usb: gadget: udc: reduce indentation
[linux-2.6-block.git] / fs / namespace.c
CommitLineData
1da177e4
LT
1/*
2 * linux/fs/namespace.c
3 *
4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
6 *
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
10
1da177e4 11#include <linux/syscalls.h>
d10577a8 12#include <linux/export.h>
16f7e0fe 13#include <linux/capability.h>
6b3286ed 14#include <linux/mnt_namespace.h>
771b1371 15#include <linux/user_namespace.h>
1da177e4
LT
16#include <linux/namei.h>
17#include <linux/security.h>
5b825c3a 18#include <linux/cred.h>
73cd49ec 19#include <linux/idr.h>
57f150a5 20#include <linux/init.h> /* init_rootfs */
d10577a8
AV
21#include <linux/fs_struct.h> /* get_fs_root et.al. */
22#include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
23#include <linux/uaccess.h>
0bb80f24 24#include <linux/proc_ns.h>
20b4fb48 25#include <linux/magic.h>
57c8a661 26#include <linux/memblock.h>
9ea459e1 27#include <linux/task_work.h>
9164bb4a 28#include <linux/sched/task.h>
e262e32d 29#include <uapi/linux/mount.h>
9164bb4a 30
07b20889 31#include "pnode.h"
948730b0 32#include "internal.h"
1da177e4 33
d2921684
EB
34/* Maximum number of mounts in a mount namespace */
35unsigned int sysctl_mount_max __read_mostly = 100000;
36
0818bf27
AV
37static unsigned int m_hash_mask __read_mostly;
38static unsigned int m_hash_shift __read_mostly;
39static unsigned int mp_hash_mask __read_mostly;
40static unsigned int mp_hash_shift __read_mostly;
41
42static __initdata unsigned long mhash_entries;
43static int __init set_mhash_entries(char *str)
44{
45 if (!str)
46 return 0;
47 mhash_entries = simple_strtoul(str, &str, 0);
48 return 1;
49}
50__setup("mhash_entries=", set_mhash_entries);
51
52static __initdata unsigned long mphash_entries;
53static int __init set_mphash_entries(char *str)
54{
55 if (!str)
56 return 0;
57 mphash_entries = simple_strtoul(str, &str, 0);
58 return 1;
59}
60__setup("mphash_entries=", set_mphash_entries);
13f14b4d 61
c7999c36 62static u64 event;
73cd49ec 63static DEFINE_IDA(mnt_id_ida);
719f5d7f 64static DEFINE_IDA(mnt_group_ida);
1da177e4 65
38129a13 66static struct hlist_head *mount_hashtable __read_mostly;
0818bf27 67static struct hlist_head *mountpoint_hashtable __read_mostly;
e18b890b 68static struct kmem_cache *mnt_cache __read_mostly;
59aa0da8 69static DECLARE_RWSEM(namespace_sem);
1da177e4 70
f87fd4c2 71/* /sys/fs */
00d26666
GKH
72struct kobject *fs_kobj;
73EXPORT_SYMBOL_GPL(fs_kobj);
f87fd4c2 74
99b7db7b
NP
75/*
76 * vfsmount lock may be taken for read to prevent changes to the
77 * vfsmount hash, ie. during mountpoint lookups or walking back
78 * up the tree.
79 *
80 * It should be taken for write in all cases where the vfsmount
81 * tree or hash is modified or when a vfsmount structure is modified.
82 */
48a066e7 83__cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
99b7db7b 84
38129a13 85static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
1da177e4 86{
b58fed8b
RP
87 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
88 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
0818bf27
AV
89 tmp = tmp + (tmp >> m_hash_shift);
90 return &mount_hashtable[tmp & m_hash_mask];
91}
92
93static inline struct hlist_head *mp_hash(struct dentry *dentry)
94{
95 unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
96 tmp = tmp + (tmp >> mp_hash_shift);
97 return &mountpoint_hashtable[tmp & mp_hash_mask];
1da177e4
LT
98}
99
b105e270 100static int mnt_alloc_id(struct mount *mnt)
73cd49ec 101{
169b480e
MW
102 int res = ida_alloc(&mnt_id_ida, GFP_KERNEL);
103
104 if (res < 0)
105 return res;
106 mnt->mnt_id = res;
107 return 0;
73cd49ec
MS
108}
109
b105e270 110static void mnt_free_id(struct mount *mnt)
73cd49ec 111{
169b480e 112 ida_free(&mnt_id_ida, mnt->mnt_id);
73cd49ec
MS
113}
114
719f5d7f
MS
115/*
116 * Allocate a new peer group ID
719f5d7f 117 */
4b8b21f4 118static int mnt_alloc_group_id(struct mount *mnt)
719f5d7f 119{
169b480e 120 int res = ida_alloc_min(&mnt_group_ida, 1, GFP_KERNEL);
f21f6220 121
169b480e
MW
122 if (res < 0)
123 return res;
124 mnt->mnt_group_id = res;
125 return 0;
719f5d7f
MS
126}
127
128/*
129 * Release a peer group ID
130 */
4b8b21f4 131void mnt_release_group_id(struct mount *mnt)
719f5d7f 132{
169b480e 133 ida_free(&mnt_group_ida, mnt->mnt_group_id);
15169fe7 134 mnt->mnt_group_id = 0;
719f5d7f
MS
135}
136
b3e19d92
NP
137/*
138 * vfsmount lock must be held for read
139 */
83adc753 140static inline void mnt_add_count(struct mount *mnt, int n)
b3e19d92
NP
141{
142#ifdef CONFIG_SMP
68e8a9fe 143 this_cpu_add(mnt->mnt_pcp->mnt_count, n);
b3e19d92
NP
144#else
145 preempt_disable();
68e8a9fe 146 mnt->mnt_count += n;
b3e19d92
NP
147 preempt_enable();
148#endif
149}
150
b3e19d92
NP
151/*
152 * vfsmount lock must be held for write
153 */
83adc753 154unsigned int mnt_get_count(struct mount *mnt)
b3e19d92
NP
155{
156#ifdef CONFIG_SMP
f03c6599 157 unsigned int count = 0;
b3e19d92
NP
158 int cpu;
159
160 for_each_possible_cpu(cpu) {
68e8a9fe 161 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
b3e19d92
NP
162 }
163
164 return count;
165#else
68e8a9fe 166 return mnt->mnt_count;
b3e19d92
NP
167#endif
168}
169
87b95ce0
AV
170static void drop_mountpoint(struct fs_pin *p)
171{
172 struct mount *m = container_of(p, struct mount, mnt_umount);
173 dput(m->mnt_ex_mountpoint);
174 pin_remove(p);
175 mntput(&m->mnt);
176}
177
b105e270 178static struct mount *alloc_vfsmnt(const char *name)
1da177e4 179{
c63181e6
AV
180 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
181 if (mnt) {
73cd49ec
MS
182 int err;
183
c63181e6 184 err = mnt_alloc_id(mnt);
88b38782
LZ
185 if (err)
186 goto out_free_cache;
187
188 if (name) {
fcc139ae 189 mnt->mnt_devname = kstrdup_const(name, GFP_KERNEL);
c63181e6 190 if (!mnt->mnt_devname)
88b38782 191 goto out_free_id;
73cd49ec
MS
192 }
193
b3e19d92 194#ifdef CONFIG_SMP
c63181e6
AV
195 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
196 if (!mnt->mnt_pcp)
b3e19d92
NP
197 goto out_free_devname;
198
c63181e6 199 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
b3e19d92 200#else
c63181e6
AV
201 mnt->mnt_count = 1;
202 mnt->mnt_writers = 0;
b3e19d92
NP
203#endif
204
38129a13 205 INIT_HLIST_NODE(&mnt->mnt_hash);
c63181e6
AV
206 INIT_LIST_HEAD(&mnt->mnt_child);
207 INIT_LIST_HEAD(&mnt->mnt_mounts);
208 INIT_LIST_HEAD(&mnt->mnt_list);
209 INIT_LIST_HEAD(&mnt->mnt_expire);
210 INIT_LIST_HEAD(&mnt->mnt_share);
211 INIT_LIST_HEAD(&mnt->mnt_slave_list);
212 INIT_LIST_HEAD(&mnt->mnt_slave);
0a5eb7c8 213 INIT_HLIST_NODE(&mnt->mnt_mp_list);
99b19d16 214 INIT_LIST_HEAD(&mnt->mnt_umounting);
87b95ce0 215 init_fs_pin(&mnt->mnt_umount, drop_mountpoint);
1da177e4 216 }
c63181e6 217 return mnt;
88b38782 218
d3ef3d73 219#ifdef CONFIG_SMP
220out_free_devname:
fcc139ae 221 kfree_const(mnt->mnt_devname);
d3ef3d73 222#endif
88b38782 223out_free_id:
c63181e6 224 mnt_free_id(mnt);
88b38782 225out_free_cache:
c63181e6 226 kmem_cache_free(mnt_cache, mnt);
88b38782 227 return NULL;
1da177e4
LT
228}
229
3d733633
DH
230/*
231 * Most r/o checks on a fs are for operations that take
232 * discrete amounts of time, like a write() or unlink().
233 * We must keep track of when those operations start
234 * (for permission checks) and when they end, so that
235 * we can determine when writes are able to occur to
236 * a filesystem.
237 */
238/*
239 * __mnt_is_readonly: check whether a mount is read-only
240 * @mnt: the mount to check for its write status
241 *
242 * This shouldn't be used directly ouside of the VFS.
243 * It does not guarantee that the filesystem will stay
244 * r/w, just that it is right *now*. This can not and
245 * should not be used in place of IS_RDONLY(inode).
246 * mnt_want/drop_write() will _keep_ the filesystem
247 * r/w.
248 */
43f5e655 249bool __mnt_is_readonly(struct vfsmount *mnt)
3d733633 250{
43f5e655 251 return (mnt->mnt_flags & MNT_READONLY) || sb_rdonly(mnt->mnt_sb);
3d733633
DH
252}
253EXPORT_SYMBOL_GPL(__mnt_is_readonly);
254
83adc753 255static inline void mnt_inc_writers(struct mount *mnt)
d3ef3d73 256{
257#ifdef CONFIG_SMP
68e8a9fe 258 this_cpu_inc(mnt->mnt_pcp->mnt_writers);
d3ef3d73 259#else
68e8a9fe 260 mnt->mnt_writers++;
d3ef3d73 261#endif
262}
3d733633 263
83adc753 264static inline void mnt_dec_writers(struct mount *mnt)
3d733633 265{
d3ef3d73 266#ifdef CONFIG_SMP
68e8a9fe 267 this_cpu_dec(mnt->mnt_pcp->mnt_writers);
d3ef3d73 268#else
68e8a9fe 269 mnt->mnt_writers--;
d3ef3d73 270#endif
3d733633 271}
3d733633 272
83adc753 273static unsigned int mnt_get_writers(struct mount *mnt)
3d733633 274{
d3ef3d73 275#ifdef CONFIG_SMP
276 unsigned int count = 0;
3d733633 277 int cpu;
3d733633
DH
278
279 for_each_possible_cpu(cpu) {
68e8a9fe 280 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
3d733633 281 }
3d733633 282
d3ef3d73 283 return count;
284#else
285 return mnt->mnt_writers;
286#endif
3d733633
DH
287}
288
4ed5e82f
MS
289static int mnt_is_readonly(struct vfsmount *mnt)
290{
291 if (mnt->mnt_sb->s_readonly_remount)
292 return 1;
293 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
294 smp_rmb();
295 return __mnt_is_readonly(mnt);
296}
297
8366025e 298/*
eb04c282
JK
299 * Most r/o & frozen checks on a fs are for operations that take discrete
300 * amounts of time, like a write() or unlink(). We must keep track of when
301 * those operations start (for permission checks) and when they end, so that we
302 * can determine when writes are able to occur to a filesystem.
8366025e
DH
303 */
304/**
eb04c282 305 * __mnt_want_write - get write access to a mount without freeze protection
83adc753 306 * @m: the mount on which to take a write
8366025e 307 *
eb04c282
JK
308 * This tells the low-level filesystem that a write is about to be performed to
309 * it, and makes sure that writes are allowed (mnt it read-write) before
310 * returning success. This operation does not protect against filesystem being
311 * frozen. When the write operation is finished, __mnt_drop_write() must be
312 * called. This is effectively a refcount.
8366025e 313 */
eb04c282 314int __mnt_want_write(struct vfsmount *m)
8366025e 315{
83adc753 316 struct mount *mnt = real_mount(m);
3d733633 317 int ret = 0;
3d733633 318
d3ef3d73 319 preempt_disable();
c6653a83 320 mnt_inc_writers(mnt);
d3ef3d73 321 /*
c6653a83 322 * The store to mnt_inc_writers must be visible before we pass
d3ef3d73 323 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
324 * incremented count after it has set MNT_WRITE_HOLD.
325 */
326 smp_mb();
6aa7de05 327 while (READ_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
d3ef3d73 328 cpu_relax();
329 /*
330 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
331 * be set to match its requirements. So we must not load that until
332 * MNT_WRITE_HOLD is cleared.
333 */
334 smp_rmb();
4ed5e82f 335 if (mnt_is_readonly(m)) {
c6653a83 336 mnt_dec_writers(mnt);
3d733633 337 ret = -EROFS;
3d733633 338 }
d3ef3d73 339 preempt_enable();
eb04c282
JK
340
341 return ret;
342}
343
344/**
345 * mnt_want_write - get write access to a mount
346 * @m: the mount on which to take a write
347 *
348 * This tells the low-level filesystem that a write is about to be performed to
349 * it, and makes sure that writes are allowed (mount is read-write, filesystem
350 * is not frozen) before returning success. When the write operation is
351 * finished, mnt_drop_write() must be called. This is effectively a refcount.
352 */
353int mnt_want_write(struct vfsmount *m)
354{
355 int ret;
356
357 sb_start_write(m->mnt_sb);
358 ret = __mnt_want_write(m);
359 if (ret)
360 sb_end_write(m->mnt_sb);
3d733633 361 return ret;
8366025e
DH
362}
363EXPORT_SYMBOL_GPL(mnt_want_write);
364
96029c4e 365/**
366 * mnt_clone_write - get write access to a mount
367 * @mnt: the mount on which to take a write
368 *
369 * This is effectively like mnt_want_write, except
370 * it must only be used to take an extra write reference
371 * on a mountpoint that we already know has a write reference
372 * on it. This allows some optimisation.
373 *
374 * After finished, mnt_drop_write must be called as usual to
375 * drop the reference.
376 */
377int mnt_clone_write(struct vfsmount *mnt)
378{
379 /* superblock may be r/o */
380 if (__mnt_is_readonly(mnt))
381 return -EROFS;
382 preempt_disable();
83adc753 383 mnt_inc_writers(real_mount(mnt));
96029c4e 384 preempt_enable();
385 return 0;
386}
387EXPORT_SYMBOL_GPL(mnt_clone_write);
388
389/**
eb04c282 390 * __mnt_want_write_file - get write access to a file's mount
96029c4e 391 * @file: the file who's mount on which to take a write
392 *
eb04c282 393 * This is like __mnt_want_write, but it takes a file and can
96029c4e 394 * do some optimisations if the file is open for write already
395 */
eb04c282 396int __mnt_want_write_file(struct file *file)
96029c4e 397{
83f936c7 398 if (!(file->f_mode & FMODE_WRITER))
eb04c282 399 return __mnt_want_write(file->f_path.mnt);
96029c4e 400 else
401 return mnt_clone_write(file->f_path.mnt);
402}
eb04c282 403
7c6893e3
MS
404/**
405 * mnt_want_write_file - get write access to a file's mount
406 * @file: the file who's mount on which to take a write
407 *
408 * This is like mnt_want_write, but it takes a file and can
409 * do some optimisations if the file is open for write already
7c6893e3
MS
410 */
411int mnt_want_write_file(struct file *file)
412{
413 int ret;
414
a6795a58 415 sb_start_write(file_inode(file)->i_sb);
eb04c282
JK
416 ret = __mnt_want_write_file(file);
417 if (ret)
a6795a58 418 sb_end_write(file_inode(file)->i_sb);
7c6893e3
MS
419 return ret;
420}
96029c4e 421EXPORT_SYMBOL_GPL(mnt_want_write_file);
422
8366025e 423/**
eb04c282 424 * __mnt_drop_write - give up write access to a mount
8366025e
DH
425 * @mnt: the mount on which to give up write access
426 *
427 * Tells the low-level filesystem that we are done
428 * performing writes to it. Must be matched with
eb04c282 429 * __mnt_want_write() call above.
8366025e 430 */
eb04c282 431void __mnt_drop_write(struct vfsmount *mnt)
8366025e 432{
d3ef3d73 433 preempt_disable();
83adc753 434 mnt_dec_writers(real_mount(mnt));
d3ef3d73 435 preempt_enable();
8366025e 436}
eb04c282
JK
437
438/**
439 * mnt_drop_write - give up write access to a mount
440 * @mnt: the mount on which to give up write access
441 *
442 * Tells the low-level filesystem that we are done performing writes to it and
443 * also allows filesystem to be frozen again. Must be matched with
444 * mnt_want_write() call above.
