mm: fix section mismatch warning in sparse.c
[linux-2.6-block.git] / fs / fs-writeback.c
CommitLineData
1da177e4
LT
1/*
2 * fs/fs-writeback.c
3 *
4 * Copyright (C) 2002, Linus Torvalds.
5 *
6 * Contains all the functions related to writing back and waiting
7 * upon dirty inodes against superblocks, and writing back dirty
8 * pages against inodes. ie: data writeback. Writeout of the
9 * inode itself is not handled here.
10 *
11 * 10Apr2002 akpm@zip.com.au
12 * Split out of fs/inode.c
13 * Additions for address_space-based writeback
14 */
15
16#include <linux/kernel.h>
f5ff8422 17#include <linux/module.h>
1da177e4
LT
18#include <linux/spinlock.h>
19#include <linux/sched.h>
20#include <linux/fs.h>
21#include <linux/mm.h>
22#include <linux/writeback.h>
23#include <linux/blkdev.h>
24#include <linux/backing-dev.h>
25#include <linux/buffer_head.h>
07f3f05c 26#include "internal.h"
1da177e4
LT
27
28/**
29 * __mark_inode_dirty - internal function
30 * @inode: inode to mark
31 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
32 * Mark an inode as dirty. Callers should use mark_inode_dirty or
33 * mark_inode_dirty_sync.
34 *
35 * Put the inode on the super block's dirty list.
36 *
37 * CAREFUL! We mark it dirty unconditionally, but move it onto the
38 * dirty list only if it is hashed or if it refers to a blockdev.
39 * If it was not hashed, it will never be added to the dirty list
40 * even if it is later hashed, as it will have been marked dirty already.
41 *
42 * In short, make sure you hash any inodes _before_ you start marking
43 * them dirty.
44 *
45 * This function *must* be atomic for the I_DIRTY_PAGES case -
46 * set_page_dirty() is called under spinlock in several places.
47 *
48 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
49 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of
50 * the kernel-internal blockdev inode represents the dirtying time of the
51 * blockdev's pages. This is why for I_DIRTY_PAGES we always use
52 * page->mapping->host, so the page-dirtying time is recorded in the internal
53 * blockdev inode.
54 */
55void __mark_inode_dirty(struct inode *inode, int flags)
56{
57 struct super_block *sb = inode->i_sb;
58
59 /*
60 * Don't do this for I_DIRTY_PAGES - that doesn't actually
61 * dirty the inode itself
62 */
63 if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
64 if (sb->s_op->dirty_inode)
65 sb->s_op->dirty_inode(inode);
66 }
67
68 /*
69 * make sure that changes are seen by all cpus before we test i_state
70 * -- mikulas
71 */
72 smp_mb();
73
74 /* avoid the locking if we can */
75 if ((inode->i_state & flags) == flags)
76 return;
77
78 if (unlikely(block_dump)) {
79 struct dentry *dentry = NULL;
80 const char *name = "?";
81
82 if (!list_empty(&inode->i_dentry)) {
83 dentry = list_entry(inode->i_dentry.next,
84 struct dentry, d_alias);
85 if (dentry && dentry->d_name.name)
86 name = (const char *) dentry->d_name.name;
87 }
88
89 if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev"))
90 printk(KERN_DEBUG
91 "%s(%d): dirtied inode %lu (%s) on %s\n",
ba25f9dc 92 current->comm, task_pid_nr(current), inode->i_ino,
1da177e4
LT
93 name, inode->i_sb->s_id);
94 }
95
96 spin_lock(&inode_lock);
97 if ((inode->i_state & flags) != flags) {
98 const int was_dirty = inode->i_state & I_DIRTY;
99
100 inode->i_state |= flags;
101
102 /*
1c0eeaf5 103 * If the inode is being synced, just update its dirty state.
1da177e4
LT
104 * The unlocker will place the inode on the appropriate
105 * superblock list, based upon its state.
106 */
1c0eeaf5 107 if (inode->i_state & I_SYNC)
1da177e4
LT
108 goto out;
109
110 /*
111 * Only add valid (hashed) inodes to the superblock's
112 * dirty list. Add blockdev inodes as well.
