kernel/nsproxy.c: Improving a snippet of code.
[linux-2.6-block.git] / fs / namespace.c
CommitLineData
1da177e4
LT
1/*
2 * linux/fs/namespace.c
3 *
4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
6 *
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
10
1da177e4 11#include <linux/syscalls.h>
d10577a8 12#include <linux/export.h>
16f7e0fe 13#include <linux/capability.h>
6b3286ed 14#include <linux/mnt_namespace.h>
771b1371 15#include <linux/user_namespace.h>
1da177e4
LT
16#include <linux/namei.h>
17#include <linux/security.h>
73cd49ec 18#include <linux/idr.h>
d10577a8
AV
19#include <linux/acct.h> /* acct_auto_close_mnt */
20#include <linux/ramfs.h> /* init_rootfs */
21#include <linux/fs_struct.h> /* get_fs_root et.al. */
22#include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
23#include <linux/uaccess.h>
0bb80f24 24#include <linux/proc_ns.h>
20b4fb48 25#include <linux/magic.h>
07b20889 26#include "pnode.h"
948730b0 27#include "internal.h"
1da177e4 28
13f14b4d
ED
29#define HASH_SHIFT ilog2(PAGE_SIZE / sizeof(struct list_head))
30#define HASH_SIZE (1UL << HASH_SHIFT)
31
5addc5dd 32static int event;
73cd49ec 33static DEFINE_IDA(mnt_id_ida);
719f5d7f 34static DEFINE_IDA(mnt_group_ida);
99b7db7b 35static DEFINE_SPINLOCK(mnt_id_lock);
f21f6220
AV
36static int mnt_id_start = 0;
37static int mnt_group_start = 1;
1da177e4 38
fa3536cc 39static struct list_head *mount_hashtable __read_mostly;
84d17192 40static struct list_head *mountpoint_hashtable __read_mostly;
e18b890b 41static struct kmem_cache *mnt_cache __read_mostly;
390c6843 42static struct rw_semaphore namespace_sem;
1da177e4 43
f87fd4c2 44/* /sys/fs */
00d26666
GKH
45struct kobject *fs_kobj;
46EXPORT_SYMBOL_GPL(fs_kobj);
f87fd4c2 47
99b7db7b
NP
48/*
49 * vfsmount lock may be taken for read to prevent changes to the
50 * vfsmount hash, ie. during mountpoint lookups or walking back
51 * up the tree.
52 *
53 * It should be taken for write in all cases where the vfsmount
54 * tree or hash is modified or when a vfsmount structure is modified.
55 */
56DEFINE_BRLOCK(vfsmount_lock);
57
1da177e4
LT
58static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry)
59{
b58fed8b
RP
60 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
61 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
13f14b4d
ED
62 tmp = tmp + (tmp >> HASH_SHIFT);
63 return tmp & (HASH_SIZE - 1);
1da177e4
LT
64}
65
3d733633
DH
66#define MNT_WRITER_UNDERFLOW_LIMIT -(1<<16)
67
99b7db7b
NP
68/*
69 * allocation is serialized by namespace_sem, but we need the spinlock to
70 * serialize with freeing.
71 */
b105e270 72static int mnt_alloc_id(struct mount *mnt)
73cd49ec
MS
73{
74 int res;
75
76retry:
77 ida_pre_get(&mnt_id_ida, GFP_KERNEL);
99b7db7b 78 spin_lock(&mnt_id_lock);
15169fe7 79 res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
f21f6220 80 if (!res)
15169fe7 81 mnt_id_start = mnt->mnt_id + 1;
99b7db7b 82 spin_unlock(&mnt_id_lock);
73cd49ec
MS
83 if (res == -EAGAIN)
84 goto retry;
85
86 return res;
87}
88
b105e270 89static void mnt_free_id(struct mount *mnt)
73cd49ec 90{
15169fe7 91 int id = mnt->mnt_id;
99b7db7b 92 spin_lock(&mnt_id_lock);
f21f6220
AV
93 ida_remove(&mnt_id_ida, id);
94 if (mnt_id_start > id)
95 mnt_id_start = id;
99b7db7b 96 spin_unlock(&mnt_id_lock);
73cd49ec
MS
97}
98
719f5d7f
MS
99/*
100 * Allocate a new peer group ID
101 *
102 * mnt_group_ida is protected by namespace_sem
103 */
4b8b21f4 104static int mnt_alloc_group_id(struct mount *mnt)
719f5d7f 105{
f21f6220
AV
106 int res;
107
719f5d7f
MS
108 if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
109 return -ENOMEM;
110
f21f6220
AV
111 res = ida_get_new_above(&mnt_group_ida,
112 mnt_group_start,
15169fe7 113 &mnt->mnt_group_id);
f21f6220 114 if (!res)
15169fe7 115 mnt_group_start = mnt->mnt_group_id + 1;
f21f6220
AV
116
117 return res;
719f5d7f
MS
118}
119
120/*
121 * Release a peer group ID
122 */
4b8b21f4 123void mnt_release_group_id(struct mount *mnt)
719f5d7f 124{
15169fe7 125 int id = mnt->mnt_group_id;
f21f6220
AV
126 ida_remove(&mnt_group_ida, id);
127 if (mnt_group_start > id)
128 mnt_group_start = id;
15169fe7 129 mnt->mnt_group_id = 0;
719f5d7f
MS
130}
131
b3e19d92
NP
132/*
133 * vfsmount lock must be held for read
134 */
83adc753 135static inline void mnt_add_count(struct mount *mnt, int n)
b3e19d92
NP
136{
137#ifdef CONFIG_SMP
68e8a9fe 138 this_cpu_add(mnt->mnt_pcp->mnt_count, n);
b3e19d92
NP
139#else
140 preempt_disable();
68e8a9fe 141 mnt->mnt_count += n;
b3e19d92
NP
142 preempt_enable();
143#endif
144}
145
b3e19d92
NP
146/*
147 * vfsmount lock must be held for write
148 */
83adc753 149unsigned int mnt_get_count(struct mount *mnt)
b3e19d92
NP
150{
151#ifdef CONFIG_SMP
f03c6599 152 unsigned int count = 0;
b3e19d92
NP
153 int cpu;
154
155 for_each_possible_cpu(cpu) {
68e8a9fe 156 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
b3e19d92
NP
157 }
158
159 return count;
160#else
68e8a9fe 161 return mnt->mnt_count;
b3e19d92
NP
162#endif
163}
164
b105e270 165static struct mount *alloc_vfsmnt(const char *name)
1da177e4 166{
c63181e6
AV
167 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
168 if (mnt) {
73cd49ec
MS
169 int err;
170
c63181e6 171 err = mnt_alloc_id(mnt);
88b38782
LZ
172 if (err)
173 goto out_free_cache;
174
175 if (name) {
c63181e6
AV
176 mnt->mnt_devname = kstrdup(name, GFP_KERNEL);
177 if (!mnt->mnt_devname)
88b38782 178 goto out_free_id;
73cd49ec
MS
179 }
180
b3e19d92 181#ifdef CONFIG_SMP
c63181e6
AV
182 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
183 if (!mnt->mnt_pcp)
b3e19d92
NP
184 goto out_free_devname;
185
c63181e6 186 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
b3e19d92 187#else
c63181e6
AV
188 mnt->mnt_count = 1;
189 mnt->mnt_writers = 0;
b3e19d92
NP
190#endif
191
c63181e6
AV
192 INIT_LIST_HEAD(&mnt->mnt_hash);
193 INIT_LIST_HEAD(&mnt->mnt_child);
194 INIT_LIST_HEAD(&mnt->mnt_mounts);
195 INIT_LIST_HEAD(&mnt->mnt_list);
196 INIT_LIST_HEAD(&mnt->mnt_expire);
197 INIT_LIST_HEAD(&mnt->mnt_share);
198 INIT_LIST_HEAD(&mnt->mnt_slave_list);
199 INIT_LIST_HEAD(&mnt->mnt_slave);
2504c5d6
AG
200#ifdef CONFIG_FSNOTIFY
201 INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
d3ef3d73 202#endif
1da177e4 203 }
c63181e6 204 return mnt;
88b38782 205
d3ef3d73 206#ifdef CONFIG_SMP
207out_free_devname:
c63181e6 208 kfree(mnt->mnt_devname);
d3ef3d73 209#endif
88b38782 210out_free_id:
c63181e6 211 mnt_free_id(mnt);
88b38782 212out_free_cache:
c63181e6 213 kmem_cache_free(mnt_cache, mnt);
88b38782 214 return NULL;
1da177e4
LT
215}
216
3d733633
DH
217/*
218 * Most r/o checks on a fs are for operations that take
219 * discrete amounts of time, like a write() or unlink().
220 * We must keep track of when those operations start
221 * (for permission checks) and when they end, so that
222 * we can determine when writes are able to occur to
223 * a filesystem.
224 */
225/*
226 * __mnt_is_readonly: check whether a mount is read-only
227 * @mnt: the mount to check for its write status
228 *
229 * This shouldn't be used directly ouside of the VFS.
230 * It does not guarantee that the filesystem will stay
231 * r/w, just that it is right *now*. This can not and
232 * should not be used in place of IS_RDONLY(inode).
233 * mnt_want/drop_write() will _keep_ the filesystem
234 * r/w.
235 */
236int __mnt_is_readonly(struct vfsmount *mnt)
237{
2e4b7fcd
DH
238 if (mnt->mnt_flags & MNT_READONLY)
239 return 1;
240 if (mnt->mnt_sb->s_flags & MS_RDONLY)
241 return 1;
242 return 0;
3d733633
DH
243}
244EXPORT_SYMBOL_GPL(__mnt_is_readonly);
245
83adc753 246static inline void mnt_inc_writers(struct mount *mnt)
d3ef3d73 247{
248#ifdef CONFIG_SMP
68e8a9fe 249 this_cpu_inc(mnt->mnt_pcp->mnt_writers);
d3ef3d73 250#else
68e8a9fe 251 mnt->mnt_writers++;
d3ef3d73 252#endif
253}
3d733633 254
83adc753 255static inline void mnt_dec_writers(struct mount *mnt)
3d733633 256{
d3ef3d73 257#ifdef CONFIG_SMP
68e8a9fe 258 this_cpu_dec(mnt->mnt_pcp->mnt_writers);
d3ef3d73 259#else
68e8a9fe 260 mnt->mnt_writers--;
d3ef3d73 261#endif
3d733633 262}
3d733633 263
83adc753 264static unsigned int mnt_get_writers(struct mount *mnt)
3d733633 265{
d3ef3d73 266#ifdef CONFIG_SMP
267 unsigned int count = 0;
3d733633 268 int cpu;
3d733633
DH
269
270 for_each_possible_cpu(cpu) {
68e8a9fe 271 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
3d733633 272 }
3d733633 273
d3ef3d73 274 return count;
275#else
276 return mnt->mnt_writers;
277#endif
3d733633
DH
278}
279
4ed5e82f
MS
280static int mnt_is_readonly(struct vfsmount *mnt)
281{
282 if (mnt->mnt_sb->s_readonly_remount)
283 return 1;
284 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
285 smp_rmb();
286 return __mnt_is_readonly(mnt);
287}
288
8366025e 289/*
eb04c282
JK
290 * Most r/o & frozen checks on a fs are for operations that take discrete
291 * amounts of time, like a write() or unlink(). We must keep track of when
292 * those operations start (for permission checks) and when they end, so that we
293 * can determine when writes are able to occur to a filesystem.
8366025e
DH
294 */
295/**
eb04c282 296 * __mnt_want_write - get write access to a mount without freeze protection
83adc753 297 * @m: the mount on which to take a write
8366025e 298 *
eb04c282
JK
299 * This tells the low-level filesystem that a write is about to be performed to
300 * it, and makes sure that writes are allowed (mnt it read-write) before
301 * returning success. This operation does not protect against filesystem being
302 * frozen. When the write operation is finished, __mnt_drop_write() must be
303 * called. This is effectively a refcount.
8366025e 304 */
eb04c282 305int __mnt_want_write(struct vfsmount *m)
8366025e 306{
83adc753 307 struct mount *mnt = real_mount(m);
3d733633 308 int ret = 0;
3d733633 309
d3ef3d73 310 preempt_disable();
c6653a83 311 mnt_inc_writers(mnt);
d3ef3d73 312 /*
c6653a83 313 * The store to mnt_inc_writers must be visible before we pass
d3ef3d73 314 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
315 * incremented count after it has set MNT_WRITE_HOLD.
316 */
317 smp_mb();
1e75529e 318 while (ACCESS_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
d3ef3d73 319 cpu_relax();
320 /*
321 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
322 * be set to match its requirements. So we must not load that until
323 * MNT_WRITE_HOLD is cleared.
324 */
325 smp_rmb();
4ed5e82f 326 if (mnt_is_readonly(m)) {
c6653a83 327 mnt_dec_writers(mnt);
3d733633 328 ret = -EROFS;
3d733633 329 }
d3ef3d73 330 preempt_enable();
eb04c282
JK
331
332 return ret;
333}
334
335/**
336 * mnt_want_write - get write access to a mount
337 * @m: the mount on which to take a write
338 *
339 * This tells the low-level filesystem that a write is about to be performed to
340 * it, and makes sure that writes are allowed (mount is read-write, filesystem
341 * is not frozen) before returning success. When the write operation is
342 * finished, mnt_drop_write() must be called. This is effectively a refcount.
343 */
344int mnt_want_write(struct vfsmount *m)
345{
346 int ret;
347
348 sb_start_write(m->mnt_sb);
349 ret = __mnt_want_write(m);
350 if (ret)
351 sb_end_write(m->mnt_sb);
3d733633 352 return ret;
8366025e
DH
353}
354EXPORT_SYMBOL_GPL(mnt_want_write);
355
96029c4e 356/**
357 * mnt_clone_write - get write access to a mount
358 * @mnt: the mount on which to take a write
359 *
360 * This is effectively like mnt_want_write, except
361 * it must only be used to take an extra write reference
362 * on a mountpoint that we already know has a write reference
363 * on it. This allows some optimisation.
364 *
365 * After finished, mnt_drop_write must be called as usual to
366 * drop the reference.
