fs/mpage.c: factor clean_buffers() out of __mpage_writepage()
[linux-2.6-block.git] / fs / mpage.c
CommitLineData
1da177e4
LT
1/*
2 * fs/mpage.c
3 *
4 * Copyright (C) 2002, Linus Torvalds.
5 *
6 * Contains functions related to preparing and submitting BIOs which contain
7 * multiple pagecache pages.
8 *
e1f8e874 9 * 15May2002 Andrew Morton
1da177e4
LT
10 * Initial version
11 * 27Jun2002 axboe@suse.de
12 * use bio_add_page() to build bio's just the right size
13 */
14
15#include <linux/kernel.h>
630d9c47 16#include <linux/export.h>
1da177e4
LT
17#include <linux/mm.h>
18#include <linux/kdev_t.h>
5a0e3ad6 19#include <linux/gfp.h>
1da177e4
LT
20#include <linux/bio.h>
21#include <linux/fs.h>
22#include <linux/buffer_head.h>
23#include <linux/blkdev.h>
24#include <linux/highmem.h>
25#include <linux/prefetch.h>
26#include <linux/mpage.h>
27#include <linux/writeback.h>
28#include <linux/backing-dev.h>
29#include <linux/pagevec.h>
c515e1fd 30#include <linux/cleancache.h>
1da177e4
LT
31
32/*
33 * I/O completion handler for multipage BIOs.
34 *
35 * The mpage code never puts partial pages into a BIO (except for end-of-file).
36 * If a page does not map to a contiguous run of blocks then it simply falls
37 * back to block_read_full_page().
38 *
39 * Why is this? If a page's completion depends on a number of different BIOs
40 * which can complete in any order (or at the same time) then determining the
41 * status of that page is hard. See end_buffer_async_read() for the details.
42 * There is no point in duplicating all that complexity.
43 */
c32b0d4b 44static void mpage_end_io(struct bio *bio, int err)
1da177e4 45{
2c30c71b
KO
46 struct bio_vec *bv;
47 int i;
1da177e4 48
2c30c71b
KO
49 bio_for_each_segment_all(bv, bio, i) {
50 struct page *page = bv->bv_page;
1da177e4 51
c32b0d4b 52 if (bio_data_dir(bio) == READ) {
2c30c71b 53 if (!err) {
c32b0d4b
HS
54 SetPageUptodate(page);
55 } else {
56 ClearPageUptodate(page);
57 SetPageError(page);
58 }
59 unlock_page(page);
60 } else { /* bio_data_dir(bio) == WRITE */
2c30c71b 61 if (err) {
c32b0d4b
HS
62 SetPageError(page);
63 if (page->mapping)
64 set_bit(AS_EIO, &page->mapping->flags);
65 }
66 end_page_writeback(page);
854715be 67 }
2c30c71b
KO
68 }
69
1da177e4 70 bio_put(bio);
1da177e4
LT
71}
72
ced117c7 73static struct bio *mpage_bio_submit(int rw, struct bio *bio)
1da177e4 74{
c32b0d4b 75 bio->bi_end_io = mpage_end_io;
1da177e4
LT
76 submit_bio(rw, bio);
77 return NULL;
78}
79
80static struct bio *
81mpage_alloc(struct block_device *bdev,
82 sector_t first_sector, int nr_vecs,
dd0fc66f 83 gfp_t gfp_flags)
1da177e4
LT
84{
85 struct bio *bio;
86
87 bio = bio_alloc(gfp_flags, nr_vecs);
88
89 if (bio == NULL && (current->flags & PF_MEMALLOC)) {
90 while (!bio && (nr_vecs /= 2))
91 bio = bio_alloc(gfp_flags, nr_vecs);
92 }
93
94 if (bio) {
95 bio->bi_bdev = bdev;
4f024f37 96 bio->bi_iter.bi_sector = first_sector;
1da177e4
LT
97 }
98 return bio;
99}
100
101/*
102 * support function for mpage_readpages. The fs supplied get_block might
103 * return an up to date buffer. This is used to map that buffer into
104 * the page, which allows readpage to avoid triggering a duplicate call
105 * to get_block.
