scripts: coccinelle: only suggest true/false in files that already use them
[linux-2.6-block.git] / fs / namespace.c
CommitLineData
1da177e4
LT
1/*
2 * linux/fs/namespace.c
3 *
4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
6 *
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
10
1da177e4 11#include <linux/syscalls.h>
d10577a8 12#include <linux/export.h>
16f7e0fe 13#include <linux/capability.h>
6b3286ed 14#include <linux/mnt_namespace.h>
771b1371 15#include <linux/user_namespace.h>
1da177e4
LT
16#include <linux/namei.h>
17#include <linux/security.h>
5b825c3a 18#include <linux/cred.h>
73cd49ec 19#include <linux/idr.h>
57f150a5 20#include <linux/init.h> /* init_rootfs */
d10577a8
AV
21#include <linux/fs_struct.h> /* get_fs_root et.al. */
22#include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
23#include <linux/uaccess.h>
0bb80f24 24#include <linux/proc_ns.h>
20b4fb48 25#include <linux/magic.h>
57c8a661 26#include <linux/memblock.h>
9ea459e1 27#include <linux/task_work.h>
9164bb4a
IM
28#include <linux/sched/task.h>
29
07b20889 30#include "pnode.h"
948730b0 31#include "internal.h"
1da177e4 32
d2921684
EB
33/* Maximum number of mounts in a mount namespace */
34unsigned int sysctl_mount_max __read_mostly = 100000;
35
0818bf27
AV
36static unsigned int m_hash_mask __read_mostly;
37static unsigned int m_hash_shift __read_mostly;
38static unsigned int mp_hash_mask __read_mostly;
39static unsigned int mp_hash_shift __read_mostly;
40
41static __initdata unsigned long mhash_entries;
42static int __init set_mhash_entries(char *str)
43{
44 if (!str)
45 return 0;
46 mhash_entries = simple_strtoul(str, &str, 0);
47 return 1;
48}
49__setup("mhash_entries=", set_mhash_entries);
50
51static __initdata unsigned long mphash_entries;
52static int __init set_mphash_entries(char *str)
53{
54 if (!str)
55 return 0;
56 mphash_entries = simple_strtoul(str, &str, 0);
57 return 1;
58}
59__setup("mphash_entries=", set_mphash_entries);
13f14b4d 60
c7999c36 61static u64 event;
73cd49ec 62static DEFINE_IDA(mnt_id_ida);
719f5d7f 63static DEFINE_IDA(mnt_group_ida);
1da177e4 64
38129a13 65static struct hlist_head *mount_hashtable __read_mostly;
0818bf27 66static struct hlist_head *mountpoint_hashtable __read_mostly;
e18b890b 67static struct kmem_cache *mnt_cache __read_mostly;
59aa0da8 68static DECLARE_RWSEM(namespace_sem);
1da177e4 69
f87fd4c2 70/* /sys/fs */
00d26666
GKH
71struct kobject *fs_kobj;
72EXPORT_SYMBOL_GPL(fs_kobj);
f87fd4c2 73
99b7db7b
NP
74/*
75 * vfsmount lock may be taken for read to prevent changes to the
76 * vfsmount hash, ie. during mountpoint lookups or walking back
77 * up the tree.
78 *
79 * It should be taken for write in all cases where the vfsmount
80 * tree or hash is modified or when a vfsmount structure is modified.
81 */
48a066e7 82__cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
99b7db7b 83
38129a13 84static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
1da177e4 85{
b58fed8b
RP
86 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
87 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
0818bf27
AV
88 tmp = tmp + (tmp >> m_hash_shift);
89 return &mount_hashtable[tmp & m_hash_mask];
90}
91
92static inline struct hlist_head *mp_hash(struct dentry *dentry)
93{
94 unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
95 tmp = tmp + (tmp >> mp_hash_shift);
96 return &mountpoint_hashtable[tmp & mp_hash_mask];
1da177e4
LT
97}
98
b105e270 99static int mnt_alloc_id(struct mount *mnt)
73cd49ec 100{
169b480e
MW
101 int res = ida_alloc(&mnt_id_ida, GFP_KERNEL);
102
103 if (res < 0)
104 return res;
105 mnt->mnt_id = res;
106 return 0;
73cd49ec
MS
107}
108
b105e270 109static void mnt_free_id(struct mount *mnt)
73cd49ec 110{
169b480e 111 ida_free(&mnt_id_ida, mnt->mnt_id);
73cd49ec
MS
112}
113
719f5d7f
MS
114/*
115 * Allocate a new peer group ID
719f5d7f 116 */
4b8b21f4 117static int mnt_alloc_group_id(struct mount *mnt)
719f5d7f 118{
169b480e 119 int res = ida_alloc_min(&mnt_group_ida, 1, GFP_KERNEL);
f21f6220 120
169b480e
MW
121 if (res < 0)
122 return res;
123 mnt->mnt_group_id = res;
124 return 0;
719f5d7f
MS
125}
126
127/*
128 * Release a peer group ID
129 */
4b8b21f4 130void mnt_release_group_id(struct mount *mnt)
719f5d7f 131{
169b480e 132 ida_free(&mnt_group_ida, mnt->mnt_group_id);
15169fe7 133 mnt->mnt_group_id = 0;
719f5d7f
MS
134}
135
b3e19d92
NP
136/*
137 * vfsmount lock must be held for read
138 */
83adc753 139static inline void mnt_add_count(struct mount *mnt, int n)
b3e19d92
NP
140{
141#ifdef CONFIG_SMP
68e8a9fe 142 this_cpu_add(mnt->mnt_pcp->mnt_count, n);
b3e19d92
NP
143#else
144 preempt_disable();
68e8a9fe 145 mnt->mnt_count += n;
b3e19d92
NP
146 preempt_enable();
147#endif
148}
149
b3e19d92
NP
150/*
151 * vfsmount lock must be held for write
152 */
83adc753 153unsigned int mnt_get_count(struct mount *mnt)
b3e19d92
NP
154{
155#ifdef CONFIG_SMP
f03c6599 156 unsigned int count = 0;
b3e19d92
NP
157 int cpu;
158
159 for_each_possible_cpu(cpu) {
68e8a9fe 160 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
b3e19d92
NP
161 }
162
163 return count;
164#else
68e8a9fe 165 return mnt->mnt_count;
b3e19d92
NP
166#endif
167}
168
87b95ce0
AV
169static void drop_mountpoint(struct fs_pin *p)
170{
171 struct mount *m = container_of(p, struct mount, mnt_umount);
172 dput(m->mnt_ex_mountpoint);
173 pin_remove(p);
174 mntput(&m->mnt);
175}
176
b105e270 177static struct mount *alloc_vfsmnt(const char *name)
1da177e4 178{
c63181e6
AV
179 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
180 if (mnt) {
73cd49ec
MS
181 int err;
182
c63181e6 183 err = mnt_alloc_id(mnt);
88b38782
LZ
184 if (err)
185 goto out_free_cache;
186
187 if (name) {
fcc139ae 188 mnt->mnt_devname = kstrdup_const(name, GFP_KERNEL);
c63181e6 189 if (!mnt->mnt_devname)
88b38782 190 goto out_free_id;
73cd49ec
MS
191 }
192
b3e19d92 193#ifdef CONFIG_SMP
c63181e6
AV
194 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
195 if (!mnt->mnt_pcp)
b3e19d92
NP
196 goto out_free_devname;
197
c63181e6 198 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
b3e19d92 199#else
c63181e6
AV
200 mnt->mnt_count = 1;
201 mnt->mnt_writers = 0;
b3e19d92
NP
202#endif
203
38129a13 204 INIT_HLIST_NODE(&mnt->mnt_hash);
c63181e6
AV
205 INIT_LIST_HEAD(&mnt->mnt_child);
206 INIT_LIST_HEAD(&mnt->mnt_mounts);
207 INIT_LIST_HEAD(&mnt->mnt_list);
208 INIT_LIST_HEAD(&mnt->mnt_expire);
209 INIT_LIST_HEAD(&mnt->mnt_share);
210 INIT_LIST_HEAD(&mnt->mnt_slave_list);
211 INIT_LIST_HEAD(&mnt->mnt_slave);
0a5eb7c8 212 INIT_HLIST_NODE(&mnt->mnt_mp_list);
99b19d16 213 INIT_LIST_HEAD(&mnt->mnt_umounting);
87b95ce0 214 init_fs_pin(&mnt->mnt_umount, drop_mountpoint);
1da177e4 215 }
c63181e6 216 return mnt;
88b38782 217
d3ef3d73 218#ifdef CONFIG_SMP
219out_free_devname:
fcc139ae 220 kfree_const(mnt->mnt_devname);
d3ef3d73 221#endif
88b38782 222out_free_id:
c63181e6 223 mnt_free_id(mnt);
88b38782 224out_free_cache:
c63181e6 225 kmem_cache_free(mnt_cache, mnt);
88b38782 226 return NULL;
1da177e4
LT
227}
228
3d733633
DH
229/*
230 * Most r/o checks on a fs are for operations that take
231 * discrete amounts of time, like a write() or unlink().
232 * We must keep track of when those operations start
233 * (for permission checks) and when they end, so that
234 * we can determine when writes are able to occur to
235 * a filesystem.
236 */
237/*
238 * __mnt_is_readonly: check whether a mount is read-only
239 * @mnt: the mount to check for its write status
240 *
241 * This shouldn't be used directly ouside of the VFS.
242 * It does not guarantee that the filesystem will stay
243 * r/w, just that it is right *now*. This can not and
244 * should not be used in place of IS_RDONLY(inode).
245 * mnt_want/drop_write() will _keep_ the filesystem
246 * r/w.
247 */
248int __mnt_is_readonly(struct vfsmount *mnt)
249{
2e4b7fcd
DH
250 if (mnt->mnt_flags & MNT_READONLY)
251 return 1;
bc98a42c 252 if (sb_rdonly(mnt->mnt_sb))
2e4b7fcd
DH
253 return 1;
254 return 0;
3d733633
DH
255}
256EXPORT_SYMBOL_GPL(__mnt_is_readonly);
257
83adc753 258static inline void mnt_inc_writers(struct mount *mnt)
d3ef3d73 259{
260#ifdef CONFIG_SMP
68e8a9fe 261 this_cpu_inc(mnt->mnt_pcp->mnt_writers);
d3ef3d73 262#else
68e8a9fe 263 mnt->mnt_writers++;
d3ef3d73 264#endif
265}
3d733633 266
83adc753 267static inline void mnt_dec_writers(struct mount *mnt)
3d733633 268{
d3ef3d73 269#ifdef CONFIG_SMP
68e8a9fe 270 this_cpu_dec(mnt->mnt_pcp->mnt_writers);
d3ef3d73 271#else
68e8a9fe 272 mnt->mnt_writers--;
d3ef3d73 273#endif
3d733633 274}
3d733633 275
83adc753 276static unsigned int mnt_get_writers(struct mount *mnt)
3d733633 277{
d3ef3d73 278#ifdef CONFIG_SMP
279 unsigned int count = 0;
3d733633 280 int cpu;
3d733633
DH
281
282 for_each_possible_cpu(cpu) {
68e8a9fe 283 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
3d733633 284 }
3d733633 285
d3ef3d73 286 return count;
287#else
288 return mnt->mnt_writers;
289#endif
3d733633
DH
290}
291
4ed5e82f
MS
292static int mnt_is_readonly(struct vfsmount *mnt)
293{
294 if (mnt->mnt_sb->s_readonly_remount)
295 return 1;
296 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
297 smp_rmb();
298 return __mnt_is_readonly(mnt);
299}
300
8366025e 301/*
eb04c282
JK
302 * Most r/o & frozen checks on a fs are for operations that take discrete
303 * amounts of time, like a write() or unlink(). We must keep track of when
304 * those operations start (for permission checks) and when they end, so that we
305 * can determine when writes are able to occur to a filesystem.
8366025e
DH
306 */
307/**
eb04c282 308 * __mnt_want_write - get write access to a mount without freeze protection
83adc753 309 * @m: the mount on which to take a write
8366025e 310 *
eb04c282
JK
311 * This tells the low-level filesystem that a write is about to be performed to
312 * it, and makes sure that writes are allowed (mnt it read-write) before
313 * returning success. This operation does not protect against filesystem being
314 * frozen. When the write operation is finished, __mnt_drop_write() must be
315 * called. This is effectively a refcount.
8366025e 316 */
eb04c282 317int __mnt_want_write(struct vfsmount *m)
8366025e 318{
83adc753 319 struct mount *mnt = real_mount(m);
3d733633 320 int ret = 0;
3d733633 321
d3ef3d73 322 preempt_disable();
c6653a83 323 mnt_inc_writers(mnt);
d3ef3d73 324 /*
c6653a83 325 * The store to mnt_inc_writers must be visible before we pass
d3ef3d73 326 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
327 * incremented count after it has set MNT_WRITE_HOLD.
328 */
329 smp_mb();
6aa7de05 330 while (READ_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
d3ef3d73 331 cpu_relax();
332 /*
333 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
334 * be set to match its requirements. So we must not load that until
335 * MNT_WRITE_HOLD is cleared.
336 */
337 smp_rmb();
4ed5e82f 338 if (mnt_is_readonly(m)) {
c6653a83 339 mnt_dec_writers(mnt);
3d733633 340 ret = -EROFS;
3d733633 341 }
d3ef3d73 342 preempt_enable();
eb04c282
JK
343
344 return ret;
345}
346
347/**
348 * mnt_want_write - get write access to a mount
349 * @m: the mount on which to take a write
350 *
351 * This tells the low-level filesystem that a write is about to be performed to
352 * it, and makes sure that writes are allowed (mount is read-write, filesystem
353 * is not frozen) before returning success. When the write operation is
354 * finished, mnt_drop_write() must be called. This is effectively a refcount.
355 */
356int mnt_want_write(struct vfsmount *m)
357{
358 int ret;
359
360 sb_start_write(m->mnt_sb);
361 ret = __mnt_want_write(m);
362 if (ret)
363 sb_end_write(m->mnt_sb);
3d733633 364 return ret;
8366025e
DH
365}
366EXPORT_SYMBOL_GPL(mnt_want_write);
367
96029c4e 368/**
369 * mnt_clone_write - get write access to a mount
370 * @mnt: the mount on which to take a write
371 *
372 * This is effectively like mnt_want_write, except
373 * it must only be used to take an extra write reference
374 * on a mountpoint that we already know has a write reference
375 * on it. This allows some optimisation.
376 *
377 * After finished, mnt_drop_write must be called as usual to
378 * drop the reference.
379 */
380int mnt_clone_write(struct vfsmount *mnt)
381{
382 /* superblock may be r/o */
383 if (__mnt_is_readonly(mnt))
384 return -EROFS;
385 preempt_disable();
83adc753 386 mnt_inc_writers(real_mount(mnt));
96029c4e 387 preempt_enable();
388 return 0;
389}
390EXPORT_SYMBOL_GPL(mnt_clone_write);
391
392/**
eb04c282 393 * __mnt_want_write_file - get write access to a file's mount
96029c4e 394 * @file: the file who's mount on which to take a write
395 *
eb04c282 396 * This is like __mnt_want_write, but it takes a file and can
96029c4e 397 * do some optimisations if the file is open for write already
398 */
eb04c282 399int __mnt_want_write_file(struct file *file)
96029c4e 400{
83f936c7 401 if (!(file->f_mode & FMODE_WRITER))
eb04c282 402 return __mnt_want_write(file->f_path.mnt);
96029c4e 403 else
404 return mnt_clone_write(file->f_path.mnt);
405}
eb04c282 406
7c6893e3
MS
407/**
408 * mnt_want_write_file - get write access to a file's mount
409 * @file: the file who's mount on which to take a write
410 *
411 * This is like mnt_want_write, but it takes a file and can
412 * do some optimisations if the file is open for write already
7c6893e3
MS
413 */
414int mnt_want_write_file(struct file *file)
415{
416 int ret;
417
a6795a58 418 sb_start_write(file_inode(file)->i_sb);
eb04c282
JK
419 ret = __mnt_want_write_file(file);
420 if (ret)
a6795a58 421 sb_end_write(file_inode(file)->i_sb);
7c6893e3
MS
422 return ret;
423}
96029c4e 424EXPORT_SYMBOL_GPL(mnt_want_write_file);
425
8366025e 426/**
eb04c282 427 * __mnt_drop_write - give up write access to a mount
8366025e
DH
428 * @mnt: the mount on which to give up write access
429 *
430 * Tells the low-level filesystem that we are done
431 * performing writes to it. Must be matched with
eb04c282 432 * __mnt_want_write() call above.
8366025e 433 */
eb04c282 434void __mnt_drop_write(struct vfsmount *mnt)
8366025e 435{
d3ef3d73 436 preempt_disable();
83adc753 437 mnt_dec_writers(real_mount(mnt));
d3ef3d73 438 preempt_enable();
8366025e 439}
eb04c282
JK
440
441/**
442 * mnt_drop_write - give up write access to a mount
443 * @mnt: the mount on which to give up write access
444 *
445 * Tells the low-level filesystem that we are done performing writes to it and
446 * also allows filesystem to be frozen again. Must be matched with
447 * mnt_want_write() call above.