113 */
114 if (!S_ISBLK(inode->i_mode)) {
115 if (hlist_unhashed(&inode->i_hash))
116 goto out;
117 }
118 if (inode->i_state & (I_FREEING|I_CLEAR))
119 goto out;
120
121 /*
2c136579 122 * If the inode was already on s_dirty/s_io/s_more_io, don't
1da177e4
LT
123 * reposition it (that would break s_dirty time-ordering).
124 */
125 if (!was_dirty) {
126 inode->dirtied_when = jiffies;
127 list_move(&inode->i_list, &sb->s_dirty);
128 }
129 }
130out:
131 spin_unlock(&inode_lock);
132}
133
134EXPORT_SYMBOL(__mark_inode_dirty);
135
136static int write_inode(struct inode *inode, int sync)
137{
138 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode))
139 return inode->i_sb->s_op->write_inode(inode, sync);
140 return 0;
141}
142
6610a0bc
AM
143/*
144 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
145 * furthest end of its superblock's dirty-inode list.
146 *
147 * Before stamping the inode's ->dirtied_when, we check to see whether it is
148 * already the most-recently-dirtied inode on the s_dirty list. If that is
149 * the case then the inode must have been redirtied while it was being written
150 * out and we don't reset its dirtied_when.
151 */
152static void redirty_tail(struct inode *inode)
153{
154 struct super_block *sb = inode->i_sb;
155
156 if (!list_empty(&sb->s_dirty)) {
157 struct inode *tail_inode;
158
159 tail_inode = list_entry(sb->s_dirty.next, struct inode, i_list);
160 if (!time_after_eq(inode->dirtied_when,
161 tail_inode->dirtied_when))
162 inode->dirtied_when = jiffies;
163 }
164 list_move(&inode->i_list, &sb->s_dirty);
165}
166
c986d1e2 167/*
0e0f4fc2 168 * requeue inode for re-scanning after sb->s_io list is exhausted.
c986d1e2 169 */
0e0f4fc2 170static void requeue_io(struct inode *inode)
c986d1e2 171{
0e0f4fc2 172 list_move(&inode->i_list, &inode->i_sb->s_more_io);
c986d1e2
AM
173}
174
1c0eeaf5
JE
175static void inode_sync_complete(struct inode *inode)
176{
177 /*
178 * Prevent speculative execution through spin_unlock(&inode_lock);
179 */
180 smp_mb();
181 wake_up_bit(&inode->i_state, __I_SYNC);
182}
183
2c136579
FW
184/*
185 * Move expired dirty inodes from @delaying_queue to @dispatch_queue.
186 */
187static void move_expired_inodes(struct list_head *delaying_queue,
188 struct list_head *dispatch_queue,
189 unsigned long *older_than_this)
190{
191 while (!list_empty(delaying_queue)) {
192 struct inode *inode = list_entry(delaying_queue->prev,
193 struct inode, i_list);
194 if (older_than_this &&
195 time_after(inode->dirtied_when, *older_than_this))
196 break;
197 list_move(&inode->i_list, dispatch_queue);
198 }
199}
200
201/*
202 * Queue all expired dirty inodes for io, eldest first.
203 */
204static void queue_io(struct super_block *sb,
205 unsigned long *older_than_this)
206{
207 list_splice_init(&sb->s_more_io, sb->s_io.prev);
208 move_expired_inodes(&sb->s_dirty, &sb->s_io, older_than_this);
209}
210
08d8e974
FW
211int sb_has_dirty_inodes(struct super_block *sb)
212{
213 return !list_empty(&sb->s_dirty) ||
214 !list_empty(&sb->s_io) ||
215 !list_empty(&sb->s_more_io);
216}
217EXPORT_SYMBOL(sb_has_dirty_inodes);
218
1da177e4
LT
219/*
220 * Write a single inode's dirty pages and inode data out to disk.
221 * If `wait' is set, wait on the writeout.
222 *
223 * The whole writeout design is quite complex and fragile. We want to avoid
224 * starvation of particular inodes when others are being redirtied, prevent
225 * livelocks, etc.
226 *
227 * Called under inode_lock.
