mnt: Move the test for MNT_LOCK_READONLY from change_mount_flags into do_remount
[linux-2.6-block.git] / fs / namespace.c
CommitLineData
1da177e4
LT
1/*
2 * linux/fs/namespace.c
3 *
4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
6 *
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
10
1da177e4 11#include <linux/syscalls.h>
d10577a8 12#include <linux/export.h>
16f7e0fe 13#include <linux/capability.h>
6b3286ed 14#include <linux/mnt_namespace.h>
771b1371 15#include <linux/user_namespace.h>
1da177e4
LT
16#include <linux/namei.h>
17#include <linux/security.h>
73cd49ec 18#include <linux/idr.h>
d10577a8 19#include <linux/acct.h> /* acct_auto_close_mnt */
57f150a5 20#include <linux/init.h> /* init_rootfs */
d10577a8
AV
21#include <linux/fs_struct.h> /* get_fs_root et.al. */
22#include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
23#include <linux/uaccess.h>
0bb80f24 24#include <linux/proc_ns.h>
20b4fb48 25#include <linux/magic.h>
0818bf27 26#include <linux/bootmem.h>
07b20889 27#include "pnode.h"
948730b0 28#include "internal.h"
1da177e4 29
0818bf27
AV
30static unsigned int m_hash_mask __read_mostly;
31static unsigned int m_hash_shift __read_mostly;
32static unsigned int mp_hash_mask __read_mostly;
33static unsigned int mp_hash_shift __read_mostly;
34
35static __initdata unsigned long mhash_entries;
36static int __init set_mhash_entries(char *str)
37{
38 if (!str)
39 return 0;
40 mhash_entries = simple_strtoul(str, &str, 0);
41 return 1;
42}
43__setup("mhash_entries=", set_mhash_entries);
44
45static __initdata unsigned long mphash_entries;
46static int __init set_mphash_entries(char *str)
47{
48 if (!str)
49 return 0;
50 mphash_entries = simple_strtoul(str, &str, 0);
51 return 1;
52}
53__setup("mphash_entries=", set_mphash_entries);
13f14b4d 54
c7999c36 55static u64 event;
73cd49ec 56static DEFINE_IDA(mnt_id_ida);
719f5d7f 57static DEFINE_IDA(mnt_group_ida);
99b7db7b 58static DEFINE_SPINLOCK(mnt_id_lock);
f21f6220
AV
59static int mnt_id_start = 0;
60static int mnt_group_start = 1;
1da177e4 61
38129a13 62static struct hlist_head *mount_hashtable __read_mostly;
0818bf27 63static struct hlist_head *mountpoint_hashtable __read_mostly;
e18b890b 64static struct kmem_cache *mnt_cache __read_mostly;
59aa0da8 65static DECLARE_RWSEM(namespace_sem);
1da177e4 66
f87fd4c2 67/* /sys/fs */
00d26666
GKH
68struct kobject *fs_kobj;
69EXPORT_SYMBOL_GPL(fs_kobj);
f87fd4c2 70
99b7db7b
NP
71/*
72 * vfsmount lock may be taken for read to prevent changes to the
73 * vfsmount hash, ie. during mountpoint lookups or walking back
74 * up the tree.
75 *
76 * It should be taken for write in all cases where the vfsmount
77 * tree or hash is modified or when a vfsmount structure is modified.
78 */
48a066e7 79__cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
99b7db7b 80
38129a13 81static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
1da177e4 82{
b58fed8b
RP
83 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
84 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
0818bf27
AV
85 tmp = tmp + (tmp >> m_hash_shift);
86 return &mount_hashtable[tmp & m_hash_mask];
87}
88
89static inline struct hlist_head *mp_hash(struct dentry *dentry)
90{
91 unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
92 tmp = tmp + (tmp >> mp_hash_shift);
93 return &mountpoint_hashtable[tmp & mp_hash_mask];
1da177e4
LT
94}
95
99b7db7b
NP
96/*
97 * allocation is serialized by namespace_sem, but we need the spinlock to
98 * serialize with freeing.
99 */
b105e270 100static int mnt_alloc_id(struct mount *mnt)
73cd49ec
MS
101{
102 int res;
103
104retry:
105 ida_pre_get(&mnt_id_ida, GFP_KERNEL);
99b7db7b 106 spin_lock(&mnt_id_lock);
15169fe7 107 res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
f21f6220 108 if (!res)
15169fe7 109 mnt_id_start = mnt->mnt_id + 1;
99b7db7b 110 spin_unlock(&mnt_id_lock);
73cd49ec
MS
111 if (res == -EAGAIN)
112 goto retry;
113
114 return res;
115}
116
b105e270 117static void mnt_free_id(struct mount *mnt)
73cd49ec 118{
15169fe7 119 int id = mnt->mnt_id;
99b7db7b 120 spin_lock(&mnt_id_lock);
f21f6220
AV
121 ida_remove(&mnt_id_ida, id);
122 if (mnt_id_start > id)
123 mnt_id_start = id;
99b7db7b 124 spin_unlock(&mnt_id_lock);
73cd49ec
MS
125}
126
719f5d7f
MS
127/*
128 * Allocate a new peer group ID
129 *
130 * mnt_group_ida is protected by namespace_sem
131 */
4b8b21f4 132static int mnt_alloc_group_id(struct mount *mnt)
719f5d7f 133{
f21f6220
AV
134 int res;
135
719f5d7f
MS
136 if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
137 return -ENOMEM;
138
f21f6220
AV
139 res = ida_get_new_above(&mnt_group_ida,
140 mnt_group_start,
15169fe7 141 &mnt->mnt_group_id);
f21f6220 142 if (!res)
15169fe7 143 mnt_group_start = mnt->mnt_group_id + 1;
f21f6220
AV
144
145 return res;
719f5d7f
MS
146}
147
148/*
149 * Release a peer group ID
150 */
4b8b21f4 151void mnt_release_group_id(struct mount *mnt)
719f5d7f 152{
15169fe7 153 int id = mnt->mnt_group_id;
f21f6220
AV
154 ida_remove(&mnt_group_ida, id);
155 if (mnt_group_start > id)
156 mnt_group_start = id;
15169fe7 157 mnt->mnt_group_id = 0;
719f5d7f
MS
158}
159
b3e19d92
NP
160/*
161 * vfsmount lock must be held for read
162 */
83adc753 163static inline void mnt_add_count(struct mount *mnt, int n)
b3e19d92
NP
164{
165#ifdef CONFIG_SMP
68e8a9fe 166 this_cpu_add(mnt->mnt_pcp->mnt_count, n);
b3e19d92
NP
167#else
168 preempt_disable();
68e8a9fe 169 mnt->mnt_count += n;
b3e19d92
NP
170 preempt_enable();
171#endif
172}
173
b3e19d92
NP
174/*
175 * vfsmount lock must be held for write
176 */
83adc753 177unsigned int mnt_get_count(struct mount *mnt)
b3e19d92
NP
178{
179#ifdef CONFIG_SMP
f03c6599 180 unsigned int count = 0;
b3e19d92
NP
181 int cpu;
182
183 for_each_possible_cpu(cpu) {
68e8a9fe 184 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
b3e19d92
NP
185 }
186
187 return count;
188#else
68e8a9fe 189 return mnt->mnt_count;
b3e19d92
NP
190#endif
191}
192
b105e270 193static struct mount *alloc_vfsmnt(const char *name)
1da177e4 194{
c63181e6
AV
195 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
196 if (mnt) {
73cd49ec
MS
197 int err;
198
c63181e6 199 err = mnt_alloc_id(mnt);
88b38782
LZ
200 if (err)
201 goto out_free_cache;
202
203 if (name) {
c63181e6
AV
204 mnt->mnt_devname = kstrdup(name, GFP_KERNEL);
205 if (!mnt->mnt_devname)
88b38782 206 goto out_free_id;
73cd49ec
MS
207 }
208
b3e19d92 209#ifdef CONFIG_SMP
c63181e6
AV
210 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
211 if (!mnt->mnt_pcp)
b3e19d92
NP
212 goto out_free_devname;
213
c63181e6 214 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
b3e19d92 215#else
c63181e6
AV
216 mnt->mnt_count = 1;
217 mnt->mnt_writers = 0;
b3e19d92
NP
218#endif
219
38129a13 220 INIT_HLIST_NODE(&mnt->mnt_hash);
c63181e6
AV
221 INIT_LIST_HEAD(&mnt->mnt_child);
222 INIT_LIST_HEAD(&mnt->mnt_mounts);
223 INIT_LIST_HEAD(&mnt->mnt_list);
224 INIT_LIST_HEAD(&mnt->mnt_expire);
225 INIT_LIST_HEAD(&mnt->mnt_share);
226 INIT_LIST_HEAD(&mnt->mnt_slave_list);
227 INIT_LIST_HEAD(&mnt->mnt_slave);
2504c5d6
AG
228#ifdef CONFIG_FSNOTIFY
229 INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
d3ef3d73 230#endif
1da177e4 231 }
c63181e6 232 return mnt;
88b38782 233
d3ef3d73 234#ifdef CONFIG_SMP
235out_free_devname:
c63181e6 236 kfree(mnt->mnt_devname);
d3ef3d73 237#endif
88b38782 238out_free_id:
c63181e6 239 mnt_free_id(mnt);
88b38782 240out_free_cache:
c63181e6 241 kmem_cache_free(mnt_cache, mnt);
88b38782 242 return NULL;
1da177e4
LT
243}
244
3d733633
DH
245/*
246 * Most r/o checks on a fs are for operations that take
247 * discrete amounts of time, like a write() or unlink().
248 * We must keep track of when those operations start
249 * (for permission checks) and when they end, so that
250 * we can determine when writes are able to occur to
251 * a filesystem.
252 */
253/*
254 * __mnt_is_readonly: check whether a mount is read-only
255 * @mnt: the mount to check for its write status
256 *
257 * This shouldn't be used directly ouside of the VFS.
258 * It does not guarantee that the filesystem will stay
259 * r/w, just that it is right *now*. This can not and
260 * should not be used in place of IS_RDONLY(inode).
261 * mnt_want/drop_write() will _keep_ the filesystem
262 * r/w.
263 */
264int __mnt_is_readonly(struct vfsmount *mnt)
265{
2e4b7fcd
DH
266 if (mnt->mnt_flags & MNT_READONLY)
267 return 1;
268 if (mnt->mnt_sb->s_flags & MS_RDONLY)
269 return 1;
270 return 0;
3d733633
DH
271}
272EXPORT_SYMBOL_GPL(__mnt_is_readonly);
273
83adc753 274static inline void mnt_inc_writers(struct mount *mnt)
d3ef3d73 275{
276#ifdef CONFIG_SMP
68e8a9fe 277 this_cpu_inc(mnt->mnt_pcp->mnt_writers);
d3ef3d73 278#else
68e8a9fe 279 mnt->mnt_writers++;
d3ef3d73 280#endif
281}
3d733633 282
83adc753 283static inline void mnt_dec_writers(struct mount *mnt)
3d733633 284{
d3ef3d73 285#ifdef CONFIG_SMP
68e8a9fe 286 this_cpu_dec(mnt->mnt_pcp->mnt_writers);
d3ef3d73 287#else
68e8a9fe 288 mnt->mnt_writers--;
d3ef3d73 289#endif
3d733633 290}
3d733633 291
83adc753 292static unsigned int mnt_get_writers(struct mount *mnt)
3d733633 293{
d3ef3d73 294#ifdef CONFIG_SMP
295 unsigned int count = 0;
3d733633 296 int cpu;
3d733633
DH
297
298 for_each_possible_cpu(cpu) {
68e8a9fe 299 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
3d733633 300 }
3d733633 301
d3ef3d73 302 return count;
303#else
304 return mnt->mnt_writers;
305#endif
3d733633
DH
306}
307
4ed5e82f
MS
308static int mnt_is_readonly(struct vfsmount *mnt)
309{
310 if (mnt->mnt_sb->s_readonly_remount)
311 return 1;
312 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
313 smp_rmb();
314 return __mnt_is_readonly(mnt);
315}
316
8366025e 317/*
eb04c282
JK
318 * Most r/o & frozen checks on a fs are for operations that take discrete
319 * amounts of time, like a write() or unlink(). We must keep track of when
320 * those operations start (for permission checks) and when they end, so that we
321 * can determine when writes are able to occur to a filesystem.
8366025e
DH
322 */
323/**
eb04c282 324 * __mnt_want_write - get write access to a mount without freeze protection
83adc753 325 * @m: the mount on which to take a write
8366025e 326 *
eb04c282
JK
327 * This tells the low-level filesystem that a write is about to be performed to
328 * it, and makes sure that writes are allowed (mnt it read-write) before
329 * returning success. This operation does not protect against filesystem being
330 * frozen. When the write operation is finished, __mnt_drop_write() must be
331 * called. This is effectively a refcount.
8366025e 332 */
eb04c282 333int __mnt_want_write(struct vfsmount *m)
8366025e 334{
83adc753 335 struct mount *mnt = real_mount(m);
3d733633 336 int ret = 0;
3d733633 337
d3ef3d73 338 preempt_disable();
c6653a83 339 mnt_inc_writers(mnt);
d3ef3d73 340 /*
c6653a83 341 * The store to mnt_inc_writers must be visible before we pass
d3ef3d73 342 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
343 * incremented count after it has set MNT_WRITE_HOLD.
344 */
345 smp_mb();
1e75529e 346 while (ACCESS_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
d3ef3d73 347 cpu_relax();
348 /*
349 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
350 * be set to match its requirements. So we must not load that until
351 * MNT_WRITE_HOLD is cleared.
352 */
353 smp_rmb();
4ed5e82f 354 if (mnt_is_readonly(m)) {
c6653a83 355 mnt_dec_writers(mnt);
3d733633 356 ret = -EROFS;
3d733633 357 }
d3ef3d73 358 preempt_enable();
eb04c282
JK
359
360 return ret;
361}
362
363/**
364 * mnt_want_write - get write access to a mount
365 * @m: the mount on which to take a write
366 *
367 * This tells the low-level filesystem that a write is about to be performed to
368 * it, and makes sure that writes are allowed (mount is read-write, filesystem
369 * is not frozen) before returning success. When the write operation is
370 * finished, mnt_drop_write() must be called. This is effectively a refcount.
371 */
372int mnt_want_write(struct vfsmount *m)
373{
374 int ret;
375
376 sb_start_write(m->mnt_sb);
377 ret = __mnt_want_write(m);
378 if (ret)
379 sb_end_write(m->mnt_sb);
3d733633 380 return ret;
8366025e
DH
381}
382EXPORT_SYMBOL_GPL(mnt_want_write);
383
96029c4e 384/**
385 * mnt_clone_write - get write access to a mount
386 * @mnt: the mount on which to take a write
387 *
388 * This is effectively like mnt_want_write, except
389 * it must only be used to take an extra write reference
390 * on a mountpoint that we already know has a write reference
391 * on it. This allows some optimisation.