445 */
446void mnt_drop_write(struct vfsmount *mnt)
447{
448 __mnt_drop_write(mnt);
449 sb_end_write(mnt->mnt_sb);
450}
8366025e
DH
451EXPORT_SYMBOL_GPL(mnt_drop_write);
452
eb04c282
JK
453void __mnt_drop_write_file(struct file *file)
454{
455 __mnt_drop_write(file->f_path.mnt);
456}
457
7c6893e3
MS
458void mnt_drop_write_file(struct file *file)
459{
a6795a58 460 __mnt_drop_write_file(file);
7c6893e3
MS
461 sb_end_write(file_inode(file)->i_sb);
462}
2a79f17e
AV
463EXPORT_SYMBOL(mnt_drop_write_file);
464
83adc753 465static int mnt_make_readonly(struct mount *mnt)
8366025e 466{
3d733633
DH
467 int ret = 0;
468
719ea2fb 469 lock_mount_hash();
83adc753 470 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
3d733633 471 /*
d3ef3d73 472 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
473 * should be visible before we do.
3d733633 474 */
d3ef3d73 475 smp_mb();
476
3d733633 477 /*
d3ef3d73 478 * With writers on hold, if this value is zero, then there are
479 * definitely no active writers (although held writers may subsequently
480 * increment the count, they'll have to wait, and decrement it after
481 * seeing MNT_READONLY).
482 *
483 * It is OK to have counter incremented on one CPU and decremented on
484 * another: the sum will add up correctly. The danger would be when we
485 * sum up each counter, if we read a counter before it is incremented,
486 * but then read another CPU's count which it has been subsequently
487 * decremented from -- we would see more decrements than we should.
488 * MNT_WRITE_HOLD protects against this scenario, because
489 * mnt_want_write first increments count, then smp_mb, then spins on
490 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
491 * we're counting up here.
3d733633 492 */
c6653a83 493 if (mnt_get_writers(mnt) > 0)
d3ef3d73 494 ret = -EBUSY;
495 else
83adc753 496 mnt->mnt.mnt_flags |= MNT_READONLY;
d3ef3d73 497 /*
498 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
499 * that become unheld will see MNT_READONLY.
500 */
501 smp_wmb();
83adc753 502 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
719ea2fb 503 unlock_mount_hash();
3d733633 504 return ret;
8366025e 505}
8366025e 506
43f5e655 507static int __mnt_unmake_readonly(struct mount *mnt)
2e4b7fcd 508{
719ea2fb 509 lock_mount_hash();
83adc753 510 mnt->mnt.mnt_flags &= ~MNT_READONLY;
719ea2fb 511 unlock_mount_hash();
43f5e655 512 return 0;
2e4b7fcd
DH
513}
514
4ed5e82f
MS
515int sb_prepare_remount_readonly(struct super_block *sb)
516{
517 struct mount *mnt;
518 int err = 0;
519
8e8b8796
MS
520 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
521 if (atomic_long_read(&sb->s_remove_count))
522 return -EBUSY;
523
719ea2fb 524 lock_mount_hash();
4ed5e82f
MS
525 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
526 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
527 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
528 smp_mb();
529 if (mnt_get_writers(mnt) > 0) {
530 err = -EBUSY;
531 break;
532 }
533 }
534 }
8e8b8796
MS
535 if (!err && atomic_long_read(&sb->s_remove_count))
536 err = -EBUSY;
537
4ed5e82f
MS
538 if (!err) {
539 sb->s_readonly_remount = 1;
540 smp_wmb();
541 }
542 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
543 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
544 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
545 }
719ea2fb 546 unlock_mount_hash();
4ed5e82f
MS
547
548 return err;
549}
550
b105e270 551static void free_vfsmnt(struct mount *mnt)
1da177e4 552{
fcc139ae 553 kfree_const(mnt->mnt_devname);
d3ef3d73 554#ifdef CONFIG_SMP
68e8a9fe 555 free_percpu(mnt->mnt_pcp);
d3ef3d73 556#endif
b105e270 557 kmem_cache_free(mnt_cache, mnt);
1da177e4
LT
558}
559
8ffcb32e
DH
560static void delayed_free_vfsmnt(struct rcu_head *head)
561{
562 free_vfsmnt(container_of(head, struct mount, mnt_rcu));
563}
564
48a066e7 565/* call under rcu_read_lock */
294d71ff 566int __legitimize_mnt(struct vfsmount *bastard, unsigned seq)
48a066e7
AV
567{
568 struct mount *mnt;
569 if (read_seqretry(&mount_lock, seq))
294d71ff 570 return 1;
48a066e7 571 if (bastard == NULL)
294d71ff 572 return 0;
48a066e7
AV
573 mnt = real_mount(bastard);
574 mnt_add_count(mnt, 1);
119e1ef8 575 smp_mb(); // see mntput_no_expire()
48a066e7 576 if (likely(!read_seqretry(&mount_lock, seq)))
294d71ff 577 return 0;
48a066e7
AV
578 if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
579 mnt_add_count(mnt, -1);
294d71ff
AV
580 return 1;
581 }
119e1ef8
AV
582 lock_mount_hash();
583 if (unlikely(bastard->mnt_flags & MNT_DOOMED)) {
584 mnt_add_count(mnt, -1);
585 unlock_mount_hash();
586 return 1;
587 }
588 unlock_mount_hash();
589 /* caller will mntput() */
294d71ff
AV
590 return -1;
591}
592
593/* call under rcu_read_lock */
594bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
595{
596 int res = __legitimize_mnt(bastard, seq);
597 if (likely(!res))
598 return true;
599 if (unlikely(res < 0)) {
600 rcu_read_unlock();
601 mntput(bastard);
602 rcu_read_lock();
48a066e7 603 }
48a066e7
AV
604 return false;
605}
606
1da177e4 607/*
474279dc 608 * find the first mount at @dentry on vfsmount @mnt.
48a066e7 609 * call under rcu_read_lock()
1da177e4 610 */
474279dc 611struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
1da177e4 612{
38129a13 613 struct hlist_head *head = m_hash(mnt, dentry);
474279dc
AV
614 struct mount *p;
615
38129a13 616 hlist_for_each_entry_rcu(p, head, mnt_hash)
474279dc
AV
617 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
618 return p;
619 return NULL;
620}
621
a05964f3 622/*
f015f126
DH
623 * lookup_mnt - Return the first child mount mounted at path
624 *
625 * "First" means first mounted chronologically. If you create the
626 * following mounts:
627 *
628 * mount /dev/sda1 /mnt
629 * mount /dev/sda2 /mnt
630 * mount /dev/sda3 /mnt
631 *
632 * Then lookup_mnt() on the base /mnt dentry in the root mount will
633 * return successively the root dentry and vfsmount of /dev/sda1, then
634 * /dev/sda2, then /dev/sda3, then NULL.
635 *
636 * lookup_mnt takes a reference to the found vfsmount.
a05964f3 637 */
ca71cf71 638struct vfsmount *lookup_mnt(const struct path *path)
a05964f3 639{
c7105365 640 struct mount *child_mnt;
48a066e7
AV
641 struct vfsmount *m;
642 unsigned seq;
99b7db7b 643
48a066e7
AV
644 rcu_read_lock();
645 do {
646 seq = read_seqbegin(&mount_lock);
647 child_mnt = __lookup_mnt(path->mnt, path->dentry);
648 m = child_mnt ? &child_mnt->mnt : NULL;
649 } while (!legitimize_mnt(m, seq));
650 rcu_read_unlock();
651 return m;
a05964f3
RP
652}
653
7af1364f
EB
654/*
655 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
656 * current mount namespace.
657 *
658 * The common case is dentries are not mountpoints at all and that
659 * test is handled inline. For the slow case when we are actually
660 * dealing with a mountpoint of some kind, walk through all of the
661 * mounts in the current mount namespace and test to see if the dentry
662 * is a mountpoint.
663 *
664 * The mount_hashtable is not usable in the context because we
665 * need to identify all mounts that may be in the current mount
666 * namespace not just a mount that happens to have some specified
667 * parent mount.
668 */
669bool __is_local_mountpoint(struct dentry *dentry)
670{
671 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
672 struct mount *mnt;
673 bool is_covered = false;
674
675 if (!d_mountpoint(dentry))
676 goto out;
677
678 down_read(&namespace_sem);
679 list_for_each_entry(mnt, &ns->list, mnt_list) {
680 is_covered = (mnt->mnt_mountpoint == dentry);
681 if (is_covered)
682 break;
683 }
684 up_read(&namespace_sem);
685out:
686 return is_covered;
687}
688
e2dfa935 689static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
84d17192 690{
0818bf27 691 struct hlist_head *chain = mp_hash(dentry);
84d17192
AV
692 struct mountpoint *mp;
693
0818bf27 694 hlist_for_each_entry(mp, chain, m_hash) {
84d17192 695 if (mp->m_dentry == dentry) {
84d17192
AV
696 mp->m_count++;
697 return mp;
698 }
699 }
e2dfa935
EB
700 return NULL;
701}
702
3895dbf8 703static struct mountpoint *get_mountpoint(struct dentry *dentry)
e2dfa935 704{
3895dbf8 705 struct mountpoint *mp, *new = NULL;
e2dfa935 706 int ret;
84d17192 707
3895dbf8 708 if (d_mountpoint(dentry)) {
1e9c75fb
BC
709 /* might be worth a WARN_ON() */
710 if (d_unlinked(dentry))
711 return ERR_PTR(-ENOENT);
3895dbf8
EB
712mountpoint:
713 read_seqlock_excl(&mount_lock);
714 mp = lookup_mountpoint(dentry);
715 read_sequnlock_excl(&mount_lock);
716 if (mp)
717 goto done;
718 }
719
720 if (!new)
721 new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
722 if (!new)
84d17192
AV
723 return ERR_PTR(-ENOMEM);
724
3895dbf8
EB
725
726 /* Exactly one processes may set d_mounted */
eed81007 727 ret = d_set_mounted(dentry);
eed81007 728
3895dbf8
EB
729 /* Someone else set d_mounted? */
730 if (ret == -EBUSY)
731 goto mountpoint;
732
733 /* The dentry is not available as a mountpoint? */
734 mp = ERR_PTR(ret);
735 if (ret)
736 goto done;
737
738 /* Add the new mountpoint to the hash table */
739 read_seqlock_excl(&mount_lock);
740 new->m_dentry = dentry;
741 new->m_count = 1;
742 hlist_add_head(&new->m_hash, mp_hash(dentry));
743 INIT_HLIST_HEAD(&new->m_list);
744 read_sequnlock_excl(&mount_lock);
745
746 mp = new;
747 new = NULL;
748done:
749 kfree(new);
84d17192
AV
750 return mp;
751}
752
753static void put_mountpoint(struct mountpoint *mp)
754{
755 if (!--mp->m_count) {
756 struct dentry *dentry = mp->m_dentry;
0a5eb7c8 757 BUG_ON(!hlist_empty(&mp->m_list));
84d17192
AV
758 spin_lock(&dentry->d_lock);
759 dentry->d_flags &= ~DCACHE_MOUNTED;
760 spin_unlock(&dentry->d_lock);
0818bf27 761 hlist_del(&mp->m_hash);
84d17192
AV
762 kfree(mp);
763 }
764}
765
143c8c91 766static inline int check_mnt(struct mount *mnt)
1da177e4 767{
6b3286ed 768 return mnt->mnt_ns == current->nsproxy->mnt_ns;
1da177e4
LT
769}
770
99b7db7b
NP
771/*
772 * vfsmount lock must be held for write
773 */
6b3286ed 774static void touch_mnt_namespace(struct mnt_namespace *ns)
5addc5dd
AV
775{
776 if (ns) {
777 ns->event = ++event;
778 wake_up_interruptible(&ns->poll);
779 }
780}
781
99b7db7b
NP
782/*
783 * vfsmount lock must be held for write
784 */
6b3286ed 785static void __touch_mnt_namespace(struct mnt_namespace *ns)
5addc5dd
AV
786{
787 if (ns && ns->event != event) {
788 ns->event = event;
789 wake_up_interruptible(&ns->poll);
790 }
791}
792
99b7db7b
NP
793/*
794 * vfsmount lock must be held for write
795 */
7bdb11de 796static void unhash_mnt(struct mount *mnt)
419148da 797{
0714a533 798 mnt->mnt_parent = mnt;
a73324da 799 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
6b41d536 800 list_del_init(&mnt->mnt_child);
38129a13 801 hlist_del_init_rcu(&mnt->mnt_hash);
0a5eb7c8 802 hlist_del_init(&mnt->mnt_mp_list);
84d17192
AV
803 put_mountpoint(mnt->mnt_mp);
804 mnt->mnt_mp = NULL;
1da177e4
LT
805}
806
7bdb11de
EB
807/*
808 * vfsmount lock must be held for write
809 */
810static void detach_mnt(struct mount *mnt, struct path *old_path)
811{
812 old_path->dentry = mnt->mnt_mountpoint;
813 old_path->mnt = &mnt->mnt_parent->mnt;
814 unhash_mnt(mnt);
815}
816
6a46c573
EB
817/*
818 * vfsmount lock must be held for write
819 */
820static void umount_mnt(struct mount *mnt)
821{
822 /* old mountpoint will be dropped when we can do that */
823 mnt->mnt_ex_mountpoint = mnt->mnt_mountpoint;
824 unhash_mnt(mnt);
825}
826
99b7db7b
NP
827/*
828 * vfsmount lock must be held for write
829 */
84d17192
AV
830void mnt_set_mountpoint(struct mount *mnt,
831 struct mountpoint *mp,
44d964d6 832 struct mount *child_mnt)
b90fa9ae 833{
84d17192 834 mp->m_count++;
3a2393d7 835 mnt_add_count(mnt, 1); /* essentially, that's mntget */
84d17192 836 child_mnt->mnt_mountpoint = dget(mp->m_dentry);
3a2393d7 837 child_mnt->mnt_parent = mnt;
84d17192 838 child_mnt->mnt_mp = mp;
0a5eb7c8 839 hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
b90fa9ae
RP
840}
841
1064f874
EB
842static void __attach_mnt(struct mount *mnt, struct mount *parent)
843{
844 hlist_add_head_rcu(&mnt->mnt_hash,
845 m_hash(&parent->mnt, mnt->mnt_mountpoint));
846 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
847}
848
99b7db7b
NP
849/*
850 * vfsmount lock must be held for write
851 */
84d17192
AV
852static void attach_mnt(struct mount *mnt,
853 struct mount *parent,
854 struct mountpoint *mp)
1da177e4 855{
84d17192 856 mnt_set_mountpoint(parent, mp, mnt);
1064f874 857 __attach_mnt(mnt, parent);
b90fa9ae
RP
858}
859
1064f874 860void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt)
12a5b529 861{
1064f874
EB
862 struct mountpoint *old_mp = mnt->mnt_mp;
863 struct dentry *old_mountpoint = mnt->mnt_mountpoint;
864 struct mount *old_parent = mnt->mnt_parent;
865
866 list_del_init(&mnt->mnt_child);
867 hlist_del_init(&mnt->mnt_mp_list);
868 hlist_del_init_rcu(&mnt->mnt_hash);
869
870 attach_mnt(mnt, parent, mp);
871
872 put_mountpoint(old_mp);
873
874 /*
875 * Safely avoid even the suggestion this code might sleep or
876 * lock the mount hash by taking advantage of the knowledge that
877 * mnt_change_mountpoint will not release the final reference
878 * to a mountpoint.
879 *
880 * During mounting, the mount passed in as the parent mount will
881 * continue to use the old mountpoint and during unmounting, the
882 * old mountpoint will continue to exist until namespace_unlock,
883 * which happens well after mnt_change_mountpoint.
884 */
885 spin_lock(&old_mountpoint->d_lock);
886 old_mountpoint->d_lockref.count--;
887 spin_unlock(&old_mountpoint->d_lock);
888
889 mnt_add_count(old_parent, -1);
12a5b529
AV
890}
891
b90fa9ae 892/*
99b7db7b 893 * vfsmount lock must be held for write
b90fa9ae 894 */
1064f874 895static void commit_tree(struct mount *mnt)
b90fa9ae 896{
0714a533 897 struct mount *parent = mnt->mnt_parent;
83adc753 898 struct mount *m;
b90fa9ae 899 LIST_HEAD(head);
143c8c91 900 struct mnt_namespace *n = parent->mnt_ns;
b90fa9ae 901
0714a533 902 BUG_ON(parent == mnt);
b90fa9ae 903
1a4eeaf2 904 list_add_tail(&head, &mnt->mnt_list);
f7a99c5b 905 list_for_each_entry(m, &head, mnt_list)
143c8c91 906 m->mnt_ns = n;
f03c6599 907
b90fa9ae
RP
908 list_splice(&head, n->list.prev);
909
d2921684
EB
910 n->mounts += n->pending_mounts;
911 n->pending_mounts = 0;
912
1064f874 913 __attach_mnt(mnt, parent);
6b3286ed 914 touch_mnt_namespace(n);
1da177e4
LT
915}
916
909b0a88 917static struct mount *next_mnt(struct mount *p, struct mount *root)
1da177e4 918{
6b41d536
AV
919 struct list_head *next = p->mnt_mounts.next;
920 if (next == &p->mnt_mounts) {
1da177e4 921 while (1) {
909b0a88 922 if (p == root)
1da177e4 923 return NULL;
6b41d536
AV
924 next = p->mnt_child.next;
925 if (next != &p->mnt_parent->mnt_mounts)
1da177e4 926 break;
0714a533 927 p = p->mnt_parent;
1da177e4
LT
928 }
929 }
6b41d536 930 return list_entry(next, struct mount, mnt_child);
1da177e4
LT
931}
932
315fc83e 933static struct mount *skip_mnt_tree(struct mount *p)
9676f0c6 934{
6b41d536
AV
935 struct list_head *prev = p->mnt_mounts.prev;
936 while (prev != &p->mnt_mounts) {
937 p = list_entry(prev, struct mount, mnt_child);
938 prev = p->mnt_mounts.prev;
9676f0c6
RP
939 }
940 return p;
941}
942
9d412a43
AV
943struct vfsmount *
944vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
945{
b105e270 946 struct mount *mnt;
9d412a43
AV
947 struct dentry *root;
948
949 if (!type)
950 return ERR_PTR(-ENODEV);
951
952 mnt = alloc_vfsmnt(name);
953 if (!mnt)
954 return ERR_PTR(-ENOMEM);
955
e462ec50 956 if (flags & SB_KERNMOUNT)
b105e270 957 mnt->mnt.mnt_flags = MNT_INTERNAL;
9d412a43
AV
958
959 root = mount_fs(type, flags, name, data);
960 if (IS_ERR(root)) {
8ffcb32e 961 mnt_free_id(mnt);
9d412a43
AV
962 free_vfsmnt(mnt);
963 return ERR_CAST(root);
964 }
965
b105e270
AV
966 mnt->mnt.mnt_root = root;
967 mnt->mnt.mnt_sb = root->d_sb;
a73324da 968 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
0714a533 969 mnt->mnt_parent = mnt;
719ea2fb 970 lock_mount_hash();
39f7c4db 971 list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
719ea2fb 972 unlock_mount_hash();
b105e270 973 return &mnt->mnt;
9d412a43
AV
974}
975EXPORT_SYMBOL_GPL(vfs_kern_mount);
976
93faccbb
EB
977struct vfsmount *
978vfs_submount(const struct dentry *mountpoint, struct file_system_type *type,
979 const char *name, void *data)
980{
981 /* Until it is worked out how to pass the user namespace
982 * through from the parent mount to the submount don't support
983 * unprivileged mounts with submounts.