228 */
229static int
230__sync_single_inode(struct inode *inode, struct writeback_control *wbc)
231{
232 unsigned dirty;
233 struct address_space *mapping = inode->i_mapping;
1da177e4
LT
234 int wait = wbc->sync_mode == WB_SYNC_ALL;
235 int ret;
236
1c0eeaf5 237 BUG_ON(inode->i_state & I_SYNC);
1da177e4 238
1c0eeaf5 239 /* Set I_SYNC, reset I_DIRTY */
1da177e4 240 dirty = inode->i_state & I_DIRTY;
1c0eeaf5 241 inode->i_state |= I_SYNC;
1da177e4
LT
242 inode->i_state &= ~I_DIRTY;
243
244 spin_unlock(&inode_lock);
245
246 ret = do_writepages(mapping, wbc);
247
248 /* Don't write the inode if only I_DIRTY_PAGES was set */
249 if (dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
250 int err = write_inode(inode, wait);
251 if (ret == 0)
252 ret = err;
253 }
254
255 if (wait) {
256 int err = filemap_fdatawait(mapping);
257 if (ret == 0)
258 ret = err;
259 }
260
261 spin_lock(&inode_lock);
1c0eeaf5 262 inode->i_state &= ~I_SYNC;
1da177e4
LT
263 if (!(inode->i_state & I_FREEING)) {
264 if (!(inode->i_state & I_DIRTY) &&
265 mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
266 /*
267 * We didn't write back all the pages. nfs_writepages()
268 * sometimes bales out without doing anything. Redirty
2c136579 269 * the inode; Move it from s_io onto s_more_io/s_dirty.
1b43ef91
AM
270 */
271 /*
272 * akpm: if the caller was the kupdate function we put
273 * this inode at the head of s_dirty so it gets first
274 * consideration. Otherwise, move it to the tail, for
275 * the reasons described there. I'm not really sure
276 * how much sense this makes. Presumably I had a good
277 * reasons for doing it this way, and I'd rather not
278 * muck with it at present.
1da177e4
LT
279 */
280 if (wbc->for_kupdate) {
281 /*
2c136579
FW
282 * For the kupdate function we move the inode
283 * to s_more_io so it will get more writeout as
284 * soon as the queue becomes uncongested.
1da177e4
LT
285 */
286 inode->i_state |= I_DIRTY_PAGES;
0e0f4fc2 287 requeue_io(inode);
1da177e4
LT
288 } else {
289 /*
290 * Otherwise fully redirty the inode so that
291 * other inodes on this superblock will get some
292 * writeout. Otherwise heavy writing to one
293 * file would indefinitely suspend writeout of
294 * all the other files.
295 */
296 inode->i_state |= I_DIRTY_PAGES;
1b43ef91 297 redirty_tail(inode);
1da177e4
LT
298 }
299 } else if (inode->i_state & I_DIRTY) {
300 /*
301 * Someone redirtied the inode while were writing back
302 * the pages.
303 */
6610a0bc 304 redirty_tail(inode);
1da177e4
LT
305 } else if (atomic_read(&inode->i_count)) {
306 /*
307 * The inode is clean, inuse
308 */
309 list_move(&inode->i_list, &inode_in_use);
310 } else {
311 /*
312 * The inode is clean, unused
313 */
314 list_move(&inode->i_list, &inode_unused);
1da177e4
LT
315 }
316 }
1c0eeaf5 317 inode_sync_complete(inode);
1da177e4
LT
318 return ret;
319}
320
321/*
7f04c26d
AA
322 * Write out an inode's dirty pages. Called under inode_lock. Either the
323 * caller has ref on the inode (either via __iget or via syscall against an fd)
324 * or the inode has I_WILL_FREE set (via generic_forget_inode)
1da177e4
LT
325 */
326static int
7f04c26d 327__writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
1da177e4
LT
328{
329 wait_queue_head_t *wqh;
330
7f04c26d 331 if (!atomic_read(&inode->i_count))
659603ef 332 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
7f04c26d
AA
333 else
334 WARN_ON(inode->i_state & I_WILL_FREE);
335
1c0eeaf5 336 if ((wbc->sync_mode != WB_SYNC_ALL) && (inode->i_state & I_SYNC)) {
65cb9b47
AM
337 /*
338 * We're skipping this inode because it's locked, and we're not
2c136579
FW
339 * doing writeback-for-data-integrity. Move it to s_more_io so
340 * that writeback can proceed with the other inodes on s_io.
341 * We'll have another go at writing back this inode when we
342 * completed a full scan of s_io.