392 *
393 * After finished, mnt_drop_write must be called as usual to
394 * drop the reference.
395 */
396int mnt_clone_write(struct vfsmount *mnt)
397{
398 /* superblock may be r/o */
399 if (__mnt_is_readonly(mnt))
400 return -EROFS;
401 preempt_disable();
83adc753 402 mnt_inc_writers(real_mount(mnt));
96029c4e 403 preempt_enable();
404 return 0;
405}
406EXPORT_SYMBOL_GPL(mnt_clone_write);
407
408/**
eb04c282 409 * __mnt_want_write_file - get write access to a file's mount
96029c4e 410 * @file: the file who's mount on which to take a write
411 *
eb04c282 412 * This is like __mnt_want_write, but it takes a file and can
96029c4e 413 * do some optimisations if the file is open for write already
414 */
eb04c282 415int __mnt_want_write_file(struct file *file)
96029c4e 416{
83f936c7 417 if (!(file->f_mode & FMODE_WRITER))
eb04c282 418 return __mnt_want_write(file->f_path.mnt);
96029c4e 419 else
420 return mnt_clone_write(file->f_path.mnt);
421}
eb04c282
JK
422
423/**
424 * mnt_want_write_file - get write access to a file's mount
425 * @file: the file who's mount on which to take a write
426 *
427 * This is like mnt_want_write, but it takes a file and can
428 * do some optimisations if the file is open for write already
429 */
430int mnt_want_write_file(struct file *file)
431{
432 int ret;
433
434 sb_start_write(file->f_path.mnt->mnt_sb);
435 ret = __mnt_want_write_file(file);
436 if (ret)
437 sb_end_write(file->f_path.mnt->mnt_sb);
438 return ret;
439}
96029c4e 440EXPORT_SYMBOL_GPL(mnt_want_write_file);
441
8366025e 442/**
eb04c282 443 * __mnt_drop_write - give up write access to a mount
8366025e
DH
444 * @mnt: the mount on which to give up write access
445 *
446 * Tells the low-level filesystem that we are done
447 * performing writes to it. Must be matched with
eb04c282 448 * __mnt_want_write() call above.
8366025e 449 */
eb04c282 450void __mnt_drop_write(struct vfsmount *mnt)
8366025e 451{
d3ef3d73 452 preempt_disable();
83adc753 453 mnt_dec_writers(real_mount(mnt));
d3ef3d73 454 preempt_enable();
8366025e 455}
eb04c282
JK
456
457/**
458 * mnt_drop_write - give up write access to a mount
459 * @mnt: the mount on which to give up write access
460 *
461 * Tells the low-level filesystem that we are done performing writes to it and
462 * also allows filesystem to be frozen again. Must be matched with
463 * mnt_want_write() call above.
464 */
465void mnt_drop_write(struct vfsmount *mnt)
466{
467 __mnt_drop_write(mnt);
468 sb_end_write(mnt->mnt_sb);
469}
8366025e
DH
470EXPORT_SYMBOL_GPL(mnt_drop_write);
471
eb04c282
JK
472void __mnt_drop_write_file(struct file *file)
473{
474 __mnt_drop_write(file->f_path.mnt);
475}
476
2a79f17e
AV
477void mnt_drop_write_file(struct file *file)
478{
479 mnt_drop_write(file->f_path.mnt);
480}
481EXPORT_SYMBOL(mnt_drop_write_file);
482
83adc753 483static int mnt_make_readonly(struct mount *mnt)
8366025e 484{
3d733633
DH
485 int ret = 0;
486
719ea2fb 487 lock_mount_hash();
83adc753 488 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
3d733633 489 /*
d3ef3d73 490 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
491 * should be visible before we do.
3d733633 492 */
d3ef3d73 493 smp_mb();
494
3d733633 495 /*
d3ef3d73 496 * With writers on hold, if this value is zero, then there are
497 * definitely no active writers (although held writers may subsequently
498 * increment the count, they'll have to wait, and decrement it after
499 * seeing MNT_READONLY).
500 *
501 * It is OK to have counter incremented on one CPU and decremented on
502 * another: the sum will add up correctly. The danger would be when we
503 * sum up each counter, if we read a counter before it is incremented,
504 * but then read another CPU's count which it has been subsequently
505 * decremented from -- we would see more decrements than we should.
506 * MNT_WRITE_HOLD protects against this scenario, because
507 * mnt_want_write first increments count, then smp_mb, then spins on
508 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
509 * we're counting up here.
3d733633 510 */
c6653a83 511 if (mnt_get_writers(mnt) > 0)
d3ef3d73 512 ret = -EBUSY;
513 else
83adc753 514 mnt->mnt.mnt_flags |= MNT_READONLY;
d3ef3d73 515 /*
516 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
517 * that become unheld will see MNT_READONLY.
518 */
519 smp_wmb();
83adc753 520 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
719ea2fb 521 unlock_mount_hash();
3d733633 522 return ret;
8366025e 523}
8366025e 524
83adc753 525static void __mnt_unmake_readonly(struct mount *mnt)
2e4b7fcd 526{
719ea2fb 527 lock_mount_hash();
83adc753 528 mnt->mnt.mnt_flags &= ~MNT_READONLY;
719ea2fb 529 unlock_mount_hash();
2e4b7fcd
DH
530}
531
4ed5e82f
MS
532int sb_prepare_remount_readonly(struct super_block *sb)
533{
534 struct mount *mnt;
535 int err = 0;
536
8e8b8796
MS
537 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
538 if (atomic_long_read(&sb->s_remove_count))
539 return -EBUSY;
540
719ea2fb 541 lock_mount_hash();
4ed5e82f
MS
542 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
543 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
544 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
545 smp_mb();
546 if (mnt_get_writers(mnt) > 0) {
547 err = -EBUSY;
548 break;
549 }
550 }
551 }
8e8b8796
MS
552 if (!err && atomic_long_read(&sb->s_remove_count))
553 err = -EBUSY;
554
4ed5e82f
MS
555 if (!err) {
556 sb->s_readonly_remount = 1;
557 smp_wmb();
558 }
559 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
560 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
561 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
562 }
719ea2fb 563 unlock_mount_hash();
4ed5e82f
MS
564
565 return err;
566}
567
b105e270 568static void free_vfsmnt(struct mount *mnt)
1da177e4 569{
52ba1621 570 kfree(mnt->mnt_devname);
d3ef3d73 571#ifdef CONFIG_SMP
68e8a9fe 572 free_percpu(mnt->mnt_pcp);
d3ef3d73 573#endif
b105e270 574 kmem_cache_free(mnt_cache, mnt);
1da177e4
LT
575}
576
8ffcb32e
DH
577static void delayed_free_vfsmnt(struct rcu_head *head)
578{
579 free_vfsmnt(container_of(head, struct mount, mnt_rcu));
580}
581
48a066e7
AV
582/* call under rcu_read_lock */
583bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
584{
585 struct mount *mnt;
586 if (read_seqretry(&mount_lock, seq))
587 return false;
588 if (bastard == NULL)
589 return true;
590 mnt = real_mount(bastard);
591 mnt_add_count(mnt, 1);
592 if (likely(!read_seqretry(&mount_lock, seq)))
593 return true;
594 if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
595 mnt_add_count(mnt, -1);
596 return false;
597 }
598 rcu_read_unlock();
599 mntput(bastard);
600 rcu_read_lock();
601 return false;
602}
603
1da177e4 604/*
474279dc 605 * find the first mount at @dentry on vfsmount @mnt.
48a066e7 606 * call under rcu_read_lock()
1da177e4 607 */
474279dc 608struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
1da177e4 609{
38129a13 610 struct hlist_head *head = m_hash(mnt, dentry);
474279dc
AV
611 struct mount *p;
612
38129a13 613 hlist_for_each_entry_rcu(p, head, mnt_hash)
474279dc
AV
614 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
615 return p;
616 return NULL;
617}
618
619/*
620 * find the last mount at @dentry on vfsmount @mnt.
48a066e7 621 * mount_lock must be held.
474279dc
AV
622 */
623struct mount *__lookup_mnt_last(struct vfsmount *mnt, struct dentry *dentry)
624{
38129a13
AV
625 struct mount *p, *res;
626 res = p = __lookup_mnt(mnt, dentry);
627 if (!p)
628 goto out;
629 hlist_for_each_entry_continue(p, mnt_hash) {
1d6a32ac
AV
630 if (&p->mnt_parent->mnt != mnt || p->mnt_mountpoint != dentry)
631 break;
632 res = p;
633 }
38129a13 634out:
1d6a32ac 635 return res;
1da177e4
LT
636}
637
a05964f3 638/*
f015f126
DH
639 * lookup_mnt - Return the first child mount mounted at path
640 *
641 * "First" means first mounted chronologically. If you create the
642 * following mounts:
643 *
644 * mount /dev/sda1 /mnt
645 * mount /dev/sda2 /mnt
646 * mount /dev/sda3 /mnt
647 *
648 * Then lookup_mnt() on the base /mnt dentry in the root mount will
649 * return successively the root dentry and vfsmount of /dev/sda1, then
650 * /dev/sda2, then /dev/sda3, then NULL.
651 *
652 * lookup_mnt takes a reference to the found vfsmount.
a05964f3 653 */
1c755af4 654struct vfsmount *lookup_mnt(struct path *path)
a05964f3 655{
c7105365 656 struct mount *child_mnt;
48a066e7
AV
657 struct vfsmount *m;
658 unsigned seq;
99b7db7b 659
48a066e7
AV
660 rcu_read_lock();
661 do {
662 seq = read_seqbegin(&mount_lock);
663 child_mnt = __lookup_mnt(path->mnt, path->dentry);
664 m = child_mnt ? &child_mnt->mnt : NULL;
665 } while (!legitimize_mnt(m, seq));
666 rcu_read_unlock();
667 return m;
a05964f3
RP
668}
669
84d17192
AV
670static struct mountpoint *new_mountpoint(struct dentry *dentry)
671{
0818bf27 672 struct hlist_head *chain = mp_hash(dentry);
84d17192 673 struct mountpoint *mp;
eed81007 674 int ret;
84d17192 675
0818bf27 676 hlist_for_each_entry(mp, chain, m_hash) {
84d17192
AV
677 if (mp->m_dentry == dentry) {
678 /* might be worth a WARN_ON() */
679 if (d_unlinked(dentry))
680 return ERR_PTR(-ENOENT);
681 mp->m_count++;
682 return mp;
683 }
684 }
685
686 mp = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
687 if (!mp)
688 return ERR_PTR(-ENOMEM);
689
eed81007
MS
690 ret = d_set_mounted(dentry);
691 if (ret) {
84d17192 692 kfree(mp);
eed81007 693 return ERR_PTR(ret);
84d17192 694 }
eed81007 695
84d17192
AV
696 mp->m_dentry = dentry;
697 mp->m_count = 1;
0818bf27 698 hlist_add_head(&mp->m_hash, chain);
84d17192
AV
699 return mp;
700}
701
702static void put_mountpoint(struct mountpoint *mp)
703{
704 if (!--mp->m_count) {
705 struct dentry *dentry = mp->m_dentry;
706 spin_lock(&dentry->d_lock);
707 dentry->d_flags &= ~DCACHE_MOUNTED;
708 spin_unlock(&dentry->d_lock);
0818bf27 709 hlist_del(&mp->m_hash);
84d17192
AV
710 kfree(mp);
711 }
712}
713
143c8c91 714static inline int check_mnt(struct mount *mnt)
1da177e4 715{
6b3286ed 716 return mnt->mnt_ns == current->nsproxy->mnt_ns;
1da177e4
LT
717}
718
99b7db7b
NP
719/*
720 * vfsmount lock must be held for write
721 */
6b3286ed 722static void touch_mnt_namespace(struct mnt_namespace *ns)
5addc5dd
AV
723{
724 if (ns) {
725 ns->event = ++event;
726 wake_up_interruptible(&ns->poll);
727 }
728}
729
99b7db7b
NP
730/*
731 * vfsmount lock must be held for write
732 */
6b3286ed 733static void __touch_mnt_namespace(struct mnt_namespace *ns)
5addc5dd
AV
734{
735 if (ns && ns->event != event) {
736 ns->event = event;
737 wake_up_interruptible(&ns->poll);
738 }
739}
740
99b7db7b
NP
741/*
742 * vfsmount lock must be held for write
743 */
419148da
AV
744static void detach_mnt(struct mount *mnt, struct path *old_path)
745{
a73324da 746 old_path->dentry = mnt->mnt_mountpoint;
0714a533
AV
747 old_path->mnt = &mnt->mnt_parent->mnt;
748 mnt->mnt_parent = mnt;
a73324da 749 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
6b41d536 750 list_del_init(&mnt->mnt_child);
38129a13 751 hlist_del_init_rcu(&mnt->mnt_hash);
84d17192
AV
752 put_mountpoint(mnt->mnt_mp);
753 mnt->mnt_mp = NULL;
1da177e4
LT
754}
755
99b7db7b
NP
756/*
757 * vfsmount lock must be held for write
758 */
84d17192
AV
759void mnt_set_mountpoint(struct mount *mnt,
760 struct mountpoint *mp,
44d964d6 761 struct mount *child_mnt)
b90fa9ae 762{
84d17192 763 mp->m_count++;
3a2393d7 764 mnt_add_count(mnt, 1); /* essentially, that's mntget */
84d17192 765 child_mnt->mnt_mountpoint = dget(mp->m_dentry);
3a2393d7 766 child_mnt->mnt_parent = mnt;
84d17192 767 child_mnt->mnt_mp = mp;
b90fa9ae
RP
768}
769
99b7db7b
NP
770/*
771 * vfsmount lock must be held for write
772 */
84d17192
AV
773static void attach_mnt(struct mount *mnt,
774 struct mount *parent,
775 struct mountpoint *mp)
1da177e4 776{
84d17192 777 mnt_set_mountpoint(parent, mp, mnt);
38129a13 778 hlist_add_head_rcu(&mnt->mnt_hash, m_hash(&parent->mnt, mp->m_dentry));
84d17192 779 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
b90fa9ae
RP
780}
781
782/*
99b7db7b 783 * vfsmount lock must be held for write
b90fa9ae 784 */
1d6a32ac 785static void commit_tree(struct mount *mnt, struct mount *shadows)
b90fa9ae 786{
0714a533 787 struct mount *parent = mnt->mnt_parent;
83adc753 788 struct mount *m;
b90fa9ae 789 LIST_HEAD(head);
143c8c91 790 struct mnt_namespace *n = parent->mnt_ns;
b90fa9ae 791
0714a533 792 BUG_ON(parent == mnt);
b90fa9ae 793
