824int finish_automount(struct vfsmount *m, struct path *path)
1825{
6776db3d 1826 struct mount *mnt = real_mount(m);
19a167af
AV
1827 int err;
1828 /* The new mount record should have at least 2 refs to prevent it being
1829 * expired before we get a chance to add it
1830 */
6776db3d 1831 BUG_ON(mnt_get_count(mnt) < 2);
19a167af
AV
1832
1833 if (m->mnt_sb == path->mnt->mnt_sb &&
1834 m->mnt_root == path->dentry) {
b1e75df4
AV
1835 err = -ELOOP;
1836 goto fail;
19a167af
AV
1837 }
1838
95bc5f25 1839 err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
b1e75df4
AV
1840 if (!err)
1841 return 0;
1842fail:
1843 /* remove m from any expiration list it may be on */
6776db3d 1844 if (!list_empty(&mnt->mnt_expire)) {
b1e75df4
AV
1845 down_write(&namespace_sem);
1846 br_write_lock(vfsmount_lock);
6776db3d 1847 list_del_init(&mnt->mnt_expire);
b1e75df4
AV
1848 br_write_unlock(vfsmount_lock);
1849 up_write(&namespace_sem);
19a167af 1850 }
b1e75df4
AV
1851 mntput(m);
1852 mntput(m);
19a167af
AV
1853 return err;
1854}
1855
ea5b778a
DH
1856/**
1857 * mnt_set_expiry - Put a mount on an expiration list
1858 * @mnt: The mount to list.
1859 * @expiry_list: The list to add the mount to.
1860 */
1861void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
1862{
1863 down_write(&namespace_sem);
1864 br_write_lock(vfsmount_lock);
1865
6776db3d 1866 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
ea5b778a
DH
1867
1868 br_write_unlock(vfsmount_lock);
1869 up_write(&namespace_sem);
1870}
1871EXPORT_SYMBOL(mnt_set_expiry);
1872
1da177e4
LT
1873/*
1874 * process a list of expirable mountpoints with the intent of discarding any
1875 * mountpoints that aren't in use and haven't been touched since last we came
1876 * here
1877 */
1878void mark_mounts_for_expiry(struct list_head *mounts)
1879{
761d5c38 1880 struct mount *mnt, *next;
1da177e4 1881 LIST_HEAD(graveyard);
bcc5c7d2 1882 LIST_HEAD(umounts);
1da177e4
LT
1883
1884 if (list_empty(mounts))
1885 return;
1886
bcc5c7d2 1887 down_write(&namespace_sem);
99b7db7b 1888 br_write_lock(vfsmount_lock);
1da177e4
LT
1889
1890 /* extract from the expiration list every vfsmount that matches the
1891 * following criteria:
1892 * - only referenced by its parent vfsmount
1893 * - still marked for expiry (marked on the last call here; marks are
1894 * cleared by mntput())
1895 */
6776db3d 1896 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
863d684f 1897 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
1ab59738 1898 propagate_mount_busy(mnt, 1))
1da177e4 1899 continue;
6776db3d 1900 list_move(&mnt->mnt_expire, &graveyard);
1da177e4 1901 }
bcc5c7d2 1902 while (!list_empty(&graveyard)) {
6776db3d 1903 mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
143c8c91 1904 touch_mnt_namespace(mnt->mnt_ns);
bcc5c7d2
AV
1905 umount_tree(mnt, 1, &umounts);
1906 }
99b7db7b 1907 br_write_unlock(vfsmount_lock);
bcc5c7d2
AV
1908 up_write(&namespace_sem);
1909
1910 release_mounts(&umounts);
5528f911
TM
1911}
1912
1913EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
1914
1915/*
1916 * Ripoff of 'select_parent()'
1917 *
1918 * search the list of submounts for a given mountpoint, and move any
1919 * shrinkable submounts to the 'graveyard' list.
