writeback: kupdate writeback shall not stop when more io is possible
[linux-2.6-block.git] / fs / fs-writeback.c
CommitLineData
1da177e4
LT
1/*
2 * fs/fs-writeback.c
3 *
4 * Copyright (C) 2002, Linus Torvalds.
5 *
6 * Contains all the functions related to writing back and waiting
7 * upon dirty inodes against superblocks, and writing back dirty
8 * pages against inodes. ie: data writeback. Writeout of the
9 * inode itself is not handled here.
10 *
e1f8e874 11 * 10Apr2002 Andrew Morton
1da177e4
LT
12 * Split out of fs/inode.c
13 * Additions for address_space-based writeback
14 */
15
16#include <linux/kernel.h>
f5ff8422 17#include <linux/module.h>
1da177e4
LT
18#include <linux/spinlock.h>
19#include <linux/sched.h>
20#include <linux/fs.h>
21#include <linux/mm.h>
03ba3782
JA
22#include <linux/kthread.h>
23#include <linux/freezer.h>
1da177e4
LT
24#include <linux/writeback.h>
25#include <linux/blkdev.h>
26#include <linux/backing-dev.h>
27#include <linux/buffer_head.h>
07f3f05c 28#include "internal.h"
1da177e4 29
66f3b8e2 30#define inode_to_bdi(inode) ((inode)->i_mapping->backing_dev_info)
f11b00f3 31
d0bceac7
JA
32/*
33 * We don't actually have pdflush, but this one is exported though /proc...
34 */
35int nr_pdflush_threads;
36
c4a77a6c
JA
37/*
38 * Passed into wb_writeback(), essentially a subset of writeback_control
39 */
40struct wb_writeback_args {
41 long nr_pages;
42 struct super_block *sb;
43 enum writeback_sync_modes sync_mode;
d3ddec76
WF
44 int for_kupdate:1;
45 int range_cyclic:1;
46 int for_background:1;
c4a77a6c
JA
47};
48
03ba3782
JA
49/*
50 * Work items for the bdi_writeback threads
f11b00f3 51 */
03ba3782 52struct bdi_work {
8010c3b6
JA
53 struct list_head list; /* pending work list */
54 struct rcu_head rcu_head; /* for RCU free/clear of work */
03ba3782 55
8010c3b6
JA
56 unsigned long seen; /* threads that have seen this work */
57 atomic_t pending; /* number of threads still to do work */
03ba3782 58
8010c3b6 59 struct wb_writeback_args args; /* writeback arguments */
03ba3782 60
8010c3b6 61 unsigned long state; /* flag bits, see WS_* */
03ba3782
JA
62};
63
64enum {
65 WS_USED_B = 0,
66 WS_ONSTACK_B,
67};
68
69#define WS_USED (1 << WS_USED_B)
70#define WS_ONSTACK (1 << WS_ONSTACK_B)
71
72static inline bool bdi_work_on_stack(struct bdi_work *work)
73{
74 return test_bit(WS_ONSTACK_B, &work->state);
75}
76
77static inline void bdi_work_init(struct bdi_work *work,
b6e51316 78 struct wb_writeback_args *args)
03ba3782
JA
79{
80 INIT_RCU_HEAD(&work->rcu_head);
b6e51316 81 work->args = *args;
03ba3782
JA
82 work->state = WS_USED;
83}
84
f11b00f3
AB
85/**
86 * writeback_in_progress - determine whether there is writeback in progress
87 * @bdi: the device's backing_dev_info structure.
88 *
03ba3782
JA
89 * Determine whether there is writeback waiting to be handled against a
90 * backing device.
f11b00f3
AB
91 */
92int writeback_in_progress(struct backing_dev_info *bdi)
93{
03ba3782 94 return !list_empty(&bdi->work_list);
f11b00f3
AB
95}
96
03ba3782 97static void bdi_work_clear(struct bdi_work *work)
f11b00f3 98{
03ba3782
JA
99 clear_bit(WS_USED_B, &work->state);
100 smp_mb__after_clear_bit();
1ef7d9aa
NP
101 /*
102 * work can have disappeared at this point. bit waitq functions
103 * should be able to tolerate this, provided bdi_sched_wait does
104 * not dereference it's pointer argument.
105 */
03ba3782 106 wake_up_bit(&work->state, WS_USED_B);
f11b00f3
AB
107}
108
03ba3782 109static void bdi_work_free(struct rcu_head *head)
4195f73d 110{
03ba3782 111 struct bdi_work *work = container_of(head, struct bdi_work, rcu_head);
4195f73d 112
03ba3782
JA
113 if (!bdi_work_on_stack(work))
114 kfree(work);
115 else
116 bdi_work_clear(work);
4195f73d
NP
117}
118
03ba3782 119static void wb_work_complete(struct bdi_work *work)
1da177e4 120{
c4a77a6c 121 const enum writeback_sync_modes sync_mode = work->args.sync_mode;
77b9d059 122 int onstack = bdi_work_on_stack(work);
1da177e4
LT
123
124 /*
03ba3782
JA
125 * For allocated work, we can clear the done/seen bit right here.
126 * For on-stack work, we need to postpone both the clear and free
127 * to after the RCU grace period, since the stack could be invalidated
128 * as soon as bdi_work_clear() has done the wakeup.