65cb9b47 343 */
0e0f4fc2 344 requeue_io(inode);
2d544564 345 return 0;
1da177e4
LT
346 }
347
348 /*
349 * It's a data-integrity sync. We must wait.
350 */
1c0eeaf5
JE
351 if (inode->i_state & I_SYNC) {
352 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
1da177e4 353
1c0eeaf5 354 wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1da177e4 355 do {
1da177e4
LT
356 spin_unlock(&inode_lock);
357 __wait_on_bit(wqh, &wq, inode_wait,
358 TASK_UNINTERRUPTIBLE);
1da177e4 359 spin_lock(&inode_lock);
1c0eeaf5 360 } while (inode->i_state & I_SYNC);
1da177e4
LT
361 }
362 return __sync_single_inode(inode, wbc);
363}
364
365/*
366 * Write out a superblock's list of dirty inodes. A wait will be performed
367 * upon no inodes, all inodes or the final one, depending upon sync_mode.
368 *
369 * If older_than_this is non-NULL, then only write out inodes which
370 * had their first dirtying at a time earlier than *older_than_this.
371 *
372 * If we're a pdlfush thread, then implement pdflush collision avoidance
373 * against the entire list.
374 *
375 * WB_SYNC_HOLD is a hack for sys_sync(): reattach the inode to sb->s_dirty so
376 * that it can be located for waiting on in __writeback_single_inode().
377 *
378 * Called under inode_lock.
379 *
380 * If `bdi' is non-zero then we're being asked to writeback a specific queue.
381 * This function assumes that the blockdev superblock's inodes are backed by
382 * a variety of queues, so all inodes are searched. For other superblocks,
383 * assume that all inodes are backed by the same queue.
384 *
385 * FIXME: this linear search could get expensive with many fileystems. But
386 * how to fix? We need to go from an address_space to all inodes which share
387 * a queue with that address_space. (Easy: have a global "dirty superblocks"
388 * list).
389 *
390 * The inodes to be written are parked on sb->s_io. They are moved back onto
391 * sb->s_dirty as they are selected for writing. This way, none can be missed
392 * on the writer throttling path, and we get decent balancing between many
1c0eeaf5 393 * throttled threads: we don't want them all piling up on inode_sync_wait.
1da177e4
LT
394 */
395static void
396sync_sb_inodes(struct super_block *sb, struct writeback_control *wbc)
397{
398 const unsigned long start = jiffies; /* livelock avoidance */
399
400 if (!wbc->for_kupdate || list_empty(&sb->s_io))
2c136579 401 queue_io(sb, wbc->older_than_this);
1da177e4
LT
402
403 while (!list_empty(&sb->s_io)) {
404 struct inode *inode = list_entry(sb->s_io.prev,
405 struct inode, i_list);
406 struct address_space *mapping = inode->i_mapping;
407 struct backing_dev_info *bdi = mapping->backing_dev_info;
408 long pages_skipped;
409
410 if (!bdi_cap_writeback_dirty(bdi)) {
9852a0e7 411 redirty_tail(inode);
7b0de42d 412 if (sb_is_blkdev_sb(sb)) {
1da177e4
LT
413 /*
414 * Dirty memory-backed blockdev: the ramdisk
415 * driver does this. Skip just this inode
416 */
417 continue;
418 }
419 /*
420 * Dirty memory-backed inode against a filesystem other
421 * than the kernel-internal bdev filesystem. Skip the
422 * entire superblock.
423 */
424 break;
425 }
426
427 if (wbc->nonblocking && bdi_write_congested(bdi)) {
428 wbc->encountered_congestion = 1;
7b0de42d 429 if (!sb_is_blkdev_sb(sb))
1da177e4 430 break; /* Skip a congested fs */
0e0f4fc2 431 requeue_io(inode);
1da177e4
LT
432 continue; /* Skip a congested blockdev */
433 }
434
435 if (wbc->bdi && bdi != wbc->bdi) {
7b0de42d 436 if (!sb_is_blkdev_sb(sb))
1da177e4 437 break; /* fs has the wrong queue */
0e0f4fc2 438 requeue_io(inode);
1da177e4
LT
439 continue; /* blockdev has wrong queue */
440 }
441
442 /* Was this inode dirtied after sync_sb_inodes was called? */
443 if (time_after(inode->dirtied_when, start))
444 break;
445
1da177e4
LT
446 /* Is another pdflush already flushing this queue? */
447 if (current_is_pdflush() && !writeback_acquire(bdi))
448 break;
449
450 BUG_ON(inode->i_state & I_FREEING);
451 __iget(inode);
452 pages_skipped = wbc->pages_skipped;
453 __writeback_single_inode(inode, wbc);
454 if (wbc->sync_mode == WB_SYNC_HOLD) {
455 inode->dirtied_when = jiffies;
456 list_move(&inode->i_list, &sb->s_dirty);
457 }
458 if (current_is_pdflush())
459 writeback_release(bdi);
460 if (wbc->pages_skipped != pages_skipped) {
461 /*
462 * writeback is not making progress due to locked
463 * buffers. Skip this inode for now.
