Merge branch 'irq-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-block.git] / fs / jffs2 / gc.c
CommitLineData
1da177e4
LT
1/*
2 * JFFS2 -- Journalling Flash File System, Version 2.
3 *
c00c310e 4 * Copyright © 2001-2007 Red Hat, Inc.
6088c058 5 * Copyright © 2004-2010 David Woodhouse <dwmw2@infradead.org>
1da177e4
LT
6 *
7 * Created by David Woodhouse <dwmw2@infradead.org>
8 *
9 * For licensing information, see the file 'LICENCE' in this directory.
10 *
1da177e4
LT
11 */
12
5a528957
JP
13#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14
1da177e4
LT
15#include <linux/kernel.h>
16#include <linux/mtd/mtd.h>
17#include <linux/slab.h>
18#include <linux/pagemap.h>
19#include <linux/crc32.h>
20#include <linux/compiler.h>
21#include <linux/stat.h>
22#include "nodelist.h"
23#include "compr.h"
24
182ec4ee 25static int jffs2_garbage_collect_pristine(struct jffs2_sb_info *c,
1da177e4
LT
26 struct jffs2_inode_cache *ic,
27 struct jffs2_raw_node_ref *raw);
182ec4ee 28static int jffs2_garbage_collect_metadata(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
1da177e4 29 struct jffs2_inode_info *f, struct jffs2_full_dnode *fd);
182ec4ee 30static int jffs2_garbage_collect_dirent(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
1da177e4 31 struct jffs2_inode_info *f, struct jffs2_full_dirent *fd);
182ec4ee 32static int jffs2_garbage_collect_deletion_dirent(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
1da177e4
LT
33 struct jffs2_inode_info *f, struct jffs2_full_dirent *fd);
34static int jffs2_garbage_collect_hole(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
35 struct jffs2_inode_info *f, struct jffs2_full_dnode *fn,
36 uint32_t start, uint32_t end);
37static int jffs2_garbage_collect_dnode(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
38 struct jffs2_inode_info *f, struct jffs2_full_dnode *fn,
39 uint32_t start, uint32_t end);
40static int jffs2_garbage_collect_live(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
41 struct jffs2_raw_node_ref *raw, struct jffs2_inode_info *f);
42
43/* Called with erase_completion_lock held */
44static struct jffs2_eraseblock *jffs2_find_gc_block(struct jffs2_sb_info *c)
45{
46 struct jffs2_eraseblock *ret;
47 struct list_head *nextlist = NULL;
48 int n = jiffies % 128;
49
50 /* Pick an eraseblock to garbage collect next. This is where we'll
51 put the clever wear-levelling algorithms. Eventually. */
52 /* We possibly want to favour the dirtier blocks more when the
53 number of free blocks is low. */
a42163d7 54again:
1da177e4 55 if (!list_empty(&c->bad_used_list) && c->nr_free_blocks > c->resv_blocks_gcbad) {
9c261b33 56 jffs2_dbg(1, "Picking block from bad_used_list to GC next\n");
1da177e4
LT
57 nextlist = &c->bad_used_list;
58 } else if (n < 50 && !list_empty(&c->erasable_list)) {
182ec4ee 59 /* Note that most of them will have gone directly to be erased.
1da177e4 60 So don't favour the erasable_list _too_ much. */
9c261b33 61 jffs2_dbg(1, "Picking block from erasable_list to GC next\n");
1da177e4
LT
62 nextlist = &c->erasable_list;
63 } else if (n < 110 && !list_empty(&c->very_dirty_list)) {
64 /* Most of the time, pick one off the very_dirty list */
9c261b33 65 jffs2_dbg(1, "Picking block from very_dirty_list to GC next\n");
1da177e4
LT
66 nextlist = &c->very_dirty_list;
67 } else if (n < 126 && !list_empty(&c->dirty_list)) {
9c261b33 68 jffs2_dbg(1, "Picking block from dirty_list to GC next\n");
1da177e4
LT
69 nextlist = &c->dirty_list;
70 } else if (!list_empty(&c->clean_list)) {
9c261b33 71 jffs2_dbg(1, "Picking block from clean_list to GC next\n");
1da177e4
LT
72 nextlist = &c->clean_list;
73 } else if (!list_empty(&c->dirty_list)) {
9c261b33 74 jffs2_dbg(1, "Picking block from dirty_list to GC next (clean_list was empty)\n");
1da177e4
LT
75
76 nextlist = &c->dirty_list;
77 } else if (!list_empty(&c->very_dirty_list)) {
9c261b33 78 jffs2_dbg(1, "Picking block from very_dirty_list to GC next (clean_list and dirty_list were empty)\n");
1da177e4
LT
79 nextlist = &c->very_dirty_list;
80 } else if (!list_empty(&c->erasable_list)) {
9c261b33 81 jffs2_dbg(1, "Picking block from erasable_list to GC next (clean_list and {very_,}dirty_list were empty)\n");
1da177e4
LT
82
83 nextlist = &c->erasable_list;
a42163d7
AB
84 } else if (!list_empty(&c->erasable_pending_wbuf_list)) {
85 /* There are blocks are wating for the wbuf sync */
9c261b33 86 jffs2_dbg(1, "Synching wbuf in order to reuse erasable_pending_wbuf_list blocks\n");
3cceb9f6 87 spin_unlock(&c->erase_completion_lock);
a42163d7 88 jffs2_flush_wbuf_pad(c);
3cceb9f6 89 spin_lock(&c->erase_completion_lock);
a42163d7 90 goto again;
1da177e4
LT
91 } else {
92 /* Eep. All were empty */
5a528957 93 jffs2_dbg(1, "No clean, dirty _or_ erasable blocks to GC from! Where are they all?\n");
1da177e4
LT
94 return NULL;
95 }
96
97 ret = list_entry(nextlist->next, struct jffs2_eraseblock, list);
98 list_del(&ret->list);
99 c->gcblock = ret;
100 ret->gc_node = ret->first_node;
101 if (!ret->gc_node) {
da320f05
JP
102 pr_warn("Eep. ret->gc_node for block at 0x%08x is NULL\n",
103 ret->offset);
1da177e4
LT
104 BUG();
105 }
182ec4ee 106
1da177e4
LT
107 /* Have we accidentally picked a clean block with wasted space ? */
108 if (ret->wasted_size) {
9c261b33
JP
109 jffs2_dbg(1, "Converting wasted_size %08x to dirty_size\n",
110 ret->wasted_size);
1da177e4
LT
111 ret->dirty_size += ret->wasted_size;
112 c->wasted_size -= ret->wasted_size;
113 c->dirty_size += ret->wasted_size;
114 ret->wasted_size = 0;
115 }
116
1da177e4
LT
117 return ret;
118}
119
120/* jffs2_garbage_collect_pass
121 * Make a single attempt to progress GC. Move one node, and possibly
122 * start erasing one eraseblock.
