Drop 'size' argument from bio_endio and bi_end_io
[linux-2.6-block.git] / fs / jfs / jfs_logmgr.c
CommitLineData
1da177e4
LT
1/*
2 * Copyright (C) International Business Machines Corp., 2000-2004
3 * Portions Copyright (C) Christoph Hellwig, 2001-2002
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
63f83c9f 7 * the Free Software Foundation; either version 2 of the License, or
1da177e4 8 * (at your option) any later version.
63f83c9f 9 *
1da177e4
LT
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
13 * the GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
63f83c9f 16 * along with this program; if not, write to the Free Software
1da177e4
LT
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 */
19
20/*
21 * jfs_logmgr.c: log manager
22 *
23 * for related information, see transaction manager (jfs_txnmgr.c), and
24 * recovery manager (jfs_logredo.c).
25 *
26 * note: for detail, RTFS.
27 *
28 * log buffer manager:
29 * special purpose buffer manager supporting log i/o requirements.
30 * per log serial pageout of logpage
31 * queuing i/o requests and redrive i/o at iodone
32 * maintain current logpage buffer
33 * no caching since append only
34 * appropriate jfs buffer cache buffers as needed
35 *
36 * group commit:
37 * transactions which wrote COMMIT records in the same in-memory
38 * log page during the pageout of previous/current log page(s) are
39 * committed together by the pageout of the page.
40 *
41 * TBD lazy commit:
42 * transactions are committed asynchronously when the log page
43 * containing it COMMIT is paged out when it becomes full;
44 *
45 * serialization:
46 * . a per log lock serialize log write.
47 * . a per log lock serialize group commit.
48 * . a per log lock serialize log open/close;
49 *
50 * TBD log integrity:
51 * careful-write (ping-pong) of last logpage to recover from crash
52 * in overwrite.
53 * detection of split (out-of-order) write of physical sectors
54 * of last logpage via timestamp at end of each sector
55 * with its mirror data array at trailer).
56 *
57 * alternatives:
58 * lsn - 64-bit monotonically increasing integer vs
59 * 32-bit lspn and page eor.
60 */
61
62#include <linux/fs.h>
63#include <linux/blkdev.h>
64#include <linux/interrupt.h>
1da177e4 65#include <linux/completion.h>
91dbb4de 66#include <linux/kthread.h>
1da177e4
LT
67#include <linux/buffer_head.h> /* for sync_blockdev() */
68#include <linux/bio.h>
7dfb7103 69#include <linux/freezer.h>
1da177e4 70#include <linux/delay.h>
353ab6e9 71#include <linux/mutex.h>
1da177e4
LT
72#include "jfs_incore.h"
73#include "jfs_filsys.h"
74#include "jfs_metapage.h"
1868f4aa 75#include "jfs_superblock.h"
1da177e4
LT
76#include "jfs_txnmgr.h"
77#include "jfs_debug.h"
78
79
80/*
81 * lbuf's ready to be redriven. Protected by log_redrive_lock (jfsIO thread)
82 */
83static struct lbuf *log_redrive_list;
84static DEFINE_SPINLOCK(log_redrive_lock);
1da177e4
LT
85
86
87/*
88 * log read/write serialization (per log)
89 */
1de87444
IM
90#define LOG_LOCK_INIT(log) mutex_init(&(log)->loglock)
91#define LOG_LOCK(log) mutex_lock(&((log)->loglock))
92#define LOG_UNLOCK(log) mutex_unlock(&((log)->loglock))
1da177e4
LT
93
94
95/*
96 * log group commit serialization (per log)
97 */
98
99#define LOGGC_LOCK_INIT(log) spin_lock_init(&(log)->gclock)
100#define LOGGC_LOCK(log) spin_lock_irq(&(log)->gclock)
101#define LOGGC_UNLOCK(log) spin_unlock_irq(&(log)->gclock)
102#define LOGGC_WAKEUP(tblk) wake_up_all(&(tblk)->gcwait)
103
104/*
105 * log sync serialization (per log)
106 */
107#define LOGSYNC_DELTA(logsize) min((logsize)/8, 128*LOGPSIZE)
108#define LOGSYNC_BARRIER(logsize) ((logsize)/4)
109/*
110#define LOGSYNC_DELTA(logsize) min((logsize)/4, 256*LOGPSIZE)
111#define LOGSYNC_BARRIER(logsize) ((logsize)/2)
112*/
113
114
115/*
116 * log buffer cache synchronization
117 */
118static DEFINE_SPINLOCK(jfsLCacheLock);
119
120#define LCACHE_LOCK(flags) spin_lock_irqsave(&jfsLCacheLock, flags)
121#define LCACHE_UNLOCK(flags) spin_unlock_irqrestore(&jfsLCacheLock, flags)
122
123/*
124 * See __SLEEP_COND in jfs_locks.h
125 */
126#define LCACHE_SLEEP_COND(wq, cond, flags) \
127do { \
128 if (cond) \
129 break; \
130 __SLEEP_COND(wq, cond, LCACHE_LOCK(flags), LCACHE_UNLOCK(flags)); \
131} while (0)
132
133#define LCACHE_WAKEUP(event) wake_up(event)
134
135
136/*
137 * lbuf buffer cache (lCache) control
138 */
139/* log buffer manager pageout control (cumulative, inclusive) */
140#define lbmREAD 0x0001
141#define lbmWRITE 0x0002 /* enqueue at tail of write queue;
142 * init pageout if at head of queue;
143 */
144#define lbmRELEASE 0x0004 /* remove from write queue
145 * at completion of pageout;
146 * do not free/recycle it yet:
147 * caller will free it;
148 */
149#define lbmSYNC 0x0008 /* do not return to freelist
150 * when removed from write queue;
151 */
152#define lbmFREE 0x0010 /* return to freelist
153 * at completion of pageout;
154 * the buffer may be recycled;
155 */
156#define lbmDONE 0x0020
157#define lbmERROR 0x0040
158#define lbmGC 0x0080 /* lbmIODone to perform post-GC processing
159 * of log page
160 */
161#define lbmDIRECT 0x0100
162
163/*
164 * Global list of active external journals
165 */
166static LIST_HEAD(jfs_external_logs);
167static struct jfs_log *dummy_log = NULL;
353ab6e9 168static DEFINE_MUTEX(jfs_log_mutex);
1da177e4 169
1da177e4
LT
170/*
171 * forward references
172 */
173static int lmWriteRecord(struct jfs_log * log, struct tblock * tblk,
174 struct lrd * lrd, struct tlock * tlck);
175
176static int lmNextPage(struct jfs_log * log);
177static int lmLogFileSystem(struct jfs_log * log, struct jfs_sb_info *sbi,
178 int activate);
179
180static int open_inline_log(struct super_block *sb);
181static int open_dummy_log(struct super_block *sb);
182static int lbmLogInit(struct jfs_log * log);
183static void lbmLogShutdown(struct jfs_log * log);
184static struct lbuf *lbmAllocate(struct jfs_log * log, int);
185static void lbmFree(struct lbuf * bp);
186static void lbmfree(struct lbuf * bp);
187static int lbmRead(struct jfs_log * log, int pn, struct lbuf ** bpp);
188static void lbmWrite(struct jfs_log * log, struct lbuf * bp, int flag, int cant_block);
189static void lbmDirectWrite(struct jfs_log * log, struct lbuf * bp, int flag);
190static int lbmIOWait(struct lbuf * bp, int flag);
191static bio_end_io_t lbmIODone;
192static void lbmStartIO(struct lbuf * bp);
193static void lmGCwrite(struct jfs_log * log, int cant_block);
cbc3d65e 194static int lmLogSync(struct jfs_log * log, int hard_sync);
1da177e4
LT
195
196
197
198/*
199 * statistics
200 */
201#ifdef CONFIG_JFS_STATISTICS
202static struct lmStat {
203 uint commit; /* # of commit */
204 uint pagedone; /* # of page written */
205 uint submitted; /* # of pages submitted */
206 uint full_page; /* # of full pages submitted */
207 uint partial_page; /* # of partial pages submitted */
208} lmStat;
209#endif
210
211
212/*
213 * NAME: lmLog()
214 *
215 * FUNCTION: write a log record;
216 *
217 * PARAMETER:
218 *
219 * RETURN: lsn - offset to the next log record to write (end-of-log);
220 * -1 - error;
221 *
222 * note: todo: log error handler
223 */
224int lmLog(struct jfs_log * log, struct tblock * tblk, struct lrd * lrd,
225 struct tlock * tlck)
226{
227 int lsn;
228 int diffp, difft;
229 struct metapage *mp = NULL;
7fab479b 230 unsigned long flags;
1da177e4
LT
231
232 jfs_info("lmLog: log:0x%p tblk:0x%p, lrd:0x%p tlck:0x%p",
233 log, tblk, lrd, tlck);
234
235 LOG_LOCK(log);
236
237 /* log by (out-of-transaction) JFS ? */
238 if (tblk == NULL)
239 goto writeRecord;
240
241 /* log from page ? */
242 if (tlck == NULL ||
243 tlck->type & tlckBTROOT || (mp = tlck->mp) == NULL)
244 goto writeRecord;
245
246 /*
f720e3ba 247 * initialize/update page/transaction recovery lsn
1da177e4
LT
248 */
249 lsn = log->lsn;
250
7fab479b 251 LOGSYNC_LOCK(log, flags);
1da177e4
LT
252
253 /*
254 * initialize page lsn if first log write of the page
255 */
256 if (mp->lsn == 0) {
257 mp->log = log;
258 mp->lsn = lsn;
259 log->count++;
260
261 /* insert page at tail of logsynclist */
262 list_add_tail(&mp->synclist, &log->synclist);
263 }
264
265 /*
f720e3ba 266 * initialize/update lsn of tblock of the page
1da177e4
LT
267 *
268 * transaction inherits oldest lsn of pages associated
269 * with allocation/deallocation of resources (their
270 * log records are used to reconstruct allocation map
271 * at recovery time: inode for inode allocation map,
272 * B+-tree index of extent descriptors for block
273 * allocation map);
274 * allocation map pages inherit transaction lsn at
275 * commit time to allow forwarding log syncpt past log
276 * records associated with allocation/deallocation of
277 * resources only after persistent map of these map pages
278 * have been updated and propagated to home.