448 */
449void mnt_drop_write(struct vfsmount *mnt)
450{
451 __mnt_drop_write(mnt);
452 sb_end_write(mnt->mnt_sb);
453}
8366025e
DH
454EXPORT_SYMBOL_GPL(mnt_drop_write);
455
eb04c282
JK
456void __mnt_drop_write_file(struct file *file)
457{
458 __mnt_drop_write(file->f_path.mnt);
459}
460
7c6893e3
MS
461void mnt_drop_write_file(struct file *file)
462{
a6795a58 463 __mnt_drop_write_file(file);
7c6893e3
MS
464 sb_end_write(file_inode(file)->i_sb);
465}
2a79f17e
AV
466EXPORT_SYMBOL(mnt_drop_write_file);
467
83adc753 468static int mnt_make_readonly(struct mount *mnt)
8366025e 469{
3d733633
DH
470 int ret = 0;
471
719ea2fb 472 lock_mount_hash();
83adc753 473 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
3d733633 474 /*
d3ef3d73 475 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
476 * should be visible before we do.
3d733633 477 */
d3ef3d73 478 smp_mb();
479
3d733633 480 /*
d3ef3d73 481 * With writers on hold, if this value is zero, then there are
482 * definitely no active writers (although held writers may subsequently
483 * increment the count, they'll have to wait, and decrement it after
484 * seeing MNT_READONLY).
485 *
486 * It is OK to have counter incremented on one CPU and decremented on
487 * another: the sum will add up correctly. The danger would be when we
488 * sum up each counter, if we read a counter before it is incremented,
489 * but then read another CPU's count which it has been subsequently
490 * decremented from -- we would see more decrements than we should.
491 * MNT_WRITE_HOLD protects against this scenario, because
492 * mnt_want_write first increments count, then smp_mb, then spins on
493 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
494 * we're counting up here.
3d733633 495 */
c6653a83 496 if (mnt_get_writers(mnt) > 0)
d3ef3d73 497 ret = -EBUSY;
498 else
83adc753 499 mnt->mnt.mnt_flags |= MNT_READONLY;
d3ef3d73 500 /*
501 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
502 * that become unheld will see MNT_READONLY.
503 */
504 smp_wmb();
83adc753 505 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
719ea2fb 506 unlock_mount_hash();
3d733633 507 return ret;
8366025e 508}
8366025e 509
83adc753 510static void __mnt_unmake_readonly(struct mount *mnt)
2e4b7fcd 511{
719ea2fb 512 lock_mount_hash();
83adc753 513 mnt->mnt.mnt_flags &= ~MNT_READONLY;
719ea2fb 514 unlock_mount_hash();
2e4b7fcd
DH
515}
516
4ed5e82f
MS
517int sb_prepare_remount_readonly(struct super_block *sb)
518{
519 struct mount *mnt;
520 int err = 0;
521
8e8b8796
MS
522 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
523 if (atomic_long_read(&sb->s_remove_count))
524 return -EBUSY;
525
719ea2fb 526 lock_mount_hash();
4ed5e82f
MS
527 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
528 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
529 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
530 smp_mb();
531 if (mnt_get_writers(mnt) > 0) {
532 err = -EBUSY;
533 break;
534 }
535 }
536 }
8e8b8796
MS
537 if (!err && atomic_long_read(&sb->s_remove_count))
538 err = -EBUSY;
539
4ed5e82f
MS
540 if (!err) {
541 sb->s_readonly_remount = 1;
542 smp_wmb();
543 }
544 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
545 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
546 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
547 }
719ea2fb 548 unlock_mount_hash();
4ed5e82f
MS
549
550 return err;
551}
552
b105e270 553static void free_vfsmnt(struct mount *mnt)
1da177e4 554{
fcc139ae 555 kfree_const(mnt->mnt_devname);
d3ef3d73 556#ifdef CONFIG_SMP
68e8a9fe 557 free_percpu(mnt->mnt_pcp);
d3ef3d73 558#endif
b105e270 559 kmem_cache_free(mnt_cache, mnt);
1da177e4
LT
560}
561
8ffcb32e
DH
562static void delayed_free_vfsmnt(struct rcu_head *head)
563{
564 free_vfsmnt(container_of(head, struct mount, mnt_rcu));
565}
566
48a066e7 567/* call under rcu_read_lock */
294d71ff 568int __legitimize_mnt(struct vfsmount *bastard, unsigned seq)
48a066e7
AV
569{
570 struct mount *mnt;
571 if (read_seqretry(&mount_lock, seq))
294d71ff 572 return 1;
48a066e7 573 if (bastard == NULL)
294d71ff 574 return 0;
48a066e7
AV
575 mnt = real_mount(bastard);
576 mnt_add_count(mnt, 1);
119e1ef8 577 smp_mb(); // see mntput_no_expire()
48a066e7 578 if (likely(!read_seqretry(&mount_lock, seq)))
294d71ff 579 return 0;
48a066e7
AV
580 if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
581 mnt_add_count(mnt, -1);
294d71ff
AV
582 return 1;
583 }
119e1ef8
AV
584 lock_mount_hash();
585 if (unlikely(bastard->mnt_flags & MNT_DOOMED)) {
586 mnt_add_count(mnt, -1);
587 unlock_mount_hash();
588 return 1;
589 }
590 unlock_mount_hash();
591 /* caller will mntput() */
294d71ff
AV
592 return -1;
593}
594
595/* call under rcu_read_lock */
596bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
597{
598 int res = __legitimize_mnt(bastard, seq);
599 if (likely(!res))
600 return true;
601 if (unlikely(res < 0)) {
602 rcu_read_unlock();
603 mntput(bastard);
604 rcu_read_lock();
48a066e7 605 }
48a066e7
AV
606 return false;
607}
608
1da177e4 609/*
474279dc 610 * find the first mount at @dentry on vfsmount @mnt.
48a066e7 611 * call under rcu_read_lock()
1da177e4 612 */
474279dc 613struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
1da177e4 614{
38129a13 615 struct hlist_head *head = m_hash(mnt, dentry);
474279dc
AV
616 struct mount *p;
617
38129a13 618 hlist_for_each_entry_rcu(p, head, mnt_hash)
474279dc
AV
619 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
620 return p;
621 return NULL;
622}
623
a05964f3 624/*
f015f126
DH
625 * lookup_mnt - Return the first child mount mounted at path
626 *
627 * "First" means first mounted chronologically. If you create the
628 * following mounts:
629 *
630 * mount /dev/sda1 /mnt
631 * mount /dev/sda2 /mnt
632 * mount /dev/sda3 /mnt
633 *
634 * Then lookup_mnt() on the base /mnt dentry in the root mount will
635 * return successively the root dentry and vfsmount of /dev/sda1, then
636 * /dev/sda2, then /dev/sda3, then NULL.
637 *
638 * lookup_mnt takes a reference to the found vfsmount.
a05964f3 639 */
ca71cf71 640struct vfsmount *lookup_mnt(const struct path *path)
a05964f3 641{
c7105365 642 struct mount *child_mnt;
48a066e7
AV
643 struct vfsmount *m;
644 unsigned seq;
99b7db7b 645
48a066e7
AV
646 rcu_read_lock();
647 do {
648 seq = read_seqbegin(&mount_lock);
649 child_mnt = __lookup_mnt(path->mnt, path->dentry);
650 m = child_mnt ? &child_mnt->mnt : NULL;
651 } while (!legitimize_mnt(m, seq));
652 rcu_read_unlock();
653 return m;
a05964f3
RP
654}
655
7af1364f
EB
656/*
657 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
658 * current mount namespace.
659 *
660 * The common case is dentries are not mountpoints at all and that
661 * test is handled inline. For the slow case when we are actually
662 * dealing with a mountpoint of some kind, walk through all of the
663 * mounts in the current mount namespace and test to see if the dentry
664 * is a mountpoint.
665 *
666 * The mount_hashtable is not usable in the context because we
667 * need to identify all mounts that may be in the current mount
668 * namespace not just a mount that happens to have some specified
669 * parent mount.
670 */
671bool __is_local_mountpoint(struct dentry *dentry)
672{
673 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
674 struct mount *mnt;
675 bool is_covered = false;
676
677 if (!d_mountpoint(dentry))
678 goto out;
679
680 down_read(&namespace_sem);
681 list_for_each_entry(mnt, &ns->list, mnt_list) {
682 is_covered = (mnt->mnt_mountpoint == dentry);
683 if (is_covered)
684 break;
685 }
686 up_read(&namespace_sem);
687out:
688 return is_covered;
689}
690
e2dfa935 691static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
84d17192 692{
0818bf27 693 struct hlist_head *chain = mp_hash(dentry);
84d17192
AV
694 struct mountpoint *mp;
695
0818bf27 696 hlist_for_each_entry(mp, chain, m_hash) {
84d17192
AV
697 if (mp->m_dentry == dentry) {
698 /* might be worth a WARN_ON() */
699 if (d_unlinked(dentry))
700 return ERR_PTR(-ENOENT);
701 mp->m_count++;
702 return mp;
703 }
704 }
e2dfa935
EB
705 return NULL;
706}
707
3895dbf8 708static struct mountpoint *get_mountpoint(struct dentry *dentry)
e2dfa935 709{
3895dbf8 710 struct mountpoint *mp, *new = NULL;
e2dfa935 711 int ret;
84d17192 712
3895dbf8
EB
713 if (d_mountpoint(dentry)) {
714mountpoint:
715 read_seqlock_excl(&mount_lock);
716 mp = lookup_mountpoint(dentry);
717 read_sequnlock_excl(&mount_lock);
718 if (mp)
719 goto done;
720 }
721
722 if (!new)
723 new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
724 if (!new)
84d17192
AV
725 return ERR_PTR(-ENOMEM);
726
3895dbf8
EB
727
728 /* Exactly one processes may set d_mounted */
eed81007 729 ret = d_set_mounted(dentry);
eed81007 730
3895dbf8
EB
731 /* Someone else set d_mounted? */
732 if (ret == -EBUSY)
733 goto mountpoint;
734
735 /* The dentry is not available as a mountpoint? */
736 mp = ERR_PTR(ret);
737 if (ret)
738 goto done;
739
740 /* Add the new mountpoint to the hash table */
741 read_seqlock_excl(&mount_lock);
742 new->m_dentry = dentry;
743 new->m_count = 1;
744 hlist_add_head(&new->m_hash, mp_hash(dentry));
745 INIT_HLIST_HEAD(&new->m_list);
746 read_sequnlock_excl(&mount_lock);
747
748 mp = new;
749 new = NULL;
750done:
751 kfree(new);
84d17192
AV
752 return mp;
753}
754
755static void put_mountpoint(struct mountpoint *mp)
756{
757 if (!--mp->m_count) {
758 struct dentry *dentry = mp->m_dentry;
0a5eb7c8 759 BUG_ON(!hlist_empty(&mp->m_list));
84d17192
AV
760 spin_lock(&dentry->d_lock);
761 dentry->d_flags &= ~DCACHE_MOUNTED;
762 spin_unlock(&dentry->d_lock);
0818bf27 763 hlist_del(&mp->m_hash);
84d17192
AV
764 kfree(mp);
765 }
766}
767
143c8c91 768static inline int check_mnt(struct mount *mnt)
1da177e4 769{
6b3286ed 770 return mnt->mnt_ns == current->nsproxy->mnt_ns;
1da177e4
LT
771}
772
99b7db7b
NP
773/*
774 * vfsmount lock must be held for write
775 */
6b3286ed 776static void touch_mnt_namespace(struct mnt_namespace *ns)
5addc5dd
AV
777{
778 if (ns) {
779 ns->event = ++event;
780 wake_up_interruptible(&ns->poll);
781 }
782}
783
99b7db7b
NP
784/*
785 * vfsmount lock must be held for write
786 */
6b3286ed 787static void __touch_mnt_namespace(struct mnt_namespace *ns)
5addc5dd
AV
788{
789 if (ns && ns->event != event) {
790 ns->event = event;
791 wake_up_interruptible(&ns->poll);
792 }
793}
794
99b7db7b
NP
795/*
796 * vfsmount lock must be held for write
797 */
7bdb11de 798static void unhash_mnt(struct mount *mnt)
419148da 799{
0714a533 800 mnt->mnt_parent = mnt;
a73324da 801 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
6b41d536 802 list_del_init(&mnt->mnt_child);
38129a13 803 hlist_del_init_rcu(&mnt->mnt_hash);
0a5eb7c8 804 hlist_del_init(&mnt->mnt_mp_list);
84d17192
AV
805 put_mountpoint(mnt->mnt_mp);
806 mnt->mnt_mp = NULL;
1da177e4
LT
807}
808
7bdb11de
EB
809/*
810 * vfsmount lock must be held for write
811 */
812static void detach_mnt(struct mount *mnt, struct path *old_path)
813{
814 old_path->dentry = mnt->mnt_mountpoint;
815 old_path->mnt = &mnt->mnt_parent->mnt;
816 unhash_mnt(mnt);
817}
818
6a46c573
EB
819/*
820 * vfsmount lock must be held for write
821 */
822static void umount_mnt(struct mount *mnt)
823{
824 /* old mountpoint will be dropped when we can do that */
825 mnt->mnt_ex_mountpoint = mnt->mnt_mountpoint;
826 unhash_mnt(mnt);
827}
828
99b7db7b
NP
829/*
830 * vfsmount lock must be held for write
831 */
84d17192
AV
832void mnt_set_mountpoint(struct mount *mnt,
833 struct mountpoint *mp,
44d964d6 834 struct mount *child_mnt)
b90fa9ae 835{
84d17192 836 mp->m_count++;
3a2393d7 837 mnt_add_count(mnt, 1); /* essentially, that's mntget */
84d17192 838 child_mnt->mnt_mountpoint = dget(mp->m_dentry);
3a2393d7 839 child_mnt->mnt_parent = mnt;
84d17192 840 child_mnt->mnt_mp = mp;
0a5eb7c8 841 hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
b90fa9ae
RP
842}
843
1064f874
EB
844static void __attach_mnt(struct mount *mnt, struct mount *parent)
845{
846 hlist_add_head_rcu(&mnt->mnt_hash,
847 m_hash(&parent->mnt, mnt->mnt_mountpoint));
848 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
849}
850
99b7db7b
NP
851/*
852 * vfsmount lock must be held for write
853 */
84d17192
AV
854static void attach_mnt(struct mount *mnt,
855 struct mount *parent,
856 struct mountpoint *mp)
1da177e4 857{
84d17192 858 mnt_set_mountpoint(parent, mp, mnt);
1064f874 859 __attach_mnt(mnt, parent);
b90fa9ae
RP
860}
861
1064f874 862void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt)
12a5b529 863{
1064f874
EB
864 struct mountpoint *old_mp = mnt->mnt_mp;
865 struct dentry *old_mountpoint = mnt->mnt_mountpoint;
866 struct mount *old_parent = mnt->mnt_parent;
867
868 list_del_init(&mnt->mnt_child);
869 hlist_del_init(&mnt->mnt_mp_list);
870 hlist_del_init_rcu(&mnt->mnt_hash);
871
872 attach_mnt(mnt, parent, mp);
873
874 put_mountpoint(old_mp);
875
876 /*
877 * Safely avoid even the suggestion this code might sleep or
878 * lock the mount hash by taking advantage of the knowledge that
879 * mnt_change_mountpoint will not release the final reference
880 * to a mountpoint.
881 *
882 * During mounting, the mount passed in as the parent mount will
883 * continue to use the old mountpoint and during unmounting, the
884 * old mountpoint will continue to exist until namespace_unlock,
885 * which happens well after mnt_change_mountpoint.