984 */
985 if (mountpoint->d_sb->s_user_ns != &init_user_ns)
986 return ERR_PTR(-EPERM);
987
e462ec50 988 return vfs_kern_mount(type, SB_SUBMOUNT, name, data);
93faccbb
EB
989}
990EXPORT_SYMBOL_GPL(vfs_submount);
991
87129cc0 992static struct mount *clone_mnt(struct mount *old, struct dentry *root,
36341f64 993 int flag)
1da177e4 994{
87129cc0 995 struct super_block *sb = old->mnt.mnt_sb;
be34d1a3
DH
996 struct mount *mnt;
997 int err;
1da177e4 998
be34d1a3
DH
999 mnt = alloc_vfsmnt(old->mnt_devname);
1000 if (!mnt)
1001 return ERR_PTR(-ENOMEM);
719f5d7f 1002
7a472ef4 1003 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
be34d1a3
DH
1004 mnt->mnt_group_id = 0; /* not a peer of original */
1005 else
1006 mnt->mnt_group_id = old->mnt_group_id;
b90fa9ae 1007
be34d1a3
DH
1008 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
1009 err = mnt_alloc_group_id(mnt);
1010 if (err)
1011 goto out_free;
1da177e4 1012 }
be34d1a3 1013
16a34adb
AV
1014 mnt->mnt.mnt_flags = old->mnt.mnt_flags;
1015 mnt->mnt.mnt_flags &= ~(MNT_WRITE_HOLD|MNT_MARKED|MNT_INTERNAL);
132c94e3 1016 /* Don't allow unprivileged users to change mount flags */
9566d674
EB
1017 if (flag & CL_UNPRIVILEGED) {
1018 mnt->mnt.mnt_flags |= MNT_LOCK_ATIME;
1019
1020 if (mnt->mnt.mnt_flags & MNT_READONLY)
1021 mnt->mnt.mnt_flags |= MNT_LOCK_READONLY;
1022
1023 if (mnt->mnt.mnt_flags & MNT_NODEV)
1024 mnt->mnt.mnt_flags |= MNT_LOCK_NODEV;
1025
1026 if (mnt->mnt.mnt_flags & MNT_NOSUID)
1027 mnt->mnt.mnt_flags |= MNT_LOCK_NOSUID;
1028
1029 if (mnt->mnt.mnt_flags & MNT_NOEXEC)
1030 mnt->mnt.mnt_flags |= MNT_LOCK_NOEXEC;
1031 }
132c94e3 1032
5ff9d8a6 1033 /* Don't allow unprivileged users to reveal what is under a mount */
381cacb1
EB
1034 if ((flag & CL_UNPRIVILEGED) &&
1035 (!(flag & CL_EXPIRE) || list_empty(&old->mnt_expire)))
5ff9d8a6
EB
1036 mnt->mnt.mnt_flags |= MNT_LOCKED;
1037
be34d1a3
DH
1038 atomic_inc(&sb->s_active);
1039 mnt->mnt.mnt_sb = sb;
1040 mnt->mnt.mnt_root = dget(root);
1041 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1042 mnt->mnt_parent = mnt;
719ea2fb 1043 lock_mount_hash();
be34d1a3 1044 list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
719ea2fb 1045 unlock_mount_hash();
be34d1a3 1046
7a472ef4
EB
1047 if ((flag & CL_SLAVE) ||
1048 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
be34d1a3
DH
1049 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
1050 mnt->mnt_master = old;
1051 CLEAR_MNT_SHARED(mnt);
1052 } else if (!(flag & CL_PRIVATE)) {
1053 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
1054 list_add(&mnt->mnt_share, &old->mnt_share);
1055 if (IS_MNT_SLAVE(old))
1056 list_add(&mnt->mnt_slave, &old->mnt_slave);
1057 mnt->mnt_master = old->mnt_master;
5235d448
AV
1058 } else {
1059 CLEAR_MNT_SHARED(mnt);
be34d1a3
DH
1060 }
1061 if (flag & CL_MAKE_SHARED)
1062 set_mnt_shared(mnt);
1063
1064 /* stick the duplicate mount on the same expiry list
1065 * as the original if that was on one */
1066 if (flag & CL_EXPIRE) {
1067 if (!list_empty(&old->mnt_expire))
1068 list_add(&mnt->mnt_expire, &old->mnt_expire);
1069 }
1070
cb338d06 1071 return mnt;
719f5d7f
MS
1072
1073 out_free:
8ffcb32e 1074 mnt_free_id(mnt);
719f5d7f 1075 free_vfsmnt(mnt);
be34d1a3 1076 return ERR_PTR(err);
1da177e4
LT
1077}
1078
9ea459e1
AV
1079static void cleanup_mnt(struct mount *mnt)
1080{
1081 /*
1082 * This probably indicates that somebody messed
1083 * up a mnt_want/drop_write() pair. If this
1084 * happens, the filesystem was probably unable
1085 * to make r/w->r/o transitions.
1086 */
1087 /*
1088 * The locking used to deal with mnt_count decrement provides barriers,
1089 * so mnt_get_writers() below is safe.
1090 */
1091 WARN_ON(mnt_get_writers(mnt));
1092 if (unlikely(mnt->mnt_pins.first))
1093 mnt_pin_kill(mnt);
1094 fsnotify_vfsmount_delete(&mnt->mnt);
1095 dput(mnt->mnt.mnt_root);
1096 deactivate_super(mnt->mnt.mnt_sb);
1097 mnt_free_id(mnt);
1098 call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1099}
1100
1101static void __cleanup_mnt(struct rcu_head *head)
1102{
1103 cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1104}
1105
1106static LLIST_HEAD(delayed_mntput_list);
1107static void delayed_mntput(struct work_struct *unused)
1108{
1109 struct llist_node *node = llist_del_all(&delayed_mntput_list);
29785735 1110 struct mount *m, *t;
9ea459e1 1111
29785735
BP
1112 llist_for_each_entry_safe(m, t, node, mnt_llist)
1113 cleanup_mnt(m);
9ea459e1
AV
1114}
1115static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1116
900148dc 1117static void mntput_no_expire(struct mount *mnt)
b3e19d92 1118{
48a066e7 1119 rcu_read_lock();
9ea0a46c
AV
1120 if (likely(READ_ONCE(mnt->mnt_ns))) {
1121 /*
1122 * Since we don't do lock_mount_hash() here,
1123 * ->mnt_ns can change under us. However, if it's
1124 * non-NULL, then there's a reference that won't
1125 * be dropped until after an RCU delay done after
1126 * turning ->mnt_ns NULL. So if we observe it
1127 * non-NULL under rcu_read_lock(), the reference
1128 * we are dropping is not the final one.
1129 */
1130 mnt_add_count(mnt, -1);
48a066e7 1131 rcu_read_unlock();
f03c6599 1132 return;
b3e19d92 1133 }
719ea2fb 1134 lock_mount_hash();
119e1ef8
AV
1135 /*
1136 * make sure that if __legitimize_mnt() has not seen us grab
1137 * mount_lock, we'll see their refcount increment here.
1138 */
1139 smp_mb();
9ea0a46c 1140 mnt_add_count(mnt, -1);
b3e19d92 1141 if (mnt_get_count(mnt)) {
48a066e7 1142 rcu_read_unlock();
719ea2fb 1143 unlock_mount_hash();
99b7db7b
NP
1144 return;
1145 }
48a066e7
AV
1146 if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1147 rcu_read_unlock();
1148 unlock_mount_hash();
1149 return;
1150 }
1151 mnt->mnt.mnt_flags |= MNT_DOOMED;
1152 rcu_read_unlock();
962830df 1153
39f7c4db 1154 list_del(&mnt->mnt_instance);
ce07d891
EB
1155
1156 if (unlikely(!list_empty(&mnt->mnt_mounts))) {
1157 struct mount *p, *tmp;
1158 list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts, mnt_child) {
1159 umount_mnt(p);
1160 }
1161 }
719ea2fb 1162 unlock_mount_hash();
649a795a 1163
9ea459e1
AV
1164 if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1165 struct task_struct *task = current;
1166 if (likely(!(task->flags & PF_KTHREAD))) {
1167 init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
1168 if (!task_work_add(task, &mnt->mnt_rcu, true))
1169 return;
1170 }
1171 if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1172 schedule_delayed_work(&delayed_mntput_work, 1);
1173 return;
1174 }
1175 cleanup_mnt(mnt);
b3e19d92 1176}
b3e19d92
NP
1177
1178void mntput(struct vfsmount *mnt)
1179{
1180 if (mnt) {
863d684f 1181 struct mount *m = real_mount(mnt);
b3e19d92 1182 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
863d684f
AV
1183 if (unlikely(m->mnt_expiry_mark))
1184 m->mnt_expiry_mark = 0;
1185 mntput_no_expire(m);
b3e19d92
NP
1186 }
1187}
1188EXPORT_SYMBOL(mntput);
1189
1190struct vfsmount *mntget(struct vfsmount *mnt)
1191{
1192 if (mnt)
83adc753 1193 mnt_add_count(real_mount(mnt), 1);
b3e19d92
NP
1194 return mnt;
1195}
1196EXPORT_SYMBOL(mntget);
1197
c6609c0a
IK
1198/* path_is_mountpoint() - Check if path is a mount in the current
1199 * namespace.
1200 *
1201 * d_mountpoint() can only be used reliably to establish if a dentry is
1202 * not mounted in any namespace and that common case is handled inline.
1203 * d_mountpoint() isn't aware of the possibility there may be multiple
1204 * mounts using a given dentry in a different namespace. This function
1205 * checks if the passed in path is a mountpoint rather than the dentry
1206 * alone.
1207 */
1208bool path_is_mountpoint(const struct path *path)
1209{
1210 unsigned seq;
1211 bool res;
1212
1213 if (!d_mountpoint(path->dentry))
1214 return false;
1215
1216 rcu_read_lock();
1217 do {
1218 seq = read_seqbegin(&mount_lock);
1219 res = __path_is_mountpoint(path);
1220 } while (read_seqretry(&mount_lock, seq));
1221 rcu_read_unlock();
1222
1223 return res;
1224}
1225EXPORT_SYMBOL(path_is_mountpoint);
1226
ca71cf71 1227struct vfsmount *mnt_clone_internal(const struct path *path)
7b7b1ace 1228{
3064c356
AV
1229 struct mount *p;
1230 p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1231 if (IS_ERR(p))
1232 return ERR_CAST(p);
1233 p->mnt.mnt_flags |= MNT_INTERNAL;
1234 return &p->mnt;
7b7b1ace 1235}
1da177e4 1236
a1a2c409 1237#ifdef CONFIG_PROC_FS
0226f492 1238/* iterator; we want it to have access to namespace_sem, thus here... */
1da177e4
LT
1239static void *m_start(struct seq_file *m, loff_t *pos)
1240{
ede1bf0d 1241 struct proc_mounts *p = m->private;
1da177e4 1242
390c6843 1243 down_read(&namespace_sem);
c7999c36
AV
1244 if (p->cached_event == p->ns->event) {
1245 void *v = p->cached_mount;
1246 if (*pos == p->cached_index)
1247 return v;
1248 if (*pos == p->cached_index + 1) {
1249 v = seq_list_next(v, &p->ns->list, &p->cached_index);
1250 return p->cached_mount = v;
1251 }
1252 }
1253
1254 p->cached_event = p->ns->event;
1255 p->cached_mount = seq_list_start(&p->ns->list, *pos);
1256 p->cached_index = *pos;
1257 return p->cached_mount;
1da177e4
LT
1258}
1259
1260static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1261{
ede1bf0d 1262 struct proc_mounts *p = m->private;
b0765fb8 1263
c7999c36
AV
1264 p->cached_mount = seq_list_next(v, &p->ns->list, pos);
1265 p->cached_index = *pos;
1266 return p->cached_mount;
1da177e4
LT
1267}
1268
1269static void m_stop(struct seq_file *m, void *v)
1270{
390c6843 1271 up_read(&namespace_sem);
1da177e4
LT
1272}
1273
0226f492 1274static int m_show(struct seq_file *m, void *v)
2d4d4864 1275{
ede1bf0d 1276 struct proc_mounts *p = m->private;
1a4eeaf2 1277 struct mount *r = list_entry(v, struct mount, mnt_list);
0226f492 1278 return p->show(m, &r->mnt);
1da177e4
LT
1279}
1280
a1a2c409 1281const struct seq_operations mounts_op = {
1da177e4
LT
1282 .start = m_start,
1283 .next = m_next,
1284 .stop = m_stop,
0226f492 1285 .show = m_show,
b4629fe2 1286};
a1a2c409 1287#endif /* CONFIG_PROC_FS */
b4629fe2 1288
1da177e4
LT
1289/**
1290 * may_umount_tree - check if a mount tree is busy
1291 * @mnt: root of mount tree
1292 *
1293 * This is called to check if a tree of mounts has any
1294 * open files, pwds, chroots or sub mounts that are
1295 * busy.
1296 */
909b0a88 1297int may_umount_tree(struct vfsmount *m)
1da177e4 1298{
909b0a88 1299 struct mount *mnt = real_mount(m);
36341f64
RP
1300 int actual_refs = 0;
1301 int minimum_refs = 0;
315fc83e 1302 struct mount *p;
909b0a88 1303 BUG_ON(!m);
1da177e4 1304
b3e19d92 1305 /* write lock needed for mnt_get_count */
719ea2fb 1306 lock_mount_hash();
909b0a88 1307 for (p = mnt; p; p = next_mnt(p, mnt)) {
83adc753 1308 actual_refs += mnt_get_count(p);
1da177e4 1309 minimum_refs += 2;
1da177e4 1310 }
719ea2fb 1311 unlock_mount_hash();
1da177e4
LT
1312
1313 if (actual_refs > minimum_refs)
e3474a8e 1314 return 0;
1da177e4 1315
e3474a8e 1316 return 1;
1da177e4
LT
1317}
1318
1319EXPORT_SYMBOL(may_umount_tree);
1320
1321/**
1322 * may_umount - check if a mount point is busy
1323 * @mnt: root of mount
1324 *
1325 * This is called to check if a mount point has any
1326 * open files, pwds, chroots or sub mounts. If the
1327 * mount has sub mounts this will return busy
1328 * regardless of whether the sub mounts are busy.
1329 *
1330 * Doesn't take quota and stuff into account. IOW, in some cases it will
1331 * give false negatives. The main reason why it's here is that we need
1332 * a non-destructive way to look for easily umountable filesystems.
1333 */
1334int may_umount(struct vfsmount *mnt)
1335{
e3474a8e 1336 int ret = 1;
8ad08d8a 1337 down_read(&namespace_sem);
719ea2fb 1338 lock_mount_hash();
1ab59738 1339 if (propagate_mount_busy(real_mount(mnt), 2))
e3474a8e 1340 ret = 0;
719ea2fb 1341 unlock_mount_hash();
8ad08d8a 1342 up_read(&namespace_sem);
a05964f3 1343 return ret;
1da177e4
LT
1344}
1345
1346EXPORT_SYMBOL(may_umount);
1347
38129a13 1348static HLIST_HEAD(unmounted); /* protected by namespace_sem */
e3197d83 1349
97216be0 1350static void namespace_unlock(void)
70fbcdf4 1351{
a3b3c562 1352 struct hlist_head head;
97216be0 1353
a3b3c562 1354 hlist_move_list(&unmounted, &head);
97216be0 1355
97216be0
AV
1356 up_write(&namespace_sem);
1357
a3b3c562
EB
1358 if (likely(hlist_empty(&head)))
1359 return;
1360
22cb7405 1361 synchronize_rcu_expedited();
48a066e7 1362
87b95ce0 1363 group_pin_kill(&head);
70fbcdf4
RP
1364}
1365
97216be0 1366static inline void namespace_lock(void)
e3197d83 1367{
97216be0 1368 down_write(&namespace_sem);
e3197d83
AV
1369}
1370
e819f152
EB
1371enum umount_tree_flags {
1372 UMOUNT_SYNC = 1,
1373 UMOUNT_PROPAGATE = 2,
e0c9c0af 1374 UMOUNT_CONNECTED = 4,
e819f152 1375};
f2d0a123
EB
1376
1377static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how)
1378{
1379 /* Leaving mounts connected is only valid for lazy umounts */
1380 if (how & UMOUNT_SYNC)
1381 return true;
1382
1383 /* A mount without a parent has nothing to be connected to */
1384 if (!mnt_has_parent(mnt))
1385 return true;
1386
1387 /* Because the reference counting rules change when mounts are
1388 * unmounted and connected, umounted mounts may not be
1389 * connected to mounted mounts.