367 */
368int mnt_clone_write(struct vfsmount *mnt)
369{
370 /* superblock may be r/o */
371 if (__mnt_is_readonly(mnt))
372 return -EROFS;
373 preempt_disable();
83adc753 374 mnt_inc_writers(real_mount(mnt));
96029c4e 375 preempt_enable();
376 return 0;
377}
378EXPORT_SYMBOL_GPL(mnt_clone_write);
379
380/**
eb04c282 381 * __mnt_want_write_file - get write access to a file's mount
96029c4e 382 * @file: the file who's mount on which to take a write
383 *
eb04c282 384 * This is like __mnt_want_write, but it takes a file and can
96029c4e 385 * do some optimisations if the file is open for write already
386 */
eb04c282 387int __mnt_want_write_file(struct file *file)
96029c4e 388{
496ad9aa 389 struct inode *inode = file_inode(file);
eb04c282 390
2d8dd38a 391 if (!(file->f_mode & FMODE_WRITE) || special_file(inode->i_mode))
eb04c282 392 return __mnt_want_write(file->f_path.mnt);
96029c4e 393 else
394 return mnt_clone_write(file->f_path.mnt);
395}
eb04c282
JK
396
397/**
398 * mnt_want_write_file - get write access to a file's mount
399 * @file: the file who's mount on which to take a write
400 *
401 * This is like mnt_want_write, but it takes a file and can
402 * do some optimisations if the file is open for write already
403 */
404int mnt_want_write_file(struct file *file)
405{
406 int ret;
407
408 sb_start_write(file->f_path.mnt->mnt_sb);
409 ret = __mnt_want_write_file(file);
410 if (ret)
411 sb_end_write(file->f_path.mnt->mnt_sb);
412 return ret;
413}
96029c4e 414EXPORT_SYMBOL_GPL(mnt_want_write_file);
415
8366025e 416/**
eb04c282 417 * __mnt_drop_write - give up write access to a mount
8366025e
DH
418 * @mnt: the mount on which to give up write access
419 *
420 * Tells the low-level filesystem that we are done
421 * performing writes to it. Must be matched with
eb04c282 422 * __mnt_want_write() call above.
8366025e 423 */
eb04c282 424void __mnt_drop_write(struct vfsmount *mnt)
8366025e 425{
d3ef3d73 426 preempt_disable();
83adc753 427 mnt_dec_writers(real_mount(mnt));
d3ef3d73 428 preempt_enable();
8366025e 429}
eb04c282
JK
430
431/**
432 * mnt_drop_write - give up write access to a mount
433 * @mnt: the mount on which to give up write access
434 *
435 * Tells the low-level filesystem that we are done performing writes to it and
436 * also allows filesystem to be frozen again. Must be matched with
437 * mnt_want_write() call above.
438 */
439void mnt_drop_write(struct vfsmount *mnt)
440{
441 __mnt_drop_write(mnt);
442 sb_end_write(mnt->mnt_sb);
443}
8366025e
DH
444EXPORT_SYMBOL_GPL(mnt_drop_write);
445
eb04c282
JK
446void __mnt_drop_write_file(struct file *file)
447{
448 __mnt_drop_write(file->f_path.mnt);
449}
450
2a79f17e
AV
451void mnt_drop_write_file(struct file *file)
452{
453 mnt_drop_write(file->f_path.mnt);
454}
455EXPORT_SYMBOL(mnt_drop_write_file);
456
83adc753 457static int mnt_make_readonly(struct mount *mnt)
8366025e 458{
3d733633
DH
459 int ret = 0;
460
962830df 461 br_write_lock(&vfsmount_lock);
83adc753 462 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
3d733633 463 /*
d3ef3d73 464 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
465 * should be visible before we do.
3d733633 466 */
d3ef3d73 467 smp_mb();
468
3d733633 469 /*
d3ef3d73 470 * With writers on hold, if this value is zero, then there are
471 * definitely no active writers (although held writers may subsequently
472 * increment the count, they'll have to wait, and decrement it after
473 * seeing MNT_READONLY).
474 *
475 * It is OK to have counter incremented on one CPU and decremented on
476 * another: the sum will add up correctly. The danger would be when we
477 * sum up each counter, if we read a counter before it is incremented,
478 * but then read another CPU's count which it has been subsequently
479 * decremented from -- we would see more decrements than we should.
480 * MNT_WRITE_HOLD protects against this scenario, because
481 * mnt_want_write first increments count, then smp_mb, then spins on
482 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
483 * we're counting up here.
3d733633 484 */
c6653a83 485 if (mnt_get_writers(mnt) > 0)
d3ef3d73 486 ret = -EBUSY;
487 else
83adc753 488 mnt->mnt.mnt_flags |= MNT_READONLY;
d3ef3d73 489 /*
490 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
491 * that become unheld will see MNT_READONLY.
492 */
493 smp_wmb();
83adc753 494 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
962830df 495 br_write_unlock(&vfsmount_lock);
3d733633 496 return ret;
8366025e 497}
8366025e 498
83adc753 499static void __mnt_unmake_readonly(struct mount *mnt)
2e4b7fcd 500{
962830df 501 br_write_lock(&vfsmount_lock);
83adc753 502 mnt->mnt.mnt_flags &= ~MNT_READONLY;
962830df 503 br_write_unlock(&vfsmount_lock);
2e4b7fcd
DH
504}
505
4ed5e82f
MS
506int sb_prepare_remount_readonly(struct super_block *sb)
507{
508 struct mount *mnt;
509 int err = 0;
510
8e8b8796
MS
511 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
512 if (atomic_long_read(&sb->s_remove_count))
513 return -EBUSY;
514
962830df 515 br_write_lock(&vfsmount_lock);
4ed5e82f
MS
516 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
517 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
518 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
519 smp_mb();
520 if (mnt_get_writers(mnt) > 0) {
521 err = -EBUSY;
522 break;
523 }
524 }
525 }
8e8b8796
MS
526 if (!err && atomic_long_read(&sb->s_remove_count))
527 err = -EBUSY;
528
4ed5e82f
MS
529 if (!err) {
530 sb->s_readonly_remount = 1;
531 smp_wmb();
532 }
533 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
534 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
535 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
536 }
962830df 537 br_write_unlock(&vfsmount_lock);
4ed5e82f
MS
538
539 return err;
540}
541
b105e270 542static void free_vfsmnt(struct mount *mnt)
1da177e4 543{
52ba1621 544 kfree(mnt->mnt_devname);
73cd49ec 545 mnt_free_id(mnt);
d3ef3d73 546#ifdef CONFIG_SMP
68e8a9fe 547 free_percpu(mnt->mnt_pcp);
d3ef3d73 548#endif
b105e270 549 kmem_cache_free(mnt_cache, mnt);
1da177e4
LT
550}
551
552/*
a05964f3
RP
553 * find the first or last mount at @dentry on vfsmount @mnt depending on
554 * @dir. If @dir is set return the first mount else return the last mount.
99b7db7b 555 * vfsmount_lock must be held for read or write.
1da177e4 556 */
c7105365 557struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry,
a05964f3 558 int dir)
1da177e4 559{
b58fed8b
RP
560 struct list_head *head = mount_hashtable + hash(mnt, dentry);
561 struct list_head *tmp = head;
c7105365 562 struct mount *p, *found = NULL;
1da177e4 563
1da177e4 564 for (;;) {
a05964f3 565 tmp = dir ? tmp->next : tmp->prev;
1da177e4
LT
566 p = NULL;
567 if (tmp == head)
568 break;
1b8e5564 569 p = list_entry(tmp, struct mount, mnt_hash);
a73324da 570 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry) {
a05964f3 571 found = p;
1da177e4
LT
572 break;
573 }
574 }
1da177e4
LT
575 return found;
576}
577
a05964f3 578/*
f015f126
DH
579 * lookup_mnt - Return the first child mount mounted at path
580 *
581 * "First" means first mounted chronologically. If you create the
582 * following mounts:
583 *
584 * mount /dev/sda1 /mnt
585 * mount /dev/sda2 /mnt
586 * mount /dev/sda3 /mnt
587 *
588 * Then lookup_mnt() on the base /mnt dentry in the root mount will
589 * return successively the root dentry and vfsmount of /dev/sda1, then
590 * /dev/sda2, then /dev/sda3, then NULL.
591 *
592 * lookup_mnt takes a reference to the found vfsmount.
a05964f3 593 */
1c755af4 594struct vfsmount *lookup_mnt(struct path *path)
a05964f3 595{
c7105365 596 struct mount *child_mnt;
99b7db7b 597
962830df 598 br_read_lock(&vfsmount_lock);
c7105365
AV
599 child_mnt = __lookup_mnt(path->mnt, path->dentry, 1);
600 if (child_mnt) {
601 mnt_add_count(child_mnt, 1);
962830df 602 br_read_unlock(&vfsmount_lock);
c7105365
AV
603 return &child_mnt->mnt;
604 } else {
962830df 605 br_read_unlock(&vfsmount_lock);
c7105365
AV
606 return NULL;
607 }
a05964f3
RP
608}
609
84d17192
AV
610static struct mountpoint *new_mountpoint(struct dentry *dentry)
611{
612 struct list_head *chain = mountpoint_hashtable + hash(NULL, dentry);
613 struct mountpoint *mp;
614
615 list_for_each_entry(mp, chain, m_hash) {
616 if (mp->m_dentry == dentry) {
617 /* might be worth a WARN_ON() */
618 if (d_unlinked(dentry))
619 return ERR_PTR(-ENOENT);
620 mp->m_count++;
621 return mp;
622 }
623 }
624
625 mp = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
626 if (!mp)
627 return ERR_PTR(-ENOMEM);
628
629 spin_lock(&dentry->d_lock);
630 if (d_unlinked(dentry)) {
631 spin_unlock(&dentry->d_lock);
632 kfree(mp);
633 return ERR_PTR(-ENOENT);
634 }
635 dentry->d_flags |= DCACHE_MOUNTED;
636 spin_unlock(&dentry->d_lock);
637 mp->m_dentry = dentry;
638 mp->m_count = 1;
639 list_add(&mp->m_hash, chain);
640 return mp;
641}
642
643static void put_mountpoint(struct mountpoint *mp)
644{
645 if (!--mp->m_count) {
646 struct dentry *dentry = mp->m_dentry;
647 spin_lock(&dentry->d_lock);
648 dentry->d_flags &= ~DCACHE_MOUNTED;
649 spin_unlock(&dentry->d_lock);
650 list_del(&mp->m_hash);
651 kfree(mp);
652 }
653}
654
143c8c91 655static inline int check_mnt(struct mount *mnt)
1da177e4 656{
6b3286ed 657 return mnt->mnt_ns == current->nsproxy->mnt_ns;
1da177e4
LT
658}
659
99b7db7b
NP
660/*
661 * vfsmount lock must be held for write
662 */
6b3286ed 663static void touch_mnt_namespace(struct mnt_namespace *ns)
5addc5dd
AV
664{
665 if (ns) {
666 ns->event = ++event;
667 wake_up_interruptible(&ns->poll);
668 }
669}
670
99b7db7b
NP
671/*
672 * vfsmount lock must be held for write
673 */
6b3286ed 674static void __touch_mnt_namespace(struct mnt_namespace *ns)
5addc5dd
AV
675{
676 if (ns && ns->event != event) {
677 ns->event = event;
678 wake_up_interruptible(&ns->poll);
679 }
680}
681
99b7db7b
NP
682/*
683 * vfsmount lock must be held for write
684 */
419148da
AV
685static void detach_mnt(struct mount *mnt, struct path *old_path)
686{
a73324da 687 old_path->dentry = mnt->mnt_mountpoint;
0714a533
AV
688 old_path->mnt = &mnt->mnt_parent->mnt;
689 mnt->mnt_parent = mnt;
a73324da 690 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
6b41d536 691 list_del_init(&mnt->mnt_child);
1b8e5564 692 list_del_init(&mnt->mnt_hash);
84d17192
AV
693 put_mountpoint(mnt->mnt_mp);
694 mnt->mnt_mp = NULL;
1da177e4
LT
695}
696
99b7db7b
NP
697/*
698 * vfsmount lock must be held for write
699 */
84d17192
AV
700void mnt_set_mountpoint(struct mount *mnt,
701 struct mountpoint *mp,
44d964d6 702 struct mount *child_mnt)
b90fa9ae 703{
84d17192 704 mp->m_count++;
3a2393d7 705 mnt_add_count(mnt, 1); /* essentially, that's mntget */
84d17192 706 child_mnt->mnt_mountpoint = dget(mp->m_dentry);
3a2393d7 707 child_mnt->mnt_parent = mnt;
84d17192 708 child_mnt->mnt_mp = mp;
b90fa9ae
RP
709}
710
99b7db7b
NP
711/*
712 * vfsmount lock must be held for write
713 */
84d17192
AV
714static void attach_mnt(struct mount *mnt,
715 struct mount *parent,
716 struct mountpoint *mp)
1da177e4 717{
84d17192 718 mnt_set_mountpoint(parent, mp, mnt);
1b8e5564 719 list_add_tail(&mnt->mnt_hash, mount_hashtable +
84d17192
AV
720 hash(&parent->mnt, mp->m_dentry));
721 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
b90fa9ae
RP
722}
723
724/*
99b7db7b 725 * vfsmount lock must be held for write
b90fa9ae 726 */
4b2619a5 727static void commit_tree(struct mount *mnt)
b90fa9ae 728{
0714a533 729 struct mount *parent = mnt->mnt_parent;
83adc753 730 struct mount *m;
b90fa9ae 731 LIST_HEAD(head);
143c8c91 732 struct mnt_namespace *n = parent->mnt_ns;
b90fa9ae 733
0714a533 734 BUG_ON(parent == mnt);
b90fa9ae 735
1a4eeaf2 736 list_add_tail(&head, &mnt->mnt_list);
f7a99c5b 737 list_for_each_entry(m, &head, mnt_list)
143c8c91 738 m->mnt_ns = n;
f03c6599 739
b90fa9ae
RP
740 list_splice(&head, n->list.prev);
741
1b8e5564 742 list_add_tail(&mnt->mnt_hash, mount_hashtable +
a73324da 743 hash(&parent->mnt, mnt->mnt_mountpoint));
