fs: remove incorrect I_NEW warnings
[linux-2.6-block.git] / fs / fs-writeback.c
CommitLineData
1da177e4
LT
1/*
2 * fs/fs-writeback.c
3 *
4 * Copyright (C) 2002, Linus Torvalds.
5 *
6 * Contains all the functions related to writing back and waiting
7 * upon dirty inodes against superblocks, and writing back dirty
8 * pages against inodes. ie: data writeback. Writeout of the
9 * inode itself is not handled here.
10 *
e1f8e874 11 * 10Apr2002 Andrew Morton
1da177e4
LT
12 * Split out of fs/inode.c
13 * Additions for address_space-based writeback
14 */
15
16#include <linux/kernel.h>
f5ff8422 17#include <linux/module.h>
1da177e4
LT
18#include <linux/spinlock.h>
19#include <linux/sched.h>
20#include <linux/fs.h>
21#include <linux/mm.h>
22#include <linux/writeback.h>
23#include <linux/blkdev.h>
24#include <linux/backing-dev.h>
25#include <linux/buffer_head.h>
07f3f05c 26#include "internal.h"
1da177e4 27
f11b00f3
AB
28
29/**
30 * writeback_acquire - attempt to get exclusive writeback access to a device
31 * @bdi: the device's backing_dev_info structure
32 *
33 * It is a waste of resources to have more than one pdflush thread blocked on
34 * a single request queue. Exclusion at the request_queue level is obtained
35 * via a flag in the request_queue's backing_dev_info.state.
36 *
37 * Non-request_queue-backed address_spaces will share default_backing_dev_info,
38 * unless they implement their own. Which is somewhat inefficient, as this
39 * may prevent concurrent writeback against multiple devices.
40 */
41static int writeback_acquire(struct backing_dev_info *bdi)
42{
43 return !test_and_set_bit(BDI_pdflush, &bdi->state);
44}
45
46/**
47 * writeback_in_progress - determine whether there is writeback in progress
48 * @bdi: the device's backing_dev_info structure.
49 *
50 * Determine whether there is writeback in progress against a backing device.
51 */
52int writeback_in_progress(struct backing_dev_info *bdi)
53{
54 return test_bit(BDI_pdflush, &bdi->state);
55}
56
57/**
58 * writeback_release - relinquish exclusive writeback access against a device.
59 * @bdi: the device's backing_dev_info structure
60 */
61static void writeback_release(struct backing_dev_info *bdi)
62{
63 BUG_ON(!writeback_in_progress(bdi));
64 clear_bit(BDI_pdflush, &bdi->state);
65}
66
1da177e4
LT
67/**
68 * __mark_inode_dirty - internal function
69 * @inode: inode to mark
70 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
71 * Mark an inode as dirty. Callers should use mark_inode_dirty or
72 * mark_inode_dirty_sync.
73 *
74 * Put the inode on the super block's dirty list.
75 *
76 * CAREFUL! We mark it dirty unconditionally, but move it onto the
77 * dirty list only if it is hashed or if it refers to a blockdev.
78 * If it was not hashed, it will never be added to the dirty list
79 * even if it is later hashed, as it will have been marked dirty already.
80 *
81 * In short, make sure you hash any inodes _before_ you start marking
82 * them dirty.
83 *
84 * This function *must* be atomic for the I_DIRTY_PAGES case -
85 * set_page_dirty() is called under spinlock in several places.
86 *
87 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
88 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of
89 * the kernel-internal blockdev inode represents the dirtying time of the
90 * blockdev's pages. This is why for I_DIRTY_PAGES we always use
91 * page->mapping->host, so the page-dirtying time is recorded in the internal
92 * blockdev inode.