1390 */
1391 if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT))
1392 return true;
1393
1394 /* Has it been requested that the mount remain connected? */
1395 if (how & UMOUNT_CONNECTED)
1396 return false;
1397
1398 /* Is the mount locked such that it needs to remain connected? */
1399 if (IS_MNT_LOCKED(mnt))
1400 return false;
1401
1402 /* By default disconnect the mount */
1403 return true;
1404}
1405
99b7db7b 1406/*
48a066e7 1407 * mount_lock must be held
99b7db7b
NP
1408 * namespace_sem must be held for write
1409 */
e819f152 1410static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
1da177e4 1411{
c003b26f 1412 LIST_HEAD(tmp_list);
315fc83e 1413 struct mount *p;
1da177e4 1414
5d88457e
EB
1415 if (how & UMOUNT_PROPAGATE)
1416 propagate_mount_unlock(mnt);
1417
c003b26f 1418 /* Gather the mounts to umount */
590ce4bc
EB
1419 for (p = mnt; p; p = next_mnt(p, mnt)) {
1420 p->mnt.mnt_flags |= MNT_UMOUNT;
c003b26f 1421 list_move(&p->mnt_list, &tmp_list);
590ce4bc 1422 }
1da177e4 1423
411a938b 1424 /* Hide the mounts from mnt_mounts */
c003b26f 1425 list_for_each_entry(p, &tmp_list, mnt_list) {
88b368f2 1426 list_del_init(&p->mnt_child);
c003b26f 1427 }
88b368f2 1428
c003b26f 1429 /* Add propogated mounts to the tmp_list */
e819f152 1430 if (how & UMOUNT_PROPAGATE)
7b8a53fd 1431 propagate_umount(&tmp_list);
a05964f3 1432
c003b26f 1433 while (!list_empty(&tmp_list)) {
d2921684 1434 struct mnt_namespace *ns;
ce07d891 1435 bool disconnect;
c003b26f 1436 p = list_first_entry(&tmp_list, struct mount, mnt_list);
6776db3d 1437 list_del_init(&p->mnt_expire);
1a4eeaf2 1438 list_del_init(&p->mnt_list);
d2921684
EB
1439 ns = p->mnt_ns;
1440 if (ns) {
1441 ns->mounts--;
1442 __touch_mnt_namespace(ns);
1443 }
143c8c91 1444 p->mnt_ns = NULL;
e819f152 1445 if (how & UMOUNT_SYNC)
48a066e7 1446 p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
87b95ce0 1447
f2d0a123 1448 disconnect = disconnect_mount(p, how);
ce07d891
EB
1449
1450 pin_insert_group(&p->mnt_umount, &p->mnt_parent->mnt,
1451 disconnect ? &unmounted : NULL);
676da58d 1452 if (mnt_has_parent(p)) {
81b6b061 1453 mnt_add_count(p->mnt_parent, -1);
ce07d891
EB
1454 if (!disconnect) {
1455 /* Don't forget about p */
1456 list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
1457 } else {
1458 umount_mnt(p);
1459 }
7c4b93d8 1460 }
0f0afb1d 1461 change_mnt_propagation(p, MS_PRIVATE);
1da177e4
LT
1462 }
1463}
1464
b54b9be7 1465static void shrink_submounts(struct mount *mnt);
c35038be 1466
1ab59738 1467static int do_umount(struct mount *mnt, int flags)
1da177e4 1468{
1ab59738 1469 struct super_block *sb = mnt->mnt.mnt_sb;
1da177e4
LT
1470 int retval;
1471
1ab59738 1472 retval = security_sb_umount(&mnt->mnt, flags);
1da177e4
LT
1473 if (retval)
1474 return retval;
1475
1476 /*
1477 * Allow userspace to request a mountpoint be expired rather than
1478 * unmounting unconditionally. Unmount only happens if:
1479 * (1) the mark is already set (the mark is cleared by mntput())
1480 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1481 */
1482 if (flags & MNT_EXPIRE) {
1ab59738 1483 if (&mnt->mnt == current->fs->root.mnt ||
1da177e4
LT
1484 flags & (MNT_FORCE | MNT_DETACH))
1485 return -EINVAL;
1486
b3e19d92
NP
1487 /*
1488 * probably don't strictly need the lock here if we examined
1489 * all race cases, but it's a slowpath.
1490 */
719ea2fb 1491 lock_mount_hash();
83adc753 1492 if (mnt_get_count(mnt) != 2) {
719ea2fb 1493 unlock_mount_hash();
1da177e4 1494 return -EBUSY;
b3e19d92 1495 }
719ea2fb 1496 unlock_mount_hash();
1da177e4 1497
863d684f 1498 if (!xchg(&mnt->mnt_expiry_mark, 1))
1da177e4
LT
1499 return -EAGAIN;
1500 }
1501
1502 /*
1503 * If we may have to abort operations to get out of this
1504 * mount, and they will themselves hold resources we must
1505 * allow the fs to do things. In the Unix tradition of
1506 * 'Gee thats tricky lets do it in userspace' the umount_begin
1507 * might fail to complete on the first run through as other tasks
1508 * must return, and the like. Thats for the mount program to worry
1509 * about for the moment.
1510 */
1511
42faad99 1512 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
42faad99 1513 sb->s_op->umount_begin(sb);
42faad99 1514 }
1da177e4
LT
1515
1516 /*
1517 * No sense to grab the lock for this test, but test itself looks
1518 * somewhat bogus. Suggestions for better replacement?
1519 * Ho-hum... In principle, we might treat that as umount + switch
1520 * to rootfs. GC would eventually take care of the old vfsmount.
1521 * Actually it makes sense, especially if rootfs would contain a
1522 * /reboot - static binary that would close all descriptors and
1523 * call reboot(9). Then init(8) could umount root and exec /reboot.
1524 */
1ab59738 1525 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1da177e4
LT
1526 /*
1527 * Special case for "unmounting" root ...
1528 * we just try to remount it readonly.
1529 */
bc6155d1 1530 if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN))
a1480dcc 1531 return -EPERM;
1da177e4 1532 down_write(&sb->s_umount);
bc98a42c 1533 if (!sb_rdonly(sb))
e462ec50 1534 retval = do_remount_sb(sb, SB_RDONLY, NULL, 0);
1da177e4
LT
1535 up_write(&sb->s_umount);
1536 return retval;
1537 }
1538
97216be0 1539 namespace_lock();
719ea2fb 1540 lock_mount_hash();
1da177e4 1541
25d202ed
EB
1542 /* Recheck MNT_LOCKED with the locks held */
1543 retval = -EINVAL;
1544 if (mnt->mnt.mnt_flags & MNT_LOCKED)
1545 goto out;
1546
1547 event++;
48a066e7 1548 if (flags & MNT_DETACH) {
1a4eeaf2 1549 if (!list_empty(&mnt->mnt_list))
e819f152 1550 umount_tree(mnt, UMOUNT_PROPAGATE);
1da177e4 1551 retval = 0;
48a066e7
AV
1552 } else {
1553 shrink_submounts(mnt);
1554 retval = -EBUSY;
1555 if (!propagate_mount_busy(mnt, 2)) {
1556 if (!list_empty(&mnt->mnt_list))
e819f152 1557 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
48a066e7
AV
1558 retval = 0;
1559 }
1da177e4 1560 }
25d202ed 1561out:
719ea2fb 1562 unlock_mount_hash();
e3197d83 1563 namespace_unlock();
1da177e4
LT
1564 return retval;
1565}
1566
80b5dce8
EB
1567/*
1568 * __detach_mounts - lazily unmount all mounts on the specified dentry
1569 *
1570 * During unlink, rmdir, and d_drop it is possible to loose the path
1571 * to an existing mountpoint, and wind up leaking the mount.
1572 * detach_mounts allows lazily unmounting those mounts instead of
1573 * leaking them.
1574 *
1575 * The caller may hold dentry->d_inode->i_mutex.
1576 */
1577void __detach_mounts(struct dentry *dentry)
1578{
1579 struct mountpoint *mp;
1580 struct mount *mnt;
1581
1582 namespace_lock();
3895dbf8 1583 lock_mount_hash();
80b5dce8 1584 mp = lookup_mountpoint(dentry);
f53e5797 1585 if (IS_ERR_OR_NULL(mp))
80b5dce8
EB
1586 goto out_unlock;
1587
e06b933e 1588 event++;
80b5dce8
EB
1589 while (!hlist_empty(&mp->m_list)) {
1590 mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
ce07d891 1591 if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
fe78fcc8
EB
1592 hlist_add_head(&mnt->mnt_umount.s_list, &unmounted);
1593 umount_mnt(mnt);
ce07d891 1594 }
e0c9c0af 1595 else umount_tree(mnt, UMOUNT_CONNECTED);
80b5dce8 1596 }
80b5dce8
EB
1597 put_mountpoint(mp);
1598out_unlock:
3895dbf8 1599 unlock_mount_hash();
80b5dce8
EB
1600 namespace_unlock();
1601}
1602
dd111b31 1603/*
9b40bc90
AV
1604 * Is the caller allowed to modify his namespace?
1605 */
1606static inline bool may_mount(void)
1607{
1608 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1609}
1610
9e8925b6
JL
1611static inline bool may_mandlock(void)
1612{
1613#ifndef CONFIG_MANDATORY_FILE_LOCKING
1614 return false;
1615#endif
95ace754 1616 return capable(CAP_SYS_ADMIN);
9e8925b6
JL
1617}
1618
1da177e4
LT
1619/*
1620 * Now umount can handle mount points as well as block devices.
1621 * This is important for filesystems which use unnamed block devices.
1622 *
1623 * We now support a flag for forced unmount like the other 'big iron'
1624 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1625 */
1626
3a18ef5c 1627int ksys_umount(char __user *name, int flags)
1da177e4 1628{
2d8f3038 1629 struct path path;
900148dc 1630 struct mount *mnt;
1da177e4 1631 int retval;
db1f05bb 1632 int lookup_flags = 0;
1da177e4 1633
db1f05bb
MS
1634 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1635 return -EINVAL;
1636
9b40bc90
AV
1637 if (!may_mount())
1638 return -EPERM;
1639
db1f05bb
MS
1640 if (!(flags & UMOUNT_NOFOLLOW))
1641 lookup_flags |= LOOKUP_FOLLOW;
1642
197df04c 1643 retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path);
1da177e4
LT
1644 if (retval)
1645 goto out;
900148dc 1646 mnt = real_mount(path.mnt);
1da177e4 1647 retval = -EINVAL;
2d8f3038 1648 if (path.dentry != path.mnt->mnt_root)
1da177e4 1649 goto dput_and_out;
143c8c91 1650 if (!check_mnt(mnt))
1da177e4 1651 goto dput_and_out;
25d202ed 1652 if (mnt->mnt.mnt_flags & MNT_LOCKED) /* Check optimistically */
5ff9d8a6 1653 goto dput_and_out;
b2f5d4dc
EB
1654 retval = -EPERM;
1655 if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
1656 goto dput_and_out;
1da177e4 1657
900148dc 1658 retval = do_umount(mnt, flags);
1da177e4 1659dput_and_out:
429731b1 1660 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
2d8f3038 1661 dput(path.dentry);
900148dc 1662 mntput_no_expire(mnt);
1da177e4
LT
1663out:
1664 return retval;
1665}
1666
3a18ef5c
DB
1667SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1668{
1669 return ksys_umount(name, flags);
1670}
1671
1da177e4
LT
1672#ifdef __ARCH_WANT_SYS_OLDUMOUNT
1673
1674/*
b58fed8b 1675 * The 2.0 compatible umount. No flags.
1da177e4 1676 */
bdc480e3 1677SYSCALL_DEFINE1(oldumount, char __user *, name)
1da177e4 1678{
3a18ef5c 1679 return ksys_umount(name, 0);
1da177e4
LT
1680}
1681
1682#endif
1683
4ce5d2b1 1684static bool is_mnt_ns_file(struct dentry *dentry)
8823c079 1685{
4ce5d2b1 1686 /* Is this a proxy for a mount namespace? */
e149ed2b
AV
1687 return dentry->d_op == &ns_dentry_operations &&
1688 dentry->d_fsdata == &mntns_operations;
4ce5d2b1
EB
1689}
1690
58be2825
AV
1691struct mnt_namespace *to_mnt_ns(struct ns_common *ns)
1692{
1693 return container_of(ns, struct mnt_namespace, ns);
1694}
1695
4ce5d2b1
EB
1696static bool mnt_ns_loop(struct dentry *dentry)
1697{
1698 /* Could bind mounting the mount namespace inode cause a
1699 * mount namespace loop?
1700 */
1701 struct mnt_namespace *mnt_ns;
1702 if (!is_mnt_ns_file(dentry))
1703 return false;
1704
f77c8014 1705 mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode));
8823c079
EB
1706 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1707}
1708
87129cc0 1709struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
36341f64 1710 int flag)
1da177e4 1711{
84d17192 1712 struct mount *res, *p, *q, *r, *parent;
1da177e4 1713
4ce5d2b1
EB
1714 if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1715 return ERR_PTR(-EINVAL);
1716
1717 if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
be34d1a3 1718 return ERR_PTR(-EINVAL);
9676f0c6 1719
36341f64 1720 res = q = clone_mnt(mnt, dentry, flag);
be34d1a3
DH
1721 if (IS_ERR(q))
1722 return q;
1723
a73324da 1724 q->mnt_mountpoint = mnt->mnt_mountpoint;
1da177e4
LT
1725
1726 p = mnt;
6b41d536 1727 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
315fc83e 1728 struct mount *s;
7ec02ef1 1729 if (!is_subdir(r->mnt_mountpoint, dentry))
1da177e4
LT
1730 continue;
1731
909b0a88 1732 for (s = r; s; s = next_mnt(s, r)) {
4ce5d2b1
EB
1733 if (!(flag & CL_COPY_UNBINDABLE) &&
1734 IS_MNT_UNBINDABLE(s)) {
df7342b2
EB
1735 if (s->mnt.mnt_flags & MNT_LOCKED) {
1736 /* Both unbindable and locked. */
1737 q = ERR_PTR(-EPERM);
1738 goto out;
1739 } else {
1740 s = skip_mnt_tree(s);
1741 continue;
1742 }
4ce5d2b1
EB
1743 }
1744 if (!(flag & CL_COPY_MNT_NS_FILE) &&
1745 is_mnt_ns_file(s->mnt.mnt_root)) {
9676f0c6
RP
1746 s = skip_mnt_tree(s);
1747 continue;
1748 }
0714a533
AV
1749 while (p != s->mnt_parent) {
1750 p = p->mnt_parent;
1751 q = q->mnt_parent;
1da177e4 1752 }
87129cc0 1753 p = s;
84d17192 1754 parent = q;
87129cc0 1755 q = clone_mnt(p, p->mnt.mnt_root, flag);
be34d1a3
DH
1756 if (IS_ERR(q))
1757 goto out;
719ea2fb 1758 lock_mount_hash();
1a4eeaf2 1759 list_add_tail(&q->mnt_list, &res->mnt_list);
1064f874 1760 attach_mnt(q, parent, p->mnt_mp);
719ea2fb 1761 unlock_mount_hash();
1da177e4
LT
1762 }
1763 }
1764 return res;
be34d1a3 1765out:
1da177e4 1766 if (res) {
719ea2fb 1767 lock_mount_hash();
e819f152 1768 umount_tree(res, UMOUNT_SYNC);
719ea2fb 1769 unlock_mount_hash();
1da177e4 1770 }
be34d1a3 1771 return q;
1da177e4
LT
1772}
1773
be34d1a3
DH
1774/* Caller should check returned pointer for errors */
1775
ca71cf71 1776struct vfsmount *collect_mounts(const struct path *path)
8aec0809 1777{
cb338d06 1778 struct mount *tree;
97216be0 1779 namespace_lock();
cd4a4017
EB
1780 if (!check_mnt(real_mount(path->mnt)))
1781 tree = ERR_PTR(-EINVAL);
1782 else
1783 tree = copy_tree(real_mount(path->mnt), path->dentry,
1784 CL_COPY_ALL | CL_PRIVATE);
328e6d90 1785 namespace_unlock();
be34d1a3 1786 if (IS_ERR(tree))
52e220d3 1787 return ERR_CAST(tree);
be34d1a3 1788 return &tree->mnt;
8aec0809
AV
1789}
1790
1791void drop_collected_mounts(struct vfsmount *mnt)
1792{
97216be0 1793 namespace_lock();
719ea2fb 1794 lock_mount_hash();
9c8e0a1b 1795 umount_tree(real_mount(mnt), 0);
719ea2fb 1796 unlock_mount_hash();
3ab6abee 1797 namespace_unlock();
8aec0809
AV
1798}
1799
c771d683
MS
1800/**
1801 * clone_private_mount - create a private clone of a path
1802 *
1803 * This creates a new vfsmount, which will be the clone of @path. The new will
1804 * not be attached anywhere in the namespace and will be private (i.e. changes
1805 * to the originating mount won't be propagated into this).
