ARC: mm: do_page_fault refactor #8: release mmap_sem sooner
[linux-2.6-block.git] / fs / fs-writeback.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * fs/fs-writeback.c
4 *
5 * Copyright (C) 2002, Linus Torvalds.
6 *
7 * Contains all the functions related to writing back and waiting
8 * upon dirty inodes against superblocks, and writing back dirty
9 * pages against inodes. ie: data writeback. Writeout of the
10 * inode itself is not handled here.
11 *
e1f8e874 12 * 10Apr2002 Andrew Morton
1da177e4
LT
13 * Split out of fs/inode.c
14 * Additions for address_space-based writeback
15 */
16
17#include <linux/kernel.h>
630d9c47 18#include <linux/export.h>
1da177e4 19#include <linux/spinlock.h>
5a0e3ad6 20#include <linux/slab.h>
1da177e4
LT
21#include <linux/sched.h>
22#include <linux/fs.h>
23#include <linux/mm.h>
bc31b86a 24#include <linux/pagemap.h>
03ba3782 25#include <linux/kthread.h>
1da177e4
LT
26#include <linux/writeback.h>
27#include <linux/blkdev.h>
28#include <linux/backing-dev.h>
455b2864 29#include <linux/tracepoint.h>
719ea2fb 30#include <linux/device.h>
21c6321f 31#include <linux/memcontrol.h>
07f3f05c 32#include "internal.h"
1da177e4 33
bc31b86a
WF
34/*
35 * 4MB minimal write chunk size
36 */
09cbfeaf 37#define MIN_WRITEBACK_PAGES (4096UL >> (PAGE_SHIFT - 10))
bc31b86a 38
cc395d7f
TH
39struct wb_completion {
40 atomic_t cnt;
41};
42
c4a77a6c
JA
43/*
44 * Passed into wb_writeback(), essentially a subset of writeback_control
45 */
83ba7b07 46struct wb_writeback_work {
c4a77a6c
JA
47 long nr_pages;
48 struct super_block *sb;
0dc83bd3 49 unsigned long *older_than_this;
c4a77a6c 50 enum writeback_sync_modes sync_mode;
6e6938b6 51 unsigned int tagged_writepages:1;
52957fe1
HS
52 unsigned int for_kupdate:1;
53 unsigned int range_cyclic:1;
54 unsigned int for_background:1;
7747bd4b 55 unsigned int for_sync:1; /* sync(2) WB_SYNC_ALL writeback */
ac7b19a3 56 unsigned int auto_free:1; /* free on completion */
0e175a18 57 enum wb_reason reason; /* why was writeback initiated? */
c4a77a6c 58
8010c3b6 59 struct list_head list; /* pending work list */
cc395d7f 60 struct wb_completion *done; /* set if the caller waits */
03ba3782
JA
61};
62
cc395d7f
TH
63/*
64 * If one wants to wait for one or more wb_writeback_works, each work's
65 * ->done should be set to a wb_completion defined using the following
66 * macro. Once all work items are issued with wb_queue_work(), the caller
67 * can wait for the completion of all using wb_wait_for_completion(). Work
68 * items which are waited upon aren't freed automatically on completion.
69 */
70#define DEFINE_WB_COMPLETION_ONSTACK(cmpl) \
71 struct wb_completion cmpl = { \
72 .cnt = ATOMIC_INIT(1), \
73 }
74
75
a2f48706
TT
76/*
77 * If an inode is constantly having its pages dirtied, but then the
78 * updates stop dirtytime_expire_interval seconds in the past, it's
79 * possible for the worst case time between when an inode has its
80 * timestamps updated and when they finally get written out to be two
81 * dirtytime_expire_intervals. We set the default to 12 hours (in
82 * seconds), which means most of the time inodes will have their
83 * timestamps written to disk after 12 hours, but in the worst case a
84 * few inodes might not their timestamps updated for 24 hours.
85 */
86unsigned int dirtytime_expire_interval = 12 * 60 * 60;
87
7ccf19a8
NP
88static inline struct inode *wb_inode(struct list_head *head)
89{
c7f54084 90 return list_entry(head, struct inode, i_io_list);
7ccf19a8
NP
91}
92
15eb77a0
WF
93/*
94 * Include the creation of the trace points after defining the
95 * wb_writeback_work structure and inline functions so that the definition
96 * remains local to this file.
97 */
98#define CREATE_TRACE_POINTS
99#include <trace/events/writeback.h>
100
774016b2
SW
101EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
102
d6c10f1f
TH
103static bool wb_io_lists_populated(struct bdi_writeback *wb)
104{
105 if (wb_has_dirty_io(wb)) {
106 return false;
107 } else {
108 set_bit(WB_has_dirty_io, &wb->state);
95a46c65 109 WARN_ON_ONCE(!wb->avg_write_bandwidth);
766a9d6e
TH
110 atomic_long_add(wb->avg_write_bandwidth,
111 &wb->bdi->tot_write_bandwidth);
d6c10f1f
TH
112 return true;
113 }
114}
115
116static void wb_io_lists_depopulated(struct bdi_writeback *wb)
117{
118 if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
766a9d6e 119 list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
d6c10f1f 120 clear_bit(WB_has_dirty_io, &wb->state);
95a46c65
TH
121 WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
122 &wb->bdi->tot_write_bandwidth) < 0);
766a9d6e 123 }
d6c10f1f
TH
124}
125
126/**
c7f54084 127 * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list
d6c10f1f
TH
128 * @inode: inode to be moved
129 * @wb: target bdi_writeback
bbbc3c1c 130 * @head: one of @wb->b_{dirty|io|more_io|dirty_time}
d6c10f1f 131 *
c7f54084 132 * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io.
d6c10f1f
TH
133 * Returns %true if @inode is the first occupant of the !dirty_time IO
134 * lists; otherwise, %false.
135 */
c7f54084 136static bool inode_io_list_move_locked(struct inode *inode,
d6c10f1f
TH
137 struct bdi_writeback *wb,
138 struct list_head *head)
139{
140 assert_spin_locked(&wb->list_lock);
141
c7f54084 142 list_move(&inode->i_io_list, head);
d6c10f1f
TH
143
144 /* dirty_time doesn't count as dirty_io until expiration */
145 if (head != &wb->b_dirty_time)
146 return wb_io_lists_populated(wb);
147
148 wb_io_lists_depopulated(wb);
149 return false;
150}
151
152/**
c7f54084 153 * inode_io_list_del_locked - remove an inode from its bdi_writeback IO list
d6c10f1f
TH
154 * @inode: inode to be removed
155 * @wb: bdi_writeback @inode is being removed from
156 *
157 * Remove @inode which may be on one of @wb->b_{dirty|io|more_io} lists and
158 * clear %WB_has_dirty_io if all are empty afterwards.
159 */
c7f54084 160static void inode_io_list_del_locked(struct inode *inode,
d6c10f1f
TH
161 struct bdi_writeback *wb)
162{
163 assert_spin_locked(&wb->list_lock);
164
c7f54084 165 list_del_init(&inode->i_io_list);
d6c10f1f
TH
166 wb_io_lists_depopulated(wb);
167}
168
f0054bb1 169static void wb_wakeup(struct bdi_writeback *wb)
5acda9d1 170{
f0054bb1
TH
171 spin_lock_bh(&wb->work_lock);
172 if (test_bit(WB_registered, &wb->state))
173 mod_delayed_work(bdi_wq, &wb->dwork, 0);
174 spin_unlock_bh(&wb->work_lock);
5acda9d1
JK
175}
176
4a3a485b
TE
177static void finish_writeback_work(struct bdi_writeback *wb,
178 struct wb_writeback_work *work)
179{
180 struct wb_completion *done = work->done;
181
182 if (work->auto_free)
183 kfree(work);
184 if (done && atomic_dec_and_test(&done->cnt))
185 wake_up_all(&wb->bdi->wb_waitq);
186}
187
f0054bb1
TH
188static void wb_queue_work(struct bdi_writeback *wb,
189 struct wb_writeback_work *work)
6585027a 190{
5634cc2a 191 trace_writeback_queue(wb, work);
6585027a 192
cc395d7f
TH
193 if (work->done)
194 atomic_inc(&work->done->cnt);
4a3a485b
TE
195
196 spin_lock_bh(&wb->work_lock);
197
198 if (test_bit(WB_registered, &wb->state)) {
199 list_add_tail(&work->list, &wb->work_list);
200 mod_delayed_work(bdi_wq, &wb->dwork, 0);
201 } else
202 finish_writeback_work(wb, work);
203
f0054bb1 204 spin_unlock_bh(&wb->work_lock);
1da177e4
LT
205}
206
cc395d7f
TH
207/**
208 * wb_wait_for_completion - wait for completion of bdi_writeback_works
209 * @bdi: bdi work items were issued to
210 * @done: target wb_completion
211 *
212 * Wait for one or more work items issued to @bdi with their ->done field
213 * set to @done, which should have been defined with
214 * DEFINE_WB_COMPLETION_ONSTACK(). This function returns after all such
215 * work items are completed. Work items which are waited upon aren't freed
216 * automatically on completion.
217 */
218static void wb_wait_for_completion(struct backing_dev_info *bdi,
219 struct wb_completion *done)
220{
221 atomic_dec(&done->cnt); /* put down the initial count */
222 wait_event(bdi->wb_waitq, !atomic_read(&done->cnt));
223}
224
703c2708
TH
225#ifdef CONFIG_CGROUP_WRITEBACK
226
2a814908
TH
227/* parameters for foreign inode detection, see wb_detach_inode() */
228#define WB_FRN_TIME_SHIFT 13 /* 1s = 2^13, upto 8 secs w/ 16bit */
229#define WB_FRN_TIME_AVG_SHIFT 3 /* avg = avg * 7/8 + new * 1/8 */
230#define WB_FRN_TIME_CUT_DIV 2 /* ignore rounds < avg / 2 */
231#define WB_FRN_TIME_PERIOD (2 * (1 << WB_FRN_TIME_SHIFT)) /* 2s */
232
233#define WB_FRN_HIST_SLOTS 16 /* inode->i_wb_frn_history is 16bit */
234#define WB_FRN_HIST_UNIT (WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS)
235 /* each slot's duration is 2s / 16 */
236#define WB_FRN_HIST_THR_SLOTS (WB_FRN_HIST_SLOTS / 2)
237 /* if foreign slots >= 8, switch */
238#define WB_FRN_HIST_MAX_SLOTS (WB_FRN_HIST_THR_SLOTS / 2 + 1)
239 /* one round can affect upto 5 slots */
240
a1a0e23e
TH
241static atomic_t isw_nr_in_flight = ATOMIC_INIT(0);
242static struct workqueue_struct *isw_wq;
243
21c6321f
TH
244void __inode_attach_wb(struct inode *inode, struct page *page)
245{
246 struct backing_dev_info *bdi = inode_to_bdi(inode);
247 struct bdi_writeback *wb = NULL;
248
249 if (inode_cgwb_enabled(inode)) {
250 struct cgroup_subsys_state *memcg_css;
251
252 if (page) {
253 memcg_css = mem_cgroup_css_from_page(page);
254 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
255 } else {
256 /* must pin memcg_css, see wb_get_create() */
257 memcg_css = task_get_css(current, memory_cgrp_id);
258 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
259 css_put(memcg_css);
260 }
261 }
262
263 if (!wb)
264 wb = &bdi->wb;
265
266 /*
267 * There may be multiple instances of this function racing to
268 * update the same inode. Use cmpxchg() to tell the winner.