123 */
124int jffs2_garbage_collect_pass(struct jffs2_sb_info *c)
125{
126 struct jffs2_inode_info *f;
127 struct jffs2_inode_cache *ic;
128 struct jffs2_eraseblock *jeb;
129 struct jffs2_raw_node_ref *raw;
2665ea84 130 uint32_t gcblock_dirty;
1da177e4 131 int ret = 0, inum, nlink;
aa98d7cf 132 int xattr = 0;
1da177e4 133
ced22070 134 if (mutex_lock_interruptible(&c->alloc_sem))
1da177e4
LT
135 return -EINTR;
136
5817b9dc 137
1da177e4 138 for (;;) {
5817b9dc
DW
139 /* We can't start doing GC until we've finished checking
140 the node CRCs etc. */
141 int bucket, want_ino;
142
1da177e4
LT
143 spin_lock(&c->erase_completion_lock);
144 if (!c->unchecked_size)
145 break;
1da177e4
LT
146 spin_unlock(&c->erase_completion_lock);
147
aa98d7cf
KK
148 if (!xattr)
149 xattr = jffs2_verify_xattr(c);
150
1da177e4 151 spin_lock(&c->inocache_lock);
5817b9dc
DW
152 /* Instead of doing the inodes in numeric order, doing a lookup
153 * in the hash for each possible number, just walk the hash
154 * buckets of *existing* inodes. This means that we process
155 * them out-of-order, but it can be a lot faster if there's
156 * a sparse inode# space. Which there often is. */
157 want_ino = c->check_ino;
158 for (bucket = c->check_ino % c->inocache_hashsize ; bucket < c->inocache_hashsize; bucket++) {
159 for (ic = c->inocache_list[bucket]; ic; ic = ic->next) {
160 if (ic->ino < want_ino)
161 continue;
162
163 if (ic->state != INO_STATE_CHECKEDABSENT &&
164 ic->state != INO_STATE_PRESENT)
165 goto got_next; /* with inocache_lock held */
166
167 jffs2_dbg(1, "Skipping ino #%u already checked\n",
168 ic->ino);
169 }
170 want_ino = 0;
171 }
1da177e4 172
5817b9dc
DW
173 /* Point c->check_ino past the end of the last bucket. */
174 c->check_ino = ((c->highest_ino + c->inocache_hashsize + 1) &
175 ~c->inocache_hashsize) - 1;
1da177e4 176
5817b9dc
DW
177 spin_unlock(&c->inocache_lock);
178
179 pr_crit("Checked all inodes but still 0x%x bytes of unchecked space?\n",
180 c->unchecked_size);
181 jffs2_dbg_dump_block_lists_nolock(c);
182 mutex_unlock(&c->alloc_sem);
183 return -ENOSPC;
184
185 got_next:
186 /* For next time round the loop, we want c->checked_ino to indicate
187 * the *next* one we want to check. And since we're walking the
188 * buckets rather than doing it sequentially, it's: */
189 c->check_ino = ic->ino + c->inocache_hashsize;
1da177e4 190
27c72b04 191 if (!ic->pino_nlink) {
9c261b33
JP
192 jffs2_dbg(1, "Skipping check of ino #%d with nlink/pino zero\n",
193 ic->ino);
1da177e4 194 spin_unlock(&c->inocache_lock);
355ed4e1 195 jffs2_xattr_delete_inode(c, ic);
1da177e4
LT
196 continue;
197 }
198 switch(ic->state) {
199 case INO_STATE_CHECKEDABSENT:
200 case INO_STATE_PRESENT:
1da177e4
LT
201 spin_unlock(&c->inocache_lock);
202 continue;
203
204 case INO_STATE_GC:
205 case INO_STATE_CHECKING:
da320f05
JP
206 pr_warn("Inode #%u is in state %d during CRC check phase!\n",
207 ic->ino, ic->state);
1da177e4
LT
208 spin_unlock(&c->inocache_lock);
209 BUG();
210
211 case INO_STATE_READING:
212 /* We need to wait for it to finish, lest we move on
182ec4ee 213 and trigger the BUG() above while we haven't yet
1da177e4 214 finished checking all its nodes */
9c261b33
JP
215 jffs2_dbg(1, "Waiting for ino #%u to finish reading\n",
216 ic->ino);
d96fb997
DW
217 /* We need to come back again for the _same_ inode. We've
218 made no progress in this case, but that should be OK */
5817b9dc 219 c->check_ino = ic->ino;
d96fb997 220
ced22070 221 mutex_unlock(&c->alloc_sem);
1da177e4
LT
222 sleep_on_spinunlock(&c->inocache_wq, &c->inocache_lock);
223 return 0;
224
225 default:
226 BUG();
227
228 case INO_STATE_UNCHECKED:
229 ;
230 }
231 ic->state = INO_STATE_CHECKING;
232 spin_unlock(&c->inocache_lock);
233
9c261b33
JP
234 jffs2_dbg(1, "%s(): triggering inode scan of ino#%u\n",
235 __func__, ic->ino);
1da177e4
LT
236
237 ret = jffs2_do_crccheck_inode(c, ic);
238 if (ret)
da320f05
JP
239 pr_warn("Returned error for crccheck of ino #%u. Expect badness...\n",
240 ic->ino);
1da177e4
LT
241
242 jffs2_set_inocache_state(c, ic, INO_STATE_CHECKEDABSENT);
ced22070 243 mutex_unlock(&c->alloc_sem);
1da177e4
LT
244 return ret;
245 }
246
0717bf84
DW
247 /* If there are any blocks which need erasing, erase them now */
248 if (!list_empty(&c->erase_complete_list) ||
249 !list_empty(&c->erase_pending_list)) {
250 spin_unlock(&c->erase_completion_lock);
81cfc9f1 251 mutex_unlock(&c->alloc_sem);
9c261b33 252 jffs2_dbg(1, "%s(): erasing pending blocks\n", __func__);
81cfc9f1 253 if (jffs2_erase_pending_blocks(c, 1))
0717bf84 254 return 0;
81cfc9f1 255
9c261b33 256 jffs2_dbg(1, "No progress from erasing block; doing GC anyway\n");
81cfc9f1 257 mutex_lock(&c->alloc_sem);
226bb7df 258 spin_lock(&c->erase_completion_lock);
0717bf84
DW
259 }
260
1da177e4
LT
261 /* First, work out which block we're garbage-collecting */
262 jeb = c->gcblock;
263
264 if (!jeb)
265 jeb = jffs2_find_gc_block(c);
266
267 if (!jeb) {
422b1202 268 /* Couldn't find a free block. But maybe we can just erase one and make 'progress'? */
0717bf84 269 if (c->nr_erasing_blocks) {
422b1202
DW
270 spin_unlock(&c->erase_completion_lock);
271 mutex_unlock(&c->alloc_sem);
272 return -EAGAIN;
273 }
5a528957 274 jffs2_dbg(1, "Couldn't find erase block to garbage collect!\n");
1da177e4 275 spin_unlock(&c->erase_completion_lock);
ced22070 276 mutex_unlock(&c->alloc_sem);
1da177e4
LT
277 return -EIO;
278 }
279
9c261b33
JP
280 jffs2_dbg(1, "GC from block %08x, used_size %08x, dirty_size %08x, free_size %08x\n",
281 jeb->offset, jeb->used_size, jeb->dirty_size, jeb->free_size);
1da177e4
LT
282 D1(if (c->nextblock)
283 printk(KERN_DEBUG "Nextblock at %08x, used_size %08x, dirty_size %08x, wasted_size %08x, free_size %08x\n", c->nextblock->offset, c->nextblock->used_size, c->nextblock->dirty_size, c->nextblock->wasted_size, c->nextblock->free_size));
284
285 if (!jeb->used_size) {
ced22070 286 mutex_unlock(&c->alloc_sem);
1da177e4
LT
287 goto eraseit;
288 }
289
290 raw = jeb->gc_node;
2665ea84 291 gcblock_dirty = jeb->dirty_size;
182ec4ee 292
1da177e4 293 while(ref_obsolete(raw)) {
9c261b33
JP
294 jffs2_dbg(1, "Node at 0x%08x is obsolete... skipping\n",
295 ref_offset(raw));
99988f7b 296 raw = ref_next(raw);
1da177e4 297 if (unlikely(!raw)) {
da320f05
JP
298 pr_warn("eep. End of raw list while still supposedly nodes to GC\n");
299 pr_warn("erase block at 0x%08x. free_size 0x%08x, dirty_size 0x%08x, used_size 0x%08x\n",
300 jeb->offset, jeb->free_size,
301 jeb->dirty_size, jeb->used_size);
1da177e4
LT
302 jeb->gc_node = raw;
303 spin_unlock(&c->erase_completion_lock);
ced22070 304 mutex_unlock(&c->alloc_sem);
1da177e4
LT
305 BUG();
306 }
307 }
308 jeb->gc_node = raw;
309
9c261b33
JP
310 jffs2_dbg(1, "Going to garbage collect node at 0x%08x\n",
311 ref_offset(raw));
1da177e4
LT
312
313 if (!raw->next_in_ino) {
314 /* Inode-less node. Clean marker, snapshot or something like that */
1da177e4 315 spin_unlock(&c->erase_completion_lock);
6171586a
DW
316 if (ref_flags(raw) == REF_PRISTINE) {
317 /* It's an unknown node with JFFS2_FEATURE_RWCOMPAT_COPY */
318 jffs2_garbage_collect_pristine(c, NULL, raw);
319 } else {
320 /* Just mark it obsolete */
321 jffs2_mark_node_obsolete(c, raw);
322 }
ced22070 323 mutex_unlock(&c->alloc_sem);
1da177e4
LT
324 goto eraseit_lock;
325 }
326
327 ic = jffs2_raw_ref_to_ic(raw);
328
084702e0 329#ifdef CONFIG_JFFS2_FS_XATTR
aa98d7cf 330 /* When 'ic' refers xattr_datum/xattr_ref, this node is GCed as xattr.
084702e0
KK
331 * We can decide whether this node is inode or xattr by ic->class. */
332 if (ic->class == RAWNODE_CLASS_XATTR_DATUM
333 || ic->class == RAWNODE_CLASS_XATTR_REF) {
084702e0
KK
334 spin_unlock(&c->erase_completion_lock);
335
336 if (ic->class == RAWNODE_CLASS_XATTR_DATUM) {
c9f700f8 337 ret = jffs2_garbage_collect_xattr_datum(c, (struct jffs2_xattr_datum *)ic, raw);
084702e0 338 } else {
c9f700f8 339 ret = jffs2_garbage_collect_xattr_ref(c, (struct jffs2_xattr_ref *)ic, raw);
084702e0 340 }
2665ea84 341 goto test_gcnode;
084702e0
KK
342 }
343#endif
aa98d7cf 344
1da177e4 345 /* We need to hold the inocache. Either the erase_completion_lock or
182ec4ee 346 the inocache_lock are sufficient; we trade down since the inocache_lock
1da177e4
LT
347 causes less contention. */
348 spin_lock(&c->inocache_lock);
349
350 spin_unlock(&c->erase_completion_lock);
351
9c261b33
JP
352 jffs2_dbg(1, "%s(): collecting from block @0x%08x. Node @0x%08x(%d), ino #%u\n",
353 __func__, jeb->offset, ref_offset(raw), ref_flags(raw),
354 ic->ino);
1da177e4
LT
355
356 /* Three possibilities:
357 1. Inode is already in-core. We must iget it and do proper
358 updating to its fragtree, etc.
