writeback: inline allocation failure handling in bdi_alloc_queue_work()
[linux-2.6-block.git] / fs / fs-writeback.c
CommitLineData
1da177e4
LT
1/*
2 * fs/fs-writeback.c
3 *
4 * Copyright (C) 2002, Linus Torvalds.
5 *
6 * Contains all the functions related to writing back and waiting
7 * upon dirty inodes against superblocks, and writing back dirty
8 * pages against inodes. ie: data writeback. Writeout of the
9 * inode itself is not handled here.
10 *
e1f8e874 11 * 10Apr2002 Andrew Morton
1da177e4
LT
12 * Split out of fs/inode.c
13 * Additions for address_space-based writeback
14 */
15
16#include <linux/kernel.h>
f5ff8422 17#include <linux/module.h>
1da177e4
LT
18#include <linux/spinlock.h>
19#include <linux/sched.h>
20#include <linux/fs.h>
21#include <linux/mm.h>
03ba3782
JA
22#include <linux/kthread.h>
23#include <linux/freezer.h>
1da177e4
LT
24#include <linux/writeback.h>
25#include <linux/blkdev.h>
26#include <linux/backing-dev.h>
27#include <linux/buffer_head.h>
07f3f05c 28#include "internal.h"
1da177e4 29
66f3b8e2 30#define inode_to_bdi(inode) ((inode)->i_mapping->backing_dev_info)
f11b00f3 31
d0bceac7
JA
32/*
33 * We don't actually have pdflush, but this one is exported though /proc...
34 */
35int nr_pdflush_threads;
36
c4a77a6c
JA
37/*
38 * Passed into wb_writeback(), essentially a subset of writeback_control
39 */
40struct wb_writeback_args {
41 long nr_pages;
42 struct super_block *sb;
43 enum writeback_sync_modes sync_mode;
44 int for_kupdate;
45 int range_cyclic;
46};
47
03ba3782
JA
48/*
49 * Work items for the bdi_writeback threads
f11b00f3 50 */
03ba3782
JA
51struct bdi_work {
52 struct list_head list;
03ba3782
JA
53 struct rcu_head rcu_head;
54
55 unsigned long seen;
56 atomic_t pending;
57
c4a77a6c 58 struct wb_writeback_args args;
03ba3782
JA
59
60 unsigned long state;
61};
62
63enum {
64 WS_USED_B = 0,
65 WS_ONSTACK_B,
66};
67
68#define WS_USED (1 << WS_USED_B)
69#define WS_ONSTACK (1 << WS_ONSTACK_B)
70
71static inline bool bdi_work_on_stack(struct bdi_work *work)
72{
73 return test_bit(WS_ONSTACK_B, &work->state);
74}
75
76static inline void bdi_work_init(struct bdi_work *work,
77 struct writeback_control *wbc)
78{
79 INIT_RCU_HEAD(&work->rcu_head);
c4a77a6c
JA
80 work->args.sb = wbc->sb;
81 work->args.nr_pages = wbc->nr_to_write;
82 work->args.sync_mode = wbc->sync_mode;
83 work->args.range_cyclic = wbc->range_cyclic;
84 work->args.for_kupdate = 0;
03ba3782
JA
85 work->state = WS_USED;
86}
87
f11b00f3
AB
88/**
89 * writeback_in_progress - determine whether there is writeback in progress
90 * @bdi: the device's backing_dev_info structure.
91 *
03ba3782
JA
92 * Determine whether there is writeback waiting to be handled against a
93 * backing device.
f11b00f3
AB
94 */
95int writeback_in_progress(struct backing_dev_info *bdi)
96{
03ba3782 97 return !list_empty(&bdi->work_list);
f11b00f3
AB
98}
99
03ba3782 100static void bdi_work_clear(struct bdi_work *work)
f11b00f3 101{
03ba3782
JA
102 clear_bit(WS_USED_B, &work->state);
103 smp_mb__after_clear_bit();
104 wake_up_bit(&work->state, WS_USED_B);
f11b00f3
AB
105}
106
03ba3782 107static void bdi_work_free(struct rcu_head *head)
4195f73d 108{
03ba3782 109 struct bdi_work *work = container_of(head, struct bdi_work, rcu_head);
4195f73d 110
03ba3782
JA
111 if (!bdi_work_on_stack(work))
112 kfree(work);
113 else
114 bdi_work_clear(work);
4195f73d
NP
115}
116
03ba3782 117static void wb_work_complete(struct bdi_work *work)
1da177e4 118{
c4a77a6c 119 const enum writeback_sync_modes sync_mode = work->args.sync_mode;
1da177e4
LT
120
121 /*
03ba3782
JA
122 * For allocated work, we can clear the done/seen bit right here.
123 * For on-stack work, we need to postpone both the clear and free
124 * to after the RCU grace period, since the stack could be invalidated
125 * as soon as bdi_work_clear() has done the wakeup.
1da177e4 126 */
03ba3782
JA
127 if (!bdi_work_on_stack(work))
128 bdi_work_clear(work);
129 if (sync_mode == WB_SYNC_NONE || bdi_work_on_stack(work))
130 call_rcu(&work->rcu_head, bdi_work_free);
131}
1da177e4 132
03ba3782
JA
133static void wb_clear_pending(struct bdi_writeback *wb, struct bdi_work *work)
134{
1da177e4 135 /*
03ba3782
JA
136 * The caller has retrieved the work arguments from this work,
137 * drop our reference. If this is the last ref, delete and free it
1da177e4 138 */
03ba3782
JA
139 if (atomic_dec_and_test(&work->pending)) {
140 struct backing_dev_info *bdi = wb->bdi;
1da177e4 141
03ba3782
JA
142 spin_lock(&bdi->wb_lock);
143 list_del_rcu(&work->list);
144 spin_unlock(&bdi->wb_lock);
1da177e4 145
03ba3782
JA
146 wb_work_complete(work);
147 }
148}
1da177e4 149
03ba3782
JA
150static void bdi_queue_work(struct backing_dev_info *bdi, struct bdi_work *work)
151{
bcddc3f0
JA
152 work->seen = bdi->wb_mask;
153 BUG_ON(!work->seen);
154 atomic_set(&work->pending, bdi->wb_cnt);
155 BUG_ON(!bdi->wb_cnt);
1da177e4 156
bcddc3f0
JA
157 /*
158 * Make sure stores are seen before it appears on the list
159 */
160 smp_mb();
1da177e4 161
bcddc3f0
JA
162 spin_lock(&bdi->wb_lock);
163 list_add_tail_rcu(&work->list, &bdi->work_list);
164 spin_unlock(&bdi->wb_lock);
03ba3782
JA
165
166 /*
167 * If the default thread isn't there, make sure we add it. When
168 * it gets created and wakes up, we'll run this work.