1806 *
1807 * Release with mntput().
1808 */
ca71cf71 1809struct vfsmount *clone_private_mount(const struct path *path)
c771d683
MS
1810{
1811 struct mount *old_mnt = real_mount(path->mnt);
1812 struct mount *new_mnt;
1813
1814 if (IS_MNT_UNBINDABLE(old_mnt))
1815 return ERR_PTR(-EINVAL);
1816
c771d683 1817 new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
c771d683
MS
1818 if (IS_ERR(new_mnt))
1819 return ERR_CAST(new_mnt);
1820
1821 return &new_mnt->mnt;
1822}
1823EXPORT_SYMBOL_GPL(clone_private_mount);
1824
1f707137
AV
1825int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1826 struct vfsmount *root)
1827{
1a4eeaf2 1828 struct mount *mnt;
1f707137
AV
1829 int res = f(root, arg);
1830 if (res)
1831 return res;
1a4eeaf2
AV
1832 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1833 res = f(&mnt->mnt, arg);
1f707137
AV
1834 if (res)
1835 return res;
1836 }
1837 return 0;
1838}
1839
4b8b21f4 1840static void cleanup_group_ids(struct mount *mnt, struct mount *end)
719f5d7f 1841{
315fc83e 1842 struct mount *p;
719f5d7f 1843
909b0a88 1844 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
fc7be130 1845 if (p->mnt_group_id && !IS_MNT_SHARED(p))
4b8b21f4 1846 mnt_release_group_id(p);
719f5d7f
MS
1847 }
1848}
1849
4b8b21f4 1850static int invent_group_ids(struct mount *mnt, bool recurse)
719f5d7f 1851{
315fc83e 1852 struct mount *p;
719f5d7f 1853
909b0a88 1854 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
fc7be130 1855 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
4b8b21f4 1856 int err = mnt_alloc_group_id(p);
719f5d7f 1857 if (err) {
4b8b21f4 1858 cleanup_group_ids(mnt, p);
719f5d7f
MS
1859 return err;
1860 }
1861 }
1862 }
1863
1864 return 0;
1865}
1866
d2921684
EB
1867int count_mounts(struct mnt_namespace *ns, struct mount *mnt)
1868{
1869 unsigned int max = READ_ONCE(sysctl_mount_max);
1870 unsigned int mounts = 0, old, pending, sum;
1871 struct mount *p;
1872
1873 for (p = mnt; p; p = next_mnt(p, mnt))
1874 mounts++;
1875
1876 old = ns->mounts;
1877 pending = ns->pending_mounts;
1878 sum = old + pending;
1879 if ((old > sum) ||
1880 (pending > sum) ||
1881 (max < sum) ||
1882 (mounts > (max - sum)))
1883 return -ENOSPC;
1884
1885 ns->pending_mounts = pending + mounts;
1886 return 0;
1887}
1888
b90fa9ae
RP
1889/*
1890 * @source_mnt : mount tree to be attached
21444403
RP
1891 * @nd : place the mount tree @source_mnt is attached
1892 * @parent_nd : if non-null, detach the source_mnt from its parent and
1893 * store the parent mount and mountpoint dentry.
1894 * (done when source_mnt is moved)
b90fa9ae
RP
1895 *
1896 * NOTE: in the table below explains the semantics when a source mount
1897 * of a given type is attached to a destination mount of a given type.
9676f0c6
RP
1898 * ---------------------------------------------------------------------------
1899 * | BIND MOUNT OPERATION |
1900 * |**************************************************************************
1901 * | source-->| shared | private | slave | unbindable |
1902 * | dest | | | | |
1903 * | | | | | | |
1904 * | v | | | | |
1905 * |**************************************************************************
1906 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1907 * | | | | | |
1908 * |non-shared| shared (+) | private | slave (*) | invalid |
1909 * ***************************************************************************
b90fa9ae
RP
1910 * A bind operation clones the source mount and mounts the clone on the
1911 * destination mount.
1912 *
1913 * (++) the cloned mount is propagated to all the mounts in the propagation
1914 * tree of the destination mount and the cloned mount is added to
1915 * the peer group of the source mount.
1916 * (+) the cloned mount is created under the destination mount and is marked
1917 * as shared. The cloned mount is added to the peer group of the source
1918 * mount.
5afe0022
RP
1919 * (+++) the mount is propagated to all the mounts in the propagation tree
1920 * of the destination mount and the cloned mount is made slave
1921 * of the same master as that of the source mount. The cloned mount
1922 * is marked as 'shared and slave'.
1923 * (*) the cloned mount is made a slave of the same master as that of the
1924 * source mount.
1925 *
9676f0c6
RP
1926 * ---------------------------------------------------------------------------
1927 * | MOVE MOUNT OPERATION |
1928 * |**************************************************************************
1929 * | source-->| shared | private | slave | unbindable |
1930 * | dest | | | | |
1931 * | | | | | | |
1932 * | v | | | | |
1933 * |**************************************************************************
1934 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
1935 * | | | | | |
1936 * |non-shared| shared (+*) | private | slave (*) | unbindable |
1937 * ***************************************************************************
5afe0022
RP
1938 *
1939 * (+) the mount is moved to the destination. And is then propagated to
1940 * all the mounts in the propagation tree of the destination mount.
21444403 1941 * (+*) the mount is moved to the destination.
5afe0022
RP
1942 * (+++) the mount is moved to the destination and is then propagated to
1943 * all the mounts belonging to the destination mount's propagation tree.
1944 * the mount is marked as 'shared and slave'.
1945 * (*) the mount continues to be a slave at the new location.
b90fa9ae
RP
1946 *
1947 * if the source mount is a tree, the operations explained above is
1948 * applied to each mount in the tree.
1949 * Must be called without spinlocks held, since this function can sleep
1950 * in allocations.
1951 */
0fb54e50 1952static int attach_recursive_mnt(struct mount *source_mnt,
84d17192
AV
1953 struct mount *dest_mnt,
1954 struct mountpoint *dest_mp,
1955 struct path *parent_path)
b90fa9ae 1956{
38129a13 1957 HLIST_HEAD(tree_list);
d2921684 1958 struct mnt_namespace *ns = dest_mnt->mnt_ns;
1064f874 1959 struct mountpoint *smp;
315fc83e 1960 struct mount *child, *p;
38129a13 1961 struct hlist_node *n;
719f5d7f 1962 int err;
b90fa9ae 1963
1064f874
EB
1964 /* Preallocate a mountpoint in case the new mounts need
1965 * to be tucked under other mounts.
1966 */
1967 smp = get_mountpoint(source_mnt->mnt.mnt_root);
1968 if (IS_ERR(smp))
1969 return PTR_ERR(smp);
1970
d2921684
EB
1971 /* Is there space to add these mounts to the mount namespace? */
1972 if (!parent_path) {
1973 err = count_mounts(ns, source_mnt);
1974 if (err)
1975 goto out;
1976 }
1977
fc7be130 1978 if (IS_MNT_SHARED(dest_mnt)) {
0fb54e50 1979 err = invent_group_ids(source_mnt, true);
719f5d7f
MS
1980 if (err)
1981 goto out;
0b1b901b 1982 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
f2ebb3a9 1983 lock_mount_hash();
0b1b901b
AV
1984 if (err)
1985 goto out_cleanup_ids;
909b0a88 1986 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
0f0afb1d 1987 set_mnt_shared(p);
0b1b901b
AV
1988 } else {
1989 lock_mount_hash();
b90fa9ae 1990 }
1a390689 1991 if (parent_path) {
0fb54e50 1992 detach_mnt(source_mnt, parent_path);
84d17192 1993 attach_mnt(source_mnt, dest_mnt, dest_mp);
143c8c91 1994 touch_mnt_namespace(source_mnt->mnt_ns);
21444403 1995 } else {
84d17192 1996 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
1064f874 1997 commit_tree(source_mnt);
21444403 1998 }
b90fa9ae 1999
38129a13 2000 hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
1d6a32ac 2001 struct mount *q;
38129a13 2002 hlist_del_init(&child->mnt_hash);
1064f874
EB
2003 q = __lookup_mnt(&child->mnt_parent->mnt,
2004 child->mnt_mountpoint);
2005 if (q)
2006 mnt_change_mountpoint(child, smp, q);
2007 commit_tree(child);
b90fa9ae 2008 }
1064f874 2009 put_mountpoint(smp);
719ea2fb 2010 unlock_mount_hash();
99b7db7b 2011
b90fa9ae 2012 return 0;
719f5d7f
MS
2013
2014 out_cleanup_ids:
f2ebb3a9
AV
2015 while (!hlist_empty(&tree_list)) {
2016 child = hlist_entry(tree_list.first, struct mount, mnt_hash);
d2921684 2017 child->mnt_parent->mnt_ns->pending_mounts = 0;
e819f152 2018 umount_tree(child, UMOUNT_SYNC);
f2ebb3a9
AV
2019 }
2020 unlock_mount_hash();
0b1b901b 2021 cleanup_group_ids(source_mnt, NULL);
719f5d7f 2022 out:
d2921684 2023 ns->pending_mounts = 0;
1064f874
EB
2024
2025 read_seqlock_excl(&mount_lock);
2026 put_mountpoint(smp);
2027 read_sequnlock_excl(&mount_lock);
2028
719f5d7f 2029 return err;
b90fa9ae
RP
2030}
2031
84d17192 2032static struct mountpoint *lock_mount(struct path *path)
b12cea91
AV
2033{
2034 struct vfsmount *mnt;
84d17192 2035 struct dentry *dentry = path->dentry;
b12cea91 2036retry:
5955102c 2037 inode_lock(dentry->d_inode);
84d17192 2038 if (unlikely(cant_mount(dentry))) {
5955102c 2039 inode_unlock(dentry->d_inode);
84d17192 2040 return ERR_PTR(-ENOENT);
b12cea91 2041 }
97216be0 2042 namespace_lock();
b12cea91 2043 mnt = lookup_mnt(path);
84d17192 2044 if (likely(!mnt)) {
3895dbf8 2045 struct mountpoint *mp = get_mountpoint(dentry);
84d17192 2046 if (IS_ERR(mp)) {
97216be0 2047 namespace_unlock();
5955102c 2048 inode_unlock(dentry->d_inode);
84d17192
AV
2049 return mp;
2050 }
2051 return mp;
2052 }
97216be0 2053 namespace_unlock();
5955102c 2054 inode_unlock(path->dentry->d_inode);
b12cea91
AV
2055 path_put(path);
2056 path->mnt = mnt;
84d17192 2057 dentry = path->dentry = dget(mnt->mnt_root);
b12cea91
AV
2058 goto retry;
2059}
2060
84d17192 2061static void unlock_mount(struct mountpoint *where)
b12cea91 2062{
84d17192 2063 struct dentry *dentry = where->m_dentry;
3895dbf8
EB
2064
2065 read_seqlock_excl(&mount_lock);
84d17192 2066 put_mountpoint(where);
3895dbf8
EB
2067 read_sequnlock_excl(&mount_lock);
2068
328e6d90 2069 namespace_unlock();
5955102c 2070 inode_unlock(dentry->d_inode);
b12cea91
AV
2071}
2072
84d17192 2073static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
1da177e4 2074{
e462ec50 2075 if (mnt->mnt.mnt_sb->s_flags & SB_NOUSER)
1da177e4
LT
2076 return -EINVAL;
2077
e36cb0b8
DH
2078 if (d_is_dir(mp->m_dentry) !=
2079 d_is_dir(mnt->mnt.mnt_root))
1da177e4
LT
2080 return -ENOTDIR;
2081
84d17192 2082 return attach_recursive_mnt(mnt, p, mp, NULL);
1da177e4
LT
2083}
2084
7a2e8a8f
VA
2085/*
2086 * Sanity check the flags to change_mnt_propagation.
2087 */
2088
e462ec50 2089static int flags_to_propagation_type(int ms_flags)
7a2e8a8f 2090{
e462ec50 2091 int type = ms_flags & ~(MS_REC | MS_SILENT);
7a2e8a8f
VA
2092
2093 /* Fail if any non-propagation flags are set */
2094 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2095 return 0;
2096 /* Only one propagation flag should be set */
2097 if (!is_power_of_2(type))
2098 return 0;
2099 return type;
2100}
2101
07b20889
RP
2102/*
2103 * recursively change the type of the mountpoint.
2104 */
e462ec50 2105static int do_change_type(struct path *path, int ms_flags)
07b20889 2106{
315fc83e 2107 struct mount *m;
4b8b21f4 2108 struct mount *mnt = real_mount(path->mnt);
e462ec50 2109 int recurse = ms_flags & MS_REC;
7a2e8a8f 2110 int type;
719f5d7f 2111 int err = 0;
07b20889 2112
2d92ab3c 2113 if (path->dentry != path->mnt->mnt_root)
07b20889
RP
2114 return -EINVAL;
2115
e462ec50 2116 type = flags_to_propagation_type(ms_flags);
7a2e8a8f
VA
2117 if (!type)
2118 return -EINVAL;
2119
97216be0 2120 namespace_lock();
719f5d7f
MS
2121 if (type == MS_SHARED) {
2122 err = invent_group_ids(mnt, recurse);
2123 if (err)
2124 goto out_unlock;
2125 }
2126
719ea2fb 2127 lock_mount_hash();
909b0a88 2128 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
0f0afb1d 2129 change_mnt_propagation(m, type);
719ea2fb 2130 unlock_mount_hash();
719f5d7f
MS
2131
2132 out_unlock:
97216be0 2133 namespace_unlock();
719f5d7f 2134 return err;
07b20889
RP
2135}
2136
5ff9d8a6
EB
2137static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
2138{
2139 struct mount *child;
2140 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
2141 if (!is_subdir(child->mnt_mountpoint, dentry))
2142 continue;
2143
2144 if (child->mnt.mnt_flags & MNT_LOCKED)
2145 return true;
2146 }
2147 return false;
2148}
2149
1da177e4
LT
2150/*
2151 * do loopback mount.
2152 */
808d4e3c 2153static int do_loopback(struct path *path, const char *old_name,
2dafe1c4 2154 int recurse)
1da177e4 2155{
2d92ab3c 2156 struct path old_path;
84d17192
AV
2157 struct mount *mnt = NULL, *old, *parent;
2158 struct mountpoint *mp;
57eccb83 2159 int err;
1da177e4
LT
2160 if (!old_name || !*old_name)
2161 return -EINVAL;
815d405c 2162 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
1da177e4
LT
2163 if (err)
2164 return err;
2165
8823c079 2166 err = -EINVAL;
4ce5d2b1 2167 if (mnt_ns_loop(old_path.dentry))
dd111b31 2168 goto out;
8823c079 2169
84d17192
AV
2170 mp = lock_mount(path);
2171 err = PTR_ERR(mp);
2172 if (IS_ERR(mp))
b12cea91
AV
2173 goto out;
2174
87129cc0 2175 old = real_mount(old_path.mnt);
84d17192 2176 parent = real_mount(path->mnt);
87129cc0 2177
1da177e4 2178 err = -EINVAL;
fc7be130 2179 if (IS_MNT_UNBINDABLE(old))
b12cea91 2180 goto out2;
9676f0c6 2181
e149ed2b
AV
2182 if (!check_mnt(parent))
2183 goto out2;
2184
2185 if (!check_mnt(old) && old_path.dentry->d_op != &ns_dentry_operations)
b12cea91 2186 goto out2;
1da177e4 2187
5ff9d8a6
EB
2188 if (!recurse && has_locked_children(old, old_path.dentry))
2189 goto out2;
2190
ccd48bc7 2191 if (recurse)
4ce5d2b1 2192 mnt = copy_tree(old, old_path.dentry, CL_COPY_MNT_NS_FILE);
ccd48bc7 2193 else
87129cc0 2194 mnt = clone_mnt(old, old_path.dentry, 0);
ccd48bc7 2195
be34d1a3
DH
2196 if (IS_ERR(mnt)) {
2197 err = PTR_ERR(mnt);
e9c5d8a5 2198 goto out2;
be34d1a3 2199 }
ccd48bc7 2200
5ff9d8a6
EB
2201 mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2202
84d17192 2203 err = graft_tree(mnt, parent, mp);
ccd48bc7 2204 if (err) {
719ea2fb 2205 lock_mount_hash();
e819f152 2206 umount_tree(mnt, UMOUNT_SYNC);
719ea2fb 2207 unlock_mount_hash();
5b83d2c5 2208 }
b12cea91 2209out2:
84d17192 2210 unlock_mount(mp);
ccd48bc7 2211out:
2d92ab3c 2212 path_put(&old_path);
1da177e4
LT
2213 return err;
2214}
2215
43f5e655
DH
2216/*
2217 * Don't allow locked mount flags to be cleared.
2218 *
2219 * No locks need to be held here while testing the various MNT_LOCK
2220 * flags because those flags can never be cleared once they are set.