1920 */
692afc31 1921static int select_submounts(struct mount *parent, struct list_head *graveyard)
5528f911 1922{
692afc31 1923 struct mount *this_parent = parent;
5528f911
TM
1924 struct list_head *next;
1925 int found = 0;
1926
1927repeat:
6b41d536 1928 next = this_parent->mnt_mounts.next;
5528f911 1929resume:
6b41d536 1930 while (next != &this_parent->mnt_mounts) {
5528f911 1931 struct list_head *tmp = next;
6b41d536 1932 struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
5528f911
TM
1933
1934 next = tmp->next;
692afc31 1935 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
1da177e4 1936 continue;
5528f911
TM
1937 /*
1938 * Descend a level if the d_mounts list is non-empty.
1939 */
6b41d536 1940 if (!list_empty(&mnt->mnt_mounts)) {
5528f911
TM
1941 this_parent = mnt;
1942 goto repeat;
1943 }
1da177e4 1944
1ab59738 1945 if (!propagate_mount_busy(mnt, 1)) {
6776db3d 1946 list_move_tail(&mnt->mnt_expire, graveyard);
5528f911
TM
1947 found++;
1948 }
1da177e4 1949 }
5528f911
TM
1950 /*
1951 * All done at this level ... ascend and resume the search
1952 */
1953 if (this_parent != parent) {
6b41d536 1954 next = this_parent->mnt_child.next;
0714a533 1955 this_parent = this_parent->mnt_parent;
5528f911
TM
1956 goto resume;
1957 }
1958 return found;
1959}
1960
1961/*
1962 * process a list of expirable mountpoints with the intent of discarding any
1963 * submounts of a specific parent mountpoint
99b7db7b
NP
1964 *
1965 * vfsmount_lock must be held for write
5528f911 1966 */
692afc31 1967static void shrink_submounts(struct mount *mnt, struct list_head *umounts)
5528f911
TM
1968{
1969 LIST_HEAD(graveyard);
761d5c38 1970 struct mount *m;
5528f911 1971
5528f911 1972 /* extract submounts of 'mountpoint' from the expiration list */
c35038be 1973 while (select_submounts(mnt, &graveyard)) {
bcc5c7d2 1974 while (!list_empty(&graveyard)) {
761d5c38 1975 m = list_first_entry(&graveyard, struct mount,
6776db3d 1976 mnt_expire);
143c8c91 1977 touch_mnt_namespace(m->mnt_ns);
afef80b3 1978 umount_tree(m, 1, umounts);
bcc5c7d2
AV
1979 }
1980 }
1da177e4
LT
1981}
1982
1da177e4
LT
1983/*
1984 * Some copy_from_user() implementations do not return the exact number of
1985 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
1986 * Note that this function differs from copy_from_user() in that it will oops
1987 * on bad values of `to', rather than returning a short copy.
1988 */
b58fed8b
RP
1989static long exact_copy_from_user(void *to, const void __user * from,
1990 unsigned long n)
1da177e4
LT
1991{
1992 char *t = to;
1993 const char __user *f = from;
1994 char c;
1995
1996 if (!access_ok(VERIFY_READ, from, n))
1997 return n;
1998
1999 while (n) {
2000 if (__get_user(c, f)) {
2001 memset(t, 0, n);
2002 break;
2003 }
2004 *t++ = c;
2005 f++;
2006 n--;
2007 }
2008 return n;
2009}
2010
b58fed8b 2011int copy_mount_options(const void __user * data, unsigned long *where)
1da177e4
LT
2012{
2013 int i;
2014 unsigned long page;
2015 unsigned long size;
b58fed8b 2016
1da177e4
LT
2017 *where = 0;
2018 if (!data)
2019 return 0;
2020
2021 if (!(page = __get_free_page(GFP_KERNEL)))
2022 return -ENOMEM;
2023
2024 /* We only care that *some* data at the address the user
2025 * gave us is valid. Just in case, we'll zero
2026 * the remainder of the page.