169 */
170 if (unlikely(list_empty_careful(&bdi->wb_list)))
171 wake_up_process(default_backing_dev_info.wb.task);
172 else {
173 struct bdi_writeback *wb = &bdi->wb;
1da177e4
LT
174
175 /*
bcddc3f0
JA
176 * End work now if this wb has no dirty IO pending. Otherwise
177 * wakeup the handling thread
1da177e4 178 */
bcddc3f0
JA
179 if (!wb_has_dirty_io(wb))
180 wb_clear_pending(wb, work);
181 else if (wb->task)
03ba3782 182 wake_up_process(wb->task);
1da177e4 183 }
1da177e4
LT
184}
185
03ba3782
JA
186/*
187 * Used for on-stack allocated work items. The caller needs to wait until
188 * the wb threads have acked the work before it's safe to continue.
189 */
190static void bdi_wait_on_work_clear(struct bdi_work *work)
191{
192 wait_on_bit(&work->state, WS_USED_B, bdi_sched_wait,
193 TASK_UNINTERRUPTIBLE);
194}
1da177e4 195
f11fcae8
JA
196static void bdi_alloc_queue_work(struct backing_dev_info *bdi,
197 struct writeback_control *wbc)
1da177e4 198{
03ba3782
JA
199 struct bdi_work *work;
200
bcddc3f0
JA
201 /*
202 * This is WB_SYNC_NONE writeback, so if allocation fails just
203 * wakeup the thread for old dirty data writeback
204 */
03ba3782 205 work = kmalloc(sizeof(*work), GFP_ATOMIC);
bcddc3f0 206 if (work) {
03ba3782 207 bdi_work_init(work, wbc);
bcddc3f0
JA
208 bdi_queue_work(bdi, work);
209 } else {
210 struct bdi_writeback *wb = &bdi->wb;
03ba3782 211
bcddc3f0
JA
212 if (wb->task)
213 wake_up_process(wb->task);
214 }
03ba3782
JA
215}
216
217void bdi_start_writeback(struct writeback_control *wbc)
218{
f0fad8a5
CH
219 /*
220 * WB_SYNC_NONE is opportunistic writeback. If this allocation fails,
221 * bdi_queue_work() will wake up the thread and flush old data. This
222 * should ensure some amount of progress in freeing memory.
223 */
f11fcae8
JA
224 if (wbc->sync_mode != WB_SYNC_ALL)
225 bdi_alloc_queue_work(wbc->bdi, wbc);
226 else {
f0fad8a5 227 struct bdi_work work;
03ba3782 228
f0fad8a5
CH
229 bdi_work_init(&work, wbc);
230 work.state |= WS_ONSTACK;
03ba3782 231
f0fad8a5
CH
232 bdi_queue_work(wbc->bdi, &work);
233 bdi_wait_on_work_clear(&work);
03ba3782 234 }
1da177e4
LT
235}
236
6610a0bc
AM
237/*
238 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
239 * furthest end of its superblock's dirty-inode list.
240 *
241 * Before stamping the inode's ->dirtied_when, we check to see whether it is
66f3b8e2 242 * already the most-recently-dirtied inode on the b_dirty list. If that is
6610a0bc
AM
243 * the case then the inode must have been redirtied while it was being written
244 * out and we don't reset its dirtied_when.
245 */
246static void redirty_tail(struct inode *inode)
247{
03ba3782 248 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
6610a0bc 249
03ba3782 250 if (!list_empty(&wb->b_dirty)) {
66f3b8e2 251 struct inode *tail;
6610a0bc 252
03ba3782 253 tail = list_entry(wb->b_dirty.next, struct inode, i_list);
66f3b8e2 254 if (time_before(inode->dirtied_when, tail->dirtied_when))
6610a0bc
AM
255 inode->dirtied_when = jiffies;
256 }
03ba3782 257 list_move(&inode->i_list, &wb->b_dirty);
6610a0bc
AM
258}
259
c986d1e2 260/*
66f3b8e2 261 * requeue inode for re-scanning after bdi->b_io list is exhausted.
c986d1e2 262 */
0e0f4fc2 263static void requeue_io(struct inode *inode)
c986d1e2 264{
03ba3782
JA
265 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
266
267 list_move(&inode->i_list, &wb->b_more_io);
c986d1e2
AM
268}
269
1c0eeaf5
JE
270static void inode_sync_complete(struct inode *inode)
271{
272 /*
273 * Prevent speculative execution through spin_unlock(&inode_lock);
274 */
275 smp_mb();
276 wake_up_bit(&inode->i_state, __I_SYNC);
277}
278
d2caa3c5
JL
279static bool inode_dirtied_after(struct inode *inode, unsigned long t)
280{
281 bool ret = time_after(inode->dirtied_when, t);
282#ifndef CONFIG_64BIT
283 /*
284 * For inodes being constantly redirtied, dirtied_when can get stuck.
285 * It _appears_ to be in the future, but is actually in distant past.