886 */
887 spin_lock(&old_mountpoint->d_lock);
888 old_mountpoint->d_lockref.count--;
889 spin_unlock(&old_mountpoint->d_lock);
890
891 mnt_add_count(old_parent, -1);
12a5b529
AV
892}
893
b90fa9ae 894/*
99b7db7b 895 * vfsmount lock must be held for write
b90fa9ae 896 */
1064f874 897static void commit_tree(struct mount *mnt)
b90fa9ae 898{
0714a533 899 struct mount *parent = mnt->mnt_parent;
83adc753 900 struct mount *m;
b90fa9ae 901 LIST_HEAD(head);
143c8c91 902 struct mnt_namespace *n = parent->mnt_ns;
b90fa9ae 903
0714a533 904 BUG_ON(parent == mnt);
b90fa9ae 905
1a4eeaf2 906 list_add_tail(&head, &mnt->mnt_list);
f7a99c5b 907 list_for_each_entry(m, &head, mnt_list)
143c8c91 908 m->mnt_ns = n;
f03c6599 909
b90fa9ae
RP
910 list_splice(&head, n->list.prev);
911
d2921684
EB
912 n->mounts += n->pending_mounts;
913 n->pending_mounts = 0;
914
1064f874 915 __attach_mnt(mnt, parent);
6b3286ed 916 touch_mnt_namespace(n);
1da177e4
LT
917}
918
909b0a88 919static struct mount *next_mnt(struct mount *p, struct mount *root)
1da177e4 920{
6b41d536
AV
921 struct list_head *next = p->mnt_mounts.next;
922 if (next == &p->mnt_mounts) {
1da177e4 923 while (1) {
909b0a88 924 if (p == root)
1da177e4 925 return NULL;
6b41d536
AV
926 next = p->mnt_child.next;
927 if (next != &p->mnt_parent->mnt_mounts)
1da177e4 928 break;
0714a533 929 p = p->mnt_parent;
1da177e4
LT
930 }
931 }
6b41d536 932 return list_entry(next, struct mount, mnt_child);
1da177e4
LT
933}
934
315fc83e 935static struct mount *skip_mnt_tree(struct mount *p)
9676f0c6 936{
6b41d536
AV
937 struct list_head *prev = p->mnt_mounts.prev;
938 while (prev != &p->mnt_mounts) {
939 p = list_entry(prev, struct mount, mnt_child);
940 prev = p->mnt_mounts.prev;
9676f0c6
RP
941 }
942 return p;
943}
944
9d412a43
AV
945struct vfsmount *
946vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
947{
b105e270 948 struct mount *mnt;
9d412a43
AV
949 struct dentry *root;
950
951 if (!type)
952 return ERR_PTR(-ENODEV);
953
954 mnt = alloc_vfsmnt(name);
955 if (!mnt)
956 return ERR_PTR(-ENOMEM);
957
e462ec50 958 if (flags & SB_KERNMOUNT)
b105e270 959 mnt->mnt.mnt_flags = MNT_INTERNAL;
9d412a43
AV
960
961 root = mount_fs(type, flags, name, data);
962 if (IS_ERR(root)) {
8ffcb32e 963 mnt_free_id(mnt);
9d412a43
AV
964 free_vfsmnt(mnt);
965 return ERR_CAST(root);
966 }
967
b105e270
AV
968 mnt->mnt.mnt_root = root;
969 mnt->mnt.mnt_sb = root->d_sb;
a73324da 970 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
0714a533 971 mnt->mnt_parent = mnt;
719ea2fb 972 lock_mount_hash();
39f7c4db 973 list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
719ea2fb 974 unlock_mount_hash();
b105e270 975 return &mnt->mnt;
9d412a43
AV
976}
977EXPORT_SYMBOL_GPL(vfs_kern_mount);
978
93faccbb
EB
979struct vfsmount *
980vfs_submount(const struct dentry *mountpoint, struct file_system_type *type,
981 const char *name, void *data)
982{
983 /* Until it is worked out how to pass the user namespace
984 * through from the parent mount to the submount don't support
985 * unprivileged mounts with submounts.
986 */
987 if (mountpoint->d_sb->s_user_ns != &init_user_ns)
988 return ERR_PTR(-EPERM);
989
e462ec50 990 return vfs_kern_mount(type, SB_SUBMOUNT, name, data);
93faccbb
EB
991}
992EXPORT_SYMBOL_GPL(vfs_submount);
993
87129cc0 994static struct mount *clone_mnt(struct mount *old, struct dentry *root,
36341f64 995 int flag)
1da177e4 996{
87129cc0 997 struct super_block *sb = old->mnt.mnt_sb;
be34d1a3
DH
998 struct mount *mnt;
999 int err;
1da177e4 1000
be34d1a3
DH
1001 mnt = alloc_vfsmnt(old->mnt_devname);
1002 if (!mnt)
1003 return ERR_PTR(-ENOMEM);
719f5d7f 1004
7a472ef4 1005 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
be34d1a3
DH
1006 mnt->mnt_group_id = 0; /* not a peer of original */
1007 else
1008 mnt->mnt_group_id = old->mnt_group_id;
b90fa9ae 1009
be34d1a3
DH
1010 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
1011 err = mnt_alloc_group_id(mnt);
1012 if (err)
1013 goto out_free;
1da177e4 1014 }
be34d1a3 1015
16a34adb
AV
1016 mnt->mnt.mnt_flags = old->mnt.mnt_flags;
1017 mnt->mnt.mnt_flags &= ~(MNT_WRITE_HOLD|MNT_MARKED|MNT_INTERNAL);
132c94e3 1018 /* Don't allow unprivileged users to change mount flags */
9566d674
EB
1019 if (flag & CL_UNPRIVILEGED) {
1020 mnt->mnt.mnt_flags |= MNT_LOCK_ATIME;
1021
1022 if (mnt->mnt.mnt_flags & MNT_READONLY)
1023 mnt->mnt.mnt_flags |= MNT_LOCK_READONLY;
1024
1025 if (mnt->mnt.mnt_flags & MNT_NODEV)
1026 mnt->mnt.mnt_flags |= MNT_LOCK_NODEV;
1027
1028 if (mnt->mnt.mnt_flags & MNT_NOSUID)
1029 mnt->mnt.mnt_flags |= MNT_LOCK_NOSUID;
1030
1031 if (mnt->mnt.mnt_flags & MNT_NOEXEC)
1032 mnt->mnt.mnt_flags |= MNT_LOCK_NOEXEC;
1033 }
132c94e3 1034
5ff9d8a6 1035 /* Don't allow unprivileged users to reveal what is under a mount */
381cacb1
EB
1036 if ((flag & CL_UNPRIVILEGED) &&
1037 (!(flag & CL_EXPIRE) || list_empty(&old->mnt_expire)))
5ff9d8a6
EB
1038 mnt->mnt.mnt_flags |= MNT_LOCKED;
1039
be34d1a3
DH
1040 atomic_inc(&sb->s_active);
1041 mnt->mnt.mnt_sb = sb;
1042 mnt->mnt.mnt_root = dget(root);
1043 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1044 mnt->mnt_parent = mnt;
719ea2fb 1045 lock_mount_hash();
be34d1a3 1046 list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
719ea2fb 1047 unlock_mount_hash();
be34d1a3 1048
7a472ef4
EB
1049 if ((flag & CL_SLAVE) ||
1050 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
be34d1a3
DH
1051 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
1052 mnt->mnt_master = old;
1053 CLEAR_MNT_SHARED(mnt);
1054 } else if (!(flag & CL_PRIVATE)) {
1055 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
1056 list_add(&mnt->mnt_share, &old->mnt_share);
1057 if (IS_MNT_SLAVE(old))
1058 list_add(&mnt->mnt_slave, &old->mnt_slave);
1059 mnt->mnt_master = old->mnt_master;
5235d448
AV
1060 } else {
1061 CLEAR_MNT_SHARED(mnt);
be34d1a3
DH
1062 }
1063 if (flag & CL_MAKE_SHARED)
1064 set_mnt_shared(mnt);
1065
1066 /* stick the duplicate mount on the same expiry list
1067 * as the original if that was on one */
1068 if (flag & CL_EXPIRE) {
1069 if (!list_empty(&old->mnt_expire))
1070 list_add(&mnt->mnt_expire, &old->mnt_expire);
1071 }
1072
cb338d06 1073 return mnt;
719f5d7f
MS
1074
1075 out_free:
8ffcb32e 1076 mnt_free_id(mnt);
719f5d7f 1077 free_vfsmnt(mnt);
be34d1a3 1078 return ERR_PTR(err);
1da177e4
LT
1079}
1080
9ea459e1
AV
1081static void cleanup_mnt(struct mount *mnt)
1082{
1083 /*
1084 * This probably indicates that somebody messed
1085 * up a mnt_want/drop_write() pair. If this
1086 * happens, the filesystem was probably unable
1087 * to make r/w->r/o transitions.
1088 */
1089 /*
1090 * The locking used to deal with mnt_count decrement provides barriers,
1091 * so mnt_get_writers() below is safe.
1092 */
1093 WARN_ON(mnt_get_writers(mnt));
1094 if (unlikely(mnt->mnt_pins.first))
1095 mnt_pin_kill(mnt);
1096 fsnotify_vfsmount_delete(&mnt->mnt);
1097 dput(mnt->mnt.mnt_root);
1098 deactivate_super(mnt->mnt.mnt_sb);
1099 mnt_free_id(mnt);
1100 call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1101}
1102
1103static void __cleanup_mnt(struct rcu_head *head)
1104{
1105 cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1106}
1107
1108static LLIST_HEAD(delayed_mntput_list);
1109static void delayed_mntput(struct work_struct *unused)
1110{
1111 struct llist_node *node = llist_del_all(&delayed_mntput_list);
29785735 1112 struct mount *m, *t;
9ea459e1 1113
29785735
BP
1114 llist_for_each_entry_safe(m, t, node, mnt_llist)
1115 cleanup_mnt(m);
9ea459e1
AV
1116}
1117static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1118
900148dc 1119static void mntput_no_expire(struct mount *mnt)
b3e19d92 1120{
48a066e7 1121 rcu_read_lock();
9ea0a46c
AV
1122 if (likely(READ_ONCE(mnt->mnt_ns))) {
1123 /*
1124 * Since we don't do lock_mount_hash() here,
1125 * ->mnt_ns can change under us. However, if it's
1126 * non-NULL, then there's a reference that won't
1127 * be dropped until after an RCU delay done after
1128 * turning ->mnt_ns NULL. So if we observe it
1129 * non-NULL under rcu_read_lock(), the reference
1130 * we are dropping is not the final one.
1131 */
1132 mnt_add_count(mnt, -1);
48a066e7 1133 rcu_read_unlock();
f03c6599 1134 return;
b3e19d92 1135 }
719ea2fb 1136 lock_mount_hash();
119e1ef8
AV
1137 /*
1138 * make sure that if __legitimize_mnt() has not seen us grab
1139 * mount_lock, we'll see their refcount increment here.
1140 */
1141 smp_mb();
9ea0a46c 1142 mnt_add_count(mnt, -1);
b3e19d92 1143 if (mnt_get_count(mnt)) {
48a066e7 1144 rcu_read_unlock();
719ea2fb 1145 unlock_mount_hash();
99b7db7b
NP
1146 return;
1147 }
48a066e7
AV
1148 if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1149 rcu_read_unlock();
1150 unlock_mount_hash();
1151 return;
1152 }
1153 mnt->mnt.mnt_flags |= MNT_DOOMED;
1154 rcu_read_unlock();
962830df 1155
39f7c4db 1156 list_del(&mnt->mnt_instance);
ce07d891
EB
1157
1158 if (unlikely(!list_empty(&mnt->mnt_mounts))) {
1159 struct mount *p, *tmp;
1160 list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts, mnt_child) {
1161 umount_mnt(p);
1162 }
1163 }
719ea2fb 1164 unlock_mount_hash();
649a795a 1165
9ea459e1
AV
1166 if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1167 struct task_struct *task = current;
1168 if (likely(!(task->flags & PF_KTHREAD))) {
1169 init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
1170 if (!task_work_add(task, &mnt->mnt_rcu, true))
1171 return;
1172 }
1173 if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1174 schedule_delayed_work(&delayed_mntput_work, 1);
1175 return;
1176 }
1177 cleanup_mnt(mnt);
b3e19d92 1178}
b3e19d92
NP
1179
1180void mntput(struct vfsmount *mnt)
1181{
1182 if (mnt) {
863d684f 1183 struct mount *m = real_mount(mnt);
b3e19d92 1184 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
863d684f
AV
1185 if (unlikely(m->mnt_expiry_mark))
1186 m->mnt_expiry_mark = 0;
1187 mntput_no_expire(m);
b3e19d92
NP
1188 }
1189}
1190EXPORT_SYMBOL(mntput);
1191
1192struct vfsmount *mntget(struct vfsmount *mnt)
1193{
1194 if (mnt)
83adc753 1195 mnt_add_count(real_mount(mnt), 1);
b3e19d92
NP
1196 return mnt;
1197}
1198EXPORT_SYMBOL(mntget);
1199
c6609c0a
IK
1200/* path_is_mountpoint() - Check if path is a mount in the current
1201 * namespace.
1202 *
1203 * d_mountpoint() can only be used reliably to establish if a dentry is
1204 * not mounted in any namespace and that common case is handled inline.
1205 * d_mountpoint() isn't aware of the possibility there may be multiple
1206 * mounts using a given dentry in a different namespace. This function
1207 * checks if the passed in path is a mountpoint rather than the dentry
1208 * alone.
1209 */
1210bool path_is_mountpoint(const struct path *path)
1211{
1212 unsigned seq;
1213 bool res;
1214
1215 if (!d_mountpoint(path->dentry))
1216 return false;
1217
1218 rcu_read_lock();
1219 do {
1220 seq = read_seqbegin(&mount_lock);
1221 res = __path_is_mountpoint(path);
1222 } while (read_seqretry(&mount_lock, seq));
1223 rcu_read_unlock();
1224
1225 return res;
1226}
1227EXPORT_SYMBOL(path_is_mountpoint);
1228
ca71cf71 1229struct vfsmount *mnt_clone_internal(const struct path *path)
7b7b1ace 1230{
3064c356
AV
1231 struct mount *p;
1232 p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1233 if (IS_ERR(p))
1234 return ERR_CAST(p);
1235 p->mnt.mnt_flags |= MNT_INTERNAL;
1236 return &p->mnt;
7b7b1ace 1237}
1da177e4 1238
a1a2c409 1239#ifdef CONFIG_PROC_FS
0226f492 1240/* iterator; we want it to have access to namespace_sem, thus here... */
1da177e4
LT
1241static void *m_start(struct seq_file *m, loff_t *pos)
1242{
ede1bf0d 1243 struct proc_mounts *p = m->private;
1da177e4 1244
390c6843 1245 down_read(&namespace_sem);
c7999c36
AV
1246 if (p->cached_event == p->ns->event) {
1247 void *v = p->cached_mount;
1248 if (*pos == p->cached_index)
1249 return v;
1250 if (*pos == p->cached_index + 1) {
1251 v = seq_list_next(v, &p->ns->list, &p->cached_index);
1252 return p->cached_mount = v;
1253 }
1254 }
1255
1256 p->cached_event = p->ns->event;
1257 p->cached_mount = seq_list_start(&p->ns->list, *pos);
1258 p->cached_index = *pos;
1259 return p->cached_mount;
1da177e4
LT
1260}
1261
1262static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1263{
ede1bf0d 1264 struct proc_mounts *p = m->private;
b0765fb8 1265
c7999c36
AV
1266 p->cached_mount = seq_list_next(v, &p->ns->list, pos);
1267 p->cached_index = *pos;
1268 return p->cached_mount;
1da177e4
LT
1269}
1270
1271static void m_stop(struct seq_file *m, void *v)
1272{
390c6843 1273 up_read(&namespace_sem);
1da177e4
LT
1274}
1275
0226f492 1276static int m_show(struct seq_file *m, void *v)
2d4d4864 1277{
ede1bf0d 1278 struct proc_mounts *p = m->private;
1a4eeaf2 1279 struct mount *r = list_entry(v, struct mount, mnt_list);
0226f492 1280 return p->show(m, &r->mnt);
1da177e4
LT
1281}
1282
a1a2c409 1283const struct seq_operations mounts_op = {
1da177e4
LT
1284 .start = m_start,
1285 .next = m_next,
1286 .stop = m_stop,
0226f492 1287 .show = m_show,
b4629fe2 1288};
a1a2c409 1289#endif /* CONFIG_PROC_FS */
b4629fe2 1290
1da177e4
LT
1291/**
1292 * may_umount_tree - check if a mount tree is busy
1293 * @mnt: root of mount tree
1294 *
1295 * This is called to check if a tree of mounts has any
1296 * open files, pwds, chroots or sub mounts that are
1297 * busy.
1298 */
909b0a88 1299int may_umount_tree(struct vfsmount *m)
1da177e4 1300{
909b0a88 1301 struct mount *mnt = real_mount(m);
36341f64
RP
1302 int actual_refs = 0;
1303 int minimum_refs = 0;
315fc83e 1304 struct mount *p;
909b0a88 1305 BUG_ON(!m);
1da177e4 1306
b3e19d92 1307 /* write lock needed for mnt_get_count */
719ea2fb 1308 lock_mount_hash();
909b0a88 1309 for (p = mnt; p; p = next_mnt(p, mnt)) {
83adc753 1310 actual_refs += mnt_get_count(p);
1da177e4 1311 minimum_refs += 2;
1da177e4 1312 }
719ea2fb 1313 unlock_mount_hash();
1da177e4
LT
1314
1315 if (actual_refs > minimum_refs)
e3474a8e 1316 return 0;
1da177e4 1317
e3474a8e 1318 return 1;
1da177e4
LT
1319}
1320
1321EXPORT_SYMBOL(may_umount_tree);
1322
1323/**
1324 * may_umount - check if a mount point is busy
1325 * @mnt: root of mount
1326 *
1327 * This is called to check if a mount point has any
1328 * open files, pwds, chroots or sub mounts. If the
1329 * mount has sub mounts this will return busy
1330 * regardless of whether the sub mounts are busy.
1331 *
1332 * Doesn't take quota and stuff into account. IOW, in some cases it will
1333 * give false negatives. The main reason why it's here is that we need
1334 * a non-destructive way to look for easily umountable filesystems.