2027 */
2028 /* copy_from_user cannot cross TASK_SIZE ! */
2029 size = TASK_SIZE - (unsigned long)data;
2030 if (size > PAGE_SIZE)
2031 size = PAGE_SIZE;
2032
2033 i = size - exact_copy_from_user((void *)page, data, size);
2034 if (!i) {
b58fed8b 2035 free_page(page);
1da177e4
LT
2036 return -EFAULT;
2037 }
2038 if (i != PAGE_SIZE)
2039 memset((char *)page + i, 0, PAGE_SIZE - i);
2040 *where = page;
2041 return 0;
2042}
2043
eca6f534
VN
2044int copy_mount_string(const void __user *data, char **where)
2045{
2046 char *tmp;
2047
2048 if (!data) {
2049 *where = NULL;
2050 return 0;
2051 }
2052
2053 tmp = strndup_user(data, PAGE_SIZE);
2054 if (IS_ERR(tmp))
2055 return PTR_ERR(tmp);
2056
2057 *where = tmp;
2058 return 0;
2059}
2060
1da177e4
LT
2061/*
2062 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2063 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2064 *
2065 * data is a (void *) that can point to any structure up to
2066 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2067 * information (or be NULL).
2068 *
2069 * Pre-0.97 versions of mount() didn't have a flags word.
2070 * When the flags word was introduced its top half was required
2071 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2072 * Therefore, if this magic number is present, it carries no information
2073 * and must be discarded.
2074 */
b58fed8b 2075long do_mount(char *dev_name, char *dir_name, char *type_page,
1da177e4
LT
2076 unsigned long flags, void *data_page)
2077{
2d92ab3c 2078 struct path path;
1da177e4
LT
2079 int retval = 0;
2080 int mnt_flags = 0;
2081
2082 /* Discard magic */
2083 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2084 flags &= ~MS_MGC_MSK;
2085
2086 /* Basic sanity checks */
2087
2088 if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
2089 return -EINVAL;
1da177e4
LT
2090
2091 if (data_page)
2092 ((char *)data_page)[PAGE_SIZE - 1] = 0;
2093
a27ab9f2
TH
2094 /* ... and get the mountpoint */
2095 retval = kern_path(dir_name, LOOKUP_FOLLOW, &path);
2096 if (retval)
2097 return retval;
2098
2099 retval = security_sb_mount(dev_name, &path,
2100 type_page, flags, data_page);
2101 if (retval)
2102 goto dput_out;
2103
613cbe3d
AK
2104 /* Default to relatime unless overriden */
2105 if (!(flags & MS_NOATIME))
2106 mnt_flags |= MNT_RELATIME;
0a1c01c9 2107
1da177e4
LT
2108 /* Separate the per-mountpoint flags */
2109 if (flags & MS_NOSUID)
2110 mnt_flags |= MNT_NOSUID;
2111 if (flags & MS_NODEV)
2112 mnt_flags |= MNT_NODEV;
2113 if (flags & MS_NOEXEC)
2114 mnt_flags |= MNT_NOEXEC;
fc33a7bb
CH
2115 if (flags & MS_NOATIME)
2116 mnt_flags |= MNT_NOATIME;
2117 if (flags & MS_NODIRATIME)
2118 mnt_flags |= MNT_NODIRATIME;
d0adde57
MG
2119 if (flags & MS_STRICTATIME)
2120 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
2e4b7fcd
DH
2121 if (flags & MS_RDONLY)
2122 mnt_flags |= MNT_READONLY;
fc33a7bb 2123
7a4dec53 2124 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
d0adde57
MG
2125 MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
2126 MS_STRICTATIME);