269 */
270 if (unlikely(cmpxchg(&inode->i_wb, NULL, wb)))
271 wb_put(wb);
272}
273
87e1d789
TH
274/**
275 * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it
276 * @inode: inode of interest with i_lock held
277 *
278 * Returns @inode's wb with its list_lock held. @inode->i_lock must be
279 * held on entry and is released on return. The returned wb is guaranteed
280 * to stay @inode's associated wb until its list_lock is released.
281 */
282static struct bdi_writeback *
283locked_inode_to_wb_and_lock_list(struct inode *inode)
284 __releases(&inode->i_lock)
285 __acquires(&wb->list_lock)
286{
287 while (true) {
288 struct bdi_writeback *wb = inode_to_wb(inode);
289
290 /*
291 * inode_to_wb() association is protected by both
292 * @inode->i_lock and @wb->list_lock but list_lock nests
293 * outside i_lock. Drop i_lock and verify that the
294 * association hasn't changed after acquiring list_lock.
295 */
296 wb_get(wb);
297 spin_unlock(&inode->i_lock);
298 spin_lock(&wb->list_lock);
87e1d789 299
aaa2cacf 300 /* i_wb may have changed inbetween, can't use inode_to_wb() */
614a4e37
TH
301 if (likely(wb == inode->i_wb)) {
302 wb_put(wb); /* @inode already has ref */
303 return wb;
304 }
87e1d789
TH
305
306 spin_unlock(&wb->list_lock);
614a4e37 307 wb_put(wb);
87e1d789
TH
308 cpu_relax();
309 spin_lock(&inode->i_lock);
310 }
311}
312
313/**
314 * inode_to_wb_and_lock_list - determine an inode's wb and lock it
315 * @inode: inode of interest
316 *
317 * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held
318 * on entry.
319 */
320static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
321 __acquires(&wb->list_lock)
322{
323 spin_lock(&inode->i_lock);
324 return locked_inode_to_wb_and_lock_list(inode);
325}
326
682aa8e1
TH
327struct inode_switch_wbs_context {
328 struct inode *inode;
329 struct bdi_writeback *new_wb;
330
331 struct rcu_head rcu_head;
332 struct work_struct work;
333};
334
7fc5854f
TH
335static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi)
336{
337 down_write(&bdi->wb_switch_rwsem);
338}
339
340static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi)
341{
342 up_write(&bdi->wb_switch_rwsem);
343}
344
682aa8e1
TH
345static void inode_switch_wbs_work_fn(struct work_struct *work)
346{
347 struct inode_switch_wbs_context *isw =
348 container_of(work, struct inode_switch_wbs_context, work);
349 struct inode *inode = isw->inode;
7fc5854f 350 struct backing_dev_info *bdi = inode_to_bdi(inode);
d10c8095
TH
351 struct address_space *mapping = inode->i_mapping;
352 struct bdi_writeback *old_wb = inode->i_wb;
682aa8e1 353 struct bdi_writeback *new_wb = isw->new_wb;
04edf02c
MW
354 XA_STATE(xas, &mapping->i_pages, 0);
355 struct page *page;
d10c8095 356 bool switched = false;
682aa8e1 357
7fc5854f
TH
358 /*
359 * If @inode switches cgwb membership while sync_inodes_sb() is
360 * being issued, sync_inodes_sb() might miss it. Synchronize.
361 */
362 down_read(&bdi->wb_switch_rwsem);
363
682aa8e1
TH
364 /*
365 * By the time control reaches here, RCU grace period has passed
366 * since I_WB_SWITCH assertion and all wb stat update transactions
367 * between unlocked_inode_to_wb_begin/end() are guaranteed to be
b93b0163 368 * synchronizing against the i_pages lock.
d10c8095 369 *
b93b0163 370 * Grabbing old_wb->list_lock, inode->i_lock and the i_pages lock
d10c8095
TH
371 * gives us exclusion against all wb related operations on @inode
372 * including IO list manipulations and stat updates.
682aa8e1 373 */
d10c8095
TH
374 if (old_wb < new_wb) {
375 spin_lock(&old_wb->list_lock);
376 spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING);
377 } else {
378 spin_lock(&new_wb->list_lock);
379 spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING);
380 }
682aa8e1 381 spin_lock(&inode->i_lock);
b93b0163 382 xa_lock_irq(&mapping->i_pages);
d10c8095
TH
383
384 /*
385 * Once I_FREEING is visible under i_lock, the eviction path owns
c7f54084 386 * the inode and we shouldn't modify ->i_io_list.
d10c8095
TH
387 */
388 if (unlikely(inode->i_state & I_FREEING))
389 goto skip_switch;
390
391 /*
392 * Count and transfer stats. Note that PAGECACHE_TAG_DIRTY points
393 * to possibly dirty pages while PAGECACHE_TAG_WRITEBACK points to
b93b0163 394 * pages actually under writeback.
d10c8095 395 */
04edf02c
MW
396 xas_for_each_marked(&xas, page, ULONG_MAX, PAGECACHE_TAG_DIRTY) {
397 if (PageDirty(page)) {
3e8f399d
NB
398 dec_wb_stat(old_wb, WB_RECLAIMABLE);
399 inc_wb_stat(new_wb, WB_RECLAIMABLE);
d10c8095
TH
400 }
401 }
402
04edf02c
MW
403 xas_set(&xas, 0);
404 xas_for_each_marked(&xas, page, ULONG_MAX, PAGECACHE_TAG_WRITEBACK) {
405 WARN_ON_ONCE(!PageWriteback(page));
406 dec_wb_stat(old_wb, WB_WRITEBACK);
407 inc_wb_stat(new_wb, WB_WRITEBACK);
d10c8095
TH
408 }
409
410 wb_get(new_wb);
411
412 /*
413 * Transfer to @new_wb's IO list if necessary. The specific list
414 * @inode was on is ignored and the inode is put on ->b_dirty which
415 * is always correct including from ->b_dirty_time. The transfer
416 * preserves @inode->dirtied_when ordering.
417 */
c7f54084 418 if (!list_empty(&inode->i_io_list)) {
d10c8095
TH
419 struct inode *pos;
420
c7f54084 421 inode_io_list_del_locked(inode, old_wb);
d10c8095 422 inode->i_wb = new_wb;
c7f54084 423 list_for_each_entry(pos, &new_wb->b_dirty, i_io_list)
d10c8095
TH
424 if (time_after_eq(inode->dirtied_when,
425 pos->dirtied_when))
426 break;
c7f54084 427 inode_io_list_move_locked(inode, new_wb, pos->i_io_list.prev);
d10c8095
TH
428 } else {
429 inode->i_wb = new_wb;
430 }
682aa8e1 431
d10c8095 432 /* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */
682aa8e1
TH
433 inode->i_wb_frn_winner = 0;
434 inode->i_wb_frn_avg_time = 0;
435 inode->i_wb_frn_history = 0;
d10c8095
TH
436 switched = true;
437skip_switch:
682aa8e1
TH
438 /*
439 * Paired with load_acquire in unlocked_inode_to_wb_begin() and
440 * ensures that the new wb is visible if they see !I_WB_SWITCH.
441 */
442 smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH);
443
b93b0163 444 xa_unlock_irq(&mapping->i_pages);
682aa8e1 445 spin_unlock(&inode->i_lock);
d10c8095
TH
446 spin_unlock(&new_wb->list_lock);
447 spin_unlock(&old_wb->list_lock);
682aa8e1 448
7fc5854f
TH
449 up_read(&bdi->wb_switch_rwsem);
450
d10c8095
TH
451 if (switched) {
452 wb_wakeup(new_wb);
453 wb_put(old_wb);
454 }
682aa8e1 455 wb_put(new_wb);
d10c8095
TH
456
457 iput(inode);
682aa8e1 458 kfree(isw);
a1a0e23e
TH
459
460 atomic_dec(&isw_nr_in_flight);
682aa8e1
TH
461}
462
463static void inode_switch_wbs_rcu_fn(struct rcu_head *rcu_head)
464{
465 struct inode_switch_wbs_context *isw = container_of(rcu_head,
466 struct inode_switch_wbs_context, rcu_head);
467
468 /* needs to grab bh-unsafe locks, bounce to work item */
469 INIT_WORK(&isw->work, inode_switch_wbs_work_fn);
a1a0e23e 470 queue_work(isw_wq, &isw->work);
682aa8e1
TH
471}
472
473/**
474 * inode_switch_wbs - change the wb association of an inode
475 * @inode: target inode
476 * @new_wb_id: ID of the new wb
477 *
478 * Switch @inode's wb association to the wb identified by @new_wb_id. The
479 * switching is performed asynchronously and may fail silently.
480 */
481static void inode_switch_wbs(struct inode *inode, int new_wb_id)
482{
483 struct backing_dev_info *bdi = inode_to_bdi(inode);
484 struct cgroup_subsys_state *memcg_css;
485 struct inode_switch_wbs_context *isw;
486
487 /* noop if seems to be already in progress */
488 if (inode->i_state & I_WB_SWITCH)
489 return;
490
7fc5854f
TH
491 /*
492 * Avoid starting new switches while sync_inodes_sb() is in
493 * progress. Otherwise, if the down_write protected issue path
494 * blocks heavily, we might end up starting a large number of
495 * switches which will block on the rwsem.
496 */
497 if (!down_read_trylock(&bdi->wb_switch_rwsem))
498 return;
499
682aa8e1
TH
500 isw = kzalloc(sizeof(*isw), GFP_ATOMIC);
501 if (!isw)
7fc5854f 502 goto out_unlock;
682aa8e1
TH
503
504 /* find and pin the new wb */
505 rcu_read_lock();
506 memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys);
507 if (memcg_css)
508 isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
509 rcu_read_unlock();
510 if (!isw->new_wb)
511 goto out_free;
512
513 /* while holding I_WB_SWITCH, no one else can update the association */
514 spin_lock(&inode->i_lock);
1751e8a6 515 if (!(inode->i_sb->s_flags & SB_ACTIVE) ||
a1a0e23e
TH
516 inode->i_state & (I_WB_SWITCH | I_FREEING) ||
517 inode_to_wb(inode) == isw->new_wb) {
518 spin_unlock(&inode->i_lock);
519 goto out_free;
520 }
682aa8e1 521 inode->i_state |= I_WB_SWITCH;
74524955 522 __iget(inode);
682aa8e1
TH
523 spin_unlock(&inode->i_lock);
524
682aa8e1
TH
525 isw->inode = inode;
526
527 /*
528 * In addition to synchronizing among switchers, I_WB_SWITCH tells
b93b0163
MW
529 * the RCU protected stat update paths to grab the i_page
530 * lock so that stat transfer can synchronize against them.
682aa8e1
TH
531 * Let's continue after I_WB_SWITCH is guaranteed to be visible.