6b41d536 744 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
6b3286ed 745 touch_mnt_namespace(n);
1da177e4
LT
746}
747
909b0a88 748static struct mount *next_mnt(struct mount *p, struct mount *root)
1da177e4 749{
6b41d536
AV
750 struct list_head *next = p->mnt_mounts.next;
751 if (next == &p->mnt_mounts) {
1da177e4 752 while (1) {
909b0a88 753 if (p == root)
1da177e4 754 return NULL;
6b41d536
AV
755 next = p->mnt_child.next;
756 if (next != &p->mnt_parent->mnt_mounts)
1da177e4 757 break;
0714a533 758 p = p->mnt_parent;
1da177e4
LT
759 }
760 }
6b41d536 761 return list_entry(next, struct mount, mnt_child);
1da177e4
LT
762}
763
315fc83e 764static struct mount *skip_mnt_tree(struct mount *p)
9676f0c6 765{
6b41d536
AV
766 struct list_head *prev = p->mnt_mounts.prev;
767 while (prev != &p->mnt_mounts) {
768 p = list_entry(prev, struct mount, mnt_child);
769 prev = p->mnt_mounts.prev;
9676f0c6
RP
770 }
771 return p;
772}
773
9d412a43
AV
774struct vfsmount *
775vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
776{
b105e270 777 struct mount *mnt;
9d412a43
AV
778 struct dentry *root;
779
780 if (!type)
781 return ERR_PTR(-ENODEV);
782
783 mnt = alloc_vfsmnt(name);
784 if (!mnt)
785 return ERR_PTR(-ENOMEM);
786
787 if (flags & MS_KERNMOUNT)
b105e270 788 mnt->mnt.mnt_flags = MNT_INTERNAL;
9d412a43
AV
789
790 root = mount_fs(type, flags, name, data);
791 if (IS_ERR(root)) {
792 free_vfsmnt(mnt);
793 return ERR_CAST(root);
794 }
795
b105e270
AV
796 mnt->mnt.mnt_root = root;
797 mnt->mnt.mnt_sb = root->d_sb;
a73324da 798 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
0714a533 799 mnt->mnt_parent = mnt;
962830df 800 br_write_lock(&vfsmount_lock);
39f7c4db 801 list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
962830df 802 br_write_unlock(&vfsmount_lock);
b105e270 803 return &mnt->mnt;
9d412a43
AV
804}
805EXPORT_SYMBOL_GPL(vfs_kern_mount);
806
87129cc0 807static struct mount *clone_mnt(struct mount *old, struct dentry *root,
36341f64 808 int flag)
1da177e4 809{
87129cc0 810 struct super_block *sb = old->mnt.mnt_sb;
be34d1a3
DH
811 struct mount *mnt;
812 int err;
1da177e4 813
be34d1a3
DH
814 mnt = alloc_vfsmnt(old->mnt_devname);
815 if (!mnt)
816 return ERR_PTR(-ENOMEM);
719f5d7f 817
7a472ef4 818 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
be34d1a3
DH
819 mnt->mnt_group_id = 0; /* not a peer of original */
820 else
821 mnt->mnt_group_id = old->mnt_group_id;
b90fa9ae 822
be34d1a3
DH
823 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
824 err = mnt_alloc_group_id(mnt);
825 if (err)
826 goto out_free;
1da177e4 827 }
be34d1a3
DH
828
829 mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~MNT_WRITE_HOLD;
132c94e3
EB
830 /* Don't allow unprivileged users to change mount flags */
831 if ((flag & CL_UNPRIVILEGED) && (mnt->mnt.mnt_flags & MNT_READONLY))
832 mnt->mnt.mnt_flags |= MNT_LOCK_READONLY;
833
5ff9d8a6
EB
834 /* Don't allow unprivileged users to reveal what is under a mount */
835 if ((flag & CL_UNPRIVILEGED) && list_empty(&old->mnt_expire))
836 mnt->mnt.mnt_flags |= MNT_LOCKED;
837
be34d1a3
DH
838 atomic_inc(&sb->s_active);
839 mnt->mnt.mnt_sb = sb;
840 mnt->mnt.mnt_root = dget(root);
841 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
842 mnt->mnt_parent = mnt;
843 br_write_lock(&vfsmount_lock);
844 list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
845 br_write_unlock(&vfsmount_lock);
846
7a472ef4
EB
847 if ((flag & CL_SLAVE) ||
848 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
be34d1a3
DH
849 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
850 mnt->mnt_master = old;
851 CLEAR_MNT_SHARED(mnt);
852 } else if (!(flag & CL_PRIVATE)) {
853 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
854 list_add(&mnt->mnt_share, &old->mnt_share);
855 if (IS_MNT_SLAVE(old))
856 list_add(&mnt->mnt_slave, &old->mnt_slave);
857 mnt->mnt_master = old->mnt_master;
858 }
859 if (flag & CL_MAKE_SHARED)
860 set_mnt_shared(mnt);
861
862 /* stick the duplicate mount on the same expiry list
863 * as the original if that was on one */
864 if (flag & CL_EXPIRE) {
865 if (!list_empty(&old->mnt_expire))
866 list_add(&mnt->mnt_expire, &old->mnt_expire);
867 }
868
cb338d06 869 return mnt;
719f5d7f
MS
870
871 out_free:
872 free_vfsmnt(mnt);
be34d1a3 873 return ERR_PTR(err);
1da177e4
LT
874}
875
83adc753 876static inline void mntfree(struct mount *mnt)
1da177e4 877{
83adc753
AV
878 struct vfsmount *m = &mnt->mnt;
879 struct super_block *sb = m->mnt_sb;
b3e19d92 880
3d733633
DH
881 /*
882 * This probably indicates that somebody messed
883 * up a mnt_want/drop_write() pair. If this
884 * happens, the filesystem was probably unable
885 * to make r/w->r/o transitions.
886 */
d3ef3d73 887 /*
b3e19d92
NP
888 * The locking used to deal with mnt_count decrement provides barriers,
889 * so mnt_get_writers() below is safe.
d3ef3d73 890 */
c6653a83 891 WARN_ON(mnt_get_writers(mnt));
83adc753
AV
892 fsnotify_vfsmount_delete(m);
893 dput(m->mnt_root);
894 free_vfsmnt(mnt);
1da177e4
LT
895 deactivate_super(sb);
896}
897
900148dc 898static void mntput_no_expire(struct mount *mnt)
b3e19d92 899{
b3e19d92 900put_again:
f03c6599 901#ifdef CONFIG_SMP
962830df 902 br_read_lock(&vfsmount_lock);
f7a99c5b
AV
903 if (likely(mnt->mnt_ns)) {
904 /* shouldn't be the last one */
aa9c0e07 905 mnt_add_count(mnt, -1);
962830df 906 br_read_unlock(&vfsmount_lock);
f03c6599 907 return;
b3e19d92 908 }
962830df 909 br_read_unlock(&vfsmount_lock);
b3e19d92 910
962830df 911 br_write_lock(&vfsmount_lock);
aa9c0e07 912 mnt_add_count(mnt, -1);
b3e19d92 913 if (mnt_get_count(mnt)) {
962830df 914 br_write_unlock(&vfsmount_lock);
99b7db7b
NP
915 return;
916 }
b3e19d92 917#else
aa9c0e07 918 mnt_add_count(mnt, -1);
b3e19d92 919 if (likely(mnt_get_count(mnt)))
99b7db7b 920 return;
962830df 921 br_write_lock(&vfsmount_lock);
f03c6599 922#endif
863d684f
AV
923 if (unlikely(mnt->mnt_pinned)) {
924 mnt_add_count(mnt, mnt->mnt_pinned + 1);
925 mnt->mnt_pinned = 0;
962830df 926 br_write_unlock(&vfsmount_lock);
900148dc 927 acct_auto_close_mnt(&mnt->mnt);
b3e19d92 928 goto put_again;
7b7b1ace 929 }
962830df 930
39f7c4db 931 list_del(&mnt->mnt_instance);
962830df 932 br_write_unlock(&vfsmount_lock);
b3e19d92
NP
933 mntfree(mnt);
934}
b3e19d92
NP
935
936void mntput(struct vfsmount *mnt)
937{
938 if (mnt) {
863d684f 939 struct mount *m = real_mount(mnt);
b3e19d92 940 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
863d684f
AV
941 if (unlikely(m->mnt_expiry_mark))
942 m->mnt_expiry_mark = 0;
943 mntput_no_expire(m);
b3e19d92
NP
944 }
945}
946EXPORT_SYMBOL(mntput);
947
948struct vfsmount *mntget(struct vfsmount *mnt)
949{
950 if (mnt)
83adc753 951 mnt_add_count(real_mount(mnt), 1);
b3e19d92
NP
952 return mnt;
953}
954EXPORT_SYMBOL(mntget);
955
7b7b1ace
AV
956void mnt_pin(struct vfsmount *mnt)
957{
962830df 958 br_write_lock(&vfsmount_lock);
863d684f 959 real_mount(mnt)->mnt_pinned++;
962830df 960 br_write_unlock(&vfsmount_lock);
7b7b1ace 961}
7b7b1ace
AV
962EXPORT_SYMBOL(mnt_pin);
963
863d684f 964void mnt_unpin(struct vfsmount *m)
7b7b1ace 965{
863d684f 966 struct mount *mnt = real_mount(m);
962830df 967 br_write_lock(&vfsmount_lock);
7b7b1ace 968 if (mnt->mnt_pinned) {
863d684f 969 mnt_add_count(mnt, 1);
7b7b1ace
AV
970 mnt->mnt_pinned--;
971 }
962830df 972 br_write_unlock(&vfsmount_lock);
7b7b1ace 973}
7b7b1ace 974EXPORT_SYMBOL(mnt_unpin);
1da177e4 975
b3b304a2
MS
976static inline void mangle(struct seq_file *m, const char *s)
977{
978 seq_escape(m, s, " \t\n\\");
979}
980
981/*
982 * Simple .show_options callback for filesystems which don't want to
983 * implement more complex mount option showing.
984 *
985 * See also save_mount_options().
986 */
34c80b1d 987int generic_show_options(struct seq_file *m, struct dentry *root)
b3b304a2 988{
2a32cebd
AV
989 const char *options;
990
991 rcu_read_lock();
34c80b1d 992 options = rcu_dereference(root->d_sb->s_options);
b3b304a2
MS
993
994 if (options != NULL && options[0]) {
995 seq_putc(m, ',');
996 mangle(m, options);
997 }
2a32cebd 998 rcu_read_unlock();
b3b304a2
MS
999
1000 return 0;
1001}
1002EXPORT_SYMBOL(generic_show_options);
1003
1004/*
1005 * If filesystem uses generic_show_options(), this function should be
1006 * called from the fill_super() callback.
1007 *
1008 * The .remount_fs callback usually needs to be handled in a special
1009 * way, to make sure, that previous options are not overwritten if the
1010 * remount fails.
1011 *
1012 * Also note, that if the filesystem's .remount_fs function doesn't
1013 * reset all options to their default value, but changes only newly
1014 * given options, then the displayed options will not reflect reality
1015 * any more.
1016 */
1017void save_mount_options(struct super_block *sb, char *options)
1018{
2a32cebd
AV
1019 BUG_ON(sb->s_options);
1020 rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
b3b304a2
MS
1021}
1022EXPORT_SYMBOL(save_mount_options);
1023
2a32cebd
AV
1024void replace_mount_options(struct super_block *sb, char *options)
1025{
1026 char *old = sb->s_options;
1027 rcu_assign_pointer(sb->s_options, options);
1028 if (old) {
1029 synchronize_rcu();
1030 kfree(old);
1031 }
1032}
1033EXPORT_SYMBOL(replace_mount_options);
1034
a1a2c409 1035#ifdef CONFIG_PROC_FS
0226f492 1036/* iterator; we want it to have access to namespace_sem, thus here... */
1da177e4
LT
1037static void *m_start(struct seq_file *m, loff_t *pos)
1038{
6ce6e24e 1039 struct proc_mounts *p = proc_mounts(m);
1da177e4 1040
390c6843 1041 down_read(&namespace_sem);
a1a2c409 1042 return seq_list_start(&p->ns->list, *pos);
1da177e4
LT
1043}
1044
1045static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1046{
6ce6e24e 1047 struct proc_mounts *p = proc_mounts(m);
b0765fb8 1048
a1a2c409 1049 return seq_list_next(v, &p->ns->list, pos);
1da177e4
LT
1050}
1051
1052static void m_stop(struct seq_file *m, void *v)
1053{
390c6843 1054 up_read(&namespace_sem);
1da177e4
LT
1055}
1056
0226f492 1057static int m_show(struct seq_file *m, void *v)
2d4d4864 1058{
6ce6e24e 1059 struct proc_mounts *p = proc_mounts(m);
1a4eeaf2 1060 struct mount *r = list_entry(v, struct mount, mnt_list);
0226f492 1061 return p->show(m, &r->mnt);
1da177e4
LT
1062}
1063
a1a2c409 1064const struct seq_operations mounts_op = {
1da177e4
LT
1065 .start = m_start,
1066 .next = m_next,
1067 .stop = m_stop,
0226f492 1068 .show = m_show,
b4629fe2 1069};
a1a2c409 1070#endif /* CONFIG_PROC_FS */
b4629fe2 1071
1da177e4
LT
1072/**
1073 * may_umount_tree - check if a mount tree is busy
1074 * @mnt: root of mount tree
1075 *
1076 * This is called to check if a tree of mounts has any
1077 * open files, pwds, chroots or sub mounts that are
1078 * busy.
1079 */
909b0a88 1080int may_umount_tree(struct vfsmount *m)
1da177e4 1081{
909b0a88 1082 struct mount *mnt = real_mount(m);
36341f64
RP
1083 int actual_refs = 0;
1084 int minimum_refs = 0;
315fc83e 1085 struct mount *p;
909b0a88 1086 BUG_ON(!m);
1da177e4 1087
b3e19d92 1088 /* write lock needed for mnt_get_count */
962830df 1089 br_write_lock(&vfsmount_lock);
909b0a88 1090 for (p = mnt; p; p = next_mnt(p, mnt)) {
83adc753 1091 actual_refs += mnt_get_count(p);
1da177e4 1092 minimum_refs += 2;
1da177e4 1093 }
962830df 1094 br_write_unlock(&vfsmount_lock);
1da177e4
LT
1095
1096 if (actual_refs > minimum_refs)
e3474a8e 1097 return 0;
1da177e4 1098
e3474a8e 1099 return 1;
1da177e4
LT
1100}
1101
1102EXPORT_SYMBOL(may_umount_tree);
1103
1104/**
1105 * may_umount - check if a mount point is busy
1106 * @mnt: root of mount
1107 *
1108 * This is called to check if a mount point has any
1109 * open files, pwds, chroots or sub mounts. If the
1110 * mount has sub mounts this will return busy
1111 * regardless of whether the sub mounts are busy.
1112 *
1113 * Doesn't take quota and stuff into account. IOW, in some cases it will
1114 * give false negatives. The main reason why it's here is that we need
1115 * a non-destructive way to look for easily umountable filesystems.