1a4eeaf2 794 list_add_tail(&head, &mnt->mnt_list);
f7a99c5b 795 list_for_each_entry(m, &head, mnt_list)
143c8c91 796 m->mnt_ns = n;
f03c6599 797
b90fa9ae
RP
798 list_splice(&head, n->list.prev);
799
1d6a32ac 800 if (shadows)
38129a13 801 hlist_add_after_rcu(&shadows->mnt_hash, &mnt->mnt_hash);
1d6a32ac 802 else
38129a13 803 hlist_add_head_rcu(&mnt->mnt_hash,
0818bf27 804 m_hash(&parent->mnt, mnt->mnt_mountpoint));
6b41d536 805 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
6b3286ed 806 touch_mnt_namespace(n);
1da177e4
LT
807}
808
909b0a88 809static struct mount *next_mnt(struct mount *p, struct mount *root)
1da177e4 810{
6b41d536
AV
811 struct list_head *next = p->mnt_mounts.next;
812 if (next == &p->mnt_mounts) {
1da177e4 813 while (1) {
909b0a88 814 if (p == root)
1da177e4 815 return NULL;
6b41d536
AV
816 next = p->mnt_child.next;
817 if (next != &p->mnt_parent->mnt_mounts)
1da177e4 818 break;
0714a533 819 p = p->mnt_parent;
1da177e4
LT
820 }
821 }
6b41d536 822 return list_entry(next, struct mount, mnt_child);
1da177e4
LT
823}
824
315fc83e 825static struct mount *skip_mnt_tree(struct mount *p)
9676f0c6 826{
6b41d536
AV
827 struct list_head *prev = p->mnt_mounts.prev;
828 while (prev != &p->mnt_mounts) {
829 p = list_entry(prev, struct mount, mnt_child);
830 prev = p->mnt_mounts.prev;
9676f0c6
RP
831 }
832 return p;
833}
834
9d412a43
AV
835struct vfsmount *
836vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
837{
b105e270 838 struct mount *mnt;
9d412a43
AV
839 struct dentry *root;
840
841 if (!type)
842 return ERR_PTR(-ENODEV);
843
844 mnt = alloc_vfsmnt(name);
845 if (!mnt)
846 return ERR_PTR(-ENOMEM);
847
848 if (flags & MS_KERNMOUNT)
b105e270 849 mnt->mnt.mnt_flags = MNT_INTERNAL;
9d412a43
AV
850
851 root = mount_fs(type, flags, name, data);
852 if (IS_ERR(root)) {
8ffcb32e 853 mnt_free_id(mnt);
9d412a43
AV
854 free_vfsmnt(mnt);
855 return ERR_CAST(root);
856 }
857
b105e270
AV
858 mnt->mnt.mnt_root = root;
859 mnt->mnt.mnt_sb = root->d_sb;
a73324da 860 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
0714a533 861 mnt->mnt_parent = mnt;
719ea2fb 862 lock_mount_hash();
39f7c4db 863 list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
719ea2fb 864 unlock_mount_hash();
b105e270 865 return &mnt->mnt;
9d412a43
AV
866}
867EXPORT_SYMBOL_GPL(vfs_kern_mount);
868
87129cc0 869static struct mount *clone_mnt(struct mount *old, struct dentry *root,
36341f64 870 int flag)
1da177e4 871{
87129cc0 872 struct super_block *sb = old->mnt.mnt_sb;
be34d1a3
DH
873 struct mount *mnt;
874 int err;
1da177e4 875
be34d1a3
DH
876 mnt = alloc_vfsmnt(old->mnt_devname);
877 if (!mnt)
878 return ERR_PTR(-ENOMEM);
719f5d7f 879
7a472ef4 880 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
be34d1a3
DH
881 mnt->mnt_group_id = 0; /* not a peer of original */
882 else
883 mnt->mnt_group_id = old->mnt_group_id;
b90fa9ae 884
be34d1a3
DH
885 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
886 err = mnt_alloc_group_id(mnt);
887 if (err)
888 goto out_free;
1da177e4 889 }
be34d1a3 890
f2ebb3a9 891 mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~(MNT_WRITE_HOLD|MNT_MARKED);
132c94e3
EB
892 /* Don't allow unprivileged users to change mount flags */
893 if ((flag & CL_UNPRIVILEGED) && (mnt->mnt.mnt_flags & MNT_READONLY))
894 mnt->mnt.mnt_flags |= MNT_LOCK_READONLY;
895
5ff9d8a6
EB
896 /* Don't allow unprivileged users to reveal what is under a mount */
897 if ((flag & CL_UNPRIVILEGED) && list_empty(&old->mnt_expire))
898 mnt->mnt.mnt_flags |= MNT_LOCKED;
899
be34d1a3
DH
900 atomic_inc(&sb->s_active);
901 mnt->mnt.mnt_sb = sb;
902 mnt->mnt.mnt_root = dget(root);
903 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
904 mnt->mnt_parent = mnt;
719ea2fb 905 lock_mount_hash();
be34d1a3 906 list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
719ea2fb 907 unlock_mount_hash();
be34d1a3 908
7a472ef4
EB
909 if ((flag & CL_SLAVE) ||
910 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
be34d1a3
DH
911 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
912 mnt->mnt_master = old;
913 CLEAR_MNT_SHARED(mnt);
914 } else if (!(flag & CL_PRIVATE)) {
915 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
916 list_add(&mnt->mnt_share, &old->mnt_share);
917 if (IS_MNT_SLAVE(old))
918 list_add(&mnt->mnt_slave, &old->mnt_slave);
919 mnt->mnt_master = old->mnt_master;
920 }
921 if (flag & CL_MAKE_SHARED)
922 set_mnt_shared(mnt);
923
924 /* stick the duplicate mount on the same expiry list
925 * as the original if that was on one */
926 if (flag & CL_EXPIRE) {
927 if (!list_empty(&old->mnt_expire))
928 list_add(&mnt->mnt_expire, &old->mnt_expire);
929 }
930
cb338d06 931 return mnt;
719f5d7f
MS
932
933 out_free:
8ffcb32e 934 mnt_free_id(mnt);
719f5d7f 935 free_vfsmnt(mnt);
be34d1a3 936 return ERR_PTR(err);
1da177e4
LT
937}
938
900148dc 939static void mntput_no_expire(struct mount *mnt)
b3e19d92 940{
b3e19d92 941put_again:
48a066e7
AV
942 rcu_read_lock();
943 mnt_add_count(mnt, -1);
944 if (likely(mnt->mnt_ns)) { /* shouldn't be the last one */
945 rcu_read_unlock();
f03c6599 946 return;
b3e19d92 947 }
719ea2fb 948 lock_mount_hash();
b3e19d92 949 if (mnt_get_count(mnt)) {
48a066e7 950 rcu_read_unlock();
719ea2fb 951 unlock_mount_hash();
99b7db7b
NP
952 return;
953 }
863d684f
AV
954 if (unlikely(mnt->mnt_pinned)) {
955 mnt_add_count(mnt, mnt->mnt_pinned + 1);
956 mnt->mnt_pinned = 0;
48a066e7 957 rcu_read_unlock();
719ea2fb 958 unlock_mount_hash();
900148dc 959 acct_auto_close_mnt(&mnt->mnt);
b3e19d92 960 goto put_again;
7b7b1ace 961 }
48a066e7
AV
962 if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
963 rcu_read_unlock();
964 unlock_mount_hash();
965 return;
966 }
967 mnt->mnt.mnt_flags |= MNT_DOOMED;
968 rcu_read_unlock();
962830df 969
39f7c4db 970 list_del(&mnt->mnt_instance);
719ea2fb 971 unlock_mount_hash();
649a795a
AV
972
973 /*
974 * This probably indicates that somebody messed
975 * up a mnt_want/drop_write() pair. If this
976 * happens, the filesystem was probably unable
977 * to make r/w->r/o transitions.
978 */
979 /*
980 * The locking used to deal with mnt_count decrement provides barriers,
981 * so mnt_get_writers() below is safe.
982 */
983 WARN_ON(mnt_get_writers(mnt));
984 fsnotify_vfsmount_delete(&mnt->mnt);
985 dput(mnt->mnt.mnt_root);
986 deactivate_super(mnt->mnt.mnt_sb);
48a066e7 987 mnt_free_id(mnt);
8ffcb32e 988 call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
b3e19d92 989}
b3e19d92
NP
990
991void mntput(struct vfsmount *mnt)
992{
993 if (mnt) {
863d684f 994 struct mount *m = real_mount(mnt);
b3e19d92 995 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
863d684f
AV
996 if (unlikely(m->mnt_expiry_mark))
997 m->mnt_expiry_mark = 0;
998 mntput_no_expire(m);
b3e19d92
NP
999 }
1000}
1001EXPORT_SYMBOL(mntput);
1002
1003struct vfsmount *mntget(struct vfsmount *mnt)
1004{
1005 if (mnt)
83adc753 1006 mnt_add_count(real_mount(mnt), 1);
b3e19d92
NP
1007 return mnt;
1008}
1009EXPORT_SYMBOL(mntget);
1010
7b7b1ace
AV
1011void mnt_pin(struct vfsmount *mnt)
1012{
719ea2fb 1013 lock_mount_hash();
863d684f 1014 real_mount(mnt)->mnt_pinned++;
719ea2fb 1015 unlock_mount_hash();
7b7b1ace 1016}
7b7b1ace
AV
1017EXPORT_SYMBOL(mnt_pin);
1018
863d684f 1019void mnt_unpin(struct vfsmount *m)
7b7b1ace 1020{
863d684f 1021 struct mount *mnt = real_mount(m);
719ea2fb 1022 lock_mount_hash();
7b7b1ace 1023 if (mnt->mnt_pinned) {
863d684f 1024 mnt_add_count(mnt, 1);
7b7b1ace
AV
1025 mnt->mnt_pinned--;
1026 }
719ea2fb 1027 unlock_mount_hash();
7b7b1ace 1028}
7b7b1ace 1029EXPORT_SYMBOL(mnt_unpin);
1da177e4 1030
b3b304a2
MS
1031static inline void mangle(struct seq_file *m, const char *s)
1032{
1033 seq_escape(m, s, " \t\n\\");
1034}
1035
1036/*
1037 * Simple .show_options callback for filesystems which don't want to
1038 * implement more complex mount option showing.
1039 *
1040 * See also save_mount_options().
1041 */
34c80b1d 1042int generic_show_options(struct seq_file *m, struct dentry *root)
b3b304a2 1043{
2a32cebd
AV
1044 const char *options;
1045
1046 rcu_read_lock();
34c80b1d 1047 options = rcu_dereference(root->d_sb->s_options);
b3b304a2
MS
1048
1049 if (options != NULL && options[0]) {
1050 seq_putc(m, ',');
1051 mangle(m, options);
1052 }
2a32cebd 1053 rcu_read_unlock();
b3b304a2
MS
1054
1055 return 0;
1056}
1057EXPORT_SYMBOL(generic_show_options);
1058
1059/*
1060 * If filesystem uses generic_show_options(), this function should be
1061 * called from the fill_super() callback.
1062 *
1063 * The .remount_fs callback usually needs to be handled in a special
1064 * way, to make sure, that previous options are not overwritten if the
1065 * remount fails.
1066 *
1067 * Also note, that if the filesystem's .remount_fs function doesn't
1068 * reset all options to their default value, but changes only newly
1069 * given options, then the displayed options will not reflect reality
1070 * any more.
1071 */
1072void save_mount_options(struct super_block *sb, char *options)
1073{
2a32cebd
AV
1074 BUG_ON(sb->s_options);
1075 rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
b3b304a2
MS
1076}
1077EXPORT_SYMBOL(save_mount_options);
1078
2a32cebd
AV
1079void replace_mount_options(struct super_block *sb, char *options)
1080{
1081 char *old = sb->s_options;
1082 rcu_assign_pointer(sb->s_options, options);
1083 if (old) {
1084 synchronize_rcu();
1085 kfree(old);
1086 }
1087}
1088EXPORT_SYMBOL(replace_mount_options);
1089
a1a2c409 1090#ifdef CONFIG_PROC_FS
0226f492 1091/* iterator; we want it to have access to namespace_sem, thus here... */
1da177e4
LT
1092static void *m_start(struct seq_file *m, loff_t *pos)
1093{
6ce6e24e 1094 struct proc_mounts *p = proc_mounts(m);
1da177e4 1095
390c6843 1096 down_read(&namespace_sem);
c7999c36
AV
1097 if (p->cached_event == p->ns->event) {
1098 void *v = p->cached_mount;
1099 if (*pos == p->cached_index)
1100 return v;
1101 if (*pos == p->cached_index + 1) {
1102 v = seq_list_next(v, &p->ns->list, &p->cached_index);
1103 return p->cached_mount = v;
1104 }
1105 }
1106
1107 p->cached_event = p->ns->event;
1108 p->cached_mount = seq_list_start(&p->ns->list, *pos);
1109 p->cached_index = *pos;
1110 return p->cached_mount;
1da177e4
LT
1111}
1112
1113static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1114{
6ce6e24e 1115 struct proc_mounts *p = proc_mounts(m);
b0765fb8 1116
c7999c36
AV
1117 p->cached_mount = seq_list_next(v, &p->ns->list, pos);
1118 p->cached_index = *pos;
1119 return p->cached_mount;
1da177e4
LT
1120}
1121
1122static void m_stop(struct seq_file *m, void *v)
1123{
390c6843 1124 up_read(&namespace_sem);
1da177e4
LT
1125}
1126
0226f492 1127static int m_show(struct seq_file *m, void *v)
2d4d4864 1128{
6ce6e24e 1129 struct proc_mounts *p = proc_mounts(m);
1a4eeaf2 1130 struct mount *r = list_entry(v, struct mount, mnt_list);
0226f492 1131 return p->show(m, &r->mnt);
1da177e4
LT
1132}
1133
a1a2c409 1134const struct seq_operations mounts_op = {
1da177e4
LT
1135 .start = m_start,
1136 .next = m_next,
1137 .stop = m_stop,
0226f492 1138 .show = m_show,
b4629fe2 1139};
a1a2c409 1140#endif /* CONFIG_PROC_FS */
b4629fe2 1141
1da177e4
LT
1142/**
1143 * may_umount_tree - check if a mount tree is busy
1144 * @mnt: root of mount tree
1145 *
1146 * This is called to check if a tree of mounts has any
1147 * open files, pwds, chroots or sub mounts that are
1148 * busy.
1149 */
909b0a88 1150int may_umount_tree(struct vfsmount *m)
1da177e4 1151{
909b0a88 1152 struct mount *mnt = real_mount(m);
36341f64
RP
1153 int actual_refs = 0;
1154 int minimum_refs = 0;
315fc83e 1155 struct mount *p;
909b0a88 1156 BUG_ON(!m);
1da177e4 1157
b3e19d92 1158 /* write lock needed for mnt_get_count */
719ea2fb 1159 lock_mount_hash();
909b0a88 1160 for (p = mnt; p; p = next_mnt(p, mnt)) {
83adc753 1161 actual_refs += mnt_get_count(p);
1da177e4 1162 minimum_refs += 2;
1da177e4 1163 }
719ea2fb 1164 unlock_mount_hash();
1da177e4
LT
1165
1166 if (actual_refs > minimum_refs)
e3474a8e 1167 return 0;
1da177e4 1168
e3474a8e 1169 return 1;
1da177e4
LT
1170}
1171
1172EXPORT_SYMBOL(may_umount_tree);
1173
1174/**
1175 * may_umount - check if a mount point is busy
1176 * @mnt: root of mount
1177 *
1178 * This is called to check if a mount point has any
1179 * open files, pwds, chroots or sub mounts. If the
1180 * mount has sub mounts this will return busy
1181 * regardless of whether the sub mounts are busy.