532 */
533 call_rcu(&isw->rcu_head, inode_switch_wbs_rcu_fn);
ec084de9
JX
534
535 atomic_inc(&isw_nr_in_flight);
536
7fc5854f 537 goto out_unlock;
682aa8e1
TH
538
539out_free:
540 if (isw->new_wb)
541 wb_put(isw->new_wb);
542 kfree(isw);
7fc5854f
TH
543out_unlock:
544 up_read(&bdi->wb_switch_rwsem);
682aa8e1
TH
545}
546
b16b1deb
TH
547/**
548 * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
549 * @wbc: writeback_control of interest
550 * @inode: target inode
551 *
552 * @inode is locked and about to be written back under the control of @wbc.
553 * Record @inode's writeback context into @wbc and unlock the i_lock. On
554 * writeback completion, wbc_detach_inode() should be called. This is used
555 * to track the cgroup writeback context.
556 */
557void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
558 struct inode *inode)
559{
dd73e4b7
TH
560 if (!inode_cgwb_enabled(inode)) {
561 spin_unlock(&inode->i_lock);
562 return;
563 }
564
b16b1deb 565 wbc->wb = inode_to_wb(inode);
2a814908
TH
566 wbc->inode = inode;
567
568 wbc->wb_id = wbc->wb->memcg_css->id;
569 wbc->wb_lcand_id = inode->i_wb_frn_winner;
570 wbc->wb_tcand_id = 0;
571 wbc->wb_bytes = 0;
572 wbc->wb_lcand_bytes = 0;
573 wbc->wb_tcand_bytes = 0;
574
b16b1deb
TH
575 wb_get(wbc->wb);
576 spin_unlock(&inode->i_lock);
e8a7abf5
TH
577
578 /*
579 * A dying wb indicates that the memcg-blkcg mapping has changed
580 * and a new wb is already serving the memcg. Switch immediately.
581 */
582 if (unlikely(wb_dying(wbc->wb)))
583 inode_switch_wbs(inode, wbc->wb_id);
b16b1deb
TH
584}
585
586/**
2a814908
TH
587 * wbc_detach_inode - disassociate wbc from inode and perform foreign detection
588 * @wbc: writeback_control of the just finished writeback
b16b1deb
TH
589 *
590 * To be called after a writeback attempt of an inode finishes and undoes
591 * wbc_attach_and_unlock_inode(). Can be called under any context.
2a814908
TH
592 *
593 * As concurrent write sharing of an inode is expected to be very rare and
594 * memcg only tracks page ownership on first-use basis severely confining
595 * the usefulness of such sharing, cgroup writeback tracks ownership
596 * per-inode. While the support for concurrent write sharing of an inode
597 * is deemed unnecessary, an inode being written to by different cgroups at
598 * different points in time is a lot more common, and, more importantly,
599 * charging only by first-use can too readily lead to grossly incorrect
600 * behaviors (single foreign page can lead to gigabytes of writeback to be
601 * incorrectly attributed).
602 *
603 * To resolve this issue, cgroup writeback detects the majority dirtier of
604 * an inode and transfers the ownership to it. To avoid unnnecessary
605 * oscillation, the detection mechanism keeps track of history and gives
606 * out the switch verdict only if the foreign usage pattern is stable over
607 * a certain amount of time and/or writeback attempts.
608 *
609 * On each writeback attempt, @wbc tries to detect the majority writer
610 * using Boyer-Moore majority vote algorithm. In addition to the byte
611 * count from the majority voting, it also counts the bytes written for the
612 * current wb and the last round's winner wb (max of last round's current
613 * wb, the winner from two rounds ago, and the last round's majority
614 * candidate). Keeping track of the historical winner helps the algorithm
615 * to semi-reliably detect the most active writer even when it's not the
616 * absolute majority.
617 *
618 * Once the winner of the round is determined, whether the winner is
619 * foreign or not and how much IO time the round consumed is recorded in
620 * inode->i_wb_frn_history. If the amount of recorded foreign IO time is
621 * over a certain threshold, the switch verdict is given.
b16b1deb
TH
622 */
623void wbc_detach_inode(struct writeback_control *wbc)
624{
2a814908
TH
625 struct bdi_writeback *wb = wbc->wb;
626 struct inode *inode = wbc->inode;
dd73e4b7
TH
627 unsigned long avg_time, max_bytes, max_time;
628 u16 history;
2a814908
TH
629 int max_id;
630
dd73e4b7
TH
631 if (!wb)
632 return;
633
634 history = inode->i_wb_frn_history;
635 avg_time = inode->i_wb_frn_avg_time;
636
2a814908
TH
637 /* pick the winner of this round */
638 if (wbc->wb_bytes >= wbc->wb_lcand_bytes &&
639 wbc->wb_bytes >= wbc->wb_tcand_bytes) {
640 max_id = wbc->wb_id;
641 max_bytes = wbc->wb_bytes;
642 } else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) {
643 max_id = wbc->wb_lcand_id;
644 max_bytes = wbc->wb_lcand_bytes;
645 } else {
646 max_id = wbc->wb_tcand_id;
647 max_bytes = wbc->wb_tcand_bytes;
648 }
649
650 /*
651 * Calculate the amount of IO time the winner consumed and fold it
652 * into the running average kept per inode. If the consumed IO
653 * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for
654 * deciding whether to switch or not. This is to prevent one-off
655 * small dirtiers from skewing the verdict.
656 */
657 max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT,
658 wb->avg_write_bandwidth);
659 if (avg_time)
660 avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) -
661 (avg_time >> WB_FRN_TIME_AVG_SHIFT);
662 else
663 avg_time = max_time; /* immediate catch up on first run */
664
665 if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) {
666 int slots;
667
668 /*
669 * The switch verdict is reached if foreign wb's consume
670 * more than a certain proportion of IO time in a
671 * WB_FRN_TIME_PERIOD. This is loosely tracked by 16 slot
672 * history mask where each bit represents one sixteenth of
673 * the period. Determine the number of slots to shift into
674 * history from @max_time.
675 */
676 slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT),
677 (unsigned long)WB_FRN_HIST_MAX_SLOTS);
678 history <<= slots;
679 if (wbc->wb_id != max_id)
680 history |= (1U << slots) - 1;
681
682 /*
683 * Switch if the current wb isn't the consistent winner.
684 * If there are multiple closely competing dirtiers, the
685 * inode may switch across them repeatedly over time, which
686 * is okay. The main goal is avoiding keeping an inode on
687 * the wrong wb for an extended period of time.
688 */
682aa8e1
TH
689 if (hweight32(history) > WB_FRN_HIST_THR_SLOTS)
690 inode_switch_wbs(inode, max_id);
2a814908
TH
691 }
692
693 /*
694 * Multiple instances of this function may race to update the
695 * following fields but we don't mind occassional inaccuracies.
696 */
697 inode->i_wb_frn_winner = max_id;
698 inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX);
699 inode->i_wb_frn_history = history;
700
b16b1deb
TH
701 wb_put(wbc->wb);
702 wbc->wb = NULL;
703}
704
2a814908
TH
705/**
706 * wbc_account_io - account IO issued during writeback
707 * @wbc: writeback_control of the writeback in progress
708 * @page: page being written out
709 * @bytes: number of bytes being written out
710 *
711 * @bytes from @page are about to written out during the writeback
712 * controlled by @wbc. Keep the book for foreign inode detection. See
713 * wbc_detach_inode().
714 */
715void wbc_account_io(struct writeback_control *wbc, struct page *page,
716 size_t bytes)
717{
718 int id;
719
720 /*
721 * pageout() path doesn't attach @wbc to the inode being written
722 * out. This is intentional as we don't want the function to block
723 * behind a slow cgroup. Ultimately, we want pageout() to kick off
724 * regular writeback instead of writing things out itself.
725 */
726 if (!wbc->wb)
727 return;
728
2a814908 729 id = mem_cgroup_css_from_page(page)->id;
2a814908
TH
730
731 if (id == wbc->wb_id) {
732 wbc->wb_bytes += bytes;
733 return;
734 }
735
736 if (id == wbc->wb_lcand_id)
737 wbc->wb_lcand_bytes += bytes;
738
739 /* Boyer-Moore majority vote algorithm */
740 if (!wbc->wb_tcand_bytes)
741 wbc->wb_tcand_id = id;
742 if (id == wbc->wb_tcand_id)
743 wbc->wb_tcand_bytes += bytes;
744 else
745 wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes);
746}
5aa2a96b 747EXPORT_SYMBOL_GPL(wbc_account_io);
2a814908 748
703c2708
TH
749/**
750 * inode_congested - test whether an inode is congested
60292bcc 751 * @inode: inode to test for congestion (may be NULL)
703c2708
TH
752 * @cong_bits: mask of WB_[a]sync_congested bits to test
753 *
754 * Tests whether @inode is congested. @cong_bits is the mask of congestion
755 * bits to test and the return value is the mask of set bits.
756 *
757 * If cgroup writeback is enabled for @inode, the congestion state is
758 * determined by whether the cgwb (cgroup bdi_writeback) for the blkcg
759 * associated with @inode is congested; otherwise, the root wb's congestion
760 * state is used.
60292bcc
TH
761 *
762 * @inode is allowed to be NULL as this function is often called on
763 * mapping->host which is NULL for the swapper space.
703c2708
TH
764 */
765int inode_congested(struct inode *inode, int cong_bits)
766{
5cb8b824
TH
767 /*
768 * Once set, ->i_wb never becomes NULL while the inode is alive.
769 * Start transaction iff ->i_wb is visible.
770 */
aaa2cacf 771 if (inode && inode_to_wb_is_valid(inode)) {
5cb8b824 772 struct bdi_writeback *wb;
2e898e4c
GT
773 struct wb_lock_cookie lock_cookie = {};
774 bool congested;
5cb8b824 775
2e898e4c 776 wb = unlocked_inode_to_wb_begin(inode, &lock_cookie);
5cb8b824 777 congested = wb_congested(wb, cong_bits);
2e898e4c 778 unlocked_inode_to_wb_end(inode, &lock_cookie);
5cb8b824 779 return congested;
703c2708
TH
780 }
781
782 return wb_congested(&inode_to_bdi(inode)->wb, cong_bits);
783}
784EXPORT_SYMBOL_GPL(inode_congested);
785
f2b65121
TH
786/**
787 * wb_split_bdi_pages - split nr_pages to write according to bandwidth
788 * @wb: target bdi_writeback to split @nr_pages to
789 * @nr_pages: number of pages to write for the whole bdi
790 *
791 * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
792 * relation to the total write bandwidth of all wb's w/ dirty inodes on
793 * @wb->bdi.
794 */
795static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
796{
797 unsigned long this_bw = wb->avg_write_bandwidth;
798 unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
799
800 if (nr_pages == LONG_MAX)
801 return LONG_MAX;
802
803 /*
804 * This may be called on clean wb's and proportional distribution
805 * may not make sense, just use the original @nr_pages in those
806 * cases. In general, we wanna err on the side of writing more.
807 */
808 if (!tot_bw || this_bw >= tot_bw)
809 return nr_pages;
810 else
811 return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw);
812}
813
db125360
TH
814/**
815 * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
816 * @bdi: target backing_dev_info
817 * @base_work: wb_writeback_work to issue
818 * @skip_if_busy: skip wb's which already have writeback in progress
819 *
820 * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
821 * have dirty inodes. If @base_work->nr_page isn't %LONG_MAX, it's
822 * distributed to the busy wbs according to each wb's proportion in the
823 * total active write bandwidth of @bdi.