93 */
94void __mark_inode_dirty(struct inode *inode, int flags)
95{
96 struct super_block *sb = inode->i_sb;
97
98 /*
99 * Don't do this for I_DIRTY_PAGES - that doesn't actually
100 * dirty the inode itself
101 */
102 if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
103 if (sb->s_op->dirty_inode)
104 sb->s_op->dirty_inode(inode);
105 }
106
107 /*
108 * make sure that changes are seen by all cpus before we test i_state
109 * -- mikulas
110 */
111 smp_mb();
112
113 /* avoid the locking if we can */
114 if ((inode->i_state & flags) == flags)
115 return;
116
117 if (unlikely(block_dump)) {
118 struct dentry *dentry = NULL;
119 const char *name = "?";
120
121 if (!list_empty(&inode->i_dentry)) {
122 dentry = list_entry(inode->i_dentry.next,
123 struct dentry, d_alias);
124 if (dentry && dentry->d_name.name)
125 name = (const char *) dentry->d_name.name;
126 }
127
128 if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev"))
129 printk(KERN_DEBUG
130 "%s(%d): dirtied inode %lu (%s) on %s\n",
ba25f9dc 131 current->comm, task_pid_nr(current), inode->i_ino,
1da177e4
LT
132 name, inode->i_sb->s_id);
133 }
134
135 spin_lock(&inode_lock);
136 if ((inode->i_state & flags) != flags) {
137 const int was_dirty = inode->i_state & I_DIRTY;
138
139 inode->i_state |= flags;
140
141 /*
1c0eeaf5 142 * If the inode is being synced, just update its dirty state.
1da177e4
LT
143 * The unlocker will place the inode on the appropriate
144 * superblock list, based upon its state.
145 */
1c0eeaf5 146 if (inode->i_state & I_SYNC)
1da177e4
LT
147 goto out;
148
149 /*
150 * Only add valid (hashed) inodes to the superblock's
151 * dirty list. Add blockdev inodes as well.
152 */
153 if (!S_ISBLK(inode->i_mode)) {
154 if (hlist_unhashed(&inode->i_hash))
155 goto out;
156 }
157 if (inode->i_state & (I_FREEING|I_CLEAR))
158 goto out;
159
160 /*
2c136579 161 * If the inode was already on s_dirty/s_io/s_more_io, don't
1da177e4
LT
162 * reposition it (that would break s_dirty time-ordering).
163 */
164 if (!was_dirty) {
165 inode->dirtied_when = jiffies;
166 list_move(&inode->i_list, &sb->s_dirty);
167 }
168 }
169out:
170 spin_unlock(&inode_lock);
171}
172
173EXPORT_SYMBOL(__mark_inode_dirty);
174
175static int write_inode(struct inode *inode, int sync)
176{
177 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode))
178 return inode->i_sb->s_op->write_inode(inode, sync);
179 return 0;
180}
181
6610a0bc
AM
182/*
183 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
184 * furthest end of its superblock's dirty-inode list.
185 *
186 * Before stamping the inode's ->dirtied_when, we check to see whether it is
187 * already the most-recently-dirtied inode on the s_dirty list. If that is
188 * the case then the inode must have been redirtied while it was being written
189 * out and we don't reset its dirtied_when.
190 */
191static void redirty_tail(struct inode *inode)
192{
193 struct super_block *sb = inode->i_sb;
194
195 if (!list_empty(&sb->s_dirty)) {
196 struct inode *tail_inode;
197
198 tail_inode = list_entry(sb->s_dirty.next, struct inode, i_list);
d2caa3c5 199 if (time_before(inode->dirtied_when,
6610a0bc
AM
200 tail_inode->dirtied_when))
201 inode->dirtied_when = jiffies;
202 }
203 list_move(&inode->i_list, &sb->s_dirty);
204}
205
c986d1e2 206/*
0e0f4fc2 207 * requeue inode for re-scanning after sb->s_io list is exhausted.
c986d1e2 208 */
0e0f4fc2 209static void requeue_io(struct inode *inode)
c986d1e2 210{
0e0f4fc2 211 list_move(&inode->i_list, &inode->i_sb->s_more_io);
c986d1e2
AM
212}
213
1c0eeaf5
JE
214static void inode_sync_complete(struct inode *inode)
215{
216 /*
217 * Prevent speculative execution through spin_unlock(&inode_lock);
218 */
219 smp_mb();
220 wake_up_bit(&inode->i_state, __I_SYNC);
221}
222
d2caa3c5
JL
223static bool inode_dirtied_after(struct inode *inode, unsigned long t)
224{
225 bool ret = time_after(inode->dirtied_when, t);
226#ifndef CONFIG_64BIT
227 /*
228 * For inodes being constantly redirtied, dirtied_when can get stuck.
229 * It _appears_ to be in the future, but is actually in distant past.
230 * This test is necessary to prevent such wrapped-around relative times
231 * from permanently stopping the whole pdflush writeback.