1182 *
1183 * Doesn't take quota and stuff into account. IOW, in some cases it will
1184 * give false negatives. The main reason why it's here is that we need
1185 * a non-destructive way to look for easily umountable filesystems.
1186 */
1187int may_umount(struct vfsmount *mnt)
1188{
e3474a8e 1189 int ret = 1;
8ad08d8a 1190 down_read(&namespace_sem);
719ea2fb 1191 lock_mount_hash();
1ab59738 1192 if (propagate_mount_busy(real_mount(mnt), 2))
e3474a8e 1193 ret = 0;
719ea2fb 1194 unlock_mount_hash();
8ad08d8a 1195 up_read(&namespace_sem);
a05964f3 1196 return ret;
1da177e4
LT
1197}
1198
1199EXPORT_SYMBOL(may_umount);
1200
38129a13 1201static HLIST_HEAD(unmounted); /* protected by namespace_sem */
e3197d83 1202
97216be0 1203static void namespace_unlock(void)
70fbcdf4 1204{
d5e50f74 1205 struct mount *mnt;
38129a13 1206 struct hlist_head head = unmounted;
97216be0 1207
38129a13 1208 if (likely(hlist_empty(&head))) {
97216be0
AV
1209 up_write(&namespace_sem);
1210 return;
1211 }
1212
38129a13
AV
1213 head.first->pprev = &head.first;
1214 INIT_HLIST_HEAD(&unmounted);
1215
97216be0
AV
1216 up_write(&namespace_sem);
1217
48a066e7
AV
1218 synchronize_rcu();
1219
38129a13
AV
1220 while (!hlist_empty(&head)) {
1221 mnt = hlist_entry(head.first, struct mount, mnt_hash);
1222 hlist_del_init(&mnt->mnt_hash);
aba809cf
AV
1223 if (mnt->mnt_ex_mountpoint.mnt)
1224 path_put(&mnt->mnt_ex_mountpoint);
d5e50f74 1225 mntput(&mnt->mnt);
70fbcdf4
RP
1226 }
1227}
1228
97216be0 1229static inline void namespace_lock(void)
e3197d83 1230{
97216be0 1231 down_write(&namespace_sem);
e3197d83
AV
1232}
1233
99b7db7b 1234/*
48a066e7 1235 * mount_lock must be held
99b7db7b 1236 * namespace_sem must be held for write
48a066e7
AV
1237 * how = 0 => just this tree, don't propagate
1238 * how = 1 => propagate; we know that nobody else has reference to any victims
1239 * how = 2 => lazy umount
99b7db7b 1240 */
48a066e7 1241void umount_tree(struct mount *mnt, int how)
1da177e4 1242{
38129a13 1243 HLIST_HEAD(tmp_list);
315fc83e 1244 struct mount *p;
38129a13 1245 struct mount *last = NULL;
1da177e4 1246
38129a13
AV
1247 for (p = mnt; p; p = next_mnt(p, mnt)) {
1248 hlist_del_init_rcu(&p->mnt_hash);
1249 hlist_add_head(&p->mnt_hash, &tmp_list);
1250 }
1da177e4 1251
48a066e7 1252 if (how)
7b8a53fd 1253 propagate_umount(&tmp_list);
a05964f3 1254
38129a13 1255 hlist_for_each_entry(p, &tmp_list, mnt_hash) {
6776db3d 1256 list_del_init(&p->mnt_expire);
1a4eeaf2 1257 list_del_init(&p->mnt_list);
143c8c91
AV
1258 __touch_mnt_namespace(p->mnt_ns);
1259 p->mnt_ns = NULL;
48a066e7
AV
1260 if (how < 2)
1261 p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
6b41d536 1262 list_del_init(&p->mnt_child);
676da58d 1263 if (mnt_has_parent(p)) {
84d17192 1264 put_mountpoint(p->mnt_mp);
aba809cf
AV
1265 /* move the reference to mountpoint into ->mnt_ex_mountpoint */
1266 p->mnt_ex_mountpoint.dentry = p->mnt_mountpoint;
1267 p->mnt_ex_mountpoint.mnt = &p->mnt_parent->mnt;
1268 p->mnt_mountpoint = p->mnt.mnt_root;
1269 p->mnt_parent = p;
84d17192 1270 p->mnt_mp = NULL;
7c4b93d8 1271 }
0f0afb1d 1272 change_mnt_propagation(p, MS_PRIVATE);
38129a13
AV
1273 last = p;
1274 }
1275 if (last) {
1276 last->mnt_hash.next = unmounted.first;
1277 unmounted.first = tmp_list.first;
1278 unmounted.first->pprev = &unmounted.first;
1da177e4
LT
1279 }
1280}
1281
b54b9be7 1282static void shrink_submounts(struct mount *mnt);
c35038be 1283
1ab59738 1284static int do_umount(struct mount *mnt, int flags)
1da177e4 1285{
1ab59738 1286 struct super_block *sb = mnt->mnt.mnt_sb;
1da177e4
LT
1287 int retval;
1288
1ab59738 1289 retval = security_sb_umount(&mnt->mnt, flags);
1da177e4
LT
1290 if (retval)
1291 return retval;
1292
1293 /*
1294 * Allow userspace to request a mountpoint be expired rather than
1295 * unmounting unconditionally. Unmount only happens if:
1296 * (1) the mark is already set (the mark is cleared by mntput())
1297 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1298 */
1299 if (flags & MNT_EXPIRE) {
1ab59738 1300 if (&mnt->mnt == current->fs->root.mnt ||
1da177e4
LT
1301 flags & (MNT_FORCE | MNT_DETACH))
1302 return -EINVAL;
1303
b3e19d92
NP
1304 /*
1305 * probably don't strictly need the lock here if we examined
1306 * all race cases, but it's a slowpath.
1307 */
719ea2fb 1308 lock_mount_hash();
83adc753 1309 if (mnt_get_count(mnt) != 2) {
719ea2fb 1310 unlock_mount_hash();
1da177e4 1311 return -EBUSY;
b3e19d92 1312 }
719ea2fb 1313 unlock_mount_hash();
1da177e4 1314
863d684f 1315 if (!xchg(&mnt->mnt_expiry_mark, 1))
1da177e4
LT
1316 return -EAGAIN;
1317 }
1318
1319 /*
1320 * If we may have to abort operations to get out of this
1321 * mount, and they will themselves hold resources we must
1322 * allow the fs to do things. In the Unix tradition of
1323 * 'Gee thats tricky lets do it in userspace' the umount_begin
1324 * might fail to complete on the first run through as other tasks
1325 * must return, and the like. Thats for the mount program to worry
1326 * about for the moment.
1327 */
1328
42faad99 1329 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
42faad99 1330 sb->s_op->umount_begin(sb);
42faad99 1331 }
1da177e4
LT
1332
1333 /*
1334 * No sense to grab the lock for this test, but test itself looks
1335 * somewhat bogus. Suggestions for better replacement?
1336 * Ho-hum... In principle, we might treat that as umount + switch
1337 * to rootfs. GC would eventually take care of the old vfsmount.
1338 * Actually it makes sense, especially if rootfs would contain a
1339 * /reboot - static binary that would close all descriptors and
1340 * call reboot(9). Then init(8) could umount root and exec /reboot.
1341 */
1ab59738 1342 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1da177e4
LT
1343 /*
1344 * Special case for "unmounting" root ...
1345 * we just try to remount it readonly.
1346 */
1347 down_write(&sb->s_umount);
4aa98cf7 1348 if (!(sb->s_flags & MS_RDONLY))
1da177e4 1349 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1da177e4
LT
1350 up_write(&sb->s_umount);
1351 return retval;
1352 }
1353
97216be0 1354 namespace_lock();
719ea2fb 1355 lock_mount_hash();
5addc5dd 1356 event++;
1da177e4 1357
48a066e7 1358 if (flags & MNT_DETACH) {
1a4eeaf2 1359 if (!list_empty(&mnt->mnt_list))
48a066e7 1360 umount_tree(mnt, 2);
1da177e4 1361 retval = 0;
48a066e7
AV
1362 } else {
1363 shrink_submounts(mnt);
1364 retval = -EBUSY;
1365 if (!propagate_mount_busy(mnt, 2)) {
1366 if (!list_empty(&mnt->mnt_list))
1367 umount_tree(mnt, 1);
1368 retval = 0;
1369 }
1da177e4 1370 }
719ea2fb 1371 unlock_mount_hash();
e3197d83 1372 namespace_unlock();
1da177e4
LT
1373 return retval;
1374}
1375
9b40bc90
AV
1376/*
1377 * Is the caller allowed to modify his namespace?
1378 */
1379static inline bool may_mount(void)
1380{
1381 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1382}
1383
1da177e4
LT
1384/*
1385 * Now umount can handle mount points as well as block devices.
1386 * This is important for filesystems which use unnamed block devices.
1387 *
1388 * We now support a flag for forced unmount like the other 'big iron'
1389 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1390 */
1391
bdc480e3 1392SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1da177e4 1393{
2d8f3038 1394 struct path path;
900148dc 1395 struct mount *mnt;
1da177e4 1396 int retval;
db1f05bb 1397 int lookup_flags = 0;
1da177e4 1398
db1f05bb
MS
1399 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1400 return -EINVAL;
1401
9b40bc90
AV
1402 if (!may_mount())
1403 return -EPERM;
1404
db1f05bb
MS
1405 if (!(flags & UMOUNT_NOFOLLOW))
1406 lookup_flags |= LOOKUP_FOLLOW;
1407
197df04c 1408 retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path);
1da177e4
LT
1409 if (retval)
1410 goto out;
900148dc 1411 mnt = real_mount(path.mnt);
1da177e4 1412 retval = -EINVAL;
2d8f3038 1413 if (path.dentry != path.mnt->mnt_root)
1da177e4 1414 goto dput_and_out;
143c8c91 1415 if (!check_mnt(mnt))
1da177e4 1416 goto dput_and_out;
5ff9d8a6
EB
1417 if (mnt->mnt.mnt_flags & MNT_LOCKED)
1418 goto dput_and_out;
1da177e4 1419
900148dc 1420 retval = do_umount(mnt, flags);
1da177e4 1421dput_and_out:
429731b1 1422 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
2d8f3038 1423 dput(path.dentry);
900148dc 1424 mntput_no_expire(mnt);
1da177e4
LT
1425out:
1426 return retval;
1427}
1428
1429#ifdef __ARCH_WANT_SYS_OLDUMOUNT
1430
1431/*
b58fed8b 1432 * The 2.0 compatible umount. No flags.
1da177e4 1433 */
bdc480e3 1434SYSCALL_DEFINE1(oldumount, char __user *, name)
1da177e4 1435{
b58fed8b 1436 return sys_umount(name, 0);
1da177e4
LT
1437}
1438
1439#endif
1440
4ce5d2b1 1441static bool is_mnt_ns_file(struct dentry *dentry)
8823c079 1442{
4ce5d2b1
EB
1443 /* Is this a proxy for a mount namespace? */
1444 struct inode *inode = dentry->d_inode;
0bb80f24 1445 struct proc_ns *ei;
8823c079
EB
1446
1447 if (!proc_ns_inode(inode))
1448 return false;
1449
0bb80f24 1450 ei = get_proc_ns(inode);
8823c079
EB
1451 if (ei->ns_ops != &mntns_operations)
1452 return false;
1453
4ce5d2b1
EB
1454 return true;
1455}
1456
1457static bool mnt_ns_loop(struct dentry *dentry)
1458{
1459 /* Could bind mounting the mount namespace inode cause a
1460 * mount namespace loop?
1461 */
1462 struct mnt_namespace *mnt_ns;
1463 if (!is_mnt_ns_file(dentry))
1464 return false;
1465
1466 mnt_ns = get_proc_ns(dentry->d_inode)->ns;
8823c079
EB
1467 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1468}
1469
87129cc0 1470struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
36341f64 1471 int flag)
1da177e4 1472{
84d17192 1473 struct mount *res, *p, *q, *r, *parent;
1da177e4 1474
4ce5d2b1
EB
1475 if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1476 return ERR_PTR(-EINVAL);
1477
1478 if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
be34d1a3 1479 return ERR_PTR(-EINVAL);
9676f0c6 1480
36341f64 1481 res = q = clone_mnt(mnt, dentry, flag);
be34d1a3
DH
1482 if (IS_ERR(q))
1483 return q;
1484
5ff9d8a6 1485 q->mnt.mnt_flags &= ~MNT_LOCKED;
a73324da 1486 q->mnt_mountpoint = mnt->mnt_mountpoint;
1da177e4
LT
1487
1488 p = mnt;
6b41d536 1489 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
315fc83e 1490 struct mount *s;
7ec02ef1 1491 if (!is_subdir(r->mnt_mountpoint, dentry))
1da177e4
LT
1492 continue;
1493
909b0a88 1494 for (s = r; s; s = next_mnt(s, r)) {
4ce5d2b1
EB
1495 if (!(flag & CL_COPY_UNBINDABLE) &&
1496 IS_MNT_UNBINDABLE(s)) {
1497 s = skip_mnt_tree(s);
1498 continue;
1499 }
1500 if (!(flag & CL_COPY_MNT_NS_FILE) &&
1501 is_mnt_ns_file(s->mnt.mnt_root)) {
9676f0c6
RP
1502 s = skip_mnt_tree(s);
1503 continue;
1504 }
0714a533
AV
1505 while (p != s->mnt_parent) {
1506 p = p->mnt_parent;
1507 q = q->mnt_parent;
1da177e4 1508 }
87129cc0 1509 p = s;
84d17192 1510 parent = q;
87129cc0 1511 q = clone_mnt(p, p->mnt.mnt_root, flag);
be34d1a3
DH
1512 if (IS_ERR(q))
1513 goto out;
719ea2fb 1514 lock_mount_hash();
1a4eeaf2 1515 list_add_tail(&q->mnt_list, &res->mnt_list);
84d17192 1516 attach_mnt(q, parent, p->mnt_mp);
719ea2fb 1517 unlock_mount_hash();
1da177e4
LT
1518 }
1519 }
1520 return res;
be34d1a3 1521out:
1da177e4 1522 if (res) {
719ea2fb 1523 lock_mount_hash();
328e6d90 1524 umount_tree(res, 0);
719ea2fb 1525 unlock_mount_hash();
1da177e4 1526 }
be34d1a3 1527 return q;
1da177e4
LT
1528}
1529
be34d1a3
DH
1530/* Caller should check returned pointer for errors */
1531
589ff870 1532struct vfsmount *collect_mounts(struct path *path)
8aec0809 1533{
cb338d06 1534 struct mount *tree;
97216be0 1535 namespace_lock();
87129cc0
AV
1536 tree = copy_tree(real_mount(path->mnt), path->dentry,
1537 CL_COPY_ALL | CL_PRIVATE);
328e6d90 1538 namespace_unlock();
be34d1a3 1539 if (IS_ERR(tree))
52e220d3 1540 return ERR_CAST(tree);
be34d1a3 1541 return &tree->mnt;
8aec0809
AV
1542}
1543
1544void drop_collected_mounts(struct vfsmount *mnt)
1545{
97216be0 1546 namespace_lock();
719ea2fb 1547 lock_mount_hash();
328e6d90 1548 umount_tree(real_mount(mnt), 0);
719ea2fb 1549 unlock_mount_hash();
3ab6abee 1550 namespace_unlock();
8aec0809
AV
1551}
1552
1f707137
AV
1553int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1554 struct vfsmount *root)
1555{
1a4eeaf2 1556 struct mount *mnt;
1f707137
AV
1557 int res = f(root, arg);
1558 if (res)
1559 return res;
1a4eeaf2
AV
1560 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1561 res = f(&mnt->mnt, arg);
1f707137
AV
1562 if (res)
1563 return res;
1564 }
1565 return 0;
1566}
1567
4b8b21f4 1568static void cleanup_group_ids(struct mount *mnt, struct mount *end)
719f5d7f 1569{
315fc83e 1570 struct mount *p;
719f5d7f 1571
909b0a88 1572 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
fc7be130 1573 if (p->mnt_group_id && !IS_MNT_SHARED(p))
4b8b21f4 1574 mnt_release_group_id(p);
719f5d7f
MS
1575 }
1576}
1577
4b8b21f4 1578static int invent_group_ids(struct mount *mnt, bool recurse)
719f5d7f 1579{
315fc83e 1580 struct mount *p;
719f5d7f 1581
909b0a88 1582 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
fc7be130 1583 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
4b8b21f4 1584 int err = mnt_alloc_group_id(p);
719f5d7f 1585 if (err) {
4b8b21f4 1586 cleanup_group_ids(mnt, p);
719f5d7f
MS
1587 return err;
1588 }
1589 }
1590 }
1591
1592 return 0;
1593}
1594
b90fa9ae
RP
1595/*
1596 * @source_mnt : mount tree to be attached
21444403
RP
1597 * @nd : place the mount tree @source_mnt is attached
1598 * @parent_nd : if non-null, detach the source_mnt from its parent and
1599 * store the parent mount and mountpoint dentry.