359 2. Inode is not in-core, node is REF_PRISTINE. We lock the
360 inocache to prevent a read_inode(), copy the node intact.
361 3. Inode is not in-core, node is not pristine. We must iget()
362 and take the slow path.
363 */
364
365 switch(ic->state) {
366 case INO_STATE_CHECKEDABSENT:
182ec4ee 367 /* It's been checked, but it's not currently in-core.
1da177e4
LT
368 We can just copy any pristine nodes, but have
369 to prevent anyone else from doing read_inode() while
370 we're at it, so we set the state accordingly */
371 if (ref_flags(raw) == REF_PRISTINE)
372 ic->state = INO_STATE_GC;
373 else {
9c261b33
JP
374 jffs2_dbg(1, "Ino #%u is absent but node not REF_PRISTINE. Reading.\n",
375 ic->ino);
1da177e4
LT
376 }
377 break;
378
379 case INO_STATE_PRESENT:
380 /* It's in-core. GC must iget() it. */
381 break;
382
383 case INO_STATE_UNCHECKED:
384 case INO_STATE_CHECKING:
385 case INO_STATE_GC:
386 /* Should never happen. We should have finished checking
182ec4ee
TG
387 by the time we actually start doing any GC, and since
388 we're holding the alloc_sem, no other garbage collection
1da177e4
LT
389 can happen.
390 */
da320f05
JP
391 pr_crit("Inode #%u already in state %d in jffs2_garbage_collect_pass()!\n",
392 ic->ino, ic->state);
ced22070 393 mutex_unlock(&c->alloc_sem);
1da177e4
LT
394 spin_unlock(&c->inocache_lock);
395 BUG();
396
397 case INO_STATE_READING:
398 /* Someone's currently trying to read it. We must wait for
399 them to finish and then go through the full iget() route
400 to do the GC. However, sometimes read_inode() needs to get
401 the alloc_sem() (for marking nodes invalid) so we must
402 drop the alloc_sem before sleeping. */
403
ced22070 404 mutex_unlock(&c->alloc_sem);
9c261b33
JP
405 jffs2_dbg(1, "%s(): waiting for ino #%u in state %d\n",
406 __func__, ic->ino, ic->state);
1da177e4 407 sleep_on_spinunlock(&c->inocache_wq, &c->inocache_lock);
182ec4ee 408 /* And because we dropped the alloc_sem we must start again from the
1da177e4
LT
409 beginning. Ponder chance of livelock here -- we're returning success
410 without actually making any progress.
411
182ec4ee 412 Q: What are the chances that the inode is back in INO_STATE_READING
1da177e4
LT
413 again by the time we next enter this function? And that this happens
414 enough times to cause a real delay?
415
182ec4ee 416 A: Small enough that I don't care :)
1da177e4
LT
417 */
418 return 0;
419 }
420
421 /* OK. Now if the inode is in state INO_STATE_GC, we are going to copy the
182ec4ee 422 node intact, and we don't have to muck about with the fragtree etc.
1da177e4
LT
423 because we know it's not in-core. If it _was_ in-core, we go through
424 all the iget() crap anyway */
425
426 if (ic->state == INO_STATE_GC) {
427 spin_unlock(&c->inocache_lock);
428
429 ret = jffs2_garbage_collect_pristine(c, ic, raw);
430
431 spin_lock(&c->inocache_lock);
432 ic->state = INO_STATE_CHECKEDABSENT;
433 wake_up(&c->inocache_wq);
434
435 if (ret != -EBADFD) {
436 spin_unlock(&c->inocache_lock);
2665ea84 437 goto test_gcnode;
1da177e4
LT
438 }
439
440 /* Fall through if it wanted us to, with inocache_lock held */
441 }
442
443 /* Prevent the fairly unlikely race where the gcblock is
444 entirely obsoleted by the final close of a file which had
445 the only valid nodes in the block, followed by erasure,
446 followed by freeing of the ic because the erased block(s)
447 held _all_ the nodes of that inode.... never been seen but
448 it's vaguely possible. */
449
450 inum = ic->ino;
27c72b04 451 nlink = ic->pino_nlink;
1da177e4
LT
452 spin_unlock(&c->inocache_lock);
453
1b690b48 454 f = jffs2_gc_fetch_inode(c, inum, !nlink);
1da177e4
LT
455 if (IS_ERR(f)) {
456 ret = PTR_ERR(f);
457 goto release_sem;
458 }
459 if (!f) {
460 ret = 0;
461 goto release_sem;
462 }
463
464 ret = jffs2_garbage_collect_live(c, jeb, raw, f);
465
466 jffs2_gc_release_inode(c, f);
467
2665ea84
DW
468 test_gcnode:
469 if (jeb->dirty_size == gcblock_dirty && !ref_obsolete(jeb->gc_node)) {
470 /* Eep. This really should never happen. GC is broken */
da320f05
JP
471 pr_err("Error garbage collecting node at %08x!\n",
472 ref_offset(jeb->gc_node));
2665ea84 473 ret = -ENOSPC;
4fc8a607 474 }
1da177e4 475 release_sem:
ced22070 476 mutex_unlock(&c->alloc_sem);
1da177e4
LT
477
478 eraseit_lock:
479 /* If we've finished this block, start it erasing */
480 spin_lock(&c->erase_completion_lock);
481
482 eraseit:
483 if (c->gcblock && !c->gcblock->used_size) {
9c261b33
JP
484 jffs2_dbg(1, "Block at 0x%08x completely obsoleted by GC. Moving to erase_pending_list\n",
485 c->gcblock->offset);
1da177e4
LT
486 /* We're GC'ing an empty block? */
487 list_add_tail(&c->gcblock->list, &c->erase_pending_list);
488 c->gcblock = NULL;
489 c->nr_erasing_blocks++;
ae3b6ba0 490 jffs2_garbage_collect_trigger(c);
1da177e4
LT
491 }
492 spin_unlock(&c->erase_completion_lock);
493
494 return ret;
495}
496
497static int jffs2_garbage_collect_live(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
498 struct jffs2_raw_node_ref *raw, struct jffs2_inode_info *f)
499{
500 struct jffs2_node_frag *frag;
501 struct jffs2_full_dnode *fn = NULL;
502 struct jffs2_full_dirent *fd;
503 uint32_t start = 0, end = 0, nrfrags = 0;
504 int ret = 0;
505
ced22070 506 mutex_lock(&f->sem);
1da177e4
LT
507
508 /* Now we have the lock for this inode. Check that it's still the one at the head
509 of the list. */
510
511 spin_lock(&c->erase_completion_lock);
512
513 if (c->gcblock != jeb) {
514 spin_unlock(&c->erase_completion_lock);
9c261b33 515 jffs2_dbg(1, "GC block is no longer gcblock. Restart\n");
1da177e4
LT
516 goto upnout;
517 }
518 if (ref_obsolete(raw)) {
519 spin_unlock(&c->erase_completion_lock);
9c261b33 520 jffs2_dbg(1, "node to be GC'd was obsoleted in the meantime.\n");
1da177e4
LT
521 /* They'll call again */
522 goto upnout;
523 }
524 spin_unlock(&c->erase_completion_lock);
525
526 /* OK. Looks safe. And nobody can get us now because we have the semaphore. Move the block */
527 if (f->metadata && f->metadata->raw == raw) {
528 fn = f->metadata;
529 ret = jffs2_garbage_collect_metadata(c, jeb, f, fn);
530 goto upnout;
531 }
532
533 /* FIXME. Read node and do lookup? */
534 for (frag = frag_first(&f->fragtree); frag; frag = frag_next(frag)) {
535 if (frag->node && frag->node->raw == raw) {
536 fn = frag->node;
537 end = frag->ofs + frag->size;
538 if (!nrfrags++)