1da177e4 2127
1da177e4 2128 if (flags & MS_REMOUNT)
2d92ab3c 2129 retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
1da177e4
LT
2130 data_page);
2131 else if (flags & MS_BIND)
2d92ab3c 2132 retval = do_loopback(&path, dev_name, flags & MS_REC);
9676f0c6 2133 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2d92ab3c 2134 retval = do_change_type(&path, flags);
1da177e4 2135 else if (flags & MS_MOVE)
2d92ab3c 2136 retval = do_move_mount(&path, dev_name);
1da177e4 2137 else
2d92ab3c 2138 retval = do_new_mount(&path, type_page, flags, mnt_flags,
1da177e4
LT
2139 dev_name, data_page);
2140dput_out:
2d92ab3c 2141 path_put(&path);
1da177e4
LT
2142 return retval;
2143}
2144
cf8d2c11
TM
2145static struct mnt_namespace *alloc_mnt_ns(void)
2146{
2147 struct mnt_namespace *new_ns;
2148
2149 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
2150 if (!new_ns)
2151 return ERR_PTR(-ENOMEM);
2152 atomic_set(&new_ns->count, 1);
2153 new_ns->root = NULL;
2154 INIT_LIST_HEAD(&new_ns->list);
2155 init_waitqueue_head(&new_ns->poll);
2156 new_ns->event = 0;
2157 return new_ns;
2158}
2159
f03c6599
AV
2160void mnt_make_longterm(struct vfsmount *mnt)
2161{
83adc753 2162 __mnt_make_longterm(real_mount(mnt));
f03c6599
AV
2163}
2164
83adc753 2165void mnt_make_shortterm(struct vfsmount *m)
f03c6599 2166{
7e3d0eb0 2167#ifdef CONFIG_SMP
83adc753 2168 struct mount *mnt = real_mount(m);
68e8a9fe 2169 if (atomic_add_unless(&mnt->mnt_longterm, -1, 1))
f03c6599
AV
2170 return;
2171 br_write_lock(vfsmount_lock);
68e8a9fe 2172 atomic_dec(&mnt->mnt_longterm);
f03c6599 2173 br_write_unlock(vfsmount_lock);
7e3d0eb0 2174#endif
f03c6599
AV
2175}
2176
741a2951
JD
2177/*
2178 * Allocate a new namespace structure and populate it with contents
2179 * copied from the namespace of the passed in task structure.
2180 */
e3222c4e 2181static struct mnt_namespace *dup_mnt_ns(struct mnt_namespace *mnt_ns,
6b3286ed 2182 struct fs_struct *fs)
1da177e4 2183{
6b3286ed 2184 struct mnt_namespace *new_ns;
7f2da1e7 2185 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
315fc83e 2186 struct mount *p, *q;
be08d6d2 2187 struct mount *old = mnt_ns->root;
cb338d06 2188 struct mount *new;
1da177e4 2189
cf8d2c11
TM
2190 new_ns = alloc_mnt_ns();
2191 if (IS_ERR(new_ns))
2192 return new_ns;
1da177e4 2193
390c6843 2194 down_write(&namespace_sem);
1da177e4 2195 /* First pass: copy the tree topology */
909b0a88 2196 new = copy_tree(old, old->mnt.mnt_root, CL_COPY_ALL | CL_EXPIRE);
cb338d06 2197 if (!new) {
390c6843 2198 up_write(&namespace_sem);
1da177e4 2199 kfree(new_ns);
5cc4a034 2200 return ERR_PTR(-ENOMEM);
1da177e4 2201 }
be08d6d2 2202 new_ns->root = new;
99b7db7b 2203 br_write_lock(vfsmount_lock);
1a4eeaf2 2204 list_add_tail(&new_ns->list, &new->mnt_list);
99b7db7b 2205 br_write_unlock(vfsmount_lock);
1da177e4
LT
2206
2207 /*
2208 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2209 * as belonging to new namespace. We have already acquired a private
2210 * fs_struct, so tsk->fs->lock is not needed.