464 */
f57b9b7b 465 redirty_tail(inode);
1da177e4
LT
466 }
467 spin_unlock(&inode_lock);
1da177e4 468 iput(inode);
4ffc8444 469 cond_resched();
1da177e4
LT
470 spin_lock(&inode_lock);
471 if (wbc->nr_to_write <= 0)
472 break;
473 }
474 return; /* Leave any unwritten inodes on s_io */
475}
476
477/*
478 * Start writeback of dirty pagecache data against all unlocked inodes.
479 *
480 * Note:
481 * We don't need to grab a reference to superblock here. If it has non-empty
482 * ->s_dirty it's hadn't been killed yet and kill_super() won't proceed
2c136579 483 * past sync_inodes_sb() until the ->s_dirty/s_io/s_more_io lists are all
1da177e4
LT
484 * empty. Since __sync_single_inode() regains inode_lock before it finally moves
485 * inode from superblock lists we are OK.
486 *
487 * If `older_than_this' is non-zero then only flush inodes which have a
488 * flushtime older than *older_than_this.
489 *
490 * If `bdi' is non-zero then we will scan the first inode against each
491 * superblock until we find the matching ones. One group will be the dirty
492 * inodes against a filesystem. Then when we hit the dummy blockdev superblock,
493 * sync_sb_inodes will seekout the blockdev which matches `bdi'. Maybe not
494 * super-efficient but we're about to do a ton of I/O...
495 */
496void
497writeback_inodes(struct writeback_control *wbc)
498{
499 struct super_block *sb;
500
501 might_sleep();
502 spin_lock(&sb_lock);
503restart:
504 sb = sb_entry(super_blocks.prev);
505 for (; sb != sb_entry(&super_blocks); sb = sb_entry(sb->s_list.prev)) {
08d8e974 506 if (sb_has_dirty_inodes(sb)) {
1da177e4
LT
507 /* we're making our own get_super here */
508 sb->s_count++;
509 spin_unlock(&sb_lock);
510 /*
511 * If we can't get the readlock, there's no sense in
512 * waiting around, most of the time the FS is going to
513 * be unmounted by the time it is released.
514 */
515 if (down_read_trylock(&sb->s_umount)) {
516 if (sb->s_root) {
517 spin_lock(&inode_lock);
518 sync_sb_inodes(sb, wbc);
519 spin_unlock(&inode_lock);
520 }
521 up_read(&sb->s_umount);
522 }
523 spin_lock(&sb_lock);
524 if (__put_super_and_need_restart(sb))
525 goto restart;
526 }
527 if (wbc->nr_to_write <= 0)
528 break;
529 }
530 spin_unlock(&sb_lock);
531}
532
533/*
534 * writeback and wait upon the filesystem's dirty inodes. The caller will
535 * do this in two passes - one to write, and one to wait. WB_SYNC_HOLD is
536 * used to park the written inodes on sb->s_dirty for the wait pass.
537 *
538 * A finite limit is set on the number of pages which will be written.
539 * To prevent infinite livelock of sys_sync().
540 *
541 * We add in the number of potentially dirty inodes, because each inode write
542 * can dirty pagecache in the underlying blockdev.