539 start = frag->ofs;
540 if (nrfrags == frag->node->frags)
541 break; /* We've found them all */
542 }
543 }
544 if (fn) {
545 if (ref_flags(raw) == REF_PRISTINE) {
546 ret = jffs2_garbage_collect_pristine(c, f->inocache, raw);
547 if (!ret) {
548 /* Urgh. Return it sensibly. */
549 frag->node->raw = f->inocache->nodes;
182ec4ee 550 }
1da177e4
LT
551 if (ret != -EBADFD)
552 goto upnout;
553 }
554 /* We found a datanode. Do the GC */
09cbfeaf 555 if((start >> PAGE_SHIFT) < ((end-1) >> PAGE_SHIFT)) {
1da177e4
LT
556 /* It crosses a page boundary. Therefore, it must be a hole. */
557 ret = jffs2_garbage_collect_hole(c, jeb, f, fn, start, end);
558 } else {
559 /* It could still be a hole. But we GC the page this way anyway */
560 ret = jffs2_garbage_collect_dnode(c, jeb, f, fn, start, end);
561 }
562 goto upnout;
563 }
182ec4ee 564
1da177e4
LT
565 /* Wasn't a dnode. Try dirent */
566 for (fd = f->dents; fd; fd=fd->next) {
567 if (fd->raw == raw)
568 break;
569 }
570
571 if (fd && fd->ino) {
572 ret = jffs2_garbage_collect_dirent(c, jeb, f, fd);
573 } else if (fd) {
574 ret = jffs2_garbage_collect_deletion_dirent(c, jeb, f, fd);
575 } else {
da320f05
JP
576 pr_warn("Raw node at 0x%08x wasn't in node lists for ino #%u\n",
577 ref_offset(raw), f->inocache->ino);
1da177e4 578 if (ref_obsolete(raw)) {
da320f05 579 pr_warn("But it's obsolete so we don't mind too much\n");
1da177e4 580 } else {
e0c8e42f
AB
581 jffs2_dbg_dump_node(c, ref_offset(raw));
582 BUG();
1da177e4
LT
583 }
584 }
585 upnout:
ced22070 586 mutex_unlock(&f->sem);
1da177e4
LT
587
588 return ret;
589}
590
182ec4ee 591static int jffs2_garbage_collect_pristine(struct jffs2_sb_info *c,
1da177e4
LT
592 struct jffs2_inode_cache *ic,
593 struct jffs2_raw_node_ref *raw)
594{
595 union jffs2_node_union *node;
1da177e4
LT
596 size_t retlen;
597 int ret;
598 uint32_t phys_ofs, alloclen;
599 uint32_t crc, rawlen;
600 int retried = 0;
601
9c261b33
JP
602 jffs2_dbg(1, "Going to GC REF_PRISTINE node at 0x%08x\n",
603 ref_offset(raw));
1da177e4 604
6171586a 605 alloclen = rawlen = ref_totlen(c, c->gcblock, raw);
1da177e4
LT
606
607 /* Ask for a small amount of space (or the totlen if smaller) because we
608 don't want to force wastage of the end of a block if splitting would
609 work. */
6171586a
DW
610 if (ic && alloclen > sizeof(struct jffs2_raw_inode) + JFFS2_MIN_DATA_LEN)
611 alloclen = sizeof(struct jffs2_raw_inode) + JFFS2_MIN_DATA_LEN;
612
9fe4854c 613 ret = jffs2_reserve_space_gc(c, alloclen, &alloclen, rawlen);
6171586a 614 /* 'rawlen' is not the exact summary size; it is only an upper estimation */
e631ddba 615
1da177e4
LT
616 if (ret)
617 return ret;
618
619 if (alloclen < rawlen) {
620 /* Doesn't fit untouched. We'll go the old route and split it */
621 return -EBADFD;
622 }
623
624 node = kmalloc(rawlen, GFP_KERNEL);
625 if (!node)
ef53cb02 626 return -ENOMEM;
1da177e4
LT
627
628 ret = jffs2_flash_read(c, ref_offset(raw), rawlen, &retlen, (char *)node);
629 if (!ret && retlen != rawlen)
630 ret = -EIO;
631 if (ret)
632 goto out_node;
633
634 crc = crc32(0, node, sizeof(struct jffs2_unknown_node)-4);
635 if (je32_to_cpu(node->u.hdr_crc) != crc) {
da320f05
JP
636 pr_warn("Header CRC failed on REF_PRISTINE node at 0x%08x: Read 0x%08x, calculated 0x%08x\n",
637 ref_offset(raw), je32_to_cpu(node->u.hdr_crc), crc);
1da177e4
LT
638 goto bail;
639 }
640
641 switch(je16_to_cpu(node->u.nodetype)) {
642 case JFFS2_NODETYPE_INODE:
643 crc = crc32(0, node, sizeof(node->i)-8);
644 if (je32_to_cpu(node->i.node_crc) != crc) {
da320f05
JP
645 pr_warn("Node CRC failed on REF_PRISTINE data node at 0x%08x: Read 0x%08x, calculated 0x%08x\n",
646 ref_offset(raw), je32_to_cpu(node->i.node_crc),
647 crc);
1da177e4
LT
648 goto bail;
649 }
650
651 if (je32_to_cpu(node->i.dsize)) {
652 crc = crc32(0, node->i.data, je32_to_cpu(node->i.csize));
653 if (je32_to_cpu(node->i.data_crc) != crc) {
da320f05
JP
654 pr_warn("Data CRC failed on REF_PRISTINE data node at 0x%08x: Read 0x%08x, calculated 0x%08x\n",
655 ref_offset(raw),
656 je32_to_cpu(node->i.data_crc), crc);
1da177e4
LT
657 goto bail;
658 }
659 }
660 break;
661
662 case JFFS2_NODETYPE_DIRENT:
663 crc = crc32(0, node, sizeof(node->d)-8);
664 if (je32_to_cpu(node->d.node_crc) != crc) {
da320f05
JP
665 pr_warn("Node CRC failed on REF_PRISTINE dirent node at 0x%08x: Read 0x%08x, calculated 0x%08x\n",
666 ref_offset(raw),
667 je32_to_cpu(node->d.node_crc), crc);
1da177e4
LT
668 goto bail;
669 }
670
b534e70c 671 if (strnlen(node->d.name, node->d.nsize) != node->d.nsize) {
da320f05
JP
672 pr_warn("Name in dirent node at 0x%08x contains zeroes\n",
673 ref_offset(raw));
b534e70c
DW
674 goto bail;
675 }
676
1da177e4
LT
677 if (node->d.nsize) {
678 crc = crc32(0, node->d.name, node->d.nsize);
679 if (je32_to_cpu(node->d.name_crc) != crc) {
da320f05
JP
680 pr_warn("Name CRC failed on REF_PRISTINE dirent node at 0x%08x: Read 0x%08x, calculated 0x%08x\n",
681 ref_offset(raw),
682 je32_to_cpu(node->d.name_crc), crc);
1da177e4
LT
683 goto bail;
684 }
685 }
686 break;
687 default:
6171586a
DW
688 /* If it's inode-less, we don't _know_ what it is. Just copy it intact */
689 if (ic) {
da320f05
JP
690 pr_warn("Unknown node type for REF_PRISTINE node at 0x%08x: 0x%04x\n",
691 ref_offset(raw), je16_to_cpu(node->u.nodetype));
6171586a
DW
692 goto bail;
693 }
1da177e4
LT
694 }
695
1da177e4
LT
696 /* OK, all the CRCs are good; this node can just be copied as-is. */
697 retry:
2f785402 698 phys_ofs = write_ofs(c);
1da177e4
LT
699
700 ret = jffs2_flash_write(c, phys_ofs, rawlen, &retlen, (char *)node);
701
702 if (ret || (retlen != rawlen)) {
da320f05
JP
703 pr_notice("Write of %d bytes at 0x%08x failed. returned %d, retlen %zd\n",
704 rawlen, phys_ofs, ret, retlen);
1da177e4 705 if (retlen) {
2f785402 706 jffs2_add_physical_node_ref(c, phys_ofs | REF_OBSOLETE, rawlen, NULL);
1da177e4 707 } else {
da320f05
JP
708 pr_notice("Not marking the space at 0x%08x as dirty because the flash driver returned retlen zero\n",
709 phys_ofs);
1da177e4 710 }
2f785402 711 if (!retried) {
1da177e4
LT
712 /* Try to reallocate space and retry */
713 uint32_t dummy;
714 struct jffs2_eraseblock *jeb = &c->blocks[phys_ofs / c->sector_size];
715
716 retried = 1;
717
9c261b33 718 jffs2_dbg(1, "Retrying failed write of REF_PRISTINE node.\n");
182ec4ee 719
730554d9
AB
720 jffs2_dbg_acct_sanity_check(c,jeb);