279 */
280 /*
281 * initialize transaction lsn:
282 */
283 if (tblk->lsn == 0) {
284 /* inherit lsn of its first page logged */
285 tblk->lsn = mp->lsn;
286 log->count++;
287
288 /* insert tblock after the page on logsynclist */
289 list_add(&tblk->synclist, &mp->synclist);
290 }
291 /*
292 * update transaction lsn:
293 */
294 else {
295 /* inherit oldest/smallest lsn of page */
296 logdiff(diffp, mp->lsn, log);
297 logdiff(difft, tblk->lsn, log);
298 if (diffp < difft) {
299 /* update tblock lsn with page lsn */
300 tblk->lsn = mp->lsn;
301
302 /* move tblock after page on logsynclist */
303 list_move(&tblk->synclist, &mp->synclist);
304 }
305 }
306
7fab479b 307 LOGSYNC_UNLOCK(log, flags);
1da177e4
LT
308
309 /*
f720e3ba 310 * write the log record
1da177e4
LT
311 */
312 writeRecord:
313 lsn = lmWriteRecord(log, tblk, lrd, tlck);
314
315 /*
316 * forward log syncpt if log reached next syncpt trigger
317 */
318 logdiff(diffp, lsn, log);
319 if (diffp >= log->nextsync)
320 lsn = lmLogSync(log, 0);
321
322 /* update end-of-log lsn */
323 log->lsn = lsn;
324
325 LOG_UNLOCK(log);
326
327 /* return end-of-log address */
328 return lsn;
329}
330
1da177e4
LT
331/*
332 * NAME: lmWriteRecord()
333 *
334 * FUNCTION: move the log record to current log page
335 *
336 * PARAMETER: cd - commit descriptor
337 *
338 * RETURN: end-of-log address
63f83c9f 339 *
1da177e4
LT
340 * serialization: LOG_LOCK() held on entry/exit
341 */
342static int
343lmWriteRecord(struct jfs_log * log, struct tblock * tblk, struct lrd * lrd,
344 struct tlock * tlck)
345{
346 int lsn = 0; /* end-of-log address */
347 struct lbuf *bp; /* dst log page buffer */
348 struct logpage *lp; /* dst log page */
349 caddr_t dst; /* destination address in log page */
350 int dstoffset; /* end-of-log offset in log page */
351 int freespace; /* free space in log page */
352 caddr_t p; /* src meta-data page */
353 caddr_t src;
354 int srclen;
355 int nbytes; /* number of bytes to move */
356 int i;
357 int len;
358 struct linelock *linelock;
359 struct lv *lv;
360 struct lvd *lvd;
361 int l2linesize;
362
363 len = 0;
364
365 /* retrieve destination log page to write */
366 bp = (struct lbuf *) log->bp;
367 lp = (struct logpage *) bp->l_ldata;
368 dstoffset = log->eor;
369
370 /* any log data to write ? */
371 if (tlck == NULL)
372 goto moveLrd;
373
374 /*
f720e3ba 375 * move log record data
1da177e4
LT
376 */
377 /* retrieve source meta-data page to log */
378 if (tlck->flag & tlckPAGELOCK) {
379 p = (caddr_t) (tlck->mp->data);
380 linelock = (struct linelock *) & tlck->lock;
381 }
382 /* retrieve source in-memory inode to log */
383 else if (tlck->flag & tlckINODELOCK) {
384 if (tlck->type & tlckDTREE)
385 p = (caddr_t) &JFS_IP(tlck->ip)->i_dtroot;
386 else
387 p = (caddr_t) &JFS_IP(tlck->ip)->i_xtroot;
388 linelock = (struct linelock *) & tlck->lock;
389 }
390#ifdef _JFS_WIP
391 else if (tlck->flag & tlckINLINELOCK) {
392
393 inlinelock = (struct inlinelock *) & tlck;
394 p = (caddr_t) & inlinelock->pxd;
395 linelock = (struct linelock *) & tlck;
396 }
397#endif /* _JFS_WIP */
398 else {
399 jfs_err("lmWriteRecord: UFO tlck:0x%p", tlck);
400 return 0; /* Probably should trap */
401 }
402 l2linesize = linelock->l2linesize;
403
404 moveData:
405 ASSERT(linelock->index <= linelock->maxcnt);
406
407 lv = linelock->lv;
408 for (i = 0; i < linelock->index; i++, lv++) {
409 if (lv->length == 0)
410 continue;
411
412 /* is page full ? */
413 if (dstoffset >= LOGPSIZE - LOGPTLRSIZE) {
414 /* page become full: move on to next page */
415 lmNextPage(log);
416
417 bp = log->bp;
418 lp = (struct logpage *) bp->l_ldata;
419 dstoffset = LOGPHDRSIZE;
420 }
421
422 /*
423 * move log vector data
424 */
425 src = (u8 *) p + (lv->offset << l2linesize);
426 srclen = lv->length << l2linesize;
427 len += srclen;
428 while (srclen > 0) {
429 freespace = (LOGPSIZE - LOGPTLRSIZE) - dstoffset;
430 nbytes = min(freespace, srclen);
431 dst = (caddr_t) lp + dstoffset;
432 memcpy(dst, src, nbytes);
433 dstoffset += nbytes;
434
435 /* is page not full ? */
436 if (dstoffset < LOGPSIZE - LOGPTLRSIZE)
437 break;
438
439 /* page become full: move on to next page */
440 lmNextPage(log);
441
442 bp = (struct lbuf *) log->bp;
443 lp = (struct logpage *) bp->l_ldata;
444 dstoffset = LOGPHDRSIZE;
445
446 srclen -= nbytes;
447 src += nbytes;
448 }
449
450 /*
451 * move log vector descriptor
452 */
453 len += 4;
454 lvd = (struct lvd *) ((caddr_t) lp + dstoffset);
455 lvd->offset = cpu_to_le16(lv->offset);
456 lvd->length = cpu_to_le16(lv->length);
457 dstoffset += 4;
458 jfs_info("lmWriteRecord: lv offset:%d length:%d",
459 lv->offset, lv->length);
460 }
461
462 if ((i = linelock->next)) {
463 linelock = (struct linelock *) lid_to_tlock(i);
464 goto moveData;
465 }
466
467 /*
f720e3ba 468 * move log record descriptor
1da177e4
LT
469 */
470 moveLrd:
471 lrd->length = cpu_to_le16(len);
472
473 src = (caddr_t) lrd;
474 srclen = LOGRDSIZE;
475
476 while (srclen > 0) {
477 freespace = (LOGPSIZE - LOGPTLRSIZE) - dstoffset;
478 nbytes = min(freespace, srclen);
479 dst = (caddr_t) lp + dstoffset;
480 memcpy(dst, src, nbytes);
481
482 dstoffset += nbytes;
483 srclen -= nbytes;
484
485 /* are there more to move than freespace of page ? */
486 if (srclen)
487 goto pageFull;
488
489 /*
490 * end of log record descriptor
491 */
492
493 /* update last log record eor */
494 log->eor = dstoffset;
495 bp->l_eor = dstoffset;
496 lsn = (log->page << L2LOGPSIZE) + dstoffset;
497
498 if (lrd->type & cpu_to_le16(LOG_COMMIT)) {
499 tblk->clsn = lsn;
500 jfs_info("wr: tclsn:0x%x, beor:0x%x", tblk->clsn,
501 bp->l_eor);
502
503 INCREMENT(lmStat.commit); /* # of commit */
504
505 /*
506 * enqueue tblock for group commit:
507 *
508 * enqueue tblock of non-trivial/synchronous COMMIT
509 * at tail of group commit queue
510 * (trivial/asynchronous COMMITs are ignored by
511 * group commit.)
512 */
513 LOGGC_LOCK(log);
514
515 /* init tblock gc state */
516 tblk->flag = tblkGC_QUEUE;
517 tblk->bp = log->bp;
518 tblk->pn = log->page;
519 tblk->eor = log->eor;
520
521 /* enqueue transaction to commit queue */
522 list_add_tail(&tblk->cqueue, &log->cqueue);
523
524 LOGGC_UNLOCK(log);
525 }
526
527 jfs_info("lmWriteRecord: lrd:0x%04x bp:0x%p pn:%d eor:0x%x",
528 le16_to_cpu(lrd->type), log->bp, log->page, dstoffset);
529
530 /* page not full ? */
531 if (dstoffset < LOGPSIZE - LOGPTLRSIZE)
532 return lsn;
533
534 pageFull:
535 /* page become full: move on to next page */
536 lmNextPage(log);
537
538 bp = (struct lbuf *) log->bp;
539 lp = (struct logpage *) bp->l_ldata;
540 dstoffset = LOGPHDRSIZE;
541 src += nbytes;
542 }
543
544 return lsn;
545}
546
547
548/*
549 * NAME: lmNextPage()
550 *
551 * FUNCTION: write current page and allocate next page.
552 *
553 * PARAMETER: log
554 *
555 * RETURN: 0
63f83c9f 556 *
1da177e4
LT
557 * serialization: LOG_LOCK() held on entry/exit
558 */
559static int lmNextPage(struct jfs_log * log)
560{
561 struct logpage *lp;
562 int lspn; /* log sequence page number */
563 int pn; /* current page number */
564 struct lbuf *bp;
565 struct lbuf *nextbp;
566 struct tblock *tblk;
567
568 /* get current log page number and log sequence page number */
569 pn = log->page;
570 bp = log->bp;
571 lp = (struct logpage *) bp->l_ldata;
572 lspn = le32_to_cpu(lp->h.page);
573
574 LOGGC_LOCK(log);
575
576 /*
f720e3ba 577 * write or queue the full page at the tail of write queue
1da177e4
LT
578 */
579 /* get the tail tblk on commit queue */
580 if (list_empty(&log->cqueue))
581 tblk = NULL;
582 else
583 tblk = list_entry(log->cqueue.prev, struct tblock, cqueue);
584
585 /* every tblk who has COMMIT record on the current page,
586 * and has not been committed, must be on commit queue
587 * since tblk is queued at commit queueu at the time
588 * of writing its COMMIT record on the page before
589 * page becomes full (even though the tblk thread
590 * who wrote COMMIT record may have been suspended
591 * currently);
592 */
593
594 /* is page bound with outstanding tail tblk ? */
595 if (tblk && tblk->pn == pn) {
596 /* mark tblk for end-of-page */
597 tblk->flag |= tblkGC_EOP;
598
599 if (log->cflag & logGC_PAGEOUT) {
600 /* if page is not already on write queue,
601 * just enqueue (no lbmWRITE to prevent redrive)
602 * buffer to wqueue to ensure correct serial order
603 * of the pages since log pages will be added
604 * continuously
605 */
606 if (bp->l_wqnext == NULL)
607 lbmWrite(log, bp, 0, 0);
608 } else {
609 /*
610 * No current GC leader, initiate group commit
611 */
612 log->cflag |= logGC_PAGEOUT;
613 lmGCwrite(log, 0);
614 }
615 }
616 /* page is not bound with outstanding tblk:
617 * init write or mark it to be redriven (lbmWRITE)
618 */
619 else {
620 /* finalize the page */
621 bp->l_ceor = bp->l_eor;
622 lp->h.eor = lp->t.eor = cpu_to_le16(bp->l_ceor);
623 lbmWrite(log, bp, lbmWRITE | lbmRELEASE | lbmFREE, 0);
624 }
625 LOGGC_UNLOCK(log);
626
627 /*
f720e3ba 628 * allocate/initialize next page
1da177e4
LT
629 */
630 /* if log wraps, the first data page of log is 2
631 * (0 never used, 1 is superblock).
632 */
633 log->page = (pn == log->size - 1) ? 2 : pn + 1;
634 log->eor = LOGPHDRSIZE; /* ? valid page empty/full at logRedo() */
635
636 /* allocate/initialize next log page buffer */
637 nextbp = lbmAllocate(log, log->page);
638 nextbp->l_eor = log->eor;
639 log->bp = nextbp;
640
641 /* initialize next log page */
642 lp = (struct logpage *) nextbp->l_ldata;
643 lp->h.page = lp->t.page = cpu_to_le32(lspn + 1);
644 lp->h.eor = lp->t.eor = cpu_to_le16(LOGPHDRSIZE);
645
646 return 0;
647}
648
649
650/*
651 * NAME: lmGroupCommit()
652 *
653 * FUNCTION: group commit
654 * initiate pageout of the pages with COMMIT in the order of
655 * page number - redrive pageout of the page at the head of
656 * pageout queue until full page has been written.
657 *
63f83c9f 658 * RETURN:
1da177e4
LT
659 *
660 * NOTE:
661 * LOGGC_LOCK serializes log group commit queue, and
662 * transaction blocks on the commit queue.
663 * N.B. LOG_LOCK is NOT held during lmGroupCommit().