824 */
825static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
826 struct wb_writeback_work *base_work,
827 bool skip_if_busy)
828{
b817525a 829 struct bdi_writeback *last_wb = NULL;
b33e18f6
TH
830 struct bdi_writeback *wb = list_entry(&bdi->wb_list,
831 struct bdi_writeback, bdi_node);
db125360
TH
832
833 might_sleep();
db125360
TH
834restart:
835 rcu_read_lock();
b817525a 836 list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) {
8a1270cd
TH
837 DEFINE_WB_COMPLETION_ONSTACK(fallback_work_done);
838 struct wb_writeback_work fallback_work;
839 struct wb_writeback_work *work;
840 long nr_pages;
841
b817525a
TH
842 if (last_wb) {
843 wb_put(last_wb);
844 last_wb = NULL;
845 }
846
006a0973
TH
847 /* SYNC_ALL writes out I_DIRTY_TIME too */
848 if (!wb_has_dirty_io(wb) &&
849 (base_work->sync_mode == WB_SYNC_NONE ||
850 list_empty(&wb->b_dirty_time)))
851 continue;
852 if (skip_if_busy && writeback_in_progress(wb))
db125360
TH
853 continue;
854
8a1270cd
TH
855 nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages);
856
857 work = kmalloc(sizeof(*work), GFP_ATOMIC);
858 if (work) {
859 *work = *base_work;
860 work->nr_pages = nr_pages;
861 work->auto_free = 1;
862 wb_queue_work(wb, work);
863 continue;
db125360 864 }
8a1270cd
TH
865
866 /* alloc failed, execute synchronously using on-stack fallback */
867 work = &fallback_work;
868 *work = *base_work;
869 work->nr_pages = nr_pages;
870 work->auto_free = 0;
871 work->done = &fallback_work_done;
872
873 wb_queue_work(wb, work);
874
b817525a
TH
875 /*
876 * Pin @wb so that it stays on @bdi->wb_list. This allows
877 * continuing iteration from @wb after dropping and
878 * regrabbing rcu read lock.
879 */
880 wb_get(wb);
881 last_wb = wb;
882
8a1270cd
TH
883 rcu_read_unlock();
884 wb_wait_for_completion(bdi, &fallback_work_done);
885 goto restart;
db125360
TH
886 }
887 rcu_read_unlock();
b817525a
TH
888
889 if (last_wb)
890 wb_put(last_wb);
db125360
TH
891}
892
a1a0e23e
TH
893/**
894 * cgroup_writeback_umount - flush inode wb switches for umount
895 *
896 * This function is called when a super_block is about to be destroyed and
897 * flushes in-flight inode wb switches. An inode wb switch goes through
898 * RCU and then workqueue, so the two need to be flushed in order to ensure
899 * that all previously scheduled switches are finished. As wb switches are
900 * rare occurrences and synchronize_rcu() can take a while, perform
901 * flushing iff wb switches are in flight.
902 */
903void cgroup_writeback_umount(void)
904{
905 if (atomic_read(&isw_nr_in_flight)) {
ec084de9
JX
906 /*
907 * Use rcu_barrier() to wait for all pending callbacks to
908 * ensure that all in-flight wb switches are in the workqueue.
909 */
910 rcu_barrier();
a1a0e23e
TH
911 flush_workqueue(isw_wq);
912 }
913}
914
915static int __init cgroup_writeback_init(void)
916{
917 isw_wq = alloc_workqueue("inode_switch_wbs", 0, 0);
918 if (!isw_wq)
919 return -ENOMEM;
920 return 0;
921}
922fs_initcall(cgroup_writeback_init);
923
f2b65121
TH
924#else /* CONFIG_CGROUP_WRITEBACK */
925
7fc5854f
TH
926static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
927static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
928
87e1d789
TH
929static struct bdi_writeback *
930locked_inode_to_wb_and_lock_list(struct inode *inode)
931 __releases(&inode->i_lock)
932 __acquires(&wb->list_lock)
933{
934 struct bdi_writeback *wb = inode_to_wb(inode);
935
936 spin_unlock(&inode->i_lock);
937 spin_lock(&wb->list_lock);
938 return wb;
939}
940
941static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
942 __acquires(&wb->list_lock)
943{
944 struct bdi_writeback *wb = inode_to_wb(inode);
945
946 spin_lock(&wb->list_lock);
947 return wb;
948}
949
f2b65121
TH
950static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
951{
952 return nr_pages;
953}
954
db125360
TH
955static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
956 struct wb_writeback_work *base_work,
957 bool skip_if_busy)
958{
959 might_sleep();
960
006a0973 961 if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) {
db125360 962 base_work->auto_free = 0;
db125360
TH
963 wb_queue_work(&bdi->wb, base_work);
964 }
965}
966
703c2708
TH
967#endif /* CONFIG_CGROUP_WRITEBACK */
968
e8e8a0c6
JA
969/*
970 * Add in the number of potentially dirty inodes, because each inode
971 * write can dirty pagecache in the underlying blockdev.
972 */
973static unsigned long get_nr_dirty_pages(void)
974{
975 return global_node_page_state(NR_FILE_DIRTY) +
976 global_node_page_state(NR_UNSTABLE_NFS) +
977 get_nr_dirty_inodes();
978}
979
980static void wb_start_writeback(struct bdi_writeback *wb, enum wb_reason reason)
b6e51316 981{
c00ddad3
TH
982 if (!wb_has_dirty_io(wb))
983 return;
984
aac8d41c
JA
985 /*
986 * All callers of this function want to start writeback of all
987 * dirty pages. Places like vmscan can call this at a very
988 * high frequency, causing pointless allocations of tons of
989 * work items and keeping the flusher threads busy retrieving
990 * that work. Ensure that we only allow one of them pending and
85009b4f 991 * inflight at the time.
aac8d41c 992 */
85009b4f
JA
993 if (test_bit(WB_start_all, &wb->state) ||
994 test_and_set_bit(WB_start_all, &wb->state))
aac8d41c
JA
995 return;
996
85009b4f
JA
997 wb->start_all_reason = reason;
998 wb_wakeup(wb);
c5444198 999}
d3ddec76 1000
c5444198 1001/**
9ecf4866
TH
1002 * wb_start_background_writeback - start background writeback
1003 * @wb: bdi_writback to write from
c5444198
CH
1004 *
1005 * Description:
6585027a 1006 * This makes sure WB_SYNC_NONE background writeback happens. When
9ecf4866 1007 * this function returns, it is only guaranteed that for given wb
6585027a
JK
1008 * some IO is happening if we are over background dirty threshold.
1009 * Caller need not hold sb s_umount semaphore.
c5444198 1010 */
9ecf4866 1011void wb_start_background_writeback(struct bdi_writeback *wb)
c5444198 1012{
6585027a
JK
1013 /*
1014 * We just wake up the flusher thread. It will perform background
1015 * writeback as soon as there is no other work to do.
1016 */
5634cc2a 1017 trace_writeback_wake_background(wb);
9ecf4866 1018 wb_wakeup(wb);
1da177e4
LT
1019}
1020
a66979ab
DC
1021/*
1022 * Remove the inode from the writeback list it is on.
1023 */
c7f54084 1024void inode_io_list_del(struct inode *inode)
a66979ab 1025{
87e1d789 1026 struct bdi_writeback *wb;
f758eeab 1027
87e1d789 1028 wb = inode_to_wb_and_lock_list(inode);
c7f54084 1029 inode_io_list_del_locked(inode, wb);
52ebea74 1030 spin_unlock(&wb->list_lock);
a66979ab
DC
1031}
1032
6c60d2b5
DC
1033/*
1034 * mark an inode as under writeback on the sb
1035 */
1036void sb_mark_inode_writeback(struct inode *inode)
1037{
1038 struct super_block *sb = inode->i_sb;
1039 unsigned long flags;
1040
1041 if (list_empty(&inode->i_wb_list)) {
1042 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
9a46b04f 1043 if (list_empty(&inode->i_wb_list)) {
6c60d2b5 1044 list_add_tail(&inode->i_wb_list, &sb->s_inodes_wb);
9a46b04f
BF
1045 trace_sb_mark_inode_writeback(inode);
1046 }
6c60d2b5
DC
1047 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1048 }
1049}
1050
1051/*
1052 * clear an inode as under writeback on the sb
1053 */
1054void sb_clear_inode_writeback(struct inode *inode)
1055{
1056 struct super_block *sb = inode->i_sb;
1057 unsigned long flags;
1058
1059 if (!list_empty(&inode->i_wb_list)) {
1060 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
9a46b04f
BF
1061 if (!list_empty(&inode->i_wb_list)) {
1062 list_del_init(&inode->i_wb_list);
1063 trace_sb_clear_inode_writeback(inode);
1064 }
6c60d2b5
DC
1065 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1066 }
1067}
1068
6610a0bc
AM
1069/*
1070 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
1071 * furthest end of its superblock's dirty-inode list.
1072 *
1073 * Before stamping the inode's ->dirtied_when, we check to see whether it is
66f3b8e2 1074 * already the most-recently-dirtied inode on the b_dirty list. If that is
6610a0bc
AM
1075 * the case then the inode must have been redirtied while it was being written
1076 * out and we don't reset its dirtied_when.
1077 */
f758eeab 1078static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
6610a0bc 1079{
03ba3782 1080 if (!list_empty(&wb->b_dirty)) {
66f3b8e2 1081 struct inode *tail;
6610a0bc 1082
7ccf19a8 1083 tail = wb_inode(wb->b_dirty.next);
66f3b8e2 1084 if (time_before(inode->dirtied_when, tail->dirtied_when))
6610a0bc
AM
1085 inode->dirtied_when = jiffies;
1086 }
c7f54084 1087 inode_io_list_move_locked(inode, wb, &wb->b_dirty);
6610a0bc
AM
1088}
1089
c986d1e2 1090/*
66f3b8e2 1091 * requeue inode for re-scanning after bdi->b_io list is exhausted.
c986d1e2 1092 */
f758eeab 1093static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
c986d1e2 1094{
c7f54084 1095 inode_io_list_move_locked(inode, wb, &wb->b_more_io);
c986d1e2
AM
1096}
1097
1c0eeaf5
JE
1098static void inode_sync_complete(struct inode *inode)
1099{
365b94ae 1100 inode->i_state &= ~I_SYNC;
4eff96dd
JK
1101 /* If inode is clean an unused, put it into LRU now... */
1102 inode_add_lru(inode);
365b94ae 1103 /* Waiters must see I_SYNC cleared before being woken up */
1c0eeaf5
JE
1104 smp_mb();
1105 wake_up_bit(&inode->i_state, __I_SYNC);
1106}
1107
d2caa3c5
JL
1108static bool inode_dirtied_after(struct inode *inode, unsigned long t)
1109{
1110 bool ret = time_after(inode->dirtied_when, t);
1111#ifndef CONFIG_64BIT
1112 /*
1113 * For inodes being constantly redirtied, dirtied_when can get stuck.
1114 * It _appears_ to be in the future, but is actually in distant past.
