writeback: fix time ordering of the per superblock dirty inode lists 5
[linux-block.git] / fs / fs-writeback.c
CommitLineData
1da177e4
LT
1/*
2 * fs/fs-writeback.c
3 *
4 * Copyright (C) 2002, Linus Torvalds.
5 *
6 * Contains all the functions related to writing back and waiting
7 * upon dirty inodes against superblocks, and writing back dirty
8 * pages against inodes. ie: data writeback. Writeout of the
9 * inode itself is not handled here.
10 *
11 * 10Apr2002 akpm@zip.com.au
12 * Split out of fs/inode.c
13 * Additions for address_space-based writeback
14 */
15
16#include <linux/kernel.h>
f5ff8422 17#include <linux/module.h>
1da177e4
LT
18#include <linux/spinlock.h>
19#include <linux/sched.h>
20#include <linux/fs.h>
21#include <linux/mm.h>
22#include <linux/writeback.h>
23#include <linux/blkdev.h>
24#include <linux/backing-dev.h>
25#include <linux/buffer_head.h>
07f3f05c 26#include "internal.h"
1da177e4
LT
27
28/**
29 * __mark_inode_dirty - internal function
30 * @inode: inode to mark
31 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
32 * Mark an inode as dirty. Callers should use mark_inode_dirty or
33 * mark_inode_dirty_sync.
34 *
35 * Put the inode on the super block's dirty list.
36 *
37 * CAREFUL! We mark it dirty unconditionally, but move it onto the
38 * dirty list only if it is hashed or if it refers to a blockdev.
39 * If it was not hashed, it will never be added to the dirty list
40 * even if it is later hashed, as it will have been marked dirty already.
41 *
42 * In short, make sure you hash any inodes _before_ you start marking
43 * them dirty.
44 *
45 * This function *must* be atomic for the I_DIRTY_PAGES case -
46 * set_page_dirty() is called under spinlock in several places.
47 *
48 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
49 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of
50 * the kernel-internal blockdev inode represents the dirtying time of the
51 * blockdev's pages. This is why for I_DIRTY_PAGES we always use
52 * page->mapping->host, so the page-dirtying time is recorded in the internal
53 * blockdev inode.
54 */
55void __mark_inode_dirty(struct inode *inode, int flags)
56{
57 struct super_block *sb = inode->i_sb;
58
59 /*
60 * Don't do this for I_DIRTY_PAGES - that doesn't actually
61 * dirty the inode itself
62 */
63 if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
64 if (sb->s_op->dirty_inode)
65 sb->s_op->dirty_inode(inode);
66 }
67
68 /*
69 * make sure that changes are seen by all cpus before we test i_state
70 * -- mikulas
71 */
72 smp_mb();
73
74 /* avoid the locking if we can */
75 if ((inode->i_state & flags) == flags)
76 return;
77
78 if (unlikely(block_dump)) {
79 struct dentry *dentry = NULL;
80 const char *name = "?";
81
82 if (!list_empty(&inode->i_dentry)) {
83 dentry = list_entry(inode->i_dentry.next,
84 struct dentry, d_alias);
85 if (dentry && dentry->d_name.name)
86 name = (const char *) dentry->d_name.name;
87 }
88
89 if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev"))
90 printk(KERN_DEBUG
91 "%s(%d): dirtied inode %lu (%s) on %s\n",
92 current->comm, current->pid, inode->i_ino,
93 name, inode->i_sb->s_id);
94 }
95
96 spin_lock(&inode_lock);
97 if ((inode->i_state & flags) != flags) {
98 const int was_dirty = inode->i_state & I_DIRTY;
99
100 inode->i_state |= flags;
101
102 /*
103 * If the inode is locked, just update its dirty state.
104 * The unlocker will place the inode on the appropriate
105 * superblock list, based upon its state.
106 */
107 if (inode->i_state & I_LOCK)
108 goto out;
109
110 /*
111 * Only add valid (hashed) inodes to the superblock's
112 * dirty list. Add blockdev inodes as well.