106 *
107 * The idea is to avoid adding buffers to pages that don't already have
108 * them. So when the buffer is up to date and the page size == block size,
109 * this marks the page up to date instead of adding new buffers.
110 */
111static void
112map_buffer_to_page(struct page *page, struct buffer_head *bh, int page_block)
113{
114 struct inode *inode = page->mapping->host;
115 struct buffer_head *page_bh, *head;
116 int block = 0;
117
118 if (!page_has_buffers(page)) {
119 /*
120 * don't make any buffers if there is only one buffer on
121 * the page and the page just needs to be set up to date
122 */
123 if (inode->i_blkbits == PAGE_CACHE_SHIFT &&
124 buffer_uptodate(bh)) {
125 SetPageUptodate(page);
126 return;
127 }
128 create_empty_buffers(page, 1 << inode->i_blkbits, 0);
129 }
130 head = page_buffers(page);
131 page_bh = head;
132 do {
133 if (block == page_block) {
134 page_bh->b_state = bh->b_state;
135 page_bh->b_bdev = bh->b_bdev;
136 page_bh->b_blocknr = bh->b_blocknr;
137 break;
138 }
139 page_bh = page_bh->b_this_page;
140 block++;
141 } while (page_bh != head);
142}
143
fa30bd05
BP
144/*
145 * This is the worker routine which does all the work of mapping the disk
146 * blocks and constructs largest possible bios, submits them for IO if the
147 * blocks are not contiguous on the disk.
148 *
149 * We pass a buffer_head back and forth and use its buffer_mapped() flag to
150 * represent the validity of its disk mapping and to decide when to do the next
151 * get_block() call.
152 */
1da177e4
LT
153static struct bio *
154do_mpage_readpage(struct bio *bio, struct page *page, unsigned nr_pages,
fa30bd05
BP
155 sector_t *last_block_in_bio, struct buffer_head *map_bh,
156 unsigned long *first_logical_block, get_block_t get_block)
1da177e4
LT
157{
158 struct inode *inode = page->mapping->host;
159 const unsigned blkbits = inode->i_blkbits;
160 const unsigned blocks_per_page = PAGE_CACHE_SIZE >> blkbits;
161 const unsigned blocksize = 1 << blkbits;
162 sector_t block_in_file;
163 sector_t last_block;
fa30bd05 164 sector_t last_block_in_file;
1da177e4
LT
165 sector_t blocks[MAX_BUF_PER_PAGE];
166 unsigned page_block;
167 unsigned first_hole = blocks_per_page;
168 struct block_device *bdev = NULL;
1da177e4
LT
169 int length;
170 int fully_mapped = 1;
fa30bd05
BP
171 unsigned nblocks;
172 unsigned relative_block;
1da177e4
LT
173
174 if (page_has_buffers(page))
175 goto confused;
176
54b21a79 177 block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
fa30bd05
BP
178 last_block = block_in_file + nr_pages * blocks_per_page;
179 last_block_in_file = (i_size_read(inode) + blocksize - 1) >> blkbits;
180 if (last_block > last_block_in_file)
181 last_block = last_block_in_file;
182 page_block = 0;
183
184 /*
185 * Map blocks using the result from the previous get_blocks call first.
186 */
187 nblocks = map_bh->b_size >> blkbits;
188 if (buffer_mapped(map_bh) && block_in_file > *first_logical_block &&
189 block_in_file < (*first_logical_block + nblocks)) {
190 unsigned map_offset = block_in_file - *first_logical_block;
191 unsigned last = nblocks - map_offset;
192
193 for (relative_block = 0; ; relative_block++) {
194 if (relative_block == last) {
195 clear_buffer_mapped(map_bh);
196 break;
197 }
198 if (page_block == blocks_per_page)
199 break;
200 blocks[page_block] = map_bh->b_blocknr + map_offset +
201 relative_block;
202 page_block++;
203 block_in_file++;
204 }
205 bdev = map_bh->b_bdev;
206 }
207
208 /*
209 * Then do more get_blocks calls until we are done with this page.