543 */
544void sync_inodes_sb(struct super_block *sb, int wait)
545{
546 struct writeback_control wbc = {
547 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_HOLD,
111ebb6e
OH
548 .range_start = 0,
549 .range_end = LLONG_MAX,
1da177e4 550 };
b1e7a8fd 551 unsigned long nr_dirty = global_page_state(NR_FILE_DIRTY);
fd39fc85 552 unsigned long nr_unstable = global_page_state(NR_UNSTABLE_NFS);
1da177e4
LT
553
554 wbc.nr_to_write = nr_dirty + nr_unstable +
555 (inodes_stat.nr_inodes - inodes_stat.nr_unused) +
556 nr_dirty + nr_unstable;
557 wbc.nr_to_write += wbc.nr_to_write / 2; /* Bit more for luck */
558 spin_lock(&inode_lock);
559 sync_sb_inodes(sb, &wbc);
560 spin_unlock(&inode_lock);
561}
562
563/*
564 * Rather lame livelock avoidance.
565 */
566static void set_sb_syncing(int val)
567{
568 struct super_block *sb;
569 spin_lock(&sb_lock);
570 sb = sb_entry(super_blocks.prev);
571 for (; sb != sb_entry(&super_blocks); sb = sb_entry(sb->s_list.prev)) {
572 sb->s_syncing = val;
573 }
574 spin_unlock(&sb_lock);
575}
576
1da177e4 577/**
67be2dd1
MW
578 * sync_inodes - writes all inodes to disk
579 * @wait: wait for completion
1da177e4
LT
580 *
581 * sync_inodes() goes through each super block's dirty inode list, writes the
582 * inodes out, waits on the writeout and puts the inodes back on the normal
583 * list.
584 *
585 * This is for sys_sync(). fsync_dev() uses the same algorithm. The subtle
586 * part of the sync functions is that the blockdev "superblock" is processed
587 * last. This is because the write_inode() function of a typical fs will
588 * perform no I/O, but will mark buffers in the blockdev mapping as dirty.
589 * What we want to do is to perform all that dirtying first, and then write
590 * back all those inode blocks via the blockdev mapping in one sweep. So the
591 * additional (somewhat redundant) sync_blockdev() calls here are to make
592 * sure that really happens. Because if we call sync_inodes_sb(wait=1) with
593 * outstanding dirty inodes, the writeback goes block-at-a-time within the
594 * filesystem's write_inode(). This is extremely slow.
595 */
618f0636 596static void __sync_inodes(int wait)
1da177e4
LT
597{
598 struct super_block *sb;
599
618f0636
KK
600 spin_lock(&sb_lock);
601restart:
602 list_for_each_entry(sb, &super_blocks, s_list) {
603 if (sb->s_syncing)
604 continue;
605 sb->s_syncing = 1;
606 sb->s_count++;
607 spin_unlock(&sb_lock);
608 down_read(&sb->s_umount);
609 if (sb->s_root) {
610 sync_inodes_sb(sb, wait);
611 sync_blockdev(sb->s_bdev);
612 }
613 up_read(&sb->s_umount);
614 spin_lock(&sb_lock);
615 if (__put_super_and_need_restart(sb))
616 goto restart;
1da177e4 617 }
618f0636
KK
618 spin_unlock(&sb_lock);
619}
620
621void sync_inodes(int wait)
622{
623 set_sb_syncing(0);
624 __sync_inodes(0);
625
1da177e4
LT
626 if (wait) {
627 set_sb_syncing(0);
618f0636 628 __sync_inodes(1);
1da177e4
LT
629 }
630}
631
632/**
7f04c26d
AA
633 * write_inode_now - write an inode to disk
634 * @inode: inode to write to disk
635 * @sync: whether the write should be synchronous or not
636 *
637 * This function commits an inode to disk immediately if it is dirty. This is
638 * primarily needed by knfsd.
1da177e4 639 *
7f04c26d 640 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
1da177e4 641 */
1da177e4
LT
642int write_inode_now(struct inode *inode, int sync)
643{
644 int ret;
645 struct writeback_control wbc = {
646 .nr_to_write = LONG_MAX,
647 .sync_mode = WB_SYNC_ALL,
111ebb6e
OH
648 .range_start = 0,
649 .range_end = LLONG_MAX,
1da177e4
LT
650 };
651
652 if (!mapping_cap_writeback_dirty(inode->i_mapping))
49364ce2 653 wbc.nr_to_write = 0;
1da177e4
LT
654
655 might_sleep();
656 spin_lock(&inode_lock);
657 ret = __writeback_single_inode(inode, &wbc);
658 spin_unlock(&inode_lock);
659 if (sync)
1c0eeaf5 660 inode_sync_wait(inode);
1da177e4
LT
661 return ret;
662}
663EXPORT_SYMBOL(write_inode_now);
664
665/**
666 * sync_inode - write an inode and its pages to disk.