113 */
114 if (!S_ISBLK(inode->i_mode)) {
115 if (hlist_unhashed(&inode->i_hash))
116 goto out;
117 }
118 if (inode->i_state & (I_FREEING|I_CLEAR))
119 goto out;
120
121 /*
122 * If the inode was already on s_dirty or s_io, don't
123 * reposition it (that would break s_dirty time-ordering).
124 */
125 if (!was_dirty) {
126 inode->dirtied_when = jiffies;
127 list_move(&inode->i_list, &sb->s_dirty);
128 }
129 }
130out:
131 spin_unlock(&inode_lock);
132}
133
134EXPORT_SYMBOL(__mark_inode_dirty);
135
136static int write_inode(struct inode *inode, int sync)
137{
138 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode))
139 return inode->i_sb->s_op->write_inode(inode, sync);
140 return 0;
141}
142
6610a0bc
AM
143/*
144 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
145 * furthest end of its superblock's dirty-inode list.
146 *
147 * Before stamping the inode's ->dirtied_when, we check to see whether it is
148 * already the most-recently-dirtied inode on the s_dirty list. If that is
149 * the case then the inode must have been redirtied while it was being written
150 * out and we don't reset its dirtied_when.
151 */
152static void redirty_tail(struct inode *inode)
153{
154 struct super_block *sb = inode->i_sb;
155
156 if (!list_empty(&sb->s_dirty)) {
157 struct inode *tail_inode;
158
159 tail_inode = list_entry(sb->s_dirty.next, struct inode, i_list);
160 if (!time_after_eq(inode->dirtied_when,
161 tail_inode->dirtied_when))
162 inode->dirtied_when = jiffies;
163 }
164 list_move(&inode->i_list, &sb->s_dirty);
165}
166
c986d1e2
AM
167/*
168 * Redirty an inode, but mark it as the very next-to-be-written inode on its
169 * superblock's dirty-inode list.
170 * We need to preserve s_dirty's reverse-time-orderedness, so we cheat by
171 * setting this inode's dirtied_when to the same value as that of the inode
172 * which is presently head-of-list, if present head-of-list is newer than this
173 * inode. (head-of-list is the least-recently-dirtied inode: the oldest one).
174 */
175static void redirty_head(struct inode *inode)
176{
177 struct super_block *sb = inode->i_sb;
178
179 if (!list_empty(&sb->s_dirty)) {
180 struct inode *head_inode;
181
182 head_inode = list_entry(sb->s_dirty.prev, struct inode, i_list);
183 if (time_after(inode->dirtied_when, head_inode->dirtied_when))
184 inode->dirtied_when = head_inode->dirtied_when;
185 }
186 list_move_tail(&inode->i_list, &sb->s_dirty);
187}
188
1da177e4
LT
189/*
190 * Write a single inode's dirty pages and inode data out to disk.
191 * If `wait' is set, wait on the writeout.
192 *
193 * The whole writeout design is quite complex and fragile. We want to avoid
194 * starvation of particular inodes when others are being redirtied, prevent
195 * livelocks, etc.
196 *
197 * Called under inode_lock.
198 */
199static int
200__sync_single_inode(struct inode *inode, struct writeback_control *wbc)
201{
202 unsigned dirty;
203 struct address_space *mapping = inode->i_mapping;
1da177e4
LT
204 int wait = wbc->sync_mode == WB_SYNC_ALL;
205 int ret;
206
207 BUG_ON(inode->i_state & I_LOCK);
208
209 /* Set I_LOCK, reset I_DIRTY */
210 dirty = inode->i_state & I_DIRTY;
211 inode->i_state |= I_LOCK;
212 inode->i_state &= ~I_DIRTY;
213
214 spin_unlock(&inode_lock);
215
216 ret = do_writepages(mapping, wbc);
217
218 /* Don't write the inode if only I_DIRTY_PAGES was set */
219 if (dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
220 int err = write_inode(inode, wait);
221 if (ret == 0)
222 ret = err;
223 }
224
225 if (wait) {
226 int err = filemap_fdatawait(mapping);
227 if (ret == 0)
228 ret = err;
229 }
230
231 spin_lock(&inode_lock);
232 inode->i_state &= ~I_LOCK;
233 if (!(inode->i_state & I_FREEING)) {
234 if (!(inode->i_state & I_DIRTY) &&
235 mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
236 /*
237 * We didn't write back all the pages. nfs_writepages()
238 * sometimes bales out without doing anything. Redirty
1b43ef91
AM
239 * the inode. It is moved from s_io onto s_dirty.