1da177e4 129 */
77b9d059 130 if (!onstack)
03ba3782 131 bdi_work_clear(work);
77b9d059 132 if (sync_mode == WB_SYNC_NONE || onstack)
03ba3782
JA
133 call_rcu(&work->rcu_head, bdi_work_free);
134}
1da177e4 135
03ba3782
JA
136static void wb_clear_pending(struct bdi_writeback *wb, struct bdi_work *work)
137{
1da177e4 138 /*
03ba3782
JA
139 * The caller has retrieved the work arguments from this work,
140 * drop our reference. If this is the last ref, delete and free it
1da177e4 141 */
03ba3782
JA
142 if (atomic_dec_and_test(&work->pending)) {
143 struct backing_dev_info *bdi = wb->bdi;
1da177e4 144
03ba3782
JA
145 spin_lock(&bdi->wb_lock);
146 list_del_rcu(&work->list);
147 spin_unlock(&bdi->wb_lock);
1da177e4 148
03ba3782
JA
149 wb_work_complete(work);
150 }
151}
1da177e4 152
03ba3782
JA
153static void bdi_queue_work(struct backing_dev_info *bdi, struct bdi_work *work)
154{
bcddc3f0
JA
155 work->seen = bdi->wb_mask;
156 BUG_ON(!work->seen);
157 atomic_set(&work->pending, bdi->wb_cnt);
158 BUG_ON(!bdi->wb_cnt);
1da177e4 159
bcddc3f0 160 /*
deed62ed
NP
161 * list_add_tail_rcu() contains the necessary barriers to
162 * make sure the above stores are seen before the item is
163 * noticed on the list
bcddc3f0 164 */
bcddc3f0
JA
165 spin_lock(&bdi->wb_lock);
166 list_add_tail_rcu(&work->list, &bdi->work_list);
167 spin_unlock(&bdi->wb_lock);
03ba3782
JA
168
169 /*
170 * If the default thread isn't there, make sure we add it. When
171 * it gets created and wakes up, we'll run this work.
172 */
173 if (unlikely(list_empty_careful(&bdi->wb_list)))
174 wake_up_process(default_backing_dev_info.wb.task);
175 else {
176 struct bdi_writeback *wb = &bdi->wb;
1da177e4 177
1ef7d9aa 178 if (wb->task)
03ba3782 179 wake_up_process(wb->task);
1da177e4 180 }
1da177e4
LT
181}
182
03ba3782
JA
183/*
184 * Used for on-stack allocated work items. The caller needs to wait until
185 * the wb threads have acked the work before it's safe to continue.
186 */
187static void bdi_wait_on_work_clear(struct bdi_work *work)
188{
189 wait_on_bit(&work->state, WS_USED_B, bdi_sched_wait,
190 TASK_UNINTERRUPTIBLE);
191}
1da177e4 192
f11fcae8 193static void bdi_alloc_queue_work(struct backing_dev_info *bdi,
b6e51316 194 struct wb_writeback_args *args)
1da177e4 195{
03ba3782
JA
196 struct bdi_work *work;
197
bcddc3f0
JA
198 /*
199 * This is WB_SYNC_NONE writeback, so if allocation fails just
200 * wakeup the thread for old dirty data writeback
201 */
03ba3782 202 work = kmalloc(sizeof(*work), GFP_ATOMIC);
bcddc3f0 203 if (work) {
b6e51316 204 bdi_work_init(work, args);
bcddc3f0
JA
205 bdi_queue_work(bdi, work);
206 } else {
207 struct bdi_writeback *wb = &bdi->wb;
03ba3782 208
bcddc3f0
JA
209 if (wb->task)
210 wake_up_process(wb->task);
211 }
03ba3782
JA
212}
213
b6e51316
JA
214/**
215 * bdi_sync_writeback - start and wait for writeback
216 * @bdi: the backing device to write from
217 * @sb: write inodes from this super_block
218 *
219 * Description:
220 * This does WB_SYNC_ALL data integrity writeback and waits for the
221 * IO to complete. Callers must hold the sb s_umount semaphore for
222 * reading, to avoid having the super disappear before we are done.
223 */
224static void bdi_sync_writeback(struct backing_dev_info *bdi,
225 struct super_block *sb)
03ba3782 226{
b6e51316
JA
227 struct wb_writeback_args args = {
228 .sb = sb,
229 .sync_mode = WB_SYNC_ALL,
230 .nr_pages = LONG_MAX,
231 .range_cyclic = 0,
232 };
233 struct bdi_work work;
03ba3782 234
b6e51316
JA
235 bdi_work_init(&work, &args);
236 work.state |= WS_ONSTACK;
03ba3782 237
b6e51316
JA
238 bdi_queue_work(bdi, &work);
239 bdi_wait_on_work_clear(&work);
240}
241
242/**
243 * bdi_start_writeback - start writeback
244 * @bdi: the backing device to write from
245 * @nr_pages: the number of pages to write
246 *
247 * Description:
248 * This does WB_SYNC_NONE opportunistic writeback. The IO is only
249 * started when this function returns, we make no guarentees on
250 * completion. Caller need not hold sb s_umount semaphore.
251 *
252 */
253void bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages)
254{
255 struct wb_writeback_args args = {
256 .sync_mode = WB_SYNC_NONE,
257 .nr_pages = nr_pages,
258 .range_cyclic = 1,
259 };
260
d3ddec76
WF
261 /*
262 * We treat @nr_pages=0 as the special case to do background writeback,
263 * ie. to sync pages until the background dirty threshold is reached.
264 */
265 if (!nr_pages) {
266 args.nr_pages = LONG_MAX;
267 args.for_background = 1;
268 }
269
b6e51316 270 bdi_alloc_queue_work(bdi, &args);
1da177e4
LT
271}
272
6610a0bc
AM
273/*
274 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
275 * furthest end of its superblock's dirty-inode list.
276 *
277 * Before stamping the inode's ->dirtied_when, we check to see whether it is
66f3b8e2 278 * already the most-recently-dirtied inode on the b_dirty list. If that is
6610a0bc
AM
279 * the case then the inode must have been redirtied while it was being written
280 * out and we don't reset its dirtied_when.