286 * This test is necessary to prevent such wrapped-around relative times
287 * from permanently stopping the whole pdflush writeback.
288 */
289 ret = ret && time_before_eq(inode->dirtied_when, jiffies);
290#endif
291 return ret;
292}
293
2c136579
FW
294/*
295 * Move expired dirty inodes from @delaying_queue to @dispatch_queue.
296 */
297static void move_expired_inodes(struct list_head *delaying_queue,
298 struct list_head *dispatch_queue,
299 unsigned long *older_than_this)
300{
301 while (!list_empty(delaying_queue)) {
302 struct inode *inode = list_entry(delaying_queue->prev,
303 struct inode, i_list);
304 if (older_than_this &&
d2caa3c5 305 inode_dirtied_after(inode, *older_than_this))
2c136579
FW
306 break;
307 list_move(&inode->i_list, dispatch_queue);
308 }
309}
310
311/*
312 * Queue all expired dirty inodes for io, eldest first.
313 */
03ba3782 314static void queue_io(struct bdi_writeback *wb, unsigned long *older_than_this)
66f3b8e2 315{
03ba3782
JA
316 list_splice_init(&wb->b_more_io, wb->b_io.prev);
317 move_expired_inodes(&wb->b_dirty, &wb->b_io, older_than_this);
66f3b8e2
JA
318}
319
03ba3782 320static int write_inode(struct inode *inode, int sync)
08d8e974 321{
03ba3782
JA
322 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode))
323 return inode->i_sb->s_op->write_inode(inode, sync);
324 return 0;
08d8e974 325}
08d8e974 326
1da177e4 327/*
01c03194
CH
328 * Wait for writeback on an inode to complete.
329 */
330static void inode_wait_for_writeback(struct inode *inode)
331{
332 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
333 wait_queue_head_t *wqh;
334
335 wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
336 do {
337 spin_unlock(&inode_lock);
338 __wait_on_bit(wqh, &wq, inode_wait, TASK_UNINTERRUPTIBLE);
339 spin_lock(&inode_lock);
340 } while (inode->i_state & I_SYNC);
341}
342
343/*
344 * Write out an inode's dirty pages. Called under inode_lock. Either the
345 * caller has ref on the inode (either via __iget or via syscall against an fd)
346 * or the inode has I_WILL_FREE set (via generic_forget_inode)
347 *
1da177e4
LT
348 * If `wait' is set, wait on the writeout.
349 *
350 * The whole writeout design is quite complex and fragile. We want to avoid
351 * starvation of particular inodes when others are being redirtied, prevent
352 * livelocks, etc.
353 *
354 * Called under inode_lock.
355 */
356static int
01c03194 357writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
1da177e4 358{
1da177e4 359 struct address_space *mapping = inode->i_mapping;
1da177e4 360 int wait = wbc->sync_mode == WB_SYNC_ALL;
01c03194 361 unsigned dirty;
1da177e4
LT
362 int ret;
363
01c03194
CH
364 if (!atomic_read(&inode->i_count))
365 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
366 else
367 WARN_ON(inode->i_state & I_WILL_FREE);
368
369 if (inode->i_state & I_SYNC) {
370 /*
371 * If this inode is locked for writeback and we are not doing
66f3b8e2 372 * writeback-for-data-integrity, move it to b_more_io so that
01c03194
CH
373 * writeback can proceed with the other inodes on s_io.
374 *
375 * We'll have another go at writing back this inode when we
66f3b8e2 376 * completed a full scan of b_io.
01c03194
CH
377 */
378 if (!wait) {
379 requeue_io(inode);
380 return 0;
381 }
382
383 /*
384 * It's a data-integrity sync. We must wait.
385 */
386 inode_wait_for_writeback(inode);
387 }
388
1c0eeaf5 389 BUG_ON(inode->i_state & I_SYNC);
1da177e4 390
1c0eeaf5 391 /* Set I_SYNC, reset I_DIRTY */
1da177e4 392 dirty = inode->i_state & I_DIRTY;
1c0eeaf5 393 inode->i_state |= I_SYNC;
1da177e4
LT
394 inode->i_state &= ~I_DIRTY;
395
396 spin_unlock(&inode_lock);
397
398 ret = do_writepages(mapping, wbc);
399
400 /* Don't write the inode if only I_DIRTY_PAGES was set */
401 if (dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
402 int err = write_inode(inode, wait);
403 if (ret == 0)
404 ret = err;
405 }
406
407 if (wait) {
408 int err = filemap_fdatawait(mapping);
409 if (ret == 0)
410 ret = err;
411 }
412
413 spin_lock(&inode_lock);
1c0eeaf5 414 inode->i_state &= ~I_SYNC;
84a89245 415 if (!(inode->i_state & (I_FREEING | I_CLEAR))) {
1da177e4
LT
416 if (!(inode->i_state & I_DIRTY) &&
417 mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
418 /*
419 * We didn't write back all the pages. nfs_writepages()
420 * sometimes bales out without doing anything. Redirty
66f3b8e2 421 * the inode; Move it from b_io onto b_more_io/b_dirty.
1b43ef91
AM
422 */
423 /*
424 * akpm: if the caller was the kupdate function we put
66f3b8e2 425 * this inode at the head of b_dirty so it gets first
1b43ef91
AM
426 * consideration. Otherwise, move it to the tail, for
427 * the reasons described there. I'm not really sure
428 * how much sense this makes. Presumably I had a good
429 * reasons for doing it this way, and I'd rather not
430 * muck with it at present.
1da177e4
LT
431 */
432 if (wbc->for_kupdate) {
433 /*
2c136579 434 * For the kupdate function we move the inode
66f3b8e2 435 * to b_more_io so it will get more writeout as
2c136579 436 * soon as the queue becomes uncongested.