1116 */
1117int may_umount(struct vfsmount *mnt)
1118{
e3474a8e 1119 int ret = 1;
8ad08d8a 1120 down_read(&namespace_sem);
962830df 1121 br_write_lock(&vfsmount_lock);
1ab59738 1122 if (propagate_mount_busy(real_mount(mnt), 2))
e3474a8e 1123 ret = 0;
962830df 1124 br_write_unlock(&vfsmount_lock);
8ad08d8a 1125 up_read(&namespace_sem);
a05964f3 1126 return ret;
1da177e4
LT
1127}
1128
1129EXPORT_SYMBOL(may_umount);
1130
e3197d83
AV
1131static LIST_HEAD(unmounted); /* protected by namespace_sem */
1132
97216be0 1133static void namespace_unlock(void)
70fbcdf4 1134{
d5e50f74 1135 struct mount *mnt;
97216be0
AV
1136 LIST_HEAD(head);
1137
1138 if (likely(list_empty(&unmounted))) {
1139 up_write(&namespace_sem);
1140 return;
1141 }
1142
1143 list_splice_init(&unmounted, &head);
1144 up_write(&namespace_sem);
1145
1146 while (!list_empty(&head)) {
1147 mnt = list_first_entry(&head, struct mount, mnt_hash);
1b8e5564 1148 list_del_init(&mnt->mnt_hash);
676da58d 1149 if (mnt_has_parent(mnt)) {
70fbcdf4 1150 struct dentry *dentry;
863d684f 1151 struct mount *m;
99b7db7b 1152
962830df 1153 br_write_lock(&vfsmount_lock);
a73324da 1154 dentry = mnt->mnt_mountpoint;
863d684f 1155 m = mnt->mnt_parent;
a73324da 1156 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
0714a533 1157 mnt->mnt_parent = mnt;
7c4b93d8 1158 m->mnt_ghosts--;
962830df 1159 br_write_unlock(&vfsmount_lock);
70fbcdf4 1160 dput(dentry);
863d684f 1161 mntput(&m->mnt);
70fbcdf4 1162 }
d5e50f74 1163 mntput(&mnt->mnt);
70fbcdf4
RP
1164 }
1165}
1166
97216be0 1167static inline void namespace_lock(void)
e3197d83 1168{
97216be0 1169 down_write(&namespace_sem);
e3197d83
AV
1170}
1171
99b7db7b
NP
1172/*
1173 * vfsmount lock must be held for write
1174 * namespace_sem must be held for write
1175 */
328e6d90 1176void umount_tree(struct mount *mnt, int propagate)
1da177e4 1177{
7b8a53fd 1178 LIST_HEAD(tmp_list);
315fc83e 1179 struct mount *p;
1da177e4 1180
909b0a88 1181 for (p = mnt; p; p = next_mnt(p, mnt))
1b8e5564 1182 list_move(&p->mnt_hash, &tmp_list);
1da177e4 1183
a05964f3 1184 if (propagate)
7b8a53fd 1185 propagate_umount(&tmp_list);
a05964f3 1186
1b8e5564 1187 list_for_each_entry(p, &tmp_list, mnt_hash) {
6776db3d 1188 list_del_init(&p->mnt_expire);
1a4eeaf2 1189 list_del_init(&p->mnt_list);
143c8c91
AV
1190 __touch_mnt_namespace(p->mnt_ns);
1191 p->mnt_ns = NULL;
6b41d536 1192 list_del_init(&p->mnt_child);
676da58d 1193 if (mnt_has_parent(p)) {
863d684f 1194 p->mnt_parent->mnt_ghosts++;
84d17192
AV
1195 put_mountpoint(p->mnt_mp);
1196 p->mnt_mp = NULL;
7c4b93d8 1197 }
0f0afb1d 1198 change_mnt_propagation(p, MS_PRIVATE);
1da177e4 1199 }
328e6d90 1200 list_splice(&tmp_list, &unmounted);
1da177e4
LT
1201}
1202
b54b9be7 1203static void shrink_submounts(struct mount *mnt);
c35038be 1204
1ab59738 1205static int do_umount(struct mount *mnt, int flags)
1da177e4 1206{
1ab59738 1207 struct super_block *sb = mnt->mnt.mnt_sb;
1da177e4
LT
1208 int retval;
1209
1ab59738 1210 retval = security_sb_umount(&mnt->mnt, flags);
1da177e4
LT
1211 if (retval)
1212 return retval;
1213
1214 /*
1215 * Allow userspace to request a mountpoint be expired rather than
1216 * unmounting unconditionally. Unmount only happens if:
1217 * (1) the mark is already set (the mark is cleared by mntput())
1218 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1219 */
1220 if (flags & MNT_EXPIRE) {
1ab59738 1221 if (&mnt->mnt == current->fs->root.mnt ||
1da177e4
LT
1222 flags & (MNT_FORCE | MNT_DETACH))
1223 return -EINVAL;
1224
b3e19d92
NP
1225 /*
1226 * probably don't strictly need the lock here if we examined
1227 * all race cases, but it's a slowpath.
1228 */
962830df 1229 br_write_lock(&vfsmount_lock);
83adc753 1230 if (mnt_get_count(mnt) != 2) {
962830df 1231 br_write_unlock(&vfsmount_lock);
1da177e4 1232 return -EBUSY;
b3e19d92 1233 }
962830df 1234 br_write_unlock(&vfsmount_lock);
1da177e4 1235
863d684f 1236 if (!xchg(&mnt->mnt_expiry_mark, 1))
1da177e4
LT
1237 return -EAGAIN;
1238 }
1239
1240 /*
1241 * If we may have to abort operations to get out of this
1242 * mount, and they will themselves hold resources we must
1243 * allow the fs to do things. In the Unix tradition of
1244 * 'Gee thats tricky lets do it in userspace' the umount_begin
1245 * might fail to complete on the first run through as other tasks
1246 * must return, and the like. Thats for the mount program to worry
1247 * about for the moment.
1248 */
1249
42faad99 1250 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
42faad99 1251 sb->s_op->umount_begin(sb);
42faad99 1252 }
1da177e4
LT
1253
1254 /*
1255 * No sense to grab the lock for this test, but test itself looks
1256 * somewhat bogus. Suggestions for better replacement?
1257 * Ho-hum... In principle, we might treat that as umount + switch
1258 * to rootfs. GC would eventually take care of the old vfsmount.
1259 * Actually it makes sense, especially if rootfs would contain a
1260 * /reboot - static binary that would close all descriptors and
1261 * call reboot(9). Then init(8) could umount root and exec /reboot.
1262 */
1ab59738 1263 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1da177e4
LT
1264 /*
1265 * Special case for "unmounting" root ...
1266 * we just try to remount it readonly.
1267 */
1268 down_write(&sb->s_umount);
4aa98cf7 1269 if (!(sb->s_flags & MS_RDONLY))
1da177e4 1270 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1da177e4
LT
1271 up_write(&sb->s_umount);
1272 return retval;
1273 }
1274
97216be0 1275 namespace_lock();
962830df 1276 br_write_lock(&vfsmount_lock);
5addc5dd 1277 event++;
1da177e4 1278
c35038be 1279 if (!(flags & MNT_DETACH))
b54b9be7 1280 shrink_submounts(mnt);
c35038be 1281
1da177e4 1282 retval = -EBUSY;
a05964f3 1283 if (flags & MNT_DETACH || !propagate_mount_busy(mnt, 2)) {
1a4eeaf2 1284 if (!list_empty(&mnt->mnt_list))
328e6d90 1285 umount_tree(mnt, 1);
1da177e4
LT
1286 retval = 0;
1287 }
962830df 1288 br_write_unlock(&vfsmount_lock);
e3197d83 1289 namespace_unlock();
1da177e4
LT
1290 return retval;
1291}
1292
9b40bc90
AV
1293/*
1294 * Is the caller allowed to modify his namespace?
1295 */
1296static inline bool may_mount(void)
1297{
1298 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1299}
1300
1da177e4
LT
1301/*
1302 * Now umount can handle mount points as well as block devices.
1303 * This is important for filesystems which use unnamed block devices.
1304 *
1305 * We now support a flag for forced unmount like the other 'big iron'
1306 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1307 */
1308
bdc480e3 1309SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1da177e4 1310{
2d8f3038 1311 struct path path;
900148dc 1312 struct mount *mnt;
1da177e4 1313 int retval;
db1f05bb 1314 int lookup_flags = 0;
1da177e4 1315
db1f05bb
MS
1316 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1317 return -EINVAL;
1318
9b40bc90
AV
1319 if (!may_mount())
1320 return -EPERM;
1321
db1f05bb
MS
1322 if (!(flags & UMOUNT_NOFOLLOW))
1323 lookup_flags |= LOOKUP_FOLLOW;
1324
1325 retval = user_path_at(AT_FDCWD, name, lookup_flags, &path);
1da177e4
LT
1326 if (retval)
1327 goto out;
900148dc 1328 mnt = real_mount(path.mnt);
1da177e4 1329 retval = -EINVAL;
2d8f3038 1330 if (path.dentry != path.mnt->mnt_root)
1da177e4 1331 goto dput_and_out;
143c8c91 1332 if (!check_mnt(mnt))
1da177e4 1333 goto dput_and_out;
5ff9d8a6
EB
1334 if (mnt->mnt.mnt_flags & MNT_LOCKED)
1335 goto dput_and_out;
1da177e4 1336
900148dc 1337 retval = do_umount(mnt, flags);
1da177e4 1338dput_and_out:
429731b1 1339 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
2d8f3038 1340 dput(path.dentry);
900148dc 1341 mntput_no_expire(mnt);
1da177e4
LT
1342out:
1343 return retval;
1344}
1345
1346#ifdef __ARCH_WANT_SYS_OLDUMOUNT
1347
1348/*
b58fed8b 1349 * The 2.0 compatible umount. No flags.
1da177e4 1350 */
bdc480e3 1351SYSCALL_DEFINE1(oldumount, char __user *, name)
1da177e4 1352{
b58fed8b 1353 return sys_umount(name, 0);
1da177e4
LT
1354}
1355
1356#endif
1357
8823c079
EB
1358static bool mnt_ns_loop(struct path *path)
1359{
1360 /* Could bind mounting the mount namespace inode cause a
1361 * mount namespace loop?
1362 */
1363 struct inode *inode = path->dentry->d_inode;
0bb80f24 1364 struct proc_ns *ei;
8823c079
EB
1365 struct mnt_namespace *mnt_ns;
1366
1367 if (!proc_ns_inode(inode))
1368 return false;
1369
0bb80f24 1370 ei = get_proc_ns(inode);
8823c079
EB
1371 if (ei->ns_ops != &mntns_operations)
1372 return false;
1373
1374 mnt_ns = ei->ns;
1375 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1376}
1377
87129cc0 1378struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
36341f64 1379 int flag)
1da177e4 1380{
84d17192 1381 struct mount *res, *p, *q, *r, *parent;
1da177e4 1382
fc7be130 1383 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(mnt))
be34d1a3 1384 return ERR_PTR(-EINVAL);
9676f0c6 1385
36341f64 1386 res = q = clone_mnt(mnt, dentry, flag);
be34d1a3
DH
1387 if (IS_ERR(q))
1388 return q;
1389
5ff9d8a6 1390 q->mnt.mnt_flags &= ~MNT_LOCKED;
a73324da 1391 q->mnt_mountpoint = mnt->mnt_mountpoint;
1da177e4
LT
1392
1393 p = mnt;
6b41d536 1394 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
315fc83e 1395 struct mount *s;
7ec02ef1 1396 if (!is_subdir(r->mnt_mountpoint, dentry))
1da177e4
LT
1397 continue;
1398
909b0a88 1399 for (s = r; s; s = next_mnt(s, r)) {
fc7be130 1400 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(s)) {
9676f0c6
RP
1401 s = skip_mnt_tree(s);
1402 continue;
1403 }
0714a533
AV
1404 while (p != s->mnt_parent) {
1405 p = p->mnt_parent;
1406 q = q->mnt_parent;
1da177e4 1407 }
87129cc0 1408 p = s;
84d17192 1409 parent = q;
87129cc0 1410 q = clone_mnt(p, p->mnt.mnt_root, flag);
be34d1a3
DH
1411 if (IS_ERR(q))
1412 goto out;
962830df 1413 br_write_lock(&vfsmount_lock);
1a4eeaf2 1414 list_add_tail(&q->mnt_list, &res->mnt_list);
84d17192 1415 attach_mnt(q, parent, p->mnt_mp);
962830df 1416 br_write_unlock(&vfsmount_lock);
1da177e4
LT
1417 }
1418 }
1419 return res;
be34d1a3 1420out:
1da177e4 1421 if (res) {
962830df 1422 br_write_lock(&vfsmount_lock);
328e6d90 1423 umount_tree(res, 0);
962830df 1424 br_write_unlock(&vfsmount_lock);
1da177e4 1425 }
be34d1a3 1426 return q;
1da177e4
LT
1427}
1428
be34d1a3
DH
1429/* Caller should check returned pointer for errors */
1430
589ff870 1431struct vfsmount *collect_mounts(struct path *path)
8aec0809 1432{
cb338d06 1433 struct mount *tree;
97216be0 1434 namespace_lock();
87129cc0
AV
1435 tree = copy_tree(real_mount(path->mnt), path->dentry,
1436 CL_COPY_ALL | CL_PRIVATE);
328e6d90 1437 namespace_unlock();
be34d1a3
DH
1438 if (IS_ERR(tree))
1439 return NULL;
1440 return &tree->mnt;
8aec0809
AV
1441}
1442
1443void drop_collected_mounts(struct vfsmount *mnt)
1444{
97216be0 1445 namespace_lock();
962830df 1446 br_write_lock(&vfsmount_lock);
328e6d90 1447 umount_tree(real_mount(mnt), 0);
962830df 1448 br_write_unlock(&vfsmount_lock);
3ab6abee 1449 namespace_unlock();
8aec0809
AV
1450}
1451
1f707137
AV
1452int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1453 struct vfsmount *root)
1454{
1a4eeaf2 1455 struct mount *mnt;
1f707137
AV
1456 int res = f(root, arg);
1457 if (res)
1458 return res;
1a4eeaf2
AV
1459 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1460 res = f(&mnt->mnt, arg);
1f707137
AV
1461 if (res)
1462 return res;
1463 }
1464 return 0;
1465}
1466
4b8b21f4 1467static void cleanup_group_ids(struct mount *mnt, struct mount *end)
719f5d7f 1468{
315fc83e 1469 struct mount *p;
719f5d7f 1470
909b0a88 1471 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
fc7be130 1472 if (p->mnt_group_id && !IS_MNT_SHARED(p))
4b8b21f4 1473 mnt_release_group_id(p);
719f5d7f
MS
1474 }
1475}
1476
4b8b21f4 1477static int invent_group_ids(struct mount *mnt, bool recurse)
719f5d7f 1478{
315fc83e 1479 struct mount *p;
719f5d7f 1480
909b0a88 1481 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
fc7be130 1482 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
4b8b21f4 1483 int err = mnt_alloc_group_id(p);
719f5d7f 1484 if (err) {
4b8b21f4 1485 cleanup_group_ids(mnt, p);
719f5d7f
MS
1486 return err;
1487 }
1488 }
1489 }
1490
1491 return 0;
1492}
1493
b90fa9ae
RP
1494/*
1495 * @source_mnt : mount tree to be attached
21444403
RP
1496 * @nd : place the mount tree @source_mnt is attached
1497 * @parent_nd : if non-null, detach the source_mnt from its parent and
1498 * store the parent mount and mountpoint dentry.