664 */
665int lmGroupCommit(struct jfs_log * log, struct tblock * tblk)
666{
667 int rc = 0;
668
669 LOGGC_LOCK(log);
670
671 /* group committed already ? */
672 if (tblk->flag & tblkGC_COMMITTED) {
673 if (tblk->flag & tblkGC_ERROR)
674 rc = -EIO;
675
676 LOGGC_UNLOCK(log);
677 return rc;
678 }
679 jfs_info("lmGroup Commit: tblk = 0x%p, gcrtc = %d", tblk, log->gcrtc);
680
681 if (tblk->xflag & COMMIT_LAZY)
682 tblk->flag |= tblkGC_LAZY;
683
684 if ((!(log->cflag & logGC_PAGEOUT)) && (!list_empty(&log->cqueue)) &&
685 (!(tblk->xflag & COMMIT_LAZY) || test_bit(log_FLUSH, &log->flag)
686 || jfs_tlocks_low)) {
687 /*
688 * No pageout in progress
689 *
690 * start group commit as its group leader.
691 */
692 log->cflag |= logGC_PAGEOUT;
693
694 lmGCwrite(log, 0);
695 }
696
697 if (tblk->xflag & COMMIT_LAZY) {
698 /*
699 * Lazy transactions can leave now
700 */
701 LOGGC_UNLOCK(log);
702 return 0;
703 }
704
705 /* lmGCwrite gives up LOGGC_LOCK, check again */
706
707 if (tblk->flag & tblkGC_COMMITTED) {
708 if (tblk->flag & tblkGC_ERROR)
709 rc = -EIO;
710
711 LOGGC_UNLOCK(log);
712 return rc;
713 }
714
715 /* upcount transaction waiting for completion
716 */
717 log->gcrtc++;
718 tblk->flag |= tblkGC_READY;
719
720 __SLEEP_COND(tblk->gcwait, (tblk->flag & tblkGC_COMMITTED),
721 LOGGC_LOCK(log), LOGGC_UNLOCK(log));
722
723 /* removed from commit queue */
724 if (tblk->flag & tblkGC_ERROR)
725 rc = -EIO;
726
727 LOGGC_UNLOCK(log);
728 return rc;
729}
730
731/*
732 * NAME: lmGCwrite()
733 *
734 * FUNCTION: group commit write
735 * initiate write of log page, building a group of all transactions
736 * with commit records on that page.
737 *
738 * RETURN: None
739 *
740 * NOTE:
741 * LOGGC_LOCK must be held by caller.
742 * N.B. LOG_LOCK is NOT held during lmGroupCommit().
743 */
744static void lmGCwrite(struct jfs_log * log, int cant_write)
745{
746 struct lbuf *bp;
747 struct logpage *lp;
748 int gcpn; /* group commit page number */
749 struct tblock *tblk;
750 struct tblock *xtblk = NULL;
751
752 /*
753 * build the commit group of a log page
754 *
755 * scan commit queue and make a commit group of all
756 * transactions with COMMIT records on the same log page.
757 */
758 /* get the head tblk on the commit queue */
759 gcpn = list_entry(log->cqueue.next, struct tblock, cqueue)->pn;
760
761 list_for_each_entry(tblk, &log->cqueue, cqueue) {
762 if (tblk->pn != gcpn)
763 break;
764
765 xtblk = tblk;
766
767 /* state transition: (QUEUE, READY) -> COMMIT */
768 tblk->flag |= tblkGC_COMMIT;
769 }
770 tblk = xtblk; /* last tblk of the page */
771
772 /*
773 * pageout to commit transactions on the log page.
774 */
775 bp = (struct lbuf *) tblk->bp;
776 lp = (struct logpage *) bp->l_ldata;
777 /* is page already full ? */
778 if (tblk->flag & tblkGC_EOP) {
779 /* mark page to free at end of group commit of the page */
780 tblk->flag &= ~tblkGC_EOP;
781 tblk->flag |= tblkGC_FREE;
782 bp->l_ceor = bp->l_eor;
783 lp->h.eor = lp->t.eor = cpu_to_le16(bp->l_ceor);
784 lbmWrite(log, bp, lbmWRITE | lbmRELEASE | lbmGC,
785 cant_write);
786 INCREMENT(lmStat.full_page);
787 }
788 /* page is not yet full */
789 else {
790 bp->l_ceor = tblk->eor; /* ? bp->l_ceor = bp->l_eor; */
791 lp->h.eor = lp->t.eor = cpu_to_le16(bp->l_ceor);
792 lbmWrite(log, bp, lbmWRITE | lbmGC, cant_write);
793 INCREMENT(lmStat.partial_page);
794 }
795}
796
797/*
798 * NAME: lmPostGC()
799 *
800 * FUNCTION: group commit post-processing
801 * Processes transactions after their commit records have been written
802 * to disk, redriving log I/O if necessary.
803 *
804 * RETURN: None
805 *
806 * NOTE:
807 * This routine is called a interrupt time by lbmIODone
808 */
809static void lmPostGC(struct lbuf * bp)
810{
811 unsigned long flags;
812 struct jfs_log *log = bp->l_log;
813 struct logpage *lp;
814 struct tblock *tblk, *temp;
815
816 //LOGGC_LOCK(log);
817 spin_lock_irqsave(&log->gclock, flags);
818 /*
819 * current pageout of group commit completed.
820 *
821 * remove/wakeup transactions from commit queue who were
822 * group committed with the current log page
823 */
824 list_for_each_entry_safe(tblk, temp, &log->cqueue, cqueue) {
825 if (!(tblk->flag & tblkGC_COMMIT))
826 break;
827 /* if transaction was marked GC_COMMIT then
828 * it has been shipped in the current pageout
829 * and made it to disk - it is committed.
830 */
831
832 if (bp->l_flag & lbmERROR)
833 tblk->flag |= tblkGC_ERROR;
834
835 /* remove it from the commit queue */
836 list_del(&tblk->cqueue);
837 tblk->flag &= ~tblkGC_QUEUE;
838
839 if (tblk == log->flush_tblk) {
840 /* we can stop flushing the log now */
841 clear_bit(log_FLUSH, &log->flag);
842 log->flush_tblk = NULL;
843 }
844
845 jfs_info("lmPostGC: tblk = 0x%p, flag = 0x%x", tblk,
846 tblk->flag);
847
848 if (!(tblk->xflag & COMMIT_FORCE))
849 /*
850 * Hand tblk over to lazy commit thread
851 */
852 txLazyUnlock(tblk);
853 else {
854 /* state transition: COMMIT -> COMMITTED */
855 tblk->flag |= tblkGC_COMMITTED;
856
857 if (tblk->flag & tblkGC_READY)
858 log->gcrtc--;
859
860 LOGGC_WAKEUP(tblk);
861 }
862
863 /* was page full before pageout ?
864 * (and this is the last tblk bound with the page)
865 */
866 if (tblk->flag & tblkGC_FREE)
867 lbmFree(bp);
868 /* did page become full after pageout ?
869 * (and this is the last tblk bound with the page)
870 */
871 else if (tblk->flag & tblkGC_EOP) {
872 /* finalize the page */
873 lp = (struct logpage *) bp->l_ldata;
874 bp->l_ceor = bp->l_eor;
875 lp->h.eor = lp->t.eor = cpu_to_le16(bp->l_eor);
876 jfs_info("lmPostGC: calling lbmWrite");
877 lbmWrite(log, bp, lbmWRITE | lbmRELEASE | lbmFREE,
878 1);
879 }
880
881 }
882
883 /* are there any transactions who have entered lnGroupCommit()
884 * (whose COMMITs are after that of the last log page written.
885 * They are waiting for new group commit (above at (SLEEP 1))
886 * or lazy transactions are on a full (queued) log page,
887 * select the latest ready transaction as new group leader and
888 * wake her up to lead her group.
889 */
890 if ((!list_empty(&log->cqueue)) &&
891 ((log->gcrtc > 0) || (tblk->bp->l_wqnext != NULL) ||
892 test_bit(log_FLUSH, &log->flag) || jfs_tlocks_low))
893 /*
894 * Call lmGCwrite with new group leader
895 */
896 lmGCwrite(log, 1);
897
898 /* no transaction are ready yet (transactions are only just
899 * queued (GC_QUEUE) and not entered for group commit yet).
900 * the first transaction entering group commit
901 * will elect herself as new group leader.
902 */
903 else
904 log->cflag &= ~logGC_PAGEOUT;
905
906 //LOGGC_UNLOCK(log);
907 spin_unlock_irqrestore(&log->gclock, flags);
908 return;
909}
910
911/*
912 * NAME: lmLogSync()
913 *
914 * FUNCTION: write log SYNCPT record for specified log
915 * if new sync address is available
916 * (normally the case if sync() is executed by back-ground
917 * process).
1da177e4
LT
918 * calculate new value of i_nextsync which determines when
919 * this code is called again.
920 *
1c627829 921 * PARAMETERS: log - log structure
63f83c9f 922 * hard_sync - 1 to force all metadata to be written
1da177e4
LT
923 *
924 * RETURN: 0
63f83c9f 925 *
1da177e4
LT
926 * serialization: LOG_LOCK() held on entry/exit
927 */
cbc3d65e 928static int lmLogSync(struct jfs_log * log, int hard_sync)
1da177e4
LT
929{
930 int logsize;
931 int written; /* written since last syncpt */
932 int free; /* free space left available */
933 int delta; /* additional delta to write normally */
934 int more; /* additional write granted */
935 struct lrd lrd;
936 int lsn;
937 struct logsyncblk *lp;
7fab479b
DK
938 struct jfs_sb_info *sbi;
939 unsigned long flags;
940
941 /* push dirty metapages out to disk */
cbc3d65e
DK
942 if (hard_sync)
943 list_for_each_entry(sbi, &log->sb_list, log_list) {
944 filemap_fdatawrite(sbi->ipbmap->i_mapping);
945 filemap_fdatawrite(sbi->ipimap->i_mapping);
946 filemap_fdatawrite(sbi->direct_inode->i_mapping);
947 }
948 else
949 list_for_each_entry(sbi, &log->sb_list, log_list) {
950 filemap_flush(sbi->ipbmap->i_mapping);
951 filemap_flush(sbi->ipimap->i_mapping);
952 filemap_flush(sbi->direct_inode->i_mapping);
953 }
1da177e4
LT
954
955 /*
f720e3ba 956 * forward syncpt
1da177e4
LT
957 */
958 /* if last sync is same as last syncpt,
959 * invoke sync point forward processing to update sync.
960 */
961
962 if (log->sync == log->syncpt) {
7fab479b 963 LOGSYNC_LOCK(log, flags);
1da177e4
LT
964 if (list_empty(&log->synclist))
965 log->sync = log->lsn;
966 else {
967 lp = list_entry(log->synclist.next,
968 struct logsyncblk, synclist);
969 log->sync = lp->lsn;
970 }
7fab479b 971 LOGSYNC_UNLOCK(log, flags);
1da177e4
LT
972
973 }
974
975 /* if sync is different from last syncpt,
976 * write a SYNCPT record with syncpt = sync.