1335 */
1336int may_umount(struct vfsmount *mnt)
1337{
e3474a8e 1338 int ret = 1;
8ad08d8a 1339 down_read(&namespace_sem);
719ea2fb 1340 lock_mount_hash();
1ab59738 1341 if (propagate_mount_busy(real_mount(mnt), 2))
e3474a8e 1342 ret = 0;
719ea2fb 1343 unlock_mount_hash();
8ad08d8a 1344 up_read(&namespace_sem);
a05964f3 1345 return ret;
1da177e4
LT
1346}
1347
1348EXPORT_SYMBOL(may_umount);
1349
38129a13 1350static HLIST_HEAD(unmounted); /* protected by namespace_sem */
e3197d83 1351
97216be0 1352static void namespace_unlock(void)
70fbcdf4 1353{
a3b3c562 1354 struct hlist_head head;
97216be0 1355
a3b3c562 1356 hlist_move_list(&unmounted, &head);
97216be0 1357
97216be0
AV
1358 up_write(&namespace_sem);
1359
a3b3c562
EB
1360 if (likely(hlist_empty(&head)))
1361 return;
1362
48a066e7
AV
1363 synchronize_rcu();
1364
87b95ce0 1365 group_pin_kill(&head);
70fbcdf4
RP
1366}
1367
97216be0 1368static inline void namespace_lock(void)
e3197d83 1369{
97216be0 1370 down_write(&namespace_sem);
e3197d83
AV
1371}
1372
e819f152
EB
1373enum umount_tree_flags {
1374 UMOUNT_SYNC = 1,
1375 UMOUNT_PROPAGATE = 2,
e0c9c0af 1376 UMOUNT_CONNECTED = 4,
e819f152 1377};
f2d0a123
EB
1378
1379static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how)
1380{
1381 /* Leaving mounts connected is only valid for lazy umounts */
1382 if (how & UMOUNT_SYNC)
1383 return true;
1384
1385 /* A mount without a parent has nothing to be connected to */
1386 if (!mnt_has_parent(mnt))
1387 return true;
1388
1389 /* Because the reference counting rules change when mounts are
1390 * unmounted and connected, umounted mounts may not be
1391 * connected to mounted mounts.
1392 */
1393 if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT))
1394 return true;
1395
1396 /* Has it been requested that the mount remain connected? */
1397 if (how & UMOUNT_CONNECTED)
1398 return false;
1399
1400 /* Is the mount locked such that it needs to remain connected? */
1401 if (IS_MNT_LOCKED(mnt))
1402 return false;
1403
1404 /* By default disconnect the mount */
1405 return true;
1406}
1407
99b7db7b 1408/*
48a066e7 1409 * mount_lock must be held
99b7db7b
NP
1410 * namespace_sem must be held for write
1411 */
e819f152 1412static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
1da177e4 1413{
c003b26f 1414 LIST_HEAD(tmp_list);
315fc83e 1415 struct mount *p;
1da177e4 1416
5d88457e
EB
1417 if (how & UMOUNT_PROPAGATE)
1418 propagate_mount_unlock(mnt);
1419
c003b26f 1420 /* Gather the mounts to umount */
590ce4bc
EB
1421 for (p = mnt; p; p = next_mnt(p, mnt)) {
1422 p->mnt.mnt_flags |= MNT_UMOUNT;
c003b26f 1423 list_move(&p->mnt_list, &tmp_list);
590ce4bc 1424 }
1da177e4 1425
411a938b 1426 /* Hide the mounts from mnt_mounts */
c003b26f 1427 list_for_each_entry(p, &tmp_list, mnt_list) {
88b368f2 1428 list_del_init(&p->mnt_child);
c003b26f 1429 }
88b368f2 1430
c003b26f 1431 /* Add propogated mounts to the tmp_list */
e819f152 1432 if (how & UMOUNT_PROPAGATE)
7b8a53fd 1433 propagate_umount(&tmp_list);
a05964f3 1434
c003b26f 1435 while (!list_empty(&tmp_list)) {
d2921684 1436 struct mnt_namespace *ns;
ce07d891 1437 bool disconnect;
c003b26f 1438 p = list_first_entry(&tmp_list, struct mount, mnt_list);
6776db3d 1439 list_del_init(&p->mnt_expire);
1a4eeaf2 1440 list_del_init(&p->mnt_list);
d2921684
EB
1441 ns = p->mnt_ns;
1442 if (ns) {
1443 ns->mounts--;
1444 __touch_mnt_namespace(ns);
1445 }
143c8c91 1446 p->mnt_ns = NULL;
e819f152 1447 if (how & UMOUNT_SYNC)
48a066e7 1448 p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
87b95ce0 1449
f2d0a123 1450 disconnect = disconnect_mount(p, how);
ce07d891
EB
1451
1452 pin_insert_group(&p->mnt_umount, &p->mnt_parent->mnt,
1453 disconnect ? &unmounted : NULL);
676da58d 1454 if (mnt_has_parent(p)) {
81b6b061 1455 mnt_add_count(p->mnt_parent, -1);
ce07d891
EB
1456 if (!disconnect) {
1457 /* Don't forget about p */
1458 list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
1459 } else {
1460 umount_mnt(p);
1461 }
7c4b93d8 1462 }
0f0afb1d 1463 change_mnt_propagation(p, MS_PRIVATE);
1da177e4
LT
1464 }
1465}
1466
b54b9be7 1467static void shrink_submounts(struct mount *mnt);
c35038be 1468
1ab59738 1469static int do_umount(struct mount *mnt, int flags)
1da177e4 1470{
1ab59738 1471 struct super_block *sb = mnt->mnt.mnt_sb;
1da177e4
LT
1472 int retval;
1473
1ab59738 1474 retval = security_sb_umount(&mnt->mnt, flags);
1da177e4
LT
1475 if (retval)
1476 return retval;
1477
1478 /*
1479 * Allow userspace to request a mountpoint be expired rather than
1480 * unmounting unconditionally. Unmount only happens if:
1481 * (1) the mark is already set (the mark is cleared by mntput())
1482 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1483 */
1484 if (flags & MNT_EXPIRE) {
1ab59738 1485 if (&mnt->mnt == current->fs->root.mnt ||
1da177e4
LT
1486 flags & (MNT_FORCE | MNT_DETACH))
1487 return -EINVAL;
1488
b3e19d92
NP
1489 /*
1490 * probably don't strictly need the lock here if we examined
1491 * all race cases, but it's a slowpath.
1492 */
719ea2fb 1493 lock_mount_hash();
83adc753 1494 if (mnt_get_count(mnt) != 2) {
719ea2fb 1495 unlock_mount_hash();
1da177e4 1496 return -EBUSY;
b3e19d92 1497 }
719ea2fb 1498 unlock_mount_hash();
1da177e4 1499
863d684f 1500 if (!xchg(&mnt->mnt_expiry_mark, 1))
1da177e4
LT
1501 return -EAGAIN;
1502 }
1503
1504 /*
1505 * If we may have to abort operations to get out of this
1506 * mount, and they will themselves hold resources we must
1507 * allow the fs to do things. In the Unix tradition of
1508 * 'Gee thats tricky lets do it in userspace' the umount_begin
1509 * might fail to complete on the first run through as other tasks
1510 * must return, and the like. Thats for the mount program to worry
1511 * about for the moment.
1512 */
1513
42faad99 1514 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
42faad99 1515 sb->s_op->umount_begin(sb);
42faad99 1516 }
1da177e4
LT
1517
1518 /*
1519 * No sense to grab the lock for this test, but test itself looks
1520 * somewhat bogus. Suggestions for better replacement?
1521 * Ho-hum... In principle, we might treat that as umount + switch
1522 * to rootfs. GC would eventually take care of the old vfsmount.
1523 * Actually it makes sense, especially if rootfs would contain a
1524 * /reboot - static binary that would close all descriptors and
1525 * call reboot(9). Then init(8) could umount root and exec /reboot.
1526 */
1ab59738 1527 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1da177e4
LT
1528 /*
1529 * Special case for "unmounting" root ...
1530 * we just try to remount it readonly.
1531 */
bc6155d1 1532 if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN))
a1480dcc 1533 return -EPERM;
1da177e4 1534 down_write(&sb->s_umount);
bc98a42c 1535 if (!sb_rdonly(sb))
e462ec50 1536 retval = do_remount_sb(sb, SB_RDONLY, NULL, 0);
1da177e4
LT
1537 up_write(&sb->s_umount);
1538 return retval;
1539 }
1540
97216be0 1541 namespace_lock();
719ea2fb 1542 lock_mount_hash();
1da177e4 1543
25d202ed
EB
1544 /* Recheck MNT_LOCKED with the locks held */
1545 retval = -EINVAL;
1546 if (mnt->mnt.mnt_flags & MNT_LOCKED)
1547 goto out;
1548
1549 event++;
48a066e7 1550 if (flags & MNT_DETACH) {
1a4eeaf2 1551 if (!list_empty(&mnt->mnt_list))
e819f152 1552 umount_tree(mnt, UMOUNT_PROPAGATE);
1da177e4 1553 retval = 0;
48a066e7
AV
1554 } else {
1555 shrink_submounts(mnt);
1556 retval = -EBUSY;
1557 if (!propagate_mount_busy(mnt, 2)) {
1558 if (!list_empty(&mnt->mnt_list))
e819f152 1559 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
48a066e7
AV
1560 retval = 0;
1561 }
1da177e4 1562 }
25d202ed 1563out:
719ea2fb 1564 unlock_mount_hash();
e3197d83 1565 namespace_unlock();
1da177e4
LT
1566 return retval;
1567}
1568
80b5dce8
EB
1569/*
1570 * __detach_mounts - lazily unmount all mounts on the specified dentry
1571 *
1572 * During unlink, rmdir, and d_drop it is possible to loose the path
1573 * to an existing mountpoint, and wind up leaking the mount.
1574 * detach_mounts allows lazily unmounting those mounts instead of
1575 * leaking them.
1576 *
1577 * The caller may hold dentry->d_inode->i_mutex.
1578 */
1579void __detach_mounts(struct dentry *dentry)
1580{
1581 struct mountpoint *mp;
1582 struct mount *mnt;
1583
1584 namespace_lock();
3895dbf8 1585 lock_mount_hash();
80b5dce8 1586 mp = lookup_mountpoint(dentry);
f53e5797 1587 if (IS_ERR_OR_NULL(mp))
80b5dce8
EB
1588 goto out_unlock;
1589
e06b933e 1590 event++;
80b5dce8
EB
1591 while (!hlist_empty(&mp->m_list)) {
1592 mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
ce07d891 1593 if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
fe78fcc8
EB
1594 hlist_add_head(&mnt->mnt_umount.s_list, &unmounted);
1595 umount_mnt(mnt);
ce07d891 1596 }
e0c9c0af 1597 else umount_tree(mnt, UMOUNT_CONNECTED);
80b5dce8 1598 }
80b5dce8
EB
1599 put_mountpoint(mp);
1600out_unlock:
3895dbf8 1601 unlock_mount_hash();
80b5dce8
EB
1602 namespace_unlock();
1603}
1604
dd111b31 1605/*
9b40bc90
AV
1606 * Is the caller allowed to modify his namespace?
1607 */
1608static inline bool may_mount(void)
1609{
1610 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1611}
1612
9e8925b6
JL
1613static inline bool may_mandlock(void)
1614{
1615#ifndef CONFIG_MANDATORY_FILE_LOCKING
1616 return false;
1617#endif
95ace754 1618 return capable(CAP_SYS_ADMIN);
9e8925b6
JL
1619}
1620
1da177e4
LT
1621/*
1622 * Now umount can handle mount points as well as block devices.
1623 * This is important for filesystems which use unnamed block devices.
1624 *
1625 * We now support a flag for forced unmount like the other 'big iron'
1626 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1627 */
1628
3a18ef5c 1629int ksys_umount(char __user *name, int flags)
1da177e4 1630{
2d8f3038 1631 struct path path;
900148dc 1632 struct mount *mnt;
1da177e4 1633 int retval;
db1f05bb 1634 int lookup_flags = 0;
1da177e4 1635
db1f05bb
MS
1636 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1637 return -EINVAL;
1638
9b40bc90
AV
1639 if (!may_mount())
1640 return -EPERM;
1641
db1f05bb
MS
1642 if (!(flags & UMOUNT_NOFOLLOW))
1643 lookup_flags |= LOOKUP_FOLLOW;
1644
197df04c 1645 retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path);
1da177e4
LT
1646 if (retval)
1647 goto out;
900148dc 1648 mnt = real_mount(path.mnt);
1da177e4 1649 retval = -EINVAL;
2d8f3038 1650 if (path.dentry != path.mnt->mnt_root)
1da177e4 1651 goto dput_and_out;
143c8c91 1652 if (!check_mnt(mnt))
1da177e4 1653 goto dput_and_out;
25d202ed 1654 if (mnt->mnt.mnt_flags & MNT_LOCKED) /* Check optimistically */
5ff9d8a6 1655 goto dput_and_out;
b2f5d4dc
EB
1656 retval = -EPERM;
1657 if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
1658 goto dput_and_out;
1da177e4 1659
900148dc 1660 retval = do_umount(mnt, flags);
1da177e4 1661dput_and_out:
429731b1 1662 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
2d8f3038 1663 dput(path.dentry);
900148dc 1664 mntput_no_expire(mnt);
1da177e4
LT
1665out:
1666 return retval;
1667}
1668
3a18ef5c
DB
1669SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1670{
1671 return ksys_umount(name, flags);
1672}
1673
1da177e4
LT
1674#ifdef __ARCH_WANT_SYS_OLDUMOUNT
1675
1676/*
b58fed8b 1677 * The 2.0 compatible umount. No flags.
1da177e4 1678 */
bdc480e3 1679SYSCALL_DEFINE1(oldumount, char __user *, name)
1da177e4 1680{
3a18ef5c 1681 return ksys_umount(name, 0);
1da177e4
LT
1682}
1683
1684#endif
1685
4ce5d2b1 1686static bool is_mnt_ns_file(struct dentry *dentry)
8823c079 1687{
4ce5d2b1 1688 /* Is this a proxy for a mount namespace? */
e149ed2b
AV
1689 return dentry->d_op == &ns_dentry_operations &&
1690 dentry->d_fsdata == &mntns_operations;
4ce5d2b1
EB
1691}
1692
58be2825
AV
1693struct mnt_namespace *to_mnt_ns(struct ns_common *ns)
1694{
1695 return container_of(ns, struct mnt_namespace, ns);
1696}
1697
4ce5d2b1
EB
1698static bool mnt_ns_loop(struct dentry *dentry)
1699{
1700 /* Could bind mounting the mount namespace inode cause a
1701 * mount namespace loop?
1702 */
1703 struct mnt_namespace *mnt_ns;
1704 if (!is_mnt_ns_file(dentry))
1705 return false;
1706
f77c8014 1707 mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode));
8823c079
EB
1708 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1709}
1710
87129cc0 1711struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
36341f64 1712 int flag)
1da177e4 1713{
84d17192 1714 struct mount *res, *p, *q, *r, *parent;
1da177e4 1715
4ce5d2b1
EB
1716 if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1717 return ERR_PTR(-EINVAL);
1718
1719 if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
be34d1a3 1720 return ERR_PTR(-EINVAL);
9676f0c6 1721
36341f64 1722 res = q = clone_mnt(mnt, dentry, flag);
be34d1a3
DH
1723 if (IS_ERR(q))
1724 return q;
1725
a73324da 1726 q->mnt_mountpoint = mnt->mnt_mountpoint;
1da177e4
LT
1727
1728 p = mnt;
6b41d536 1729 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
315fc83e 1730 struct mount *s;
7ec02ef1 1731 if (!is_subdir(r->mnt_mountpoint, dentry))
1da177e4
LT
1732 continue;
1733
909b0a88 1734 for (s = r; s; s = next_mnt(s, r)) {
4ce5d2b1
EB
1735 if (!(flag & CL_COPY_UNBINDABLE) &&
1736 IS_MNT_UNBINDABLE(s)) {
df7342b2
EB
1737 if (s->mnt.mnt_flags & MNT_LOCKED) {
1738 /* Both unbindable and locked. */
1739 q = ERR_PTR(-EPERM);
1740 goto out;
1741 } else {
1742 s = skip_mnt_tree(s);
1743 continue;
1744 }
4ce5d2b1
EB
1745 }
1746 if (!(flag & CL_COPY_MNT_NS_FILE) &&
1747 is_mnt_ns_file(s->mnt.mnt_root)) {
9676f0c6
RP
1748 s = skip_mnt_tree(s);
1749 continue;
1750 }
0714a533
AV
1751 while (p != s->mnt_parent) {
1752 p = p->mnt_parent;
1753 q = q->mnt_parent;
1da177e4 1754 }
87129cc0 1755 p = s;
84d17192 1756 parent = q;
87129cc0 1757 q = clone_mnt(p, p->mnt.mnt_root, flag);
be34d1a3
DH
1758 if (IS_ERR(q))
1759 goto out;
719ea2fb 1760 lock_mount_hash();
1a4eeaf2 1761 list_add_tail(&q->mnt_list, &res->mnt_list);
1064f874 1762 attach_mnt(q, parent, p->mnt_mp);
719ea2fb 1763 unlock_mount_hash();
1da177e4
LT
1764 }
1765 }
1766 return res;
be34d1a3 1767out:
1da177e4 1768 if (res) {
719ea2fb 1769 lock_mount_hash();
e819f152 1770 umount_tree(res, UMOUNT_SYNC);
719ea2fb 1771 unlock_mount_hash();
1da177e4 1772 }
be34d1a3 1773 return q;
1da177e4
LT
1774}
1775
be34d1a3
DH
1776/* Caller should check returned pointer for errors */
1777
ca71cf71 1778struct vfsmount *collect_mounts(const struct path *path)
8aec0809 1779{
cb338d06 1780 struct mount *tree;
97216be0 1781 namespace_lock();
cd4a4017
EB
1782 if (!check_mnt(real_mount(path->mnt)))
1783 tree = ERR_PTR(-EINVAL);
1784 else
1785 tree = copy_tree(real_mount(path->mnt), path->dentry,
1786 CL_COPY_ALL | CL_PRIVATE);
328e6d90 1787 namespace_unlock();
be34d1a3 1788 if (IS_ERR(tree))
52e220d3 1789 return ERR_CAST(tree);
be34d1a3 1790 return &tree->mnt;
8aec0809
AV
1791}
1792
1793void drop_collected_mounts(struct vfsmount *mnt)
1794{
97216be0 1795 namespace_lock();
719ea2fb 1796 lock_mount_hash();
9c8e0a1b 1797 umount_tree(real_mount(mnt), 0);
719ea2fb 1798 unlock_mount_hash();
3ab6abee 1799 namespace_unlock();
8aec0809
AV
1800}
1801
c771d683
MS
1802/**
1803 * clone_private_mount - create a private clone of a path
1804 *
1805 * This creates a new vfsmount, which will be the clone of @path. The new will
1806 * not be attached anywhere in the namespace and will be private (i.e. changes
1807 * to the originating mount won't be propagated into this).