232 */
233 ret = ret && time_before_eq(inode->dirtied_when, jiffies);
234#endif
235 return ret;
236}
237
2c136579
FW
238/*
239 * Move expired dirty inodes from @delaying_queue to @dispatch_queue.
240 */
241static void move_expired_inodes(struct list_head *delaying_queue,
242 struct list_head *dispatch_queue,
243 unsigned long *older_than_this)
244{
245 while (!list_empty(delaying_queue)) {
246 struct inode *inode = list_entry(delaying_queue->prev,
247 struct inode, i_list);
248 if (older_than_this &&
d2caa3c5 249 inode_dirtied_after(inode, *older_than_this))
2c136579
FW
250 break;
251 list_move(&inode->i_list, dispatch_queue);
252 }
253}
254
255/*
256 * Queue all expired dirty inodes for io, eldest first.
257 */
258static void queue_io(struct super_block *sb,
259 unsigned long *older_than_this)
260{
261 list_splice_init(&sb->s_more_io, sb->s_io.prev);
262 move_expired_inodes(&sb->s_dirty, &sb->s_io, older_than_this);
263}
264
08d8e974
FW
265int sb_has_dirty_inodes(struct super_block *sb)
266{
267 return !list_empty(&sb->s_dirty) ||
268 !list_empty(&sb->s_io) ||
269 !list_empty(&sb->s_more_io);
270}
271EXPORT_SYMBOL(sb_has_dirty_inodes);
272
1da177e4
LT
273/*
274 * Write a single inode's dirty pages and inode data out to disk.
275 * If `wait' is set, wait on the writeout.
276 *
277 * The whole writeout design is quite complex and fragile. We want to avoid
278 * starvation of particular inodes when others are being redirtied, prevent
279 * livelocks, etc.
280 *
281 * Called under inode_lock.
282 */
283static int
284__sync_single_inode(struct inode *inode, struct writeback_control *wbc)
285{
286 unsigned dirty;
287 struct address_space *mapping = inode->i_mapping;
1da177e4
LT
288 int wait = wbc->sync_mode == WB_SYNC_ALL;
289 int ret;
290
1c0eeaf5 291 BUG_ON(inode->i_state & I_SYNC);
1da177e4 292
1c0eeaf5 293 /* Set I_SYNC, reset I_DIRTY */
1da177e4 294 dirty = inode->i_state & I_DIRTY;
1c0eeaf5 295 inode->i_state |= I_SYNC;
1da177e4
LT
296 inode->i_state &= ~I_DIRTY;
297
298 spin_unlock(&inode_lock);
299
300 ret = do_writepages(mapping, wbc);
301
302 /* Don't write the inode if only I_DIRTY_PAGES was set */
303 if (dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
304 int err = write_inode(inode, wait);
305 if (ret == 0)
306 ret = err;
307 }
308
309 if (wait) {
310 int err = filemap_fdatawait(mapping);
311 if (ret == 0)
312 ret = err;
313 }
314
315 spin_lock(&inode_lock);
1c0eeaf5 316 inode->i_state &= ~I_SYNC;
1da177e4
LT
317 if (!(inode->i_state & I_FREEING)) {
318 if (!(inode->i_state & I_DIRTY) &&
319 mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
320 /*
321 * We didn't write back all the pages. nfs_writepages()
322 * sometimes bales out without doing anything. Redirty
2c136579 323 * the inode; Move it from s_io onto s_more_io/s_dirty.
1b43ef91
AM
324 */
325 /*
326 * akpm: if the caller was the kupdate function we put
327 * this inode at the head of s_dirty so it gets first
328 * consideration. Otherwise, move it to the tail, for
329 * the reasons described there. I'm not really sure
330 * how much sense this makes. Presumably I had a good
331 * reasons for doing it this way, and I'd rather not
332 * muck with it at present.
1da177e4
LT
333 */
334 if (wbc->for_kupdate) {
335 /*
2c136579
FW
336 * For the kupdate function we move the inode
337 * to s_more_io so it will get more writeout as
338 * soon as the queue becomes uncongested.