281 */
282static void redirty_tail(struct inode *inode)
283{
03ba3782 284 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
6610a0bc 285
03ba3782 286 if (!list_empty(&wb->b_dirty)) {
66f3b8e2 287 struct inode *tail;
6610a0bc 288
03ba3782 289 tail = list_entry(wb->b_dirty.next, struct inode, i_list);
66f3b8e2 290 if (time_before(inode->dirtied_when, tail->dirtied_when))
6610a0bc
AM
291 inode->dirtied_when = jiffies;
292 }
03ba3782 293 list_move(&inode->i_list, &wb->b_dirty);
6610a0bc
AM
294}
295
c986d1e2 296/*
66f3b8e2 297 * requeue inode for re-scanning after bdi->b_io list is exhausted.
c986d1e2 298 */
0e0f4fc2 299static void requeue_io(struct inode *inode)
c986d1e2 300{
03ba3782
JA
301 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
302
303 list_move(&inode->i_list, &wb->b_more_io);
c986d1e2
AM
304}
305
1c0eeaf5
JE
306static void inode_sync_complete(struct inode *inode)
307{
308 /*
309 * Prevent speculative execution through spin_unlock(&inode_lock);
310 */
311 smp_mb();
312 wake_up_bit(&inode->i_state, __I_SYNC);
313}
314
d2caa3c5
JL
315static bool inode_dirtied_after(struct inode *inode, unsigned long t)
316{
317 bool ret = time_after(inode->dirtied_when, t);
318#ifndef CONFIG_64BIT
319 /*
320 * For inodes being constantly redirtied, dirtied_when can get stuck.
321 * It _appears_ to be in the future, but is actually in distant past.
322 * This test is necessary to prevent such wrapped-around relative times
323 * from permanently stopping the whole pdflush writeback.
324 */
325 ret = ret && time_before_eq(inode->dirtied_when, jiffies);
326#endif
327 return ret;
328}
329
2c136579
FW
330/*
331 * Move expired dirty inodes from @delaying_queue to @dispatch_queue.
332 */
333static void move_expired_inodes(struct list_head *delaying_queue,
334 struct list_head *dispatch_queue,
335 unsigned long *older_than_this)
336{
337 while (!list_empty(delaying_queue)) {
338 struct inode *inode = list_entry(delaying_queue->prev,
339 struct inode, i_list);
340 if (older_than_this &&
d2caa3c5 341 inode_dirtied_after(inode, *older_than_this))
2c136579
FW
342 break;
343 list_move(&inode->i_list, dispatch_queue);
344 }
345}
346
347/*
348 * Queue all expired dirty inodes for io, eldest first.
349 */
03ba3782 350static void queue_io(struct bdi_writeback *wb, unsigned long *older_than_this)
66f3b8e2 351{
03ba3782
JA
352 list_splice_init(&wb->b_more_io, wb->b_io.prev);
353 move_expired_inodes(&wb->b_dirty, &wb->b_io, older_than_this);
66f3b8e2
JA
354}
355
03ba3782 356static int write_inode(struct inode *inode, int sync)
08d8e974 357{
03ba3782
JA
358 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode))
359 return inode->i_sb->s_op->write_inode(inode, sync);
360 return 0;
08d8e974 361}
08d8e974 362
1da177e4 363/*
01c03194
CH
364 * Wait for writeback on an inode to complete.
365 */
366static void inode_wait_for_writeback(struct inode *inode)
367{
368 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
369 wait_queue_head_t *wqh;
370
371 wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
372 do {
373 spin_unlock(&inode_lock);
374 __wait_on_bit(wqh, &wq, inode_wait, TASK_UNINTERRUPTIBLE);
375 spin_lock(&inode_lock);
376 } while (inode->i_state & I_SYNC);
377}
378
379/*
380 * Write out an inode's dirty pages. Called under inode_lock. Either the
381 * caller has ref on the inode (either via __iget or via syscall against an fd)
382 * or the inode has I_WILL_FREE set (via generic_forget_inode)
383 *
1da177e4
LT
384 * If `wait' is set, wait on the writeout.
385 *
386 * The whole writeout design is quite complex and fragile. We want to avoid
387 * starvation of particular inodes when others are being redirtied, prevent
388 * livelocks, etc.
389 *
390 * Called under inode_lock.
391 */
392static int
01c03194 393writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
1da177e4 394{
1da177e4 395 struct address_space *mapping = inode->i_mapping;
1da177e4 396 int wait = wbc->sync_mode == WB_SYNC_ALL;
01c03194 397 unsigned dirty;
1da177e4
LT
398 int ret;
399
01c03194
CH
400 if (!atomic_read(&inode->i_count))
401 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
402 else
403 WARN_ON(inode->i_state & I_WILL_FREE);
404
405 if (inode->i_state & I_SYNC) {
406 /*
407 * If this inode is locked for writeback and we are not doing
66f3b8e2 408 * writeback-for-data-integrity, move it to b_more_io so that
01c03194
CH
409 * writeback can proceed with the other inodes on s_io.
410 *
411 * We'll have another go at writing back this inode when we
66f3b8e2 412 * completed a full scan of b_io.
01c03194
CH
413 */
414 if (!wait) {
415 requeue_io(inode);
416 return 0;
417 }
418
419 /*
420 * It's a data-integrity sync. We must wait.
421 */
422 inode_wait_for_writeback(inode);
423 }
424
1c0eeaf5 425 BUG_ON(inode->i_state & I_SYNC);
1da177e4 426
1c0eeaf5 427 /* Set I_SYNC, reset I_DIRTY */
1da177e4 428 dirty = inode->i_state & I_DIRTY;
1c0eeaf5 429 inode->i_state |= I_SYNC;
1da177e4
LT
430 inode->i_state &= ~I_DIRTY;
431
432 spin_unlock(&inode_lock);
433
434 ret = do_writepages(mapping, wbc);
435
436 /* Don't write the inode if only I_DIRTY_PAGES was set */
437 if (dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
438 int err = write_inode(inode, wait);
439 if (ret == 0)
440 ret = err;
441 }
442
443 if (wait) {
444 int err = filemap_fdatawait(mapping);
445 if (ret == 0)
446 ret = err;
447 }
448
449 spin_lock(&inode_lock);
1c0eeaf5 450 inode->i_state &= ~I_SYNC;
84a89245 451 if (!(inode->i_state & (I_FREEING | I_CLEAR))) {
1da177e4
LT
452 if (!(inode->i_state & I_DIRTY) &&
453 mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
454 /*
455 * We didn't write back all the pages. nfs_writepages()
456 * sometimes bales out without doing anything. Redirty
66f3b8e2 457 * the inode; Move it from b_io onto b_more_io/b_dirty.