240 */
241 /*
242 * akpm: if the caller was the kupdate function we put
243 * this inode at the head of s_dirty so it gets first
244 * consideration. Otherwise, move it to the tail, for
245 * the reasons described there. I'm not really sure
246 * how much sense this makes. Presumably I had a good
247 * reasons for doing it this way, and I'd rather not
248 * muck with it at present.
1da177e4
LT
249 */
250 if (wbc->for_kupdate) {
251 /*
252 * For the kupdate function we leave the inode
253 * at the head of sb_dirty so it will get more
254 * writeout as soon as the queue becomes
255 * uncongested.
256 */
257 inode->i_state |= I_DIRTY_PAGES;
c986d1e2 258 redirty_head(inode);
1da177e4
LT
259 } else {
260 /*
261 * Otherwise fully redirty the inode so that
262 * other inodes on this superblock will get some
263 * writeout. Otherwise heavy writing to one
264 * file would indefinitely suspend writeout of
265 * all the other files.
266 */
267 inode->i_state |= I_DIRTY_PAGES;
1b43ef91 268 redirty_tail(inode);
1da177e4
LT
269 }
270 } else if (inode->i_state & I_DIRTY) {
271 /*
272 * Someone redirtied the inode while were writing back
273 * the pages.
274 */
6610a0bc 275 redirty_tail(inode);
1da177e4
LT
276 } else if (atomic_read(&inode->i_count)) {
277 /*
278 * The inode is clean, inuse
279 */
280 list_move(&inode->i_list, &inode_in_use);
281 } else {
282 /*
283 * The inode is clean, unused
284 */
285 list_move(&inode->i_list, &inode_unused);
1da177e4
LT
286 }
287 }
288 wake_up_inode(inode);
289 return ret;
290}
291
292/*
7f04c26d
AA
293 * Write out an inode's dirty pages. Called under inode_lock. Either the
294 * caller has ref on the inode (either via __iget or via syscall against an fd)
295 * or the inode has I_WILL_FREE set (via generic_forget_inode)
1da177e4
LT
296 */
297static int
7f04c26d 298__writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
1da177e4
LT
299{
300 wait_queue_head_t *wqh;
301
7f04c26d 302 if (!atomic_read(&inode->i_count))
659603ef 303 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
7f04c26d
AA
304 else
305 WARN_ON(inode->i_state & I_WILL_FREE);
306
1da177e4 307 if ((wbc->sync_mode != WB_SYNC_ALL) && (inode->i_state & I_LOCK)) {
4b89eed9
LT
308 struct address_space *mapping = inode->i_mapping;
309 int ret;
310
c6945e77 311 redirty_tail(inode);
4b89eed9
LT
312
313 /*
314 * Even if we don't actually write the inode itself here,
315 * we can at least start some of the data writeout..
316 */
317 spin_unlock(&inode_lock);
318 ret = do_writepages(mapping, wbc);
319 spin_lock(&inode_lock);
320 return ret;
1da177e4
LT
321 }
322
323 /*
324 * It's a data-integrity sync. We must wait.
325 */
326 if (inode->i_state & I_LOCK) {
327 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_LOCK);
328
329 wqh = bit_waitqueue(&inode->i_state, __I_LOCK);
330 do {
1da177e4
LT
331 spin_unlock(&inode_lock);
332 __wait_on_bit(wqh, &wq, inode_wait,
333 TASK_UNINTERRUPTIBLE);
1da177e4
LT
334 spin_lock(&inode_lock);
335 } while (inode->i_state & I_LOCK);
336 }
337 return __sync_single_inode(inode, wbc);
338}
339
340/*
341 * Write out a superblock's list of dirty inodes. A wait will be performed
342 * upon no inodes, all inodes or the final one, depending upon sync_mode.