721 jffs2_dbg_acct_paranoia_check(c, jeb);
1da177e4 722
9fe4854c 723 ret = jffs2_reserve_space_gc(c, rawlen, &dummy, rawlen);
e631ddba
FH
724 /* this is not the exact summary size of it,
725 it is only an upper estimation */
1da177e4
LT
726
727 if (!ret) {
9c261b33
JP
728 jffs2_dbg(1, "Allocated space at 0x%08x to retry failed write.\n",
729 phys_ofs);
1da177e4 730
730554d9
AB
731 jffs2_dbg_acct_sanity_check(c,jeb);
732 jffs2_dbg_acct_paranoia_check(c, jeb);
1da177e4
LT
733
734 goto retry;
735 }
9c261b33
JP
736 jffs2_dbg(1, "Failed to allocate space to retry failed write: %d!\n",
737 ret);
1da177e4
LT
738 }
739
1da177e4
LT
740 if (!ret)
741 ret = -EIO;
742 goto out_node;
743 }
2f785402 744 jffs2_add_physical_node_ref(c, phys_ofs | REF_PRISTINE, rawlen, ic);
1da177e4 745
1da177e4 746 jffs2_mark_node_obsolete(c, raw);
9c261b33
JP
747 jffs2_dbg(1, "WHEEE! GC REF_PRISTINE node at 0x%08x succeeded\n",
748 ref_offset(raw));
1da177e4
LT
749
750 out_node:
751 kfree(node);
752 return ret;
753 bail:
754 ret = -EBADFD;
755 goto out_node;
756}
757
182ec4ee 758static int jffs2_garbage_collect_metadata(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
1da177e4
LT
759 struct jffs2_inode_info *f, struct jffs2_full_dnode *fn)
760{
761 struct jffs2_full_dnode *new_fn;
762 struct jffs2_raw_inode ri;
8557fd51 763 struct jffs2_node_frag *last_frag;
aef9ab47 764 union jffs2_device_node dev;
2e16cfca
DW
765 char *mdata = NULL;
766 int mdatalen = 0;
9fe4854c 767 uint32_t alloclen, ilen;
1da177e4
LT
768 int ret;
769
770 if (S_ISBLK(JFFS2_F_I_MODE(f)) ||
771 S_ISCHR(JFFS2_F_I_MODE(f)) ) {
772 /* For these, we don't actually need to read the old node */
aef9ab47 773 mdatalen = jffs2_encode_dev(&dev, JFFS2_F_I_RDEV(f));
1da177e4 774 mdata = (char *)&dev;
9c261b33
JP
775 jffs2_dbg(1, "%s(): Writing %d bytes of kdev_t\n",
776 __func__, mdatalen);
1da177e4
LT
777 } else if (S_ISLNK(JFFS2_F_I_MODE(f))) {
778 mdatalen = fn->size;
779 mdata = kmalloc(fn->size, GFP_KERNEL);
780 if (!mdata) {
da320f05 781 pr_warn("kmalloc of mdata failed in jffs2_garbage_collect_metadata()\n");
1da177e4
LT
782 return -ENOMEM;
783 }
784 ret = jffs2_read_dnode(c, f, fn, mdata, 0, mdatalen);
785 if (ret) {
da320f05
JP
786 pr_warn("read of old metadata failed in jffs2_garbage_collect_metadata(): %d\n",
787 ret);
1da177e4
LT
788 kfree(mdata);
789 return ret;
790 }
9c261b33
JP
791 jffs2_dbg(1, "%s(): Writing %d bites of symlink target\n",
792 __func__, mdatalen);
1da177e4
LT
793
794 }
182ec4ee 795
9fe4854c 796 ret = jffs2_reserve_space_gc(c, sizeof(ri) + mdatalen, &alloclen,
e631ddba 797 JFFS2_SUMMARY_INODE_SIZE);
1da177e4 798 if (ret) {
da320f05
JP
799 pr_warn("jffs2_reserve_space_gc of %zd bytes for garbage_collect_metadata failed: %d\n",
800 sizeof(ri) + mdatalen, ret);
1da177e4
LT
801 goto out;
802 }
182ec4ee 803
8557fd51
AB
804 last_frag = frag_last(&f->fragtree);
805 if (last_frag)
806 /* Fetch the inode length from the fragtree rather then
807 * from i_size since i_size may have not been updated yet */
808 ilen = last_frag->ofs + last_frag->size;
809 else
810 ilen = JFFS2_F_I_SIZE(f);
182ec4ee 811
1da177e4
LT
812 memset(&ri, 0, sizeof(ri));
813 ri.magic = cpu_to_je16(JFFS2_MAGIC_BITMASK);
814 ri.nodetype = cpu_to_je16(JFFS2_NODETYPE_INODE);
815 ri.totlen = cpu_to_je32(sizeof(ri) + mdatalen);
816 ri.hdr_crc = cpu_to_je32(crc32(0, &ri, sizeof(struct jffs2_unknown_node)-4));
817
818 ri.ino = cpu_to_je32(f->inocache->ino);
819 ri.version = cpu_to_je32(++f->highest_version);
820 ri.mode = cpu_to_jemode(JFFS2_F_I_MODE(f));
821 ri.uid = cpu_to_je16(JFFS2_F_I_UID(f));
822 ri.gid = cpu_to_je16(JFFS2_F_I_GID(f));
8557fd51 823 ri.isize = cpu_to_je32(ilen);
1da177e4
LT
824 ri.atime = cpu_to_je32(JFFS2_F_I_ATIME(f));
825 ri.ctime = cpu_to_je32(JFFS2_F_I_CTIME(f));
826 ri.mtime = cpu_to_je32(JFFS2_F_I_MTIME(f));
827 ri.offset = cpu_to_je32(0);
828 ri.csize = cpu_to_je32(mdatalen);
829 ri.dsize = cpu_to_je32(mdatalen);
830 ri.compr = JFFS2_COMPR_NONE;
831 ri.node_crc = cpu_to_je32(crc32(0, &ri, sizeof(ri)-8));
832 ri.data_crc = cpu_to_je32(crc32(0, mdata, mdatalen));
833
9fe4854c 834 new_fn = jffs2_write_dnode(c, f, &ri, mdata, mdatalen, ALLOC_GC);
1da177e4
LT
835
836 if (IS_ERR(new_fn)) {
da320f05 837 pr_warn("Error writing new dnode: %ld\n", PTR_ERR(new_fn));
1da177e4
LT
838 ret = PTR_ERR(new_fn);
839 goto out;
840 }
841 jffs2_mark_node_obsolete(c, fn->raw);
842 jffs2_free_full_dnode(fn);
843 f->metadata = new_fn;
844 out:
845 if (S_ISLNK(JFFS2_F_I_MODE(f)))
846 kfree(mdata);
847 return ret;
848}
849
182ec4ee 850static int jffs2_garbage_collect_dirent(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
1da177e4
LT
851 struct jffs2_inode_info *f, struct jffs2_full_dirent *fd)
852{
853 struct jffs2_full_dirent *new_fd;
854 struct jffs2_raw_dirent rd;
9fe4854c 855 uint32_t alloclen;
1da177e4
LT
856 int ret;
857
858 rd.magic = cpu_to_je16(JFFS2_MAGIC_BITMASK);
859 rd.nodetype = cpu_to_je16(JFFS2_NODETYPE_DIRENT);
860 rd.nsize = strlen(fd->name);
861 rd.totlen = cpu_to_je32(sizeof(rd) + rd.nsize);
862 rd.hdr_crc = cpu_to_je32(crc32(0, &rd, sizeof(struct jffs2_unknown_node)-4));
863
864 rd.pino = cpu_to_je32(f->inocache->ino);
865 rd.version = cpu_to_je32(++f->highest_version);
866 rd.ino = cpu_to_je32(fd->ino);
3a69e0cd
AB
867 /* If the times on this inode were set by explicit utime() they can be different,
868 so refrain from splatting them. */
869 if (JFFS2_F_I_MTIME(f) == JFFS2_F_I_CTIME(f))
870 rd.mctime = cpu_to_je32(JFFS2_F_I_MTIME(f));
182ec4ee 871 else
3a69e0cd 872 rd.mctime = cpu_to_je32(0);
1da177e4
LT
873 rd.type = fd->type;
874 rd.node_crc = cpu_to_je32(crc32(0, &rd, sizeof(rd)-8));
875 rd.name_crc = cpu_to_je32(crc32(0, fd->name, rd.nsize));
182ec4ee 876
9fe4854c 877 ret = jffs2_reserve_space_gc(c, sizeof(rd)+rd.nsize, &alloclen,
e631ddba 878 JFFS2_SUMMARY_DIRENT_SIZE(rd.nsize));
1da177e4 879 if (ret) {
da320f05
JP
880 pr_warn("jffs2_reserve_space_gc of %zd bytes for garbage_collect_dirent failed: %d\n",
881 sizeof(rd)+rd.nsize, ret);
1da177e4
LT
882 return ret;
883 }
9fe4854c 884 new_fd = jffs2_write_dirent(c, f, &rd, fd->name, rd.nsize, ALLOC_GC);
1da177e4
LT
885
886 if (IS_ERR(new_fd)) {
da320f05
JP
887 pr_warn("jffs2_write_dirent in garbage_collect_dirent failed: %ld\n",
888 PTR_ERR(new_fd));
1da177e4
LT
889 return PTR_ERR(new_fd);
890 }
891 jffs2_add_fd_to_list(c, new_fd, &f->dents);