1499 * (done when source_mnt is moved)
b90fa9ae
RP
1500 *
1501 * NOTE: in the table below explains the semantics when a source mount
1502 * of a given type is attached to a destination mount of a given type.
9676f0c6
RP
1503 * ---------------------------------------------------------------------------
1504 * | BIND MOUNT OPERATION |
1505 * |**************************************************************************
1506 * | source-->| shared | private | slave | unbindable |
1507 * | dest | | | | |
1508 * | | | | | | |
1509 * | v | | | | |
1510 * |**************************************************************************
1511 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1512 * | | | | | |
1513 * |non-shared| shared (+) | private | slave (*) | invalid |
1514 * ***************************************************************************
b90fa9ae
RP
1515 * A bind operation clones the source mount and mounts the clone on the
1516 * destination mount.
1517 *
1518 * (++) the cloned mount is propagated to all the mounts in the propagation
1519 * tree of the destination mount and the cloned mount is added to
1520 * the peer group of the source mount.
1521 * (+) the cloned mount is created under the destination mount and is marked
1522 * as shared. The cloned mount is added to the peer group of the source
1523 * mount.
5afe0022
RP
1524 * (+++) the mount is propagated to all the mounts in the propagation tree
1525 * of the destination mount and the cloned mount is made slave
1526 * of the same master as that of the source mount. The cloned mount
1527 * is marked as 'shared and slave'.
1528 * (*) the cloned mount is made a slave of the same master as that of the
1529 * source mount.
1530 *
9676f0c6
RP
1531 * ---------------------------------------------------------------------------
1532 * | MOVE MOUNT OPERATION |
1533 * |**************************************************************************
1534 * | source-->| shared | private | slave | unbindable |
1535 * | dest | | | | |
1536 * | | | | | | |
1537 * | v | | | | |
1538 * |**************************************************************************
1539 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
1540 * | | | | | |
1541 * |non-shared| shared (+*) | private | slave (*) | unbindable |
1542 * ***************************************************************************
5afe0022
RP
1543 *
1544 * (+) the mount is moved to the destination. And is then propagated to
1545 * all the mounts in the propagation tree of the destination mount.
21444403 1546 * (+*) the mount is moved to the destination.
5afe0022
RP
1547 * (+++) the mount is moved to the destination and is then propagated to
1548 * all the mounts belonging to the destination mount's propagation tree.
1549 * the mount is marked as 'shared and slave'.
1550 * (*) the mount continues to be a slave at the new location.
b90fa9ae
RP
1551 *
1552 * if the source mount is a tree, the operations explained above is
1553 * applied to each mount in the tree.
1554 * Must be called without spinlocks held, since this function can sleep
1555 * in allocations.
1556 */
0fb54e50 1557static int attach_recursive_mnt(struct mount *source_mnt,
84d17192
AV
1558 struct mount *dest_mnt,
1559 struct mountpoint *dest_mp,
1560 struct path *parent_path)
b90fa9ae
RP
1561{
1562 LIST_HEAD(tree_list);
315fc83e 1563 struct mount *child, *p;
719f5d7f 1564 int err;
b90fa9ae 1565
fc7be130 1566 if (IS_MNT_SHARED(dest_mnt)) {
0fb54e50 1567 err = invent_group_ids(source_mnt, true);
719f5d7f
MS
1568 if (err)
1569 goto out;
1570 }
84d17192 1571 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
719f5d7f
MS
1572 if (err)
1573 goto out_cleanup_ids;
b90fa9ae 1574
962830df 1575 br_write_lock(&vfsmount_lock);
df1a1ad2 1576
fc7be130 1577 if (IS_MNT_SHARED(dest_mnt)) {
909b0a88 1578 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
0f0afb1d 1579 set_mnt_shared(p);
b90fa9ae 1580 }
1a390689 1581 if (parent_path) {
0fb54e50 1582 detach_mnt(source_mnt, parent_path);
84d17192 1583 attach_mnt(source_mnt, dest_mnt, dest_mp);
143c8c91 1584 touch_mnt_namespace(source_mnt->mnt_ns);
21444403 1585 } else {
84d17192 1586 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
0fb54e50 1587 commit_tree(source_mnt);
21444403 1588 }
b90fa9ae 1589
1b8e5564
AV
1590 list_for_each_entry_safe(child, p, &tree_list, mnt_hash) {
1591 list_del_init(&child->mnt_hash);
4b2619a5 1592 commit_tree(child);
b90fa9ae 1593 }
962830df 1594 br_write_unlock(&vfsmount_lock);
99b7db7b 1595
b90fa9ae 1596 return 0;
719f5d7f
MS
1597
1598 out_cleanup_ids:
fc7be130 1599 if (IS_MNT_SHARED(dest_mnt))
0fb54e50 1600 cleanup_group_ids(source_mnt, NULL);
719f5d7f
MS
1601 out:
1602 return err;
b90fa9ae
RP
1603}
1604
84d17192 1605static struct mountpoint *lock_mount(struct path *path)
b12cea91
AV
1606{
1607 struct vfsmount *mnt;
84d17192 1608 struct dentry *dentry = path->dentry;
b12cea91 1609retry:
84d17192
AV
1610 mutex_lock(&dentry->d_inode->i_mutex);
1611 if (unlikely(cant_mount(dentry))) {
1612 mutex_unlock(&dentry->d_inode->i_mutex);
1613 return ERR_PTR(-ENOENT);
b12cea91 1614 }
97216be0 1615 namespace_lock();
b12cea91 1616 mnt = lookup_mnt(path);
84d17192
AV
1617 if (likely(!mnt)) {
1618 struct mountpoint *mp = new_mountpoint(dentry);
1619 if (IS_ERR(mp)) {
97216be0 1620 namespace_unlock();
84d17192
AV
1621 mutex_unlock(&dentry->d_inode->i_mutex);
1622 return mp;
1623 }
1624 return mp;
1625 }
97216be0 1626 namespace_unlock();
b12cea91
AV
1627 mutex_unlock(&path->dentry->d_inode->i_mutex);
1628 path_put(path);
1629 path->mnt = mnt;
84d17192 1630 dentry = path->dentry = dget(mnt->mnt_root);
b12cea91
AV
1631 goto retry;
1632}
1633
84d17192 1634static void unlock_mount(struct mountpoint *where)
b12cea91 1635{
84d17192
AV
1636 struct dentry *dentry = where->m_dentry;
1637 put_mountpoint(where);
328e6d90 1638 namespace_unlock();
84d17192 1639 mutex_unlock(&dentry->d_inode->i_mutex);
b12cea91
AV
1640}
1641
84d17192 1642static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
1da177e4 1643{
95bc5f25 1644 if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER)
1da177e4
LT
1645 return -EINVAL;
1646
84d17192 1647 if (S_ISDIR(mp->m_dentry->d_inode->i_mode) !=
95bc5f25 1648 S_ISDIR(mnt->mnt.mnt_root->d_inode->i_mode))
1da177e4
LT
1649 return -ENOTDIR;
1650
84d17192 1651 return attach_recursive_mnt(mnt, p, mp, NULL);
1da177e4
LT
1652}
1653
7a2e8a8f
VA
1654/*
1655 * Sanity check the flags to change_mnt_propagation.
1656 */
1657
1658static int flags_to_propagation_type(int flags)
1659{
7c6e984d 1660 int type = flags & ~(MS_REC | MS_SILENT);
7a2e8a8f
VA
1661
1662 /* Fail if any non-propagation flags are set */
1663 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
1664 return 0;
1665 /* Only one propagation flag should be set */
1666 if (!is_power_of_2(type))
1667 return 0;
1668 return type;
1669}
1670
07b20889
RP
1671/*
1672 * recursively change the type of the mountpoint.
1673 */
0a0d8a46 1674static int do_change_type(struct path *path, int flag)
07b20889 1675{
315fc83e 1676 struct mount *m;
4b8b21f4 1677 struct mount *mnt = real_mount(path->mnt);
07b20889 1678 int recurse = flag & MS_REC;
7a2e8a8f 1679 int type;
719f5d7f 1680 int err = 0;
07b20889 1681
2d92ab3c 1682 if (path->dentry != path->mnt->mnt_root)
07b20889
RP
1683 return -EINVAL;
1684
7a2e8a8f
VA
1685 type = flags_to_propagation_type(flag);
1686 if (!type)
1687 return -EINVAL;
1688
97216be0 1689 namespace_lock();
719f5d7f
MS
1690 if (type == MS_SHARED) {
1691 err = invent_group_ids(mnt, recurse);
1692 if (err)
1693 goto out_unlock;
1694 }
1695
962830df 1696 br_write_lock(&vfsmount_lock);
909b0a88 1697 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
0f0afb1d 1698 change_mnt_propagation(m, type);
962830df 1699 br_write_unlock(&vfsmount_lock);
719f5d7f
MS
1700
1701 out_unlock:
97216be0 1702 namespace_unlock();
719f5d7f 1703 return err;
07b20889
RP
1704}
1705
5ff9d8a6
EB
1706static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
1707{
1708 struct mount *child;
1709 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
1710 if (!is_subdir(child->mnt_mountpoint, dentry))
1711 continue;
1712
1713 if (child->mnt.mnt_flags & MNT_LOCKED)
1714 return true;
1715 }
1716 return false;
1717}
1718
1da177e4
LT
1719/*
1720 * do loopback mount.
1721 */
808d4e3c 1722static int do_loopback(struct path *path, const char *old_name,
2dafe1c4 1723 int recurse)
1da177e4 1724{
2d92ab3c 1725 struct path old_path;
84d17192
AV
1726 struct mount *mnt = NULL, *old, *parent;
1727 struct mountpoint *mp;
57eccb83 1728 int err;
1da177e4
LT
1729 if (!old_name || !*old_name)
1730 return -EINVAL;
815d405c 1731 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
1da177e4
LT
1732 if (err)
1733 return err;
1734
8823c079
EB
1735 err = -EINVAL;
1736 if (mnt_ns_loop(&old_path))
1737 goto out;
1738
84d17192
AV
1739 mp = lock_mount(path);
1740 err = PTR_ERR(mp);
1741 if (IS_ERR(mp))
b12cea91
AV
1742 goto out;
1743
87129cc0 1744 old = real_mount(old_path.mnt);
84d17192 1745 parent = real_mount(path->mnt);
87129cc0 1746
1da177e4 1747 err = -EINVAL;
fc7be130 1748 if (IS_MNT_UNBINDABLE(old))
b12cea91 1749 goto out2;
9676f0c6 1750
84d17192 1751 if (!check_mnt(parent) || !check_mnt(old))
b12cea91 1752 goto out2;
1da177e4 1753
5ff9d8a6
EB
1754 if (!recurse && has_locked_children(old, old_path.dentry))
1755 goto out2;
1756
ccd48bc7 1757 if (recurse)
87129cc0 1758 mnt = copy_tree(old, old_path.dentry, 0);
ccd48bc7 1759 else
87129cc0 1760 mnt = clone_mnt(old, old_path.dentry, 0);
ccd48bc7 1761
be34d1a3
DH
1762 if (IS_ERR(mnt)) {
1763 err = PTR_ERR(mnt);
e9c5d8a5 1764 goto out2;
be34d1a3 1765 }
ccd48bc7 1766
5ff9d8a6
EB
1767 mnt->mnt.mnt_flags &= ~MNT_LOCKED;
1768
84d17192 1769 err = graft_tree(mnt, parent, mp);
ccd48bc7 1770 if (err) {
962830df 1771 br_write_lock(&vfsmount_lock);
328e6d90 1772 umount_tree(mnt, 0);
962830df 1773 br_write_unlock(&vfsmount_lock);
5b83d2c5 1774 }
b12cea91 1775out2:
84d17192 1776 unlock_mount(mp);
ccd48bc7 1777out:
2d92ab3c 1778 path_put(&old_path);
1da177e4
LT
1779 return err;
1780}
1781
2e4b7fcd
DH
1782static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
1783{
1784 int error = 0;
1785 int readonly_request = 0;
1786
1787 if (ms_flags & MS_RDONLY)
1788 readonly_request = 1;
1789 if (readonly_request == __mnt_is_readonly(mnt))
1790 return 0;
1791
90563b19
EB
1792 if (mnt->mnt_flags & MNT_LOCK_READONLY)
1793 return -EPERM;
1794
2e4b7fcd 1795 if (readonly_request)
83adc753 1796 error = mnt_make_readonly(real_mount(mnt));
2e4b7fcd 1797 else
83adc753 1798 __mnt_unmake_readonly(real_mount(mnt));
2e4b7fcd
DH
1799 return error;
1800}
1801
1da177e4
LT
1802/*
1803 * change filesystem flags. dir should be a physical root of filesystem.
1804 * If you've mounted a non-root directory somewhere and want to do remount
1805 * on it - tough luck.