977 * reset syncpt = sync
978 */
979 if (log->sync != log->syncpt) {
1da177e4
LT
980 lrd.logtid = 0;
981 lrd.backchain = 0;
982 lrd.type = cpu_to_le16(LOG_SYNCPT);
983 lrd.length = 0;
984 lrd.log.syncpt.sync = cpu_to_le32(log->sync);
985 lsn = lmWriteRecord(log, NULL, &lrd, NULL);
986
987 log->syncpt = log->sync;
988 } else
989 lsn = log->lsn;
990
991 /*
f720e3ba 992 * setup next syncpt trigger (SWAG)
1da177e4
LT
993 */
994 logsize = log->logsize;
995
996 logdiff(written, lsn, log);
997 free = logsize - written;
998 delta = LOGSYNC_DELTA(logsize);
999 more = min(free / 2, delta);
1000 if (more < 2 * LOGPSIZE) {
1001 jfs_warn("\n ... Log Wrap ... Log Wrap ... Log Wrap ...\n");
1002 /*
f720e3ba 1003 * log wrapping
1da177e4
LT
1004 *
1005 * option 1 - panic ? No.!
1006 * option 2 - shutdown file systems
f720e3ba 1007 * associated with log ?
1da177e4
LT
1008 * option 3 - extend log ?
1009 */
1010 /*
1011 * option 4 - second chance
1012 *
1013 * mark log wrapped, and continue.
1014 * when all active transactions are completed,
1015 * mark log vaild for recovery.
1016 * if crashed during invalid state, log state
1017 * implies invald log, forcing fsck().
1018 */
1019 /* mark log state log wrap in log superblock */
1020 /* log->state = LOGWRAP; */
1021
1022 /* reset sync point computation */
1023 log->syncpt = log->sync = lsn;
1024 log->nextsync = delta;
1025 } else
1026 /* next syncpt trigger = written + more */
1027 log->nextsync = written + more;
1028
1da177e4
LT
1029 /* if number of bytes written from last sync point is more
1030 * than 1/4 of the log size, stop new transactions from
1031 * starting until all current transactions are completed
1032 * by setting syncbarrier flag.
1033 */
c2783f3a
DK
1034 if (!test_bit(log_SYNCBARRIER, &log->flag) &&
1035 (written > LOGSYNC_BARRIER(logsize)) && log->active) {
1da177e4
LT
1036 set_bit(log_SYNCBARRIER, &log->flag);
1037 jfs_info("log barrier on: lsn=0x%x syncpt=0x%x", lsn,
1038 log->syncpt);
1039 /*
1040 * We may have to initiate group commit
1041 */
1042 jfs_flush_journal(log, 0);
1043 }
1044
1045 return lsn;
1046}
1047
1c627829
DK
1048/*
1049 * NAME: jfs_syncpt
1050 *
1051 * FUNCTION: write log SYNCPT record for specified log
1052 *
cbc3d65e 1053 * PARAMETERS: log - log structure
63f83c9f 1054 * hard_sync - set to 1 to force metadata to be written
1c627829 1055 */
cbc3d65e 1056void jfs_syncpt(struct jfs_log *log, int hard_sync)
1c627829 1057{ LOG_LOCK(log);
cbc3d65e 1058 lmLogSync(log, hard_sync);
1c627829
DK
1059 LOG_UNLOCK(log);
1060}
1da177e4
LT
1061
1062/*
1063 * NAME: lmLogOpen()
1064 *
f720e3ba 1065 * FUNCTION: open the log on first open;
1da177e4
LT
1066 * insert filesystem in the active list of the log.
1067 *
1068 * PARAMETER: ipmnt - file system mount inode
63f83c9f 1069 * iplog - log inode (out)
1da177e4
LT
1070 *
1071 * RETURN:
1072 *
1073 * serialization:
1074 */
1075int lmLogOpen(struct super_block *sb)
1076{
1077 int rc;
1078 struct block_device *bdev;
1079 struct jfs_log *log;
1080 struct jfs_sb_info *sbi = JFS_SBI(sb);
1081
1082 if (sbi->flag & JFS_NOINTEGRITY)
1083 return open_dummy_log(sb);
63f83c9f 1084
1da177e4
LT
1085 if (sbi->mntflag & JFS_INLINELOG)
1086 return open_inline_log(sb);
1087
353ab6e9 1088 mutex_lock(&jfs_log_mutex);
1da177e4
LT
1089 list_for_each_entry(log, &jfs_external_logs, journal_list) {
1090 if (log->bdev->bd_dev == sbi->logdev) {
1091 if (memcmp(log->uuid, sbi->loguuid,
1092 sizeof(log->uuid))) {
1093 jfs_warn("wrong uuid on JFS journal\n");
353ab6e9 1094 mutex_unlock(&jfs_log_mutex);
1da177e4
LT
1095 return -EINVAL;
1096 }
1097 /*
1098 * add file system to log active file system list
1099 */
1100 if ((rc = lmLogFileSystem(log, sbi, 1))) {
353ab6e9 1101 mutex_unlock(&jfs_log_mutex);
1da177e4
LT
1102 return rc;
1103 }
1104 goto journal_found;
1105 }
1106 }
1107
5b3030e3 1108 if (!(log = kzalloc(sizeof(struct jfs_log), GFP_KERNEL))) {
353ab6e9 1109 mutex_unlock(&jfs_log_mutex);
1da177e4
LT
1110 return -ENOMEM;
1111 }
1da177e4
LT
1112 INIT_LIST_HEAD(&log->sb_list);
1113 init_waitqueue_head(&log->syncwait);
1114
1115 /*
f720e3ba 1116 * external log as separate logical volume
1da177e4
LT
1117 *
1118 * file systems to log may have n-to-1 relationship;
1119 */
1120
1121 bdev = open_by_devnum(sbi->logdev, FMODE_READ|FMODE_WRITE);
1122 if (IS_ERR(bdev)) {
1123 rc = -PTR_ERR(bdev);
1124 goto free;
1125 }
1126
1127 if ((rc = bd_claim(bdev, log))) {
1128 goto close;
1129 }
1130
1131 log->bdev = bdev;
1132 memcpy(log->uuid, sbi->loguuid, sizeof(log->uuid));
63f83c9f 1133
1da177e4
LT
1134 /*
1135 * initialize log:
1136 */
1137 if ((rc = lmLogInit(log)))
1138 goto unclaim;
1139
1140 list_add(&log->journal_list, &jfs_external_logs);
1141
1142 /*
1143 * add file system to log active file system list
1144 */
1145 if ((rc = lmLogFileSystem(log, sbi, 1)))
1146 goto shutdown;
1147
1148journal_found:
1149 LOG_LOCK(log);
1150 list_add(&sbi->log_list, &log->sb_list);
1151 sbi->log = log;
1152 LOG_UNLOCK(log);
1153
353ab6e9 1154 mutex_unlock(&jfs_log_mutex);
1da177e4
LT
1155 return 0;
1156
1157 /*
f720e3ba 1158 * unwind on error
1da177e4
LT
1159 */
1160 shutdown: /* unwind lbmLogInit() */
1161 list_del(&log->journal_list);
1162 lbmLogShutdown(log);
1163
1164 unclaim:
1165 bd_release(bdev);
1166
1167 close: /* close external log device */
1168 blkdev_put(bdev);
1169
1170 free: /* free log descriptor */
353ab6e9 1171 mutex_unlock(&jfs_log_mutex);
1da177e4
LT
1172 kfree(log);
1173
1174 jfs_warn("lmLogOpen: exit(%d)", rc);
1175 return rc;
1176}
1177
1178static int open_inline_log(struct super_block *sb)
1179{
1180 struct jfs_log *log;
1181 int rc;
1182
5b3030e3 1183 if (!(log = kzalloc(sizeof(struct jfs_log), GFP_KERNEL)))
1da177e4 1184 return -ENOMEM;
1da177e4
LT
1185 INIT_LIST_HEAD(&log->sb_list);
1186 init_waitqueue_head(&log->syncwait);
1187
1188 set_bit(log_INLINELOG, &log->flag);
1189 log->bdev = sb->s_bdev;
1190 log->base = addressPXD(&JFS_SBI(sb)->logpxd);
1191 log->size = lengthPXD(&JFS_SBI(sb)->logpxd) >>
1192 (L2LOGPSIZE - sb->s_blocksize_bits);
1193 log->l2bsize = sb->s_blocksize_bits;
1194 ASSERT(L2LOGPSIZE >= sb->s_blocksize_bits);
1195
1196 /*
1197 * initialize log.
1198 */
1199 if ((rc = lmLogInit(log))) {
1200 kfree(log);
1201 jfs_warn("lmLogOpen: exit(%d)", rc);
1202 return rc;
1203 }
1204
1205 list_add(&JFS_SBI(sb)->log_list, &log->sb_list);
1206 JFS_SBI(sb)->log = log;
1207
1208 return rc;
1209}
1210
1211static int open_dummy_log(struct super_block *sb)
1212{
1213 int rc;
1214
353ab6e9 1215 mutex_lock(&jfs_log_mutex);
1da177e4 1216 if (!dummy_log) {
5b3030e3 1217 dummy_log = kzalloc(sizeof(struct jfs_log), GFP_KERNEL);
1da177e4 1218 if (!dummy_log) {
353ab6e9 1219 mutex_unlock(&jfs_log_mutex);
1da177e4
LT
1220 return -ENOMEM;
1221 }
1da177e4
LT
1222 INIT_LIST_HEAD(&dummy_log->sb_list);
1223 init_waitqueue_head(&dummy_log->syncwait);
1224 dummy_log->no_integrity = 1;
1225 /* Make up some stuff */
1226 dummy_log->base = 0;
1227 dummy_log->size = 1024;
1228 rc = lmLogInit(dummy_log);
1229 if (rc) {
1230 kfree(dummy_log);
1231 dummy_log = NULL;
353ab6e9 1232 mutex_unlock(&jfs_log_mutex);
1da177e4
LT
1233 return rc;
1234 }
1235 }
1236
1237 LOG_LOCK(dummy_log);
1238 list_add(&JFS_SBI(sb)->log_list, &dummy_log->sb_list);
1239 JFS_SBI(sb)->log = dummy_log;
1240 LOG_UNLOCK(dummy_log);
353ab6e9 1241 mutex_unlock(&jfs_log_mutex);
1da177e4
LT
1242
1243 return 0;
1244}
1245
1246/*
1247 * NAME: lmLogInit()
1248 *
1249 * FUNCTION: log initialization at first log open.
1250 *
1251 * logredo() (or logformat()) should have been run previously.
1252 * initialize the log from log superblock.
1253 * set the log state in the superblock to LOGMOUNT and
1254 * write SYNCPT log record.
63f83c9f 1255 *
1da177e4
LT
1256 * PARAMETER: log - log structure
1257 *
1258 * RETURN: 0 - if ok
1259 * -EINVAL - bad log magic number or superblock dirty
1260 * error returned from logwait()
63f83c9f 1261 *
1da177e4
LT
1262 * serialization: single first open thread
1263 */
1264int lmLogInit(struct jfs_log * log)
1265{
1266 int rc = 0;
1267 struct lrd lrd;
1268 struct logsuper *logsuper;
1269 struct lbuf *bpsuper;
1270 struct lbuf *bp;
1271 struct logpage *lp;
1272 int lsn = 0;
1273
1274 jfs_info("lmLogInit: log:0x%p", log);
1275
1276 /* initialize the group commit serialization lock */
1277 LOGGC_LOCK_INIT(log);
1278
1279 /* allocate/initialize the log write serialization lock */
1280 LOG_LOCK_INIT(log);
1281
1282 LOGSYNC_LOCK_INIT(log);
1283
1284 INIT_LIST_HEAD(&log->synclist);
1285
1286 INIT_LIST_HEAD(&log->cqueue);
1287 log->flush_tblk = NULL;
1288
1289 log->count = 0;
1290
1291 /*
1292 * initialize log i/o
1293 */
1294 if ((rc = lbmLogInit(log)))
1295 return rc;
1296
1297 if (!test_bit(log_INLINELOG, &log->flag))
1298 log->l2bsize = L2LOGPSIZE;
63f83c9f 1299
1da177e4
LT
1300 /* check for disabled journaling to disk */
1301 if (log->no_integrity) {
1302 /*
1303 * Journal pages will still be filled. When the time comes
1304 * to actually do the I/O, the write is not done, and the
1305 * endio routine is called directly.