1da177e4
LT
437 */
438 inode->i_state |= I_DIRTY_PAGES;
8bc3be27
FW
439 if (wbc->nr_to_write <= 0) {
440 /*
441 * slice used up: queue for next turn
442 */
443 requeue_io(inode);
444 } else {
445 /*
446 * somehow blocked: retry later
447 */
448 redirty_tail(inode);
449 }
1da177e4
LT
450 } else {
451 /*
452 * Otherwise fully redirty the inode so that
453 * other inodes on this superblock will get some
454 * writeout. Otherwise heavy writing to one
455 * file would indefinitely suspend writeout of
456 * all the other files.
457 */
458 inode->i_state |= I_DIRTY_PAGES;
1b43ef91 459 redirty_tail(inode);
1da177e4
LT
460 }
461 } else if (inode->i_state & I_DIRTY) {
462 /*
463 * Someone redirtied the inode while were writing back
464 * the pages.
465 */
6610a0bc 466 redirty_tail(inode);
1da177e4
LT
467 } else if (atomic_read(&inode->i_count)) {
468 /*
469 * The inode is clean, inuse
470 */
471 list_move(&inode->i_list, &inode_in_use);
472 } else {
473 /*
474 * The inode is clean, unused
475 */
476 list_move(&inode->i_list, &inode_unused);
1da177e4
LT
477 }
478 }
1c0eeaf5 479 inode_sync_complete(inode);
1da177e4
LT
480 return ret;
481}
482
03ba3782
JA
483/*
484 * For WB_SYNC_NONE writeback, the caller does not have the sb pinned
485 * before calling writeback. So make sure that we do pin it, so it doesn't
486 * go away while we are writing inodes from it.
487 *
488 * Returns 0 if the super was successfully pinned (or pinning wasn't needed),
489 * 1 if we failed.
490 */
491static int pin_sb_for_writeback(struct writeback_control *wbc,
492 struct inode *inode)
493{
494 struct super_block *sb = inode->i_sb;
495
496 /*
497 * Caller must already hold the ref for this
498 */
499 if (wbc->sync_mode == WB_SYNC_ALL) {
500 WARN_ON(!rwsem_is_locked(&sb->s_umount));
501 return 0;
502 }
503
504 spin_lock(&sb_lock);
505 sb->s_count++;
506 if (down_read_trylock(&sb->s_umount)) {
507 if (sb->s_root) {
508 spin_unlock(&sb_lock);
509 return 0;
510 }
511 /*
512 * umounted, drop rwsem again and fall through to failure
513 */
514 up_read(&sb->s_umount);
515 }
516
517 sb->s_count--;
518 spin_unlock(&sb_lock);
519 return 1;
520}
521
522static void unpin_sb_for_writeback(struct writeback_control *wbc,
523 struct inode *inode)
524{
525 struct super_block *sb = inode->i_sb;
526
527 if (wbc->sync_mode == WB_SYNC_ALL)
528 return;
529
530 up_read(&sb->s_umount);
531 put_super(sb);
532}
533
534static void writeback_inodes_wb(struct bdi_writeback *wb,
535 struct writeback_control *wbc)
1da177e4 536{
03ba3782 537 struct super_block *sb = wbc->sb;
66f3b8e2 538 const int is_blkdev_sb = sb_is_blkdev_sb(sb);
1da177e4
LT
539 const unsigned long start = jiffies; /* livelock avoidance */
540
ae8547b0 541 spin_lock(&inode_lock);
1da177e4 542
03ba3782
JA
543 if (!wbc->for_kupdate || list_empty(&wb->b_io))
544 queue_io(wb, wbc->older_than_this);
66f3b8e2 545
03ba3782
JA
546 while (!list_empty(&wb->b_io)) {
547 struct inode *inode = list_entry(wb->b_io.prev,
1da177e4 548 struct inode, i_list);
1da177e4
LT
549 long pages_skipped;
550
66f3b8e2
JA
551 /*
552 * super block given and doesn't match, skip this inode
553 */
554 if (sb && sb != inode->i_sb) {
555 redirty_tail(inode);
556 continue;
557 }
558
03ba3782 559 if (!bdi_cap_writeback_dirty(wb->bdi)) {
9852a0e7 560 redirty_tail(inode);
66f3b8e2 561 if (is_blkdev_sb) {
1da177e4
LT
562 /*
563 * Dirty memory-backed blockdev: the ramdisk
564 * driver does this. Skip just this inode
565 */
566 continue;
567 }
568 /*
569 * Dirty memory-backed inode against a filesystem other
570 * than the kernel-internal bdev filesystem. Skip the
571 * entire superblock.
572 */
573 break;
574 }
575
84a89245 576 if (inode->i_state & (I_NEW | I_WILL_FREE)) {
7ef0d737
NP
577 requeue_io(inode);
578 continue;
579 }
580
03ba3782 581 if (wbc->nonblocking && bdi_write_congested(wb->bdi)) {
1da177e4 582 wbc->encountered_congestion = 1;
66f3b8e2 583 if (!is_blkdev_sb)
1da177e4 584 break; /* Skip a congested fs */
0e0f4fc2 585 requeue_io(inode);
1da177e4
LT
586 continue; /* Skip a congested blockdev */
587 }
588
d2caa3c5
JL
589 /*
590 * Was this inode dirtied after sync_sb_inodes was called?
591 * This keeps sync from extra jobs and livelock.
592 */
593 if (inode_dirtied_after(inode, start))
1da177e4
LT
594 break;
595
03ba3782
JA
596 if (pin_sb_for_writeback(wbc, inode)) {
597 requeue_io(inode);
598 continue;
599 }
1da177e4 600
84a89245 601 BUG_ON(inode->i_state & (I_FREEING | I_CLEAR));
1da177e4
LT
602 __iget(inode);
603 pages_skipped = wbc->pages_skipped;
01c03194 604 writeback_single_inode(inode, wbc);
03ba3782 605 unpin_sb_for_writeback(wbc, inode);
1da177e4
LT
606 if (wbc->pages_skipped != pages_skipped) {
607 /*
608 * writeback is not making progress due to locked
609 * buffers. Skip this inode for now.