1808 *
1809 * Release with mntput().
1810 */
ca71cf71 1811struct vfsmount *clone_private_mount(const struct path *path)
c771d683
MS
1812{
1813 struct mount *old_mnt = real_mount(path->mnt);
1814 struct mount *new_mnt;
1815
1816 if (IS_MNT_UNBINDABLE(old_mnt))
1817 return ERR_PTR(-EINVAL);
1818
c771d683 1819 new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
c771d683
MS
1820 if (IS_ERR(new_mnt))
1821 return ERR_CAST(new_mnt);
1822
1823 return &new_mnt->mnt;
1824}
1825EXPORT_SYMBOL_GPL(clone_private_mount);
1826
1f707137
AV
1827int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1828 struct vfsmount *root)
1829{
1a4eeaf2 1830 struct mount *mnt;
1f707137
AV
1831 int res = f(root, arg);
1832 if (res)
1833 return res;
1a4eeaf2
AV
1834 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1835 res = f(&mnt->mnt, arg);
1f707137
AV
1836 if (res)
1837 return res;
1838 }
1839 return 0;
1840}
1841
4b8b21f4 1842static void cleanup_group_ids(struct mount *mnt, struct mount *end)
719f5d7f 1843{
315fc83e 1844 struct mount *p;
719f5d7f 1845
909b0a88 1846 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
fc7be130 1847 if (p->mnt_group_id && !IS_MNT_SHARED(p))
4b8b21f4 1848 mnt_release_group_id(p);
719f5d7f
MS
1849 }
1850}
1851
4b8b21f4 1852static int invent_group_ids(struct mount *mnt, bool recurse)
719f5d7f 1853{
315fc83e 1854 struct mount *p;
719f5d7f 1855
909b0a88 1856 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
fc7be130 1857 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
4b8b21f4 1858 int err = mnt_alloc_group_id(p);
719f5d7f 1859 if (err) {
4b8b21f4 1860 cleanup_group_ids(mnt, p);
719f5d7f
MS
1861 return err;
1862 }
1863 }
1864 }
1865
1866 return 0;
1867}
1868
d2921684
EB
1869int count_mounts(struct mnt_namespace *ns, struct mount *mnt)
1870{
1871 unsigned int max = READ_ONCE(sysctl_mount_max);
1872 unsigned int mounts = 0, old, pending, sum;
1873 struct mount *p;
1874
1875 for (p = mnt; p; p = next_mnt(p, mnt))
1876 mounts++;
1877
1878 old = ns->mounts;
1879 pending = ns->pending_mounts;
1880 sum = old + pending;
1881 if ((old > sum) ||
1882 (pending > sum) ||
1883 (max < sum) ||
1884 (mounts > (max - sum)))
1885 return -ENOSPC;
1886
1887 ns->pending_mounts = pending + mounts;
1888 return 0;
1889}
1890
b90fa9ae
RP
1891/*
1892 * @source_mnt : mount tree to be attached
21444403
RP
1893 * @nd : place the mount tree @source_mnt is attached
1894 * @parent_nd : if non-null, detach the source_mnt from its parent and
1895 * store the parent mount and mountpoint dentry.
1896 * (done when source_mnt is moved)
b90fa9ae
RP
1897 *
1898 * NOTE: in the table below explains the semantics when a source mount
1899 * of a given type is attached to a destination mount of a given type.
9676f0c6
RP
1900 * ---------------------------------------------------------------------------
1901 * | BIND MOUNT OPERATION |
1902 * |**************************************************************************
1903 * | source-->| shared | private | slave | unbindable |
1904 * | dest | | | | |
1905 * | | | | | | |
1906 * | v | | | | |
1907 * |**************************************************************************
1908 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1909 * | | | | | |
1910 * |non-shared| shared (+) | private | slave (*) | invalid |
1911 * ***************************************************************************
b90fa9ae
RP
1912 * A bind operation clones the source mount and mounts the clone on the
1913 * destination mount.
1914 *
1915 * (++) the cloned mount is propagated to all the mounts in the propagation
1916 * tree of the destination mount and the cloned mount is added to
1917 * the peer group of the source mount.
1918 * (+) the cloned mount is created under the destination mount and is marked
1919 * as shared. The cloned mount is added to the peer group of the source
1920 * mount.
5afe0022
RP
1921 * (+++) the mount is propagated to all the mounts in the propagation tree
1922 * of the destination mount and the cloned mount is made slave
1923 * of the same master as that of the source mount. The cloned mount
1924 * is marked as 'shared and slave'.
1925 * (*) the cloned mount is made a slave of the same master as that of the
1926 * source mount.
1927 *
9676f0c6
RP
1928 * ---------------------------------------------------------------------------
1929 * | MOVE MOUNT OPERATION |
1930 * |**************************************************************************
1931 * | source-->| shared | private | slave | unbindable |
1932 * | dest | | | | |
1933 * | | | | | | |
1934 * | v | | | | |
1935 * |**************************************************************************
1936 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
1937 * | | | | | |
1938 * |non-shared| shared (+*) | private | slave (*) | unbindable |
1939 * ***************************************************************************
5afe0022
RP
1940 *
1941 * (+) the mount is moved to the destination. And is then propagated to
1942 * all the mounts in the propagation tree of the destination mount.
21444403 1943 * (+*) the mount is moved to the destination.
5afe0022
RP
1944 * (+++) the mount is moved to the destination and is then propagated to
1945 * all the mounts belonging to the destination mount's propagation tree.
1946 * the mount is marked as 'shared and slave'.
1947 * (*) the mount continues to be a slave at the new location.
b90fa9ae
RP
1948 *
1949 * if the source mount is a tree, the operations explained above is
1950 * applied to each mount in the tree.
1951 * Must be called without spinlocks held, since this function can sleep
1952 * in allocations.
1953 */
0fb54e50 1954static int attach_recursive_mnt(struct mount *source_mnt,
84d17192
AV
1955 struct mount *dest_mnt,
1956 struct mountpoint *dest_mp,
1957 struct path *parent_path)
b90fa9ae 1958{
38129a13 1959 HLIST_HEAD(tree_list);
d2921684 1960 struct mnt_namespace *ns = dest_mnt->mnt_ns;
1064f874 1961 struct mountpoint *smp;
315fc83e 1962 struct mount *child, *p;
38129a13 1963 struct hlist_node *n;
719f5d7f 1964 int err;
b90fa9ae 1965
1064f874
EB
1966 /* Preallocate a mountpoint in case the new mounts need
1967 * to be tucked under other mounts.
1968 */
1969 smp = get_mountpoint(source_mnt->mnt.mnt_root);
1970 if (IS_ERR(smp))
1971 return PTR_ERR(smp);
1972
d2921684
EB
1973 /* Is there space to add these mounts to the mount namespace? */
1974 if (!parent_path) {
1975 err = count_mounts(ns, source_mnt);
1976 if (err)
1977 goto out;
1978 }
1979
fc7be130 1980 if (IS_MNT_SHARED(dest_mnt)) {
0fb54e50 1981 err = invent_group_ids(source_mnt, true);
719f5d7f
MS
1982 if (err)
1983 goto out;
0b1b901b 1984 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
f2ebb3a9 1985 lock_mount_hash();
0b1b901b
AV
1986 if (err)
1987 goto out_cleanup_ids;
909b0a88 1988 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
0f0afb1d 1989 set_mnt_shared(p);
0b1b901b
AV
1990 } else {
1991 lock_mount_hash();
b90fa9ae 1992 }
1a390689 1993 if (parent_path) {
0fb54e50 1994 detach_mnt(source_mnt, parent_path);
84d17192 1995 attach_mnt(source_mnt, dest_mnt, dest_mp);
143c8c91 1996 touch_mnt_namespace(source_mnt->mnt_ns);
21444403 1997 } else {
84d17192 1998 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
1064f874 1999 commit_tree(source_mnt);
21444403 2000 }
b90fa9ae 2001
38129a13 2002 hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
1d6a32ac 2003 struct mount *q;
38129a13 2004 hlist_del_init(&child->mnt_hash);
1064f874
EB
2005 q = __lookup_mnt(&child->mnt_parent->mnt,
2006 child->mnt_mountpoint);
2007 if (q)
2008 mnt_change_mountpoint(child, smp, q);
2009 commit_tree(child);
b90fa9ae 2010 }
1064f874 2011 put_mountpoint(smp);
719ea2fb 2012 unlock_mount_hash();
99b7db7b 2013
b90fa9ae 2014 return 0;
719f5d7f
MS
2015
2016 out_cleanup_ids:
f2ebb3a9
AV
2017 while (!hlist_empty(&tree_list)) {
2018 child = hlist_entry(tree_list.first, struct mount, mnt_hash);
d2921684 2019 child->mnt_parent->mnt_ns->pending_mounts = 0;
e819f152 2020 umount_tree(child, UMOUNT_SYNC);
f2ebb3a9
AV
2021 }
2022 unlock_mount_hash();
0b1b901b 2023 cleanup_group_ids(source_mnt, NULL);
719f5d7f 2024 out:
d2921684 2025 ns->pending_mounts = 0;
1064f874
EB
2026
2027 read_seqlock_excl(&mount_lock);
2028 put_mountpoint(smp);
2029 read_sequnlock_excl(&mount_lock);
2030
719f5d7f 2031 return err;
b90fa9ae
RP
2032}
2033
84d17192 2034static struct mountpoint *lock_mount(struct path *path)
b12cea91
AV
2035{
2036 struct vfsmount *mnt;
84d17192 2037 struct dentry *dentry = path->dentry;
b12cea91 2038retry:
5955102c 2039 inode_lock(dentry->d_inode);
84d17192 2040 if (unlikely(cant_mount(dentry))) {
5955102c 2041 inode_unlock(dentry->d_inode);
84d17192 2042 return ERR_PTR(-ENOENT);
b12cea91 2043 }
97216be0 2044 namespace_lock();
b12cea91 2045 mnt = lookup_mnt(path);
84d17192 2046 if (likely(!mnt)) {
3895dbf8 2047 struct mountpoint *mp = get_mountpoint(dentry);
84d17192 2048 if (IS_ERR(mp)) {
97216be0 2049 namespace_unlock();
5955102c 2050 inode_unlock(dentry->d_inode);
84d17192
AV
2051 return mp;
2052 }
2053 return mp;
2054 }
97216be0 2055 namespace_unlock();
5955102c 2056 inode_unlock(path->dentry->d_inode);
b12cea91
AV
2057 path_put(path);
2058 path->mnt = mnt;
84d17192 2059 dentry = path->dentry = dget(mnt->mnt_root);
b12cea91
AV
2060 goto retry;
2061}
2062
84d17192 2063static void unlock_mount(struct mountpoint *where)
b12cea91 2064{
84d17192 2065 struct dentry *dentry = where->m_dentry;
3895dbf8
EB
2066
2067 read_seqlock_excl(&mount_lock);
84d17192 2068 put_mountpoint(where);
3895dbf8
EB
2069 read_sequnlock_excl(&mount_lock);
2070
328e6d90 2071 namespace_unlock();
5955102c 2072 inode_unlock(dentry->d_inode);
b12cea91
AV
2073}
2074
84d17192 2075static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
1da177e4 2076{
e462ec50 2077 if (mnt->mnt.mnt_sb->s_flags & SB_NOUSER)
1da177e4
LT
2078 return -EINVAL;
2079
e36cb0b8
DH
2080 if (d_is_dir(mp->m_dentry) !=
2081 d_is_dir(mnt->mnt.mnt_root))
1da177e4
LT
2082 return -ENOTDIR;
2083
84d17192 2084 return attach_recursive_mnt(mnt, p, mp, NULL);
1da177e4
LT
2085}
2086
7a2e8a8f
VA
2087/*
2088 * Sanity check the flags to change_mnt_propagation.
2089 */
2090
e462ec50 2091static int flags_to_propagation_type(int ms_flags)
7a2e8a8f 2092{
e462ec50 2093 int type = ms_flags & ~(MS_REC | MS_SILENT);
7a2e8a8f
VA
2094
2095 /* Fail if any non-propagation flags are set */
2096 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2097 return 0;
2098 /* Only one propagation flag should be set */
2099 if (!is_power_of_2(type))
2100 return 0;
2101 return type;
2102}
2103
07b20889
RP
2104/*
2105 * recursively change the type of the mountpoint.
2106 */
e462ec50 2107static int do_change_type(struct path *path, int ms_flags)
07b20889 2108{
315fc83e 2109 struct mount *m;
4b8b21f4 2110 struct mount *mnt = real_mount(path->mnt);
e462ec50 2111 int recurse = ms_flags & MS_REC;
7a2e8a8f 2112 int type;
719f5d7f 2113 int err = 0;
07b20889 2114
2d92ab3c 2115 if (path->dentry != path->mnt->mnt_root)
07b20889
RP
2116 return -EINVAL;
2117
e462ec50 2118 type = flags_to_propagation_type(ms_flags);
7a2e8a8f
VA
2119 if (!type)
2120 return -EINVAL;
2121
97216be0 2122 namespace_lock();
719f5d7f
MS
2123 if (type == MS_SHARED) {
2124 err = invent_group_ids(mnt, recurse);
2125 if (err)
2126 goto out_unlock;
2127 }
2128
719ea2fb 2129 lock_mount_hash();
909b0a88 2130 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
0f0afb1d 2131 change_mnt_propagation(m, type);
719ea2fb 2132 unlock_mount_hash();
719f5d7f
MS
2133
2134 out_unlock:
97216be0 2135 namespace_unlock();
719f5d7f 2136 return err;
07b20889
RP
2137}
2138
5ff9d8a6
EB
2139static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
2140{
2141 struct mount *child;
2142 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
2143 if (!is_subdir(child->mnt_mountpoint, dentry))
2144 continue;
2145
2146 if (child->mnt.mnt_flags & MNT_LOCKED)
2147 return true;
2148 }
2149 return false;
2150}
2151
1da177e4
LT
2152/*
2153 * do loopback mount.
2154 */
808d4e3c 2155static int do_loopback(struct path *path, const char *old_name,
2dafe1c4 2156 int recurse)
1da177e4 2157{
2d92ab3c 2158 struct path old_path;
84d17192
AV
2159 struct mount *mnt = NULL, *old, *parent;
2160 struct mountpoint *mp;
57eccb83 2161 int err;
1da177e4
LT
2162 if (!old_name || !*old_name)
2163 return -EINVAL;
815d405c 2164 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
1da177e4
LT
2165 if (err)
2166 return err;
2167
8823c079 2168 err = -EINVAL;
4ce5d2b1 2169 if (mnt_ns_loop(old_path.dentry))
dd111b31 2170 goto out;
8823c079 2171
84d17192
AV
2172 mp = lock_mount(path);
2173 err = PTR_ERR(mp);
2174 if (IS_ERR(mp))
b12cea91
AV
2175 goto out;
2176
87129cc0 2177 old = real_mount(old_path.mnt);
84d17192 2178 parent = real_mount(path->mnt);
87129cc0 2179
1da177e4 2180 err = -EINVAL;
fc7be130 2181 if (IS_MNT_UNBINDABLE(old))
b12cea91 2182 goto out2;
9676f0c6 2183
e149ed2b
AV
2184 if (!check_mnt(parent))
2185 goto out2;
2186
2187 if (!check_mnt(old) && old_path.dentry->d_op != &ns_dentry_operations)
b12cea91 2188 goto out2;
1da177e4 2189
5ff9d8a6
EB
2190 if (!recurse && has_locked_children(old, old_path.dentry))
2191 goto out2;
2192
ccd48bc7 2193 if (recurse)
4ce5d2b1 2194 mnt = copy_tree(old, old_path.dentry, CL_COPY_MNT_NS_FILE);
ccd48bc7 2195 else
87129cc0 2196 mnt = clone_mnt(old, old_path.dentry, 0);
ccd48bc7 2197
be34d1a3
DH
2198 if (IS_ERR(mnt)) {
2199 err = PTR_ERR(mnt);
e9c5d8a5 2200 goto out2;
be34d1a3 2201 }
ccd48bc7 2202
5ff9d8a6
EB
2203 mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2204
84d17192 2205 err = graft_tree(mnt, parent, mp);
ccd48bc7 2206 if (err) {
719ea2fb 2207 lock_mount_hash();
e819f152 2208 umount_tree(mnt, UMOUNT_SYNC);
719ea2fb 2209 unlock_mount_hash();
5b83d2c5 2210 }
b12cea91 2211out2:
84d17192 2212 unlock_mount(mp);
ccd48bc7 2213out:
2d92ab3c 2214 path_put(&old_path);
1da177e4
LT
2215 return err;
2216}
2217
2e4b7fcd
DH
2218static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
2219{
2220 int error = 0;
2221 int readonly_request = 0;
2222
2223 if (ms_flags & MS_RDONLY)
2224 readonly_request = 1;
2225 if (readonly_request == __mnt_is_readonly(mnt))
2226 return 0;
2227
2228 if (readonly_request)
83adc753 2229 error = mnt_make_readonly(real_mount(mnt));
2e4b7fcd 2230 else
83adc753 2231 __mnt_unmake_readonly(real_mount(mnt));
2e4b7fcd
DH
2232 return error;
2233}
2234
1da177e4
LT
2235/*
2236 * change filesystem flags. dir should be a physical root of filesystem.