210 */
211 map_bh->b_page = page;
212 while (page_block < blocks_per_page) {
213 map_bh->b_state = 0;
214 map_bh->b_size = 0;
1da177e4 215
1da177e4 216 if (block_in_file < last_block) {
fa30bd05
BP
217 map_bh->b_size = (last_block-block_in_file) << blkbits;
218 if (get_block(inode, block_in_file, map_bh, 0))
1da177e4 219 goto confused;
fa30bd05 220 *first_logical_block = block_in_file;
1da177e4
LT
221 }
222
fa30bd05 223 if (!buffer_mapped(map_bh)) {
1da177e4
LT
224 fully_mapped = 0;
225 if (first_hole == blocks_per_page)
226 first_hole = page_block;
fa30bd05
BP
227 page_block++;
228 block_in_file++;
1da177e4
LT
229 continue;
230 }
231
232 /* some filesystems will copy data into the page during
233 * the get_block call, in which case we don't want to
234 * read it again. map_buffer_to_page copies the data
235 * we just collected from get_block into the page's buffers
236 * so readpage doesn't have to repeat the get_block call
237 */
fa30bd05
BP
238 if (buffer_uptodate(map_bh)) {
239 map_buffer_to_page(page, map_bh, page_block);
1da177e4
LT
240 goto confused;
241 }
242
243 if (first_hole != blocks_per_page)
244 goto confused; /* hole -> non-hole */
245
246 /* Contiguous blocks? */
fa30bd05 247 if (page_block && blocks[page_block-1] != map_bh->b_blocknr-1)
1da177e4 248 goto confused;
fa30bd05
BP
249 nblocks = map_bh->b_size >> blkbits;
250 for (relative_block = 0; ; relative_block++) {
251 if (relative_block == nblocks) {
252 clear_buffer_mapped(map_bh);
253 break;
254 } else if (page_block == blocks_per_page)
255 break;
256 blocks[page_block] = map_bh->b_blocknr+relative_block;
257 page_block++;
258 block_in_file++;
259 }
260 bdev = map_bh->b_bdev;
1da177e4
LT
261 }
262
263 if (first_hole != blocks_per_page) {
eebd2aa3 264 zero_user_segment(page, first_hole << blkbits, PAGE_CACHE_SIZE);
1da177e4
LT
265 if (first_hole == 0) {
266 SetPageUptodate(page);
267 unlock_page(page);
268 goto out;
269 }
270 } else if (fully_mapped) {
271 SetPageMappedToDisk(page);
272 }
273
c515e1fd
DM
274 if (fully_mapped && blocks_per_page == 1 && !PageUptodate(page) &&
275 cleancache_get_page(page) == 0) {
276 SetPageUptodate(page);
277 goto confused;
278 }
279
1da177e4
LT
280 /*
281 * This page will go to BIO. Do we need to send this BIO off first?
282 */
283 if (bio && (*last_block_in_bio != blocks[0] - 1))
284 bio = mpage_bio_submit(READ, bio);
285
286alloc_new:
287 if (bio == NULL) {
288 bio = mpage_alloc(bdev, blocks[0] << (blkbits - 9),
289 min_t(int, nr_pages, bio_get_nr_vecs(bdev)),
290 GFP_KERNEL);
291 if (bio == NULL)
292 goto confused;
293 }
294
295 length = first_hole << blkbits;
296 if (bio_add_page(bio, page, length, 0) < length) {
297 bio = mpage_bio_submit(READ, bio);
298 goto alloc_new;
299 }
300
38c8e618
MS
301 relative_block = block_in_file - *first_logical_block;
302 nblocks = map_bh->b_size >> blkbits;
303 if ((buffer_boundary(map_bh) && relative_block == nblocks) ||
304 (first_hole != blocks_per_page))
1da177e4
LT
305 bio = mpage_bio_submit(READ, bio);
306 else
307 *last_block_in_bio = blocks[blocks_per_page - 1];
308out:
309 return bio;
310
311confused:
312 if (bio)
313 bio = mpage_bio_submit(READ, bio);
314 if (!PageUptodate(page))
315 block_read_full_page(page, get_block);
316 else
317 unlock_page(page);
318 goto out;
319}
320
67be2dd1 321/**
78a4a50a 322 * mpage_readpages - populate an address space with some pages & start reads against them
67be2dd1
MW
323 * @mapping: the address_space
324 * @pages: The address of a list_head which contains the target pages. These
325 * pages have their ->index populated and are otherwise uninitialised.