610 */
f57b9b7b 611 redirty_tail(inode);
1da177e4
LT
612 }
613 spin_unlock(&inode_lock);
1da177e4 614 iput(inode);
4ffc8444 615 cond_resched();
1da177e4 616 spin_lock(&inode_lock);
8bc3be27
FW
617 if (wbc->nr_to_write <= 0) {
618 wbc->more_io = 1;
1da177e4 619 break;
8bc3be27 620 }
03ba3782 621 if (!list_empty(&wb->b_more_io))
8bc3be27 622 wbc->more_io = 1;
1da177e4 623 }
38f21977 624
66f3b8e2
JA
625 spin_unlock(&inode_lock);
626 /* Leave any unwritten inodes on b_io */
627}
628
03ba3782
JA
629void writeback_inodes_wbc(struct writeback_control *wbc)
630{
631 struct backing_dev_info *bdi = wbc->bdi;
632
633 writeback_inodes_wb(&bdi->wb, wbc);
634}
635
66f3b8e2 636/*
03ba3782
JA
637 * The maximum number of pages to writeout in a single bdi flush/kupdate
638 * operation. We do this so we don't hold I_SYNC against an inode for
639 * enormous amounts of time, which would block a userspace task which has
640 * been forced to throttle against that inode. Also, the code reevaluates
641 * the dirty each time it has written this many pages.
642 */
643#define MAX_WRITEBACK_PAGES 1024
644
645static inline bool over_bground_thresh(void)
646{
647 unsigned long background_thresh, dirty_thresh;
648
649 get_dirty_limits(&background_thresh, &dirty_thresh, NULL, NULL);
650
651 return (global_page_state(NR_FILE_DIRTY) +
652 global_page_state(NR_UNSTABLE_NFS) >= background_thresh);
653}
654
655/*
656 * Explicit flushing or periodic writeback of "old" data.
66f3b8e2 657 *
03ba3782
JA
658 * Define "old": the first time one of an inode's pages is dirtied, we mark the
659 * dirtying-time in the inode's address_space. So this periodic writeback code
660 * just walks the superblock inode list, writing back any inodes which are
661 * older than a specific point in time.
66f3b8e2 662 *
03ba3782
JA
663 * Try to run once per dirty_writeback_interval. But if a writeback event
664 * takes longer than a dirty_writeback_interval interval, then leave a
665 * one-second gap.
66f3b8e2 666 *
03ba3782
JA
667 * older_than_this takes precedence over nr_to_write. So we'll only write back
668 * all dirty pages if they are all attached to "old" mappings.
66f3b8e2 669 */
c4a77a6c
JA
670static long wb_writeback(struct bdi_writeback *wb,
671 struct wb_writeback_args *args)
66f3b8e2 672{
03ba3782
JA
673 struct writeback_control wbc = {
674 .bdi = wb->bdi,
c4a77a6c
JA
675 .sb = args->sb,
676 .sync_mode = args->sync_mode,
03ba3782 677 .older_than_this = NULL,
c4a77a6c
JA
678 .for_kupdate = args->for_kupdate,
679 .range_cyclic = args->range_cyclic,
03ba3782
JA
680 };
681 unsigned long oldest_jif;
682 long wrote = 0;
66f3b8e2 683
03ba3782
JA
684 if (wbc.for_kupdate) {
685 wbc.older_than_this = &oldest_jif;
686 oldest_jif = jiffies -
687 msecs_to_jiffies(dirty_expire_interval * 10);
688 }
c4a77a6c
JA
689 if (!wbc.range_cyclic) {
690 wbc.range_start = 0;
691 wbc.range_end = LLONG_MAX;
692 }
38f21977 693
03ba3782
JA
694 for (;;) {
695 /*
696 * Don't flush anything for non-integrity writeback where
697 * no nr_pages was given
698 */
c4a77a6c
JA
699 if (!args->for_kupdate && args->nr_pages <= 0 &&
700 args->sync_mode == WB_SYNC_NONE)
03ba3782 701 break;
66f3b8e2 702
38f21977 703 /*
03ba3782
JA
704 * If no specific pages were given and this is just a
705 * periodic background writeout and we are below the
706 * background dirty threshold, don't do anything
38f21977 707 */
c4a77a6c
JA
708 if (args->for_kupdate && args->nr_pages <= 0 &&
709 !over_bground_thresh())
03ba3782 710 break;
38f21977 711
03ba3782
JA
712 wbc.more_io = 0;
713 wbc.encountered_congestion = 0;
714 wbc.nr_to_write = MAX_WRITEBACK_PAGES;
715 wbc.pages_skipped = 0;
716 writeback_inodes_wb(wb, &wbc);
c4a77a6c 717 args->nr_pages -= MAX_WRITEBACK_PAGES - wbc.nr_to_write;
03ba3782
JA
718 wrote += MAX_WRITEBACK_PAGES - wbc.nr_to_write;
719
720 /*
721 * If we ran out of stuff to write, bail unless more_io got set
722 */
723 if (wbc.nr_to_write > 0 || wbc.pages_skipped > 0) {
724 if (wbc.more_io && !wbc.for_kupdate)
38f21977 725 continue;
03ba3782
JA
726 break;
727 }
728 }
729
730 return wrote;
731}
732
733/*
734 * Return the next bdi_work struct that hasn't been processed by this
735 * wb thread yet
736 */
737static struct bdi_work *get_next_work_item(struct backing_dev_info *bdi,
738 struct bdi_writeback *wb)
739{
740 struct bdi_work *work, *ret = NULL;
741
742 rcu_read_lock();
743
744 list_for_each_entry_rcu(work, &bdi->work_list, list) {
745 if (!test_and_clear_bit(wb->nr, &work->seen))
746 continue;
747
748 ret = work;
749 break;
750 }
751
752 rcu_read_unlock();
753 return ret;
754}
755
756static long wb_check_old_data_flush(struct bdi_writeback *wb)
757{
758 unsigned long expired;
759 long nr_pages;
760
761 expired = wb->last_old_flush +
762 msecs_to_jiffies(dirty_writeback_interval * 10);