1600 * (done when source_mnt is moved)
b90fa9ae
RP
1601 *
1602 * NOTE: in the table below explains the semantics when a source mount
1603 * of a given type is attached to a destination mount of a given type.
9676f0c6
RP
1604 * ---------------------------------------------------------------------------
1605 * | BIND MOUNT OPERATION |
1606 * |**************************************************************************
1607 * | source-->| shared | private | slave | unbindable |
1608 * | dest | | | | |
1609 * | | | | | | |
1610 * | v | | | | |
1611 * |**************************************************************************
1612 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1613 * | | | | | |
1614 * |non-shared| shared (+) | private | slave (*) | invalid |
1615 * ***************************************************************************
b90fa9ae
RP
1616 * A bind operation clones the source mount and mounts the clone on the
1617 * destination mount.
1618 *
1619 * (++) the cloned mount is propagated to all the mounts in the propagation
1620 * tree of the destination mount and the cloned mount is added to
1621 * the peer group of the source mount.
1622 * (+) the cloned mount is created under the destination mount and is marked
1623 * as shared. The cloned mount is added to the peer group of the source
1624 * mount.
5afe0022
RP
1625 * (+++) the mount is propagated to all the mounts in the propagation tree
1626 * of the destination mount and the cloned mount is made slave
1627 * of the same master as that of the source mount. The cloned mount
1628 * is marked as 'shared and slave'.
1629 * (*) the cloned mount is made a slave of the same master as that of the
1630 * source mount.
1631 *
9676f0c6
RP
1632 * ---------------------------------------------------------------------------
1633 * | MOVE MOUNT OPERATION |
1634 * |**************************************************************************
1635 * | source-->| shared | private | slave | unbindable |
1636 * | dest | | | | |
1637 * | | | | | | |
1638 * | v | | | | |
1639 * |**************************************************************************
1640 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
1641 * | | | | | |
1642 * |non-shared| shared (+*) | private | slave (*) | unbindable |
1643 * ***************************************************************************
5afe0022
RP
1644 *
1645 * (+) the mount is moved to the destination. And is then propagated to
1646 * all the mounts in the propagation tree of the destination mount.
21444403 1647 * (+*) the mount is moved to the destination.
5afe0022
RP
1648 * (+++) the mount is moved to the destination and is then propagated to
1649 * all the mounts belonging to the destination mount's propagation tree.
1650 * the mount is marked as 'shared and slave'.
1651 * (*) the mount continues to be a slave at the new location.
b90fa9ae
RP
1652 *
1653 * if the source mount is a tree, the operations explained above is
1654 * applied to each mount in the tree.
1655 * Must be called without spinlocks held, since this function can sleep
1656 * in allocations.
1657 */
0fb54e50 1658static int attach_recursive_mnt(struct mount *source_mnt,
84d17192
AV
1659 struct mount *dest_mnt,
1660 struct mountpoint *dest_mp,
1661 struct path *parent_path)
b90fa9ae 1662{
38129a13 1663 HLIST_HEAD(tree_list);
315fc83e 1664 struct mount *child, *p;
38129a13 1665 struct hlist_node *n;
719f5d7f 1666 int err;
b90fa9ae 1667
fc7be130 1668 if (IS_MNT_SHARED(dest_mnt)) {
0fb54e50 1669 err = invent_group_ids(source_mnt, true);
719f5d7f
MS
1670 if (err)
1671 goto out;
0b1b901b 1672 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
f2ebb3a9 1673 lock_mount_hash();
0b1b901b
AV
1674 if (err)
1675 goto out_cleanup_ids;
909b0a88 1676 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
0f0afb1d 1677 set_mnt_shared(p);
0b1b901b
AV
1678 } else {
1679 lock_mount_hash();
b90fa9ae 1680 }
1a390689 1681 if (parent_path) {
0fb54e50 1682 detach_mnt(source_mnt, parent_path);
84d17192 1683 attach_mnt(source_mnt, dest_mnt, dest_mp);
143c8c91 1684 touch_mnt_namespace(source_mnt->mnt_ns);
21444403 1685 } else {
84d17192 1686 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
1d6a32ac 1687 commit_tree(source_mnt, NULL);
21444403 1688 }
b90fa9ae 1689
38129a13 1690 hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
1d6a32ac 1691 struct mount *q;
38129a13 1692 hlist_del_init(&child->mnt_hash);
1d6a32ac
AV
1693 q = __lookup_mnt_last(&child->mnt_parent->mnt,
1694 child->mnt_mountpoint);
1695 commit_tree(child, q);
b90fa9ae 1696 }
719ea2fb 1697 unlock_mount_hash();
99b7db7b 1698
b90fa9ae 1699 return 0;
719f5d7f
MS
1700
1701 out_cleanup_ids:
f2ebb3a9
AV
1702 while (!hlist_empty(&tree_list)) {
1703 child = hlist_entry(tree_list.first, struct mount, mnt_hash);
1704 umount_tree(child, 0);
1705 }
1706 unlock_mount_hash();
0b1b901b 1707 cleanup_group_ids(source_mnt, NULL);
719f5d7f
MS
1708 out:
1709 return err;
b90fa9ae
RP
1710}
1711
84d17192 1712static struct mountpoint *lock_mount(struct path *path)
b12cea91
AV
1713{
1714 struct vfsmount *mnt;
84d17192 1715 struct dentry *dentry = path->dentry;
b12cea91 1716retry:
84d17192
AV
1717 mutex_lock(&dentry->d_inode->i_mutex);
1718 if (unlikely(cant_mount(dentry))) {
1719 mutex_unlock(&dentry->d_inode->i_mutex);
1720 return ERR_PTR(-ENOENT);
b12cea91 1721 }
97216be0 1722 namespace_lock();
b12cea91 1723 mnt = lookup_mnt(path);
84d17192
AV
1724 if (likely(!mnt)) {
1725 struct mountpoint *mp = new_mountpoint(dentry);
1726 if (IS_ERR(mp)) {
97216be0 1727 namespace_unlock();
84d17192
AV
1728 mutex_unlock(&dentry->d_inode->i_mutex);
1729 return mp;
1730 }
1731 return mp;
1732 }
97216be0 1733 namespace_unlock();
b12cea91
AV
1734 mutex_unlock(&path->dentry->d_inode->i_mutex);
1735 path_put(path);
1736 path->mnt = mnt;
84d17192 1737 dentry = path->dentry = dget(mnt->mnt_root);
b12cea91
AV
1738 goto retry;
1739}
1740
84d17192 1741static void unlock_mount(struct mountpoint *where)
b12cea91 1742{
84d17192
AV
1743 struct dentry *dentry = where->m_dentry;
1744 put_mountpoint(where);
328e6d90 1745 namespace_unlock();
84d17192 1746 mutex_unlock(&dentry->d_inode->i_mutex);
b12cea91
AV
1747}
1748
84d17192 1749static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
1da177e4 1750{
95bc5f25 1751 if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER)
1da177e4
LT
1752 return -EINVAL;
1753
84d17192 1754 if (S_ISDIR(mp->m_dentry->d_inode->i_mode) !=
95bc5f25 1755 S_ISDIR(mnt->mnt.mnt_root->d_inode->i_mode))
1da177e4
LT
1756 return -ENOTDIR;
1757
84d17192 1758 return attach_recursive_mnt(mnt, p, mp, NULL);
1da177e4
LT
1759}
1760
7a2e8a8f
VA
1761/*
1762 * Sanity check the flags to change_mnt_propagation.
1763 */
1764
1765static int flags_to_propagation_type(int flags)
1766{
7c6e984d 1767 int type = flags & ~(MS_REC | MS_SILENT);
7a2e8a8f
VA
1768
1769 /* Fail if any non-propagation flags are set */
1770 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
1771 return 0;
1772 /* Only one propagation flag should be set */
1773 if (!is_power_of_2(type))
1774 return 0;
1775 return type;
1776}
1777
07b20889
RP
1778/*
1779 * recursively change the type of the mountpoint.
1780 */
0a0d8a46 1781static int do_change_type(struct path *path, int flag)
07b20889 1782{
315fc83e 1783 struct mount *m;
4b8b21f4 1784 struct mount *mnt = real_mount(path->mnt);
07b20889 1785 int recurse = flag & MS_REC;
7a2e8a8f 1786 int type;
719f5d7f 1787 int err = 0;
07b20889 1788
2d92ab3c 1789 if (path->dentry != path->mnt->mnt_root)
07b20889
RP
1790 return -EINVAL;
1791
7a2e8a8f
VA
1792 type = flags_to_propagation_type(flag);
1793 if (!type)
1794 return -EINVAL;
1795
97216be0 1796 namespace_lock();
719f5d7f
MS
1797 if (type == MS_SHARED) {
1798 err = invent_group_ids(mnt, recurse);
1799 if (err)
1800 goto out_unlock;
1801 }
1802
719ea2fb 1803 lock_mount_hash();
909b0a88 1804 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
0f0afb1d 1805 change_mnt_propagation(m, type);
719ea2fb 1806 unlock_mount_hash();
719f5d7f
MS
1807
1808 out_unlock:
97216be0 1809 namespace_unlock();
719f5d7f 1810 return err;
07b20889
RP
1811}
1812
5ff9d8a6
EB
1813static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
1814{
1815 struct mount *child;
1816 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
1817 if (!is_subdir(child->mnt_mountpoint, dentry))
1818 continue;
1819
1820 if (child->mnt.mnt_flags & MNT_LOCKED)
1821 return true;
1822 }
1823 return false;
1824}
1825
1da177e4
LT
1826/*
1827 * do loopback mount.
1828 */
808d4e3c 1829static int do_loopback(struct path *path, const char *old_name,
2dafe1c4 1830 int recurse)
1da177e4 1831{
2d92ab3c 1832 struct path old_path;
84d17192
AV
1833 struct mount *mnt = NULL, *old, *parent;
1834 struct mountpoint *mp;
57eccb83 1835 int err;
1da177e4
LT
1836 if (!old_name || !*old_name)
1837 return -EINVAL;
815d405c 1838 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
1da177e4
LT
1839 if (err)
1840 return err;
1841
8823c079 1842 err = -EINVAL;
4ce5d2b1 1843 if (mnt_ns_loop(old_path.dentry))
8823c079
EB
1844 goto out;
1845
84d17192
AV
1846 mp = lock_mount(path);
1847 err = PTR_ERR(mp);
1848 if (IS_ERR(mp))
b12cea91
AV
1849 goto out;
1850
87129cc0 1851 old = real_mount(old_path.mnt);
84d17192 1852 parent = real_mount(path->mnt);
87129cc0 1853
1da177e4 1854 err = -EINVAL;
fc7be130 1855 if (IS_MNT_UNBINDABLE(old))
b12cea91 1856 goto out2;
9676f0c6 1857
84d17192 1858 if (!check_mnt(parent) || !check_mnt(old))
b12cea91 1859 goto out2;
1da177e4 1860
5ff9d8a6
EB
1861 if (!recurse && has_locked_children(old, old_path.dentry))
1862 goto out2;
1863
ccd48bc7 1864 if (recurse)
4ce5d2b1 1865 mnt = copy_tree(old, old_path.dentry, CL_COPY_MNT_NS_FILE);
ccd48bc7 1866 else
87129cc0 1867 mnt = clone_mnt(old, old_path.dentry, 0);
ccd48bc7 1868
be34d1a3
DH
1869 if (IS_ERR(mnt)) {
1870 err = PTR_ERR(mnt);
e9c5d8a5 1871 goto out2;
be34d1a3 1872 }
ccd48bc7 1873
5ff9d8a6
EB
1874 mnt->mnt.mnt_flags &= ~MNT_LOCKED;
1875
84d17192 1876 err = graft_tree(mnt, parent, mp);
ccd48bc7 1877 if (err) {
719ea2fb 1878 lock_mount_hash();
328e6d90 1879 umount_tree(mnt, 0);
719ea2fb 1880 unlock_mount_hash();
5b83d2c5 1881 }
b12cea91 1882out2:
84d17192 1883 unlock_mount(mp);
ccd48bc7 1884out:
2d92ab3c 1885 path_put(&old_path);
1da177e4
LT
1886 return err;
1887}
1888
2e4b7fcd
DH
1889static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
1890{
1891 int error = 0;
1892 int readonly_request = 0;
1893
1894 if (ms_flags & MS_RDONLY)
1895 readonly_request = 1;
1896 if (readonly_request == __mnt_is_readonly(mnt))
1897 return 0;
1898
1899 if (readonly_request)
83adc753 1900 error = mnt_make_readonly(real_mount(mnt));
2e4b7fcd 1901 else
83adc753 1902 __mnt_unmake_readonly(real_mount(mnt));
2e4b7fcd
DH
1903 return error;
1904}
1905
1da177e4
LT
1906/*
1907 * change filesystem flags. dir should be a physical root of filesystem.