1115 * This test is necessary to prevent such wrapped-around relative times
5b0830cb 1116 * from permanently stopping the whole bdi writeback.
d2caa3c5
JL
1117 */
1118 ret = ret && time_before_eq(inode->dirtied_when, jiffies);
1119#endif
1120 return ret;
1121}
1122
0ae45f63
TT
1123#define EXPIRE_DIRTY_ATIME 0x0001
1124
2c136579 1125/*
0e2f2b23 1126 * Move expired (dirtied before work->older_than_this) dirty inodes from
697e6fed 1127 * @delaying_queue to @dispatch_queue.
2c136579 1128 */
e84d0a4f 1129static int move_expired_inodes(struct list_head *delaying_queue,
2c136579 1130 struct list_head *dispatch_queue,
0ae45f63 1131 int flags,
ad4e38dd 1132 struct wb_writeback_work *work)
2c136579 1133{
0ae45f63
TT
1134 unsigned long *older_than_this = NULL;
1135 unsigned long expire_time;
5c03449d
SL
1136 LIST_HEAD(tmp);
1137 struct list_head *pos, *node;
cf137307 1138 struct super_block *sb = NULL;
5c03449d 1139 struct inode *inode;
cf137307 1140 int do_sb_sort = 0;
e84d0a4f 1141 int moved = 0;
5c03449d 1142
0ae45f63
TT
1143 if ((flags & EXPIRE_DIRTY_ATIME) == 0)
1144 older_than_this = work->older_than_this;
a2f48706
TT
1145 else if (!work->for_sync) {
1146 expire_time = jiffies - (dirtytime_expire_interval * HZ);
0ae45f63
TT
1147 older_than_this = &expire_time;
1148 }
2c136579 1149 while (!list_empty(delaying_queue)) {
7ccf19a8 1150 inode = wb_inode(delaying_queue->prev);
0ae45f63
TT
1151 if (older_than_this &&
1152 inode_dirtied_after(inode, *older_than_this))
2c136579 1153 break;
c7f54084 1154 list_move(&inode->i_io_list, &tmp);
a8855990 1155 moved++;
0ae45f63
TT
1156 if (flags & EXPIRE_DIRTY_ATIME)
1157 set_bit(__I_DIRTY_TIME_EXPIRED, &inode->i_state);
a8855990
JK
1158 if (sb_is_blkdev_sb(inode->i_sb))
1159 continue;
cf137307
JA
1160 if (sb && sb != inode->i_sb)
1161 do_sb_sort = 1;
1162 sb = inode->i_sb;
5c03449d
SL
1163 }
1164
cf137307
JA
1165 /* just one sb in list, splice to dispatch_queue and we're done */
1166 if (!do_sb_sort) {
1167 list_splice(&tmp, dispatch_queue);
e84d0a4f 1168 goto out;
cf137307
JA
1169 }
1170
5c03449d
SL
1171 /* Move inodes from one superblock together */
1172 while (!list_empty(&tmp)) {
7ccf19a8 1173 sb = wb_inode(tmp.prev)->i_sb;
5c03449d 1174 list_for_each_prev_safe(pos, node, &tmp) {
7ccf19a8 1175 inode = wb_inode(pos);
5c03449d 1176 if (inode->i_sb == sb)
c7f54084 1177 list_move(&inode->i_io_list, dispatch_queue);
5c03449d 1178 }
2c136579 1179 }
e84d0a4f
WF
1180out:
1181 return moved;
2c136579
FW
1182}
1183
1184/*
1185 * Queue all expired dirty inodes for io, eldest first.
4ea879b9
WF
1186 * Before
1187 * newly dirtied b_dirty b_io b_more_io
1188 * =============> gf edc BA
1189 * After
1190 * newly dirtied b_dirty b_io b_more_io
1191 * =============> g fBAedc
1192 * |
1193 * +--> dequeue for IO
2c136579 1194 */
ad4e38dd 1195static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work)
66f3b8e2 1196{
e84d0a4f 1197 int moved;
0ae45f63 1198
f758eeab 1199 assert_spin_locked(&wb->list_lock);
4ea879b9 1200 list_splice_init(&wb->b_more_io, &wb->b_io);
0ae45f63
TT
1201 moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, 0, work);
1202 moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
1203 EXPIRE_DIRTY_ATIME, work);
d6c10f1f
TH
1204 if (moved)
1205 wb_io_lists_populated(wb);
ad4e38dd 1206 trace_writeback_queue_io(wb, work, moved);
66f3b8e2
JA
1207}
1208
a9185b41 1209static int write_inode(struct inode *inode, struct writeback_control *wbc)
08d8e974 1210{
9fb0a7da
TH
1211 int ret;
1212
1213 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
1214 trace_writeback_write_inode_start(inode, wbc);
1215 ret = inode->i_sb->s_op->write_inode(inode, wbc);
1216 trace_writeback_write_inode(inode, wbc);
1217 return ret;
1218 }
03ba3782 1219 return 0;
08d8e974 1220}
08d8e974 1221
1da177e4 1222/*
169ebd90
JK
1223 * Wait for writeback on an inode to complete. Called with i_lock held.
1224 * Caller must make sure inode cannot go away when we drop i_lock.
01c03194 1225 */
169ebd90
JK
1226static void __inode_wait_for_writeback(struct inode *inode)
1227 __releases(inode->i_lock)
1228 __acquires(inode->i_lock)
01c03194
CH
1229{
1230 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
1231 wait_queue_head_t *wqh;
1232
1233 wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
250df6ed
DC
1234 while (inode->i_state & I_SYNC) {
1235 spin_unlock(&inode->i_lock);
74316201
N
1236 __wait_on_bit(wqh, &wq, bit_wait,
1237 TASK_UNINTERRUPTIBLE);
250df6ed 1238 spin_lock(&inode->i_lock);
58a9d3d8 1239 }
01c03194
CH
1240}
1241
169ebd90
JK
1242/*
1243 * Wait for writeback on an inode to complete. Caller must have inode pinned.
1244 */
1245void inode_wait_for_writeback(struct inode *inode)
1246{
1247 spin_lock(&inode->i_lock);
1248 __inode_wait_for_writeback(inode);
1249 spin_unlock(&inode->i_lock);
1250}
1251
1252/*
1253 * Sleep until I_SYNC is cleared. This function must be called with i_lock
1254 * held and drops it. It is aimed for callers not holding any inode reference
1255 * so once i_lock is dropped, inode can go away.
1256 */
1257static void inode_sleep_on_writeback(struct inode *inode)
1258 __releases(inode->i_lock)
1259{
1260 DEFINE_WAIT(wait);
1261 wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1262 int sleep;
1263
1264 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1265 sleep = inode->i_state & I_SYNC;
1266 spin_unlock(&inode->i_lock);
1267 if (sleep)
1268 schedule();
1269 finish_wait(wqh, &wait);
1270}
1271
ccb26b5a
JK
1272/*
1273 * Find proper writeback list for the inode depending on its current state and
1274 * possibly also change of its state while we were doing writeback. Here we
1275 * handle things such as livelock prevention or fairness of writeback among
1276 * inodes. This function can be called only by flusher thread - noone else
1277 * processes all inodes in writeback lists and requeueing inodes behind flusher
1278 * thread's back can have unexpected consequences.
1279 */
1280static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
1281 struct writeback_control *wbc)
1282{
1283 if (inode->i_state & I_FREEING)
1284 return;
1285
1286 /*
1287 * Sync livelock prevention. Each inode is tagged and synced in one
1288 * shot. If still dirty, it will be redirty_tail()'ed below. Update
1289 * the dirty time to prevent enqueue and sync it again.
1290 */
1291 if ((inode->i_state & I_DIRTY) &&
1292 (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
1293 inode->dirtied_when = jiffies;
1294
4f8ad655
JK
1295 if (wbc->pages_skipped) {
1296 /*
1297 * writeback is not making progress due to locked
1298 * buffers. Skip this inode for now.
1299 */
1300 redirty_tail(inode, wb);
1301 return;
1302 }
1303
ccb26b5a
JK
1304 if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
1305 /*
1306 * We didn't write back all the pages. nfs_writepages()
1307 * sometimes bales out without doing anything.
1308 */
1309 if (wbc->nr_to_write <= 0) {
1310 /* Slice used up. Queue for next turn. */
1311 requeue_io(inode, wb);
1312 } else {
1313 /*
1314 * Writeback blocked by something other than
1315 * congestion. Delay the inode for some time to
1316 * avoid spinning on the CPU (100% iowait)
1317 * retrying writeback of the dirty page/inode
1318 * that cannot be performed immediately.
1319 */
1320 redirty_tail(inode, wb);
1321 }
1322 } else if (inode->i_state & I_DIRTY) {
1323 /*
1324 * Filesystems can dirty the inode during writeback operations,
1325 * such as delayed allocation during submission or metadata
1326 * updates after data IO completion.
1327 */
1328 redirty_tail(inode, wb);
0ae45f63 1329 } else if (inode->i_state & I_DIRTY_TIME) {
a2f48706 1330 inode->dirtied_when = jiffies;
c7f54084 1331 inode_io_list_move_locked(inode, wb, &wb->b_dirty_time);
ccb26b5a
JK
1332 } else {
1333 /* The inode is clean. Remove from writeback lists. */
c7f54084 1334 inode_io_list_del_locked(inode, wb);
ccb26b5a
JK
1335 }
1336}
1337
01c03194 1338/*
4f8ad655
JK
1339 * Write out an inode and its dirty pages. Do not update the writeback list
1340 * linkage. That is left to the caller. The caller is also responsible for
1341 * setting I_SYNC flag and calling inode_sync_complete() to clear it.
1da177e4
LT
1342 */
1343static int
cd8ed2a4 1344__writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
1da177e4 1345{
1da177e4 1346 struct address_space *mapping = inode->i_mapping;
251d6a47 1347 long nr_to_write = wbc->nr_to_write;
01c03194 1348 unsigned dirty;
1da177e4
LT
1349 int ret;
1350
4f8ad655 1351 WARN_ON(!(inode->i_state & I_SYNC));
1da177e4 1352
9fb0a7da
TH
1353 trace_writeback_single_inode_start(inode, wbc, nr_to_write);
1354
1da177e4
LT
1355 ret = do_writepages(mapping, wbc);
1356
26821ed4
CH
1357 /*
1358 * Make sure to wait on the data before writing out the metadata.
1359 * This is important for filesystems that modify metadata on data
7747bd4b
DC
1360 * I/O completion. We don't do it for sync(2) writeback because it has a
1361 * separate, external IO completion path and ->sync_fs for guaranteeing
1362 * inode metadata is written back correctly.