1da177e4
LT
339 */
340 inode->i_state |= I_DIRTY_PAGES;
8bc3be27
FW
341 if (wbc->nr_to_write <= 0) {
342 /*
343 * slice used up: queue for next turn
344 */
345 requeue_io(inode);
346 } else {
347 /*
348 * somehow blocked: retry later
349 */
350 redirty_tail(inode);
351 }
1da177e4
LT
352 } else {
353 /*
354 * Otherwise fully redirty the inode so that
355 * other inodes on this superblock will get some
356 * writeout. Otherwise heavy writing to one
357 * file would indefinitely suspend writeout of
358 * all the other files.
359 */
360 inode->i_state |= I_DIRTY_PAGES;
1b43ef91 361 redirty_tail(inode);
1da177e4
LT
362 }
363 } else if (inode->i_state & I_DIRTY) {
364 /*
365 * Someone redirtied the inode while were writing back
366 * the pages.
367 */
6610a0bc 368 redirty_tail(inode);
1da177e4
LT
369 } else if (atomic_read(&inode->i_count)) {
370 /*
371 * The inode is clean, inuse
372 */
373 list_move(&inode->i_list, &inode_in_use);
374 } else {
375 /*
376 * The inode is clean, unused
377 */
378 list_move(&inode->i_list, &inode_unused);
1da177e4
LT
379 }
380 }
1c0eeaf5 381 inode_sync_complete(inode);
1da177e4
LT
382 return ret;
383}
384
385/*
7f04c26d
AA
386 * Write out an inode's dirty pages. Called under inode_lock. Either the
387 * caller has ref on the inode (either via __iget or via syscall against an fd)
388 * or the inode has I_WILL_FREE set (via generic_forget_inode)
1da177e4
LT
389 */
390static int
7f04c26d 391__writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
1da177e4
LT
392{
393 wait_queue_head_t *wqh;
394
7f04c26d 395 if (!atomic_read(&inode->i_count))
659603ef 396 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
7f04c26d
AA
397 else
398 WARN_ON(inode->i_state & I_WILL_FREE);
399
1c0eeaf5 400 if ((wbc->sync_mode != WB_SYNC_ALL) && (inode->i_state & I_SYNC)) {
65cb9b47
AM
401 /*
402 * We're skipping this inode because it's locked, and we're not
2c136579
FW
403 * doing writeback-for-data-integrity. Move it to s_more_io so
404 * that writeback can proceed with the other inodes on s_io.
405 * We'll have another go at writing back this inode when we
406 * completed a full scan of s_io.
65cb9b47 407 */
0e0f4fc2 408 requeue_io(inode);
2d544564 409 return 0;
1da177e4
LT
410 }
411
412 /*
413 * It's a data-integrity sync. We must wait.
414 */
1c0eeaf5
JE
415 if (inode->i_state & I_SYNC) {
416 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
1da177e4 417
1c0eeaf5 418 wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1da177e4 419 do {
1da177e4
LT
420 spin_unlock(&inode_lock);
421 __wait_on_bit(wqh, &wq, inode_wait,
422 TASK_UNINTERRUPTIBLE);
1da177e4 423 spin_lock(&inode_lock);
1c0eeaf5 424 } while (inode->i_state & I_SYNC);
1da177e4
LT
425 }
426 return __sync_single_inode(inode, wbc);
427}
428
429/*
430 * Write out a superblock's list of dirty inodes. A wait will be performed
431 * upon no inodes, all inodes or the final one, depending upon sync_mode.
432 *
433 * If older_than_this is non-NULL, then only write out inodes which
434 * had their first dirtying at a time earlier than *older_than_this.
435 *
3e3cb64f 436 * If we're a pdflush thread, then implement pdflush collision avoidance
1da177e4
LT
437 * against the entire list.
438 *
1da177e4
LT
439 * If `bdi' is non-zero then we're being asked to writeback a specific queue.
440 * This function assumes that the blockdev superblock's inodes are backed by
441 * a variety of queues, so all inodes are searched. For other superblocks,
442 * assume that all inodes are backed by the same queue.
443 *
444 * FIXME: this linear search could get expensive with many fileystems. But
445 * how to fix? We need to go from an address_space to all inodes which share
446 * a queue with that address_space. (Easy: have a global "dirty superblocks"
447 * list).
448 *
449 * The inodes to be written are parked on sb->s_io. They are moved back onto
450 * sb->s_dirty as they are selected for writing. This way, none can be missed
451 * on the writer throttling path, and we get decent balancing between many
1c0eeaf5 452 * throttled threads: we don't want them all piling up on inode_sync_wait.