667 * @inode: the inode to sync
668 * @wbc: controls the writeback mode
669 *
670 * sync_inode() will write an inode and its pages to disk. It will also
671 * correctly update the inode on its superblock's dirty inode lists and will
672 * update inode->i_state.
673 *
674 * The caller must have a ref on the inode.
675 */
676int sync_inode(struct inode *inode, struct writeback_control *wbc)
677{
678 int ret;
679
680 spin_lock(&inode_lock);
681 ret = __writeback_single_inode(inode, wbc);
682 spin_unlock(&inode_lock);
683 return ret;
684}
685EXPORT_SYMBOL(sync_inode);
686
687/**
688 * generic_osync_inode - flush all dirty data for a given inode to disk
689 * @inode: inode to write
67be2dd1 690 * @mapping: the address_space that should be flushed
1da177e4
LT
691 * @what: what to write and wait upon
692 *
693 * This can be called by file_write functions for files which have the
694 * O_SYNC flag set, to flush dirty writes to disk.
695 *
696 * @what is a bitmask, specifying which part of the inode's data should be
b8887e6e 697 * written and waited upon.
1da177e4
LT
698 *
699 * OSYNC_DATA: i_mapping's dirty data
700 * OSYNC_METADATA: the buffers at i_mapping->private_list
701 * OSYNC_INODE: the inode itself
702 */
703
704int generic_osync_inode(struct inode *inode, struct address_space *mapping, int what)
705{
706 int err = 0;
707 int need_write_inode_now = 0;
708 int err2;
709
1da177e4
LT
710 if (what & OSYNC_DATA)
711 err = filemap_fdatawrite(mapping);
712 if (what & (OSYNC_METADATA|OSYNC_DATA)) {
713 err2 = sync_mapping_buffers(mapping);
714 if (!err)
715 err = err2;
716 }
717 if (what & OSYNC_DATA) {
718 err2 = filemap_fdatawait(mapping);
719 if (!err)
720 err = err2;
721 }
1da177e4
LT
722
723 spin_lock(&inode_lock);
724 if ((inode->i_state & I_DIRTY) &&
725 ((what & OSYNC_INODE) || (inode->i_state & I_DIRTY_DATASYNC)))
726 need_write_inode_now = 1;
727 spin_unlock(&inode_lock);
728
729 if (need_write_inode_now) {
730 err2 = write_inode_now(inode, 1);
731 if (!err)
732 err = err2;
733 }
734 else
1c0eeaf5 735 inode_sync_wait(inode);
1da177e4
LT
736
737 return err;
738}
739
740EXPORT_SYMBOL(generic_osync_inode);
741
742/**
743 * writeback_acquire: attempt to get exclusive writeback access to a device
744 * @bdi: the device's backing_dev_info structure
745 *
746 * It is a waste of resources to have more than one pdflush thread blocked on
747 * a single request queue. Exclusion at the request_queue level is obtained
748 * via a flag in the request_queue's backing_dev_info.state.
749 *
750 * Non-request_queue-backed address_spaces will share default_backing_dev_info,
751 * unless they implement their own. Which is somewhat inefficient, as this
752 * may prevent concurrent writeback against multiple devices.
753 */
754int writeback_acquire(struct backing_dev_info *bdi)
755{
756 return !test_and_set_bit(BDI_pdflush, &bdi->state);
757}
758
759/**
760 * writeback_in_progress: determine whether there is writeback in progress
1da177e4 761 * @bdi: the device's backing_dev_info structure.
b8887e6e
RD
762 *
763 * Determine whether there is writeback in progress against a backing device.
1da177e4
LT
764 */
765int writeback_in_progress(struct backing_dev_info *bdi)
766{
767 return test_bit(BDI_pdflush, &bdi->state);
768}
769
770/**
771 * writeback_release: relinquish exclusive writeback access against a device.
772 * @bdi: the device's backing_dev_info structure
773 */
774void writeback_release(struct backing_dev_info *bdi)
775{
776 BUG_ON(!writeback_in_progress(bdi));
777 clear_bit(BDI_pdflush, &bdi->state);
778}