26821ed4 1363 */
7747bd4b 1364 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
26821ed4 1365 int err = filemap_fdatawait(mapping);
1da177e4
LT
1366 if (ret == 0)
1367 ret = err;
1368 }
1369
5547e8aa
DM
1370 /*
1371 * Some filesystems may redirty the inode during the writeback
1372 * due to delalloc, clear dirty metadata flags right before
1373 * write_inode()
1374 */
250df6ed 1375 spin_lock(&inode->i_lock);
9c6ac78e 1376
5547e8aa 1377 dirty = inode->i_state & I_DIRTY;
a2f48706 1378 if (inode->i_state & I_DIRTY_TIME) {
0e11f644 1379 if ((dirty & I_DIRTY_INODE) ||
dc5ff2b1 1380 wbc->sync_mode == WB_SYNC_ALL ||
a2f48706
TT
1381 unlikely(inode->i_state & I_DIRTY_TIME_EXPIRED) ||
1382 unlikely(time_after(jiffies,
1383 (inode->dirtied_time_when +
1384 dirtytime_expire_interval * HZ)))) {
1385 dirty |= I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED;
1386 trace_writeback_lazytime(inode);
1387 }
1388 } else
1389 inode->i_state &= ~I_DIRTY_TIME_EXPIRED;
0ae45f63 1390 inode->i_state &= ~dirty;
9c6ac78e
TH
1391
1392 /*
1393 * Paired with smp_mb() in __mark_inode_dirty(). This allows
1394 * __mark_inode_dirty() to test i_state without grabbing i_lock -
1395 * either they see the I_DIRTY bits cleared or we see the dirtied
1396 * inode.
1397 *
1398 * I_DIRTY_PAGES is always cleared together above even if @mapping
1399 * still has dirty pages. The flag is reinstated after smp_mb() if
1400 * necessary. This guarantees that either __mark_inode_dirty()
1401 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
1402 */
1403 smp_mb();
1404
1405 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1406 inode->i_state |= I_DIRTY_PAGES;
1407
250df6ed 1408 spin_unlock(&inode->i_lock);
9c6ac78e 1409
0ae45f63
TT
1410 if (dirty & I_DIRTY_TIME)
1411 mark_inode_dirty_sync(inode);
26821ed4 1412 /* Don't write the inode if only I_DIRTY_PAGES was set */
0ae45f63 1413 if (dirty & ~I_DIRTY_PAGES) {
a9185b41 1414 int err = write_inode(inode, wbc);
1da177e4
LT
1415 if (ret == 0)
1416 ret = err;
1417 }
4f8ad655
JK
1418 trace_writeback_single_inode(inode, wbc, nr_to_write);
1419 return ret;
1420}
1421
1422/*
1423 * Write out an inode's dirty pages. Either the caller has an active reference
1424 * on the inode or the inode has I_WILL_FREE set.
1425 *
1426 * This function is designed to be called for writing back one inode which
1427 * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
1428 * and does more profound writeback list handling in writeback_sb_inodes().
1429 */
aaf25593
TH
1430static int writeback_single_inode(struct inode *inode,
1431 struct writeback_control *wbc)
4f8ad655 1432{
aaf25593 1433 struct bdi_writeback *wb;
4f8ad655
JK
1434 int ret = 0;
1435
1436 spin_lock(&inode->i_lock);
1437 if (!atomic_read(&inode->i_count))
1438 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
1439 else
1440 WARN_ON(inode->i_state & I_WILL_FREE);
1441
1442 if (inode->i_state & I_SYNC) {
1443 if (wbc->sync_mode != WB_SYNC_ALL)
1444 goto out;
1445 /*
169ebd90
JK
1446 * It's a data-integrity sync. We must wait. Since callers hold
1447 * inode reference or inode has I_WILL_FREE set, it cannot go
1448 * away under us.
4f8ad655 1449 */
169ebd90 1450 __inode_wait_for_writeback(inode);
4f8ad655
JK
1451 }
1452 WARN_ON(inode->i_state & I_SYNC);
1453 /*
f9b0e058
JK
1454 * Skip inode if it is clean and we have no outstanding writeback in
1455 * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this
1456 * function since flusher thread may be doing for example sync in
1457 * parallel and if we move the inode, it could get skipped. So here we
1458 * make sure inode is on some writeback list and leave it there unless
1459 * we have completely cleaned the inode.
4f8ad655 1460 */
0ae45f63 1461 if (!(inode->i_state & I_DIRTY_ALL) &&
f9b0e058
JK
1462 (wbc->sync_mode != WB_SYNC_ALL ||
1463 !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
4f8ad655
JK
1464 goto out;
1465 inode->i_state |= I_SYNC;
b16b1deb 1466 wbc_attach_and_unlock_inode(wbc, inode);
4f8ad655 1467
cd8ed2a4 1468 ret = __writeback_single_inode(inode, wbc);
1da177e4 1469
b16b1deb 1470 wbc_detach_inode(wbc);
aaf25593
TH
1471
1472 wb = inode_to_wb_and_lock_list(inode);
250df6ed 1473 spin_lock(&inode->i_lock);
4f8ad655
JK
1474 /*
1475 * If inode is clean, remove it from writeback lists. Otherwise don't
1476 * touch it. See comment above for explanation.
1477 */
0ae45f63 1478 if (!(inode->i_state & I_DIRTY_ALL))
c7f54084 1479 inode_io_list_del_locked(inode, wb);
4f8ad655 1480 spin_unlock(&wb->list_lock);
1c0eeaf5 1481 inode_sync_complete(inode);
4f8ad655
JK
1482out:
1483 spin_unlock(&inode->i_lock);
1da177e4
LT
1484 return ret;
1485}
1486
a88a341a 1487static long writeback_chunk_size(struct bdi_writeback *wb,
1a12d8bd 1488 struct wb_writeback_work *work)
d46db3d5
WF
1489{
1490 long pages;
1491
1492 /*
1493 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
1494 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
1495 * here avoids calling into writeback_inodes_wb() more than once.
1496 *
1497 * The intended call sequence for WB_SYNC_ALL writeback is:
1498 *
1499 * wb_writeback()
1500 * writeback_sb_inodes() <== called only once
1501 * write_cache_pages() <== called once for each inode
1502 * (quickly) tag currently dirty pages
1503 * (maybe slowly) sync all tagged pages
1504 */
1505 if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
1506 pages = LONG_MAX;
1a12d8bd 1507 else {
a88a341a 1508 pages = min(wb->avg_write_bandwidth / 2,
dcc25ae7 1509 global_wb_domain.dirty_limit / DIRTY_SCOPE);
1a12d8bd
WF
1510 pages = min(pages, work->nr_pages);
1511 pages = round_down(pages + MIN_WRITEBACK_PAGES,
1512 MIN_WRITEBACK_PAGES);
1513 }
d46db3d5
WF
1514
1515 return pages;
1516}
1517
f11c9c5c
ES
1518/*
1519 * Write a portion of b_io inodes which belong to @sb.
edadfb10 1520 *
d46db3d5 1521 * Return the number of pages and/or inodes written.
0ba13fd1
LT
1522 *
1523 * NOTE! This is called with wb->list_lock held, and will
1524 * unlock and relock that for each inode it ends up doing
1525 * IO for.
f11c9c5c 1526 */
d46db3d5
WF
1527static long writeback_sb_inodes(struct super_block *sb,
1528 struct bdi_writeback *wb,
1529 struct wb_writeback_work *work)
1da177e4 1530{
d46db3d5
WF
1531 struct writeback_control wbc = {
1532 .sync_mode = work->sync_mode,
1533 .tagged_writepages = work->tagged_writepages,
1534 .for_kupdate = work->for_kupdate,
1535 .for_background = work->for_background,
7747bd4b 1536 .for_sync = work->for_sync,
d46db3d5
WF
1537 .range_cyclic = work->range_cyclic,
1538 .range_start = 0,
1539 .range_end = LLONG_MAX,
1540 };
1541 unsigned long start_time = jiffies;
1542 long write_chunk;
1543 long wrote = 0; /* count both pages and inodes */
1544
03ba3782 1545 while (!list_empty(&wb->b_io)) {
7ccf19a8 1546 struct inode *inode = wb_inode(wb->b_io.prev);
aaf25593 1547 struct bdi_writeback *tmp_wb;
edadfb10
CH
1548
1549 if (inode->i_sb != sb) {
d46db3d5 1550 if (work->sb) {
edadfb10
CH
1551 /*
1552 * We only want to write back data for this
1553 * superblock, move all inodes not belonging
1554 * to it back onto the dirty list.
1555 */
f758eeab 1556 redirty_tail(inode, wb);
edadfb10
CH
1557 continue;
1558 }
1559
1560 /*
1561 * The inode belongs to a different superblock.
1562 * Bounce back to the caller to unpin this and
1563 * pin the next superblock.
1564 */
d46db3d5 1565 break;
edadfb10
CH
1566 }
1567
9843b76a 1568 /*
331cbdee
WL
1569 * Don't bother with new inodes or inodes being freed, first
1570 * kind does not need periodic writeout yet, and for the latter
9843b76a
CH
1571 * kind writeout is handled by the freer.
1572 */
250df6ed 1573 spin_lock(&inode->i_lock);
9843b76a 1574 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
250df6ed 1575 spin_unlock(&inode->i_lock);
fcc5c222 1576 redirty_tail(inode, wb);
7ef0d737
NP
1577 continue;
1578 }
cc1676d9
JK
1579 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
1580 /*
1581 * If this inode is locked for writeback and we are not
1582 * doing writeback-for-data-integrity, move it to
1583 * b_more_io so that writeback can proceed with the
1584 * other inodes on s_io.
1585 *
1586 * We'll have another go at writing back this inode
1587 * when we completed a full scan of b_io.
1588 */
1589 spin_unlock(&inode->i_lock);
1590 requeue_io(inode, wb);
1591 trace_writeback_sb_inodes_requeue(inode);
1592 continue;
1593 }
f0d07b7f
JK
1594 spin_unlock(&wb->list_lock);
1595
4f8ad655
JK
1596 /*
1597 * We already requeued the inode if it had I_SYNC set and we
1598 * are doing WB_SYNC_NONE writeback. So this catches only the
1599 * WB_SYNC_ALL case.
1600 */
169ebd90
JK
1601 if (inode->i_state & I_SYNC) {
1602 /* Wait for I_SYNC. This function drops i_lock... */
1603 inode_sleep_on_writeback(inode);
1604 /* Inode may be gone, start again */
ead188f9 1605 spin_lock(&wb->list_lock);
169ebd90
JK
1606 continue;
1607 }
4f8ad655 1608 inode->i_state |= I_SYNC;
b16b1deb 1609 wbc_attach_and_unlock_inode(&wbc, inode);
169ebd90 1610
a88a341a 1611 write_chunk = writeback_chunk_size(wb, work);
d46db3d5
WF
1612 wbc.nr_to_write = write_chunk;
1613 wbc.pages_skipped = 0;
250df6ed 1614
169ebd90
JK
1615 /*
1616 * We use I_SYNC to pin the inode in memory. While it is set
1617 * evict_inode() will wait so the inode cannot be freed.
1618 */
cd8ed2a4 1619 __writeback_single_inode(inode, &wbc);
250df6ed 1620
b16b1deb 1621 wbc_detach_inode(&wbc);
d46db3d5
WF
1622 work->nr_pages -= write_chunk - wbc.nr_to_write;
1623 wrote += write_chunk - wbc.nr_to_write;
590dca3a
CM
1624
1625 if (need_resched()) {
1626 /*
1627 * We're trying to balance between building up a nice
1628 * long list of IOs to improve our merge rate, and
1629 * getting those IOs out quickly for anyone throttling
1630 * in balance_dirty_pages(). cond_resched() doesn't
1631 * unplug, so get our IOs out the door before we
1632 * give up the CPU.
1633 */
1634 blk_flush_plug(current);
1635 cond_resched();
1636 }
1637
aaf25593
TH
1638 /*
1639 * Requeue @inode if still dirty. Be careful as @inode may
1640 * have been switched to another wb in the meantime.