1306 */
1307 bp = lbmAllocate(log , 0);
1308 log->bp = bp;
1309 bp->l_pn = bp->l_eor = 0;
1310 } else {
1311 /*
1312 * validate log superblock
1313 */
1314 if ((rc = lbmRead(log, 1, &bpsuper)))
1315 goto errout10;
1316
1317 logsuper = (struct logsuper *) bpsuper->l_ldata;
1318
1319 if (logsuper->magic != cpu_to_le32(LOGMAGIC)) {
1320 jfs_warn("*** Log Format Error ! ***");
1321 rc = -EINVAL;
1322 goto errout20;
1323 }
1324
1325 /* logredo() should have been run successfully. */
1326 if (logsuper->state != cpu_to_le32(LOGREDONE)) {
1327 jfs_warn("*** Log Is Dirty ! ***");
1328 rc = -EINVAL;
1329 goto errout20;
1330 }
1331
1332 /* initialize log from log superblock */
1333 if (test_bit(log_INLINELOG,&log->flag)) {
1334 if (log->size != le32_to_cpu(logsuper->size)) {
1335 rc = -EINVAL;
1336 goto errout20;
1337 }
1338 jfs_info("lmLogInit: inline log:0x%p base:0x%Lx "
1339 "size:0x%x", log,
1340 (unsigned long long) log->base, log->size);
1341 } else {
1342 if (memcmp(logsuper->uuid, log->uuid, 16)) {
1343 jfs_warn("wrong uuid on JFS log device");
1344 goto errout20;
1345 }
1346 log->size = le32_to_cpu(logsuper->size);
1347 log->l2bsize = le32_to_cpu(logsuper->l2bsize);
1348 jfs_info("lmLogInit: external log:0x%p base:0x%Lx "
1349 "size:0x%x", log,
1350 (unsigned long long) log->base, log->size);
1351 }
1352
1353 log->page = le32_to_cpu(logsuper->end) / LOGPSIZE;
1354 log->eor = le32_to_cpu(logsuper->end) - (LOGPSIZE * log->page);
1355
1356 /*
1357 * initialize for log append write mode
1358 */
1359 /* establish current/end-of-log page/buffer */
1360 if ((rc = lbmRead(log, log->page, &bp)))
1361 goto errout20;
1362
1363 lp = (struct logpage *) bp->l_ldata;
1364
1365 jfs_info("lmLogInit: lsn:0x%x page:%d eor:%d:%d",
1366 le32_to_cpu(logsuper->end), log->page, log->eor,
1367 le16_to_cpu(lp->h.eor));
1368
1369 log->bp = bp;
1370 bp->l_pn = log->page;
1371 bp->l_eor = log->eor;
1372
1373 /* if current page is full, move on to next page */
1374 if (log->eor >= LOGPSIZE - LOGPTLRSIZE)
1375 lmNextPage(log);
1376
1377 /*
1378 * initialize log syncpoint
1379 */
1380 /*
1381 * write the first SYNCPT record with syncpoint = 0
1382 * (i.e., log redo up to HERE !);
1383 * remove current page from lbm write queue at end of pageout
1384 * (to write log superblock update), but do not release to
1385 * freelist;
1386 */
1387 lrd.logtid = 0;
1388 lrd.backchain = 0;
1389 lrd.type = cpu_to_le16(LOG_SYNCPT);
1390 lrd.length = 0;
1391 lrd.log.syncpt.sync = 0;
1392 lsn = lmWriteRecord(log, NULL, &lrd, NULL);
1393 bp = log->bp;
1394 bp->l_ceor = bp->l_eor;
1395 lp = (struct logpage *) bp->l_ldata;
1396 lp->h.eor = lp->t.eor = cpu_to_le16(bp->l_eor);
1397 lbmWrite(log, bp, lbmWRITE | lbmSYNC, 0);
1398 if ((rc = lbmIOWait(bp, 0)))
1399 goto errout30;
1400
1401 /*
1402 * update/write superblock
1403 */
1404 logsuper->state = cpu_to_le32(LOGMOUNT);
1405 log->serial = le32_to_cpu(logsuper->serial) + 1;
1406 logsuper->serial = cpu_to_le32(log->serial);
1407 lbmDirectWrite(log, bpsuper, lbmWRITE | lbmRELEASE | lbmSYNC);
1408 if ((rc = lbmIOWait(bpsuper, lbmFREE)))
1409 goto errout30;
1410 }
1411
1412 /* initialize logsync parameters */
1413 log->logsize = (log->size - 2) << L2LOGPSIZE;
1414 log->lsn = lsn;
1415 log->syncpt = lsn;
1416 log->sync = log->syncpt;
1417 log->nextsync = LOGSYNC_DELTA(log->logsize);
1418
1419 jfs_info("lmLogInit: lsn:0x%x syncpt:0x%x sync:0x%x",
1420 log->lsn, log->syncpt, log->sync);
1421
1422 /*
1423 * initialize for lazy/group commit
1424 */
1425 log->clsn = lsn;
1426
1427 return 0;
1428
1429 /*
f720e3ba 1430 * unwind on error
1da177e4
LT
1431 */
1432 errout30: /* release log page */
1433 log->wqueue = NULL;
1434 bp->l_wqnext = NULL;
1435 lbmFree(bp);
1436
1437 errout20: /* release log superblock */
1438 lbmFree(bpsuper);
1439
1440 errout10: /* unwind lbmLogInit() */
1441 lbmLogShutdown(log);
1442
1443 jfs_warn("lmLogInit: exit(%d)", rc);
1444 return rc;
1445}
1446
1447
1448/*
1449 * NAME: lmLogClose()
1450 *
1451 * FUNCTION: remove file system <ipmnt> from active list of log <iplog>
1452 * and close it on last close.
1453 *
1454 * PARAMETER: sb - superblock
1455 *
1456 * RETURN: errors from subroutines
1457 *
1458 * serialization:
1459 */
1460int lmLogClose(struct super_block *sb)
1461{
1462 struct jfs_sb_info *sbi = JFS_SBI(sb);
1463 struct jfs_log *log = sbi->log;
1464 struct block_device *bdev;
1465 int rc = 0;
1466
1467 jfs_info("lmLogClose: log:0x%p", log);
1468
353ab6e9 1469 mutex_lock(&jfs_log_mutex);
1da177e4
LT
1470 LOG_LOCK(log);
1471 list_del(&sbi->log_list);
1472 LOG_UNLOCK(log);
1473 sbi->log = NULL;
1474
1475 /*
1476 * We need to make sure all of the "written" metapages
1477 * actually make it to disk
1478 */
1479 sync_blockdev(sb->s_bdev);
1480
1481 if (test_bit(log_INLINELOG, &log->flag)) {
1482 /*
f720e3ba 1483 * in-line log in host file system
1da177e4
LT
1484 */
1485 rc = lmLogShutdown(log);
1486 kfree(log);
1487 goto out;
1488 }
1489
1490 if (!log->no_integrity)
1491 lmLogFileSystem(log, sbi, 0);
1492
1493 if (!list_empty(&log->sb_list))
1494 goto out;
1495
1496 /*
1497 * TODO: ensure that the dummy_log is in a state to allow
1498 * lbmLogShutdown to deallocate all the buffers and call
1499 * kfree against dummy_log. For now, leave dummy_log & its
1500 * buffers in memory, and resuse if another no-integrity mount
1501 * is requested.
1502 */
1503 if (log->no_integrity)
1504 goto out;
1505
1506 /*
f720e3ba 1507 * external log as separate logical volume
1da177e4
LT
1508 */
1509 list_del(&log->journal_list);
1510 bdev = log->bdev;
1511 rc = lmLogShutdown(log);
1512
1513 bd_release(bdev);
1514 blkdev_put(bdev);
1515
1516 kfree(log);
1517
1518 out:
353ab6e9 1519 mutex_unlock(&jfs_log_mutex);
1da177e4
LT
1520 jfs_info("lmLogClose: exit(%d)", rc);
1521 return rc;
1522}
1523
1524
1525/*
1526 * NAME: jfs_flush_journal()
1527 *
1528 * FUNCTION: initiate write of any outstanding transactions to the journal
1529 * and optionally wait until they are all written to disk
1530 *
1531 * wait == 0 flush until latest txn is committed, don't wait
1532 * wait == 1 flush until latest txn is committed, wait
1533 * wait > 1 flush until all txn's are complete, wait
1534 */
1535void jfs_flush_journal(struct jfs_log *log, int wait)
1536{
1537 int i;
1538 struct tblock *target = NULL;
7fab479b 1539 struct jfs_sb_info *sbi;
1da177e4
LT
1540
1541 /* jfs_write_inode may call us during read-only mount */
1542 if (!log)
1543 return;
1544
1545 jfs_info("jfs_flush_journal: log:0x%p wait=%d", log, wait);
1546
1547 LOGGC_LOCK(log);
1548
1549 if (!list_empty(&log->cqueue)) {
1550 /*
1551 * This ensures that we will keep writing to the journal as long
1552 * as there are unwritten commit records
1553 */
1554 target = list_entry(log->cqueue.prev, struct tblock, cqueue);
1555
1556 if (test_bit(log_FLUSH, &log->flag)) {
1557 /*
1558 * We're already flushing.