1806 */
0a0d8a46 1807static int do_remount(struct path *path, int flags, int mnt_flags,
1da177e4
LT
1808 void *data)
1809{
1810 int err;
2d92ab3c 1811 struct super_block *sb = path->mnt->mnt_sb;
143c8c91 1812 struct mount *mnt = real_mount(path->mnt);
1da177e4 1813
143c8c91 1814 if (!check_mnt(mnt))
1da177e4
LT
1815 return -EINVAL;
1816
2d92ab3c 1817 if (path->dentry != path->mnt->mnt_root)
1da177e4
LT
1818 return -EINVAL;
1819
ff36fe2c
EP
1820 err = security_sb_remount(sb, data);
1821 if (err)
1822 return err;
1823
1da177e4 1824 down_write(&sb->s_umount);
2e4b7fcd 1825 if (flags & MS_BIND)
2d92ab3c 1826 err = change_mount_flags(path->mnt, flags);
57eccb83
AV
1827 else if (!capable(CAP_SYS_ADMIN))
1828 err = -EPERM;
4aa98cf7 1829 else
2e4b7fcd 1830 err = do_remount_sb(sb, flags, data, 0);
7b43a79f 1831 if (!err) {
962830df 1832 br_write_lock(&vfsmount_lock);
143c8c91
AV
1833 mnt_flags |= mnt->mnt.mnt_flags & MNT_PROPAGATION_MASK;
1834 mnt->mnt.mnt_flags = mnt_flags;
962830df 1835 br_write_unlock(&vfsmount_lock);
7b43a79f 1836 }
1da177e4 1837 up_write(&sb->s_umount);
0e55a7cc 1838 if (!err) {
962830df 1839 br_write_lock(&vfsmount_lock);
143c8c91 1840 touch_mnt_namespace(mnt->mnt_ns);
962830df 1841 br_write_unlock(&vfsmount_lock);
0e55a7cc 1842 }
1da177e4
LT
1843 return err;
1844}
1845
cbbe362c 1846static inline int tree_contains_unbindable(struct mount *mnt)
9676f0c6 1847{
315fc83e 1848 struct mount *p;
909b0a88 1849 for (p = mnt; p; p = next_mnt(p, mnt)) {
fc7be130 1850 if (IS_MNT_UNBINDABLE(p))
9676f0c6
RP
1851 return 1;
1852 }
1853 return 0;
1854}
1855
808d4e3c 1856static int do_move_mount(struct path *path, const char *old_name)
1da177e4 1857{
2d92ab3c 1858 struct path old_path, parent_path;
676da58d 1859 struct mount *p;
0fb54e50 1860 struct mount *old;
84d17192 1861 struct mountpoint *mp;
57eccb83 1862 int err;
1da177e4
LT
1863 if (!old_name || !*old_name)
1864 return -EINVAL;
2d92ab3c 1865 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
1da177e4
LT
1866 if (err)
1867 return err;
1868
84d17192
AV
1869 mp = lock_mount(path);
1870 err = PTR_ERR(mp);
1871 if (IS_ERR(mp))
cc53ce53
DH
1872 goto out;
1873
143c8c91 1874 old = real_mount(old_path.mnt);
fc7be130 1875 p = real_mount(path->mnt);
143c8c91 1876
1da177e4 1877 err = -EINVAL;
fc7be130 1878 if (!check_mnt(p) || !check_mnt(old))
1da177e4
LT
1879 goto out1;
1880
5ff9d8a6
EB
1881 if (old->mnt.mnt_flags & MNT_LOCKED)
1882 goto out1;
1883
1da177e4 1884 err = -EINVAL;
2d92ab3c 1885 if (old_path.dentry != old_path.mnt->mnt_root)
21444403 1886 goto out1;
1da177e4 1887
676da58d 1888 if (!mnt_has_parent(old))
21444403 1889 goto out1;
1da177e4 1890
2d92ab3c
AV
1891 if (S_ISDIR(path->dentry->d_inode->i_mode) !=
1892 S_ISDIR(old_path.dentry->d_inode->i_mode))
21444403
RP
1893 goto out1;
1894 /*
1895 * Don't move a mount residing in a shared parent.
1896 */
fc7be130 1897 if (IS_MNT_SHARED(old->mnt_parent))
21444403 1898 goto out1;
9676f0c6
RP
1899 /*
1900 * Don't move a mount tree containing unbindable mounts to a destination
1901 * mount which is shared.
1902 */
fc7be130 1903 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
9676f0c6 1904 goto out1;
1da177e4 1905 err = -ELOOP;
fc7be130 1906 for (; mnt_has_parent(p); p = p->mnt_parent)
676da58d 1907 if (p == old)
21444403 1908 goto out1;
1da177e4 1909
84d17192 1910 err = attach_recursive_mnt(old, real_mount(path->mnt), mp, &parent_path);
4ac91378 1911 if (err)
21444403 1912 goto out1;
1da177e4
LT
1913
1914 /* if the mount is moved, it should no longer be expire
1915 * automatically */
6776db3d 1916 list_del_init(&old->mnt_expire);
1da177e4 1917out1:
84d17192 1918 unlock_mount(mp);
1da177e4 1919out:
1da177e4 1920 if (!err)
1a390689 1921 path_put(&parent_path);
2d92ab3c 1922 path_put(&old_path);
1da177e4
LT
1923 return err;
1924}
1925
9d412a43
AV
1926static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
1927{
1928 int err;
1929 const char *subtype = strchr(fstype, '.');
1930 if (subtype) {
1931 subtype++;
1932 err = -EINVAL;
1933 if (!subtype[0])
1934 goto err;
1935 } else
1936 subtype = "";
1937
1938 mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
1939 err = -ENOMEM;
1940 if (!mnt->mnt_sb->s_subtype)
1941 goto err;
1942 return mnt;
1943
1944 err:
1945 mntput(mnt);
1946 return ERR_PTR(err);
1947}
1948
9d412a43
AV
1949/*
1950 * add a mount into a namespace's mount tree
1951 */
95bc5f25 1952static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
9d412a43 1953{
84d17192
AV
1954 struct mountpoint *mp;
1955 struct mount *parent;
9d412a43
AV
1956 int err;
1957
1958 mnt_flags &= ~(MNT_SHARED | MNT_WRITE_HOLD | MNT_INTERNAL);
1959
84d17192
AV
1960 mp = lock_mount(path);
1961 if (IS_ERR(mp))
1962 return PTR_ERR(mp);
9d412a43 1963
84d17192 1964 parent = real_mount(path->mnt);
9d412a43 1965 err = -EINVAL;
84d17192 1966 if (unlikely(!check_mnt(parent))) {
156cacb1
AV
1967 /* that's acceptable only for automounts done in private ns */
1968 if (!(mnt_flags & MNT_SHRINKABLE))
1969 goto unlock;
1970 /* ... and for those we'd better have mountpoint still alive */
84d17192 1971 if (!parent->mnt_ns)
156cacb1
AV
1972 goto unlock;
1973 }
9d412a43
AV
1974
1975 /* Refuse the same filesystem on the same mount point */
1976 err = -EBUSY;
95bc5f25 1977 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
9d412a43
AV
1978 path->mnt->mnt_root == path->dentry)
1979 goto unlock;
1980
1981 err = -EINVAL;
95bc5f25 1982 if (S_ISLNK(newmnt->mnt.mnt_root->d_inode->i_mode))
9d412a43
AV
1983 goto unlock;
1984
95bc5f25 1985 newmnt->mnt.mnt_flags = mnt_flags;
84d17192 1986 err = graft_tree(newmnt, parent, mp);
9d412a43
AV
1987
1988unlock:
84d17192 1989 unlock_mount(mp);
9d412a43
AV
1990 return err;
1991}
b1e75df4 1992
1da177e4
LT
1993/*
1994 * create a new mount for userspace and request it to be added into the
1995 * namespace's tree
1996 */
0c55cfc4 1997static int do_new_mount(struct path *path, const char *fstype, int flags,
808d4e3c 1998 int mnt_flags, const char *name, void *data)
1da177e4 1999{
0c55cfc4 2000 struct file_system_type *type;
9b40bc90 2001 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
1da177e4 2002 struct vfsmount *mnt;
15f9a3f3 2003 int err;
1da177e4 2004
0c55cfc4 2005 if (!fstype)
1da177e4
LT
2006 return -EINVAL;
2007
0c55cfc4
EB
2008 type = get_fs_type(fstype);
2009 if (!type)
2010 return -ENODEV;
2011
2012 if (user_ns != &init_user_ns) {
2013 if (!(type->fs_flags & FS_USERNS_MOUNT)) {
2014 put_filesystem(type);
2015 return -EPERM;
2016 }
2017 /* Only in special cases allow devices from mounts
2018 * created outside the initial user namespace.
2019 */
2020 if (!(type->fs_flags & FS_USERNS_DEV_MOUNT)) {
2021 flags |= MS_NODEV;
2022 mnt_flags |= MNT_NODEV;
2023 }
2024 }
2025
2026 mnt = vfs_kern_mount(type, flags, name, data);
2027 if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
2028 !mnt->mnt_sb->s_subtype)
2029 mnt = fs_set_subtype(mnt, fstype);
2030
2031 put_filesystem(type);
1da177e4
LT
2032 if (IS_ERR(mnt))
2033 return PTR_ERR(mnt);
2034
95bc5f25 2035 err = do_add_mount(real_mount(mnt), path, mnt_flags);
15f9a3f3
AV
2036 if (err)
2037 mntput(mnt);
2038 return err;
1da177e4
LT
2039}
2040
19a167af
AV
2041int finish_automount(struct vfsmount *m, struct path *path)
2042{
6776db3d 2043 struct mount *mnt = real_mount(m);
19a167af
AV
2044 int err;
2045 /* The new mount record should have at least 2 refs to prevent it being
2046 * expired before we get a chance to add it
2047 */
6776db3d 2048 BUG_ON(mnt_get_count(mnt) < 2);
19a167af
AV
2049
2050 if (m->mnt_sb == path->mnt->mnt_sb &&
2051 m->mnt_root == path->dentry) {
b1e75df4
AV
2052 err = -ELOOP;
2053 goto fail;
19a167af
AV
2054 }
2055
95bc5f25 2056 err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
b1e75df4
AV
2057 if (!err)
2058 return 0;
2059fail:
2060 /* remove m from any expiration list it may be on */
6776db3d 2061 if (!list_empty(&mnt->mnt_expire)) {
97216be0 2062 namespace_lock();
962830df 2063 br_write_lock(&vfsmount_lock);
6776db3d 2064 list_del_init(&mnt->mnt_expire);
962830df 2065 br_write_unlock(&vfsmount_lock);
97216be0 2066 namespace_unlock();
19a167af 2067 }
b1e75df4
AV
2068 mntput(m);
2069 mntput(m);
19a167af
AV
2070 return err;
2071}
2072
ea5b778a
DH
2073/**
2074 * mnt_set_expiry - Put a mount on an expiration list
2075 * @mnt: The mount to list.
2076 * @expiry_list: The list to add the mount to.
2077 */
2078void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2079{
97216be0 2080 namespace_lock();
962830df 2081 br_write_lock(&vfsmount_lock);
ea5b778a 2082
6776db3d 2083 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
ea5b778a 2084
962830df 2085 br_write_unlock(&vfsmount_lock);
97216be0 2086 namespace_unlock();
ea5b778a
DH
2087}
2088EXPORT_SYMBOL(mnt_set_expiry);
2089
1da177e4
LT
2090/*
2091 * process a list of expirable mountpoints with the intent of discarding any
2092 * mountpoints that aren't in use and haven't been touched since last we came
2093 * here
2094 */
2095void mark_mounts_for_expiry(struct list_head *mounts)
2096{
761d5c38 2097 struct mount *mnt, *next;
1da177e4
LT
2098 LIST_HEAD(graveyard);
2099
2100 if (list_empty(mounts))
2101 return;
2102
97216be0 2103 namespace_lock();
962830df 2104 br_write_lock(&vfsmount_lock);
1da177e4
LT
2105
2106 /* extract from the expiration list every vfsmount that matches the
2107 * following criteria:
2108 * - only referenced by its parent vfsmount
2109 * - still marked for expiry (marked on the last call here; marks are
2110 * cleared by mntput())
2111 */
6776db3d 2112 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
863d684f 2113 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
1ab59738 2114 propagate_mount_busy(mnt, 1))
1da177e4 2115 continue;
6776db3d 2116 list_move(&mnt->mnt_expire, &graveyard);
1da177e4 2117 }
bcc5c7d2 2118 while (!list_empty(&graveyard)) {
6776db3d 2119 mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
143c8c91 2120 touch_mnt_namespace(mnt->mnt_ns);
328e6d90 2121 umount_tree(mnt, 1);
bcc5c7d2 2122 }
962830df 2123 br_write_unlock(&vfsmount_lock);
3ab6abee 2124 namespace_unlock();
5528f911
TM
2125}
2126
2127EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2128
2129/*
2130 * Ripoff of 'select_parent()'
2131 *
2132 * search the list of submounts for a given mountpoint, and move any
2133 * shrinkable submounts to the 'graveyard' list.
2134 */
692afc31 2135static int select_submounts(struct mount *parent, struct list_head *graveyard)
5528f911 2136{
692afc31 2137 struct mount *this_parent = parent;
5528f911
TM
2138 struct list_head *next;
2139 int found = 0;
2140
2141repeat:
6b41d536 2142 next = this_parent->mnt_mounts.next;
5528f911 2143resume:
6b41d536 2144 while (next != &this_parent->mnt_mounts) {
5528f911 2145 struct list_head *tmp = next;
6b41d536 2146 struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
5528f911
TM
2147
2148 next = tmp->next;
692afc31 2149 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
1da177e4 2150 continue;
5528f911
TM
2151 /*
2152 * Descend a level if the d_mounts list is non-empty.
2153 */
6b41d536 2154 if (!list_empty(&mnt->mnt_mounts)) {
5528f911
TM
2155 this_parent = mnt;
2156 goto repeat;
2157 }
1da177e4 2158
1ab59738 2159 if (!propagate_mount_busy(mnt, 1)) {
6776db3d 2160 list_move_tail(&mnt->mnt_expire, graveyard);
5528f911
TM
2161 found++;
2162 }
1da177e4 2163 }
5528f911
TM
2164 /*
2165 * All done at this level ... ascend and resume the search
2166 */
2167 if (this_parent != parent) {
6b41d536 2168 next = this_parent->mnt_child.next;
0714a533 2169 this_parent = this_parent->mnt_parent;
5528f911
TM
2170 goto resume;
2171 }
2172 return found;
2173}
2174
2175/*
2176 * process a list of expirable mountpoints with the intent of discarding any
2177 * submounts of a specific parent mountpoint
99b7db7b
NP
2178 *
2179 * vfsmount_lock must be held for write
5528f911 2180 */
b54b9be7 2181static void shrink_submounts(struct mount *mnt)
5528f911
TM
2182{
2183 LIST_HEAD(graveyard);
761d5c38 2184 struct mount *m;
5528f911 2185
5528f911 2186 /* extract submounts of 'mountpoint' from the expiration list */
c35038be 2187 while (select_submounts(mnt, &graveyard)) {
bcc5c7d2 2188 while (!list_empty(&graveyard)) {
761d5c38 2189 m = list_first_entry(&graveyard, struct mount,
6776db3d 2190 mnt_expire);
143c8c91 2191 touch_mnt_namespace(m->mnt_ns);
328e6d90 2192 umount_tree(m, 1);
bcc5c7d2
AV
2193 }
2194 }
1da177e4
LT
2195}
2196
1da177e4
LT
2197/*
2198 * Some copy_from_user() implementations do not return the exact number of
2199 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
2200 * Note that this function differs from copy_from_user() in that it will oops
2201 * on bad values of `to', rather than returning a short copy.