2237 * If you've mounted a non-root directory somewhere and want to do remount
2238 * on it - tough luck.
2239 */
e462ec50
DH
2240static int do_remount(struct path *path, int ms_flags, int sb_flags,
2241 int mnt_flags, void *data)
1da177e4
LT
2242{
2243 int err;
2d92ab3c 2244 struct super_block *sb = path->mnt->mnt_sb;
143c8c91 2245 struct mount *mnt = real_mount(path->mnt);
1da177e4 2246
143c8c91 2247 if (!check_mnt(mnt))
1da177e4
LT
2248 return -EINVAL;
2249
2d92ab3c 2250 if (path->dentry != path->mnt->mnt_root)
1da177e4
LT
2251 return -EINVAL;
2252
07b64558
EB
2253 /* Don't allow changing of locked mnt flags.
2254 *
2255 * No locks need to be held here while testing the various
2256 * MNT_LOCK flags because those flags can never be cleared
2257 * once they are set.
2258 */
2259 if ((mnt->mnt.mnt_flags & MNT_LOCK_READONLY) &&
2260 !(mnt_flags & MNT_READONLY)) {
2261 return -EPERM;
2262 }
9566d674
EB
2263 if ((mnt->mnt.mnt_flags & MNT_LOCK_NODEV) &&
2264 !(mnt_flags & MNT_NODEV)) {
67690f93 2265 return -EPERM;
9566d674
EB
2266 }
2267 if ((mnt->mnt.mnt_flags & MNT_LOCK_NOSUID) &&
2268 !(mnt_flags & MNT_NOSUID)) {
2269 return -EPERM;
2270 }
2271 if ((mnt->mnt.mnt_flags & MNT_LOCK_NOEXEC) &&
2272 !(mnt_flags & MNT_NOEXEC)) {
2273 return -EPERM;
2274 }
2275 if ((mnt->mnt.mnt_flags & MNT_LOCK_ATIME) &&
2276 ((mnt->mnt.mnt_flags & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK))) {
2277 return -EPERM;
2278 }
2279
ff36fe2c
EP
2280 err = security_sb_remount(sb, data);
2281 if (err)
2282 return err;
2283
1da177e4 2284 down_write(&sb->s_umount);
e462ec50
DH
2285 if (ms_flags & MS_BIND)
2286 err = change_mount_flags(path->mnt, ms_flags);
bc6155d1 2287 else if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN))
57eccb83 2288 err = -EPERM;
4aa98cf7 2289 else
e462ec50 2290 err = do_remount_sb(sb, sb_flags, data, 0);
7b43a79f 2291 if (!err) {
719ea2fb 2292 lock_mount_hash();
a6138db8 2293 mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
143c8c91 2294 mnt->mnt.mnt_flags = mnt_flags;
143c8c91 2295 touch_mnt_namespace(mnt->mnt_ns);
719ea2fb 2296 unlock_mount_hash();
0e55a7cc 2297 }
6339dab8 2298 up_write(&sb->s_umount);
1da177e4
LT
2299 return err;
2300}
2301
cbbe362c 2302static inline int tree_contains_unbindable(struct mount *mnt)
9676f0c6 2303{
315fc83e 2304 struct mount *p;
909b0a88 2305 for (p = mnt; p; p = next_mnt(p, mnt)) {
fc7be130 2306 if (IS_MNT_UNBINDABLE(p))
9676f0c6
RP
2307 return 1;
2308 }
2309 return 0;
2310}
2311
808d4e3c 2312static int do_move_mount(struct path *path, const char *old_name)
1da177e4 2313{
2d92ab3c 2314 struct path old_path, parent_path;
676da58d 2315 struct mount *p;
0fb54e50 2316 struct mount *old;
84d17192 2317 struct mountpoint *mp;
57eccb83 2318 int err;
1da177e4
LT
2319 if (!old_name || !*old_name)
2320 return -EINVAL;
2d92ab3c 2321 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
1da177e4
LT
2322 if (err)
2323 return err;
2324
84d17192
AV
2325 mp = lock_mount(path);
2326 err = PTR_ERR(mp);
2327 if (IS_ERR(mp))
cc53ce53
DH
2328 goto out;
2329
143c8c91 2330 old = real_mount(old_path.mnt);
fc7be130 2331 p = real_mount(path->mnt);
143c8c91 2332
1da177e4 2333 err = -EINVAL;
fc7be130 2334 if (!check_mnt(p) || !check_mnt(old))
1da177e4
LT
2335 goto out1;
2336
5ff9d8a6
EB
2337 if (old->mnt.mnt_flags & MNT_LOCKED)
2338 goto out1;
2339
1da177e4 2340 err = -EINVAL;
2d92ab3c 2341 if (old_path.dentry != old_path.mnt->mnt_root)
21444403 2342 goto out1;
1da177e4 2343
676da58d 2344 if (!mnt_has_parent(old))
21444403 2345 goto out1;
1da177e4 2346
e36cb0b8
DH
2347 if (d_is_dir(path->dentry) !=
2348 d_is_dir(old_path.dentry))
21444403
RP
2349 goto out1;
2350 /*
2351 * Don't move a mount residing in a shared parent.
2352 */
fc7be130 2353 if (IS_MNT_SHARED(old->mnt_parent))
21444403 2354 goto out1;
9676f0c6
RP
2355 /*
2356 * Don't move a mount tree containing unbindable mounts to a destination
2357 * mount which is shared.
2358 */
fc7be130 2359 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
9676f0c6 2360 goto out1;
1da177e4 2361 err = -ELOOP;
fc7be130 2362 for (; mnt_has_parent(p); p = p->mnt_parent)
676da58d 2363 if (p == old)
21444403 2364 goto out1;
1da177e4 2365
84d17192 2366 err = attach_recursive_mnt(old, real_mount(path->mnt), mp, &parent_path);
4ac91378 2367 if (err)
21444403 2368 goto out1;
1da177e4
LT
2369
2370 /* if the mount is moved, it should no longer be expire
2371 * automatically */
6776db3d 2372 list_del_init(&old->mnt_expire);
1da177e4 2373out1:
84d17192 2374 unlock_mount(mp);
1da177e4 2375out:
1da177e4 2376 if (!err)
1a390689 2377 path_put(&parent_path);
2d92ab3c 2378 path_put(&old_path);
1da177e4
LT
2379 return err;
2380}
2381
9d412a43
AV
2382static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
2383{
2384 int err;
2385 const char *subtype = strchr(fstype, '.');
2386 if (subtype) {
2387 subtype++;
2388 err = -EINVAL;
2389 if (!subtype[0])
2390 goto err;
2391 } else
2392 subtype = "";
2393
2394 mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
2395 err = -ENOMEM;
2396 if (!mnt->mnt_sb->s_subtype)
2397 goto err;
2398 return mnt;
2399
2400 err:
2401 mntput(mnt);
2402 return ERR_PTR(err);
2403}
2404
9d412a43
AV
2405/*
2406 * add a mount into a namespace's mount tree
2407 */
95bc5f25 2408static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
9d412a43 2409{
84d17192
AV
2410 struct mountpoint *mp;
2411 struct mount *parent;
9d412a43
AV
2412 int err;
2413
f2ebb3a9 2414 mnt_flags &= ~MNT_INTERNAL_FLAGS;
9d412a43 2415
84d17192
AV
2416 mp = lock_mount(path);
2417 if (IS_ERR(mp))
2418 return PTR_ERR(mp);
9d412a43 2419
84d17192 2420 parent = real_mount(path->mnt);
9d412a43 2421 err = -EINVAL;
84d17192 2422 if (unlikely(!check_mnt(parent))) {
156cacb1
AV
2423 /* that's acceptable only for automounts done in private ns */
2424 if (!(mnt_flags & MNT_SHRINKABLE))
2425 goto unlock;
2426 /* ... and for those we'd better have mountpoint still alive */
84d17192 2427 if (!parent->mnt_ns)
156cacb1
AV
2428 goto unlock;
2429 }
9d412a43
AV
2430
2431 /* Refuse the same filesystem on the same mount point */
2432 err = -EBUSY;
95bc5f25 2433 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
9d412a43
AV
2434 path->mnt->mnt_root == path->dentry)
2435 goto unlock;
2436
2437 err = -EINVAL;
e36cb0b8 2438 if (d_is_symlink(newmnt->mnt.mnt_root))
9d412a43
AV
2439 goto unlock;
2440
95bc5f25 2441 newmnt->mnt.mnt_flags = mnt_flags;
84d17192 2442 err = graft_tree(newmnt, parent, mp);
9d412a43
AV
2443
2444unlock:
84d17192 2445 unlock_mount(mp);
9d412a43
AV
2446 return err;
2447}
b1e75df4 2448
8654df4e 2449static bool mount_too_revealing(struct vfsmount *mnt, int *new_mnt_flags);
1b852bce 2450
1da177e4
LT
2451/*
2452 * create a new mount for userspace and request it to be added into the
2453 * namespace's tree
2454 */
e462ec50 2455static int do_new_mount(struct path *path, const char *fstype, int sb_flags,
808d4e3c 2456 int mnt_flags, const char *name, void *data)
1da177e4 2457{
0c55cfc4 2458 struct file_system_type *type;
1da177e4 2459 struct vfsmount *mnt;
15f9a3f3 2460 int err;
1da177e4 2461
0c55cfc4 2462 if (!fstype)
1da177e4
LT
2463 return -EINVAL;
2464
0c55cfc4
EB
2465 type = get_fs_type(fstype);
2466 if (!type)
2467 return -ENODEV;
2468
e462ec50 2469 mnt = vfs_kern_mount(type, sb_flags, name, data);
0c55cfc4
EB
2470 if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
2471 !mnt->mnt_sb->s_subtype)
2472 mnt = fs_set_subtype(mnt, fstype);
2473
2474 put_filesystem(type);
1da177e4
LT
2475 if (IS_ERR(mnt))
2476 return PTR_ERR(mnt);
2477
8654df4e
EB
2478 if (mount_too_revealing(mnt, &mnt_flags)) {
2479 mntput(mnt);
2480 return -EPERM;
2481 }
2482
95bc5f25 2483 err = do_add_mount(real_mount(mnt), path, mnt_flags);
15f9a3f3
AV
2484 if (err)
2485 mntput(mnt);
2486 return err;
1da177e4
LT
2487}
2488
19a167af
AV
2489int finish_automount(struct vfsmount *m, struct path *path)
2490{
6776db3d 2491 struct mount *mnt = real_mount(m);
19a167af
AV
2492 int err;
2493 /* The new mount record should have at least 2 refs to prevent it being
2494 * expired before we get a chance to add it
2495 */
6776db3d 2496 BUG_ON(mnt_get_count(mnt) < 2);
19a167af
AV
2497
2498 if (m->mnt_sb == path->mnt->mnt_sb &&
2499 m->mnt_root == path->dentry) {
b1e75df4
AV
2500 err = -ELOOP;
2501 goto fail;
19a167af
AV
2502 }
2503
95bc5f25 2504 err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
b1e75df4
AV
2505 if (!err)
2506 return 0;
2507fail:
2508 /* remove m from any expiration list it may be on */
6776db3d 2509 if (!list_empty(&mnt->mnt_expire)) {
97216be0 2510 namespace_lock();
6776db3d 2511 list_del_init(&mnt->mnt_expire);
97216be0 2512 namespace_unlock();
19a167af 2513 }
b1e75df4
AV
2514 mntput(m);
2515 mntput(m);
19a167af
AV
2516 return err;
2517}
2518
ea5b778a
DH
2519/**
2520 * mnt_set_expiry - Put a mount on an expiration list
2521 * @mnt: The mount to list.
2522 * @expiry_list: The list to add the mount to.
2523 */
2524void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2525{
97216be0 2526 namespace_lock();
ea5b778a 2527
6776db3d 2528 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
ea5b778a 2529
97216be0 2530 namespace_unlock();
ea5b778a
DH
2531}
2532EXPORT_SYMBOL(mnt_set_expiry);
2533
1da177e4
LT
2534/*
2535 * process a list of expirable mountpoints with the intent of discarding any
2536 * mountpoints that aren't in use and haven't been touched since last we came
2537 * here
2538 */
2539void mark_mounts_for_expiry(struct list_head *mounts)
2540{
761d5c38 2541 struct mount *mnt, *next;
1da177e4
LT
2542 LIST_HEAD(graveyard);
2543
2544 if (list_empty(mounts))
2545 return;
2546
97216be0 2547 namespace_lock();
719ea2fb 2548 lock_mount_hash();
1da177e4
LT
2549
2550 /* extract from the expiration list every vfsmount that matches the
2551 * following criteria:
2552 * - only referenced by its parent vfsmount
2553 * - still marked for expiry (marked on the last call here; marks are
2554 * cleared by mntput())
2555 */
6776db3d 2556 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
863d684f 2557 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
1ab59738 2558 propagate_mount_busy(mnt, 1))
1da177e4 2559 continue;
6776db3d 2560 list_move(&mnt->mnt_expire, &graveyard);
1da177e4 2561 }
bcc5c7d2 2562 while (!list_empty(&graveyard)) {
6776db3d 2563 mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
143c8c91 2564 touch_mnt_namespace(mnt->mnt_ns);
e819f152 2565 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
bcc5c7d2 2566 }
719ea2fb 2567 unlock_mount_hash();
3ab6abee 2568 namespace_unlock();
5528f911
TM
2569}
2570
2571EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2572
2573/*
2574 * Ripoff of 'select_parent()'
2575 *
2576 * search the list of submounts for a given mountpoint, and move any
2577 * shrinkable submounts to the 'graveyard' list.
2578 */
692afc31 2579static int select_submounts(struct mount *parent, struct list_head *graveyard)
5528f911 2580{
692afc31 2581 struct mount *this_parent = parent;
5528f911
TM
2582 struct list_head *next;
2583 int found = 0;
2584
2585repeat:
6b41d536 2586 next = this_parent->mnt_mounts.next;
5528f911 2587resume:
6b41d536 2588 while (next != &this_parent->mnt_mounts) {
5528f911 2589 struct list_head *tmp = next;
6b41d536 2590 struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
5528f911
TM
2591
2592 next = tmp->next;
692afc31 2593 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
1da177e4 2594 continue;
5528f911
TM
2595 /*
2596 * Descend a level if the d_mounts list is non-empty.
2597 */
6b41d536 2598 if (!list_empty(&mnt->mnt_mounts)) {
5528f911
TM
2599 this_parent = mnt;
2600 goto repeat;
2601 }
1da177e4 2602
1ab59738 2603 if (!propagate_mount_busy(mnt, 1)) {
6776db3d 2604 list_move_tail(&mnt->mnt_expire, graveyard);
5528f911
TM
2605 found++;
2606 }
1da177e4 2607 }
5528f911
TM
2608 /*
2609 * All done at this level ... ascend and resume the search
2610 */
2611 if (this_parent != parent) {
6b41d536 2612 next = this_parent->mnt_child.next;
0714a533 2613 this_parent = this_parent->mnt_parent;
5528f911
TM
2614 goto resume;
2615 }
2616 return found;
2617}
2618
2619/*
2620 * process a list of expirable mountpoints with the intent of discarding any
2621 * submounts of a specific parent mountpoint
99b7db7b 2622 *
48a066e7 2623 * mount_lock must be held for write
5528f911 2624 */
b54b9be7 2625static void shrink_submounts(struct mount *mnt)
5528f911
TM
2626{
2627 LIST_HEAD(graveyard);
761d5c38 2628 struct mount *m;
5528f911 2629
5528f911 2630 /* extract submounts of 'mountpoint' from the expiration list */
c35038be 2631 while (select_submounts(mnt, &graveyard)) {
bcc5c7d2 2632 while (!list_empty(&graveyard)) {
761d5c38 2633 m = list_first_entry(&graveyard, struct mount,
6776db3d 2634 mnt_expire);
143c8c91 2635 touch_mnt_namespace(m->mnt_ns);
e819f152 2636 umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
bcc5c7d2
AV
2637 }
2638 }
1da177e4
LT
2639}
2640
1da177e4
LT
2641/*
2642 * Some copy_from_user() implementations do not return the exact number of
2643 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
2644 * Note that this function differs from copy_from_user() in that it will oops
2645 * on bad values of `to', rather than returning a short copy.