1559 * if flush_tblk is NULL, we are flushing everything,
1560 * so leave it that way. Otherwise, update it to the
1561 * latest transaction
1562 */
1563 if (log->flush_tblk)
1564 log->flush_tblk = target;
1565 } else {
1566 /* Only flush until latest transaction is committed */
1567 log->flush_tblk = target;
1568 set_bit(log_FLUSH, &log->flag);
1569
1570 /*
1571 * Initiate I/O on outstanding transactions
1572 */
1573 if (!(log->cflag & logGC_PAGEOUT)) {
1574 log->cflag |= logGC_PAGEOUT;
1575 lmGCwrite(log, 0);
1576 }
1577 }
1578 }
1579 if ((wait > 1) || test_bit(log_SYNCBARRIER, &log->flag)) {
1580 /* Flush until all activity complete */
1581 set_bit(log_FLUSH, &log->flag);
1582 log->flush_tblk = NULL;
1583 }
1584
1585 if (wait && target && !(target->flag & tblkGC_COMMITTED)) {
1586 DECLARE_WAITQUEUE(__wait, current);
1587
1588 add_wait_queue(&target->gcwait, &__wait);
1589 set_current_state(TASK_UNINTERRUPTIBLE);
1590 LOGGC_UNLOCK(log);
1591 schedule();
3cbb1c8e 1592 __set_current_state(TASK_RUNNING);
1da177e4
LT
1593 LOGGC_LOCK(log);
1594 remove_wait_queue(&target->gcwait, &__wait);
1595 }
1596 LOGGC_UNLOCK(log);
1597
1598 if (wait < 2)
1599 return;
1600
7fab479b
DK
1601 list_for_each_entry(sbi, &log->sb_list, log_list) {
1602 filemap_fdatawrite(sbi->ipbmap->i_mapping);
1603 filemap_fdatawrite(sbi->ipimap->i_mapping);
1604 filemap_fdatawrite(sbi->direct_inode->i_mapping);
1605 }
1606
1da177e4
LT
1607 /*
1608 * If there was recent activity, we may need to wait
1609 * for the lazycommit thread to catch up
1610 */
1611 if ((!list_empty(&log->cqueue)) || !list_empty(&log->synclist)) {
7fab479b 1612 for (i = 0; i < 200; i++) { /* Too much? */
1da177e4
LT
1613 msleep(250);
1614 if (list_empty(&log->cqueue) &&
1615 list_empty(&log->synclist))
1616 break;
1617 }
1618 }
1619 assert(list_empty(&log->cqueue));
72e3148a
DK
1620
1621#ifdef CONFIG_JFS_DEBUG
7fab479b
DK
1622 if (!list_empty(&log->synclist)) {
1623 struct logsyncblk *lp;
1624
209e101b 1625 printk(KERN_ERR "jfs_flush_journal: synclist not empty\n");
7fab479b
DK
1626 list_for_each_entry(lp, &log->synclist, synclist) {
1627 if (lp->xflag & COMMIT_PAGE) {
1628 struct metapage *mp = (struct metapage *)lp;
288e4d83
DK
1629 print_hex_dump(KERN_ERR, "metapage: ",
1630 DUMP_PREFIX_ADDRESS, 16, 4,
1631 mp, sizeof(struct metapage), 0);
1632 print_hex_dump(KERN_ERR, "page: ",
1633 DUMP_PREFIX_ADDRESS, 16,
1634 sizeof(long), mp->page,
1635 sizeof(struct page), 0);
1636 } else
1637 print_hex_dump(KERN_ERR, "tblock:",
1638 DUMP_PREFIX_ADDRESS, 16, 4,
1639 lp, sizeof(struct tblock), 0);
7fab479b 1640 }
7fab479b 1641 }
288e4d83
DK
1642#else
1643 WARN_ON(!list_empty(&log->synclist));
72e3148a 1644#endif
1da177e4
LT
1645 clear_bit(log_FLUSH, &log->flag);
1646}
1647
1648/*
1649 * NAME: lmLogShutdown()
1650 *
1651 * FUNCTION: log shutdown at last LogClose().
1652 *
1653 * write log syncpt record.
1654 * update super block to set redone flag to 0.
1655 *
1656 * PARAMETER: log - log inode
1657 *
1658 * RETURN: 0 - success
63f83c9f 1659 *
1da177e4
LT
1660 * serialization: single last close thread
1661 */
1662int lmLogShutdown(struct jfs_log * log)
1663{
1664 int rc;
1665 struct lrd lrd;
1666 int lsn;
1667 struct logsuper *logsuper;
1668 struct lbuf *bpsuper;
1669 struct lbuf *bp;
1670 struct logpage *lp;
1671
1672 jfs_info("lmLogShutdown: log:0x%p", log);
1673
1674 jfs_flush_journal(log, 2);
1675
1676 /*
1677 * write the last SYNCPT record with syncpoint = 0
1678 * (i.e., log redo up to HERE !)
1679 */
1680 lrd.logtid = 0;
1681 lrd.backchain = 0;
1682 lrd.type = cpu_to_le16(LOG_SYNCPT);
1683 lrd.length = 0;
1684 lrd.log.syncpt.sync = 0;
63f83c9f 1685
1da177e4
LT
1686 lsn = lmWriteRecord(log, NULL, &lrd, NULL);
1687 bp = log->bp;
1688 lp = (struct logpage *) bp->l_ldata;
1689 lp->h.eor = lp->t.eor = cpu_to_le16(bp->l_eor);
1690 lbmWrite(log, log->bp, lbmWRITE | lbmRELEASE | lbmSYNC, 0);
1691 lbmIOWait(log->bp, lbmFREE);
dc5798d9 1692 log->bp = NULL;
1da177e4
LT
1693
1694 /*
1695 * synchronous update log superblock
1696 * mark log state as shutdown cleanly
1697 * (i.e., Log does not need to be replayed).
1698 */
1699 if ((rc = lbmRead(log, 1, &bpsuper)))
1700 goto out;
1701
1702 logsuper = (struct logsuper *) bpsuper->l_ldata;
1703 logsuper->state = cpu_to_le32(LOGREDONE);
1704 logsuper->end = cpu_to_le32(lsn);
1705 lbmDirectWrite(log, bpsuper, lbmWRITE | lbmRELEASE | lbmSYNC);
1706 rc = lbmIOWait(bpsuper, lbmFREE);
1707
1708 jfs_info("lmLogShutdown: lsn:0x%x page:%d eor:%d",
1709 lsn, log->page, log->eor);
1710
63f83c9f 1711 out:
1da177e4
LT
1712 /*
1713 * shutdown per log i/o
1714 */
1715 lbmLogShutdown(log);
1716
1717 if (rc) {
1718 jfs_warn("lmLogShutdown: exit(%d)", rc);
1719 }
1720 return rc;
1721}
1722
1723
1724/*
1725 * NAME: lmLogFileSystem()
1726 *
1727 * FUNCTION: insert (<activate> = true)/remove (<activate> = false)
1728 * file system into/from log active file system list.
1729 *
1730 * PARAMETE: log - pointer to logs inode.
1731 * fsdev - kdev_t of filesystem.
f720e3ba 1732 * serial - pointer to returned log serial number
1da177e4
LT
1733 * activate - insert/remove device from active list.
1734 *
1735 * RETURN: 0 - success
1736 * errors returned by vms_iowait().
1737 */
1738static int lmLogFileSystem(struct jfs_log * log, struct jfs_sb_info *sbi,
1739 int activate)
1740{
1741 int rc = 0;
1742 int i;
1743 struct logsuper *logsuper;
1744 struct lbuf *bpsuper;
1745 char *uuid = sbi->uuid;
1746
1747 /*
1748 * insert/remove file system device to log active file system list.
1749 */
1750 if ((rc = lbmRead(log, 1, &bpsuper)))
1751 return rc;
1752
1753 logsuper = (struct logsuper *) bpsuper->l_ldata;
1754 if (activate) {
1755 for (i = 0; i < MAX_ACTIVE; i++)
1756 if (!memcmp(logsuper->active[i].uuid, NULL_UUID, 16)) {
1757 memcpy(logsuper->active[i].uuid, uuid, 16);
1758 sbi->aggregate = i;
1759 break;
1760 }
1761 if (i == MAX_ACTIVE) {
1762 jfs_warn("Too many file systems sharing journal!");
1763 lbmFree(bpsuper);
1764 return -EMFILE; /* Is there a better rc? */
1765 }
1766 } else {
1767 for (i = 0; i < MAX_ACTIVE; i++)
1768 if (!memcmp(logsuper->active[i].uuid, uuid, 16)) {
1769 memcpy(logsuper->active[i].uuid, NULL_UUID, 16);
1770 break;
1771 }
1772 if (i == MAX_ACTIVE) {
1773 jfs_warn("Somebody stomped on the journal!");
1774 lbmFree(bpsuper);
1775 return -EIO;
1776 }
63f83c9f 1777
1da177e4
LT
1778 }
1779
1780 /*
1781 * synchronous write log superblock:
1782 *
1783 * write sidestream bypassing write queue:
1784 * at file system mount, log super block is updated for
1785 * activation of the file system before any log record
1786 * (MOUNT record) of the file system, and at file system
1787 * unmount, all meta data for the file system has been
1788 * flushed before log super block is updated for deactivation
1789 * of the file system.
1790 */
1791 lbmDirectWrite(log, bpsuper, lbmWRITE | lbmRELEASE | lbmSYNC);
1792 rc = lbmIOWait(bpsuper, lbmFREE);
1793
1794 return rc;
1795}
1796
1797/*
1798 * log buffer manager (lbm)
1799 * ------------------------
1800 *
1801 * special purpose buffer manager supporting log i/o requirements.
1802 *
1803 * per log write queue:
1804 * log pageout occurs in serial order by fifo write queue and
1805 * restricting to a single i/o in pregress at any one time.
1806 * a circular singly-linked list
1807 * (log->wrqueue points to the tail, and buffers are linked via
1808 * bp->wrqueue field), and
1809 * maintains log page in pageout ot waiting for pageout in serial pageout.
1810 */
1811
1812/*
1813 * lbmLogInit()
1814 *
1815 * initialize per log I/O setup at lmLogInit()
1816 */
1817static int lbmLogInit(struct jfs_log * log)
1818{ /* log inode */
1819 int i;
1820 struct lbuf *lbuf;
1821
1822 jfs_info("lbmLogInit: log:0x%p", log);
1823
1824 /* initialize current buffer cursor */
1825 log->bp = NULL;
1826
1827 /* initialize log device write queue */
1828 log->wqueue = NULL;
1829
1830 /*
1831 * Each log has its own buffer pages allocated to it. These are
1832 * not managed by the page cache. This ensures that a transaction
1833 * writing to the log does not block trying to allocate a page from
1834 * the page cache (for the log). This would be bad, since page
1835 * allocation waits on the kswapd thread that may be committing inodes
1836 * which would cause log activity. Was that clear? I'm trying to
1837 * avoid deadlock here.
1838 */
1839 init_waitqueue_head(&log->free_wait);
1840
1841 log->lbuf_free = NULL;
1842
dc5798d9
DK
1843 for (i = 0; i < LOGPAGES;) {
1844 char *buffer;
1845 uint offset;
1846 struct page *page;
1847
1848 buffer = (char *) get_zeroed_page(GFP_KERNEL);
1849 if (buffer == NULL)
1da177e4 1850 goto error;
dc5798d9
DK
1851 page = virt_to_page(buffer);
1852 for (offset = 0; offset < PAGE_SIZE; offset += LOGPSIZE) {
1853 lbuf = kmalloc(sizeof(struct lbuf), GFP_KERNEL);
1854 if (lbuf == NULL) {
1855 if (offset == 0)
1856 free_page((unsigned long) buffer);
1857 goto error;
1858 }
1859 if (offset) /* we already have one reference */
1860 get_page(page);
1861 lbuf->l_offset = offset;
1862 lbuf->l_ldata = buffer + offset;
1863 lbuf->l_page = page;
1864 lbuf->l_log = log;
1865 init_waitqueue_head(&lbuf->l_ioevent);
1866
1867 lbuf->l_freelist = log->lbuf_free;
1868 log->lbuf_free = lbuf;
1869 i++;
1da177e4 1870 }
1da177e4
LT
1871 }
1872
1873 return (0);
1874
1875 error:
1876 lbmLogShutdown(log);
1877 return -ENOMEM;
1878}
1879
1880
1881/*
1882 * lbmLogShutdown()
1883 *
1884 * finalize per log I/O setup at lmLogShutdown()
1885 */
1886static void lbmLogShutdown(struct jfs_log * log)
1887{
1888 struct lbuf *lbuf;
1889
1890 jfs_info("lbmLogShutdown: log:0x%p", log);
1891
1892 lbuf = log->lbuf_free;
1893 while (lbuf) {
1894 struct lbuf *next = lbuf->l_freelist;
dc5798d9 1895 __free_page(lbuf->l_page);
1da177e4
LT
1896 kfree(lbuf);
1897 lbuf = next;
1898 }
1da177e4
LT
1899}
1900
1901
1902/*
1903 * lbmAllocate()
1904 *
1905 * allocate an empty log buffer
1906 */
1907static struct lbuf *lbmAllocate(struct jfs_log * log, int pn)
1908{
1909 struct lbuf *bp;
1910 unsigned long flags;
1911
1912 /*
1913 * recycle from log buffer freelist if any
1914 */
1915 LCACHE_LOCK(flags);
1916 LCACHE_SLEEP_COND(log->free_wait, (bp = log->lbuf_free), flags);
1917 log->lbuf_free = bp->l_freelist;
1918 LCACHE_UNLOCK(flags);
1919
1920 bp->l_flag = 0;
1921
1922 bp->l_wqnext = NULL;
1923 bp->l_freelist = NULL;
1924
1925 bp->l_pn = pn;
1926 bp->l_blkno = log->base + (pn << (L2LOGPSIZE - log->l2bsize));
1927 bp->l_ceor = 0;
1928
1929 return bp;
1930}
1931
1932
1933/*
1934 * lbmFree()
1935 *
1936 * release a log buffer to freelist
1937 */
1938static void lbmFree(struct lbuf * bp)
1939{
1940 unsigned long flags;
1941
1942 LCACHE_LOCK(flags);
1943
1944 lbmfree(bp);
1945
1946 LCACHE_UNLOCK(flags);
1947}
1948
1949static void lbmfree(struct lbuf * bp)
1950{
1951 struct jfs_log *log = bp->l_log;
1952
1953 assert(bp->l_wqnext == NULL);
1954
1955 /*
1956 * return the buffer to head of freelist
1957 */
1958 bp->l_freelist = log->lbuf_free;
1959 log->lbuf_free = bp;
1960
1961 wake_up(&log->free_wait);
1962 return;
1963}
1964
1965
1966/*
1967 * NAME: lbmRedrive
1968 *
59c51591 1969 * FUNCTION: add a log buffer to the log redrive list
1da177e4
LT
1970 *
1971 * PARAMETER:
f720e3ba 1972 * bp - log buffer
1da177e4
LT
1973 *
1974 * NOTES:
1975 * Takes log_redrive_lock.