1b43ef91
AM
458 */
459 /*
460 * akpm: if the caller was the kupdate function we put
66f3b8e2 461 * this inode at the head of b_dirty so it gets first
1b43ef91
AM
462 * consideration. Otherwise, move it to the tail, for
463 * the reasons described there. I'm not really sure
464 * how much sense this makes. Presumably I had a good
465 * reasons for doing it this way, and I'd rather not
466 * muck with it at present.
1da177e4
LT
467 */
468 if (wbc->for_kupdate) {
469 /*
2c136579 470 * For the kupdate function we move the inode
66f3b8e2 471 * to b_more_io so it will get more writeout as
2c136579 472 * soon as the queue becomes uncongested.
1da177e4
LT
473 */
474 inode->i_state |= I_DIRTY_PAGES;
8bc3be27
FW
475 if (wbc->nr_to_write <= 0) {
476 /*
477 * slice used up: queue for next turn
478 */
479 requeue_io(inode);
480 } else {
481 /*
482 * somehow blocked: retry later
483 */
484 redirty_tail(inode);
485 }
1da177e4
LT
486 } else {
487 /*
488 * Otherwise fully redirty the inode so that
489 * other inodes on this superblock will get some
490 * writeout. Otherwise heavy writing to one
491 * file would indefinitely suspend writeout of
492 * all the other files.
493 */
494 inode->i_state |= I_DIRTY_PAGES;
1b43ef91 495 redirty_tail(inode);
1da177e4
LT
496 }
497 } else if (inode->i_state & I_DIRTY) {
498 /*
499 * Someone redirtied the inode while were writing back
500 * the pages.
501 */
6610a0bc 502 redirty_tail(inode);
1da177e4
LT
503 } else if (atomic_read(&inode->i_count)) {
504 /*
505 * The inode is clean, inuse
506 */
507 list_move(&inode->i_list, &inode_in_use);
508 } else {
509 /*
510 * The inode is clean, unused
511 */
512 list_move(&inode->i_list, &inode_unused);
1da177e4
LT
513 }
514 }
1c0eeaf5 515 inode_sync_complete(inode);
1da177e4
LT
516 return ret;
517}
518
03ba3782
JA
519/*
520 * For WB_SYNC_NONE writeback, the caller does not have the sb pinned
521 * before calling writeback. So make sure that we do pin it, so it doesn't
522 * go away while we are writing inodes from it.
523 *
524 * Returns 0 if the super was successfully pinned (or pinning wasn't needed),
525 * 1 if we failed.
526 */
527static int pin_sb_for_writeback(struct writeback_control *wbc,
528 struct inode *inode)
529{
530 struct super_block *sb = inode->i_sb;
531
532 /*
533 * Caller must already hold the ref for this
534 */
535 if (wbc->sync_mode == WB_SYNC_ALL) {
536 WARN_ON(!rwsem_is_locked(&sb->s_umount));
537 return 0;
538 }
539
540 spin_lock(&sb_lock);
541 sb->s_count++;
542 if (down_read_trylock(&sb->s_umount)) {
543 if (sb->s_root) {
544 spin_unlock(&sb_lock);
545 return 0;
546 }
547 /*
548 * umounted, drop rwsem again and fall through to failure
549 */
550 up_read(&sb->s_umount);
551 }
552
553 sb->s_count--;
554 spin_unlock(&sb_lock);
555 return 1;
556}
557
558static void unpin_sb_for_writeback(struct writeback_control *wbc,
559 struct inode *inode)
560{
561 struct super_block *sb = inode->i_sb;
562
563 if (wbc->sync_mode == WB_SYNC_ALL)
564 return;
565
566 up_read(&sb->s_umount);
567 put_super(sb);
568}
569
570static void writeback_inodes_wb(struct bdi_writeback *wb,
571 struct writeback_control *wbc)
1da177e4 572{
03ba3782 573 struct super_block *sb = wbc->sb;
66f3b8e2 574 const int is_blkdev_sb = sb_is_blkdev_sb(sb);
1da177e4
LT
575 const unsigned long start = jiffies; /* livelock avoidance */
576
ae8547b0 577 spin_lock(&inode_lock);
1da177e4 578
03ba3782
JA
579 if (!wbc->for_kupdate || list_empty(&wb->b_io))
580 queue_io(wb, wbc->older_than_this);
66f3b8e2 581
03ba3782
JA
582 while (!list_empty(&wb->b_io)) {
583 struct inode *inode = list_entry(wb->b_io.prev,
1da177e4 584 struct inode, i_list);
1da177e4
LT
585 long pages_skipped;
586
66f3b8e2
JA
587 /*
588 * super block given and doesn't match, skip this inode
589 */
590 if (sb && sb != inode->i_sb) {
591 redirty_tail(inode);
592 continue;
593 }
594
03ba3782 595 if (!bdi_cap_writeback_dirty(wb->bdi)) {
9852a0e7 596 redirty_tail(inode);
66f3b8e2 597 if (is_blkdev_sb) {
1da177e4
LT
598 /*
599 * Dirty memory-backed blockdev: the ramdisk
600 * driver does this. Skip just this inode
601 */
602 continue;
603 }
604 /*
605 * Dirty memory-backed inode against a filesystem other
606 * than the kernel-internal bdev filesystem. Skip the
607 * entire superblock.
608 */
609 break;
610 }
611
84a89245 612 if (inode->i_state & (I_NEW | I_WILL_FREE)) {
7ef0d737
NP
613 requeue_io(inode);
614 continue;
615 }
616
03ba3782 617 if (wbc->nonblocking && bdi_write_congested(wb->bdi)) {
1da177e4 618 wbc->encountered_congestion = 1;
66f3b8e2 619 if (!is_blkdev_sb)
1da177e4 620 break; /* Skip a congested fs */
0e0f4fc2 621 requeue_io(inode);
1da177e4
LT
622 continue; /* Skip a congested blockdev */
623 }
624
d2caa3c5
JL
625 /*
626 * Was this inode dirtied after sync_sb_inodes was called?