1908 * If you've mounted a non-root directory somewhere and want to do remount
1909 * on it - tough luck.
1910 */
0a0d8a46 1911static int do_remount(struct path *path, int flags, int mnt_flags,
1da177e4
LT
1912 void *data)
1913{
1914 int err;
2d92ab3c 1915 struct super_block *sb = path->mnt->mnt_sb;
143c8c91 1916 struct mount *mnt = real_mount(path->mnt);
1da177e4 1917
143c8c91 1918 if (!check_mnt(mnt))
1da177e4
LT
1919 return -EINVAL;
1920
2d92ab3c 1921 if (path->dentry != path->mnt->mnt_root)
1da177e4
LT
1922 return -EINVAL;
1923
07b64558
EB
1924 /* Don't allow changing of locked mnt flags.
1925 *
1926 * No locks need to be held here while testing the various
1927 * MNT_LOCK flags because those flags can never be cleared
1928 * once they are set.
1929 */
1930 if ((mnt->mnt.mnt_flags & MNT_LOCK_READONLY) &&
1931 !(mnt_flags & MNT_READONLY)) {
1932 return -EPERM;
1933 }
ff36fe2c
EP
1934 err = security_sb_remount(sb, data);
1935 if (err)
1936 return err;
1937
1da177e4 1938 down_write(&sb->s_umount);
2e4b7fcd 1939 if (flags & MS_BIND)
2d92ab3c 1940 err = change_mount_flags(path->mnt, flags);
57eccb83
AV
1941 else if (!capable(CAP_SYS_ADMIN))
1942 err = -EPERM;
4aa98cf7 1943 else
2e4b7fcd 1944 err = do_remount_sb(sb, flags, data, 0);
7b43a79f 1945 if (!err) {
719ea2fb 1946 lock_mount_hash();
a6138db8 1947 mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
143c8c91 1948 mnt->mnt.mnt_flags = mnt_flags;
143c8c91 1949 touch_mnt_namespace(mnt->mnt_ns);
719ea2fb 1950 unlock_mount_hash();
0e55a7cc 1951 }
6339dab8 1952 up_write(&sb->s_umount);
1da177e4
LT
1953 return err;
1954}
1955
cbbe362c 1956static inline int tree_contains_unbindable(struct mount *mnt)
9676f0c6 1957{
315fc83e 1958 struct mount *p;
909b0a88 1959 for (p = mnt; p; p = next_mnt(p, mnt)) {
fc7be130 1960 if (IS_MNT_UNBINDABLE(p))
9676f0c6
RP
1961 return 1;
1962 }
1963 return 0;
1964}
1965
808d4e3c 1966static int do_move_mount(struct path *path, const char *old_name)
1da177e4 1967{
2d92ab3c 1968 struct path old_path, parent_path;
676da58d 1969 struct mount *p;
0fb54e50 1970 struct mount *old;
84d17192 1971 struct mountpoint *mp;
57eccb83 1972 int err;
1da177e4
LT
1973 if (!old_name || !*old_name)
1974 return -EINVAL;
2d92ab3c 1975 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
1da177e4
LT
1976 if (err)
1977 return err;
1978
84d17192
AV
1979 mp = lock_mount(path);
1980 err = PTR_ERR(mp);
1981 if (IS_ERR(mp))
cc53ce53
DH
1982 goto out;
1983
143c8c91 1984 old = real_mount(old_path.mnt);
fc7be130 1985 p = real_mount(path->mnt);
143c8c91 1986
1da177e4 1987 err = -EINVAL;
fc7be130 1988 if (!check_mnt(p) || !check_mnt(old))
1da177e4
LT
1989 goto out1;
1990
5ff9d8a6
EB
1991 if (old->mnt.mnt_flags & MNT_LOCKED)
1992 goto out1;
1993
1da177e4 1994 err = -EINVAL;
2d92ab3c 1995 if (old_path.dentry != old_path.mnt->mnt_root)
21444403 1996 goto out1;
1da177e4 1997
676da58d 1998 if (!mnt_has_parent(old))
21444403 1999 goto out1;
1da177e4 2000
2d92ab3c
AV
2001 if (S_ISDIR(path->dentry->d_inode->i_mode) !=
2002 S_ISDIR(old_path.dentry->d_inode->i_mode))
21444403
RP
2003 goto out1;
2004 /*
2005 * Don't move a mount residing in a shared parent.
2006 */
fc7be130 2007 if (IS_MNT_SHARED(old->mnt_parent))
21444403 2008 goto out1;
9676f0c6
RP
2009 /*
2010 * Don't move a mount tree containing unbindable mounts to a destination
2011 * mount which is shared.
2012 */
fc7be130 2013 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
9676f0c6 2014 goto out1;
1da177e4 2015 err = -ELOOP;
fc7be130 2016 for (; mnt_has_parent(p); p = p->mnt_parent)
676da58d 2017 if (p == old)
21444403 2018 goto out1;
1da177e4 2019
84d17192 2020 err = attach_recursive_mnt(old, real_mount(path->mnt), mp, &parent_path);
4ac91378 2021 if (err)
21444403 2022 goto out1;
1da177e4
LT
2023
2024 /* if the mount is moved, it should no longer be expire
2025 * automatically */
6776db3d 2026 list_del_init(&old->mnt_expire);
1da177e4 2027out1:
84d17192 2028 unlock_mount(mp);
1da177e4 2029out:
1da177e4 2030 if (!err)
1a390689 2031 path_put(&parent_path);
2d92ab3c 2032 path_put(&old_path);
1da177e4
LT
2033 return err;
2034}
2035
9d412a43
AV
2036static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
2037{
2038 int err;
2039 const char *subtype = strchr(fstype, '.');
2040 if (subtype) {
2041 subtype++;
2042 err = -EINVAL;
2043 if (!subtype[0])
2044 goto err;
2045 } else
2046 subtype = "";
2047
2048 mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
2049 err = -ENOMEM;
2050 if (!mnt->mnt_sb->s_subtype)
2051 goto err;
2052 return mnt;
2053
2054 err:
2055 mntput(mnt);
2056 return ERR_PTR(err);
2057}
2058
9d412a43
AV
2059/*
2060 * add a mount into a namespace's mount tree
2061 */
95bc5f25 2062static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
9d412a43 2063{
84d17192
AV
2064 struct mountpoint *mp;
2065 struct mount *parent;
9d412a43
AV
2066 int err;
2067
f2ebb3a9 2068 mnt_flags &= ~MNT_INTERNAL_FLAGS;
9d412a43 2069
84d17192
AV
2070 mp = lock_mount(path);
2071 if (IS_ERR(mp))
2072 return PTR_ERR(mp);
9d412a43 2073
84d17192 2074 parent = real_mount(path->mnt);
9d412a43 2075 err = -EINVAL;
84d17192 2076 if (unlikely(!check_mnt(parent))) {
156cacb1
AV
2077 /* that's acceptable only for automounts done in private ns */
2078 if (!(mnt_flags & MNT_SHRINKABLE))
2079 goto unlock;
2080 /* ... and for those we'd better have mountpoint still alive */
84d17192 2081 if (!parent->mnt_ns)
156cacb1
AV
2082 goto unlock;
2083 }
9d412a43
AV
2084
2085 /* Refuse the same filesystem on the same mount point */
2086 err = -EBUSY;
95bc5f25 2087 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
9d412a43
AV
2088 path->mnt->mnt_root == path->dentry)
2089 goto unlock;
2090
2091 err = -EINVAL;
95bc5f25 2092 if (S_ISLNK(newmnt->mnt.mnt_root->d_inode->i_mode))
9d412a43
AV
2093 goto unlock;
2094
95bc5f25 2095 newmnt->mnt.mnt_flags = mnt_flags;
84d17192 2096 err = graft_tree(newmnt, parent, mp);
9d412a43
AV
2097
2098unlock:
84d17192 2099 unlock_mount(mp);
9d412a43
AV
2100 return err;
2101}
b1e75df4 2102
1da177e4
LT
2103/*
2104 * create a new mount for userspace and request it to be added into the
2105 * namespace's tree
2106 */
0c55cfc4 2107static int do_new_mount(struct path *path, const char *fstype, int flags,
808d4e3c 2108 int mnt_flags, const char *name, void *data)
1da177e4 2109{
0c55cfc4 2110 struct file_system_type *type;
9b40bc90 2111 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
1da177e4 2112 struct vfsmount *mnt;
15f9a3f3 2113 int err;
1da177e4 2114
0c55cfc4 2115 if (!fstype)
1da177e4
LT
2116 return -EINVAL;
2117
0c55cfc4
EB
2118 type = get_fs_type(fstype);
2119 if (!type)
2120 return -ENODEV;
2121
2122 if (user_ns != &init_user_ns) {
2123 if (!(type->fs_flags & FS_USERNS_MOUNT)) {
2124 put_filesystem(type);
2125 return -EPERM;
2126 }
2127 /* Only in special cases allow devices from mounts
2128 * created outside the initial user namespace.
2129 */
2130 if (!(type->fs_flags & FS_USERNS_DEV_MOUNT)) {
2131 flags |= MS_NODEV;
2132 mnt_flags |= MNT_NODEV;
2133 }
2134 }
2135
2136 mnt = vfs_kern_mount(type, flags, name, data);
2137 if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
2138 !mnt->mnt_sb->s_subtype)
2139 mnt = fs_set_subtype(mnt, fstype);
2140
2141 put_filesystem(type);
1da177e4
LT
2142 if (IS_ERR(mnt))
2143 return PTR_ERR(mnt);
2144
95bc5f25 2145 err = do_add_mount(real_mount(mnt), path, mnt_flags);
15f9a3f3
AV
2146 if (err)
2147 mntput(mnt);
2148 return err;
1da177e4
LT
2149}
2150
19a167af
AV
2151int finish_automount(struct vfsmount *m, struct path *path)
2152{
6776db3d 2153 struct mount *mnt = real_mount(m);
19a167af
AV
2154 int err;
2155 /* The new mount record should have at least 2 refs to prevent it being
2156 * expired before we get a chance to add it
2157 */
6776db3d 2158 BUG_ON(mnt_get_count(mnt) < 2);
19a167af
AV
2159
2160 if (m->mnt_sb == path->mnt->mnt_sb &&
2161 m->mnt_root == path->dentry) {
b1e75df4
AV
2162 err = -ELOOP;
2163 goto fail;
19a167af
AV
2164 }
2165
95bc5f25 2166 err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
b1e75df4
AV
2167 if (!err)
2168 return 0;
2169fail:
2170 /* remove m from any expiration list it may be on */
6776db3d 2171 if (!list_empty(&mnt->mnt_expire)) {
97216be0 2172 namespace_lock();
6776db3d 2173 list_del_init(&mnt->mnt_expire);
97216be0 2174 namespace_unlock();
19a167af 2175 }
b1e75df4
AV
2176 mntput(m);
2177 mntput(m);
19a167af
AV
2178 return err;
2179}
2180
ea5b778a
DH
2181/**
2182 * mnt_set_expiry - Put a mount on an expiration list
2183 * @mnt: The mount to list.
2184 * @expiry_list: The list to add the mount to.
2185 */
2186void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2187{
97216be0 2188 namespace_lock();
ea5b778a 2189
6776db3d 2190 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
ea5b778a 2191
97216be0 2192 namespace_unlock();
ea5b778a
DH
2193}
2194EXPORT_SYMBOL(mnt_set_expiry);
2195
1da177e4
LT
2196/*
2197 * process a list of expirable mountpoints with the intent of discarding any
2198 * mountpoints that aren't in use and haven't been touched since last we came
2199 * here
2200 */
2201void mark_mounts_for_expiry(struct list_head *mounts)
2202{
761d5c38 2203 struct mount *mnt, *next;
1da177e4
LT
2204 LIST_HEAD(graveyard);
2205
2206 if (list_empty(mounts))
2207 return;
2208
97216be0 2209 namespace_lock();
719ea2fb 2210 lock_mount_hash();
1da177e4
LT
2211
2212 /* extract from the expiration list every vfsmount that matches the
2213 * following criteria:
2214 * - only referenced by its parent vfsmount
2215 * - still marked for expiry (marked on the last call here; marks are
2216 * cleared by mntput())
2217 */
6776db3d 2218 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
863d684f 2219 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
1ab59738 2220 propagate_mount_busy(mnt, 1))
1da177e4 2221 continue;
6776db3d 2222 list_move(&mnt->mnt_expire, &graveyard);
1da177e4 2223 }
bcc5c7d2 2224 while (!list_empty(&graveyard)) {
6776db3d 2225 mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
143c8c91 2226 touch_mnt_namespace(mnt->mnt_ns);
328e6d90 2227 umount_tree(mnt, 1);
bcc5c7d2 2228 }
719ea2fb 2229 unlock_mount_hash();
3ab6abee 2230 namespace_unlock();
5528f911
TM
2231}
2232
2233EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2234
2235/*
2236 * Ripoff of 'select_parent()'
2237 *
2238 * search the list of submounts for a given mountpoint, and move any
2239 * shrinkable submounts to the 'graveyard' list.
2240 */
692afc31 2241static int select_submounts(struct mount *parent, struct list_head *graveyard)
5528f911 2242{
692afc31 2243 struct mount *this_parent = parent;
5528f911
TM
2244 struct list_head *next;
2245 int found = 0;
2246
2247repeat:
6b41d536 2248 next = this_parent->mnt_mounts.next;
5528f911 2249resume:
6b41d536 2250 while (next != &this_parent->mnt_mounts) {
5528f911 2251 struct list_head *tmp = next;
6b41d536 2252 struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
5528f911
TM
2253
2254 next = tmp->next;
692afc31 2255 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
1da177e4 2256 continue;
5528f911
TM
2257 /*
2258 * Descend a level if the d_mounts list is non-empty.