67be2dd1
MW
326 * The page at @pages->prev has the lowest file offset, and reads should be
327 * issued in @pages->prev to @pages->next order.
67be2dd1
MW
328 * @nr_pages: The number of pages at *@pages
329 * @get_block: The filesystem's block mapper function.
330 *
331 * This function walks the pages and the blocks within each page, building and
332 * emitting large BIOs.
333 *
334 * If anything unusual happens, such as:
335 *
336 * - encountering a page which has buffers
337 * - encountering a page which has a non-hole after a hole
338 * - encountering a page with non-contiguous blocks
339 *
340 * then this code just gives up and calls the buffer_head-based read function.
341 * It does handle a page which has holes at the end - that is a common case:
342 * the end-of-file on blocksize < PAGE_CACHE_SIZE setups.
343 *
344 * BH_Boundary explanation:
345 *
346 * There is a problem. The mpage read code assembles several pages, gets all
347 * their disk mappings, and then submits them all. That's fine, but obtaining
348 * the disk mappings may require I/O. Reads of indirect blocks, for example.
349 *
350 * So an mpage read of the first 16 blocks of an ext2 file will cause I/O to be
351 * submitted in the following order:
352 * 12 0 1 2 3 4 5 6 7 8 9 10 11 13 14 15 16
78a4a50a 353 *
67be2dd1
MW
354 * because the indirect block has to be read to get the mappings of blocks
355 * 13,14,15,16. Obviously, this impacts performance.
356 *
357 * So what we do it to allow the filesystem's get_block() function to set
358 * BH_Boundary when it maps block 11. BH_Boundary says: mapping of the block
359 * after this one will require I/O against a block which is probably close to
360 * this one. So you should push what I/O you have currently accumulated.
361 *
362 * This all causes the disk requests to be issued in the correct order.
363 */
1da177e4
LT
364int
365mpage_readpages(struct address_space *mapping, struct list_head *pages,
366 unsigned nr_pages, get_block_t get_block)
367{
368 struct bio *bio = NULL;
369 unsigned page_idx;
370 sector_t last_block_in_bio = 0;
fa30bd05
BP
371 struct buffer_head map_bh;
372 unsigned long first_logical_block = 0;
1da177e4 373
79ffab34
AK
374 map_bh.b_state = 0;
375 map_bh.b_size = 0;
1da177e4
LT
376 for (page_idx = 0; page_idx < nr_pages; page_idx++) {
377 struct page *page = list_entry(pages->prev, struct page, lru);
378
379 prefetchw(&page->flags);
380 list_del(&page->lru);
eb2be189 381 if (!add_to_page_cache_lru(page, mapping,
1da177e4
LT
382 page->index, GFP_KERNEL)) {
383 bio = do_mpage_readpage(bio, page,
384 nr_pages - page_idx,
fa30bd05
BP
385 &last_block_in_bio, &map_bh,
386 &first_logical_block,
387 get_block);
1da177e4 388 }
eb2be189 389 page_cache_release(page);
1da177e4 390 }
1da177e4
LT
391 BUG_ON(!list_empty(pages));
392 if (bio)
393 mpage_bio_submit(READ, bio);
394 return 0;
395}
396EXPORT_SYMBOL(mpage_readpages);
397
398/*
399 * This isn't called much at all
400 */
401int mpage_readpage(struct page *page, get_block_t get_block)
402{
403 struct bio *bio = NULL;
404 sector_t last_block_in_bio = 0;
fa30bd05
BP
405 struct buffer_head map_bh;
406 unsigned long first_logical_block = 0;
1da177e4 407
79ffab34
AK
408 map_bh.b_state = 0;
409 map_bh.b_size = 0;
fa30bd05
BP
410 bio = do_mpage_readpage(bio, page, 1, &last_block_in_bio,
411 &map_bh, &first_logical_block, get_block);
1da177e4
LT
412 if (bio)
413 mpage_bio_submit(READ, bio);
414 return 0;
415}
416EXPORT_SYMBOL(mpage_readpage);
417
418/*
419 * Writing is not so simple.