2221 */
2222static bool can_change_locked_flags(struct mount *mnt, unsigned int mnt_flags)
2e4b7fcd 2223{
43f5e655
DH
2224 unsigned int fl = mnt->mnt.mnt_flags;
2225
2226 if ((fl & MNT_LOCK_READONLY) &&
2227 !(mnt_flags & MNT_READONLY))
2228 return false;
2229
2230 if ((fl & MNT_LOCK_NODEV) &&
2231 !(mnt_flags & MNT_NODEV))
2232 return false;
2233
2234 if ((fl & MNT_LOCK_NOSUID) &&
2235 !(mnt_flags & MNT_NOSUID))
2236 return false;
2237
2238 if ((fl & MNT_LOCK_NOEXEC) &&
2239 !(mnt_flags & MNT_NOEXEC))
2240 return false;
2241
2242 if ((fl & MNT_LOCK_ATIME) &&
2243 ((fl & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK)))
2244 return false;
2e4b7fcd 2245
43f5e655
DH
2246 return true;
2247}
2248
2249static int change_mount_ro_state(struct mount *mnt, unsigned int mnt_flags)
2e4b7fcd 2250{
43f5e655 2251 bool readonly_request = (mnt_flags & MNT_READONLY);
2e4b7fcd 2252
43f5e655 2253 if (readonly_request == __mnt_is_readonly(&mnt->mnt))
2e4b7fcd
DH
2254 return 0;
2255
2256 if (readonly_request)
43f5e655
DH
2257 return mnt_make_readonly(mnt);
2258
2259 return __mnt_unmake_readonly(mnt);
2260}
2261
2262/*
2263 * Update the user-settable attributes on a mount. The caller must hold
2264 * sb->s_umount for writing.
2265 */
2266static void set_mount_attributes(struct mount *mnt, unsigned int mnt_flags)
2267{
2268 lock_mount_hash();
2269 mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
2270 mnt->mnt.mnt_flags = mnt_flags;
2271 touch_mnt_namespace(mnt->mnt_ns);
2272 unlock_mount_hash();
2273}
2274
2275/*
2276 * Handle reconfiguration of the mountpoint only without alteration of the
2277 * superblock it refers to. This is triggered by specifying MS_REMOUNT|MS_BIND
2278 * to mount(2).
2279 */
2280static int do_reconfigure_mnt(struct path *path, unsigned int mnt_flags)
2281{
2282 struct super_block *sb = path->mnt->mnt_sb;
2283 struct mount *mnt = real_mount(path->mnt);
2284 int ret;
2285
2286 if (!check_mnt(mnt))
2287 return -EINVAL;
2288
2289 if (path->dentry != mnt->mnt.mnt_root)
2290 return -EINVAL;
2291
2292 if (!can_change_locked_flags(mnt, mnt_flags))
2293 return -EPERM;
2294
2295 down_write(&sb->s_umount);
2296 ret = change_mount_ro_state(mnt, mnt_flags);
2297 if (ret == 0)
2298 set_mount_attributes(mnt, mnt_flags);
2299 up_write(&sb->s_umount);
2300 return ret;
2e4b7fcd
DH
2301}
2302
1da177e4
LT
2303/*
2304 * change filesystem flags. dir should be a physical root of filesystem.
2305 * If you've mounted a non-root directory somewhere and want to do remount
2306 * on it - tough luck.
2307 */
e462ec50
DH
2308static int do_remount(struct path *path, int ms_flags, int sb_flags,
2309 int mnt_flags, void *data)
1da177e4
LT
2310{
2311 int err;
2d92ab3c 2312 struct super_block *sb = path->mnt->mnt_sb;
143c8c91 2313 struct mount *mnt = real_mount(path->mnt);
204cc0cc 2314 void *sec_opts = NULL;
1da177e4 2315
143c8c91 2316 if (!check_mnt(mnt))
1da177e4
LT
2317 return -EINVAL;
2318
2d92ab3c 2319 if (path->dentry != path->mnt->mnt_root)
1da177e4
LT
2320 return -EINVAL;
2321
43f5e655 2322 if (!can_change_locked_flags(mnt, mnt_flags))
9566d674 2323 return -EPERM;
9566d674 2324
c039bc3c 2325 if (data && !(sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)) {
204cc0cc 2326 err = security_sb_eat_lsm_opts(data, &sec_opts);
c039bc3c
AV
2327 if (err)
2328 return err;
2329 }
204cc0cc
AV
2330 err = security_sb_remount(sb, sec_opts);
2331 security_free_mnt_opts(&sec_opts);
ff36fe2c
EP
2332 if (err)
2333 return err;
2334
1da177e4 2335 down_write(&sb->s_umount);
43f5e655
DH
2336 err = -EPERM;
2337 if (ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) {
e462ec50 2338 err = do_remount_sb(sb, sb_flags, data, 0);
43f5e655
DH
2339 if (!err)
2340 set_mount_attributes(mnt, mnt_flags);
0e55a7cc 2341 }
6339dab8 2342 up_write(&sb->s_umount);
1da177e4
LT
2343 return err;
2344}
2345
cbbe362c 2346static inline int tree_contains_unbindable(struct mount *mnt)
9676f0c6 2347{
315fc83e 2348 struct mount *p;
909b0a88 2349 for (p = mnt; p; p = next_mnt(p, mnt)) {
fc7be130 2350 if (IS_MNT_UNBINDABLE(p))
9676f0c6
RP
2351 return 1;
2352 }
2353 return 0;
2354}
2355
808d4e3c 2356static int do_move_mount(struct path *path, const char *old_name)
1da177e4 2357{
2d92ab3c 2358 struct path old_path, parent_path;
676da58d 2359 struct mount *p;
0fb54e50 2360 struct mount *old;
84d17192 2361 struct mountpoint *mp;
57eccb83 2362 int err;
1da177e4
LT
2363 if (!old_name || !*old_name)
2364 return -EINVAL;
2d92ab3c 2365 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
1da177e4
LT
2366 if (err)
2367 return err;
2368
84d17192
AV
2369 mp = lock_mount(path);
2370 err = PTR_ERR(mp);
2371 if (IS_ERR(mp))
cc53ce53
DH
2372 goto out;
2373
143c8c91 2374 old = real_mount(old_path.mnt);
fc7be130 2375 p = real_mount(path->mnt);
143c8c91 2376
1da177e4 2377 err = -EINVAL;
fc7be130 2378 if (!check_mnt(p) || !check_mnt(old))
1da177e4
LT
2379 goto out1;
2380
5ff9d8a6
EB
2381 if (old->mnt.mnt_flags & MNT_LOCKED)
2382 goto out1;
2383
1da177e4 2384 err = -EINVAL;
2d92ab3c 2385 if (old_path.dentry != old_path.mnt->mnt_root)
21444403 2386 goto out1;
1da177e4 2387
676da58d 2388 if (!mnt_has_parent(old))
21444403 2389 goto out1;
1da177e4 2390
e36cb0b8
DH
2391 if (d_is_dir(path->dentry) !=
2392 d_is_dir(old_path.dentry))
21444403
RP
2393 goto out1;
2394 /*
2395 * Don't move a mount residing in a shared parent.
2396 */
fc7be130 2397 if (IS_MNT_SHARED(old->mnt_parent))
21444403 2398 goto out1;
9676f0c6
RP
2399 /*
2400 * Don't move a mount tree containing unbindable mounts to a destination
2401 * mount which is shared.
2402 */
fc7be130 2403 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
9676f0c6 2404 goto out1;
1da177e4 2405 err = -ELOOP;
fc7be130 2406 for (; mnt_has_parent(p); p = p->mnt_parent)
676da58d 2407 if (p == old)
21444403 2408 goto out1;
1da177e4 2409
84d17192 2410 err = attach_recursive_mnt(old, real_mount(path->mnt), mp, &parent_path);
4ac91378 2411 if (err)
21444403 2412 goto out1;
1da177e4
LT
2413
2414 /* if the mount is moved, it should no longer be expire
2415 * automatically */
6776db3d 2416 list_del_init(&old->mnt_expire);
1da177e4 2417out1:
84d17192 2418 unlock_mount(mp);
1da177e4 2419out:
1da177e4 2420 if (!err)
1a390689 2421 path_put(&parent_path);
2d92ab3c 2422 path_put(&old_path);
1da177e4
LT
2423 return err;
2424}
2425
9d412a43
AV
2426static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
2427{
2428 int err;
2429 const char *subtype = strchr(fstype, '.');
2430 if (subtype) {
2431 subtype++;
2432 err = -EINVAL;
2433 if (!subtype[0])
2434 goto err;
2435 } else
2436 subtype = "";
2437
2438 mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
2439 err = -ENOMEM;
2440 if (!mnt->mnt_sb->s_subtype)
2441 goto err;
2442 return mnt;
2443
2444 err:
2445 mntput(mnt);
2446 return ERR_PTR(err);
2447}
2448
9d412a43
AV
2449/*
2450 * add a mount into a namespace's mount tree
2451 */
95bc5f25 2452static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
9d412a43 2453{
84d17192
AV
2454 struct mountpoint *mp;
2455 struct mount *parent;
9d412a43
AV
2456 int err;
2457
f2ebb3a9 2458 mnt_flags &= ~MNT_INTERNAL_FLAGS;
9d412a43 2459
84d17192
AV
2460 mp = lock_mount(path);
2461 if (IS_ERR(mp))
2462 return PTR_ERR(mp);
9d412a43 2463
84d17192 2464 parent = real_mount(path->mnt);
9d412a43 2465 err = -EINVAL;
84d17192 2466 if (unlikely(!check_mnt(parent))) {
156cacb1
AV
2467 /* that's acceptable only for automounts done in private ns */
2468 if (!(mnt_flags & MNT_SHRINKABLE))
2469 goto unlock;
2470 /* ... and for those we'd better have mountpoint still alive */
84d17192 2471 if (!parent->mnt_ns)
156cacb1
AV
2472 goto unlock;
2473 }
9d412a43
AV
2474
2475 /* Refuse the same filesystem on the same mount point */
2476 err = -EBUSY;
95bc5f25 2477 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
9d412a43
AV
2478 path->mnt->mnt_root == path->dentry)
2479 goto unlock;
2480
2481 err = -EINVAL;
e36cb0b8 2482 if (d_is_symlink(newmnt->mnt.mnt_root))
9d412a43
AV
2483 goto unlock;
2484
95bc5f25 2485 newmnt->mnt.mnt_flags = mnt_flags;
84d17192 2486 err = graft_tree(newmnt, parent, mp);
9d412a43
AV
2487
2488unlock:
84d17192 2489 unlock_mount(mp);
9d412a43
AV
2490 return err;
2491}
b1e75df4 2492
8654df4e 2493static bool mount_too_revealing(struct vfsmount *mnt, int *new_mnt_flags);
1b852bce 2494
1da177e4
LT
2495/*
2496 * create a new mount for userspace and request it to be added into the
2497 * namespace's tree
2498 */
e462ec50 2499static int do_new_mount(struct path *path, const char *fstype, int sb_flags,
808d4e3c 2500 int mnt_flags, const char *name, void *data)
1da177e4 2501{
0c55cfc4 2502 struct file_system_type *type;
1da177e4 2503 struct vfsmount *mnt;
15f9a3f3 2504 int err;
1da177e4 2505
0c55cfc4 2506 if (!fstype)
1da177e4
LT
2507 return -EINVAL;
2508
0c55cfc4
EB
2509 type = get_fs_type(fstype);
2510 if (!type)
2511 return -ENODEV;
2512
e462ec50 2513 mnt = vfs_kern_mount(type, sb_flags, name, data);
0c55cfc4
EB
2514 if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
2515 !mnt->mnt_sb->s_subtype)
2516 mnt = fs_set_subtype(mnt, fstype);
2517
2518 put_filesystem(type);
1da177e4
LT
2519 if (IS_ERR(mnt))
2520 return PTR_ERR(mnt);
2521
8654df4e
EB
2522 if (mount_too_revealing(mnt, &mnt_flags)) {
2523 mntput(mnt);
2524 return -EPERM;
2525 }
2526
95bc5f25 2527 err = do_add_mount(real_mount(mnt), path, mnt_flags);
15f9a3f3
AV
2528 if (err)
2529 mntput(mnt);
2530 return err;
1da177e4
LT
2531}
2532
19a167af
AV
2533int finish_automount(struct vfsmount *m, struct path *path)
2534{
6776db3d 2535 struct mount *mnt = real_mount(m);
19a167af
AV
2536 int err;
2537 /* The new mount record should have at least 2 refs to prevent it being
2538 * expired before we get a chance to add it
2539 */
6776db3d 2540 BUG_ON(mnt_get_count(mnt) < 2);
19a167af
AV
2541
2542 if (m->mnt_sb == path->mnt->mnt_sb &&
2543 m->mnt_root == path->dentry) {
b1e75df4
AV
2544 err = -ELOOP;
2545 goto fail;
19a167af
AV
2546 }
2547
95bc5f25 2548 err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
b1e75df4
AV
2549 if (!err)
2550 return 0;
2551fail:
2552 /* remove m from any expiration list it may be on */
6776db3d 2553 if (!list_empty(&mnt->mnt_expire)) {
97216be0 2554 namespace_lock();
6776db3d 2555 list_del_init(&mnt->mnt_expire);
97216be0 2556 namespace_unlock();
19a167af 2557 }
b1e75df4
AV
2558 mntput(m);
2559 mntput(m);
19a167af
AV
2560 return err;
2561}
2562
ea5b778a
DH
2563/**
2564 * mnt_set_expiry - Put a mount on an expiration list
2565 * @mnt: The mount to list.
2566 * @expiry_list: The list to add the mount to.
2567 */
2568void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2569{
97216be0 2570 namespace_lock();
ea5b778a 2571
6776db3d 2572 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
ea5b778a 2573
97216be0 2574 namespace_unlock();
ea5b778a
DH
2575}
2576EXPORT_SYMBOL(mnt_set_expiry);
2577
1da177e4
LT
2578/*
2579 * process a list of expirable mountpoints with the intent of discarding any
2580 * mountpoints that aren't in use and haven't been touched since last we came
2581 * here
2582 */
2583void mark_mounts_for_expiry(struct list_head *mounts)
2584{
761d5c38 2585 struct mount *mnt, *next;
1da177e4
LT
2586 LIST_HEAD(graveyard);
2587
2588 if (list_empty(mounts))
2589 return;
2590
97216be0 2591 namespace_lock();
719ea2fb 2592 lock_mount_hash();
1da177e4
LT
2593
2594 /* extract from the expiration list every vfsmount that matches the
2595 * following criteria:
2596 * - only referenced by its parent vfsmount
2597 * - still marked for expiry (marked on the last call here; marks are
2598 * cleared by mntput())
2599 */
6776db3d 2600 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
863d684f 2601 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
1ab59738 2602 propagate_mount_busy(mnt, 1))
1da177e4 2603 continue;
6776db3d 2604 list_move(&mnt->mnt_expire, &graveyard);
1da177e4 2605 }
bcc5c7d2 2606 while (!list_empty(&graveyard)) {
6776db3d 2607 mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
143c8c91 2608 touch_mnt_namespace(mnt->mnt_ns);
e819f152 2609 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
bcc5c7d2 2610 }
719ea2fb 2611 unlock_mount_hash();
3ab6abee 2612 namespace_unlock();
5528f911
TM
2613}
2614
2615EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2616
2617/*
2618 * Ripoff of 'select_parent()'
2619 *
2620 * search the list of submounts for a given mountpoint, and move any
2621 * shrinkable submounts to the 'graveyard' list.
2622 */
692afc31 2623static int select_submounts(struct mount *parent, struct list_head *graveyard)
5528f911 2624{
692afc31 2625 struct mount *this_parent = parent;
5528f911
TM
2626 struct list_head *next;
2627 int found = 0;
2628
2629repeat:
6b41d536 2630 next = this_parent->mnt_mounts.next;
5528f911 2631resume:
6b41d536 2632 while (next != &this_parent->mnt_mounts) {
5528f911 2633 struct list_head *tmp = next;
6b41d536 2634 struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
5528f911
TM
2635
2636 next = tmp->next;
692afc31 2637 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
1da177e4 2638 continue;
5528f911
TM
2639 /*
2640 * Descend a level if the d_mounts list is non-empty.
2641 */
6b41d536 2642 if (!list_empty(&mnt->mnt_mounts)) {
5528f911
TM
2643 this_parent = mnt;
2644 goto repeat;
2645 }
1da177e4 2646
1ab59738 2647 if (!propagate_mount_busy(mnt, 1)) {
6776db3d 2648 list_move_tail(&mnt->mnt_expire, graveyard);
5528f911
TM
2649 found++;
2650 }
1da177e4 2651 }
5528f911
TM
2652 /*
2653 * All done at this level ... ascend and resume the search
2654 */
2655 if (this_parent != parent) {
6b41d536 2656 next = this_parent->mnt_child.next;
0714a533 2657 this_parent = this_parent->mnt_parent;
5528f911
TM
2658 goto resume;
2659 }
2660 return found;
2661}
2662
2663/*
2664 * process a list of expirable mountpoints with the intent of discarding any
2665 * submounts of a specific parent mountpoint
99b7db7b 2666 *
48a066e7 2667 * mount_lock must be held for write
5528f911 2668 */
b54b9be7 2669static void shrink_submounts(struct mount *mnt)
5528f911
TM
2670{
2671 LIST_HEAD(graveyard);
761d5c38 2672 struct mount *m;
5528f911 2673
5528f911 2674 /* extract submounts of 'mountpoint' from the expiration list */
c35038be 2675 while (select_submounts(mnt, &graveyard)) {
bcc5c7d2 2676 while (!list_empty(&graveyard)) {
761d5c38 2677 m = list_first_entry(&graveyard, struct mount,
6776db3d 2678 mnt_expire);
143c8c91 2679 touch_mnt_namespace(m->mnt_ns);
e819f152 2680 umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
bcc5c7d2
AV
2681 }
2682 }
1da177e4
LT
2683}
2684
1da177e4
LT
2685/*
2686 * Some copy_from_user() implementations do not return the exact number of
2687 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
2688 * Note that this function differs from copy_from_user() in that it will oops
2689 * on bad values of `to', rather than returning a short copy.