343 *
344 * If older_than_this is non-NULL, then only write out inodes which
345 * had their first dirtying at a time earlier than *older_than_this.
346 *
347 * If we're a pdlfush thread, then implement pdflush collision avoidance
348 * against the entire list.
349 *
350 * WB_SYNC_HOLD is a hack for sys_sync(): reattach the inode to sb->s_dirty so
351 * that it can be located for waiting on in __writeback_single_inode().
352 *
353 * Called under inode_lock.
354 *
355 * If `bdi' is non-zero then we're being asked to writeback a specific queue.
356 * This function assumes that the blockdev superblock's inodes are backed by
357 * a variety of queues, so all inodes are searched. For other superblocks,
358 * assume that all inodes are backed by the same queue.
359 *
360 * FIXME: this linear search could get expensive with many fileystems. But
361 * how to fix? We need to go from an address_space to all inodes which share
362 * a queue with that address_space. (Easy: have a global "dirty superblocks"
363 * list).
364 *
365 * The inodes to be written are parked on sb->s_io. They are moved back onto
366 * sb->s_dirty as they are selected for writing. This way, none can be missed
367 * on the writer throttling path, and we get decent balancing between many
368 * throttled threads: we don't want them all piling up on __wait_on_inode.
369 */
370static void
371sync_sb_inodes(struct super_block *sb, struct writeback_control *wbc)
372{
373 const unsigned long start = jiffies; /* livelock avoidance */
374
375 if (!wbc->for_kupdate || list_empty(&sb->s_io))
376 list_splice_init(&sb->s_dirty, &sb->s_io);
377
378 while (!list_empty(&sb->s_io)) {
379 struct inode *inode = list_entry(sb->s_io.prev,
380 struct inode, i_list);
381 struct address_space *mapping = inode->i_mapping;
382 struct backing_dev_info *bdi = mapping->backing_dev_info;
383 long pages_skipped;
384
385 if (!bdi_cap_writeback_dirty(bdi)) {
9852a0e7 386 redirty_tail(inode);
7b0de42d 387 if (sb_is_blkdev_sb(sb)) {
1da177e4
LT
388 /*
389 * Dirty memory-backed blockdev: the ramdisk
390 * driver does this. Skip just this inode
391 */
392 continue;
393 }
394 /*
395 * Dirty memory-backed inode against a filesystem other
396 * than the kernel-internal bdev filesystem. Skip the
397 * entire superblock.
398 */
399 break;
400 }
401
402 if (wbc->nonblocking && bdi_write_congested(bdi)) {
403 wbc->encountered_congestion = 1;
7b0de42d 404 if (!sb_is_blkdev_sb(sb))
1da177e4
LT
405 break; /* Skip a congested fs */
406 list_move(&inode->i_list, &sb->s_dirty);
407 continue; /* Skip a congested blockdev */
408 }
409
410 if (wbc->bdi && bdi != wbc->bdi) {
7b0de42d 411 if (!sb_is_blkdev_sb(sb))
1da177e4
LT
412 break; /* fs has the wrong queue */
413 list_move(&inode->i_list, &sb->s_dirty);
414 continue; /* blockdev has wrong queue */
415 }
416
417 /* Was this inode dirtied after sync_sb_inodes was called? */
418 if (time_after(inode->dirtied_when, start))
419 break;
420
421 /* Was this inode dirtied too recently? */
422 if (wbc->older_than_this && time_after(inode->dirtied_when,
423 *wbc->older_than_this))
424 break;
425
426 /* Is another pdflush already flushing this queue? */
427 if (current_is_pdflush() && !writeback_acquire(bdi))
428 break;
429
430 BUG_ON(inode->i_state & I_FREEING);
431 __iget(inode);
432 pages_skipped = wbc->pages_skipped;
433 __writeback_single_inode(inode, wbc);
434 if (wbc->sync_mode == WB_SYNC_HOLD) {
435 inode->dirtied_when = jiffies;
436 list_move(&inode->i_list, &sb->s_dirty);
437 }
438 if (current_is_pdflush())
439 writeback_release(bdi);
440 if (wbc->pages_skipped != pages_skipped) {
441 /*
442 * writeback is not making progress due to locked
443 * buffers. Skip this inode for now.