420 *
421 * If the page has buffers then they will be used for obtaining the disk
422 * mapping. We only support pages which are fully mapped-and-dirty, with a
423 * special case for pages which are unmapped at the end: end-of-file.
424 *
425 * If the page has no buffers (preferred) then the page is mapped here.
426 *
427 * If all blocks are found to be contiguous then the page can go into the
428 * BIO. Otherwise fall back to the mapping's writepage().
429 *
430 * FIXME: This code wants an estimate of how many pages are still to be
431 * written, so it can intelligently allocate a suitably-sized BIO. For now,
432 * just allocate full-size (16-page) BIOs.
433 */
0ea97180 434
ced117c7
DV
435struct mpage_data {
436 struct bio *bio;
437 sector_t last_block_in_bio;
438 get_block_t *get_block;
439 unsigned use_writepage;
440};
441
90768eee
MW
442/*
443 * We have our BIO, so we can now mark the buffers clean. Make
444 * sure to only clean buffers which we know we'll be writing.
445 */
446static void clean_buffers(struct page *page, unsigned first_unmapped)
447{
448 unsigned buffer_counter = 0;
449 struct buffer_head *bh, *head;
450 if (!page_has_buffers(page))
451 return;
452 head = page_buffers(page);
453 bh = head;
454
455 do {
456 if (buffer_counter++ == first_unmapped)
457 break;
458 clear_buffer_dirty(bh);
459 bh = bh->b_this_page;
460 } while (bh != head);
461
462 /*
463 * we cannot drop the bh if the page is not uptodate or a concurrent
464 * readpage would fail to serialize with the bh and it would read from
465 * disk before we reach the platter.
466 */
467 if (buffer_heads_over_limit && PageUptodate(page))
468 try_to_free_buffers(page);
469}
470
ced117c7 471static int __mpage_writepage(struct page *page, struct writeback_control *wbc,
29a814d2 472 void *data)
1da177e4 473{
0ea97180
MS
474 struct mpage_data *mpd = data;
475 struct bio *bio = mpd->bio;
1da177e4
LT
476 struct address_space *mapping = page->mapping;
477 struct inode *inode = page->mapping->host;
478 const unsigned blkbits = inode->i_blkbits;
479 unsigned long end_index;
480 const unsigned blocks_per_page = PAGE_CACHE_SIZE >> blkbits;
481 sector_t last_block;
482 sector_t block_in_file;
483 sector_t blocks[MAX_BUF_PER_PAGE];
484 unsigned page_block;
485 unsigned first_unmapped = blocks_per_page;
486 struct block_device *bdev = NULL;
487 int boundary = 0;
488 sector_t boundary_block = 0;
489 struct block_device *boundary_bdev = NULL;
490 int length;
491 struct buffer_head map_bh;
492 loff_t i_size = i_size_read(inode);
0ea97180 493 int ret = 0;
1da177e4
LT
494
495 if (page_has_buffers(page)) {
496 struct buffer_head *head = page_buffers(page);
497 struct buffer_head *bh = head;
498
499 /* If they're all mapped and dirty, do it */
500 page_block = 0;
501 do {
502 BUG_ON(buffer_locked(bh));
503 if (!buffer_mapped(bh)) {
504 /*
505 * unmapped dirty buffers are created by
506 * __set_page_dirty_buffers -> mmapped data
507 */
508 if (buffer_dirty(bh))
509 goto confused;
510 if (first_unmapped == blocks_per_page)
511 first_unmapped = page_block;
512 continue;
513 }
514
515 if (first_unmapped != blocks_per_page)
516 goto confused; /* hole -> non-hole */
517
518 if (!buffer_dirty(bh) || !buffer_uptodate(bh))
519 goto confused;
520 if (page_block) {
521 if (bh->b_blocknr != blocks[page_block-1] + 1)
522 goto confused;
523 }
524 blocks[page_block++] = bh->b_blocknr;
525 boundary = buffer_boundary(bh);
526 if (boundary) {
527 boundary_block = bh->b_blocknr;
528 boundary_bdev = bh->b_bdev;
529 }
530 bdev = bh->b_bdev;
531 } while ((bh = bh->b_this_page) != head);
532
533 if (first_unmapped)
534 goto page_is_mapped;
535
536 /*
537 * Page has buffers, but they are all unmapped. The page was
538 * created by pagein or read over a hole which was handled by
539 * block_read_full_page(). If this address_space is also
540 * using mpage_readpages then this can rarely happen.