2690 */
b58fed8b
RP
2691static long exact_copy_from_user(void *to, const void __user * from,
2692 unsigned long n)
1da177e4
LT
2693{
2694 char *t = to;
2695 const char __user *f = from;
2696 char c;
2697
96d4f267 2698 if (!access_ok(from, n))
1da177e4
LT
2699 return n;
2700
9da3f2b7 2701 current->kernel_uaccess_faults_ok++;
1da177e4
LT
2702 while (n) {
2703 if (__get_user(c, f)) {
2704 memset(t, 0, n);
2705 break;
2706 }
2707 *t++ = c;
2708 f++;
2709 n--;
2710 }
9da3f2b7 2711 current->kernel_uaccess_faults_ok--;
1da177e4
LT
2712 return n;
2713}
2714
b40ef869 2715void *copy_mount_options(const void __user * data)
1da177e4
LT
2716{
2717 int i;
1da177e4 2718 unsigned long size;
b40ef869 2719 char *copy;
b58fed8b 2720
1da177e4 2721 if (!data)
b40ef869 2722 return NULL;
1da177e4 2723
b40ef869
AV
2724 copy = kmalloc(PAGE_SIZE, GFP_KERNEL);
2725 if (!copy)
2726 return ERR_PTR(-ENOMEM);
1da177e4
LT
2727
2728 /* We only care that *some* data at the address the user
2729 * gave us is valid. Just in case, we'll zero
2730 * the remainder of the page.
2731 */
2732 /* copy_from_user cannot cross TASK_SIZE ! */
2733 size = TASK_SIZE - (unsigned long)data;
2734 if (size > PAGE_SIZE)
2735 size = PAGE_SIZE;
2736
b40ef869 2737 i = size - exact_copy_from_user(copy, data, size);
1da177e4 2738 if (!i) {
b40ef869
AV
2739 kfree(copy);
2740 return ERR_PTR(-EFAULT);
1da177e4
LT
2741 }
2742 if (i != PAGE_SIZE)
b40ef869
AV
2743 memset(copy + i, 0, PAGE_SIZE - i);
2744 return copy;
1da177e4
LT
2745}
2746
b8850d1f 2747char *copy_mount_string(const void __user *data)
eca6f534 2748{
b8850d1f 2749 return data ? strndup_user(data, PAGE_SIZE) : NULL;
eca6f534
VN
2750}
2751
1da177e4
LT
2752/*
2753 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2754 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2755 *
2756 * data is a (void *) that can point to any structure up to
2757 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2758 * information (or be NULL).
2759 *
2760 * Pre-0.97 versions of mount() didn't have a flags word.
2761 * When the flags word was introduced its top half was required
2762 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2763 * Therefore, if this magic number is present, it carries no information
2764 * and must be discarded.
2765 */
5e6123f3 2766long do_mount(const char *dev_name, const char __user *dir_name,
808d4e3c 2767 const char *type_page, unsigned long flags, void *data_page)
1da177e4 2768{
2d92ab3c 2769 struct path path;
e462ec50 2770 unsigned int mnt_flags = 0, sb_flags;
1da177e4 2771 int retval = 0;
1da177e4
LT
2772
2773 /* Discard magic */
2774 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2775 flags &= ~MS_MGC_MSK;
2776
2777 /* Basic sanity checks */
1da177e4
LT
2778 if (data_page)
2779 ((char *)data_page)[PAGE_SIZE - 1] = 0;
2780
e462ec50
DH
2781 if (flags & MS_NOUSER)
2782 return -EINVAL;
2783
a27ab9f2 2784 /* ... and get the mountpoint */
5e6123f3 2785 retval = user_path(dir_name, &path);
a27ab9f2
TH
2786 if (retval)
2787 return retval;
2788
2789 retval = security_sb_mount(dev_name, &path,
2790 type_page, flags, data_page);
0d5cadb8
AV
2791 if (!retval && !may_mount())
2792 retval = -EPERM;
e462ec50 2793 if (!retval && (flags & SB_MANDLOCK) && !may_mandlock())
9e8925b6 2794 retval = -EPERM;
a27ab9f2
TH
2795 if (retval)
2796 goto dput_out;
2797
613cbe3d
AK
2798 /* Default to relatime unless overriden */
2799 if (!(flags & MS_NOATIME))
2800 mnt_flags |= MNT_RELATIME;
0a1c01c9 2801
1da177e4
LT
2802 /* Separate the per-mountpoint flags */
2803 if (flags & MS_NOSUID)
2804 mnt_flags |= MNT_NOSUID;
2805 if (flags & MS_NODEV)
2806 mnt_flags |= MNT_NODEV;
2807 if (flags & MS_NOEXEC)
2808 mnt_flags |= MNT_NOEXEC;
fc33a7bb
CH
2809 if (flags & MS_NOATIME)
2810 mnt_flags |= MNT_NOATIME;
2811 if (flags & MS_NODIRATIME)
2812 mnt_flags |= MNT_NODIRATIME;
d0adde57
MG
2813 if (flags & MS_STRICTATIME)
2814 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
a9e5b732 2815 if (flags & MS_RDONLY)
2e4b7fcd 2816 mnt_flags |= MNT_READONLY;
fc33a7bb 2817
ffbc6f0e
EB
2818 /* The default atime for remount is preservation */
2819 if ((flags & MS_REMOUNT) &&
2820 ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
2821 MS_STRICTATIME)) == 0)) {
2822 mnt_flags &= ~MNT_ATIME_MASK;
2823 mnt_flags |= path.mnt->mnt_flags & MNT_ATIME_MASK;
2824 }
2825
e462ec50
DH
2826 sb_flags = flags & (SB_RDONLY |
2827 SB_SYNCHRONOUS |
2828 SB_MANDLOCK |
2829 SB_DIRSYNC |
2830 SB_SILENT |
917086ff 2831 SB_POSIXACL |
d7ee9469 2832 SB_LAZYTIME |
917086ff 2833 SB_I_VERSION);
1da177e4 2834
43f5e655
DH
2835 if ((flags & (MS_REMOUNT | MS_BIND)) == (MS_REMOUNT | MS_BIND))
2836 retval = do_reconfigure_mnt(&path, mnt_flags);
2837 else if (flags & MS_REMOUNT)
e462ec50 2838 retval = do_remount(&path, flags, sb_flags, mnt_flags,
1da177e4
LT
2839 data_page);
2840 else if (flags & MS_BIND)
2d92ab3c 2841 retval = do_loopback(&path, dev_name, flags & MS_REC);
9676f0c6 2842 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2d92ab3c 2843 retval = do_change_type(&path, flags);
1da177e4 2844 else if (flags & MS_MOVE)
2d92ab3c 2845 retval = do_move_mount(&path, dev_name);
1da177e4 2846 else
e462ec50 2847 retval = do_new_mount(&path, type_page, sb_flags, mnt_flags,
1da177e4
LT
2848 dev_name, data_page);
2849dput_out:
2d92ab3c 2850 path_put(&path);
1da177e4
LT
2851 return retval;
2852}
2853
537f7ccb
EB
2854static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns)
2855{
2856 return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES);
2857}
2858
2859static void dec_mnt_namespaces(struct ucounts *ucounts)
2860{
2861 dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES);
2862}
2863
771b1371
EB
2864static void free_mnt_ns(struct mnt_namespace *ns)
2865{
6344c433 2866 ns_free_inum(&ns->ns);
537f7ccb 2867 dec_mnt_namespaces(ns->ucounts);
771b1371
EB
2868 put_user_ns(ns->user_ns);
2869 kfree(ns);
2870}
2871
8823c079
EB
2872/*
2873 * Assign a sequence number so we can detect when we attempt to bind
2874 * mount a reference to an older mount namespace into the current
2875 * mount namespace, preventing reference counting loops. A 64bit
2876 * number incrementing at 10Ghz will take 12,427 years to wrap which
2877 * is effectively never, so we can ignore the possibility.
2878 */
2879static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
2880
771b1371 2881static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns)
cf8d2c11
TM
2882{
2883 struct mnt_namespace *new_ns;
537f7ccb 2884 struct ucounts *ucounts;
98f842e6 2885 int ret;
cf8d2c11 2886
537f7ccb
EB
2887 ucounts = inc_mnt_namespaces(user_ns);
2888 if (!ucounts)
df75e774 2889 return ERR_PTR(-ENOSPC);
537f7ccb 2890
cf8d2c11 2891 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
537f7ccb
EB
2892 if (!new_ns) {
2893 dec_mnt_namespaces(ucounts);
cf8d2c11 2894 return ERR_PTR(-ENOMEM);
537f7ccb 2895 }
6344c433 2896 ret = ns_alloc_inum(&new_ns->ns);
98f842e6
EB
2897 if (ret) {
2898 kfree(new_ns);
537f7ccb 2899 dec_mnt_namespaces(ucounts);
98f842e6
EB
2900 return ERR_PTR(ret);
2901 }
33c42940 2902 new_ns->ns.ops = &mntns_operations;
8823c079 2903 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
cf8d2c11
TM
2904 atomic_set(&new_ns->count, 1);
2905 new_ns->root = NULL;
2906 INIT_LIST_HEAD(&new_ns->list);
2907 init_waitqueue_head(&new_ns->poll);
2908 new_ns->event = 0;
771b1371 2909 new_ns->user_ns = get_user_ns(user_ns);
537f7ccb 2910 new_ns->ucounts = ucounts;
d2921684
EB
2911 new_ns->mounts = 0;
2912 new_ns->pending_mounts = 0;
cf8d2c11
TM
2913 return new_ns;
2914}
2915
0766f788 2916__latent_entropy
9559f689
AV
2917struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
2918 struct user_namespace *user_ns, struct fs_struct *new_fs)
1da177e4 2919{
6b3286ed 2920 struct mnt_namespace *new_ns;
7f2da1e7 2921 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
315fc83e 2922 struct mount *p, *q;
9559f689 2923 struct mount *old;
cb338d06 2924 struct mount *new;
7a472ef4 2925 int copy_flags;
1da177e4 2926
9559f689
AV
2927 BUG_ON(!ns);
2928
2929 if (likely(!(flags & CLONE_NEWNS))) {
2930 get_mnt_ns(ns);
2931 return ns;
2932 }
2933
2934 old = ns->root;
2935
771b1371 2936 new_ns = alloc_mnt_ns(user_ns);
cf8d2c11
TM
2937 if (IS_ERR(new_ns))
2938 return new_ns;
1da177e4 2939
97216be0 2940 namespace_lock();
1da177e4 2941 /* First pass: copy the tree topology */
4ce5d2b1 2942 copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
9559f689 2943 if (user_ns != ns->user_ns)
132c94e3 2944 copy_flags |= CL_SHARED_TO_SLAVE | CL_UNPRIVILEGED;
7a472ef4 2945 new = copy_tree(old, old->mnt.mnt_root, copy_flags);
be34d1a3 2946 if (IS_ERR(new)) {
328e6d90 2947 namespace_unlock();
771b1371 2948 free_mnt_ns(new_ns);
be34d1a3 2949 return ERR_CAST(new);
1da177e4 2950 }
be08d6d2 2951 new_ns->root = new;
1a4eeaf2 2952 list_add_tail(&new_ns->list, &new->mnt_list);
1da177e4
LT
2953
2954 /*
2955 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2956 * as belonging to new namespace. We have already acquired a private
2957 * fs_struct, so tsk->fs->lock is not needed.
2958 */
909b0a88 2959 p = old;
cb338d06 2960 q = new;
1da177e4 2961 while (p) {
143c8c91 2962 q->mnt_ns = new_ns;
d2921684 2963 new_ns->mounts++;
9559f689
AV
2964 if (new_fs) {
2965 if (&p->mnt == new_fs->root.mnt) {
2966 new_fs->root.mnt = mntget(&q->mnt);
315fc83e 2967 rootmnt = &p->mnt;
1da177e4 2968 }
9559f689
AV
2969 if (&p->mnt == new_fs->pwd.mnt) {
2970 new_fs->pwd.mnt = mntget(&q->mnt);
315fc83e 2971 pwdmnt = &p->mnt;
1da177e4 2972 }
1da177e4 2973 }
909b0a88
AV
2974 p = next_mnt(p, old);
2975 q = next_mnt(q, new);
4ce5d2b1
EB
2976 if (!q)
2977 break;
2978 while (p->mnt.mnt_root != q->mnt.mnt_root)
2979 p = next_mnt(p, old);
1da177e4 2980 }
328e6d90 2981 namespace_unlock();
1da177e4 2982
1da177e4 2983 if (rootmnt)
f03c6599 2984 mntput(rootmnt);
1da177e4 2985 if (pwdmnt)
f03c6599 2986 mntput(pwdmnt);
1da177e4 2987
741a2951 2988 return new_ns;
1da177e4
LT
2989}
2990
cf8d2c11
TM
2991/**
2992 * create_mnt_ns - creates a private namespace and adds a root filesystem
2993 * @mnt: pointer to the new root filesystem mountpoint
2994 */
1a4eeaf2 2995static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
cf8d2c11 2996{
771b1371 2997 struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns);
cf8d2c11 2998 if (!IS_ERR(new_ns)) {
1a4eeaf2
AV
2999 struct mount *mnt = real_mount(m);
3000 mnt->mnt_ns = new_ns;
be08d6d2 3001 new_ns->root = mnt;
d2921684 3002 new_ns->mounts++;
b1983cd8 3003 list_add(&mnt->mnt_list, &new_ns->list);
c1334495 3004 } else {
1a4eeaf2 3005 mntput(m);
cf8d2c11
TM
3006 }
3007 return new_ns;
3008}
cf8d2c11 3009
ea441d11
AV
3010struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
3011{
3012 struct mnt_namespace *ns;
d31da0f0 3013 struct super_block *s;
ea441d11
AV
3014 struct path path;
3015 int err;
3016
3017 ns = create_mnt_ns(mnt);
3018 if (IS_ERR(ns))
3019 return ERR_CAST(ns);
3020
3021 err = vfs_path_lookup(mnt->mnt_root, mnt,
3022 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
3023
3024 put_mnt_ns(ns);
3025
3026 if (err)
3027 return ERR_PTR(err);
3028
3029 /* trade a vfsmount reference for active sb one */
d31da0f0
AV
3030 s = path.mnt->mnt_sb;
3031 atomic_inc(&s->s_active);
ea441d11
AV
3032 mntput(path.mnt);
3033 /* lock the sucker */
d31da0f0 3034 down_write(&s->s_umount);
ea441d11
AV
3035 /* ... and return the root of (sub)tree on it */
3036 return path.dentry;
3037}
3038EXPORT_SYMBOL(mount_subtree);
3039
312db1aa
DB
3040int ksys_mount(char __user *dev_name, char __user *dir_name, char __user *type,
3041 unsigned long flags, void __user *data)
1da177e4 3042{
eca6f534
VN
3043 int ret;
3044 char *kernel_type;
eca6f534 3045 char *kernel_dev;
b40ef869 3046 void *options;
1da177e4 3047
b8850d1f
TG
3048 kernel_type = copy_mount_string(type);
3049 ret = PTR_ERR(kernel_type);
3050 if (IS_ERR(kernel_type))
eca6f534 3051 goto out_type;
1da177e4 3052
b8850d1f
TG
3053 kernel_dev = copy_mount_string(dev_name);
3054 ret = PTR_ERR(kernel_dev);
3055 if (IS_ERR(kernel_dev))
eca6f534 3056 goto out_dev;
1da177e4 3057
b40ef869
AV
3058 options = copy_mount_options(data);
3059 ret = PTR_ERR(options);
3060 if (IS_ERR(options))
eca6f534 3061 goto out_data;
1da177e4 3062
b40ef869 3063 ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options);
1da177e4 3064
b40ef869 3065 kfree(options);
eca6f534
VN
3066out_data:
3067 kfree(kernel_dev);
3068out_dev:
eca6f534
VN
3069 kfree(kernel_type);
3070out_type:
3071 return ret;
1da177e4
LT
3072}
3073
312db1aa
DB
3074SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
3075 char __user *, type, unsigned long, flags, void __user *, data)
3076{
3077 return ksys_mount(dev_name, dir_name, type, flags, data);
3078}
3079
afac7cba
AV
3080/*
3081 * Return true if path is reachable from root
3082 *
48a066e7 3083 * namespace_sem or mount_lock is held
afac7cba 3084 */
643822b4 3085bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
afac7cba
AV
3086 const struct path *root)
3087{
643822b4 3088 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
a73324da 3089 dentry = mnt->mnt_mountpoint;
0714a533 3090 mnt = mnt->mnt_parent;
afac7cba 3091 }
643822b4 3092 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
afac7cba
AV
3093}
3094
640eb7e7 3095bool path_is_under(const struct path *path1, const struct path *path2)
afac7cba 3096{
25ab4c9b 3097 bool res;
48a066e7 3098 read_seqlock_excl(&mount_lock);
643822b4 3099 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
48a066e7 3100 read_sequnlock_excl(&mount_lock);
afac7cba
AV
3101 return res;
3102}
3103EXPORT_SYMBOL(path_is_under);
3104
1da177e4
LT
3105/*
3106 * pivot_root Semantics:
3107 * Moves the root file system of the current process to the directory put_old,
3108 * makes new_root as the new root file system of the current process, and sets
3109 * root/cwd of all processes which had them on the current root to new_root.