1da177e4 453 */
4ee6afd3
AB
454void generic_sync_sb_inodes(struct super_block *sb,
455 struct writeback_control *wbc)
1da177e4
LT
456{
457 const unsigned long start = jiffies; /* livelock avoidance */
38f21977 458 int sync = wbc->sync_mode == WB_SYNC_ALL;
1da177e4 459
ae8547b0 460 spin_lock(&inode_lock);
1da177e4 461 if (!wbc->for_kupdate || list_empty(&sb->s_io))
2c136579 462 queue_io(sb, wbc->older_than_this);
1da177e4
LT
463
464 while (!list_empty(&sb->s_io)) {
465 struct inode *inode = list_entry(sb->s_io.prev,
466 struct inode, i_list);
467 struct address_space *mapping = inode->i_mapping;
468 struct backing_dev_info *bdi = mapping->backing_dev_info;
469 long pages_skipped;
470
471 if (!bdi_cap_writeback_dirty(bdi)) {
9852a0e7 472 redirty_tail(inode);
7b0de42d 473 if (sb_is_blkdev_sb(sb)) {
1da177e4
LT
474 /*
475 * Dirty memory-backed blockdev: the ramdisk
476 * driver does this. Skip just this inode
477 */
478 continue;
479 }
480 /*
481 * Dirty memory-backed inode against a filesystem other
482 * than the kernel-internal bdev filesystem. Skip the
483 * entire superblock.
484 */
485 break;
486 }
487
7ef0d737
NP
488 if (inode->i_state & I_NEW) {
489 requeue_io(inode);
490 continue;
491 }
492
1da177e4
LT
493 if (wbc->nonblocking && bdi_write_congested(bdi)) {
494 wbc->encountered_congestion = 1;
7b0de42d 495 if (!sb_is_blkdev_sb(sb))
1da177e4 496 break; /* Skip a congested fs */
0e0f4fc2 497 requeue_io(inode);
1da177e4
LT
498 continue; /* Skip a congested blockdev */
499 }
500
501 if (wbc->bdi && bdi != wbc->bdi) {
7b0de42d 502 if (!sb_is_blkdev_sb(sb))
1da177e4 503 break; /* fs has the wrong queue */
0e0f4fc2 504 requeue_io(inode);
1da177e4
LT
505 continue; /* blockdev has wrong queue */
506 }
507
d2caa3c5
JL
508 /*
509 * Was this inode dirtied after sync_sb_inodes was called?
510 * This keeps sync from extra jobs and livelock.
511 */
512 if (inode_dirtied_after(inode, start))
1da177e4
LT
513 break;
514
1da177e4
LT
515 /* Is another pdflush already flushing this queue? */
516 if (current_is_pdflush() && !writeback_acquire(bdi))
517 break;
518
519 BUG_ON(inode->i_state & I_FREEING);
520 __iget(inode);
521 pages_skipped = wbc->pages_skipped;
522 __writeback_single_inode(inode, wbc);
1da177e4
LT
523 if (current_is_pdflush())
524 writeback_release(bdi);
525 if (wbc->pages_skipped != pages_skipped) {
526 /*
527 * writeback is not making progress due to locked
528 * buffers. Skip this inode for now.
529 */
f57b9b7b 530 redirty_tail(inode);
1da177e4
LT
531 }
532 spin_unlock(&inode_lock);
1da177e4 533 iput(inode);
4ffc8444 534 cond_resched();
1da177e4 535 spin_lock(&inode_lock);
8bc3be27
FW
536 if (wbc->nr_to_write <= 0) {
537 wbc->more_io = 1;
1da177e4 538 break;
8bc3be27
FW
539 }
540 if (!list_empty(&sb->s_more_io))
541 wbc->more_io = 1;
1da177e4 542 }
38f21977
NP
543
544 if (sync) {
545 struct inode *inode, *old_inode = NULL;
546
547 /*
548 * Data integrity sync. Must wait for all pages under writeback,
549 * because there may have been pages dirtied before our sync
550 * call, but which had writeout started before we write it out.
551 * In which case, the inode may not be on the dirty list, but
552 * we still have to wait for that writeout.