2211 */
909b0a88 2212 p = old;
cb338d06 2213 q = new;
1da177e4 2214 while (p) {
143c8c91 2215 q->mnt_ns = new_ns;
83adc753 2216 __mnt_make_longterm(q);
1da177e4 2217 if (fs) {
315fc83e
AV
2218 if (&p->mnt == fs->root.mnt) {
2219 fs->root.mnt = mntget(&q->mnt);
83adc753 2220 __mnt_make_longterm(q);
315fc83e
AV
2221 mnt_make_shortterm(&p->mnt);
2222 rootmnt = &p->mnt;
1da177e4 2223 }
315fc83e
AV
2224 if (&p->mnt == fs->pwd.mnt) {
2225 fs->pwd.mnt = mntget(&q->mnt);
83adc753 2226 __mnt_make_longterm(q);
315fc83e
AV
2227 mnt_make_shortterm(&p->mnt);
2228 pwdmnt = &p->mnt;
1da177e4 2229 }
1da177e4 2230 }
909b0a88
AV
2231 p = next_mnt(p, old);
2232 q = next_mnt(q, new);
1da177e4 2233 }
390c6843 2234 up_write(&namespace_sem);
1da177e4 2235
1da177e4 2236 if (rootmnt)
f03c6599 2237 mntput(rootmnt);
1da177e4 2238 if (pwdmnt)
f03c6599 2239 mntput(pwdmnt);
1da177e4 2240
741a2951
JD
2241 return new_ns;
2242}
2243
213dd266 2244struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
e3222c4e 2245 struct fs_struct *new_fs)
741a2951 2246{
6b3286ed 2247 struct mnt_namespace *new_ns;
741a2951 2248
e3222c4e 2249 BUG_ON(!ns);
6b3286ed 2250 get_mnt_ns(ns);
741a2951
JD
2251
2252 if (!(flags & CLONE_NEWNS))
e3222c4e 2253 return ns;
741a2951 2254
e3222c4e 2255 new_ns = dup_mnt_ns(ns, new_fs);
741a2951 2256
6b3286ed 2257 put_mnt_ns(ns);
e3222c4e 2258 return new_ns;
1da177e4
LT
2259}
2260
cf8d2c11
TM
2261/**
2262 * create_mnt_ns - creates a private namespace and adds a root filesystem
2263 * @mnt: pointer to the new root filesystem mountpoint
2264 */
1a4eeaf2 2265static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
cf8d2c11 2266{
1a4eeaf2 2267 struct mnt_namespace *new_ns = alloc_mnt_ns();
cf8d2c11 2268 if (!IS_ERR(new_ns)) {
1a4eeaf2
AV
2269 struct mount *mnt = real_mount(m);
2270 mnt->mnt_ns = new_ns;
2271 __mnt_make_longterm(mnt);
be08d6d2 2272 new_ns->root = mnt;
1a4eeaf2 2273 list_add(&new_ns->list, &mnt->mnt_list);
c1334495 2274 } else {
1a4eeaf2 2275 mntput(m);
cf8d2c11
TM
2276 }
2277 return new_ns;
2278}
cf8d2c11 2279
ea441d11
AV
2280struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
2281{
2282 struct mnt_namespace *ns;
d31da0f0 2283 struct super_block *s;
ea441d11
AV
2284 struct path path;
2285 int err;
2286
2287 ns = create_mnt_ns(mnt);
2288 if (IS_ERR(ns))
2289 return ERR_CAST(ns);
2290
2291 err = vfs_path_lookup(mnt->mnt_root, mnt,
2292 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
2293
2294 put_mnt_ns(ns);
2295
2296 if (err)
2297 return ERR_PTR(err);
2298
2299 /* trade a vfsmount reference for active sb one */
d31da0f0
AV
2300 s = path.mnt->mnt_sb;
2301 atomic_inc(&s->s_active);
ea441d11
AV
2302 mntput(path.mnt);
2303 /* lock the sucker */
d31da0f0 2304 down_write(&s->s_umount);
ea441d11
AV
2305 /* ... and return the root of (sub)tree on it */
2306 return path.dentry;
2307}
2308EXPORT_SYMBOL(mount_subtree);
2309
bdc480e3
HC
2310SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
2311 char __user *, type, unsigned long, flags, void __user *, data)
1da177e4 2312{
eca6f534