2202 */
b58fed8b
RP
2203static long exact_copy_from_user(void *to, const void __user * from,
2204 unsigned long n)
1da177e4
LT
2205{
2206 char *t = to;
2207 const char __user *f = from;
2208 char c;
2209
2210 if (!access_ok(VERIFY_READ, from, n))
2211 return n;
2212
2213 while (n) {
2214 if (__get_user(c, f)) {
2215 memset(t, 0, n);
2216 break;
2217 }
2218 *t++ = c;
2219 f++;
2220 n--;
2221 }
2222 return n;
2223}
2224
b58fed8b 2225int copy_mount_options(const void __user * data, unsigned long *where)
1da177e4
LT
2226{
2227 int i;
2228 unsigned long page;
2229 unsigned long size;
b58fed8b 2230
1da177e4
LT
2231 *where = 0;
2232 if (!data)
2233 return 0;
2234
2235 if (!(page = __get_free_page(GFP_KERNEL)))
2236 return -ENOMEM;
2237
2238 /* We only care that *some* data at the address the user
2239 * gave us is valid. Just in case, we'll zero
2240 * the remainder of the page.
2241 */
2242 /* copy_from_user cannot cross TASK_SIZE ! */
2243 size = TASK_SIZE - (unsigned long)data;
2244 if (size > PAGE_SIZE)
2245 size = PAGE_SIZE;
2246
2247 i = size - exact_copy_from_user((void *)page, data, size);
2248 if (!i) {
b58fed8b 2249 free_page(page);
1da177e4
LT
2250 return -EFAULT;
2251 }
2252 if (i != PAGE_SIZE)
2253 memset((char *)page + i, 0, PAGE_SIZE - i);
2254 *where = page;
2255 return 0;
2256}
2257
eca6f534
VN
2258int copy_mount_string(const void __user *data, char **where)
2259{
2260 char *tmp;
2261
2262 if (!data) {
2263 *where = NULL;
2264 return 0;
2265 }
2266
2267 tmp = strndup_user(data, PAGE_SIZE);
2268 if (IS_ERR(tmp))
2269 return PTR_ERR(tmp);
2270
2271 *where = tmp;
2272 return 0;
2273}
2274
1da177e4
LT
2275/*
2276 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2277 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2278 *
2279 * data is a (void *) that can point to any structure up to
2280 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2281 * information (or be NULL).
2282 *
2283 * Pre-0.97 versions of mount() didn't have a flags word.
2284 * When the flags word was introduced its top half was required
2285 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2286 * Therefore, if this magic number is present, it carries no information
2287 * and must be discarded.
2288 */
808d4e3c
AV
2289long do_mount(const char *dev_name, const char *dir_name,
2290 const char *type_page, unsigned long flags, void *data_page)
1da177e4 2291{
2d92ab3c 2292 struct path path;
1da177e4
LT
2293 int retval = 0;
2294 int mnt_flags = 0;
2295
2296 /* Discard magic */
2297 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2298 flags &= ~MS_MGC_MSK;
2299
2300 /* Basic sanity checks */
2301
2302 if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
2303 return -EINVAL;
1da177e4
LT
2304
2305 if (data_page)
2306 ((char *)data_page)[PAGE_SIZE - 1] = 0;
2307
a27ab9f2
TH
2308 /* ... and get the mountpoint */
2309 retval = kern_path(dir_name, LOOKUP_FOLLOW, &path);
2310 if (retval)
2311 return retval;
2312
2313 retval = security_sb_mount(dev_name, &path,
2314 type_page, flags, data_page);
0d5cadb8
AV
2315 if (!retval && !may_mount())
2316 retval = -EPERM;
a27ab9f2
TH
2317 if (retval)
2318 goto dput_out;
2319
613cbe3d
AK
2320 /* Default to relatime unless overriden */
2321 if (!(flags & MS_NOATIME))
2322 mnt_flags |= MNT_RELATIME;
0a1c01c9 2323
1da177e4
LT
2324 /* Separate the per-mountpoint flags */
2325 if (flags & MS_NOSUID)
2326 mnt_flags |= MNT_NOSUID;
2327 if (flags & MS_NODEV)
2328 mnt_flags |= MNT_NODEV;
2329 if (flags & MS_NOEXEC)
2330 mnt_flags |= MNT_NOEXEC;
fc33a7bb
CH
2331 if (flags & MS_NOATIME)
2332 mnt_flags |= MNT_NOATIME;
2333 if (flags & MS_NODIRATIME)
2334 mnt_flags |= MNT_NODIRATIME;
d0adde57
MG
2335 if (flags & MS_STRICTATIME)
2336 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
2e4b7fcd
DH
2337 if (flags & MS_RDONLY)
2338 mnt_flags |= MNT_READONLY;
fc33a7bb 2339
7a4dec53 2340 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
d0adde57
MG
2341 MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
2342 MS_STRICTATIME);
1da177e4 2343
1da177e4 2344 if (flags & MS_REMOUNT)
2d92ab3c 2345 retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
1da177e4
LT
2346 data_page);
2347 else if (flags & MS_BIND)
2d92ab3c 2348 retval = do_loopback(&path, dev_name, flags & MS_REC);
9676f0c6 2349 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2d92ab3c 2350 retval = do_change_type(&path, flags);
1da177e4 2351 else if (flags & MS_MOVE)
2d92ab3c 2352 retval = do_move_mount(&path, dev_name);
1da177e4 2353 else
2d92ab3c 2354 retval = do_new_mount(&path, type_page, flags, mnt_flags,
1da177e4
LT
2355 dev_name, data_page);
2356dput_out:
2d92ab3c 2357 path_put(&path);
1da177e4
LT
2358 return retval;
2359}
2360
771b1371
EB
2361static void free_mnt_ns(struct mnt_namespace *ns)
2362{
98f842e6 2363 proc_free_inum(ns->proc_inum);
771b1371
EB
2364 put_user_ns(ns->user_ns);
2365 kfree(ns);
2366}
2367
8823c079
EB
2368/*
2369 * Assign a sequence number so we can detect when we attempt to bind
2370 * mount a reference to an older mount namespace into the current
2371 * mount namespace, preventing reference counting loops. A 64bit
2372 * number incrementing at 10Ghz will take 12,427 years to wrap which
2373 * is effectively never, so we can ignore the possibility.
2374 */
2375static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
2376
771b1371 2377static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns)
cf8d2c11
TM
2378{
2379 struct mnt_namespace *new_ns;
98f842e6 2380 int ret;
cf8d2c11
TM
2381
2382 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
2383 if (!new_ns)
2384 return ERR_PTR(-ENOMEM);
98f842e6
EB
2385 ret = proc_alloc_inum(&new_ns->proc_inum);
2386 if (ret) {
2387 kfree(new_ns);
2388 return ERR_PTR(ret);
2389 }
8823c079 2390 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
cf8d2c11
TM
2391 atomic_set(&new_ns->count, 1);
2392 new_ns->root = NULL;
2393 INIT_LIST_HEAD(&new_ns->list);
2394 init_waitqueue_head(&new_ns->poll);
2395 new_ns->event = 0;
771b1371 2396 new_ns->user_ns = get_user_ns(user_ns);
cf8d2c11
TM
2397 return new_ns;
2398}
2399
741a2951
JD
2400/*
2401 * Allocate a new namespace structure and populate it with contents
2402 * copied from the namespace of the passed in task structure.
2403 */
e3222c4e 2404static struct mnt_namespace *dup_mnt_ns(struct mnt_namespace *mnt_ns,
771b1371 2405 struct user_namespace *user_ns, struct fs_struct *fs)
1da177e4 2406{
6b3286ed 2407 struct mnt_namespace *new_ns;
7f2da1e7 2408 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
315fc83e 2409 struct mount *p, *q;
be08d6d2 2410 struct mount *old = mnt_ns->root;
cb338d06 2411 struct mount *new;
7a472ef4 2412 int copy_flags;
1da177e4 2413
771b1371 2414 new_ns = alloc_mnt_ns(user_ns);
cf8d2c11
TM
2415 if (IS_ERR(new_ns))
2416 return new_ns;
1da177e4 2417
97216be0 2418 namespace_lock();
1da177e4 2419 /* First pass: copy the tree topology */
7a472ef4
EB
2420 copy_flags = CL_COPY_ALL | CL_EXPIRE;
2421 if (user_ns != mnt_ns->user_ns)
132c94e3 2422 copy_flags |= CL_SHARED_TO_SLAVE | CL_UNPRIVILEGED;
7a472ef4 2423 new = copy_tree(old, old->mnt.mnt_root, copy_flags);
be34d1a3 2424 if (IS_ERR(new)) {
328e6d90 2425 namespace_unlock();
771b1371 2426 free_mnt_ns(new_ns);
be34d1a3 2427 return ERR_CAST(new);
1da177e4 2428 }
be08d6d2 2429 new_ns->root = new;
962830df 2430 br_write_lock(&vfsmount_lock);
1a4eeaf2 2431 list_add_tail(&new_ns->list, &new->mnt_list);
962830df 2432 br_write_unlock(&vfsmount_lock);
1da177e4
LT
2433
2434 /*
2435 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2436 * as belonging to new namespace. We have already acquired a private
2437 * fs_struct, so tsk->fs->lock is not needed.
2438 */
909b0a88 2439 p = old;
cb338d06 2440 q = new;
1da177e4 2441 while (p) {
143c8c91 2442 q->mnt_ns = new_ns;
1da177e4 2443 if (fs) {
315fc83e
AV
2444 if (&p->mnt == fs->root.mnt) {
2445 fs->root.mnt = mntget(&q->mnt);
315fc83e 2446 rootmnt = &p->mnt;
1da177e4 2447 }
315fc83e
AV
2448 if (&p->mnt == fs->pwd.mnt) {
2449 fs->pwd.mnt = mntget(&q->mnt);
315fc83e 2450 pwdmnt = &p->mnt;
1da177e4 2451 }
1da177e4 2452 }
909b0a88
AV
2453 p = next_mnt(p, old);
2454 q = next_mnt(q, new);
1da177e4 2455 }
328e6d90 2456 namespace_unlock();
1da177e4 2457
1da177e4 2458 if (rootmnt)
f03c6599 2459 mntput(rootmnt);
1da177e4 2460 if (pwdmnt)
f03c6599 2461 mntput(pwdmnt);
1da177e4 2462
741a2951
JD
2463 return new_ns;
2464}
2465
213dd266 2466struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
771b1371 2467 struct user_namespace *user_ns, struct fs_struct *new_fs)
741a2951 2468{
6b3286ed 2469 struct mnt_namespace *new_ns;
741a2951 2470
e3222c4e 2471 BUG_ON(!ns);
6b3286ed 2472 get_mnt_ns(ns);
741a2951
JD
2473
2474 if (!(flags & CLONE_NEWNS))
e3222c4e 2475 return ns;
741a2951 2476
771b1371 2477 new_ns = dup_mnt_ns(ns, user_ns, new_fs);
741a2951 2478
6b3286ed 2479 put_mnt_ns(ns);
e3222c4e 2480 return new_ns;
1da177e4
LT
2481}
2482
cf8d2c11
TM
2483/**
2484 * create_mnt_ns - creates a private namespace and adds a root filesystem
2485 * @mnt: pointer to the new root filesystem mountpoint
2486 */
1a4eeaf2 2487static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
cf8d2c11 2488{
771b1371 2489 struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns);
cf8d2c11 2490 if (!IS_ERR(new_ns)) {
1a4eeaf2
AV
2491 struct mount *mnt = real_mount(m);
2492 mnt->mnt_ns = new_ns;
be08d6d2 2493 new_ns->root = mnt;
b1983cd8 2494 list_add(&mnt->mnt_list, &new_ns->list);
c1334495 2495 } else {
1a4eeaf2 2496 mntput(m);
cf8d2c11
TM
2497 }
2498 return new_ns;
2499}
cf8d2c11 2500
ea441d11
AV
2501struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
2502{
2503 struct mnt_namespace *ns;
d31da0f0 2504 struct super_block *s;
ea441d11
AV
2505 struct path path;
2506 int err;
2507
2508 ns = create_mnt_ns(mnt);
2509 if (IS_ERR(ns))
2510 return ERR_CAST(ns);
2511
2512 err = vfs_path_lookup(mnt->mnt_root, mnt,
2513 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
2514
2515 put_mnt_ns(ns);
2516
2517 if (err)
2518 return ERR_PTR(err);
2519
2520 /* trade a vfsmount reference for active sb one */
d31da0f0
AV
2521 s = path.mnt->mnt_sb;
2522 atomic_inc(&s->s_active);
ea441d11
AV
2523 mntput(path.mnt);
2524 /* lock the sucker */
d31da0f0 2525 down_write(&s->s_umount);
ea441d11
AV
2526 /* ... and return the root of (sub)tree on it */
2527 return path.dentry;
2528}
2529EXPORT_SYMBOL(mount_subtree);
2530
bdc480e3
HC
2531SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
2532 char __user *, type, unsigned long, flags, void __user *, data)
1da177e4 2533{
eca6f534
VN
2534 int ret;
2535 char *kernel_type;
91a27b2a 2536 struct filename *kernel_dir;
eca6f534 2537 char *kernel_dev;
1da177e4 2538 unsigned long data_page;
1da177e4 2539
eca6f534
VN
2540 ret = copy_mount_string(type, &kernel_type);
2541 if (ret < 0)
2542 goto out_type;
1da177e4 2543
eca6f534
VN
2544 kernel_dir = getname(dir_name);
2545 if (IS_ERR(kernel_dir)) {
2546 ret = PTR_ERR(kernel_dir);
2547 goto out_dir;
2548 }
1da177e4 2549
eca6f534
VN
2550 ret = copy_mount_string(dev_name, &kernel_dev);
2551 if (ret < 0)
2552 goto out_dev;
1da177e4 2553
eca6f534
VN
2554 ret = copy_mount_options(data, &data_page);
2555 if (ret < 0)
2556 goto out_data;
1da177e4 2557
91a27b2a 2558 ret = do_mount(kernel_dev, kernel_dir->name, kernel_type, flags,
eca6f534 2559 (void *) data_page);
1da177e4 2560
eca6f534
VN
2561 free_page(data_page);
2562out_data:
2563 kfree(kernel_dev);
2564out_dev:
2565 putname(kernel_dir);
2566out_dir:
2567 kfree(kernel_type);
2568out_type:
2569 return ret;
1da177e4
LT
2570}
2571
afac7cba
AV
2572/*
2573 * Return true if path is reachable from root
2574 *
2575 * namespace_sem or vfsmount_lock is held
2576 */
643822b4 2577bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
afac7cba
AV
2578 const struct path *root)
2579{
643822b4 2580 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
a73324da 2581 dentry = mnt->mnt_mountpoint;
0714a533 2582 mnt = mnt->mnt_parent;
afac7cba 2583 }
643822b4 2584 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
afac7cba
AV
2585}
2586
2587int path_is_under(struct path *path1, struct path *path2)
2588{
2589 int res;
962830df 2590 br_read_lock(&vfsmount_lock);
643822b4 2591 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
962830df 2592 br_read_unlock(&vfsmount_lock);
afac7cba
AV
2593 return res;
2594}
2595EXPORT_SYMBOL(path_is_under);
2596
1da177e4
LT
2597/*
2598 * pivot_root Semantics:
2599 * Moves the root file system of the current process to the directory put_old,
2600 * makes new_root as the new root file system of the current process, and sets
2601 * root/cwd of all processes which had them on the current root to new_root.