1641 */
1642 tmp_wb = inode_to_wb_and_lock_list(inode);
4f8ad655 1643 spin_lock(&inode->i_lock);
0ae45f63 1644 if (!(inode->i_state & I_DIRTY_ALL))
d46db3d5 1645 wrote++;
aaf25593 1646 requeue_inode(inode, tmp_wb, &wbc);
4f8ad655 1647 inode_sync_complete(inode);
0f1b1fd8 1648 spin_unlock(&inode->i_lock);
590dca3a 1649
aaf25593
TH
1650 if (unlikely(tmp_wb != wb)) {
1651 spin_unlock(&tmp_wb->list_lock);
1652 spin_lock(&wb->list_lock);
1653 }
1654
d46db3d5
WF
1655 /*
1656 * bail out to wb_writeback() often enough to check
1657 * background threshold and other termination conditions.
1658 */
1659 if (wrote) {
1660 if (time_is_before_jiffies(start_time + HZ / 10UL))
1661 break;
1662 if (work->nr_pages <= 0)
1663 break;
8bc3be27 1664 }
1da177e4 1665 }
d46db3d5 1666 return wrote;
f11c9c5c
ES
1667}
1668
d46db3d5
WF
1669static long __writeback_inodes_wb(struct bdi_writeback *wb,
1670 struct wb_writeback_work *work)
f11c9c5c 1671{
d46db3d5
WF
1672 unsigned long start_time = jiffies;
1673 long wrote = 0;
38f21977 1674
f11c9c5c 1675 while (!list_empty(&wb->b_io)) {
7ccf19a8 1676 struct inode *inode = wb_inode(wb->b_io.prev);
f11c9c5c 1677 struct super_block *sb = inode->i_sb;
9ecc2738 1678
eb6ef3df 1679 if (!trylock_super(sb)) {
0e995816 1680 /*
eb6ef3df 1681 * trylock_super() may fail consistently due to
0e995816
WF
1682 * s_umount being grabbed by someone else. Don't use
1683 * requeue_io() to avoid busy retrying the inode/sb.
1684 */
1685 redirty_tail(inode, wb);
edadfb10 1686 continue;
f11c9c5c 1687 }
d46db3d5 1688 wrote += writeback_sb_inodes(sb, wb, work);
eb6ef3df 1689 up_read(&sb->s_umount);
f11c9c5c 1690
d46db3d5
WF
1691 /* refer to the same tests at the end of writeback_sb_inodes */
1692 if (wrote) {
1693 if (time_is_before_jiffies(start_time + HZ / 10UL))
1694 break;
1695 if (work->nr_pages <= 0)
1696 break;
1697 }
f11c9c5c 1698 }
66f3b8e2 1699 /* Leave any unwritten inodes on b_io */
d46db3d5 1700 return wrote;
66f3b8e2
JA
1701}
1702
7d9f073b 1703static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
0e175a18 1704 enum wb_reason reason)
edadfb10 1705{
d46db3d5
WF
1706 struct wb_writeback_work work = {
1707 .nr_pages = nr_pages,
1708 .sync_mode = WB_SYNC_NONE,
1709 .range_cyclic = 1,
0e175a18 1710 .reason = reason,
d46db3d5 1711 };
505a666e 1712 struct blk_plug plug;
edadfb10 1713
505a666e 1714 blk_start_plug(&plug);
f758eeab 1715 spin_lock(&wb->list_lock);
424b351f 1716 if (list_empty(&wb->b_io))
ad4e38dd 1717 queue_io(wb, &work);
d46db3d5 1718 __writeback_inodes_wb(wb, &work);
f758eeab 1719 spin_unlock(&wb->list_lock);
505a666e 1720 blk_finish_plug(&plug);
edadfb10 1721
d46db3d5
WF
1722 return nr_pages - work.nr_pages;
1723}
03ba3782 1724
03ba3782
JA
1725/*
1726 * Explicit flushing or periodic writeback of "old" data.
66f3b8e2 1727 *
03ba3782
JA
1728 * Define "old": the first time one of an inode's pages is dirtied, we mark the
1729 * dirtying-time in the inode's address_space. So this periodic writeback code
1730 * just walks the superblock inode list, writing back any inodes which are
1731 * older than a specific point in time.
66f3b8e2 1732 *
03ba3782
JA
1733 * Try to run once per dirty_writeback_interval. But if a writeback event
1734 * takes longer than a dirty_writeback_interval interval, then leave a
1735 * one-second gap.
66f3b8e2 1736 *
03ba3782
JA
1737 * older_than_this takes precedence over nr_to_write. So we'll only write back
1738 * all dirty pages if they are all attached to "old" mappings.
66f3b8e2 1739 */
c4a77a6c 1740static long wb_writeback(struct bdi_writeback *wb,
83ba7b07 1741 struct wb_writeback_work *work)
66f3b8e2 1742{
e98be2d5 1743 unsigned long wb_start = jiffies;
d46db3d5 1744 long nr_pages = work->nr_pages;
0dc83bd3 1745 unsigned long oldest_jif;
a5989bdc 1746 struct inode *inode;
d46db3d5 1747 long progress;
505a666e 1748 struct blk_plug plug;
66f3b8e2 1749
0dc83bd3
JK
1750 oldest_jif = jiffies;
1751 work->older_than_this = &oldest_jif;
38f21977 1752
505a666e 1753 blk_start_plug(&plug);
e8dfc305 1754 spin_lock(&wb->list_lock);
03ba3782
JA
1755 for (;;) {
1756 /*
d3ddec76 1757 * Stop writeback when nr_pages has been consumed
03ba3782 1758 */
83ba7b07 1759 if (work->nr_pages <= 0)
03ba3782 1760 break;
66f3b8e2 1761
aa373cf5
JK
1762 /*
1763 * Background writeout and kupdate-style writeback may
1764 * run forever. Stop them if there is other work to do
1765 * so that e.g. sync can proceed. They'll be restarted
1766 * after the other works are all done.
1767 */
1768 if ((work->for_background || work->for_kupdate) &&
f0054bb1 1769 !list_empty(&wb->work_list))
aa373cf5
JK
1770 break;
1771
38f21977 1772 /*
d3ddec76
WF
1773 * For background writeout, stop when we are below the
1774 * background dirty threshold
38f21977 1775 */
aa661bbe 1776 if (work->for_background && !wb_over_bg_thresh(wb))
03ba3782 1777 break;
38f21977 1778
1bc36b64
JK
1779 /*
1780 * Kupdate and background works are special and we want to
1781 * include all inodes that need writing. Livelock avoidance is
1782 * handled by these works yielding to any other work so we are
1783 * safe.
1784 */
ba9aa839 1785 if (work->for_kupdate) {
0dc83bd3 1786 oldest_jif = jiffies -
ba9aa839 1787 msecs_to_jiffies(dirty_expire_interval * 10);
1bc36b64 1788 } else if (work->for_background)
0dc83bd3 1789 oldest_jif = jiffies;
028c2dd1 1790
5634cc2a 1791 trace_writeback_start(wb, work);
e8dfc305 1792 if (list_empty(&wb->b_io))
ad4e38dd 1793 queue_io(wb, work);
83ba7b07 1794 if (work->sb)
d46db3d5 1795 progress = writeback_sb_inodes(work->sb, wb, work);
edadfb10 1796 else
d46db3d5 1797 progress = __writeback_inodes_wb(wb, work);
5634cc2a 1798 trace_writeback_written(wb, work);
028c2dd1 1799
e98be2d5 1800 wb_update_bandwidth(wb, wb_start);
03ba3782
JA
1801
1802 /*
e6fb6da2
WF
1803 * Did we write something? Try for more
1804 *
1805 * Dirty inodes are moved to b_io for writeback in batches.
1806 * The completion of the current batch does not necessarily
1807 * mean the overall work is done. So we keep looping as long
1808 * as made some progress on cleaning pages or inodes.
03ba3782 1809 */
d46db3d5 1810 if (progress)
71fd05a8
JA
1811 continue;
1812 /*
e6fb6da2 1813 * No more inodes for IO, bail
71fd05a8 1814 */
b7a2441f 1815 if (list_empty(&wb->b_more_io))
03ba3782 1816 break;
71fd05a8
JA
1817 /*
1818 * Nothing written. Wait for some inode to
1819 * become available for writeback. Otherwise
1820 * we'll just busyloop.
1821 */
bace9248
TE
1822 trace_writeback_wait(wb, work);
1823 inode = wb_inode(wb->b_more_io.prev);
1824 spin_lock(&inode->i_lock);
1825 spin_unlock(&wb->list_lock);
1826 /* This function drops i_lock... */
1827 inode_sleep_on_writeback(inode);
1828 spin_lock(&wb->list_lock);
03ba3782 1829 }
e8dfc305 1830 spin_unlock(&wb->list_lock);
505a666e 1831 blk_finish_plug(&plug);
03ba3782 1832
d46db3d5 1833 return nr_pages - work->nr_pages;
03ba3782
JA
1834}
1835
1836/*
83ba7b07 1837 * Return the next wb_writeback_work struct that hasn't been processed yet.