541 */
542 goto confused;
543 }
544
545 /*
546 * The page has no buffers: map it to disk
547 */
548 BUG_ON(!PageUptodate(page));
54b21a79 549 block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
1da177e4
LT
550 last_block = (i_size - 1) >> blkbits;
551 map_bh.b_page = page;
552 for (page_block = 0; page_block < blocks_per_page; ) {
553
554 map_bh.b_state = 0;
b0cf2321 555 map_bh.b_size = 1 << blkbits;
0ea97180 556 if (mpd->get_block(inode, block_in_file, &map_bh, 1))
1da177e4
LT
557 goto confused;
558 if (buffer_new(&map_bh))
559 unmap_underlying_metadata(map_bh.b_bdev,
560 map_bh.b_blocknr);
561 if (buffer_boundary(&map_bh)) {
562 boundary_block = map_bh.b_blocknr;
563 boundary_bdev = map_bh.b_bdev;
564 }
565 if (page_block) {
566 if (map_bh.b_blocknr != blocks[page_block-1] + 1)
567 goto confused;
568 }
569 blocks[page_block++] = map_bh.b_blocknr;
570 boundary = buffer_boundary(&map_bh);
571 bdev = map_bh.b_bdev;
572 if (block_in_file == last_block)
573 break;
574 block_in_file++;
575 }
576 BUG_ON(page_block == 0);
577
578 first_unmapped = page_block;
579
580page_is_mapped:
581 end_index = i_size >> PAGE_CACHE_SHIFT;
582 if (page->index >= end_index) {
583 /*
584 * The page straddles i_size. It must be zeroed out on each
2a61aa40 585 * and every writepage invocation because it may be mmapped.
1da177e4
LT
586 * "A file is mapped in multiples of the page size. For a file
587 * that is not a multiple of the page size, the remaining memory
588 * is zeroed when mapped, and writes to that region are not
589 * written out to the file."
590 */
591 unsigned offset = i_size & (PAGE_CACHE_SIZE - 1);
1da177e4
LT
592
593 if (page->index > end_index || !offset)
594 goto confused;
eebd2aa3 595 zero_user_segment(page, offset, PAGE_CACHE_SIZE);
1da177e4
LT
596 }
597
598 /*
599 * This page will go to BIO. Do we need to send this BIO off first?