892 return 0;
893}
894
182ec4ee 895static int jffs2_garbage_collect_deletion_dirent(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
1da177e4
LT
896 struct jffs2_inode_info *f, struct jffs2_full_dirent *fd)
897{
898 struct jffs2_full_dirent **fdp = &f->dents;
899 int found = 0;
900
901 /* On a medium where we can't actually mark nodes obsolete
902 pernamently, such as NAND flash, we need to work out
903 whether this deletion dirent is still needed to actively
904 delete a 'real' dirent with the same name that's still
905 somewhere else on the flash. */
906 if (!jffs2_can_mark_obsolete(c)) {
907 struct jffs2_raw_dirent *rd;
908 struct jffs2_raw_node_ref *raw;
909 int ret;
910 size_t retlen;
911 int name_len = strlen(fd->name);
912 uint32_t name_crc = crc32(0, fd->name, name_len);
913 uint32_t rawlen = ref_totlen(c, jeb, fd->raw);
914
915 rd = kmalloc(rawlen, GFP_KERNEL);
916 if (!rd)
917 return -ENOMEM;
918
919 /* Prevent the erase code from nicking the obsolete node refs while
920 we're looking at them. I really don't like this extra lock but
921 can't see any alternative. Suggestions on a postcard to... */
ced22070 922 mutex_lock(&c->erase_free_sem);
1da177e4
LT
923
924 for (raw = f->inocache->nodes; raw != (void *)f->inocache; raw = raw->next_in_ino) {
925
aba54da3
AB
926 cond_resched();
927
1da177e4
LT
928 /* We only care about obsolete ones */
929 if (!(ref_obsolete(raw)))
930 continue;
931
932 /* Any dirent with the same name is going to have the same length... */
933 if (ref_totlen(c, NULL, raw) != rawlen)
934 continue;
935
182ec4ee 936 /* Doesn't matter if there's one in the same erase block. We're going to
1da177e4 937 delete it too at the same time. */
3be36675 938 if (SECTOR_ADDR(raw->flash_offset) == SECTOR_ADDR(fd->raw->flash_offset))
1da177e4
LT
939 continue;
940
9c261b33
JP
941 jffs2_dbg(1, "Check potential deletion dirent at %08x\n",
942 ref_offset(raw));
1da177e4
LT
943
944 /* This is an obsolete node belonging to the same directory, and it's of the right
945 length. We need to take a closer look...*/
946 ret = jffs2_flash_read(c, ref_offset(raw), rawlen, &retlen, (char *)rd);
947 if (ret) {
da320f05
JP
948 pr_warn("%s(): Read error (%d) reading obsolete node at %08x\n",
949 __func__, ret, ref_offset(raw));
1da177e4
LT
950 /* If we can't read it, we don't need to continue to obsolete it. Continue */
951 continue;
952 }
953 if (retlen != rawlen) {
da320f05
JP
954 pr_warn("%s(): Short read (%zd not %u) reading header from obsolete node at %08x\n",
955 __func__, retlen, rawlen,
956 ref_offset(raw));
1da177e4
LT
957 continue;
958 }
959
960 if (je16_to_cpu(rd->nodetype) != JFFS2_NODETYPE_DIRENT)
961 continue;
962
963 /* If the name CRC doesn't match, skip */
964 if (je32_to_cpu(rd->name_crc) != name_crc)
965 continue;
966
967 /* If the name length doesn't match, or it's another deletion dirent, skip */
968 if (rd->nsize != name_len || !je32_to_cpu(rd->ino))
969 continue;
970
971 /* OK, check the actual name now */
972 if (memcmp(rd->name, fd->name, name_len))
973 continue;
974
975 /* OK. The name really does match. There really is still an older node on
976 the flash which our deletion dirent obsoletes. So we have to write out
977 a new deletion dirent to replace it */
ced22070 978 mutex_unlock(&c->erase_free_sem);
1da177e4 979
9c261b33
JP
980 jffs2_dbg(1, "Deletion dirent at %08x still obsoletes real dirent \"%s\" at %08x for ino #%u\n",
981 ref_offset(fd->raw), fd->name,
982 ref_offset(raw), je32_to_cpu(rd->ino));
1da177e4
LT
983 kfree(rd);
984
985 return jffs2_garbage_collect_dirent(c, jeb, f, fd);
986 }
987
ced22070 988 mutex_unlock(&c->erase_free_sem);
1da177e4
LT
989 kfree(rd);
990 }
991
182ec4ee 992 /* FIXME: If we're deleting a dirent which contains the current mtime and ctime,
3a69e0cd
AB
993 we should update the metadata node with those times accordingly */
994
1da177e4
LT
995 /* No need for it any more. Just mark it obsolete and remove it from the list */
996 while (*fdp) {
997 if ((*fdp) == fd) {
998 found = 1;
999 *fdp = fd->next;
1000 break;
1001 }
1002 fdp = &(*fdp)->next;
1003 }
1004 if (!found) {
da320f05
JP
1005 pr_warn("Deletion dirent \"%s\" not found in list for ino #%u\n",
1006 fd->name, f->inocache->ino);
1da177e4
LT
1007 }
1008 jffs2_mark_node_obsolete(c, fd->raw);
1009 jffs2_free_full_dirent(fd);
1010 return 0;
1011}
1012
1013static int jffs2_garbage_collect_hole(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
1014 struct jffs2_inode_info *f, struct jffs2_full_dnode *fn,
1015 uint32_t start, uint32_t end)
1016{
1017 struct jffs2_raw_inode ri;
1018 struct jffs2_node_frag *frag;
1019 struct jffs2_full_dnode *new_fn;
9fe4854c 1020 uint32_t alloclen, ilen;
1da177e4
LT
1021 int ret;
1022
9c261b33
JP
1023 jffs2_dbg(1, "Writing replacement hole node for ino #%u from offset 0x%x to 0x%x\n",
1024 f->inocache->ino, start, end);
182ec4ee 1025
1da177e4
LT
1026 memset(&ri, 0, sizeof(ri));
1027
1028 if(fn->frags > 1) {
1029 size_t readlen;
1030 uint32_t crc;
182ec4ee 1031 /* It's partially obsoleted by a later write. So we have to
1da177e4
LT
1032 write it out again with the _same_ version as before */
1033 ret = jffs2_flash_read(c, ref_offset(fn->raw), sizeof(ri), &readlen, (char *)&ri);
1034 if (readlen != sizeof(ri) || ret) {
da320f05
JP
1035 pr_warn("Node read failed in jffs2_garbage_collect_hole. Ret %d, retlen %zd. Data will be lost by writing new hole node\n",
1036 ret, readlen);
1da177e4
LT
1037 goto fill;
1038 }
1039 if (je16_to_cpu(ri.nodetype) != JFFS2_NODETYPE_INODE) {
da320f05
JP
1040 pr_warn("%s(): Node at 0x%08x had node type 0x%04x instead of JFFS2_NODETYPE_INODE(0x%04x)\n",
1041 __func__, ref_offset(fn->raw),
1042 je16_to_cpu(ri.nodetype), JFFS2_NODETYPE_INODE);
1da177e4
LT
1043 return -EIO;
1044 }
1045 if (je32_to_cpu(ri.totlen) != sizeof(ri)) {
da320f05
JP
1046 pr_warn("%s(): Node at 0x%08x had totlen 0x%x instead of expected 0x%zx\n",
1047 __func__, ref_offset(fn->raw),
1048 je32_to_cpu(ri.totlen), sizeof(ri));
1da177e4
LT
1049 return -EIO;
1050 }
1051 crc = crc32(0, &ri, sizeof(ri)-8);
1052 if (crc != je32_to_cpu(ri.node_crc)) {
da320f05
JP
1053 pr_warn("%s: Node at 0x%08x had CRC 0x%08x which doesn't match calculated CRC 0x%08x\n",
1054 __func__, ref_offset(fn->raw),
1055 je32_to_cpu(ri.node_crc), crc);
1da177e4 1056 /* FIXME: We could possibly deal with this by writing new holes for each frag */