VN
2313 int ret;
2314 char *kernel_type;
2315 char *kernel_dir;
2316 char *kernel_dev;
1da177e4 2317 unsigned long data_page;
1da177e4 2318
eca6f534
VN
2319 ret = copy_mount_string(type, &kernel_type);
2320 if (ret < 0)
2321 goto out_type;
1da177e4 2322
eca6f534
VN
2323 kernel_dir = getname(dir_name);
2324 if (IS_ERR(kernel_dir)) {
2325 ret = PTR_ERR(kernel_dir);
2326 goto out_dir;
2327 }
1da177e4 2328
eca6f534
VN
2329 ret = copy_mount_string(dev_name, &kernel_dev);
2330 if (ret < 0)
2331 goto out_dev;
1da177e4 2332
eca6f534
VN
2333 ret = copy_mount_options(data, &data_page);
2334 if (ret < 0)
2335 goto out_data;
1da177e4 2336
eca6f534
VN
2337 ret = do_mount(kernel_dev, kernel_dir, kernel_type, flags,
2338 (void *) data_page);
1da177e4 2339
eca6f534
VN
2340 free_page(data_page);
2341out_data:
2342 kfree(kernel_dev);
2343out_dev:
2344 putname(kernel_dir);
2345out_dir:
2346 kfree(kernel_type);
2347out_type:
2348 return ret;
1da177e4
LT
2349}
2350
afac7cba
AV
2351/*
2352 * Return true if path is reachable from root
2353 *
2354 * namespace_sem or vfsmount_lock is held
2355 */
643822b4 2356bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
afac7cba
AV
2357 const struct path *root)
2358{
643822b4 2359 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
a73324da 2360 dentry = mnt->mnt_mountpoint;
0714a533 2361 mnt = mnt->mnt_parent;
afac7cba 2362 }
643822b4 2363 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
afac7cba
AV
2364}
2365
2366int path_is_under(struct path *path1, struct path *path2)
2367{
2368 int res;
2369 br_read_lock(vfsmount_lock);
643822b4 2370 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
afac7cba
AV
2371 br_read_unlock(vfsmount_lock);
2372 return res;
2373}
2374EXPORT_SYMBOL(path_is_under);
2375
1da177e4
LT
2376/*
2377 * pivot_root Semantics:
2378 * Moves the root file system of the current process to the directory put_old,
2379 * makes new_root as the new root file system of the current process, and sets
2380 * root/cwd of all processes which had them on the current root to new_root.
2381 *
2382 * Restrictions:
2383 * The new_root and put_old must be directories, and must not be on the
2384 * same file system as the current process root. The put_old must be
2385 * underneath new_root, i.e. adding a non-zero number of /.. to the string
2386 * pointed to by put_old must yield the same directory as new_root. No other
2387 * file system may be mounted on put_old. After all, new_root is a mountpoint.
2388 *
4a0d11fa
NB
2389 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
2390 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
2391 * in this situation.
2392 *
1da177e4
LT
2393 * Notes:
2394 * - we don't move root/cwd if they are not at the root (reason: if something
2395 * cared enough to change them, it's probably wrong to force them elsewhere)
2396 * - it's okay to pick a root that isn't the root of a file system, e.g.
2397 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
2398 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
2399 * first.