2259 */
6b41d536 2260 if (!list_empty(&mnt->mnt_mounts)) {
5528f911
TM
2261 this_parent = mnt;
2262 goto repeat;
2263 }
1da177e4 2264
1ab59738 2265 if (!propagate_mount_busy(mnt, 1)) {
6776db3d 2266 list_move_tail(&mnt->mnt_expire, graveyard);
5528f911
TM
2267 found++;
2268 }
1da177e4 2269 }
5528f911
TM
2270 /*
2271 * All done at this level ... ascend and resume the search
2272 */
2273 if (this_parent != parent) {
6b41d536 2274 next = this_parent->mnt_child.next;
0714a533 2275 this_parent = this_parent->mnt_parent;
5528f911
TM
2276 goto resume;
2277 }
2278 return found;
2279}
2280
2281/*
2282 * process a list of expirable mountpoints with the intent of discarding any
2283 * submounts of a specific parent mountpoint
99b7db7b 2284 *
48a066e7 2285 * mount_lock must be held for write
5528f911 2286 */
b54b9be7 2287static void shrink_submounts(struct mount *mnt)
5528f911
TM
2288{
2289 LIST_HEAD(graveyard);
761d5c38 2290 struct mount *m;
5528f911 2291
5528f911 2292 /* extract submounts of 'mountpoint' from the expiration list */
c35038be 2293 while (select_submounts(mnt, &graveyard)) {
bcc5c7d2 2294 while (!list_empty(&graveyard)) {
761d5c38 2295 m = list_first_entry(&graveyard, struct mount,
6776db3d 2296 mnt_expire);
143c8c91 2297 touch_mnt_namespace(m->mnt_ns);
328e6d90 2298 umount_tree(m, 1);
bcc5c7d2
AV
2299 }
2300 }
1da177e4
LT
2301}
2302
1da177e4
LT
2303/*
2304 * Some copy_from_user() implementations do not return the exact number of
2305 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
2306 * Note that this function differs from copy_from_user() in that it will oops
2307 * on bad values of `to', rather than returning a short copy.
2308 */
b58fed8b
RP
2309static long exact_copy_from_user(void *to, const void __user * from,
2310 unsigned long n)
1da177e4
LT
2311{
2312 char *t = to;
2313 const char __user *f = from;
2314 char c;
2315
2316 if (!access_ok(VERIFY_READ, from, n))
2317 return n;
2318
2319 while (n) {
2320 if (__get_user(c, f)) {
2321 memset(t, 0, n);
2322 break;
2323 }
2324 *t++ = c;
2325 f++;
2326 n--;
2327 }
2328 return n;
2329}
2330
b58fed8b 2331int copy_mount_options(const void __user * data, unsigned long *where)
1da177e4
LT
2332{
2333 int i;
2334 unsigned long page;
2335 unsigned long size;
b58fed8b 2336
1da177e4
LT
2337 *where = 0;
2338 if (!data)
2339 return 0;
2340
2341 if (!(page = __get_free_page(GFP_KERNEL)))
2342 return -ENOMEM;
2343
2344 /* We only care that *some* data at the address the user
2345 * gave us is valid. Just in case, we'll zero
2346 * the remainder of the page.
2347 */
2348 /* copy_from_user cannot cross TASK_SIZE ! */
2349 size = TASK_SIZE - (unsigned long)data;
2350 if (size > PAGE_SIZE)
2351 size = PAGE_SIZE;
2352
2353 i = size - exact_copy_from_user((void *)page, data, size);
2354 if (!i) {
b58fed8b 2355 free_page(page);
1da177e4
LT
2356 return -EFAULT;
2357 }
2358 if (i != PAGE_SIZE)
2359 memset((char *)page + i, 0, PAGE_SIZE - i);
2360 *where = page;
2361 return 0;
2362}
2363
eca6f534
VN
2364int copy_mount_string(const void __user *data, char **where)
2365{
2366 char *tmp;
2367
2368 if (!data) {
2369 *where = NULL;
2370 return 0;
2371 }
2372
2373 tmp = strndup_user(data, PAGE_SIZE);
2374 if (IS_ERR(tmp))
2375 return PTR_ERR(tmp);
2376
2377 *where = tmp;
2378 return 0;
2379}
2380
1da177e4
LT
2381/*
2382 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2383 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2384 *
2385 * data is a (void *) that can point to any structure up to
2386 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2387 * information (or be NULL).
2388 *
2389 * Pre-0.97 versions of mount() didn't have a flags word.
2390 * When the flags word was introduced its top half was required
2391 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2392 * Therefore, if this magic number is present, it carries no information
2393 * and must be discarded.
2394 */
808d4e3c
AV
2395long do_mount(const char *dev_name, const char *dir_name,
2396 const char *type_page, unsigned long flags, void *data_page)
1da177e4 2397{
2d92ab3c 2398 struct path path;
1da177e4
LT
2399 int retval = 0;
2400 int mnt_flags = 0;
2401
2402 /* Discard magic */
2403 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2404 flags &= ~MS_MGC_MSK;
2405
2406 /* Basic sanity checks */
2407
2408 if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
2409 return -EINVAL;
1da177e4
LT
2410
2411 if (data_page)
2412 ((char *)data_page)[PAGE_SIZE - 1] = 0;
2413
a27ab9f2
TH
2414 /* ... and get the mountpoint */
2415 retval = kern_path(dir_name, LOOKUP_FOLLOW, &path);
2416 if (retval)
2417 return retval;
2418
2419 retval = security_sb_mount(dev_name, &path,
2420 type_page, flags, data_page);
0d5cadb8
AV
2421 if (!retval && !may_mount())
2422 retval = -EPERM;
a27ab9f2
TH
2423 if (retval)
2424 goto dput_out;
2425
613cbe3d
AK
2426 /* Default to relatime unless overriden */
2427 if (!(flags & MS_NOATIME))
2428 mnt_flags |= MNT_RELATIME;
0a1c01c9 2429
1da177e4
LT
2430 /* Separate the per-mountpoint flags */
2431 if (flags & MS_NOSUID)
2432 mnt_flags |= MNT_NOSUID;
2433 if (flags & MS_NODEV)
2434 mnt_flags |= MNT_NODEV;
2435 if (flags & MS_NOEXEC)
2436 mnt_flags |= MNT_NOEXEC;
fc33a7bb
CH
2437 if (flags & MS_NOATIME)
2438 mnt_flags |= MNT_NOATIME;
2439 if (flags & MS_NODIRATIME)
2440 mnt_flags |= MNT_NODIRATIME;
d0adde57
MG
2441 if (flags & MS_STRICTATIME)
2442 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
2e4b7fcd
DH
2443 if (flags & MS_RDONLY)
2444 mnt_flags |= MNT_READONLY;
fc33a7bb 2445
7a4dec53 2446 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
d0adde57
MG
2447 MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
2448 MS_STRICTATIME);
1da177e4 2449
1da177e4 2450 if (flags & MS_REMOUNT)
2d92ab3c 2451 retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
1da177e4
LT
2452 data_page);
2453 else if (flags & MS_BIND)
2d92ab3c 2454 retval = do_loopback(&path, dev_name, flags & MS_REC);
9676f0c6 2455 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2d92ab3c 2456 retval = do_change_type(&path, flags);
1da177e4 2457 else if (flags & MS_MOVE)
2d92ab3c 2458 retval = do_move_mount(&path, dev_name);
1da177e4 2459 else
2d92ab3c 2460 retval = do_new_mount(&path, type_page, flags, mnt_flags,
1da177e4
LT
2461 dev_name, data_page);
2462dput_out:
2d92ab3c 2463 path_put(&path);
1da177e4
LT
2464 return retval;
2465}
2466
771b1371
EB
2467static void free_mnt_ns(struct mnt_namespace *ns)
2468{
98f842e6 2469 proc_free_inum(ns->proc_inum);
771b1371
EB
2470 put_user_ns(ns->user_ns);
2471 kfree(ns);
2472}
2473
8823c079
EB
2474/*
2475 * Assign a sequence number so we can detect when we attempt to bind
2476 * mount a reference to an older mount namespace into the current
2477 * mount namespace, preventing reference counting loops. A 64bit
2478 * number incrementing at 10Ghz will take 12,427 years to wrap which
2479 * is effectively never, so we can ignore the possibility.
2480 */
2481static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
2482
771b1371 2483static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns)
cf8d2c11
TM
2484{
2485 struct mnt_namespace *new_ns;
98f842e6 2486 int ret;
cf8d2c11
TM
2487
2488 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
2489 if (!new_ns)
2490 return ERR_PTR(-ENOMEM);
98f842e6
EB
2491 ret = proc_alloc_inum(&new_ns->proc_inum);
2492 if (ret) {
2493 kfree(new_ns);
2494 return ERR_PTR(ret);
2495 }
8823c079 2496 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
cf8d2c11
TM
2497 atomic_set(&new_ns->count, 1);
2498 new_ns->root = NULL;
2499 INIT_LIST_HEAD(&new_ns->list);
2500 init_waitqueue_head(&new_ns->poll);
2501 new_ns->event = 0;
771b1371 2502 new_ns->user_ns = get_user_ns(user_ns);
cf8d2c11
TM
2503 return new_ns;
2504}
2505
9559f689
AV
2506struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
2507 struct user_namespace *user_ns, struct fs_struct *new_fs)
1da177e4 2508{
6b3286ed 2509 struct mnt_namespace *new_ns;
7f2da1e7 2510 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
315fc83e 2511 struct mount *p, *q;
9559f689 2512 struct mount *old;
cb338d06 2513 struct mount *new;
7a472ef4 2514 int copy_flags;
1da177e4 2515
9559f689
AV
2516 BUG_ON(!ns);
2517
2518 if (likely(!(flags & CLONE_NEWNS))) {
2519 get_mnt_ns(ns);
2520 return ns;
2521 }
2522
2523 old = ns->root;
2524
771b1371 2525 new_ns = alloc_mnt_ns(user_ns);
cf8d2c11
TM
2526 if (IS_ERR(new_ns))
2527 return new_ns;
1da177e4 2528
97216be0 2529 namespace_lock();
1da177e4 2530 /* First pass: copy the tree topology */
4ce5d2b1 2531 copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
9559f689 2532 if (user_ns != ns->user_ns)
132c94e3 2533 copy_flags |= CL_SHARED_TO_SLAVE | CL_UNPRIVILEGED;
7a472ef4 2534 new = copy_tree(old, old->mnt.mnt_root, copy_flags);
be34d1a3 2535 if (IS_ERR(new)) {
328e6d90 2536 namespace_unlock();
771b1371 2537 free_mnt_ns(new_ns);
be34d1a3 2538 return ERR_CAST(new);
1da177e4 2539 }
be08d6d2 2540 new_ns->root = new;
1a4eeaf2 2541 list_add_tail(&new_ns->list, &new->mnt_list);
1da177e4
LT
2542
2543 /*
2544 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2545 * as belonging to new namespace. We have already acquired a private
2546 * fs_struct, so tsk->fs->lock is not needed.
2547 */
909b0a88 2548 p = old;
cb338d06 2549 q = new;
1da177e4 2550 while (p) {
143c8c91 2551 q->mnt_ns = new_ns;
9559f689
AV
2552 if (new_fs) {
2553 if (&p->mnt == new_fs->root.mnt) {
2554 new_fs->root.mnt = mntget(&q->mnt);
315fc83e 2555 rootmnt = &p->mnt;
1da177e4 2556 }
9559f689
AV
2557 if (&p->mnt == new_fs->pwd.mnt) {
2558 new_fs->pwd.mnt = mntget(&q->mnt);
315fc83e 2559 pwdmnt = &p->mnt;
1da177e4 2560 }
1da177e4 2561 }
909b0a88
AV
2562 p = next_mnt(p, old);
2563 q = next_mnt(q, new);
4ce5d2b1
EB
2564 if (!q)
2565 break;
2566 while (p->mnt.mnt_root != q->mnt.mnt_root)
2567 p = next_mnt(p, old);
1da177e4 2568 }
328e6d90 2569 namespace_unlock();
1da177e4 2570
1da177e4 2571 if (rootmnt)
f03c6599 2572 mntput(rootmnt);
1da177e4 2573 if (pwdmnt)
f03c6599 2574 mntput(pwdmnt);
1da177e4 2575
741a2951 2576 return new_ns;
1da177e4
LT
2577}
2578
cf8d2c11
TM
2579/**
2580 * create_mnt_ns - creates a private namespace and adds a root filesystem
2581 * @mnt: pointer to the new root filesystem mountpoint
2582 */
1a4eeaf2 2583static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
cf8d2c11 2584{
771b1371 2585 struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns);
cf8d2c11 2586 if (!IS_ERR(new_ns)) {
1a4eeaf2
AV
2587 struct mount *mnt = real_mount(m);
2588 mnt->mnt_ns = new_ns;
be08d6d2 2589 new_ns->root = mnt;
b1983cd8 2590 list_add(&mnt->mnt_list, &new_ns->list);
c1334495 2591 } else {
1a4eeaf2 2592 mntput(m);
cf8d2c11
TM
2593 }
2594 return new_ns;
2595}
cf8d2c11 2596
ea441d11
AV
2597struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
2598{
2599 struct mnt_namespace *ns;
d31da0f0 2600 struct super_block *s;
ea441d11
AV
2601 struct path path;
2602 int err;
2603
2604 ns = create_mnt_ns(mnt);
2605 if (IS_ERR(ns))
2606 return ERR_CAST(ns);
2607
2608 err = vfs_path_lookup(mnt->mnt_root, mnt,
2609 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
2610
2611 put_mnt_ns(ns);
2612
2613 if (err)
2614 return ERR_PTR(err);
2615
2616 /* trade a vfsmount reference for active sb one */
d31da0f0
AV
2617 s = path.mnt->mnt_sb;
2618 atomic_inc(&s->s_active);
ea441d11
AV
2619 mntput(path.mnt);
2620 /* lock the sucker */
d31da0f0 2621 down_write(&s->s_umount);
ea441d11
AV
2622 /* ... and return the root of (sub)tree on it */
2623 return path.dentry;
2624}
2625EXPORT_SYMBOL(mount_subtree);
2626
bdc480e3
HC
2627SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
2628 char __user *, type, unsigned long, flags, void __user *, data)
1da177e4 2629{
eca6f534
VN
2630 int ret;
2631 char *kernel_type;
91a27b2a 2632 struct filename *kernel_dir;
eca6f534 2633 char *kernel_dev;
1da177e4 2634 unsigned long data_page;
1da177e4 2635
eca6f534
VN
2636 ret = copy_mount_string(type, &kernel_type);
2637 if (ret < 0)
2638 goto out_type;
1da177e4 2639
eca6f534
VN
2640 kernel_dir = getname(dir_name);
2641 if (IS_ERR(kernel_dir)) {
2642 ret = PTR_ERR(kernel_dir);
2643 goto out_dir;
2644 }
1da177e4 2645
eca6f534
VN
2646 ret = copy_mount_string(dev_name, &kernel_dev);
2647 if (ret < 0)
2648 goto out_dev;
1da177e4 2649
eca6f534
VN
2650 ret = copy_mount_options(data, &data_page);
2651 if (ret < 0)
2652 goto out_data;
1da177e4 2653
91a27b2a 2654 ret = do_mount(kernel_dev, kernel_dir->name, kernel_type, flags,
eca6f534 2655 (void *) data_page);
1da177e4 2656
eca6f534
VN
2657 free_page(data_page);
2658out_data:
2659 kfree(kernel_dev);
2660out_dev:
2661 putname(kernel_dir);
2662out_dir:
2663 kfree(kernel_type);
2664out_type:
2665 return ret;
1da177e4
LT
2666}
2667
afac7cba
AV
2668/*
2669 * Return true if path is reachable from root
2670 *
48a066e7 2671 * namespace_sem or mount_lock is held
afac7cba 2672 */
643822b4 2673bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
afac7cba
AV
2674 const struct path *root)
2675{
643822b4 2676 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
a73324da 2677 dentry = mnt->mnt_mountpoint;
0714a533 2678 mnt = mnt->mnt_parent;
afac7cba 2679 }
643822b4 2680 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
afac7cba
AV
2681}
2682
2683int path_is_under(struct path *path1, struct path *path2)
2684{
2685 int res;
48a066e7 2686 read_seqlock_excl(&mount_lock);
643822b4 2687 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
48a066e7 2688 read_sequnlock_excl(&mount_lock);
afac7cba
AV
2689 return res;
2690}
2691EXPORT_SYMBOL(path_is_under);
2692
1da177e4
LT
2693/*
2694 * pivot_root Semantics:
2695 * Moves the root file system of the current process to the directory put_old,
2696 * makes new_root as the new root file system of the current process, and sets
2697 * root/cwd of all processes which had them on the current root to new_root.