627 * This keeps sync from extra jobs and livelock.
628 */
629 if (inode_dirtied_after(inode, start))
1da177e4
LT
630 break;
631
03ba3782
JA
632 if (pin_sb_for_writeback(wbc, inode)) {
633 requeue_io(inode);
634 continue;
635 }
1da177e4 636
84a89245 637 BUG_ON(inode->i_state & (I_FREEING | I_CLEAR));
1da177e4
LT
638 __iget(inode);
639 pages_skipped = wbc->pages_skipped;
01c03194 640 writeback_single_inode(inode, wbc);
03ba3782 641 unpin_sb_for_writeback(wbc, inode);
1da177e4
LT
642 if (wbc->pages_skipped != pages_skipped) {
643 /*
644 * writeback is not making progress due to locked
645 * buffers. Skip this inode for now.
646 */
f57b9b7b 647 redirty_tail(inode);
1da177e4
LT
648 }
649 spin_unlock(&inode_lock);
1da177e4 650 iput(inode);
4ffc8444 651 cond_resched();
1da177e4 652 spin_lock(&inode_lock);
8bc3be27
FW
653 if (wbc->nr_to_write <= 0) {
654 wbc->more_io = 1;
1da177e4 655 break;
8bc3be27 656 }
03ba3782 657 if (!list_empty(&wb->b_more_io))
8bc3be27 658 wbc->more_io = 1;
1da177e4 659 }
38f21977 660
66f3b8e2
JA
661 spin_unlock(&inode_lock);
662 /* Leave any unwritten inodes on b_io */
663}
664
03ba3782
JA
665void writeback_inodes_wbc(struct writeback_control *wbc)
666{
667 struct backing_dev_info *bdi = wbc->bdi;
668
669 writeback_inodes_wb(&bdi->wb, wbc);
670}
671
66f3b8e2 672/*
03ba3782
JA
673 * The maximum number of pages to writeout in a single bdi flush/kupdate
674 * operation. We do this so we don't hold I_SYNC against an inode for
675 * enormous amounts of time, which would block a userspace task which has
676 * been forced to throttle against that inode. Also, the code reevaluates
677 * the dirty each time it has written this many pages.
678 */
679#define MAX_WRITEBACK_PAGES 1024
680
681static inline bool over_bground_thresh(void)
682{
683 unsigned long background_thresh, dirty_thresh;
684
685 get_dirty_limits(&background_thresh, &dirty_thresh, NULL, NULL);
686
687 return (global_page_state(NR_FILE_DIRTY) +
688 global_page_state(NR_UNSTABLE_NFS) >= background_thresh);
689}
690
691/*
692 * Explicit flushing or periodic writeback of "old" data.
66f3b8e2 693 *
03ba3782
JA
694 * Define "old": the first time one of an inode's pages is dirtied, we mark the
695 * dirtying-time in the inode's address_space. So this periodic writeback code
696 * just walks the superblock inode list, writing back any inodes which are
697 * older than a specific point in time.
66f3b8e2 698 *
03ba3782
JA
699 * Try to run once per dirty_writeback_interval. But if a writeback event
700 * takes longer than a dirty_writeback_interval interval, then leave a
701 * one-second gap.
66f3b8e2 702 *
03ba3782
JA
703 * older_than_this takes precedence over nr_to_write. So we'll only write back
704 * all dirty pages if they are all attached to "old" mappings.
66f3b8e2 705 */
c4a77a6c
JA
706static long wb_writeback(struct bdi_writeback *wb,
707 struct wb_writeback_args *args)
66f3b8e2 708{
03ba3782
JA
709 struct writeback_control wbc = {
710 .bdi = wb->bdi,
c4a77a6c
JA
711 .sb = args->sb,
712 .sync_mode = args->sync_mode,
03ba3782 713 .older_than_this = NULL,
c4a77a6c
JA
714 .for_kupdate = args->for_kupdate,
715 .range_cyclic = args->range_cyclic,
03ba3782
JA
716 };
717 unsigned long oldest_jif;
718 long wrote = 0;
a5989bdc 719 struct inode *inode;
66f3b8e2 720
03ba3782
JA
721 if (wbc.for_kupdate) {
722 wbc.older_than_this = &oldest_jif;
723 oldest_jif = jiffies -
724 msecs_to_jiffies(dirty_expire_interval * 10);
725 }
c4a77a6c
JA
726 if (!wbc.range_cyclic) {
727 wbc.range_start = 0;
728 wbc.range_end = LLONG_MAX;
729 }
38f21977 730
03ba3782
JA
731 for (;;) {
732 /*
d3ddec76 733 * Stop writeback when nr_pages has been consumed
03ba3782 734 */
d3ddec76 735 if (args->nr_pages <= 0)
03ba3782 736 break;
66f3b8e2 737
38f21977 738 /*
d3ddec76
WF
739 * For background writeout, stop when we are below the
740 * background dirty threshold
38f21977 741 */
d3ddec76 742 if (args->for_background && !over_bground_thresh())
03ba3782 743 break;
38f21977 744
03ba3782
JA
745 wbc.more_io = 0;
746 wbc.encountered_congestion = 0;
747 wbc.nr_to_write = MAX_WRITEBACK_PAGES;
748 wbc.pages_skipped = 0;
749 writeback_inodes_wb(wb, &wbc);
c4a77a6c 750 args->nr_pages -= MAX_WRITEBACK_PAGES - wbc.nr_to_write;
03ba3782
JA
751 wrote += MAX_WRITEBACK_PAGES - wbc.nr_to_write;
752
753 /*
754 * If we ran out of stuff to write, bail unless more_io got set
755 */
7fbdea32
WF
756 if (wbc.nr_to_write > 0) {
757 if (wbc.more_io) {
a5989bdc
JK
758 if (wbc.nr_to_write < MAX_WRITEBACK_PAGES)
759 continue;
760 /*
761 * Nothing written. Wait for some inode to
762 * become available for writeback. Otherwise
763 * we'll just busyloop.