444 */
f57b9b7b 445 redirty_tail(inode);
1da177e4
LT
446 }
447 spin_unlock(&inode_lock);
1da177e4 448 iput(inode);
4ffc8444 449 cond_resched();
1da177e4
LT
450 spin_lock(&inode_lock);
451 if (wbc->nr_to_write <= 0)
452 break;
453 }
454 return; /* Leave any unwritten inodes on s_io */
455}
456
457/*
458 * Start writeback of dirty pagecache data against all unlocked inodes.
459 *
460 * Note:
461 * We don't need to grab a reference to superblock here. If it has non-empty
462 * ->s_dirty it's hadn't been killed yet and kill_super() won't proceed
463 * past sync_inodes_sb() until both the ->s_dirty and ->s_io lists are
464 * empty. Since __sync_single_inode() regains inode_lock before it finally moves
465 * inode from superblock lists we are OK.
466 *
467 * If `older_than_this' is non-zero then only flush inodes which have a
468 * flushtime older than *older_than_this.
469 *
470 * If `bdi' is non-zero then we will scan the first inode against each
471 * superblock until we find the matching ones. One group will be the dirty
472 * inodes against a filesystem. Then when we hit the dummy blockdev superblock,
473 * sync_sb_inodes will seekout the blockdev which matches `bdi'. Maybe not
474 * super-efficient but we're about to do a ton of I/O...
475 */
476void
477writeback_inodes(struct writeback_control *wbc)
478{
479 struct super_block *sb;
480
481 might_sleep();
482 spin_lock(&sb_lock);
483restart:
484 sb = sb_entry(super_blocks.prev);
485 for (; sb != sb_entry(&super_blocks); sb = sb_entry(sb->s_list.prev)) {
486 if (!list_empty(&sb->s_dirty) || !list_empty(&sb->s_io)) {
487 /* we're making our own get_super here */
488 sb->s_count++;
489 spin_unlock(&sb_lock);
490 /*
491 * If we can't get the readlock, there's no sense in
492 * waiting around, most of the time the FS is going to
493 * be unmounted by the time it is released.
494 */
495 if (down_read_trylock(&sb->s_umount)) {
496 if (sb->s_root) {
497 spin_lock(&inode_lock);
498 sync_sb_inodes(sb, wbc);
499 spin_unlock(&inode_lock);
500 }
501 up_read(&sb->s_umount);
502 }
503 spin_lock(&sb_lock);
504 if (__put_super_and_need_restart(sb))
505 goto restart;
506 }
507 if (wbc->nr_to_write <= 0)
508 break;
509 }
510 spin_unlock(&sb_lock);
511}
512
513/*
514 * writeback and wait upon the filesystem's dirty inodes. The caller will
515 * do this in two passes - one to write, and one to wait. WB_SYNC_HOLD is
516 * used to park the written inodes on sb->s_dirty for the wait pass.
517 *
518 * A finite limit is set on the number of pages which will be written.
519 * To prevent infinite livelock of sys_sync().
520 *
521 * We add in the number of potentially dirty inodes, because each inode write
522 * can dirty pagecache in the underlying blockdev.
523 */
524void sync_inodes_sb(struct super_block *sb, int wait)
525{
526 struct writeback_control wbc = {
527 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_HOLD,
111ebb6e
OH
528 .range_start = 0,
529 .range_end = LLONG_MAX,
1da177e4 530 };
b1e7a8fd 531 unsigned long nr_dirty = global_page_state(NR_FILE_DIRTY);
fd39fc85 532 unsigned long nr_unstable = global_page_state(NR_UNSTABLE_NFS);
1da177e4
LT
533
534 wbc.nr_to_write = nr_dirty + nr_unstable +
535 (inodes_stat.nr_inodes - inodes_stat.nr_unused) +
536 nr_dirty + nr_unstable;
537 wbc.nr_to_write += wbc.nr_to_write / 2; /* Bit more for luck */
538 spin_lock(&inode_lock);
539 sync_sb_inodes(sb, &wbc);
540 spin_unlock(&inode_lock);
541}
542
543/*
544 * Rather lame livelock avoidance.