553 */
554 list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
555 struct address_space *mapping;
556
b6fac63c
WF
557 if (inode->i_state &
558 (I_FREEING|I_CLEAR|I_WILL_FREE|I_NEW))
38f21977
NP
559 continue;
560 mapping = inode->i_mapping;
561 if (mapping->nrpages == 0)
562 continue;
563 __iget(inode);
564 spin_unlock(&inode_lock);
565 /*
566 * We hold a reference to 'inode' so it couldn't have
567 * been removed from s_inodes list while we dropped the
568 * inode_lock. We cannot iput the inode now as we can
569 * be holding the last reference and we cannot iput it
570 * under inode_lock. So we keep the reference and iput
571 * it later.
572 */
573 iput(old_inode);
574 old_inode = inode;
575
576 filemap_fdatawait(mapping);
577
578 cond_resched();
579
580 spin_lock(&inode_lock);
581 }
582 spin_unlock(&inode_lock);
583 iput(old_inode);
584 } else
585 spin_unlock(&inode_lock);
586
1da177e4
LT
587 return; /* Leave any unwritten inodes on s_io */
588}
4ee6afd3
AB
589EXPORT_SYMBOL_GPL(generic_sync_sb_inodes);
590
591static void sync_sb_inodes(struct super_block *sb,
592 struct writeback_control *wbc)
593{
594 generic_sync_sb_inodes(sb, wbc);
595}
1da177e4
LT
596
597/*
598 * Start writeback of dirty pagecache data against all unlocked inodes.
599 *
600 * Note:
601 * We don't need to grab a reference to superblock here. If it has non-empty
602 * ->s_dirty it's hadn't been killed yet and kill_super() won't proceed
2c136579 603 * past sync_inodes_sb() until the ->s_dirty/s_io/s_more_io lists are all
1da177e4
LT
604 * empty. Since __sync_single_inode() regains inode_lock before it finally moves
605 * inode from superblock lists we are OK.
606 *
607 * If `older_than_this' is non-zero then only flush inodes which have a
608 * flushtime older than *older_than_this.
609 *
610 * If `bdi' is non-zero then we will scan the first inode against each
611 * superblock until we find the matching ones. One group will be the dirty
612 * inodes against a filesystem. Then when we hit the dummy blockdev superblock,
613 * sync_sb_inodes will seekout the blockdev which matches `bdi'. Maybe not
614 * super-efficient but we're about to do a ton of I/O...
615 */
616void
617writeback_inodes(struct writeback_control *wbc)
618{
619 struct super_block *sb;
620
621 might_sleep();
622 spin_lock(&sb_lock);
623restart:
797074e4 624 list_for_each_entry_reverse(sb, &super_blocks, s_list) {
08d8e974 625 if (sb_has_dirty_inodes(sb)) {
1da177e4
LT
626 /* we're making our own get_super here */
627 sb->s_count++;
628 spin_unlock(&sb_lock);
629 /*
630 * If we can't get the readlock, there's no sense in
631 * waiting around, most of the time the FS is going to
632 * be unmounted by the time it is released.
633 */
634 if (down_read_trylock(&sb->s_umount)) {
ae8547b0 635 if (sb->s_root)
1da177e4 636 sync_sb_inodes(sb, wbc);
1da177e4
LT
637 up_read(&sb->s_umount);
638 }
639 spin_lock(&sb_lock);
640 if (__put_super_and_need_restart(sb))
641 goto restart;
642 }
643 if (wbc->nr_to_write <= 0)
644 break;
645 }
646 spin_unlock(&sb_lock);
647}
648
649/*
650 * writeback and wait upon the filesystem's dirty inodes. The caller will
4f5a99d6 651 * do this in two passes - one to write, and one to wait.
1da177e4
LT
652 *
653 * A finite limit is set on the number of pages which will be written.
654 * To prevent infinite livelock of sys_sync().
655 *
656 * We add in the number of potentially dirty inodes, because each inode write
657 * can dirty pagecache in the underlying blockdev.