764 */
765 spin_lock(&inode_lock);
766 if (!list_empty(&wb->b_more_io)) {
767 inode = list_entry(
768 wb->b_more_io.prev,
769 struct inode, i_list);
770 inode_wait_for_writeback(inode);
771 }
772 spin_unlock(&inode_lock);
38f21977 773 continue;
a5989bdc 774 }
03ba3782
JA
775 break;
776 }
777 }
778
779 return wrote;
780}
781
782/*
783 * Return the next bdi_work struct that hasn't been processed by this
8010c3b6
JA
784 * wb thread yet. ->seen is initially set for each thread that exists
785 * for this device, when a thread first notices a piece of work it
786 * clears its bit. Depending on writeback type, the thread will notify
787 * completion on either receiving the work (WB_SYNC_NONE) or after
788 * it is done (WB_SYNC_ALL).
03ba3782
JA
789 */
790static struct bdi_work *get_next_work_item(struct backing_dev_info *bdi,
791 struct bdi_writeback *wb)
792{
793 struct bdi_work *work, *ret = NULL;
794
795 rcu_read_lock();
796
797 list_for_each_entry_rcu(work, &bdi->work_list, list) {
77fad5e6 798 if (!test_bit(wb->nr, &work->seen))
03ba3782 799 continue;
77fad5e6 800 clear_bit(wb->nr, &work->seen);
03ba3782
JA
801
802 ret = work;
803 break;
804 }
805
806 rcu_read_unlock();
807 return ret;
808}
809
810static long wb_check_old_data_flush(struct bdi_writeback *wb)
811{
812 unsigned long expired;
813 long nr_pages;
814
815 expired = wb->last_old_flush +
816 msecs_to_jiffies(dirty_writeback_interval * 10);
817 if (time_before(jiffies, expired))
818 return 0;
819
820 wb->last_old_flush = jiffies;
821 nr_pages = global_page_state(NR_FILE_DIRTY) +
822 global_page_state(NR_UNSTABLE_NFS) +
823 (inodes_stat.nr_inodes - inodes_stat.nr_unused);
824
c4a77a6c
JA
825 if (nr_pages) {
826 struct wb_writeback_args args = {
827 .nr_pages = nr_pages,
828 .sync_mode = WB_SYNC_NONE,
829 .for_kupdate = 1,
830 .range_cyclic = 1,
831 };
832
833 return wb_writeback(wb, &args);
834 }
03ba3782
JA
835
836 return 0;
837}
838
839/*
840 * Retrieve work items and do the writeback they describe
841 */
842long wb_do_writeback(struct bdi_writeback *wb, int force_wait)
843{
844 struct backing_dev_info *bdi = wb->bdi;
845 struct bdi_work *work;
c4a77a6c 846 long wrote = 0;
03ba3782
JA
847
848 while ((work = get_next_work_item(bdi, wb)) != NULL) {
c4a77a6c 849 struct wb_writeback_args args = work->args;
03ba3782
JA
850
851 /*
852 * Override sync mode, in case we must wait for completion
853 */
854 if (force_wait)
c4a77a6c 855 work->args.sync_mode = args.sync_mode = WB_SYNC_ALL;
03ba3782
JA
856
857 /*
858 * If this isn't a data integrity operation, just notify
859 * that we have seen this work and we are now starting it.
860 */
c4a77a6c 861 if (args.sync_mode == WB_SYNC_NONE)
03ba3782
JA
862 wb_clear_pending(wb, work);
863
c4a77a6c 864 wrote += wb_writeback(wb, &args);
03ba3782
JA
865
866 /*
867 * This is a data integrity writeback, so only do the
868 * notification when we have completed the work.
869 */
c4a77a6c 870 if (args.sync_mode == WB_SYNC_ALL)
03ba3782
JA
871 wb_clear_pending(wb, work);
872 }
873
874 /*
875 * Check for periodic writeback, kupdated() style
876 */
877 wrote += wb_check_old_data_flush(wb);
878
879 return wrote;
880}
881
882/*
883 * Handle writeback of dirty data for the device backed by this bdi. Also
884 * wakes up periodically and does kupdated style flushing.
885 */
886int bdi_writeback_task(struct bdi_writeback *wb)
887{
888 unsigned long last_active = jiffies;
889 unsigned long wait_jiffies = -1UL;
890 long pages_written;
891
892 while (!kthread_should_stop()) {
893 pages_written = wb_do_writeback(wb, 0);
894
895 if (pages_written)
896 last_active = jiffies;
897 else if (wait_jiffies != -1UL) {
898 unsigned long max_idle;
899
38f21977 900 /*
03ba3782
JA
901 * Longest period of inactivity that we tolerate. If we
902 * see dirty data again later, the task will get
903 * recreated automatically.
38f21977 904 */
03ba3782
JA
905 max_idle = max(5UL * 60 * HZ, wait_jiffies);
906 if (time_after(jiffies, max_idle + last_active))
907 break;
908 }
909
910 wait_jiffies = msecs_to_jiffies(dirty_writeback_interval * 10);
49db0414 911 schedule_timeout_interruptible(wait_jiffies);
03ba3782
JA
912 try_to_freeze();
913 }
914
915 return 0;
916}
917
918/*
b6e51316
JA
919 * Schedule writeback for all backing devices. This does WB_SYNC_NONE
920 * writeback, for integrity writeback see bdi_sync_writeback().
03ba3782 921 */
b6e51316 922static void bdi_writeback_all(struct super_block *sb, long nr_pages)
03ba3782 923{
b6e51316
JA
924 struct wb_writeback_args args = {
925 .sb = sb,
926 .nr_pages = nr_pages,
927 .sync_mode = WB_SYNC_NONE,
928 };
03ba3782 929 struct backing_dev_info *bdi;
03ba3782 930
cfc4ba53 931 rcu_read_lock();
03ba3782 932
cfc4ba53 933 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
03ba3782
JA
934 if (!bdi_has_dirty_io(bdi))
935 continue;
38f21977 936
b6e51316 937 bdi_alloc_queue_work(bdi, &args);
03ba3782
JA
938 }
939
cfc4ba53 940 rcu_read_unlock();
1da177e4
LT
941}
942
943/*
03ba3782
JA
944 * Start writeback of `nr_pages' pages. If `nr_pages' is zero, write back
945 * the whole world.