763 if (time_before(jiffies, expired))
764 return 0;
765
766 wb->last_old_flush = jiffies;
767 nr_pages = global_page_state(NR_FILE_DIRTY) +
768 global_page_state(NR_UNSTABLE_NFS) +
769 (inodes_stat.nr_inodes - inodes_stat.nr_unused);
770
c4a77a6c
JA
771 if (nr_pages) {
772 struct wb_writeback_args args = {
773 .nr_pages = nr_pages,
774 .sync_mode = WB_SYNC_NONE,
775 .for_kupdate = 1,
776 .range_cyclic = 1,
777 };
778
779 return wb_writeback(wb, &args);
780 }
03ba3782
JA
781
782 return 0;
783}
784
785/*
786 * Retrieve work items and do the writeback they describe
787 */
788long wb_do_writeback(struct bdi_writeback *wb, int force_wait)
789{
790 struct backing_dev_info *bdi = wb->bdi;
791 struct bdi_work *work;
c4a77a6c 792 long wrote = 0;
03ba3782
JA
793
794 while ((work = get_next_work_item(bdi, wb)) != NULL) {
c4a77a6c 795 struct wb_writeback_args args = work->args;
03ba3782
JA
796
797 /*
798 * Override sync mode, in case we must wait for completion
799 */
800 if (force_wait)
c4a77a6c 801 work->args.sync_mode = args.sync_mode = WB_SYNC_ALL;
03ba3782
JA
802
803 /*
804 * If this isn't a data integrity operation, just notify
805 * that we have seen this work and we are now starting it.
806 */
c4a77a6c 807 if (args.sync_mode == WB_SYNC_NONE)
03ba3782
JA
808 wb_clear_pending(wb, work);
809
c4a77a6c 810 wrote += wb_writeback(wb, &args);
03ba3782
JA
811
812 /*
813 * This is a data integrity writeback, so only do the
814 * notification when we have completed the work.
815 */
c4a77a6c 816 if (args.sync_mode == WB_SYNC_ALL)
03ba3782
JA
817 wb_clear_pending(wb, work);
818 }
819
820 /*
821 * Check for periodic writeback, kupdated() style
822 */
823 wrote += wb_check_old_data_flush(wb);
824
825 return wrote;
826}
827
828/*
829 * Handle writeback of dirty data for the device backed by this bdi. Also
830 * wakes up periodically and does kupdated style flushing.
831 */
832int bdi_writeback_task(struct bdi_writeback *wb)
833{
834 unsigned long last_active = jiffies;
835 unsigned long wait_jiffies = -1UL;
836 long pages_written;
837
838 while (!kthread_should_stop()) {
839 pages_written = wb_do_writeback(wb, 0);
840
841 if (pages_written)
842 last_active = jiffies;
843 else if (wait_jiffies != -1UL) {
844 unsigned long max_idle;
845
38f21977 846 /*
03ba3782
JA
847 * Longest period of inactivity that we tolerate. If we
848 * see dirty data again later, the task will get
849 * recreated automatically.
38f21977 850 */
03ba3782
JA
851 max_idle = max(5UL * 60 * HZ, wait_jiffies);
852 if (time_after(jiffies, max_idle + last_active))
853 break;
854 }
855
856 wait_jiffies = msecs_to_jiffies(dirty_writeback_interval * 10);
857 set_current_state(TASK_INTERRUPTIBLE);
858 schedule_timeout(wait_jiffies);
859 try_to_freeze();
860 }
861
862 return 0;
863}
864
865/*
f11fcae8
JA
866 * Schedule writeback for all backing devices. Can only be used for
867 * WB_SYNC_NONE writeback, WB_SYNC_ALL should use bdi_start_writeback()
868 * and pass in the superblock.
03ba3782
JA
869 */
870static void bdi_writeback_all(struct writeback_control *wbc)
871{
03ba3782 872 struct backing_dev_info *bdi;
03ba3782 873
f11fcae8
JA
874 WARN_ON(wbc->sync_mode == WB_SYNC_ALL);
875
cfc4ba53 876 rcu_read_lock();
03ba3782 877
cfc4ba53 878 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
03ba3782
JA
879 if (!bdi_has_dirty_io(bdi))
880 continue;
38f21977 881
f11fcae8 882 bdi_alloc_queue_work(bdi, wbc);
03ba3782
JA
883 }
884
cfc4ba53 885 rcu_read_unlock();
1da177e4
LT
886}
887
888/*
03ba3782
JA
889 * Start writeback of `nr_pages' pages. If `nr_pages' is zero, write back
890 * the whole world.
891 */
892void wakeup_flusher_threads(long nr_pages)
893{
894 struct writeback_control wbc = {
895 .sync_mode = WB_SYNC_NONE,
896 .older_than_this = NULL,
897 .range_cyclic = 1,
898 };
899
900 if (nr_pages == 0)
901 nr_pages = global_page_state(NR_FILE_DIRTY) +
902 global_page_state(NR_UNSTABLE_NFS);
903 wbc.nr_to_write = nr_pages;
904 bdi_writeback_all(&wbc);
905}
906
907static noinline void block_dump___mark_inode_dirty(struct inode *inode)
908{
909 if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
910 struct dentry *dentry;
911 const char *name = "?";
912
913 dentry = d_find_alias(inode);
914 if (dentry) {
915 spin_lock(&dentry->d_lock);
916 name = (const char *) dentry->d_name.name;
917 }
918 printk(KERN_DEBUG
919 "%s(%d): dirtied inode %lu (%s) on %s\n",
920 current->comm, task_pid_nr(current), inode->i_ino,
921 name, inode->i_sb->s_id);
922 if (dentry) {
923 spin_unlock(&dentry->d_lock);
924 dput(dentry);
925 }
926 }
927}
928
929/**
930 * __mark_inode_dirty - internal function
931 * @inode: inode to mark
932 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
933 * Mark an inode as dirty. Callers should use mark_inode_dirty or
934 * mark_inode_dirty_sync.