3110 *
3111 * Restrictions:
3112 * The new_root and put_old must be directories, and must not be on the
3113 * same file system as the current process root. The put_old must be
3114 * underneath new_root, i.e. adding a non-zero number of /.. to the string
3115 * pointed to by put_old must yield the same directory as new_root. No other
3116 * file system may be mounted on put_old. After all, new_root is a mountpoint.
3117 *
4a0d11fa
NB
3118 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
3119 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
3120 * in this situation.
3121 *
1da177e4
LT
3122 * Notes:
3123 * - we don't move root/cwd if they are not at the root (reason: if something
3124 * cared enough to change them, it's probably wrong to force them elsewhere)
3125 * - it's okay to pick a root that isn't the root of a file system, e.g.
3126 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
3127 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
3128 * first.
3129 */
3480b257
HC
3130SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
3131 const char __user *, put_old)
1da177e4 3132{
2d8f3038 3133 struct path new, old, parent_path, root_parent, root;
84d17192
AV
3134 struct mount *new_mnt, *root_mnt, *old_mnt;
3135 struct mountpoint *old_mp, *root_mp;
1da177e4
LT
3136 int error;
3137
9b40bc90 3138 if (!may_mount())
1da177e4
LT
3139 return -EPERM;
3140
2d8f3038 3141 error = user_path_dir(new_root, &new);
1da177e4
LT
3142 if (error)
3143 goto out0;
1da177e4 3144
2d8f3038 3145 error = user_path_dir(put_old, &old);
1da177e4
LT
3146 if (error)
3147 goto out1;
3148
2d8f3038 3149 error = security_sb_pivotroot(&old, &new);
b12cea91
AV
3150 if (error)
3151 goto out2;
1da177e4 3152
f7ad3c6b 3153 get_fs_root(current->fs, &root);
84d17192
AV
3154 old_mp = lock_mount(&old);
3155 error = PTR_ERR(old_mp);
3156 if (IS_ERR(old_mp))
b12cea91
AV
3157 goto out3;
3158
1da177e4 3159 error = -EINVAL;
419148da
AV
3160 new_mnt = real_mount(new.mnt);
3161 root_mnt = real_mount(root.mnt);
84d17192
AV
3162 old_mnt = real_mount(old.mnt);
3163 if (IS_MNT_SHARED(old_mnt) ||
fc7be130
AV
3164 IS_MNT_SHARED(new_mnt->mnt_parent) ||
3165 IS_MNT_SHARED(root_mnt->mnt_parent))
b12cea91 3166 goto out4;
143c8c91 3167 if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
b12cea91 3168 goto out4;
5ff9d8a6
EB
3169 if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
3170 goto out4;
1da177e4 3171 error = -ENOENT;
f3da392e 3172 if (d_unlinked(new.dentry))
b12cea91 3173 goto out4;
1da177e4 3174 error = -EBUSY;
84d17192 3175 if (new_mnt == root_mnt || old_mnt == root_mnt)
b12cea91 3176 goto out4; /* loop, on the same file system */
1da177e4 3177 error = -EINVAL;
8c3ee42e 3178 if (root.mnt->mnt_root != root.dentry)
b12cea91 3179 goto out4; /* not a mountpoint */
676da58d 3180 if (!mnt_has_parent(root_mnt))
b12cea91 3181 goto out4; /* not attached */
84d17192 3182 root_mp = root_mnt->mnt_mp;
2d8f3038 3183 if (new.mnt->mnt_root != new.dentry)
b12cea91 3184 goto out4; /* not a mountpoint */
676da58d 3185 if (!mnt_has_parent(new_mnt))
b12cea91 3186 goto out4; /* not attached */
4ac91378 3187 /* make sure we can reach put_old from new_root */
84d17192 3188 if (!is_path_reachable(old_mnt, old.dentry, &new))
b12cea91 3189 goto out4;
0d082601
EB
3190 /* make certain new is below the root */
3191 if (!is_path_reachable(new_mnt, new.dentry, &root))
3192 goto out4;
84d17192 3193 root_mp->m_count++; /* pin it so it won't go away */
719ea2fb 3194 lock_mount_hash();
419148da
AV
3195 detach_mnt(new_mnt, &parent_path);
3196 detach_mnt(root_mnt, &root_parent);
5ff9d8a6
EB
3197 if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
3198 new_mnt->mnt.mnt_flags |= MNT_LOCKED;
3199 root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
3200 }
4ac91378 3201 /* mount old root on put_old */
84d17192 3202 attach_mnt(root_mnt, old_mnt, old_mp);
4ac91378 3203 /* mount new_root on / */
84d17192 3204 attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp);
6b3286ed 3205 touch_mnt_namespace(current->nsproxy->mnt_ns);
4fed655c
EB
3206 /* A moved mount should not expire automatically */
3207 list_del_init(&new_mnt->mnt_expire);
3895dbf8 3208 put_mountpoint(root_mp);
719ea2fb 3209 unlock_mount_hash();
2d8f3038 3210 chroot_fs_refs(&root, &new);
1da177e4 3211 error = 0;
b12cea91 3212out4:
84d17192 3213 unlock_mount(old_mp);
b12cea91
AV
3214 if (!error) {
3215 path_put(&root_parent);
3216 path_put(&parent_path);
3217 }
3218out3:
8c3ee42e 3219 path_put(&root);
b12cea91 3220out2:
2d8f3038 3221 path_put(&old);
1da177e4 3222out1:
2d8f3038 3223 path_put(&new);
1da177e4 3224out0:
1da177e4 3225 return error;
1da177e4
LT
3226}
3227
3228static void __init init_mount_tree(void)
3229{
3230 struct vfsmount *mnt;
6b3286ed 3231 struct mnt_namespace *ns;
ac748a09 3232 struct path root;
0c55cfc4 3233 struct file_system_type *type;
1da177e4 3234
0c55cfc4
EB
3235 type = get_fs_type("rootfs");
3236 if (!type)
3237 panic("Can't find rootfs type");
3238 mnt = vfs_kern_mount(type, 0, "rootfs", NULL);
3239 put_filesystem(type);
1da177e4
LT
3240 if (IS_ERR(mnt))
3241 panic("Can't create rootfs");
b3e19d92 3242
3b22edc5
TM
3243 ns = create_mnt_ns(mnt);
3244 if (IS_ERR(ns))
1da177e4 3245 panic("Can't allocate initial namespace");
6b3286ed
KK
3246
3247 init_task.nsproxy->mnt_ns = ns;
3248 get_mnt_ns(ns);
3249
be08d6d2
AV
3250 root.mnt = mnt;
3251 root.dentry = mnt->mnt_root;
da362b09 3252 mnt->mnt_flags |= MNT_LOCKED;
ac748a09
JB
3253
3254 set_fs_pwd(current->fs, &root);
3255 set_fs_root(current->fs, &root);
1da177e4
LT
3256}
3257
74bf17cf 3258void __init mnt_init(void)
1da177e4 3259{
15a67dd8 3260 int err;
1da177e4 3261
7d6fec45 3262 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
20c2df83 3263 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
1da177e4 3264
0818bf27 3265 mount_hashtable = alloc_large_system_hash("Mount-cache",
38129a13 3266 sizeof(struct hlist_head),
0818bf27 3267 mhash_entries, 19,
3d375d78 3268 HASH_ZERO,
0818bf27
AV
3269 &m_hash_shift, &m_hash_mask, 0, 0);
3270 mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
3271 sizeof(struct hlist_head),
3272 mphash_entries, 19,
3d375d78 3273 HASH_ZERO,
0818bf27 3274 &mp_hash_shift, &mp_hash_mask, 0, 0);
1da177e4 3275
84d17192 3276 if (!mount_hashtable || !mountpoint_hashtable)
1da177e4
LT
3277 panic("Failed to allocate mount hash table\n");
3278
4b93dc9b
TH
3279 kernfs_init();
3280
15a67dd8
RD
3281 err = sysfs_init();
3282 if (err)
3283 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
8e24eea7 3284 __func__, err);
00d26666
GKH
3285 fs_kobj = kobject_create_and_add("fs", NULL);
3286 if (!fs_kobj)
8e24eea7 3287 printk(KERN_WARNING "%s: kobj create error\n", __func__);
1da177e4
LT
3288 init_rootfs();
3289 init_mount_tree();
3290}
3291
616511d0 3292void put_mnt_ns(struct mnt_namespace *ns)
1da177e4 3293{
d498b25a 3294 if (!atomic_dec_and_test(&ns->count))
616511d0 3295 return;
7b00ed6f 3296 drop_collected_mounts(&ns->root->mnt);
771b1371 3297 free_mnt_ns(ns);
1da177e4 3298}
9d412a43
AV
3299
3300struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
3301{
423e0ab0 3302 struct vfsmount *mnt;
e462ec50 3303 mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, data);
423e0ab0
TC
3304 if (!IS_ERR(mnt)) {
3305 /*
3306 * it is a longterm mount, don't release mnt until
3307 * we unmount before file sys is unregistered
3308 */
f7a99c5b 3309 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
423e0ab0
TC
3310 }
3311 return mnt;
9d412a43
AV
3312}
3313EXPORT_SYMBOL_GPL(kern_mount_data);
423e0ab0
TC
3314
3315void kern_unmount(struct vfsmount *mnt)
3316{
3317 /* release long term mount so mount point can be released */
3318 if (!IS_ERR_OR_NULL(mnt)) {
f7a99c5b 3319 real_mount(mnt)->mnt_ns = NULL;
48a066e7 3320 synchronize_rcu(); /* yecchhh... */
423e0ab0
TC
3321 mntput(mnt);
3322 }
3323}
3324EXPORT_SYMBOL(kern_unmount);
02125a82
AV
3325
3326bool our_mnt(struct vfsmount *mnt)
3327{
143c8c91 3328 return check_mnt(real_mount(mnt));
02125a82 3329}
8823c079 3330
3151527e
EB
3331bool current_chrooted(void)
3332{
3333 /* Does the current process have a non-standard root */
3334 struct path ns_root;
3335 struct path fs_root;
3336 bool chrooted;
3337
3338 /* Find the namespace root */
3339 ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
3340 ns_root.dentry = ns_root.mnt->mnt_root;
3341 path_get(&ns_root);
3342 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
3343 ;
3344
3345 get_fs_root(current->fs, &fs_root);
3346
3347 chrooted = !path_equal(&fs_root, &ns_root);
3348
3349 path_put(&fs_root);
3350 path_put(&ns_root);
3351
3352 return chrooted;
3353}
3354
8654df4e
EB
3355static bool mnt_already_visible(struct mnt_namespace *ns, struct vfsmount *new,
3356 int *new_mnt_flags)
87a8ebd6 3357{
8c6cf9cc 3358 int new_flags = *new_mnt_flags;
87a8ebd6 3359 struct mount *mnt;
e51db735 3360 bool visible = false;
87a8ebd6 3361
44bb4385 3362 down_read(&namespace_sem);
87a8ebd6 3363 list_for_each_entry(mnt, &ns->list, mnt_list) {
e51db735 3364 struct mount *child;
77b1a97d
EB
3365 int mnt_flags;
3366
8654df4e 3367 if (mnt->mnt.mnt_sb->s_type != new->mnt_sb->s_type)
e51db735
EB
3368 continue;
3369
7e96c1b0
EB
3370 /* This mount is not fully visible if it's root directory
3371 * is not the root directory of the filesystem.
3372 */
3373 if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
3374 continue;
3375
a1935c17 3376 /* A local view of the mount flags */
77b1a97d 3377 mnt_flags = mnt->mnt.mnt_flags;
77b1a97d 3378
695e9df0 3379 /* Don't miss readonly hidden in the superblock flags */
bc98a42c 3380 if (sb_rdonly(mnt->mnt.mnt_sb))
695e9df0
EB
3381 mnt_flags |= MNT_LOCK_READONLY;
3382
8c6cf9cc
EB
3383 /* Verify the mount flags are equal to or more permissive
3384 * than the proposed new mount.
3385 */
77b1a97d 3386 if ((mnt_flags & MNT_LOCK_READONLY) &&
8c6cf9cc
EB
3387 !(new_flags & MNT_READONLY))
3388 continue;
77b1a97d
EB
3389 if ((mnt_flags & MNT_LOCK_ATIME) &&
3390 ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK)))
8c6cf9cc
EB
3391 continue;
3392
ceeb0e5d
EB
3393 /* This mount is not fully visible if there are any
3394 * locked child mounts that cover anything except for
3395 * empty directories.
e51db735
EB
3396 */
3397 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
3398 struct inode *inode = child->mnt_mountpoint->d_inode;
ceeb0e5d 3399 /* Only worry about locked mounts */
d71ed6c9 3400 if (!(child->mnt.mnt_flags & MNT_LOCKED))
ceeb0e5d 3401 continue;
7236c85e
EB
3402 /* Is the directory permanetly empty? */
3403 if (!is_empty_dir_inode(inode))
e51db735 3404 goto next;
87a8ebd6 3405 }
8c6cf9cc 3406 /* Preserve the locked attributes */
77b1a97d 3407 *new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \
77b1a97d 3408 MNT_LOCK_ATIME);
e51db735
EB
3409 visible = true;
3410 goto found;
3411 next: ;
87a8ebd6 3412 }
e51db735 3413found:
44bb4385 3414 up_read(&namespace_sem);
e51db735 3415 return visible;
87a8ebd6
EB
3416}
3417
8654df4e
EB
3418static bool mount_too_revealing(struct vfsmount *mnt, int *new_mnt_flags)
3419{
a1935c17 3420 const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV;
8654df4e
EB
3421 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
3422 unsigned long s_iflags;
3423
3424 if (ns->user_ns == &init_user_ns)
3425 return false;
3426
3427 /* Can this filesystem be too revealing? */
3428 s_iflags = mnt->mnt_sb->s_iflags;
3429 if (!(s_iflags & SB_I_USERNS_VISIBLE))
3430 return false;
3431
a1935c17
EB
3432 if ((s_iflags & required_iflags) != required_iflags) {
3433 WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n",
3434 required_iflags);
3435 return true;
3436 }
3437
8654df4e
EB
3438 return !mnt_already_visible(ns, mnt, new_mnt_flags);
3439}
3440
380cf5ba
AL
3441bool mnt_may_suid(struct vfsmount *mnt)
3442{
3443 /*
3444 * Foreign mounts (accessed via fchdir or through /proc
3445 * symlinks) are always treated as if they are nosuid. This
3446 * prevents namespaces from trusting potentially unsafe
3447 * suid/sgid bits, file caps, or security labels that originate
3448 * in other namespaces.
3449 */
3450 return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) &&
3451 current_in_userns(mnt->mnt_sb->s_user_ns);
3452}
3453
64964528 3454static struct ns_common *mntns_get(struct task_struct *task)
8823c079 3455{
58be2825 3456 struct ns_common *ns = NULL;
8823c079
EB
3457 struct nsproxy *nsproxy;
3458
728dba3a
EB
3459 task_lock(task);
3460 nsproxy = task->nsproxy;
8823c079 3461 if (nsproxy) {
58be2825
AV
3462 ns = &nsproxy->mnt_ns->ns;
3463 get_mnt_ns(to_mnt_ns(ns));
8823c079 3464 }
728dba3a 3465 task_unlock(task);
8823c079
EB
3466
3467 return ns;
3468}
3469
64964528 3470static void mntns_put(struct ns_common *ns)
8823c079 3471{
58be2825 3472 put_mnt_ns(to_mnt_ns(ns));
8823c079
EB
3473}
3474
64964528 3475static int mntns_install(struct nsproxy *nsproxy, struct ns_common *ns)
8823c079
EB
3476{
3477 struct fs_struct *fs = current->fs;
4f757f3c 3478 struct mnt_namespace *mnt_ns = to_mnt_ns(ns), *old_mnt_ns;
8823c079 3479 struct path root;
4f757f3c 3480 int err;
8823c079 3481
0c55cfc4 3482 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
c7b96acf
EB
3483 !ns_capable(current_user_ns(), CAP_SYS_CHROOT) ||
3484 !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
ae11e0f1 3485 return -EPERM;
8823c079
EB
3486
3487 if (fs->users != 1)
3488 return -EINVAL;
3489
3490 get_mnt_ns(mnt_ns);
4f757f3c 3491 old_mnt_ns = nsproxy->mnt_ns;
8823c079
EB
3492 nsproxy->mnt_ns = mnt_ns;
3493
3494 /* Find the root */
4f757f3c
AV
3495 err = vfs_path_lookup(mnt_ns->root->mnt.mnt_root, &mnt_ns->root->mnt,
3496 "/", LOOKUP_DOWN, &root);
3497 if (err) {
3498 /* revert to old namespace */
3499 nsproxy->mnt_ns = old_mnt_ns;
3500 put_mnt_ns(mnt_ns);
3501 return err;
3502 }
8823c079 3503
4068367c
AV
3504 put_mnt_ns(old_mnt_ns);
3505
8823c079
EB
3506 /* Update the pwd and root */
3507 set_fs_pwd(fs, &root);
3508 set_fs_root(fs, &root);
3509
3510 path_put(&root);
3511 return 0;
3512}
3513
bcac25a5
AV
3514static struct user_namespace *mntns_owner(struct ns_common *ns)
3515{
3516 return to_mnt_ns(ns)->user_ns;
3517}
3518
8823c079
EB
3519const struct proc_ns_operations mntns_operations = {
3520 .name = "mnt",
3521 .type = CLONE_NEWNS,
3522 .get = mntns_get,
3523 .put = mntns_put,
3524 .install = mntns_install,
bcac25a5 3525 .owner = mntns_owner,
8823c079 3526};