545 */
546static void set_sb_syncing(int val)
547{
548 struct super_block *sb;
549 spin_lock(&sb_lock);
550 sb = sb_entry(super_blocks.prev);
551 for (; sb != sb_entry(&super_blocks); sb = sb_entry(sb->s_list.prev)) {
552 sb->s_syncing = val;
553 }
554 spin_unlock(&sb_lock);
555}
556
1da177e4 557/**
67be2dd1
MW
558 * sync_inodes - writes all inodes to disk
559 * @wait: wait for completion
1da177e4
LT
560 *
561 * sync_inodes() goes through each super block's dirty inode list, writes the
562 * inodes out, waits on the writeout and puts the inodes back on the normal
563 * list.
564 *
565 * This is for sys_sync(). fsync_dev() uses the same algorithm. The subtle
566 * part of the sync functions is that the blockdev "superblock" is processed
567 * last. This is because the write_inode() function of a typical fs will
568 * perform no I/O, but will mark buffers in the blockdev mapping as dirty.
569 * What we want to do is to perform all that dirtying first, and then write
570 * back all those inode blocks via the blockdev mapping in one sweep. So the
571 * additional (somewhat redundant) sync_blockdev() calls here are to make
572 * sure that really happens. Because if we call sync_inodes_sb(wait=1) with
573 * outstanding dirty inodes, the writeback goes block-at-a-time within the
574 * filesystem's write_inode(). This is extremely slow.
575 */
618f0636 576static void __sync_inodes(int wait)
1da177e4
LT
577{
578 struct super_block *sb;
579
618f0636
KK
580 spin_lock(&sb_lock);
581restart:
582 list_for_each_entry(sb, &super_blocks, s_list) {
583 if (sb->s_syncing)
584 continue;
585 sb->s_syncing = 1;
586 sb->s_count++;
587 spin_unlock(&sb_lock);
588 down_read(&sb->s_umount);
589 if (sb->s_root) {
590 sync_inodes_sb(sb, wait);
591 sync_blockdev(sb->s_bdev);
592 }
593 up_read(&sb->s_umount);
594 spin_lock(&sb_lock);
595 if (__put_super_and_need_restart(sb))
596 goto restart;
1da177e4 597 }
618f0636
KK
598 spin_unlock(&sb_lock);
599}
600
601void sync_inodes(int wait)
602{
603 set_sb_syncing(0);
604 __sync_inodes(0);
605
1da177e4
LT
606 if (wait) {
607 set_sb_syncing(0);
618f0636 608 __sync_inodes(1);
1da177e4
LT
609 }
610}
611
612/**
7f04c26d
AA
613 * write_inode_now - write an inode to disk
614 * @inode: inode to write to disk
615 * @sync: whether the write should be synchronous or not
616 *
617 * This function commits an inode to disk immediately if it is dirty. This is
618 * primarily needed by knfsd.
1da177e4 619 *
7f04c26d 620 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
1da177e4 621 */
1da177e4
LT
622int write_inode_now(struct inode *inode, int sync)
623{
624 int ret;
625 struct writeback_control wbc = {
626 .nr_to_write = LONG_MAX,
627 .sync_mode = WB_SYNC_ALL,
111ebb6e
OH
628 .range_start = 0,
629 .range_end = LLONG_MAX,
1da177e4
LT
630 };
631
632 if (!mapping_cap_writeback_dirty(inode->i_mapping))
49364ce2 633 wbc.nr_to_write = 0;
1da177e4
LT
634
635 might_sleep();
636 spin_lock(&inode_lock);
637 ret = __writeback_single_inode(inode, &wbc);
638 spin_unlock(&inode_lock);
639 if (sync)
640 wait_on_inode(inode);
641 return ret;
642}
643EXPORT_SYMBOL(write_inode_now);
644
645/**
646 * sync_inode - write an inode and its pages to disk.