658 */
659void sync_inodes_sb(struct super_block *sb, int wait)
660{
661 struct writeback_control wbc = {
4f5a99d6 662 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
111ebb6e
OH
663 .range_start = 0,
664 .range_end = LLONG_MAX,
1da177e4 665 };
1da177e4 666
38f21977
NP
667 if (!wait) {
668 unsigned long nr_dirty = global_page_state(NR_FILE_DIRTY);
669 unsigned long nr_unstable = global_page_state(NR_UNSTABLE_NFS);
670
671 wbc.nr_to_write = nr_dirty + nr_unstable +
672 (inodes_stat.nr_inodes - inodes_stat.nr_unused);
673 } else
674 wbc.nr_to_write = LONG_MAX; /* doesn't actually matter */
675
1da177e4 676 sync_sb_inodes(sb, &wbc);
1da177e4
LT
677}
678
1da177e4 679/**
7f04c26d
AA
680 * write_inode_now - write an inode to disk
681 * @inode: inode to write to disk
682 * @sync: whether the write should be synchronous or not
683 *
684 * This function commits an inode to disk immediately if it is dirty. This is
685 * primarily needed by knfsd.
1da177e4 686 *
7f04c26d 687 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
1da177e4 688 */
1da177e4
LT
689int write_inode_now(struct inode *inode, int sync)
690{
691 int ret;
692 struct writeback_control wbc = {
693 .nr_to_write = LONG_MAX,
18914b18 694 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
111ebb6e
OH
695 .range_start = 0,
696 .range_end = LLONG_MAX,
1da177e4
LT
697 };
698
699 if (!mapping_cap_writeback_dirty(inode->i_mapping))
49364ce2 700 wbc.nr_to_write = 0;
1da177e4
LT
701
702 might_sleep();
703 spin_lock(&inode_lock);
704 ret = __writeback_single_inode(inode, &wbc);
705 spin_unlock(&inode_lock);
706 if (sync)
1c0eeaf5 707 inode_sync_wait(inode);
1da177e4
LT
708 return ret;
709}
710EXPORT_SYMBOL(write_inode_now);
711
712/**
713 * sync_inode - write an inode and its pages to disk.
714 * @inode: the inode to sync
715 * @wbc: controls the writeback mode
716 *
717 * sync_inode() will write an inode and its pages to disk. It will also
718 * correctly update the inode on its superblock's dirty inode lists and will
719 * update inode->i_state.
720 *
721 * The caller must have a ref on the inode.
722 */
723int sync_inode(struct inode *inode, struct writeback_control *wbc)
724{
725 int ret;
726
727 spin_lock(&inode_lock);
728 ret = __writeback_single_inode(inode, wbc);
729 spin_unlock(&inode_lock);
730 return ret;
731}
732EXPORT_SYMBOL(sync_inode);
733
734/**
735 * generic_osync_inode - flush all dirty data for a given inode to disk
736 * @inode: inode to write
67be2dd1 737 * @mapping: the address_space that should be flushed
1da177e4
LT
738 * @what: what to write and wait upon
739 *
740 * This can be called by file_write functions for files which have the
741 * O_SYNC flag set, to flush dirty writes to disk.
742 *
743 * @what is a bitmask, specifying which part of the inode's data should be
b8887e6e 744 * written and waited upon.
1da177e4
LT
745 *
746 * OSYNC_DATA: i_mapping's dirty data
747 * OSYNC_METADATA: the buffers at i_mapping->private_list
748 * OSYNC_INODE: the inode itself
749 */
750
751int generic_osync_inode(struct inode *inode, struct address_space *mapping, int what)
752{
753 int err = 0;
754 int need_write_inode_now = 0;
755 int err2;
756
1da177e4
LT
757 if (what & OSYNC_DATA)
758 err = filemap_fdatawrite(mapping);
759 if (what & (OSYNC_METADATA|OSYNC_DATA)) {
760 err2 = sync_mapping_buffers(mapping);
761 if (!err)
762 err = err2;
763 }
764 if (what & OSYNC_DATA) {
765 err2 = filemap_fdatawait(mapping);
766 if (!err)
767 err = err2;
768 }
1da177e4
LT
769
770 spin_lock(&inode_lock);
771 if ((inode->i_state & I_DIRTY) &&
772 ((what & OSYNC_INODE) || (inode->i_state & I_DIRTY_DATASYNC)))
773 need_write_inode_now = 1;
774 spin_unlock(&inode_lock);
775
776 if (need_write_inode_now) {
777 err2 = write_inode_now(inode, 1);
778 if (!err)
779 err = err2;
780 }
781 else
1c0eeaf5 782 inode_sync_wait(inode);
1da177e4
LT
783
784 return err;
785}
1da177e4 786EXPORT_SYMBOL(generic_osync_inode);