946 */
947void wakeup_flusher_threads(long nr_pages)
948{
03ba3782
JA
949 if (nr_pages == 0)
950 nr_pages = global_page_state(NR_FILE_DIRTY) +
951 global_page_state(NR_UNSTABLE_NFS);
b6e51316 952 bdi_writeback_all(NULL, nr_pages);
03ba3782
JA
953}
954
955static noinline void block_dump___mark_inode_dirty(struct inode *inode)
956{
957 if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
958 struct dentry *dentry;
959 const char *name = "?";
960
961 dentry = d_find_alias(inode);
962 if (dentry) {
963 spin_lock(&dentry->d_lock);
964 name = (const char *) dentry->d_name.name;
965 }
966 printk(KERN_DEBUG
967 "%s(%d): dirtied inode %lu (%s) on %s\n",
968 current->comm, task_pid_nr(current), inode->i_ino,
969 name, inode->i_sb->s_id);
970 if (dentry) {
971 spin_unlock(&dentry->d_lock);
972 dput(dentry);
973 }
974 }
975}
976
977/**
978 * __mark_inode_dirty - internal function
979 * @inode: inode to mark
980 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
981 * Mark an inode as dirty. Callers should use mark_inode_dirty or
982 * mark_inode_dirty_sync.
1da177e4 983 *
03ba3782
JA
984 * Put the inode on the super block's dirty list.
985 *
986 * CAREFUL! We mark it dirty unconditionally, but move it onto the
987 * dirty list only if it is hashed or if it refers to a blockdev.
988 * If it was not hashed, it will never be added to the dirty list
989 * even if it is later hashed, as it will have been marked dirty already.
990 *
991 * In short, make sure you hash any inodes _before_ you start marking
992 * them dirty.
1da177e4 993 *
03ba3782
JA
994 * This function *must* be atomic for the I_DIRTY_PAGES case -
995 * set_page_dirty() is called under spinlock in several places.
1da177e4 996 *
03ba3782
JA
997 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
998 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of
999 * the kernel-internal blockdev inode represents the dirtying time of the
1000 * blockdev's pages. This is why for I_DIRTY_PAGES we always use
1001 * page->mapping->host, so the page-dirtying time is recorded in the internal
1002 * blockdev inode.
1da177e4 1003 */
03ba3782 1004void __mark_inode_dirty(struct inode *inode, int flags)
1da177e4 1005{
03ba3782 1006 struct super_block *sb = inode->i_sb;
1da177e4 1007
03ba3782
JA
1008 /*
1009 * Don't do this for I_DIRTY_PAGES - that doesn't actually
1010 * dirty the inode itself
1011 */
1012 if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
1013 if (sb->s_op->dirty_inode)
1014 sb->s_op->dirty_inode(inode);
1015 }
1016
1017 /*
1018 * make sure that changes are seen by all cpus before we test i_state
1019 * -- mikulas
1020 */
1021 smp_mb();
1022
1023 /* avoid the locking if we can */
1024 if ((inode->i_state & flags) == flags)
1025 return;
1026
1027 if (unlikely(block_dump))
1028 block_dump___mark_inode_dirty(inode);
1029
1030 spin_lock(&inode_lock);
1031 if ((inode->i_state & flags) != flags) {
1032 const int was_dirty = inode->i_state & I_DIRTY;
1033
1034 inode->i_state |= flags;
1035
1036 /*
1037 * If the inode is being synced, just update its dirty state.
1038 * The unlocker will place the inode on the appropriate
1039 * superblock list, based upon its state.
1040 */
1041 if (inode->i_state & I_SYNC)
1042 goto out;
1043
1044 /*
1045 * Only add valid (hashed) inodes to the superblock's
1046 * dirty list. Add blockdev inodes as well.
1047 */
1048 if (!S_ISBLK(inode->i_mode)) {
1049 if (hlist_unhashed(&inode->i_hash))
1050 goto out;
1051 }
1052 if (inode->i_state & (I_FREEING|I_CLEAR))
1053 goto out;
1054
1055 /*
1056 * If the inode was already on b_dirty/b_io/b_more_io, don't
1057 * reposition it (that would break b_dirty time-ordering).
1058 */
1059 if (!was_dirty) {
1060 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
500b067c
JA
1061 struct backing_dev_info *bdi = wb->bdi;
1062
1063 if (bdi_cap_writeback_dirty(bdi) &&
1064 !test_bit(BDI_registered, &bdi->state)) {
1065 WARN_ON(1);
1066 printk(KERN_ERR "bdi-%s not registered\n",
1067 bdi->name);
1068 }
03ba3782
JA
1069
1070 inode->dirtied_when = jiffies;
1071 list_move(&inode->i_list, &wb->b_dirty);
1da177e4 1072 }
1da177e4 1073 }
03ba3782
JA
1074out:
1075 spin_unlock(&inode_lock);
1076}
1077EXPORT_SYMBOL(__mark_inode_dirty);
1078
1079/*
1080 * Write out a superblock's list of dirty inodes. A wait will be performed
1081 * upon no inodes, all inodes or the final one, depending upon sync_mode.
1082 *
1083 * If older_than_this is non-NULL, then only write out inodes which
1084 * had their first dirtying at a time earlier than *older_than_this.
1085 *
1086 * If we're a pdlfush thread, then implement pdflush collision avoidance
1087 * against the entire list.
1088 *
1089 * If `bdi' is non-zero then we're being asked to writeback a specific queue.
1090 * This function assumes that the blockdev superblock's inodes are backed by
1091 * a variety of queues, so all inodes are searched. For other superblocks,
1092 * assume that all inodes are backed by the same queue.