647 * @inode: the inode to sync
648 * @wbc: controls the writeback mode
649 *
650 * sync_inode() will write an inode and its pages to disk. It will also
651 * correctly update the inode on its superblock's dirty inode lists and will
652 * update inode->i_state.
653 *
654 * The caller must have a ref on the inode.
655 */
656int sync_inode(struct inode *inode, struct writeback_control *wbc)
657{
658 int ret;
659
660 spin_lock(&inode_lock);
661 ret = __writeback_single_inode(inode, wbc);
662 spin_unlock(&inode_lock);
663 return ret;
664}
665EXPORT_SYMBOL(sync_inode);
666
667/**
668 * generic_osync_inode - flush all dirty data for a given inode to disk
669 * @inode: inode to write
67be2dd1 670 * @mapping: the address_space that should be flushed
1da177e4
LT
671 * @what: what to write and wait upon
672 *
673 * This can be called by file_write functions for files which have the
674 * O_SYNC flag set, to flush dirty writes to disk.
675 *
676 * @what is a bitmask, specifying which part of the inode's data should be
b8887e6e 677 * written and waited upon.
1da177e4
LT
678 *
679 * OSYNC_DATA: i_mapping's dirty data
680 * OSYNC_METADATA: the buffers at i_mapping->private_list
681 * OSYNC_INODE: the inode itself
682 */
683
684int generic_osync_inode(struct inode *inode, struct address_space *mapping, int what)
685{
686 int err = 0;
687 int need_write_inode_now = 0;
688 int err2;
689
1da177e4
LT
690 if (what & OSYNC_DATA)
691 err = filemap_fdatawrite(mapping);
692 if (what & (OSYNC_METADATA|OSYNC_DATA)) {
693 err2 = sync_mapping_buffers(mapping);
694 if (!err)
695 err = err2;
696 }
697 if (what & OSYNC_DATA) {
698 err2 = filemap_fdatawait(mapping);
699 if (!err)
700 err = err2;
701 }
1da177e4
LT
702
703 spin_lock(&inode_lock);
704 if ((inode->i_state & I_DIRTY) &&
705 ((what & OSYNC_INODE) || (inode->i_state & I_DIRTY_DATASYNC)))
706 need_write_inode_now = 1;
707 spin_unlock(&inode_lock);
708
709 if (need_write_inode_now) {
710 err2 = write_inode_now(inode, 1);
711 if (!err)
712 err = err2;
713 }
714 else
715 wait_on_inode(inode);
716
717 return err;
718}
719
720EXPORT_SYMBOL(generic_osync_inode);
721
722/**
723 * writeback_acquire: attempt to get exclusive writeback access to a device
724 * @bdi: the device's backing_dev_info structure
725 *
726 * It is a waste of resources to have more than one pdflush thread blocked on
727 * a single request queue. Exclusion at the request_queue level is obtained
728 * via a flag in the request_queue's backing_dev_info.state.
729 *
730 * Non-request_queue-backed address_spaces will share default_backing_dev_info,
731 * unless they implement their own. Which is somewhat inefficient, as this
732 * may prevent concurrent writeback against multiple devices.
733 */
734int writeback_acquire(struct backing_dev_info *bdi)
735{
736 return !test_and_set_bit(BDI_pdflush, &bdi->state);
737}
738
739/**
740 * writeback_in_progress: determine whether there is writeback in progress
1da177e4 741 * @bdi: the device's backing_dev_info structure.
b8887e6e
RD
742 *
743 * Determine whether there is writeback in progress against a backing device.
1da177e4
LT
744 */
745int writeback_in_progress(struct backing_dev_info *bdi)
746{
747 return test_bit(BDI_pdflush, &bdi->state);
748}
749
750/**
751 * writeback_release: relinquish exclusive writeback access against a device.
752 * @bdi: the device's backing_dev_info structure
753 */
754void writeback_release(struct backing_dev_info *bdi)
755{
756 BUG_ON(!writeback_in_progress(bdi));
757 clear_bit(BDI_pdflush, &bdi->state);
758}