da320f05
JP
1057 pr_warn("Data in the range 0x%08x to 0x%08x of inode #%u will be lost\n",
1058 start, end, f->inocache->ino);
1da177e4
LT
1059 goto fill;
1060 }
1061 if (ri.compr != JFFS2_COMPR_ZERO) {
da320f05
JP
1062 pr_warn("%s(): Node 0x%08x wasn't a hole node!\n",
1063 __func__, ref_offset(fn->raw));
1064 pr_warn("Data in the range 0x%08x to 0x%08x of inode #%u will be lost\n",
1065 start, end, f->inocache->ino);
1da177e4
LT
1066 goto fill;
1067 }
1068 } else {
1069 fill:
1070 ri.magic = cpu_to_je16(JFFS2_MAGIC_BITMASK);
1071 ri.nodetype = cpu_to_je16(JFFS2_NODETYPE_INODE);
1072 ri.totlen = cpu_to_je32(sizeof(ri));
1073 ri.hdr_crc = cpu_to_je32(crc32(0, &ri, sizeof(struct jffs2_unknown_node)-4));
1074
1075 ri.ino = cpu_to_je32(f->inocache->ino);
1076 ri.version = cpu_to_je32(++f->highest_version);
1077 ri.offset = cpu_to_je32(start);
1078 ri.dsize = cpu_to_je32(end - start);
1079 ri.csize = cpu_to_je32(0);
1080 ri.compr = JFFS2_COMPR_ZERO;
1081 }
182ec4ee 1082
8557fd51
AB
1083 frag = frag_last(&f->fragtree);
1084 if (frag)
1085 /* Fetch the inode length from the fragtree rather then
1086 * from i_size since i_size may have not been updated yet */
1087 ilen = frag->ofs + frag->size;
1088 else
1089 ilen = JFFS2_F_I_SIZE(f);
1090
1da177e4
LT
1091 ri.mode = cpu_to_jemode(JFFS2_F_I_MODE(f));
1092 ri.uid = cpu_to_je16(JFFS2_F_I_UID(f));
1093 ri.gid = cpu_to_je16(JFFS2_F_I_GID(f));
8557fd51 1094 ri.isize = cpu_to_je32(ilen);
1da177e4
LT
1095 ri.atime = cpu_to_je32(JFFS2_F_I_ATIME(f));
1096 ri.ctime = cpu_to_je32(JFFS2_F_I_CTIME(f));
1097 ri.mtime = cpu_to_je32(JFFS2_F_I_MTIME(f));
1098 ri.data_crc = cpu_to_je32(0);
1099 ri.node_crc = cpu_to_je32(crc32(0, &ri, sizeof(ri)-8));
1100
9fe4854c
DW
1101 ret = jffs2_reserve_space_gc(c, sizeof(ri), &alloclen,
1102 JFFS2_SUMMARY_INODE_SIZE);
1da177e4 1103 if (ret) {
da320f05
JP
1104 pr_warn("jffs2_reserve_space_gc of %zd bytes for garbage_collect_hole failed: %d\n",
1105 sizeof(ri), ret);
1da177e4
LT
1106 return ret;
1107 }
9fe4854c 1108 new_fn = jffs2_write_dnode(c, f, &ri, NULL, 0, ALLOC_GC);
1da177e4
LT
1109
1110 if (IS_ERR(new_fn)) {
da320f05 1111 pr_warn("Error writing new hole node: %ld\n", PTR_ERR(new_fn));
1da177e4
LT
1112 return PTR_ERR(new_fn);
1113 }
1114 if (je32_to_cpu(ri.version) == f->highest_version) {
1115 jffs2_add_full_dnode_to_inode(c, f, new_fn);
1116 if (f->metadata) {
1117 jffs2_mark_node_obsolete(c, f->metadata->raw);
1118 jffs2_free_full_dnode(f->metadata);
1119 f->metadata = NULL;
1120 }
1121 return 0;
1122 }
1123
182ec4ee 1124 /*
1da177e4
LT
1125 * We should only get here in the case where the node we are
1126 * replacing had more than one frag, so we kept the same version
182ec4ee 1127 * number as before. (Except in case of error -- see 'goto fill;'
1da177e4
LT
1128 * above.)
1129 */
1130 D1(if(unlikely(fn->frags <= 1)) {
da320f05
JP
1131 pr_warn("%s(): Replacing fn with %d frag(s) but new ver %d != highest_version %d of ino #%d\n",
1132 __func__, fn->frags, je32_to_cpu(ri.version),
1133 f->highest_version, je32_to_cpu(ri.ino));
1da177e4
LT
1134 });
1135
1136 /* This is a partially-overlapped hole node. Mark it REF_NORMAL not REF_PRISTINE */
1137 mark_ref_normal(new_fn->raw);
1138
182ec4ee 1139 for (frag = jffs2_lookup_node_frag(&f->fragtree, fn->ofs);
1da177e4
LT
1140 frag; frag = frag_next(frag)) {
1141 if (frag->ofs > fn->size + fn->ofs)
1142 break;
1143 if (frag->node == fn) {
1144 frag->node = new_fn;
1145 new_fn->frags++;
1146 fn->frags--;
1147 }
1148 }
1149 if (fn->frags) {
da320f05 1150 pr_warn("%s(): Old node still has frags!\n", __func__);
1da177e4
LT
1151 BUG();
1152 }
1153 if (!new_fn->frags) {
da320f05 1154 pr_warn("%s(): New node has no frags!\n", __func__);
1da177e4
LT
1155 BUG();
1156 }
182ec4ee 1157
1da177e4
LT
1158 jffs2_mark_node_obsolete(c, fn->raw);
1159 jffs2_free_full_dnode(fn);
182ec4ee 1160
1da177e4
LT
1161 return 0;
1162}
1163
25dc30b4 1164static int jffs2_garbage_collect_dnode(struct jffs2_sb_info *c, struct jffs2_eraseblock *orig_jeb,
1da177e4
LT
1165 struct jffs2_inode_info *f, struct jffs2_full_dnode *fn,
1166 uint32_t start, uint32_t end)
1167{
1168 struct jffs2_full_dnode *new_fn;
1169 struct jffs2_raw_inode ri;
9fe4854c 1170 uint32_t alloclen, offset, orig_end, orig_start;
1da177e4
LT
1171 int ret = 0;
1172 unsigned char *comprbuf = NULL, *writebuf;
1173 unsigned long pg;
1174 unsigned char *pg_ptr;
182ec4ee 1175
1da177e4
LT
1176 memset(&ri, 0, sizeof(ri));
1177
9c261b33
JP
1178 jffs2_dbg(1, "Writing replacement dnode for ino #%u from offset 0x%x to 0x%x\n",
1179 f->inocache->ino, start, end);
1da177e4
LT
1180
1181 orig_end = end;
1182 orig_start = start;
1183
1184 if (c->nr_free_blocks + c->nr_erasing_blocks > c->resv_blocks_gcmerge) {
1185 /* Attempt to do some merging. But only expand to cover logically
1186 adjacent frags if the block containing them is already considered
182ec4ee
TG
1187 to be dirty. Otherwise we end up with GC just going round in
1188 circles dirtying the nodes it already wrote out, especially
1da177e4
LT
1189 on NAND where we have small eraseblocks and hence a much higher
1190 chance of nodes having to be split to cross boundaries. */
1191
1192 struct jffs2_node_frag *frag;
1193 uint32_t min, max;
1194
09cbfeaf
KS
1195 min = start & ~(PAGE_SIZE-1);
1196 max = min + PAGE_SIZE;
1da177e4
LT
1197
1198 frag = jffs2_lookup_node_frag(&f->fragtree, start);
1199
1200 /* BUG_ON(!frag) but that'll happen anyway... */
1201
1202 BUG_ON(frag->ofs != start);
1203
1204 /* First grow down... */
1205 while((frag = frag_prev(frag)) && frag->ofs >= min) {
1206
1207 /* If the previous frag doesn't even reach the beginning, there's
1208 excessive fragmentation. Just merge. */
1209 if (frag->ofs > min) {
9c261b33
JP
1210 jffs2_dbg(1, "Expanding down to cover partial frag (0x%x-0x%x)\n",
1211 frag->ofs, frag->ofs+frag->size);
1da177e4
LT
1212 start = frag->ofs;
1213 continue;
1214 }
1215 /* OK. This frag holds the first byte of the page. */
1216 if (!frag->node || !frag->node->raw) {
9c261b33
JP
1217 jffs2_dbg(1, "First frag in page is hole (0x%x-0x%x). Not expanding down.\n",
1218 frag->ofs, frag->ofs+frag->size);
1da177e4
LT
1219 break;
1220 } else {
1221
182ec4ee 1222 /* OK, it's a frag which extends to the beginning of the page. Does it live
1da177e4
LT
1223 in a block which is still considered clean? If so, don't obsolete it.