1da177e4 935 *
03ba3782
JA
936 * Put the inode on the super block's dirty list.
937 *
938 * CAREFUL! We mark it dirty unconditionally, but move it onto the
939 * dirty list only if it is hashed or if it refers to a blockdev.
940 * If it was not hashed, it will never be added to the dirty list
941 * even if it is later hashed, as it will have been marked dirty already.
942 *
943 * In short, make sure you hash any inodes _before_ you start marking
944 * them dirty.
1da177e4 945 *
03ba3782
JA
946 * This function *must* be atomic for the I_DIRTY_PAGES case -
947 * set_page_dirty() is called under spinlock in several places.
1da177e4 948 *
03ba3782
JA
949 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
950 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of
951 * the kernel-internal blockdev inode represents the dirtying time of the
952 * blockdev's pages. This is why for I_DIRTY_PAGES we always use
953 * page->mapping->host, so the page-dirtying time is recorded in the internal
954 * blockdev inode.
1da177e4 955 */
03ba3782 956void __mark_inode_dirty(struct inode *inode, int flags)
1da177e4 957{
03ba3782 958 struct super_block *sb = inode->i_sb;
1da177e4 959
03ba3782
JA
960 /*
961 * Don't do this for I_DIRTY_PAGES - that doesn't actually
962 * dirty the inode itself
963 */
964 if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
965 if (sb->s_op->dirty_inode)
966 sb->s_op->dirty_inode(inode);
967 }
968
969 /*
970 * make sure that changes are seen by all cpus before we test i_state
971 * -- mikulas
972 */
973 smp_mb();
974
975 /* avoid the locking if we can */
976 if ((inode->i_state & flags) == flags)
977 return;
978
979 if (unlikely(block_dump))
980 block_dump___mark_inode_dirty(inode);
981
982 spin_lock(&inode_lock);
983 if ((inode->i_state & flags) != flags) {
984 const int was_dirty = inode->i_state & I_DIRTY;
985
986 inode->i_state |= flags;
987
988 /*
989 * If the inode is being synced, just update its dirty state.
990 * The unlocker will place the inode on the appropriate
991 * superblock list, based upon its state.
992 */
993 if (inode->i_state & I_SYNC)
994 goto out;
995
996 /*
997 * Only add valid (hashed) inodes to the superblock's
998 * dirty list. Add blockdev inodes as well.
999 */
1000 if (!S_ISBLK(inode->i_mode)) {
1001 if (hlist_unhashed(&inode->i_hash))
1002 goto out;
1003 }
1004 if (inode->i_state & (I_FREEING|I_CLEAR))
1005 goto out;
1006
1007 /*
1008 * If the inode was already on b_dirty/b_io/b_more_io, don't
1009 * reposition it (that would break b_dirty time-ordering).
1010 */
1011 if (!was_dirty) {
1012 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
500b067c
JA
1013 struct backing_dev_info *bdi = wb->bdi;
1014
1015 if (bdi_cap_writeback_dirty(bdi) &&
1016 !test_bit(BDI_registered, &bdi->state)) {
1017 WARN_ON(1);
1018 printk(KERN_ERR "bdi-%s not registered\n",
1019 bdi->name);
1020 }
03ba3782
JA
1021
1022 inode->dirtied_when = jiffies;
1023 list_move(&inode->i_list, &wb->b_dirty);
1da177e4 1024 }
1da177e4 1025 }
03ba3782
JA
1026out:
1027 spin_unlock(&inode_lock);
1028}
1029EXPORT_SYMBOL(__mark_inode_dirty);
1030
1031/*
1032 * Write out a superblock's list of dirty inodes. A wait will be performed
1033 * upon no inodes, all inodes or the final one, depending upon sync_mode.
1034 *
1035 * If older_than_this is non-NULL, then only write out inodes which
1036 * had their first dirtying at a time earlier than *older_than_this.
1037 *
1038 * If we're a pdlfush thread, then implement pdflush collision avoidance
1039 * against the entire list.
1040 *
1041 * If `bdi' is non-zero then we're being asked to writeback a specific queue.
1042 * This function assumes that the blockdev superblock's inodes are backed by
1043 * a variety of queues, so all inodes are searched. For other superblocks,
1044 * assume that all inodes are backed by the same queue.
1045 *
1046 * The inodes to be written are parked on bdi->b_io. They are moved back onto
1047 * bdi->b_dirty as they are selected for writing. This way, none can be missed
1048 * on the writer throttling path, and we get decent balancing between many
1049 * throttled threads: we don't want them all piling up on inode_sync_wait.
1050 */
1051static void wait_sb_inodes(struct writeback_control *wbc)
1052{
1053 struct inode *inode, *old_inode = NULL;
1054
1055 /*
1056 * We need to be protected against the filesystem going from
1057 * r/o to r/w or vice versa.
1058 */
1059 WARN_ON(!rwsem_is_locked(&wbc->sb->s_umount));
1060
1061 spin_lock(&inode_lock);
1062
1063 /*
1064 * Data integrity sync. Must wait for all pages under writeback,
1065 * because there may have been pages dirtied before our sync
1066 * call, but which had writeout started before we write it out.
1067 * In which case, the inode may not be on the dirty list, but
1068 * we still have to wait for that writeout.