2646 */
b58fed8b
RP
2647static long exact_copy_from_user(void *to, const void __user * from,
2648 unsigned long n)
1da177e4
LT
2649{
2650 char *t = to;
2651 const char __user *f = from;
2652 char c;
2653
2654 if (!access_ok(VERIFY_READ, from, n))
2655 return n;
2656
9da3f2b7 2657 current->kernel_uaccess_faults_ok++;
1da177e4
LT
2658 while (n) {
2659 if (__get_user(c, f)) {
2660 memset(t, 0, n);
2661 break;
2662 }
2663 *t++ = c;
2664 f++;
2665 n--;
2666 }
9da3f2b7 2667 current->kernel_uaccess_faults_ok--;
1da177e4
LT
2668 return n;
2669}
2670
b40ef869 2671void *copy_mount_options(const void __user * data)
1da177e4
LT
2672{
2673 int i;
1da177e4 2674 unsigned long size;
b40ef869 2675 char *copy;
b58fed8b 2676
1da177e4 2677 if (!data)
b40ef869 2678 return NULL;
1da177e4 2679
b40ef869
AV
2680 copy = kmalloc(PAGE_SIZE, GFP_KERNEL);
2681 if (!copy)
2682 return ERR_PTR(-ENOMEM);
1da177e4
LT
2683
2684 /* We only care that *some* data at the address the user
2685 * gave us is valid. Just in case, we'll zero
2686 * the remainder of the page.
2687 */
2688 /* copy_from_user cannot cross TASK_SIZE ! */
2689 size = TASK_SIZE - (unsigned long)data;
2690 if (size > PAGE_SIZE)
2691 size = PAGE_SIZE;
2692
b40ef869 2693 i = size - exact_copy_from_user(copy, data, size);
1da177e4 2694 if (!i) {
b40ef869
AV
2695 kfree(copy);
2696 return ERR_PTR(-EFAULT);
1da177e4
LT
2697 }
2698 if (i != PAGE_SIZE)
b40ef869
AV
2699 memset(copy + i, 0, PAGE_SIZE - i);
2700 return copy;
1da177e4
LT
2701}
2702
b8850d1f 2703char *copy_mount_string(const void __user *data)
eca6f534 2704{
b8850d1f 2705 return data ? strndup_user(data, PAGE_SIZE) : NULL;
eca6f534
VN
2706}
2707
1da177e4
LT
2708/*
2709 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2710 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2711 *
2712 * data is a (void *) that can point to any structure up to
2713 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2714 * information (or be NULL).
2715 *
2716 * Pre-0.97 versions of mount() didn't have a flags word.
2717 * When the flags word was introduced its top half was required
2718 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2719 * Therefore, if this magic number is present, it carries no information
2720 * and must be discarded.
2721 */
5e6123f3 2722long do_mount(const char *dev_name, const char __user *dir_name,
808d4e3c 2723 const char *type_page, unsigned long flags, void *data_page)
1da177e4 2724{
2d92ab3c 2725 struct path path;
e462ec50 2726 unsigned int mnt_flags = 0, sb_flags;
1da177e4 2727 int retval = 0;
1da177e4
LT
2728
2729 /* Discard magic */
2730 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2731 flags &= ~MS_MGC_MSK;
2732
2733 /* Basic sanity checks */
1da177e4
LT
2734 if (data_page)
2735 ((char *)data_page)[PAGE_SIZE - 1] = 0;
2736
e462ec50
DH
2737 if (flags & MS_NOUSER)
2738 return -EINVAL;
2739
a27ab9f2 2740 /* ... and get the mountpoint */
5e6123f3 2741 retval = user_path(dir_name, &path);
a27ab9f2
TH
2742 if (retval)
2743 return retval;
2744
2745 retval = security_sb_mount(dev_name, &path,
2746 type_page, flags, data_page);
0d5cadb8
AV
2747 if (!retval && !may_mount())
2748 retval = -EPERM;
e462ec50 2749 if (!retval && (flags & SB_MANDLOCK) && !may_mandlock())
9e8925b6 2750 retval = -EPERM;
a27ab9f2
TH
2751 if (retval)
2752 goto dput_out;
2753
613cbe3d
AK
2754 /* Default to relatime unless overriden */
2755 if (!(flags & MS_NOATIME))
2756 mnt_flags |= MNT_RELATIME;
0a1c01c9 2757
1da177e4
LT
2758 /* Separate the per-mountpoint flags */
2759 if (flags & MS_NOSUID)
2760 mnt_flags |= MNT_NOSUID;
2761 if (flags & MS_NODEV)
2762 mnt_flags |= MNT_NODEV;
2763 if (flags & MS_NOEXEC)
2764 mnt_flags |= MNT_NOEXEC;
fc33a7bb
CH
2765 if (flags & MS_NOATIME)
2766 mnt_flags |= MNT_NOATIME;
2767 if (flags & MS_NODIRATIME)
2768 mnt_flags |= MNT_NODIRATIME;
d0adde57
MG
2769 if (flags & MS_STRICTATIME)
2770 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
a9e5b732 2771 if (flags & MS_RDONLY)
2e4b7fcd 2772 mnt_flags |= MNT_READONLY;
fc33a7bb 2773
ffbc6f0e
EB
2774 /* The default atime for remount is preservation */
2775 if ((flags & MS_REMOUNT) &&
2776 ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
2777 MS_STRICTATIME)) == 0)) {
2778 mnt_flags &= ~MNT_ATIME_MASK;
2779 mnt_flags |= path.mnt->mnt_flags & MNT_ATIME_MASK;
2780 }
2781
e462ec50
DH
2782 sb_flags = flags & (SB_RDONLY |
2783 SB_SYNCHRONOUS |
2784 SB_MANDLOCK |
2785 SB_DIRSYNC |
2786 SB_SILENT |
917086ff 2787 SB_POSIXACL |
d7ee9469 2788 SB_LAZYTIME |
917086ff 2789 SB_I_VERSION);
1da177e4 2790
1da177e4 2791 if (flags & MS_REMOUNT)
e462ec50 2792 retval = do_remount(&path, flags, sb_flags, mnt_flags,
1da177e4
LT
2793 data_page);
2794 else if (flags & MS_BIND)
2d92ab3c 2795 retval = do_loopback(&path, dev_name, flags & MS_REC);
9676f0c6 2796 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2d92ab3c 2797 retval = do_change_type(&path, flags);
1da177e4 2798 else if (flags & MS_MOVE)
2d92ab3c 2799 retval = do_move_mount(&path, dev_name);
1da177e4 2800 else
e462ec50 2801 retval = do_new_mount(&path, type_page, sb_flags, mnt_flags,
1da177e4
LT
2802 dev_name, data_page);
2803dput_out:
2d92ab3c 2804 path_put(&path);
1da177e4
LT
2805 return retval;
2806}
2807
537f7ccb
EB
2808static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns)
2809{
2810 return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES);
2811}
2812
2813static void dec_mnt_namespaces(struct ucounts *ucounts)
2814{
2815 dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES);
2816}
2817
771b1371
EB
2818static void free_mnt_ns(struct mnt_namespace *ns)
2819{
6344c433 2820 ns_free_inum(&ns->ns);
537f7ccb 2821 dec_mnt_namespaces(ns->ucounts);
771b1371
EB
2822 put_user_ns(ns->user_ns);
2823 kfree(ns);
2824}
2825
8823c079
EB
2826/*
2827 * Assign a sequence number so we can detect when we attempt to bind
2828 * mount a reference to an older mount namespace into the current
2829 * mount namespace, preventing reference counting loops. A 64bit
2830 * number incrementing at 10Ghz will take 12,427 years to wrap which
2831 * is effectively never, so we can ignore the possibility.
2832 */
2833static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
2834
771b1371 2835static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns)
cf8d2c11
TM
2836{
2837 struct mnt_namespace *new_ns;
537f7ccb 2838 struct ucounts *ucounts;
98f842e6 2839 int ret;
cf8d2c11 2840
537f7ccb
EB
2841 ucounts = inc_mnt_namespaces(user_ns);
2842 if (!ucounts)
df75e774 2843 return ERR_PTR(-ENOSPC);
537f7ccb 2844
cf8d2c11 2845 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
537f7ccb
EB
2846 if (!new_ns) {
2847 dec_mnt_namespaces(ucounts);
cf8d2c11 2848 return ERR_PTR(-ENOMEM);
537f7ccb 2849 }
6344c433 2850 ret = ns_alloc_inum(&new_ns->ns);
98f842e6
EB
2851 if (ret) {
2852 kfree(new_ns);
537f7ccb 2853 dec_mnt_namespaces(ucounts);
98f842e6
EB
2854 return ERR_PTR(ret);
2855 }
33c42940 2856 new_ns->ns.ops = &mntns_operations;
8823c079 2857 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
cf8d2c11
TM
2858 atomic_set(&new_ns->count, 1);
2859 new_ns->root = NULL;
2860 INIT_LIST_HEAD(&new_ns->list);
2861 init_waitqueue_head(&new_ns->poll);
2862 new_ns->event = 0;
771b1371 2863 new_ns->user_ns = get_user_ns(user_ns);
537f7ccb 2864 new_ns->ucounts = ucounts;
d2921684
EB
2865 new_ns->mounts = 0;
2866 new_ns->pending_mounts = 0;
cf8d2c11
TM
2867 return new_ns;
2868}
2869
0766f788 2870__latent_entropy
9559f689
AV
2871struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
2872 struct user_namespace *user_ns, struct fs_struct *new_fs)
1da177e4 2873{
6b3286ed 2874 struct mnt_namespace *new_ns;
7f2da1e7 2875 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
315fc83e 2876 struct mount *p, *q;
9559f689 2877 struct mount *old;
cb338d06 2878 struct mount *new;
7a472ef4 2879 int copy_flags;
1da177e4 2880
9559f689
AV
2881 BUG_ON(!ns);
2882
2883 if (likely(!(flags & CLONE_NEWNS))) {
2884 get_mnt_ns(ns);
2885 return ns;
2886 }
2887
2888 old = ns->root;
2889
771b1371 2890 new_ns = alloc_mnt_ns(user_ns);
cf8d2c11
TM
2891 if (IS_ERR(new_ns))
2892 return new_ns;
1da177e4 2893
97216be0 2894 namespace_lock();
1da177e4 2895 /* First pass: copy the tree topology */
4ce5d2b1 2896 copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
9559f689 2897 if (user_ns != ns->user_ns)
132c94e3 2898 copy_flags |= CL_SHARED_TO_SLAVE | CL_UNPRIVILEGED;
7a472ef4 2899 new = copy_tree(old, old->mnt.mnt_root, copy_flags);
be34d1a3 2900 if (IS_ERR(new)) {
328e6d90 2901 namespace_unlock();
771b1371 2902 free_mnt_ns(new_ns);
be34d1a3 2903 return ERR_CAST(new);
1da177e4 2904 }
be08d6d2 2905 new_ns->root = new;
1a4eeaf2 2906 list_add_tail(&new_ns->list, &new->mnt_list);
1da177e4
LT
2907
2908 /*
2909 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2910 * as belonging to new namespace. We have already acquired a private
2911 * fs_struct, so tsk->fs->lock is not needed.
2912 */
909b0a88 2913 p = old;
cb338d06 2914 q = new;
1da177e4 2915 while (p) {
143c8c91 2916 q->mnt_ns = new_ns;
d2921684 2917 new_ns->mounts++;
9559f689
AV
2918 if (new_fs) {
2919 if (&p->mnt == new_fs->root.mnt) {
2920 new_fs->root.mnt = mntget(&q->mnt);
315fc83e 2921 rootmnt = &p->mnt;
1da177e4 2922 }
9559f689
AV
2923 if (&p->mnt == new_fs->pwd.mnt) {
2924 new_fs->pwd.mnt = mntget(&q->mnt);
315fc83e 2925 pwdmnt = &p->mnt;
1da177e4 2926 }
1da177e4 2927 }
909b0a88
AV
2928 p = next_mnt(p, old);
2929 q = next_mnt(q, new);
4ce5d2b1
EB
2930 if (!q)
2931 break;
2932 while (p->mnt.mnt_root != q->mnt.mnt_root)
2933 p = next_mnt(p, old);
1da177e4 2934 }
328e6d90 2935 namespace_unlock();
1da177e4 2936
1da177e4 2937 if (rootmnt)
f03c6599 2938 mntput(rootmnt);
1da177e4 2939 if (pwdmnt)
f03c6599 2940 mntput(pwdmnt);
1da177e4 2941
741a2951 2942 return new_ns;
1da177e4
LT
2943}
2944
cf8d2c11
TM
2945/**
2946 * create_mnt_ns - creates a private namespace and adds a root filesystem
2947 * @mnt: pointer to the new root filesystem mountpoint
2948 */
1a4eeaf2 2949static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
cf8d2c11 2950{
771b1371 2951 struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns);
cf8d2c11 2952 if (!IS_ERR(new_ns)) {
1a4eeaf2
AV
2953 struct mount *mnt = real_mount(m);
2954 mnt->mnt_ns = new_ns;
be08d6d2 2955 new_ns->root = mnt;
d2921684 2956 new_ns->mounts++;
b1983cd8 2957 list_add(&mnt->mnt_list, &new_ns->list);
c1334495 2958 } else {
1a4eeaf2 2959 mntput(m);
cf8d2c11
TM
2960 }
2961 return new_ns;
2962}
cf8d2c11 2963
ea441d11
AV
2964struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
2965{
2966 struct mnt_namespace *ns;
d31da0f0 2967 struct super_block *s;
ea441d11
AV
2968 struct path path;
2969 int err;
2970
2971 ns = create_mnt_ns(mnt);
2972 if (IS_ERR(ns))
2973 return ERR_CAST(ns);
2974
2975 err = vfs_path_lookup(mnt->mnt_root, mnt,
2976 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
2977
2978 put_mnt_ns(ns);
2979
2980 if (err)
2981 return ERR_PTR(err);
2982
2983 /* trade a vfsmount reference for active sb one */
d31da0f0
AV
2984 s = path.mnt->mnt_sb;
2985 atomic_inc(&s->s_active);
ea441d11
AV
2986 mntput(path.mnt);
2987 /* lock the sucker */
d31da0f0 2988 down_write(&s->s_umount);
ea441d11
AV
2989 /* ... and return the root of (sub)tree on it */
2990 return path.dentry;
2991}
2992EXPORT_SYMBOL(mount_subtree);
2993
312db1aa
DB
2994int ksys_mount(char __user *dev_name, char __user *dir_name, char __user *type,
2995 unsigned long flags, void __user *data)
1da177e4 2996{
eca6f534
VN
2997 int ret;
2998 char *kernel_type;
eca6f534 2999 char *kernel_dev;
b40ef869 3000 void *options;
1da177e4 3001
b8850d1f
TG
3002 kernel_type = copy_mount_string(type);
3003 ret = PTR_ERR(kernel_type);
3004 if (IS_ERR(kernel_type))
eca6f534 3005 goto out_type;
1da177e4 3006
b8850d1f
TG
3007 kernel_dev = copy_mount_string(dev_name);
3008 ret = PTR_ERR(kernel_dev);
3009 if (IS_ERR(kernel_dev))
eca6f534 3010 goto out_dev;
1da177e4 3011
b40ef869
AV
3012 options = copy_mount_options(data);
3013 ret = PTR_ERR(options);
3014 if (IS_ERR(options))
eca6f534 3015 goto out_data;
1da177e4 3016
b40ef869 3017 ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options);
1da177e4 3018
b40ef869 3019 kfree(options);
eca6f534
VN
3020out_data:
3021 kfree(kernel_dev);
3022out_dev:
eca6f534
VN
3023 kfree(kernel_type);
3024out_type:
3025 return ret;
1da177e4
LT
3026}
3027
312db1aa
DB
3028SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
3029 char __user *, type, unsigned long, flags, void __user *, data)
3030{
3031 return ksys_mount(dev_name, dir_name, type, flags, data);
3032}
3033
afac7cba
AV
3034/*
3035 * Return true if path is reachable from root
3036 *
48a066e7 3037 * namespace_sem or mount_lock is held
afac7cba 3038 */
643822b4 3039bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
afac7cba
AV
3040 const struct path *root)
3041{
643822b4 3042 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
a73324da 3043 dentry = mnt->mnt_mountpoint;
0714a533 3044 mnt = mnt->mnt_parent;
afac7cba 3045 }
643822b4 3046 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
afac7cba
AV
3047}
3048
640eb7e7 3049bool path_is_under(const struct path *path1, const struct path *path2)
afac7cba 3050{
25ab4c9b 3051 bool res;
48a066e7 3052 read_seqlock_excl(&mount_lock);
643822b4 3053 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
48a066e7 3054 read_sequnlock_excl(&mount_lock);
afac7cba
AV
3055 return res;
3056}
3057EXPORT_SYMBOL(path_is_under);
3058
1da177e4
LT
3059/*
3060 * pivot_root Semantics:
3061 * Moves the root file system of the current process to the directory put_old,
3062 * makes new_root as the new root file system of the current process, and sets
3063 * root/cwd of all processes which had them on the current root to new_root.
3064 *
3065 * Restrictions:
3066 * The new_root and put_old must be directories, and must not be on the
3067 * same file system as the current process root. The put_old must be
3068 * underneath new_root, i.e. adding a non-zero number of /.. to the string
3069 * pointed to by put_old must yield the same directory as new_root. No other
3070 * file system may be mounted on put_old. After all, new_root is a mountpoint.