1976 */
1977static inline void lbmRedrive(struct lbuf *bp)
1978{
1979 unsigned long flags;
1980
1981 spin_lock_irqsave(&log_redrive_lock, flags);
1982 bp->l_redrive_next = log_redrive_list;
1983 log_redrive_list = bp;
1984 spin_unlock_irqrestore(&log_redrive_lock, flags);
1985
91dbb4de 1986 wake_up_process(jfsIOthread);
1da177e4
LT
1987}
1988
1989
1990/*
1991 * lbmRead()
1992 */
1993static int lbmRead(struct jfs_log * log, int pn, struct lbuf ** bpp)
1994{
1995 struct bio *bio;
1996 struct lbuf *bp;
1997
1998 /*
1999 * allocate a log buffer
2000 */
2001 *bpp = bp = lbmAllocate(log, pn);
2002 jfs_info("lbmRead: bp:0x%p pn:0x%x", bp, pn);
2003
2004 bp->l_flag |= lbmREAD;
2005
2006 bio = bio_alloc(GFP_NOFS, 1);
2007
2008 bio->bi_sector = bp->l_blkno << (log->l2bsize - 9);
2009 bio->bi_bdev = log->bdev;
dc5798d9 2010 bio->bi_io_vec[0].bv_page = bp->l_page;
1da177e4 2011 bio->bi_io_vec[0].bv_len = LOGPSIZE;
dc5798d9 2012 bio->bi_io_vec[0].bv_offset = bp->l_offset;
1da177e4
LT
2013
2014 bio->bi_vcnt = 1;
2015 bio->bi_idx = 0;
2016 bio->bi_size = LOGPSIZE;
2017
2018 bio->bi_end_io = lbmIODone;
2019 bio->bi_private = bp;
2020 submit_bio(READ_SYNC, bio);
2021
2022 wait_event(bp->l_ioevent, (bp->l_flag != lbmREAD));
2023
2024 return 0;
2025}
2026
2027
2028/*
2029 * lbmWrite()
2030 *
2031 * buffer at head of pageout queue stays after completion of
2032 * partial-page pageout and redriven by explicit initiation of
2033 * pageout by caller until full-page pageout is completed and
2034 * released.
2035 *
2036 * device driver i/o done redrives pageout of new buffer at
2037 * head of pageout queue when current buffer at head of pageout
2038 * queue is released at the completion of its full-page pageout.
2039 *
2040 * LOGGC_LOCK() serializes lbmWrite() by lmNextPage() and lmGroupCommit().
2041 * LCACHE_LOCK() serializes xflag between lbmWrite() and lbmIODone()
2042 */
2043static void lbmWrite(struct jfs_log * log, struct lbuf * bp, int flag,
2044 int cant_block)
2045{
2046 struct lbuf *tail;
2047 unsigned long flags;
2048
2049 jfs_info("lbmWrite: bp:0x%p flag:0x%x pn:0x%x", bp, flag, bp->l_pn);
2050
2051 /* map the logical block address to physical block address */
2052 bp->l_blkno =
2053 log->base + (bp->l_pn << (L2LOGPSIZE - log->l2bsize));
2054
2055 LCACHE_LOCK(flags); /* disable+lock */
2056
2057 /*
2058 * initialize buffer for device driver
2059 */
2060 bp->l_flag = flag;
2061
2062 /*
f720e3ba 2063 * insert bp at tail of write queue associated with log
1da177e4
LT
2064 *
2065 * (request is either for bp already/currently at head of queue
2066 * or new bp to be inserted at tail)
2067 */
2068 tail = log->wqueue;
2069
2070 /* is buffer not already on write queue ? */
2071 if (bp->l_wqnext == NULL) {
2072 /* insert at tail of wqueue */
2073 if (tail == NULL) {
2074 log->wqueue = bp;
2075 bp->l_wqnext = bp;
2076 } else {
2077 log->wqueue = bp;
2078 bp->l_wqnext = tail->l_wqnext;
2079 tail->l_wqnext = bp;
2080 }
2081
2082 tail = bp;
2083 }
2084
2085 /* is buffer at head of wqueue and for write ? */
2086 if ((bp != tail->l_wqnext) || !(flag & lbmWRITE)) {
2087 LCACHE_UNLOCK(flags); /* unlock+enable */
2088 return;
2089 }
2090
2091 LCACHE_UNLOCK(flags); /* unlock+enable */
2092
2093 if (cant_block)
2094 lbmRedrive(bp);
2095 else if (flag & lbmSYNC)
2096 lbmStartIO(bp);
2097 else {
2098 LOGGC_UNLOCK(log);
2099 lbmStartIO(bp);
2100 LOGGC_LOCK(log);
2101 }
2102}
2103
2104
2105/*
2106 * lbmDirectWrite()
2107 *
2108 * initiate pageout bypassing write queue for sidestream
2109 * (e.g., log superblock) write;
2110 */
2111static void lbmDirectWrite(struct jfs_log * log, struct lbuf * bp, int flag)
2112{
2113 jfs_info("lbmDirectWrite: bp:0x%p flag:0x%x pn:0x%x",
2114 bp, flag, bp->l_pn);
2115
2116 /*
2117 * initialize buffer for device driver
2118 */
2119 bp->l_flag = flag | lbmDIRECT;
2120
2121 /* map the logical block address to physical block address */
2122 bp->l_blkno =
2123 log->base + (bp->l_pn << (L2LOGPSIZE - log->l2bsize));
2124
2125 /*
f720e3ba 2126 * initiate pageout of the page
1da177e4
LT
2127 */
2128 lbmStartIO(bp);
2129}
2130
2131
2132/*
2133 * NAME: lbmStartIO()
2134 *
2135 * FUNCTION: Interface to DD strategy routine
2136 *
f720e3ba 2137 * RETURN: none
1da177e4
LT
2138 *
2139 * serialization: LCACHE_LOCK() is NOT held during log i/o;
2140 */
2141static void lbmStartIO(struct lbuf * bp)
2142{
2143 struct bio *bio;
2144 struct jfs_log *log = bp->l_log;
2145
2146 jfs_info("lbmStartIO\n");
2147
2148 bio = bio_alloc(GFP_NOFS, 1);
2149 bio->bi_sector = bp->l_blkno << (log->l2bsize - 9);
2150 bio->bi_bdev = log->bdev;
dc5798d9 2151 bio->bi_io_vec[0].bv_page = bp->l_page;
1da177e4 2152 bio->bi_io_vec[0].bv_len = LOGPSIZE;
dc5798d9 2153 bio->bi_io_vec[0].bv_offset = bp->l_offset;
1da177e4
LT
2154
2155 bio->bi_vcnt = 1;
2156 bio->bi_idx = 0;
2157 bio->bi_size = LOGPSIZE;
2158
2159 bio->bi_end_io = lbmIODone;
2160 bio->bi_private = bp;
2161
2162 /* check if journaling to disk has been disabled */
dc5798d9
DK
2163 if (log->no_integrity) {
2164 bio->bi_size = 0;
2165 lbmIODone(bio, 0, 0);
2166 } else {
1da177e4
LT
2167 submit_bio(WRITE_SYNC, bio);
2168 INCREMENT(lmStat.submitted);
2169 }
1da177e4
LT
2170}
2171
2172
2173/*
2174 * lbmIOWait()
2175 */
2176static int lbmIOWait(struct lbuf * bp, int flag)
2177{
2178 unsigned long flags;
2179 int rc = 0;
2180
2181 jfs_info("lbmIOWait1: bp:0x%p flag:0x%x:0x%x", bp, bp->l_flag, flag);
2182
2183 LCACHE_LOCK(flags); /* disable+lock */
2184
2185 LCACHE_SLEEP_COND(bp->l_ioevent, (bp->l_flag & lbmDONE), flags);
2186
2187 rc = (bp->l_flag & lbmERROR) ? -EIO : 0;
2188
2189 if (flag & lbmFREE)
2190 lbmfree(bp);
2191
2192 LCACHE_UNLOCK(flags); /* unlock+enable */
2193
2194 jfs_info("lbmIOWait2: bp:0x%p flag:0x%x:0x%x", bp, bp->l_flag, flag);
2195 return rc;
2196}
2197
2198/*
2199 * lbmIODone()
2200 *
2201 * executed at INTIODONE level
2202 */
6712ecf8 2203static void lbmIODone(struct bio *bio, int error)
1da177e4
LT
2204{
2205 struct lbuf *bp = bio->bi_private;
2206 struct lbuf *nextbp, *tail;
2207 struct jfs_log *log;
2208 unsigned long flags;
2209
1da177e4
LT
2210 /*
2211 * get back jfs buffer bound to the i/o buffer
2212 */
2213 jfs_info("lbmIODone: bp:0x%p flag:0x%x", bp, bp->l_flag);
2214
2215 LCACHE_LOCK(flags); /* disable+lock */
2216
2217 bp->l_flag |= lbmDONE;
2218
2219 if (!test_bit(BIO_UPTODATE, &bio->bi_flags)) {
2220 bp->l_flag |= lbmERROR;
2221
2222 jfs_err("lbmIODone: I/O error in JFS log");
2223 }
2224
2225 bio_put(bio);
2226
2227 /*
f720e3ba 2228 * pagein completion
1da177e4
LT
2229 */
2230 if (bp->l_flag & lbmREAD) {
2231 bp->l_flag &= ~lbmREAD;
2232
2233 LCACHE_UNLOCK(flags); /* unlock+enable */
2234
2235 /* wakeup I/O initiator */
2236 LCACHE_WAKEUP(&bp->l_ioevent);
2237
2238 return 0;
2239 }
2240
2241 /*
f720e3ba 2242 * pageout completion
1da177e4
LT
2243 *
2244 * the bp at the head of write queue has completed pageout.