2400 */
3480b257
HC
2401SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
2402 const char __user *, put_old)
1da177e4 2403{
2d8f3038 2404 struct path new, old, parent_path, root_parent, root;
419148da 2405 struct mount *new_mnt, *root_mnt;
1da177e4
LT
2406 int error;
2407
2408 if (!capable(CAP_SYS_ADMIN))
2409 return -EPERM;
2410
2d8f3038 2411 error = user_path_dir(new_root, &new);
1da177e4
LT
2412 if (error)
2413 goto out0;
1da177e4 2414
2d8f3038 2415 error = user_path_dir(put_old, &old);
1da177e4
LT
2416 if (error)
2417 goto out1;
2418
2d8f3038 2419 error = security_sb_pivotroot(&old, &new);
b12cea91
AV
2420 if (error)
2421 goto out2;
1da177e4 2422
f7ad3c6b 2423 get_fs_root(current->fs, &root);
b12cea91
AV
2424 error = lock_mount(&old);
2425 if (error)
2426 goto out3;
2427
1da177e4 2428 error = -EINVAL;
419148da
AV
2429 new_mnt = real_mount(new.mnt);
2430 root_mnt = real_mount(root.mnt);
fc7be130
AV
2431 if (IS_MNT_SHARED(real_mount(old.mnt)) ||
2432 IS_MNT_SHARED(new_mnt->mnt_parent) ||
2433 IS_MNT_SHARED(root_mnt->mnt_parent))
b12cea91 2434 goto out4;
143c8c91 2435 if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
b12cea91 2436 goto out4;
1da177e4 2437 error = -ENOENT;
f3da392e 2438 if (d_unlinked(new.dentry))
b12cea91 2439 goto out4;
f3da392e 2440 if (d_unlinked(old.dentry))
b12cea91 2441 goto out4;
1da177e4 2442 error = -EBUSY;
2d8f3038
AV
2443 if (new.mnt == root.mnt ||
2444 old.mnt == root.mnt)
b12cea91 2445 goto out4; /* loop, on the same file system */
1da177e4 2446 error = -EINVAL;
8c3ee42e 2447 if (root.mnt->mnt_root != root.dentry)
b12cea91 2448 goto out4; /* not a mountpoint */
676da58d 2449 if (!mnt_has_parent(root_mnt))
b12cea91 2450 goto out4; /* not attached */
2d8f3038 2451 if (new.mnt->mnt_root != new.dentry)
b12cea91 2452 goto out4; /* not a mountpoint */
676da58d 2453 if (!mnt_has_parent(new_mnt))
b12cea91 2454 goto out4; /* not attached */
4ac91378 2455 /* make sure we can reach put_old from new_root */
643822b4 2456 if (!is_path_reachable(real_mount(old.mnt), old.dentry, &new))
b12cea91 2457 goto out4;
27cb1572 2458 br_write_lock(vfsmount_lock);
419148da
AV
2459 detach_mnt(new_mnt, &parent_path);
2460 detach_mnt(root_mnt, &root_parent);
4ac91378 2461 /* mount old root on put_old */
419148da 2462 attach_mnt(root_mnt, &old);
4ac91378 2463 /* mount new_root on / */
419148da 2464 attach_mnt(new_mnt, &root_parent);
6b3286ed 2465 touch_mnt_namespace(current->nsproxy->mnt_ns);
99b7db7b 2466 br_write_unlock(vfsmount_lock);
2d8f3038 2467 chroot_fs_refs(&root, &new);
1da177e4 2468 error = 0;
b12cea91
AV
2469out4:
2470 unlock_mount(&old);
2471 if (!error) {
2472 path_put(&root_parent);
2473 path_put(&parent_path);
2474 }
2475out3:
8c3ee42e 2476 path_put(&root);
b12cea91 2477out2:
2d8f3038 2478 path_put(&old);
1da177e4 2479out1:
2d8f3038 2480 path_put(&new);
1da177e4 2481out0:
1da177e4 2482 return error;
1da177e4
LT
2483}
2484
2485static void __init init_mount_tree(void)
2486{
2487 struct vfsmount *mnt;
6b3286ed 2488 struct mnt_namespace *ns;