3071 *
4a0d11fa
NB
3072 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
3073 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
3074 * in this situation.
3075 *
1da177e4
LT
3076 * Notes:
3077 * - we don't move root/cwd if they are not at the root (reason: if something
3078 * cared enough to change them, it's probably wrong to force them elsewhere)
3079 * - it's okay to pick a root that isn't the root of a file system, e.g.
3080 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
3081 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
3082 * first.
3083 */
3480b257
HC
3084SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
3085 const char __user *, put_old)
1da177e4 3086{
2d8f3038 3087 struct path new, old, parent_path, root_parent, root;
84d17192
AV
3088 struct mount *new_mnt, *root_mnt, *old_mnt;
3089 struct mountpoint *old_mp, *root_mp;
1da177e4
LT
3090 int error;
3091
9b40bc90 3092 if (!may_mount())
1da177e4
LT
3093 return -EPERM;
3094
2d8f3038 3095 error = user_path_dir(new_root, &new);
1da177e4
LT
3096 if (error)
3097 goto out0;
1da177e4 3098
2d8f3038 3099 error = user_path_dir(put_old, &old);
1da177e4
LT
3100 if (error)
3101 goto out1;
3102
2d8f3038 3103 error = security_sb_pivotroot(&old, &new);
b12cea91
AV
3104 if (error)
3105 goto out2;
1da177e4 3106
f7ad3c6b 3107 get_fs_root(current->fs, &root);
84d17192
AV
3108 old_mp = lock_mount(&old);
3109 error = PTR_ERR(old_mp);
3110 if (IS_ERR(old_mp))
b12cea91
AV
3111 goto out3;
3112
1da177e4 3113 error = -EINVAL;
419148da
AV
3114 new_mnt = real_mount(new.mnt);
3115 root_mnt = real_mount(root.mnt);
84d17192
AV
3116 old_mnt = real_mount(old.mnt);
3117 if (IS_MNT_SHARED(old_mnt) ||
fc7be130
AV
3118 IS_MNT_SHARED(new_mnt->mnt_parent) ||
3119 IS_MNT_SHARED(root_mnt->mnt_parent))
b12cea91 3120 goto out4;
143c8c91 3121 if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
b12cea91 3122 goto out4;
5ff9d8a6
EB
3123 if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
3124 goto out4;
1da177e4 3125 error = -ENOENT;
f3da392e 3126 if (d_unlinked(new.dentry))
b12cea91 3127 goto out4;
1da177e4 3128 error = -EBUSY;
84d17192 3129 if (new_mnt == root_mnt || old_mnt == root_mnt)
b12cea91 3130 goto out4; /* loop, on the same file system */
1da177e4 3131 error = -EINVAL;
8c3ee42e 3132 if (root.mnt->mnt_root != root.dentry)
b12cea91 3133 goto out4; /* not a mountpoint */
676da58d 3134 if (!mnt_has_parent(root_mnt))
b12cea91 3135 goto out4; /* not attached */
84d17192 3136 root_mp = root_mnt->mnt_mp;
2d8f3038 3137 if (new.mnt->mnt_root != new.dentry)
b12cea91 3138 goto out4; /* not a mountpoint */
676da58d 3139 if (!mnt_has_parent(new_mnt))
b12cea91 3140 goto out4; /* not attached */
4ac91378 3141 /* make sure we can reach put_old from new_root */
84d17192 3142 if (!is_path_reachable(old_mnt, old.dentry, &new))
b12cea91 3143 goto out4;
0d082601
EB
3144 /* make certain new is below the root */
3145 if (!is_path_reachable(new_mnt, new.dentry, &root))
3146 goto out4;
84d17192 3147 root_mp->m_count++; /* pin it so it won't go away */
719ea2fb 3148 lock_mount_hash();
419148da
AV
3149 detach_mnt(new_mnt, &parent_path);
3150 detach_mnt(root_mnt, &root_parent);
5ff9d8a6
EB
3151 if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
3152 new_mnt->mnt.mnt_flags |= MNT_LOCKED;
3153 root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
3154 }
4ac91378 3155 /* mount old root on put_old */
84d17192 3156 attach_mnt(root_mnt, old_mnt, old_mp);
4ac91378 3157 /* mount new_root on / */
84d17192 3158 attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp);
6b3286ed 3159 touch_mnt_namespace(current->nsproxy->mnt_ns);
4fed655c
EB
3160 /* A moved mount should not expire automatically */
3161 list_del_init(&new_mnt->mnt_expire);
3895dbf8 3162 put_mountpoint(root_mp);
719ea2fb 3163 unlock_mount_hash();
2d8f3038 3164 chroot_fs_refs(&root, &new);
1da177e4 3165 error = 0;
b12cea91 3166out4:
84d17192 3167 unlock_mount(old_mp);
b12cea91
AV
3168 if (!error) {
3169 path_put(&root_parent);
3170 path_put(&parent_path);
3171 }
3172out3:
8c3ee42e 3173 path_put(&root);
b12cea91 3174out2:
2d8f3038 3175 path_put(&old);
1da177e4 3176out1:
2d8f3038 3177 path_put(&new);
1da177e4 3178out0:
1da177e4 3179 return error;
1da177e4
LT
3180}
3181
3182static void __init init_mount_tree(void)
3183{
3184 struct vfsmount *mnt;
6b3286ed 3185 struct mnt_namespace *ns;
ac748a09 3186 struct path root;
0c55cfc4 3187 struct file_system_type *type;
1da177e4 3188
0c55cfc4
EB
3189 type = get_fs_type("rootfs");
3190 if (!type)
3191 panic("Can't find rootfs type");
3192 mnt = vfs_kern_mount(type, 0, "rootfs", NULL);
3193 put_filesystem(type);
1da177e4
LT
3194 if (IS_ERR(mnt))
3195 panic("Can't create rootfs");
b3e19d92 3196
3b22edc5
TM
3197 ns = create_mnt_ns(mnt);
3198 if (IS_ERR(ns))
1da177e4 3199 panic("Can't allocate initial namespace");
6b3286ed
KK
3200
3201 init_task.nsproxy->mnt_ns = ns;
3202 get_mnt_ns(ns);
3203
be08d6d2
AV
3204 root.mnt = mnt;
3205 root.dentry = mnt->mnt_root;
da362b09 3206 mnt->mnt_flags |= MNT_LOCKED;
ac748a09
JB
3207
3208 set_fs_pwd(current->fs, &root);
3209 set_fs_root(current->fs, &root);
1da177e4
LT
3210}
3211
74bf17cf 3212void __init mnt_init(void)
1da177e4 3213{
15a67dd8 3214 int err;
1da177e4 3215
7d6fec45 3216 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
20c2df83 3217 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
1da177e4 3218
0818bf27 3219 mount_hashtable = alloc_large_system_hash("Mount-cache",
38129a13 3220 sizeof(struct hlist_head),
0818bf27 3221 mhash_entries, 19,
3d375d78 3222 HASH_ZERO,
0818bf27
AV
3223 &m_hash_shift, &m_hash_mask, 0, 0);
3224 mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
3225 sizeof(struct hlist_head),
3226 mphash_entries, 19,
3d375d78 3227 HASH_ZERO,
0818bf27 3228 &mp_hash_shift, &mp_hash_mask, 0, 0);
1da177e4 3229
84d17192 3230 if (!mount_hashtable || !mountpoint_hashtable)
1da177e4
LT
3231 panic("Failed to allocate mount hash table\n");
3232
4b93dc9b
TH
3233 kernfs_init();
3234
15a67dd8
RD
3235 err = sysfs_init();
3236 if (err)
3237 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
8e24eea7 3238 __func__, err);
00d26666
GKH
3239 fs_kobj = kobject_create_and_add("fs", NULL);
3240 if (!fs_kobj)
8e24eea7 3241 printk(KERN_WARNING "%s: kobj create error\n", __func__);
1da177e4
LT
3242 init_rootfs();
3243 init_mount_tree();
3244}
3245
616511d0 3246void put_mnt_ns(struct mnt_namespace *ns)
1da177e4 3247{
d498b25a 3248 if (!atomic_dec_and_test(&ns->count))
616511d0 3249 return;
7b00ed6f 3250 drop_collected_mounts(&ns->root->mnt);
771b1371 3251 free_mnt_ns(ns);
1da177e4 3252}
9d412a43
AV
3253
3254struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
3255{
423e0ab0 3256 struct vfsmount *mnt;
e462ec50 3257 mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, data);
423e0ab0
TC
3258 if (!IS_ERR(mnt)) {
3259 /*
3260 * it is a longterm mount, don't release mnt until
3261 * we unmount before file sys is unregistered
3262 */
f7a99c5b 3263 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
423e0ab0
TC
3264 }
3265 return mnt;
9d412a43
AV
3266}
3267EXPORT_SYMBOL_GPL(kern_mount_data);
423e0ab0
TC
3268
3269void kern_unmount(struct vfsmount *mnt)
3270{
3271 /* release long term mount so mount point can be released */
3272 if (!IS_ERR_OR_NULL(mnt)) {
f7a99c5b 3273 real_mount(mnt)->mnt_ns = NULL;
48a066e7 3274 synchronize_rcu(); /* yecchhh... */
423e0ab0
TC
3275 mntput(mnt);
3276 }
3277}
3278EXPORT_SYMBOL(kern_unmount);
02125a82
AV
3279
3280bool our_mnt(struct vfsmount *mnt)
3281{
143c8c91 3282 return check_mnt(real_mount(mnt));
02125a82 3283}
8823c079 3284
3151527e
EB
3285bool current_chrooted(void)
3286{
3287 /* Does the current process have a non-standard root */
3288 struct path ns_root;
3289 struct path fs_root;
3290 bool chrooted;
3291
3292 /* Find the namespace root */
3293 ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
3294 ns_root.dentry = ns_root.mnt->mnt_root;
3295 path_get(&ns_root);
3296 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
3297 ;
3298
3299 get_fs_root(current->fs, &fs_root);
3300
3301 chrooted = !path_equal(&fs_root, &ns_root);
3302
3303 path_put(&fs_root);
3304 path_put(&ns_root);
3305
3306 return chrooted;
3307}
3308
8654df4e
EB
3309static bool mnt_already_visible(struct mnt_namespace *ns, struct vfsmount *new,
3310 int *new_mnt_flags)
87a8ebd6 3311{
8c6cf9cc 3312 int new_flags = *new_mnt_flags;
87a8ebd6 3313 struct mount *mnt;
e51db735 3314 bool visible = false;
87a8ebd6 3315
44bb4385 3316 down_read(&namespace_sem);
87a8ebd6 3317 list_for_each_entry(mnt, &ns->list, mnt_list) {
e51db735 3318 struct mount *child;
77b1a97d
EB
3319 int mnt_flags;
3320
8654df4e 3321 if (mnt->mnt.mnt_sb->s_type != new->mnt_sb->s_type)
e51db735
EB
3322 continue;
3323
7e96c1b0
EB
3324 /* This mount is not fully visible if it's root directory
3325 * is not the root directory of the filesystem.
3326 */
3327 if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
3328 continue;
3329
a1935c17 3330 /* A local view of the mount flags */
77b1a97d 3331 mnt_flags = mnt->mnt.mnt_flags;
77b1a97d 3332
695e9df0 3333 /* Don't miss readonly hidden in the superblock flags */
bc98a42c 3334 if (sb_rdonly(mnt->mnt.mnt_sb))
695e9df0
EB
3335 mnt_flags |= MNT_LOCK_READONLY;
3336
8c6cf9cc
EB
3337 /* Verify the mount flags are equal to or more permissive
3338 * than the proposed new mount.
3339 */
77b1a97d 3340 if ((mnt_flags & MNT_LOCK_READONLY) &&
8c6cf9cc
EB
3341 !(new_flags & MNT_READONLY))
3342 continue;
77b1a97d
EB
3343 if ((mnt_flags & MNT_LOCK_ATIME) &&
3344 ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK)))
8c6cf9cc
EB
3345 continue;
3346
ceeb0e5d
EB
3347 /* This mount is not fully visible if there are any
3348 * locked child mounts that cover anything except for
3349 * empty directories.
e51db735
EB
3350 */
3351 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
3352 struct inode *inode = child->mnt_mountpoint->d_inode;
ceeb0e5d 3353 /* Only worry about locked mounts */
d71ed6c9 3354 if (!(child->mnt.mnt_flags & MNT_LOCKED))
ceeb0e5d 3355 continue;
7236c85e
EB
3356 /* Is the directory permanetly empty? */
3357 if (!is_empty_dir_inode(inode))
e51db735 3358 goto next;
87a8ebd6 3359 }
8c6cf9cc 3360 /* Preserve the locked attributes */
77b1a97d 3361 *new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \
77b1a97d 3362 MNT_LOCK_ATIME);
e51db735
EB
3363 visible = true;
3364 goto found;
3365 next: ;
87a8ebd6 3366 }
e51db735 3367found:
44bb4385 3368 up_read(&namespace_sem);
e51db735 3369 return visible;
87a8ebd6
EB
3370}
3371
8654df4e
EB
3372static bool mount_too_revealing(struct vfsmount *mnt, int *new_mnt_flags)
3373{
a1935c17 3374 const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV;
8654df4e
EB
3375 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
3376 unsigned long s_iflags;
3377
3378 if (ns->user_ns == &init_user_ns)
3379 return false;
3380
3381 /* Can this filesystem be too revealing? */
3382 s_iflags = mnt->mnt_sb->s_iflags;
3383 if (!(s_iflags & SB_I_USERNS_VISIBLE))
3384 return false;
3385
a1935c17
EB
3386 if ((s_iflags & required_iflags) != required_iflags) {
3387 WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n",
3388 required_iflags);
3389 return true;
3390 }
3391
8654df4e
EB
3392 return !mnt_already_visible(ns, mnt, new_mnt_flags);
3393}
3394
380cf5ba
AL
3395bool mnt_may_suid(struct vfsmount *mnt)
3396{
3397 /*
3398 * Foreign mounts (accessed via fchdir or through /proc
3399 * symlinks) are always treated as if they are nosuid. This
3400 * prevents namespaces from trusting potentially unsafe
3401 * suid/sgid bits, file caps, or security labels that originate
3402 * in other namespaces.
3403 */
3404 return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) &&
3405 current_in_userns(mnt->mnt_sb->s_user_ns);
3406}
3407
64964528 3408static struct ns_common *mntns_get(struct task_struct *task)
8823c079 3409{
58be2825 3410 struct ns_common *ns = NULL;
8823c079
EB
3411 struct nsproxy *nsproxy;
3412
728dba3a
EB
3413 task_lock(task);
3414 nsproxy = task->nsproxy;
8823c079 3415 if (nsproxy) {
58be2825
AV
3416 ns = &nsproxy->mnt_ns->ns;
3417 get_mnt_ns(to_mnt_ns(ns));
8823c079 3418 }
728dba3a 3419 task_unlock(task);
8823c079
EB
3420
3421 return ns;
3422}
3423
64964528 3424static void mntns_put(struct ns_common *ns)
8823c079 3425{
58be2825 3426 put_mnt_ns(to_mnt_ns(ns));
8823c079
EB
3427}
3428
64964528 3429static int mntns_install(struct nsproxy *nsproxy, struct ns_common *ns)
8823c079
EB
3430{
3431 struct fs_struct *fs = current->fs;
4f757f3c 3432 struct mnt_namespace *mnt_ns = to_mnt_ns(ns), *old_mnt_ns;
8823c079 3433 struct path root;
4f757f3c 3434 int err;
8823c079 3435
0c55cfc4 3436 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
c7b96acf
EB
3437 !ns_capable(current_user_ns(), CAP_SYS_CHROOT) ||
3438 !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
ae11e0f1 3439 return -EPERM;
8823c079
EB
3440
3441 if (fs->users != 1)
3442 return -EINVAL;
3443
3444 get_mnt_ns(mnt_ns);
4f757f3c 3445 old_mnt_ns = nsproxy->mnt_ns;
8823c079
EB
3446 nsproxy->mnt_ns = mnt_ns;
3447
3448 /* Find the root */
4f757f3c
AV
3449 err = vfs_path_lookup(mnt_ns->root->mnt.mnt_root, &mnt_ns->root->mnt,
3450 "/", LOOKUP_DOWN, &root);
3451 if (err) {
3452 /* revert to old namespace */
3453 nsproxy->mnt_ns = old_mnt_ns;
3454 put_mnt_ns(mnt_ns);
3455 return err;
3456 }
8823c079 3457
4068367c
AV
3458 put_mnt_ns(old_mnt_ns);
3459
8823c079
EB
3460 /* Update the pwd and root */
3461 set_fs_pwd(fs, &root);
3462 set_fs_root(fs, &root);
3463
3464 path_put(&root);
3465 return 0;
3466}
3467
bcac25a5
AV
3468static struct user_namespace *mntns_owner(struct ns_common *ns)
3469{
3470 return to_mnt_ns(ns)->user_ns;
3471}
3472
8823c079
EB
3473const struct proc_ns_operations mntns_operations = {
3474 .name = "mnt",
3475 .type = CLONE_NEWNS,
3476 .get = mntns_get,
3477 .put = mntns_put,
3478 .install = mntns_install,
bcac25a5 3479 .owner = mntns_owner,
8823c079 3480};