1069 */
1070 list_for_each_entry(inode, &wbc->sb->s_inodes, i_sb_list) {
1071 struct address_space *mapping;
1072
1073 if (inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE|I_NEW))
1074 continue;
1075 mapping = inode->i_mapping;
1076 if (mapping->nrpages == 0)
1077 continue;
1078 __iget(inode);
1079 spin_unlock(&inode_lock);
1080 /*
1081 * We hold a reference to 'inode' so it couldn't have
1082 * been removed from s_inodes list while we dropped the
1083 * inode_lock. We cannot iput the inode now as we can
1084 * be holding the last reference and we cannot iput it
1085 * under inode_lock. So we keep the reference and iput
1086 * it later.
1087 */
1088 iput(old_inode);
1089 old_inode = inode;
1090
1091 filemap_fdatawait(mapping);
1092
1093 cond_resched();
1094
1095 spin_lock(&inode_lock);
1096 }
1097 spin_unlock(&inode_lock);
1098 iput(old_inode);
1da177e4
LT
1099}
1100
d8a8559c
JA
1101/**
1102 * writeback_inodes_sb - writeback dirty inodes from given super_block
1103 * @sb: the superblock
1da177e4 1104 *
d8a8559c
JA
1105 * Start writeback on some inodes on this super_block. No guarantees are made
1106 * on how many (if any) will be written, and this function does not wait
1107 * for IO completion of submitted IO. The number of pages submitted is
1108 * returned.
1da177e4 1109 */
d8a8559c 1110long writeback_inodes_sb(struct super_block *sb)
1da177e4
LT
1111{
1112 struct writeback_control wbc = {
03ba3782 1113 .sb = sb,
d8a8559c 1114 .sync_mode = WB_SYNC_NONE,
111ebb6e
OH
1115 .range_start = 0,
1116 .range_end = LLONG_MAX,
1da177e4 1117 };
d8a8559c
JA
1118 unsigned long nr_dirty = global_page_state(NR_FILE_DIRTY);
1119 unsigned long nr_unstable = global_page_state(NR_UNSTABLE_NFS);
1120 long nr_to_write;
1da177e4 1121
d8a8559c 1122 nr_to_write = nr_dirty + nr_unstable +
38f21977 1123 (inodes_stat.nr_inodes - inodes_stat.nr_unused);
38f21977 1124
d8a8559c 1125 wbc.nr_to_write = nr_to_write;
03ba3782 1126 bdi_writeback_all(&wbc);
d8a8559c
JA
1127 return nr_to_write - wbc.nr_to_write;
1128}
1129EXPORT_SYMBOL(writeback_inodes_sb);
1130
1131/**
1132 * sync_inodes_sb - sync sb inode pages
1133 * @sb: the superblock
1134 *
1135 * This function writes and waits on any dirty inode belonging to this
1136 * super_block. The number of pages synced is returned.
1137 */
1138long sync_inodes_sb(struct super_block *sb)
1139{
1140 struct writeback_control wbc = {
03ba3782 1141 .sb = sb,
f11fcae8 1142 .bdi = sb->s_bdi,
d8a8559c
JA
1143 .sync_mode = WB_SYNC_ALL,
1144 .range_start = 0,
1145 .range_end = LLONG_MAX,
1146 };
1147 long nr_to_write = LONG_MAX; /* doesn't actually matter */
1148
1149 wbc.nr_to_write = nr_to_write;
f11fcae8 1150 bdi_start_writeback(&wbc);
03ba3782 1151 wait_sb_inodes(&wbc);
d8a8559c 1152 return nr_to_write - wbc.nr_to_write;
1da177e4 1153}
d8a8559c 1154EXPORT_SYMBOL(sync_inodes_sb);
1da177e4 1155
1da177e4 1156/**
7f04c26d
AA
1157 * write_inode_now - write an inode to disk
1158 * @inode: inode to write to disk
1159 * @sync: whether the write should be synchronous or not
1160 *
1161 * This function commits an inode to disk immediately if it is dirty. This is
1162 * primarily needed by knfsd.
1da177e4 1163 *
7f04c26d 1164 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
1da177e4 1165 */
1da177e4
LT
1166int write_inode_now(struct inode *inode, int sync)
1167{
1168 int ret;
1169 struct writeback_control wbc = {
1170 .nr_to_write = LONG_MAX,
18914b18 1171 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
111ebb6e
OH
1172 .range_start = 0,
1173 .range_end = LLONG_MAX,
1da177e4
LT
1174 };
1175
1176 if (!mapping_cap_writeback_dirty(inode->i_mapping))
49364ce2 1177 wbc.nr_to_write = 0;
1da177e4
LT
1178
1179 might_sleep();
1180 spin_lock(&inode_lock);
01c03194 1181 ret = writeback_single_inode(inode, &wbc);
1da177e4
LT
1182 spin_unlock(&inode_lock);
1183 if (sync)
1c0eeaf5 1184 inode_sync_wait(inode);
1da177e4
LT
1185 return ret;
1186}
1187EXPORT_SYMBOL(write_inode_now);
1188
1189/**
1190 * sync_inode - write an inode and its pages to disk.
1191 * @inode: the inode to sync
1192 * @wbc: controls the writeback mode
1193 *
1194 * sync_inode() will write an inode and its pages to disk. It will also
1195 * correctly update the inode on its superblock's dirty inode lists and will
1196 * update inode->i_state.
1197 *
1198 * The caller must have a ref on the inode.
1199 */
1200int sync_inode(struct inode *inode, struct writeback_control *wbc)
1201{
1202 int ret;
1203
1204 spin_lock(&inode_lock);
01c03194 1205 ret = writeback_single_inode(inode, wbc);
1da177e4
LT
1206 spin_unlock(&inode_lock);
1207 return ret;
1208}
1209EXPORT_SYMBOL(sync_inode);