1093 *
1094 * The inodes to be written are parked on bdi->b_io. They are moved back onto
1095 * bdi->b_dirty as they are selected for writing. This way, none can be missed
1096 * on the writer throttling path, and we get decent balancing between many
1097 * throttled threads: we don't want them all piling up on inode_sync_wait.
1098 */
b6e51316 1099static void wait_sb_inodes(struct super_block *sb)
03ba3782
JA
1100{
1101 struct inode *inode, *old_inode = NULL;
1102
1103 /*
1104 * We need to be protected against the filesystem going from
1105 * r/o to r/w or vice versa.
1106 */
b6e51316 1107 WARN_ON(!rwsem_is_locked(&sb->s_umount));
03ba3782
JA
1108
1109 spin_lock(&inode_lock);
1110
1111 /*
1112 * Data integrity sync. Must wait for all pages under writeback,
1113 * because there may have been pages dirtied before our sync
1114 * call, but which had writeout started before we write it out.
1115 * In which case, the inode may not be on the dirty list, but
1116 * we still have to wait for that writeout.
1117 */
b6e51316 1118 list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
03ba3782
JA
1119 struct address_space *mapping;
1120
1121 if (inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE|I_NEW))
1122 continue;
1123 mapping = inode->i_mapping;
1124 if (mapping->nrpages == 0)
1125 continue;
1126 __iget(inode);
1127 spin_unlock(&inode_lock);
1128 /*
1129 * We hold a reference to 'inode' so it couldn't have
1130 * been removed from s_inodes list while we dropped the
1131 * inode_lock. We cannot iput the inode now as we can
1132 * be holding the last reference and we cannot iput it
1133 * under inode_lock. So we keep the reference and iput
1134 * it later.
1135 */
1136 iput(old_inode);
1137 old_inode = inode;
1138
1139 filemap_fdatawait(mapping);
1140
1141 cond_resched();
1142
1143 spin_lock(&inode_lock);
1144 }
1145 spin_unlock(&inode_lock);
1146 iput(old_inode);
1da177e4
LT
1147}
1148
d8a8559c
JA
1149/**
1150 * writeback_inodes_sb - writeback dirty inodes from given super_block
1151 * @sb: the superblock
1da177e4 1152 *
d8a8559c
JA
1153 * Start writeback on some inodes on this super_block. No guarantees are made
1154 * on how many (if any) will be written, and this function does not wait
1155 * for IO completion of submitted IO. The number of pages submitted is
1156 * returned.
1da177e4 1157 */
b6e51316 1158void writeback_inodes_sb(struct super_block *sb)
1da177e4 1159{
d8a8559c
JA
1160 unsigned long nr_dirty = global_page_state(NR_FILE_DIRTY);
1161 unsigned long nr_unstable = global_page_state(NR_UNSTABLE_NFS);
1162 long nr_to_write;
1da177e4 1163
d8a8559c 1164 nr_to_write = nr_dirty + nr_unstable +
38f21977 1165 (inodes_stat.nr_inodes - inodes_stat.nr_unused);
38f21977 1166
b6e51316 1167 bdi_writeback_all(sb, nr_to_write);
d8a8559c
JA
1168}
1169EXPORT_SYMBOL(writeback_inodes_sb);
1170
1171/**
1172 * sync_inodes_sb - sync sb inode pages
1173 * @sb: the superblock
1174 *
1175 * This function writes and waits on any dirty inode belonging to this
1176 * super_block. The number of pages synced is returned.
1177 */
b6e51316 1178void sync_inodes_sb(struct super_block *sb)
d8a8559c 1179{
b6e51316
JA
1180 bdi_sync_writeback(sb->s_bdi, sb);
1181 wait_sb_inodes(sb);
1da177e4 1182}
d8a8559c 1183EXPORT_SYMBOL(sync_inodes_sb);
1da177e4 1184
1da177e4 1185/**
7f04c26d
AA
1186 * write_inode_now - write an inode to disk
1187 * @inode: inode to write to disk
1188 * @sync: whether the write should be synchronous or not
1189 *
1190 * This function commits an inode to disk immediately if it is dirty. This is
1191 * primarily needed by knfsd.
1da177e4 1192 *
7f04c26d 1193 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
1da177e4 1194 */
1da177e4
LT
1195int write_inode_now(struct inode *inode, int sync)
1196{
1197 int ret;
1198 struct writeback_control wbc = {
1199 .nr_to_write = LONG_MAX,
18914b18 1200 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
111ebb6e
OH
1201 .range_start = 0,
1202 .range_end = LLONG_MAX,
1da177e4
LT
1203 };
1204
1205 if (!mapping_cap_writeback_dirty(inode->i_mapping))
49364ce2 1206 wbc.nr_to_write = 0;
1da177e4
LT
1207
1208 might_sleep();
1209 spin_lock(&inode_lock);
01c03194 1210 ret = writeback_single_inode(inode, &wbc);
1da177e4
LT
1211 spin_unlock(&inode_lock);
1212 if (sync)
1c0eeaf5 1213 inode_sync_wait(inode);
1da177e4
LT
1214 return ret;
1215}
1216EXPORT_SYMBOL(write_inode_now);
1217
1218/**
1219 * sync_inode - write an inode and its pages to disk.
1220 * @inode: the inode to sync
1221 * @wbc: controls the writeback mode
1222 *
1223 * sync_inode() will write an inode and its pages to disk. It will also
1224 * correctly update the inode on its superblock's dirty inode lists and will
1225 * update inode->i_state.
1226 *
1227 * The caller must have a ref on the inode.
1228 */
1229int sync_inode(struct inode *inode, struct writeback_control *wbc)
1230{
1231 int ret;
1232
1233 spin_lock(&inode_lock);
01c03194 1234 ret = writeback_single_inode(inode, wbc);
1da177e4
LT
1235 spin_unlock(&inode_lock);
1236 return ret;
1237}
1238EXPORT_SYMBOL(sync_inode);