600 */
0ea97180 601 if (bio && mpd->last_block_in_bio != blocks[0] - 1)
1da177e4
LT
602 bio = mpage_bio_submit(WRITE, bio);
603
604alloc_new:
605 if (bio == NULL) {
606 bio = mpage_alloc(bdev, blocks[0] << (blkbits - 9),
607 bio_get_nr_vecs(bdev), GFP_NOFS|__GFP_HIGH);
608 if (bio == NULL)
609 goto confused;
610 }
611
612 /*
613 * Must try to add the page before marking the buffer clean or
614 * the confused fail path above (OOM) will be very confused when
615 * it finds all bh marked clean (i.e. it will not write anything)
616 */
617 length = first_unmapped << blkbits;
618 if (bio_add_page(bio, page, length, 0) < length) {
619 bio = mpage_bio_submit(WRITE, bio);
620 goto alloc_new;
621 }
622
90768eee 623 clean_buffers(page, first_unmapped);
1da177e4
LT
624
625 BUG_ON(PageWriteback(page));
626 set_page_writeback(page);
627 unlock_page(page);
628 if (boundary || (first_unmapped != blocks_per_page)) {
629 bio = mpage_bio_submit(WRITE, bio);
630 if (boundary_block) {
631 write_boundary_block(boundary_bdev,
632 boundary_block, 1 << blkbits);
633 }
634 } else {
0ea97180 635 mpd->last_block_in_bio = blocks[blocks_per_page - 1];
1da177e4
LT
636 }
637 goto out;
638
639confused:
640 if (bio)
641 bio = mpage_bio_submit(WRITE, bio);
642
0ea97180
MS
643 if (mpd->use_writepage) {
644 ret = mapping->a_ops->writepage(page, wbc);
1da177e4 645 } else {
0ea97180 646 ret = -EAGAIN;
1da177e4
LT
647 goto out;
648 }
649 /*
650 * The caller has a ref on the inode, so *mapping is stable
651 */
0ea97180 652 mapping_set_error(mapping, ret);
1da177e4 653out:
0ea97180
MS
654 mpd->bio = bio;
655 return ret;
1da177e4
LT
656}
657
658/**
78a4a50a 659 * mpage_writepages - walk the list of dirty pages of the given address space & writepage() all of them
1da177e4
LT
660 * @mapping: address space structure to write
661 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
662 * @get_block: the filesystem's block mapper function.
663 * If this is NULL then use a_ops->writepage. Otherwise, go
664 * direct-to-BIO.
665 *
666 * This is a library function, which implements the writepages()
667 * address_space_operation.
668 *
669 * If a page is already under I/O, generic_writepages() skips it, even
670 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
671 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
672 * and msync() need to guarantee that all the data which was dirty at the time
673 * the call was made get new I/O started against them. If wbc->sync_mode is
674 * WB_SYNC_ALL then we were called for data integrity and we must wait for
675 * existing IO to complete.
676 */
677int
678mpage_writepages(struct address_space *mapping,
679 struct writeback_control *wbc, get_block_t get_block)
1da177e4 680{
2ed1a6bc 681 struct blk_plug plug;
0ea97180
MS
682 int ret;
683
2ed1a6bc
JA
684 blk_start_plug(&plug);
685
0ea97180
MS
686 if (!get_block)
687 ret = generic_writepages(mapping, wbc);
688 else {
689 struct mpage_data mpd = {
690 .bio = NULL,
691 .last_block_in_bio = 0,
692 .get_block = get_block,
693 .use_writepage = 1,
694 };
695
696 ret = write_cache_pages(mapping, wbc, __mpage_writepage, &mpd);
697 if (mpd.bio)
698 mpage_bio_submit(WRITE, mpd.bio);
1da177e4 699 }
2ed1a6bc 700 blk_finish_plug(&plug);
1da177e4
LT
701 return ret;
702}
703EXPORT_SYMBOL(mpage_writepages);
1da177e4
LT
704
705int mpage_writepage(struct page *page, get_block_t get_block,
706 struct writeback_control *wbc)
707{
0ea97180
MS
708 struct mpage_data mpd = {
709 .bio = NULL,
710 .last_block_in_bio = 0,
711 .get_block = get_block,
712 .use_writepage = 0,
713 };
714 int ret = __mpage_writepage(page, wbc, &mpd);
715 if (mpd.bio)
716 mpage_bio_submit(WRITE, mpd.bio);
1da177e4
LT
717 return ret;
718}
719EXPORT_SYMBOL(mpage_writepage);