2245 *
2246 * if single-commit/full-page pageout, remove the current buffer
2247 * from head of pageout queue, and redrive pageout with
2248 * the new buffer at head of pageout queue;
2249 * otherwise, the partial-page pageout buffer stays at
2250 * the head of pageout queue to be redriven for pageout
2251 * by lmGroupCommit() until full-page pageout is completed.
2252 */
2253 bp->l_flag &= ~lbmWRITE;
2254 INCREMENT(lmStat.pagedone);
2255
2256 /* update committed lsn */
2257 log = bp->l_log;
2258 log->clsn = (bp->l_pn << L2LOGPSIZE) + bp->l_ceor;
2259
2260 if (bp->l_flag & lbmDIRECT) {
2261 LCACHE_WAKEUP(&bp->l_ioevent);
2262 LCACHE_UNLOCK(flags);
2263 return 0;
2264 }
2265
2266 tail = log->wqueue;
2267
2268 /* single element queue */
2269 if (bp == tail) {
2270 /* remove head buffer of full-page pageout
2271 * from log device write queue
2272 */
2273 if (bp->l_flag & lbmRELEASE) {
2274 log->wqueue = NULL;
2275 bp->l_wqnext = NULL;
2276 }
2277 }
2278 /* multi element queue */
2279 else {
2280 /* remove head buffer of full-page pageout
2281 * from log device write queue
2282 */
2283 if (bp->l_flag & lbmRELEASE) {
2284 nextbp = tail->l_wqnext = bp->l_wqnext;
2285 bp->l_wqnext = NULL;
2286
2287 /*
2288 * redrive pageout of next page at head of write queue:
2289 * redrive next page without any bound tblk
2290 * (i.e., page w/o any COMMIT records), or
2291 * first page of new group commit which has been
2292 * queued after current page (subsequent pageout
2293 * is performed synchronously, except page without
2294 * any COMMITs) by lmGroupCommit() as indicated
2295 * by lbmWRITE flag;
2296 */
2297 if (nextbp->l_flag & lbmWRITE) {
2298 /*
2299 * We can't do the I/O at interrupt time.
2300 * The jfsIO thread can do it
2301 */
2302 lbmRedrive(nextbp);
2303 }
2304 }
2305 }
2306
2307 /*
f720e3ba 2308 * synchronous pageout:
1da177e4
LT
2309 *
2310 * buffer has not necessarily been removed from write queue
2311 * (e.g., synchronous write of partial-page with COMMIT):
2312 * leave buffer for i/o initiator to dispose
2313 */
2314 if (bp->l_flag & lbmSYNC) {
2315 LCACHE_UNLOCK(flags); /* unlock+enable */
2316
2317 /* wakeup I/O initiator */
2318 LCACHE_WAKEUP(&bp->l_ioevent);
2319 }
2320
2321 /*
f720e3ba 2322 * Group Commit pageout:
1da177e4
LT
2323 */
2324 else if (bp->l_flag & lbmGC) {
2325 LCACHE_UNLOCK(flags);
2326 lmPostGC(bp);
2327 }
2328
2329 /*
f720e3ba 2330 * asynchronous pageout:
1da177e4
LT
2331 *
2332 * buffer must have been removed from write queue:
2333 * insert buffer at head of freelist where it can be recycled
2334 */
2335 else {
2336 assert(bp->l_flag & lbmRELEASE);
2337 assert(bp->l_flag & lbmFREE);
2338 lbmfree(bp);
2339
2340 LCACHE_UNLOCK(flags); /* unlock+enable */
2341 }
2342
2343 return 0;
2344}
2345
2346int jfsIOWait(void *arg)
2347{
2348 struct lbuf *bp;
2349
1da177e4 2350 do {
1da177e4
LT
2351 spin_lock_irq(&log_redrive_lock);
2352 while ((bp = log_redrive_list) != 0) {
2353 log_redrive_list = bp->l_redrive_next;
2354 bp->l_redrive_next = NULL;
2355 spin_unlock_irq(&log_redrive_lock);
2356 lbmStartIO(bp);
2357 spin_lock_irq(&log_redrive_lock);
2358 }
91dbb4de 2359
3e1d1d28 2360 if (freezing(current)) {
05ec9e26 2361 spin_unlock_irq(&log_redrive_lock);
3e1d1d28 2362 refrigerator();
1da177e4 2363 } else {
1da177e4 2364 set_current_state(TASK_INTERRUPTIBLE);
05ec9e26 2365 spin_unlock_irq(&log_redrive_lock);
1da177e4 2366 schedule();
3cbb1c8e 2367 __set_current_state(TASK_RUNNING);
1da177e4 2368 }
91dbb4de 2369 } while (!kthread_should_stop());
1da177e4
LT
2370
2371 jfs_info("jfsIOWait being killed!");
91dbb4de 2372 return 0;
1da177e4
LT
2373}
2374
2375/*
2376 * NAME: lmLogFormat()/jfs_logform()
2377 *
2378 * FUNCTION: format file system log
2379 *
2380 * PARAMETERS:
f720e3ba 2381 * log - volume log
1da177e4
LT
2382 * logAddress - start address of log space in FS block
2383 * logSize - length of log space in FS block;
2384 *
2385 * RETURN: 0 - success
2386 * -EIO - i/o error
2387 *
2388 * XXX: We're synchronously writing one page at a time. This needs to
2389 * be improved by writing multiple pages at once.
2390 */
2391int lmLogFormat(struct jfs_log *log, s64 logAddress, int logSize)
2392{
2393 int rc = -EIO;
2394 struct jfs_sb_info *sbi;
2395 struct logsuper *logsuper;
2396 struct logpage *lp;
2397 int lspn; /* log sequence page number */
2398 struct lrd *lrd_ptr;
2399 int npages = 0;
2400 struct lbuf *bp;
2401
2402 jfs_info("lmLogFormat: logAddress:%Ld logSize:%d",
2403 (long long)logAddress, logSize);
2404
2405 sbi = list_entry(log->sb_list.next, struct jfs_sb_info, log_list);
2406
2407 /* allocate a log buffer */
2408 bp = lbmAllocate(log, 1);
2409
2410 npages = logSize >> sbi->l2nbperpage;
2411
2412 /*
f720e3ba 2413 * log space:
1da177e4
LT
2414 *
2415 * page 0 - reserved;
2416 * page 1 - log superblock;
2417 * page 2 - log data page: A SYNC log record is written
f720e3ba 2418 * into this page at logform time;
1da177e4
LT
2419 * pages 3-N - log data page: set to empty log data pages;
2420 */
2421 /*
f720e3ba 2422 * init log superblock: log page 1
1da177e4
LT
2423 */
2424 logsuper = (struct logsuper *) bp->l_ldata;
2425
2426 logsuper->magic = cpu_to_le32(LOGMAGIC);
2427 logsuper->version = cpu_to_le32(LOGVERSION);
2428 logsuper->state = cpu_to_le32(LOGREDONE);
2429 logsuper->flag = cpu_to_le32(sbi->mntflag); /* ? */
2430 logsuper->size = cpu_to_le32(npages);
2431 logsuper->bsize = cpu_to_le32(sbi->bsize);
2432 logsuper->l2bsize = cpu_to_le32(sbi->l2bsize);
2433 logsuper->end = cpu_to_le32(2 * LOGPSIZE + LOGPHDRSIZE + LOGRDSIZE);
2434
2435 bp->l_flag = lbmWRITE | lbmSYNC | lbmDIRECT;
2436 bp->l_blkno = logAddress + sbi->nbperpage;
2437 lbmStartIO(bp);
2438 if ((rc = lbmIOWait(bp, 0)))
2439 goto exit;
2440
2441 /*
f720e3ba 2442 * init pages 2 to npages-1 as log data pages:
1da177e4
LT
2443 *
2444 * log page sequence number (lpsn) initialization:
2445 *
2446 * pn: 0 1 2 3 n-1
2447 * +-----+-----+=====+=====+===.....===+=====+
2448 * lspn: N-1 0 1 N-2
2449 * <--- N page circular file ---->
2450 *
2451 * the N (= npages-2) data pages of the log is maintained as
2452 * a circular file for the log records;
2453 * lpsn grows by 1 monotonically as each log page is written
2454 * to the circular file of the log;
2455 * and setLogpage() will not reset the page number even if
2456 * the eor is equal to LOGPHDRSIZE. In order for binary search
2457 * still work in find log end process, we have to simulate the
2458 * log wrap situation at the log format time.
2459 * The 1st log page written will have the highest lpsn. Then
2460 * the succeeding log pages will have ascending order of
2461 * the lspn starting from 0, ... (N-2)
2462 */
2463 lp = (struct logpage *) bp->l_ldata;
2464 /*
2465 * initialize 1st log page to be written: lpsn = N - 1,
2466 * write a SYNCPT log record is written to this page
2467 */
2468 lp->h.page = lp->t.page = cpu_to_le32(npages - 3);
2469 lp->h.eor = lp->t.eor = cpu_to_le16(LOGPHDRSIZE + LOGRDSIZE);
2470
2471 lrd_ptr = (struct lrd *) &lp->data;
2472 lrd_ptr->logtid = 0;
2473 lrd_ptr->backchain = 0;
2474 lrd_ptr->type = cpu_to_le16(LOG_SYNCPT);
2475 lrd_ptr->length = 0;
2476 lrd_ptr->log.syncpt.sync = 0;
2477
2478 bp->l_blkno += sbi->nbperpage;
2479 bp->l_flag = lbmWRITE | lbmSYNC | lbmDIRECT;
2480 lbmStartIO(bp);
2481 if ((rc = lbmIOWait(bp, 0)))
2482 goto exit;
2483
2484 /*
f720e3ba 2485 * initialize succeeding log pages: lpsn = 0, 1, ..., (N-2)
1da177e4
LT
2486 */
2487 for (lspn = 0; lspn < npages - 3; lspn++) {
2488 lp->h.page = lp->t.page = cpu_to_le32(lspn);
2489 lp->h.eor = lp->t.eor = cpu_to_le16(LOGPHDRSIZE);
2490
2491 bp->l_blkno += sbi->nbperpage;
2492 bp->l_flag = lbmWRITE | lbmSYNC | lbmDIRECT;
2493 lbmStartIO(bp);
2494 if ((rc = lbmIOWait(bp, 0)))
2495 goto exit;
2496 }
2497
2498 rc = 0;
2499exit:
2500 /*
f720e3ba 2501 * finalize log
1da177e4
LT
2502 */
2503 /* release the buffer */
2504 lbmFree(bp);
2505
2506 return rc;
2507}
2508
2509#ifdef CONFIG_JFS_STATISTICS
2510int jfs_lmstats_read(char *buffer, char **start, off_t offset, int length,
2511 int *eof, void *data)
2512{
2513 int len = 0;
2514 off_t begin;
2515
2516 len += sprintf(buffer,
2517 "JFS Logmgr stats\n"
2518 "================\n"
2519 "commits = %d\n"
2520 "writes submitted = %d\n"
2521 "writes completed = %d\n"
2522 "full pages submitted = %d\n"
2523 "partial pages submitted = %d\n",
2524 lmStat.commit,
2525 lmStat.submitted,
2526 lmStat.pagedone,
2527 lmStat.full_page,
2528 lmStat.partial_page);
2529
2530 begin = offset;
2531 *start = buffer + begin;
2532 len -= begin;
2533
2534 if (len > length)
2535 len = length;
2536 else
2537 *eof = 1;
2538
2539 if (len < 0)
2540 len = 0;
2541
2542 return len;
2543}
2544#endif /* CONFIG_JFS_STATISTICS */