1224 If not, cover it anyway. */
1225
1226 struct jffs2_raw_node_ref *raw = frag->node->raw;
1227 struct jffs2_eraseblock *jeb;
1228
1229 jeb = &c->blocks[raw->flash_offset / c->sector_size];
1230
1231 if (jeb == c->gcblock) {
9c261b33
JP
1232 jffs2_dbg(1, "Expanding down to cover frag (0x%x-0x%x) in gcblock at %08x\n",
1233 frag->ofs,
1234 frag->ofs + frag->size,
1235 ref_offset(raw));
1da177e4
LT
1236 start = frag->ofs;
1237 break;
1238 }
1239 if (!ISDIRTY(jeb->dirty_size + jeb->wasted_size)) {
9c261b33
JP
1240 jffs2_dbg(1, "Not expanding down to cover frag (0x%x-0x%x) in clean block %08x\n",
1241 frag->ofs,
1242 frag->ofs + frag->size,
1243 jeb->offset);
1da177e4
LT
1244 break;
1245 }
1246
9c261b33
JP
1247 jffs2_dbg(1, "Expanding down to cover frag (0x%x-0x%x) in dirty block %08x\n",
1248 frag->ofs,
1249 frag->ofs + frag->size,
1250 jeb->offset);
1da177e4
LT
1251 start = frag->ofs;
1252 break;
1253 }
1254 }
1255
1256 /* ... then up */
1257
1258 /* Find last frag which is actually part of the node we're to GC. */
1259 frag = jffs2_lookup_node_frag(&f->fragtree, end-1);
1260
1261 while((frag = frag_next(frag)) && frag->ofs+frag->size <= max) {
1262
1263 /* If the previous frag doesn't even reach the beginning, there's lots
1264 of fragmentation. Just merge. */
1265 if (frag->ofs+frag->size < max) {
9c261b33
JP
1266 jffs2_dbg(1, "Expanding up to cover partial frag (0x%x-0x%x)\n",
1267 frag->ofs, frag->ofs+frag->size);
1da177e4
LT
1268 end = frag->ofs + frag->size;
1269 continue;
1270 }
1271
1272 if (!frag->node || !frag->node->raw) {
9c261b33
JP
1273 jffs2_dbg(1, "Last frag in page is hole (0x%x-0x%x). Not expanding up.\n",
1274 frag->ofs, frag->ofs+frag->size);
1da177e4
LT
1275 break;
1276 } else {
1277
182ec4ee 1278 /* OK, it's a frag which extends to the beginning of the page. Does it live
1da177e4
LT
1279 in a block which is still considered clean? If so, don't obsolete it.
1280 If not, cover it anyway. */
1281
1282 struct jffs2_raw_node_ref *raw = frag->node->raw;
1283 struct jffs2_eraseblock *jeb;
1284
1285 jeb = &c->blocks[raw->flash_offset / c->sector_size];
1286
1287 if (jeb == c->gcblock) {
9c261b33
JP
1288 jffs2_dbg(1, "Expanding up to cover frag (0x%x-0x%x) in gcblock at %08x\n",
1289 frag->ofs,
1290 frag->ofs + frag->size,
1291 ref_offset(raw));
1da177e4
LT
1292 end = frag->ofs + frag->size;
1293 break;
1294 }
1295 if (!ISDIRTY(jeb->dirty_size + jeb->wasted_size)) {
9c261b33
JP
1296 jffs2_dbg(1, "Not expanding up to cover frag (0x%x-0x%x) in clean block %08x\n",
1297 frag->ofs,
1298 frag->ofs + frag->size,
1299 jeb->offset);
1da177e4
LT
1300 break;
1301 }
1302
9c261b33
JP
1303 jffs2_dbg(1, "Expanding up to cover frag (0x%x-0x%x) in dirty block %08x\n",
1304 frag->ofs,
1305 frag->ofs + frag->size,
1306 jeb->offset);
1da177e4
LT
1307 end = frag->ofs + frag->size;
1308 break;
1309 }
1310 }
9c261b33
JP
1311 jffs2_dbg(1, "Expanded dnode to write from (0x%x-0x%x) to (0x%x-0x%x)\n",
1312 orig_start, orig_end, start, end);
1da177e4 1313
8557fd51 1314 D1(BUG_ON(end > frag_last(&f->fragtree)->ofs + frag_last(&f->fragtree)->size));
1da177e4
LT
1315 BUG_ON(end < orig_end);
1316 BUG_ON(start > orig_start);
1317 }
182ec4ee 1318
49e91e70
DW
1319 /* The rules state that we must obtain the page lock *before* f->sem, so
1320 * drop f->sem temporarily. Since we also hold c->alloc_sem, nothing's
1321 * actually going to *change* so we're safe; we only allow reading.
1322 *
1323 * It is important to note that jffs2_write_begin() will ensure that its
1324 * page is marked Uptodate before allocating space. That means that if we
1325 * end up here trying to GC the *same* page that jffs2_write_begin() is
1326 * trying to write out, read_cache_page() will not deadlock. */
1327 mutex_unlock(&f->sem);
1da177e4 1328 pg_ptr = jffs2_gc_fetch_page(c, f, start, &pg);
49e91e70 1329 mutex_lock(&f->sem);
1da177e4
LT
1330
1331 if (IS_ERR(pg_ptr)) {
da320f05
JP
1332 pr_warn("read_cache_page() returned error: %ld\n",
1333 PTR_ERR(pg_ptr));
1da177e4
LT
1334 return PTR_ERR(pg_ptr);
1335 }
1336
1337 offset = start;
1338 while(offset < orig_end) {
1339 uint32_t datalen;
1340 uint32_t cdatalen;
1341 uint16_t comprtype = JFFS2_COMPR_NONE;
1342
9fe4854c 1343 ret = jffs2_reserve_space_gc(c, sizeof(ri) + JFFS2_MIN_DATA_LEN,
e631ddba 1344 &alloclen, JFFS2_SUMMARY_INODE_SIZE);
1da177e4
LT
1345
1346 if (ret) {
da320f05
JP
1347 pr_warn("jffs2_reserve_space_gc of %zd bytes for garbage_collect_dnode failed: %d\n",
1348 sizeof(ri) + JFFS2_MIN_DATA_LEN, ret);
1da177e4
LT
1349 break;
1350 }
1351 cdatalen = min_t(uint32_t, alloclen - sizeof(ri), end - offset);
1352 datalen = end - offset;
1353
09cbfeaf 1354 writebuf = pg_ptr + (offset & (PAGE_SIZE -1));
1da177e4
LT
1355
1356 comprtype = jffs2_compress(c, f, writebuf, &comprbuf, &datalen, &cdatalen);
1357
1358 ri.magic = cpu_to_je16(JFFS2_MAGIC_BITMASK);
1359 ri.nodetype = cpu_to_je16(JFFS2_NODETYPE_INODE);
1360 ri.totlen = cpu_to_je32(sizeof(ri) + cdatalen);
1361 ri.hdr_crc = cpu_to_je32(crc32(0, &ri, sizeof(struct jffs2_unknown_node)-4));
1362
1363 ri.ino = cpu_to_je32(f->inocache->ino);
1364 ri.version = cpu_to_je32(++f->highest_version);
1365 ri.mode = cpu_to_jemode(JFFS2_F_I_MODE(f));
1366 ri.uid = cpu_to_je16(JFFS2_F_I_UID(f));
1367 ri.gid = cpu_to_je16(JFFS2_F_I_GID(f));
1368 ri.isize = cpu_to_je32(JFFS2_F_I_SIZE(f));
1369 ri.atime = cpu_to_je32(JFFS2_F_I_ATIME(f));
1370 ri.ctime = cpu_to_je32(JFFS2_F_I_CTIME(f));
1371 ri.mtime = cpu_to_je32(JFFS2_F_I_MTIME(f));
1372 ri.offset = cpu_to_je32(offset);
1373 ri.csize = cpu_to_je32(cdatalen);
1374 ri.dsize = cpu_to_je32(datalen);
1375 ri.compr = comprtype & 0xff;
1376 ri.usercompr = (comprtype >> 8) & 0xff;
1377 ri.node_crc = cpu_to_je32(crc32(0, &ri, sizeof(ri)-8));
1378 ri.data_crc = cpu_to_je32(crc32(0, comprbuf, cdatalen));
182ec4ee 1379
9fe4854c 1380 new_fn = jffs2_write_dnode(c, f, &ri, comprbuf, cdatalen, ALLOC_GC);
1da177e4
LT
1381
1382 jffs2_free_comprbuf(comprbuf, writebuf);
1383
1384 if (IS_ERR(new_fn)) {
da320f05
JP
1385 pr_warn("Error writing new dnode: %ld\n",
1386 PTR_ERR(new_fn));
1da177e4
LT
1387 ret = PTR_ERR(new_fn);
1388 break;
1389 }
1390 ret = jffs2_add_full_dnode_to_inode(c, f, new_fn);
1391 offset += datalen;
1392 if (f->metadata) {
1393 jffs2_mark_node_obsolete(c, f->metadata->raw);
1394 jffs2_free_full_dnode(f->metadata);
1395 f->metadata = NULL;
1396 }
1397 }
1398
1399 jffs2_gc_release_page(c, pg_ptr, &pg);
1400 return ret;
1401}