2698 *
2699 * Restrictions:
2700 * The new_root and put_old must be directories, and must not be on the
2701 * same file system as the current process root. The put_old must be
2702 * underneath new_root, i.e. adding a non-zero number of /.. to the string
2703 * pointed to by put_old must yield the same directory as new_root. No other
2704 * file system may be mounted on put_old. After all, new_root is a mountpoint.
2705 *
4a0d11fa
NB
2706 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
2707 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
2708 * in this situation.
2709 *
1da177e4
LT
2710 * Notes:
2711 * - we don't move root/cwd if they are not at the root (reason: if something
2712 * cared enough to change them, it's probably wrong to force them elsewhere)
2713 * - it's okay to pick a root that isn't the root of a file system, e.g.
2714 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
2715 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
2716 * first.
2717 */
3480b257
HC
2718SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
2719 const char __user *, put_old)
1da177e4 2720{
2d8f3038 2721 struct path new, old, parent_path, root_parent, root;
84d17192
AV
2722 struct mount *new_mnt, *root_mnt, *old_mnt;
2723 struct mountpoint *old_mp, *root_mp;
1da177e4
LT
2724 int error;
2725
9b40bc90 2726 if (!may_mount())
1da177e4
LT
2727 return -EPERM;
2728
2d8f3038 2729 error = user_path_dir(new_root, &new);
1da177e4
LT
2730 if (error)
2731 goto out0;
1da177e4 2732
2d8f3038 2733 error = user_path_dir(put_old, &old);
1da177e4
LT
2734 if (error)
2735 goto out1;
2736
2d8f3038 2737 error = security_sb_pivotroot(&old, &new);
b12cea91
AV
2738 if (error)
2739 goto out2;
1da177e4 2740
f7ad3c6b 2741 get_fs_root(current->fs, &root);
84d17192
AV
2742 old_mp = lock_mount(&old);
2743 error = PTR_ERR(old_mp);
2744 if (IS_ERR(old_mp))
b12cea91
AV
2745 goto out3;
2746
1da177e4 2747 error = -EINVAL;
419148da
AV
2748 new_mnt = real_mount(new.mnt);
2749 root_mnt = real_mount(root.mnt);
84d17192
AV
2750 old_mnt = real_mount(old.mnt);
2751 if (IS_MNT_SHARED(old_mnt) ||
fc7be130
AV
2752 IS_MNT_SHARED(new_mnt->mnt_parent) ||
2753 IS_MNT_SHARED(root_mnt->mnt_parent))
b12cea91 2754 goto out4;
143c8c91 2755 if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
b12cea91 2756 goto out4;
5ff9d8a6
EB
2757 if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
2758 goto out4;
1da177e4 2759 error = -ENOENT;
f3da392e 2760 if (d_unlinked(new.dentry))
b12cea91 2761 goto out4;
1da177e4 2762 error = -EBUSY;
84d17192 2763 if (new_mnt == root_mnt || old_mnt == root_mnt)
b12cea91 2764 goto out4; /* loop, on the same file system */
1da177e4 2765 error = -EINVAL;
8c3ee42e 2766 if (root.mnt->mnt_root != root.dentry)
b12cea91 2767 goto out4; /* not a mountpoint */
676da58d 2768 if (!mnt_has_parent(root_mnt))
b12cea91 2769 goto out4; /* not attached */
84d17192 2770 root_mp = root_mnt->mnt_mp;
2d8f3038 2771 if (new.mnt->mnt_root != new.dentry)
b12cea91 2772 goto out4; /* not a mountpoint */
676da58d 2773 if (!mnt_has_parent(new_mnt))
b12cea91 2774 goto out4; /* not attached */
4ac91378 2775 /* make sure we can reach put_old from new_root */
84d17192 2776 if (!is_path_reachable(old_mnt, old.dentry, &new))
b12cea91 2777 goto out4;
84d17192 2778 root_mp->m_count++; /* pin it so it won't go away */
719ea2fb 2779 lock_mount_hash();
419148da
AV
2780 detach_mnt(new_mnt, &parent_path);
2781 detach_mnt(root_mnt, &root_parent);
5ff9d8a6
EB
2782 if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
2783 new_mnt->mnt.mnt_flags |= MNT_LOCKED;
2784 root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2785 }
4ac91378 2786 /* mount old root on put_old */
84d17192 2787 attach_mnt(root_mnt, old_mnt, old_mp);
4ac91378 2788 /* mount new_root on / */
84d17192 2789 attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp);
6b3286ed 2790 touch_mnt_namespace(current->nsproxy->mnt_ns);
719ea2fb 2791 unlock_mount_hash();
2d8f3038 2792 chroot_fs_refs(&root, &new);
84d17192 2793 put_mountpoint(root_mp);
1da177e4 2794 error = 0;
b12cea91 2795out4:
84d17192 2796 unlock_mount(old_mp);
b12cea91
AV
2797 if (!error) {
2798 path_put(&root_parent);
2799 path_put(&parent_path);
2800 }
2801out3:
8c3ee42e 2802 path_put(&root);
b12cea91 2803out2:
2d8f3038 2804 path_put(&old);
1da177e4 2805out1:
2d8f3038 2806 path_put(&new);
1da177e4 2807out0:
1da177e4 2808 return error;
1da177e4
LT
2809}
2810
2811static void __init init_mount_tree(void)
2812{
2813 struct vfsmount *mnt;
6b3286ed 2814 struct mnt_namespace *ns;
ac748a09 2815 struct path root;
0c55cfc4 2816 struct file_system_type *type;
1da177e4 2817
0c55cfc4
EB
2818 type = get_fs_type("rootfs");
2819 if (!type)
2820 panic("Can't find rootfs type");
2821 mnt = vfs_kern_mount(type, 0, "rootfs", NULL);
2822 put_filesystem(type);
1da177e4
LT
2823 if (IS_ERR(mnt))
2824 panic("Can't create rootfs");
b3e19d92 2825
3b22edc5
TM
2826 ns = create_mnt_ns(mnt);
2827 if (IS_ERR(ns))
1da177e4 2828 panic("Can't allocate initial namespace");
6b3286ed
KK
2829
2830 init_task.nsproxy->mnt_ns = ns;
2831 get_mnt_ns(ns);
2832
be08d6d2
AV
2833 root.mnt = mnt;
2834 root.dentry = mnt->mnt_root;
ac748a09
JB
2835
2836 set_fs_pwd(current->fs, &root);
2837 set_fs_root(current->fs, &root);
1da177e4
LT
2838}
2839
74bf17cf 2840void __init mnt_init(void)
1da177e4 2841{
13f14b4d 2842 unsigned u;
15a67dd8 2843 int err;
1da177e4 2844
7d6fec45 2845 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
20c2df83 2846 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
1da177e4 2847
0818bf27 2848 mount_hashtable = alloc_large_system_hash("Mount-cache",
38129a13 2849 sizeof(struct hlist_head),
0818bf27
AV
2850 mhash_entries, 19,
2851 0,
2852 &m_hash_shift, &m_hash_mask, 0, 0);
2853 mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
2854 sizeof(struct hlist_head),
2855 mphash_entries, 19,
2856 0,
2857 &mp_hash_shift, &mp_hash_mask, 0, 0);
1da177e4 2858
84d17192 2859 if (!mount_hashtable || !mountpoint_hashtable)
1da177e4
LT
2860 panic("Failed to allocate mount hash table\n");
2861
0818bf27 2862 for (u = 0; u <= m_hash_mask; u++)
38129a13 2863 INIT_HLIST_HEAD(&mount_hashtable[u]);
0818bf27
AV
2864 for (u = 0; u <= mp_hash_mask; u++)
2865 INIT_HLIST_HEAD(&mountpoint_hashtable[u]);
1da177e4 2866
4b93dc9b
TH
2867 kernfs_init();
2868
15a67dd8
RD
2869 err = sysfs_init();
2870 if (err)
2871 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
8e24eea7 2872 __func__, err);
00d26666
GKH
2873 fs_kobj = kobject_create_and_add("fs", NULL);
2874 if (!fs_kobj)
8e24eea7 2875 printk(KERN_WARNING "%s: kobj create error\n", __func__);
1da177e4
LT
2876 init_rootfs();
2877 init_mount_tree();
2878}
2879
616511d0 2880void put_mnt_ns(struct mnt_namespace *ns)
1da177e4 2881{
d498b25a 2882 if (!atomic_dec_and_test(&ns->count))
616511d0 2883 return;
7b00ed6f 2884 drop_collected_mounts(&ns->root->mnt);
771b1371 2885 free_mnt_ns(ns);
1da177e4 2886}
9d412a43
AV
2887
2888struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
2889{
423e0ab0
TC
2890 struct vfsmount *mnt;
2891 mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
2892 if (!IS_ERR(mnt)) {
2893 /*
2894 * it is a longterm mount, don't release mnt until
2895 * we unmount before file sys is unregistered
2896 */
f7a99c5b 2897 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
423e0ab0
TC
2898 }
2899 return mnt;
9d412a43
AV
2900}
2901EXPORT_SYMBOL_GPL(kern_mount_data);
423e0ab0
TC
2902
2903void kern_unmount(struct vfsmount *mnt)
2904{
2905 /* release long term mount so mount point can be released */
2906 if (!IS_ERR_OR_NULL(mnt)) {
f7a99c5b 2907 real_mount(mnt)->mnt_ns = NULL;
48a066e7 2908 synchronize_rcu(); /* yecchhh... */
423e0ab0
TC
2909 mntput(mnt);
2910 }
2911}
2912EXPORT_SYMBOL(kern_unmount);
02125a82
AV
2913
2914bool our_mnt(struct vfsmount *mnt)
2915{
143c8c91 2916 return check_mnt(real_mount(mnt));
02125a82 2917}
8823c079 2918
3151527e
EB
2919bool current_chrooted(void)
2920{
2921 /* Does the current process have a non-standard root */
2922 struct path ns_root;
2923 struct path fs_root;
2924 bool chrooted;
2925
2926 /* Find the namespace root */
2927 ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
2928 ns_root.dentry = ns_root.mnt->mnt_root;
2929 path_get(&ns_root);
2930 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
2931 ;
2932
2933 get_fs_root(current->fs, &fs_root);
2934
2935 chrooted = !path_equal(&fs_root, &ns_root);
2936
2937 path_put(&fs_root);
2938 path_put(&ns_root);
2939
2940 return chrooted;
2941}
2942
e51db735 2943bool fs_fully_visible(struct file_system_type *type)
87a8ebd6
EB
2944{
2945 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
2946 struct mount *mnt;
e51db735 2947 bool visible = false;
87a8ebd6 2948
e51db735
EB
2949 if (unlikely(!ns))
2950 return false;
2951
44bb4385 2952 down_read(&namespace_sem);
87a8ebd6 2953 list_for_each_entry(mnt, &ns->list, mnt_list) {
e51db735
EB
2954 struct mount *child;
2955 if (mnt->mnt.mnt_sb->s_type != type)
2956 continue;
2957
2958 /* This mount is not fully visible if there are any child mounts
2959 * that cover anything except for empty directories.
2960 */
2961 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
2962 struct inode *inode = child->mnt_mountpoint->d_inode;
2963 if (!S_ISDIR(inode->i_mode))
2964 goto next;
41301ae7 2965 if (inode->i_nlink > 2)
e51db735 2966 goto next;
87a8ebd6 2967 }
e51db735
EB
2968 visible = true;
2969 goto found;
2970 next: ;
87a8ebd6 2971 }
e51db735 2972found:
44bb4385 2973 up_read(&namespace_sem);
e51db735 2974 return visible;
87a8ebd6
EB
2975}
2976
8823c079
EB
2977static void *mntns_get(struct task_struct *task)
2978{
2979 struct mnt_namespace *ns = NULL;
2980 struct nsproxy *nsproxy;
2981
728dba3a
EB
2982 task_lock(task);
2983 nsproxy = task->nsproxy;
8823c079
EB
2984 if (nsproxy) {
2985 ns = nsproxy->mnt_ns;
2986 get_mnt_ns(ns);
2987 }
728dba3a 2988 task_unlock(task);
8823c079
EB
2989
2990 return ns;
2991}
2992
2993static void mntns_put(void *ns)
2994{
2995 put_mnt_ns(ns);
2996}
2997
2998static int mntns_install(struct nsproxy *nsproxy, void *ns)
2999{
3000 struct fs_struct *fs = current->fs;
3001 struct mnt_namespace *mnt_ns = ns;
3002 struct path root;
3003
0c55cfc4 3004 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
c7b96acf
EB
3005 !ns_capable(current_user_ns(), CAP_SYS_CHROOT) ||
3006 !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
ae11e0f1 3007 return -EPERM;
8823c079
EB
3008
3009 if (fs->users != 1)
3010 return -EINVAL;
3011
3012 get_mnt_ns(mnt_ns);
3013 put_mnt_ns(nsproxy->mnt_ns);
3014 nsproxy->mnt_ns = mnt_ns;
3015
3016 /* Find the root */
3017 root.mnt = &mnt_ns->root->mnt;
3018 root.dentry = mnt_ns->root->mnt.mnt_root;
3019 path_get(&root);
3020 while(d_mountpoint(root.dentry) && follow_down_one(&root))
3021 ;
3022
3023 /* Update the pwd and root */
3024 set_fs_pwd(fs, &root);
3025 set_fs_root(fs, &root);
3026
3027 path_put(&root);
3028 return 0;
3029}
3030
98f842e6
EB
3031static unsigned int mntns_inum(void *ns)
3032{
3033 struct mnt_namespace *mnt_ns = ns;
3034 return mnt_ns->proc_inum;
3035}
3036
8823c079
EB
3037const struct proc_ns_operations mntns_operations = {
3038 .name = "mnt",
3039 .type = CLONE_NEWNS,
3040 .get = mntns_get,
3041 .put = mntns_put,
3042 .install = mntns_install,
98f842e6 3043 .inum = mntns_inum,
8823c079 3044};