2602 *
2603 * Restrictions:
2604 * The new_root and put_old must be directories, and must not be on the
2605 * same file system as the current process root. The put_old must be
2606 * underneath new_root, i.e. adding a non-zero number of /.. to the string
2607 * pointed to by put_old must yield the same directory as new_root. No other
2608 * file system may be mounted on put_old. After all, new_root is a mountpoint.
2609 *
4a0d11fa
NB
2610 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
2611 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
2612 * in this situation.
2613 *
1da177e4
LT
2614 * Notes:
2615 * - we don't move root/cwd if they are not at the root (reason: if something
2616 * cared enough to change them, it's probably wrong to force them elsewhere)
2617 * - it's okay to pick a root that isn't the root of a file system, e.g.
2618 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
2619 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
2620 * first.
2621 */
3480b257
HC
2622SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
2623 const char __user *, put_old)
1da177e4 2624{
2d8f3038 2625 struct path new, old, parent_path, root_parent, root;
84d17192
AV
2626 struct mount *new_mnt, *root_mnt, *old_mnt;
2627 struct mountpoint *old_mp, *root_mp;
1da177e4
LT
2628 int error;
2629
9b40bc90 2630 if (!may_mount())
1da177e4
LT
2631 return -EPERM;
2632
2d8f3038 2633 error = user_path_dir(new_root, &new);
1da177e4
LT
2634 if (error)
2635 goto out0;
1da177e4 2636
2d8f3038 2637 error = user_path_dir(put_old, &old);
1da177e4
LT
2638 if (error)
2639 goto out1;
2640
2d8f3038 2641 error = security_sb_pivotroot(&old, &new);
b12cea91
AV
2642 if (error)
2643 goto out2;
1da177e4 2644
f7ad3c6b 2645 get_fs_root(current->fs, &root);
84d17192
AV
2646 old_mp = lock_mount(&old);
2647 error = PTR_ERR(old_mp);
2648 if (IS_ERR(old_mp))
b12cea91
AV
2649 goto out3;
2650
1da177e4 2651 error = -EINVAL;
419148da
AV
2652 new_mnt = real_mount(new.mnt);
2653 root_mnt = real_mount(root.mnt);
84d17192
AV
2654 old_mnt = real_mount(old.mnt);
2655 if (IS_MNT_SHARED(old_mnt) ||
fc7be130
AV
2656 IS_MNT_SHARED(new_mnt->mnt_parent) ||
2657 IS_MNT_SHARED(root_mnt->mnt_parent))
b12cea91 2658 goto out4;
143c8c91 2659 if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
b12cea91 2660 goto out4;
5ff9d8a6
EB
2661 if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
2662 goto out4;
1da177e4 2663 error = -ENOENT;
f3da392e 2664 if (d_unlinked(new.dentry))
b12cea91 2665 goto out4;
1da177e4 2666 error = -EBUSY;
84d17192 2667 if (new_mnt == root_mnt || old_mnt == root_mnt)
b12cea91 2668 goto out4; /* loop, on the same file system */
1da177e4 2669 error = -EINVAL;
8c3ee42e 2670 if (root.mnt->mnt_root != root.dentry)
b12cea91 2671 goto out4; /* not a mountpoint */
676da58d 2672 if (!mnt_has_parent(root_mnt))
b12cea91 2673 goto out4; /* not attached */
84d17192 2674 root_mp = root_mnt->mnt_mp;
2d8f3038 2675 if (new.mnt->mnt_root != new.dentry)
b12cea91 2676 goto out4; /* not a mountpoint */
676da58d 2677 if (!mnt_has_parent(new_mnt))
b12cea91 2678 goto out4; /* not attached */
4ac91378 2679 /* make sure we can reach put_old from new_root */
84d17192 2680 if (!is_path_reachable(old_mnt, old.dentry, &new))
b12cea91 2681 goto out4;
84d17192 2682 root_mp->m_count++; /* pin it so it won't go away */
962830df 2683 br_write_lock(&vfsmount_lock);
419148da
AV
2684 detach_mnt(new_mnt, &parent_path);
2685 detach_mnt(root_mnt, &root_parent);
5ff9d8a6
EB
2686 if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
2687 new_mnt->mnt.mnt_flags |= MNT_LOCKED;
2688 root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2689 }
4ac91378 2690 /* mount old root on put_old */
84d17192 2691 attach_mnt(root_mnt, old_mnt, old_mp);
4ac91378 2692 /* mount new_root on / */
84d17192 2693 attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp);
6b3286ed 2694 touch_mnt_namespace(current->nsproxy->mnt_ns);
962830df 2695 br_write_unlock(&vfsmount_lock);
2d8f3038 2696 chroot_fs_refs(&root, &new);
84d17192 2697 put_mountpoint(root_mp);
1da177e4 2698 error = 0;
b12cea91 2699out4:
84d17192 2700 unlock_mount(old_mp);
b12cea91
AV
2701 if (!error) {
2702 path_put(&root_parent);
2703 path_put(&parent_path);
2704 }
2705out3:
8c3ee42e 2706 path_put(&root);
b12cea91 2707out2:
2d8f3038 2708 path_put(&old);
1da177e4 2709out1:
2d8f3038 2710 path_put(&new);
1da177e4 2711out0:
1da177e4 2712 return error;
1da177e4
LT
2713}
2714
2715static void __init init_mount_tree(void)
2716{
2717 struct vfsmount *mnt;
6b3286ed 2718 struct mnt_namespace *ns;
ac748a09 2719 struct path root;
0c55cfc4 2720 struct file_system_type *type;
1da177e4 2721
0c55cfc4
EB
2722 type = get_fs_type("rootfs");
2723 if (!type)
2724 panic("Can't find rootfs type");
2725 mnt = vfs_kern_mount(type, 0, "rootfs", NULL);
2726 put_filesystem(type);
1da177e4
LT
2727 if (IS_ERR(mnt))
2728 panic("Can't create rootfs");
b3e19d92 2729
3b22edc5
TM
2730 ns = create_mnt_ns(mnt);
2731 if (IS_ERR(ns))
1da177e4 2732 panic("Can't allocate initial namespace");
6b3286ed
KK
2733
2734 init_task.nsproxy->mnt_ns = ns;
2735 get_mnt_ns(ns);
2736
be08d6d2
AV
2737 root.mnt = mnt;
2738 root.dentry = mnt->mnt_root;
ac748a09
JB
2739
2740 set_fs_pwd(current->fs, &root);
2741 set_fs_root(current->fs, &root);
1da177e4
LT
2742}
2743
74bf17cf 2744void __init mnt_init(void)
1da177e4 2745{
13f14b4d 2746 unsigned u;
15a67dd8 2747 int err;
1da177e4 2748
390c6843
RP
2749 init_rwsem(&namespace_sem);
2750
7d6fec45 2751 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
20c2df83 2752 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
1da177e4 2753
b58fed8b 2754 mount_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
84d17192 2755 mountpoint_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
1da177e4 2756
84d17192 2757 if (!mount_hashtable || !mountpoint_hashtable)
1da177e4
LT
2758 panic("Failed to allocate mount hash table\n");
2759
80cdc6da 2760 printk(KERN_INFO "Mount-cache hash table entries: %lu\n", HASH_SIZE);
13f14b4d
ED
2761
2762 for (u = 0; u < HASH_SIZE; u++)
2763 INIT_LIST_HEAD(&mount_hashtable[u]);
84d17192
AV
2764 for (u = 0; u < HASH_SIZE; u++)
2765 INIT_LIST_HEAD(&mountpoint_hashtable[u]);
1da177e4 2766
962830df 2767 br_lock_init(&vfsmount_lock);
99b7db7b 2768
15a67dd8
RD
2769 err = sysfs_init();
2770 if (err)
2771 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
8e24eea7 2772 __func__, err);
00d26666
GKH
2773 fs_kobj = kobject_create_and_add("fs", NULL);
2774 if (!fs_kobj)
8e24eea7 2775 printk(KERN_WARNING "%s: kobj create error\n", __func__);
1da177e4
LT
2776 init_rootfs();
2777 init_mount_tree();
2778}
2779
616511d0 2780void put_mnt_ns(struct mnt_namespace *ns)
1da177e4 2781{
d498b25a 2782 if (!atomic_dec_and_test(&ns->count))
616511d0 2783 return;
97216be0 2784 namespace_lock();
962830df 2785 br_write_lock(&vfsmount_lock);
328e6d90 2786 umount_tree(ns->root, 0);
962830df 2787 br_write_unlock(&vfsmount_lock);
3ab6abee 2788 namespace_unlock();
771b1371 2789 free_mnt_ns(ns);
1da177e4 2790}
9d412a43
AV
2791
2792struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
2793{
423e0ab0
TC
2794 struct vfsmount *mnt;
2795 mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
2796 if (!IS_ERR(mnt)) {
2797 /*
2798 * it is a longterm mount, don't release mnt until
2799 * we unmount before file sys is unregistered
2800 */
f7a99c5b 2801 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
423e0ab0
TC
2802 }
2803 return mnt;
9d412a43
AV
2804}
2805EXPORT_SYMBOL_GPL(kern_mount_data);
423e0ab0
TC
2806
2807void kern_unmount(struct vfsmount *mnt)
2808{
2809 /* release long term mount so mount point can be released */
2810 if (!IS_ERR_OR_NULL(mnt)) {
f7a99c5b
AV
2811 br_write_lock(&vfsmount_lock);
2812 real_mount(mnt)->mnt_ns = NULL;
2813 br_write_unlock(&vfsmount_lock);
423e0ab0
TC
2814 mntput(mnt);
2815 }
2816}
2817EXPORT_SYMBOL(kern_unmount);
02125a82
AV
2818
2819bool our_mnt(struct vfsmount *mnt)
2820{
143c8c91 2821 return check_mnt(real_mount(mnt));
02125a82 2822}
8823c079 2823
3151527e
EB
2824bool current_chrooted(void)
2825{
2826 /* Does the current process have a non-standard root */
2827 struct path ns_root;
2828 struct path fs_root;
2829 bool chrooted;
2830
2831 /* Find the namespace root */
2832 ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
2833 ns_root.dentry = ns_root.mnt->mnt_root;
2834 path_get(&ns_root);
2835 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
2836 ;
2837
2838 get_fs_root(current->fs, &fs_root);
2839
2840 chrooted = !path_equal(&fs_root, &ns_root);
2841
2842 path_put(&fs_root);
2843 path_put(&ns_root);
2844
2845 return chrooted;
2846}
2847
87a8ebd6
EB
2848void update_mnt_policy(struct user_namespace *userns)
2849{
2850 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
2851 struct mount *mnt;
2852
2853 down_read(&namespace_sem);
2854 list_for_each_entry(mnt, &ns->list, mnt_list) {
2855 switch (mnt->mnt.mnt_sb->s_magic) {
2856 case SYSFS_MAGIC:
2857 userns->may_mount_sysfs = true;
2858 break;
2859 case PROC_SUPER_MAGIC:
2860 userns->may_mount_proc = true;
2861 break;
2862 }
2863 if (userns->may_mount_sysfs && userns->may_mount_proc)
2864 break;
2865 }
2866 up_read(&namespace_sem);
2867}
2868
8823c079
EB
2869static void *mntns_get(struct task_struct *task)
2870{
2871 struct mnt_namespace *ns = NULL;
2872 struct nsproxy *nsproxy;
2873
2874 rcu_read_lock();
2875 nsproxy = task_nsproxy(task);
2876 if (nsproxy) {
2877 ns = nsproxy->mnt_ns;
2878 get_mnt_ns(ns);
2879 }
2880 rcu_read_unlock();
2881
2882 return ns;
2883}
2884
2885static void mntns_put(void *ns)
2886{
2887 put_mnt_ns(ns);
2888}
2889
2890static int mntns_install(struct nsproxy *nsproxy, void *ns)
2891{
2892 struct fs_struct *fs = current->fs;
2893 struct mnt_namespace *mnt_ns = ns;
2894 struct path root;
2895
0c55cfc4 2896 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
5e4a0847
EB
2897 !nsown_capable(CAP_SYS_CHROOT) ||
2898 !nsown_capable(CAP_SYS_ADMIN))
ae11e0f1 2899 return -EPERM;
8823c079
EB
2900
2901 if (fs->users != 1)
2902 return -EINVAL;
2903
2904 get_mnt_ns(mnt_ns);
2905 put_mnt_ns(nsproxy->mnt_ns);
2906 nsproxy->mnt_ns = mnt_ns;
2907
2908 /* Find the root */
2909 root.mnt = &mnt_ns->root->mnt;
2910 root.dentry = mnt_ns->root->mnt.mnt_root;
2911 path_get(&root);
2912 while(d_mountpoint(root.dentry) && follow_down_one(&root))
2913 ;
2914
2915 /* Update the pwd and root */
2916 set_fs_pwd(fs, &root);
2917 set_fs_root(fs, &root);
2918
2919 path_put(&root);
2920 return 0;
2921}
2922
98f842e6
EB
2923static unsigned int mntns_inum(void *ns)
2924{
2925 struct mnt_namespace *mnt_ns = ns;
2926 return mnt_ns->proc_inum;
2927}
2928
8823c079
EB
2929const struct proc_ns_operations mntns_operations = {
2930 .name = "mnt",
2931 .type = CLONE_NEWNS,
2932 .get = mntns_get,
2933 .put = mntns_put,
2934 .install = mntns_install,
98f842e6 2935 .inum = mntns_inum,
8823c079 2936};