ac748a09 2489 struct path root;
1da177e4
LT
2490
2491 mnt = do_kern_mount("rootfs", 0, "rootfs", NULL);
2492 if (IS_ERR(mnt))
2493 panic("Can't create rootfs");
b3e19d92 2494
3b22edc5
TM
2495 ns = create_mnt_ns(mnt);
2496 if (IS_ERR(ns))
1da177e4 2497 panic("Can't allocate initial namespace");
6b3286ed
KK
2498
2499 init_task.nsproxy->mnt_ns = ns;
2500 get_mnt_ns(ns);
2501
be08d6d2
AV
2502 root.mnt = mnt;
2503 root.dentry = mnt->mnt_root;
ac748a09
JB
2504
2505 set_fs_pwd(current->fs, &root);
2506 set_fs_root(current->fs, &root);
1da177e4
LT
2507}
2508
74bf17cf 2509void __init mnt_init(void)
1da177e4 2510{
13f14b4d 2511 unsigned u;
15a67dd8 2512 int err;
1da177e4 2513
390c6843
RP
2514 init_rwsem(&namespace_sem);
2515
7d6fec45 2516 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
20c2df83 2517 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
1da177e4 2518
b58fed8b 2519 mount_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
1da177e4
LT
2520
2521 if (!mount_hashtable)
2522 panic("Failed to allocate mount hash table\n");
2523
80cdc6da 2524 printk(KERN_INFO "Mount-cache hash table entries: %lu\n", HASH_SIZE);
13f14b4d
ED
2525
2526 for (u = 0; u < HASH_SIZE; u++)
2527 INIT_LIST_HEAD(&mount_hashtable[u]);
1da177e4 2528
99b7db7b
NP
2529 br_lock_init(vfsmount_lock);
2530
15a67dd8
RD
2531 err = sysfs_init();
2532 if (err)
2533 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
8e24eea7 2534 __func__, err);
00d26666
GKH
2535 fs_kobj = kobject_create_and_add("fs", NULL);
2536 if (!fs_kobj)
8e24eea7 2537 printk(KERN_WARNING "%s: kobj create error\n", __func__);
1da177e4
LT
2538 init_rootfs();
2539 init_mount_tree();
2540}
2541
616511d0 2542void put_mnt_ns(struct mnt_namespace *ns)
1da177e4 2543{
70fbcdf4 2544 LIST_HEAD(umount_list);
616511d0 2545
d498b25a 2546 if (!atomic_dec_and_test(&ns->count))
616511d0 2547 return;
390c6843 2548 down_write(&namespace_sem);
99b7db7b 2549 br_write_lock(vfsmount_lock);
be08d6d2 2550 umount_tree(ns->root, 0, &umount_list);
99b7db7b 2551 br_write_unlock(vfsmount_lock);
390c6843 2552 up_write(&namespace_sem);
70fbcdf4 2553 release_mounts(&umount_list);
6b3286ed 2554 kfree(ns);
1da177e4 2555}
9d412a43
AV
2556
2557struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
2558{
423e0ab0
TC
2559 struct vfsmount *mnt;
2560 mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
2561 if (!IS_ERR(mnt)) {
2562 /*
2563 * it is a longterm mount, don't release mnt until
2564 * we unmount before file sys is unregistered
2565 */
2566 mnt_make_longterm(mnt);
2567 }
2568 return mnt;
9d412a43
AV
2569}
2570EXPORT_SYMBOL_GPL(kern_mount_data);
423e0ab0
TC
2571
2572void kern_unmount(struct vfsmount *mnt)
2573{
2574 /* release long term mount so mount point can be released */
2575 if (!IS_ERR_OR_NULL(mnt)) {
2576 mnt_make_shortterm(mnt);
2577 mntput(mnt);
2578 }
2579}
2580EXPORT_SYMBOL(kern_unmount);
02125a82
AV
2581
2582bool our_mnt(struct vfsmount *mnt)
2583{
143c8c91 2584 return check_mnt(real_mount(mnt));
02125a82 2585}