03ba3782 1838 */
f0054bb1 1839static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
03ba3782 1840{
83ba7b07 1841 struct wb_writeback_work *work = NULL;
03ba3782 1842
f0054bb1
TH
1843 spin_lock_bh(&wb->work_lock);
1844 if (!list_empty(&wb->work_list)) {
1845 work = list_entry(wb->work_list.next,
83ba7b07
CH
1846 struct wb_writeback_work, list);
1847 list_del_init(&work->list);
03ba3782 1848 }
f0054bb1 1849 spin_unlock_bh(&wb->work_lock);
83ba7b07 1850 return work;
03ba3782
JA
1851}
1852
6585027a
JK
1853static long wb_check_background_flush(struct bdi_writeback *wb)
1854{
aa661bbe 1855 if (wb_over_bg_thresh(wb)) {
6585027a
JK
1856
1857 struct wb_writeback_work work = {
1858 .nr_pages = LONG_MAX,
1859 .sync_mode = WB_SYNC_NONE,
1860 .for_background = 1,
1861 .range_cyclic = 1,
0e175a18 1862 .reason = WB_REASON_BACKGROUND,
6585027a
JK
1863 };
1864
1865 return wb_writeback(wb, &work);
1866 }
1867
1868 return 0;
1869}
1870
03ba3782
JA
1871static long wb_check_old_data_flush(struct bdi_writeback *wb)
1872{
1873 unsigned long expired;
1874 long nr_pages;
1875
69b62d01
JA
1876 /*
1877 * When set to zero, disable periodic writeback
1878 */
1879 if (!dirty_writeback_interval)
1880 return 0;
1881
03ba3782
JA
1882 expired = wb->last_old_flush +
1883 msecs_to_jiffies(dirty_writeback_interval * 10);
1884 if (time_before(jiffies, expired))
1885 return 0;
1886
1887 wb->last_old_flush = jiffies;
cdf01dd5 1888 nr_pages = get_nr_dirty_pages();
03ba3782 1889
c4a77a6c 1890 if (nr_pages) {
83ba7b07 1891 struct wb_writeback_work work = {
c4a77a6c
JA
1892 .nr_pages = nr_pages,
1893 .sync_mode = WB_SYNC_NONE,
1894 .for_kupdate = 1,
1895 .range_cyclic = 1,
0e175a18 1896 .reason = WB_REASON_PERIODIC,
c4a77a6c
JA
1897 };
1898
83ba7b07 1899 return wb_writeback(wb, &work);
c4a77a6c 1900 }
03ba3782
JA
1901
1902 return 0;
1903}
1904
85009b4f
JA
1905static long wb_check_start_all(struct bdi_writeback *wb)
1906{
1907 long nr_pages;
1908
1909 if (!test_bit(WB_start_all, &wb->state))
1910 return 0;
1911
1912 nr_pages = get_nr_dirty_pages();
1913 if (nr_pages) {
1914 struct wb_writeback_work work = {
1915 .nr_pages = wb_split_bdi_pages(wb, nr_pages),
1916 .sync_mode = WB_SYNC_NONE,
1917 .range_cyclic = 1,
1918 .reason = wb->start_all_reason,
1919 };
1920
1921 nr_pages = wb_writeback(wb, &work);
1922 }
1923
1924 clear_bit(WB_start_all, &wb->state);
1925 return nr_pages;
1926}
1927
1928
03ba3782
JA
1929/*
1930 * Retrieve work items and do the writeback they describe
1931 */
25d130ba 1932static long wb_do_writeback(struct bdi_writeback *wb)
03ba3782 1933{
83ba7b07 1934 struct wb_writeback_work *work;
c4a77a6c 1935 long wrote = 0;
03ba3782 1936
4452226e 1937 set_bit(WB_writeback_running, &wb->state);
f0054bb1 1938 while ((work = get_next_work_item(wb)) != NULL) {
5634cc2a 1939 trace_writeback_exec(wb, work);
83ba7b07 1940 wrote += wb_writeback(wb, work);
4a3a485b 1941 finish_writeback_work(wb, work);
03ba3782
JA
1942 }
1943
85009b4f
JA
1944 /*
1945 * Check for a flush-everything request
1946 */
1947 wrote += wb_check_start_all(wb);
1948
03ba3782
JA
1949 /*
1950 * Check for periodic writeback, kupdated() style
1951 */
1952 wrote += wb_check_old_data_flush(wb);
6585027a 1953 wrote += wb_check_background_flush(wb);
4452226e 1954 clear_bit(WB_writeback_running, &wb->state);
03ba3782
JA
1955
1956 return wrote;
1957}
1958
1959/*
1960 * Handle writeback of dirty data for the device backed by this bdi. Also
839a8e86 1961 * reschedules periodically and does kupdated style flushing.
03ba3782 1962 */
f0054bb1 1963void wb_workfn(struct work_struct *work)
03ba3782 1964{
839a8e86
TH
1965 struct bdi_writeback *wb = container_of(to_delayed_work(work),
1966 struct bdi_writeback, dwork);
03ba3782
JA
1967 long pages_written;
1968
f0054bb1 1969 set_worker_desc("flush-%s", dev_name(wb->bdi->dev));
766f9164 1970 current->flags |= PF_SWAPWRITE;
455b2864 1971
839a8e86 1972 if (likely(!current_is_workqueue_rescuer() ||
4452226e 1973 !test_bit(WB_registered, &wb->state))) {
6467716a 1974 /*
f0054bb1 1975 * The normal path. Keep writing back @wb until its
839a8e86 1976 * work_list is empty. Note that this path is also taken
f0054bb1 1977 * if @wb is shutting down even when we're running off the
839a8e86 1978 * rescuer as work_list needs to be drained.
6467716a 1979 */
839a8e86 1980 do {
25d130ba 1981 pages_written = wb_do_writeback(wb);
839a8e86 1982 trace_writeback_pages_written(pages_written);
f0054bb1 1983 } while (!list_empty(&wb->work_list));
839a8e86
TH
1984 } else {
1985 /*
1986 * bdi_wq can't get enough workers and we're running off
1987 * the emergency worker. Don't hog it. Hopefully, 1024 is
1988 * enough for efficient IO.
1989 */
f0054bb1 1990 pages_written = writeback_inodes_wb(wb, 1024,
839a8e86 1991 WB_REASON_FORKER_THREAD);
455b2864 1992 trace_writeback_pages_written(pages_written);
03ba3782
JA
1993 }
1994
f0054bb1 1995 if (!list_empty(&wb->work_list))
b8b78495 1996 wb_wakeup(wb);
6ca738d6 1997 else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
f0054bb1 1998 wb_wakeup_delayed(wb);
455b2864 1999
839a8e86 2000 current->flags &= ~PF_SWAPWRITE;
03ba3782
JA
2001}
2002
595043e5
JA
2003/*
2004 * Start writeback of `nr_pages' pages on this bdi. If `nr_pages' is zero,
2005 * write back the whole world.
2006 */
2007static void __wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
e8e8a0c6 2008 enum wb_reason reason)
595043e5
JA
2009{
2010 struct bdi_writeback *wb;
2011
2012 if (!bdi_has_dirty_io(bdi))
2013 return;
2014
2015 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
e8e8a0c6 2016 wb_start_writeback(wb, reason);
595043e5
JA
2017}
2018
2019void wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2020 enum wb_reason reason)
2021{
595043e5 2022 rcu_read_lock();
e8e8a0c6 2023 __wakeup_flusher_threads_bdi(bdi, reason);
595043e5
JA
2024 rcu_read_unlock();
2025}
2026
03ba3782 2027/*
9ba4b2df 2028 * Wakeup the flusher threads to start writeback of all currently dirty pages
03ba3782 2029 */
9ba4b2df 2030void wakeup_flusher_threads(enum wb_reason reason)
03ba3782 2031{
b8c2f347 2032 struct backing_dev_info *bdi;
03ba3782 2033
51350ea0
KK
2034 /*
2035 * If we are expecting writeback progress we must submit plugged IO.
2036 */
2037 if (blk_needs_flush_plug(current))
2038 blk_schedule_flush_plug(current);
2039
b8c2f347 2040 rcu_read_lock();
595043e5 2041 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
e8e8a0c6 2042 __wakeup_flusher_threads_bdi(bdi, reason);
cfc4ba53 2043 rcu_read_unlock();
1da177e4
LT
2044}
2045
a2f48706
TT
2046/*
2047 * Wake up bdi's periodically to make sure dirtytime inodes gets
2048 * written back periodically. We deliberately do *not* check the
2049 * b_dirtytime list in wb_has_dirty_io(), since this would cause the
2050 * kernel to be constantly waking up once there are any dirtytime
2051 * inodes on the system. So instead we define a separate delayed work
2052 * function which gets called much more rarely. (By default, only
2053 * once every 12 hours.)
2054 *
2055 * If there is any other write activity going on in the file system,
2056 * this function won't be necessary. But if the only thing that has
2057 * happened on the file system is a dirtytime inode caused by an atime
2058 * update, we need this infrastructure below to make sure that inode
2059 * eventually gets pushed out to disk.
2060 */
2061static void wakeup_dirtytime_writeback(struct work_struct *w);
2062static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);
2063
2064static void wakeup_dirtytime_writeback(struct work_struct *w)
2065{
2066 struct backing_dev_info *bdi;
2067
2068 rcu_read_lock();
2069 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
001fe6f6 2070 struct bdi_writeback *wb;
001fe6f6 2071
b817525a 2072 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
6fdf860f
TH
2073 if (!list_empty(&wb->b_dirty_time))
2074 wb_wakeup(wb);
a2f48706
TT
2075 }
2076 rcu_read_unlock();
2077 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2078}
2079
2080static int __init start_dirtytime_writeback(void)
2081{
2082 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2083 return 0;
2084}
2085__initcall(start_dirtytime_writeback);
2086
1efff914
TT
2087int dirtytime_interval_handler(struct ctl_table *table, int write,
2088 void __user *buffer, size_t *lenp, loff_t *ppos)
2089{
2090 int ret;
2091
2092 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2093 if (ret == 0 && write)
2094 mod_delayed_work(system_wq, &dirtytime_work, 0);
2095 return ret;
2096}
2097
03ba3782
JA
2098static noinline void block_dump___mark_inode_dirty(struct inode *inode)
2099{
2100 if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
2101 struct dentry *dentry;
2102 const char *name = "?";
2103
2104 dentry = d_find_alias(inode);
2105 if (dentry) {
2106 spin_lock(&dentry->d_lock);
2107 name = (const char *) dentry->d_name.name;
2108 }
2109 printk(KERN_DEBUG
2110 "%s(%d): dirtied inode %lu (%s) on %s\n",
2111 current->comm, task_pid_nr(current), inode->i_ino,
2112 name, inode->i_sb->s_id);
2113 if (dentry) {
2114 spin_unlock(&dentry->d_lock);
2115 dput(dentry);
2116 }
2117 }
2118}
2119
2120/**
0117d427
MCC
2121 * __mark_inode_dirty - internal function
2122 *
2123 * @inode: inode to mark
2124 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
2125 *
2126 * Mark an inode as dirty. Callers should use mark_inode_dirty or
2127 * mark_inode_dirty_sync.
1da177e4 2128 *
03ba3782
JA
2129 * Put the inode on the super block's dirty list.
2130 *
2131 * CAREFUL! We mark it dirty unconditionally, but move it onto the
2132 * dirty list only if it is hashed or if it refers to a blockdev.
2133 * If it was not hashed, it will never be added to the dirty list
2134 * even if it is later hashed, as it will have been marked dirty already.
2135 *
2136 * In short, make sure you hash any inodes _before_ you start marking
2137 * them dirty.
1da177e4 2138 *
03ba3782
JA
2139 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
2140 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of
2141 * the kernel-internal blockdev inode represents the dirtying time of the
2142 * blockdev's pages. This is why for I_DIRTY_PAGES we always use
2143 * page->mapping->host, so the page-dirtying time is recorded in the internal
2144 * blockdev inode.
1da177e4 2145 */
03ba3782 2146void __mark_inode_dirty(struct inode *inode, int flags)
1da177e4 2147{
03ba3782 2148 struct super_block *sb = inode->i_sb;
0ae45f63
TT
2149 int dirtytime;
2150
2151 trace_writeback_mark_inode_dirty(inode, flags);
1da177e4 2152
03ba3782
JA
2153 /*
2154 * Don't do this for I_DIRTY_PAGES - that doesn't actually
2155 * dirty the inode itself
2156 */
0e11f644 2157 if (flags & (I_DIRTY_INODE | I_DIRTY_TIME)) {
9fb0a7da
TH
2158 trace_writeback_dirty_inode_start(inode, flags);
2159
03ba3782 2160 if (sb->s_op->dirty_inode)
aa385729 2161 sb->s_op->dirty_inode(inode, flags);
9fb0a7da
TH
2162
2163 trace_writeback_dirty_inode(inode, flags);
03ba3782 2164 }
0ae45f63
TT
2165 if (flags & I_DIRTY_INODE)
2166 flags &= ~I_DIRTY_TIME;
2167 dirtytime = flags & I_DIRTY_TIME;
03ba3782
JA
2168
2169 /*
9c6ac78e
TH
2170 * Paired with smp_mb() in __writeback_single_inode() for the
2171 * following lockless i_state test. See there for details.
03ba3782
JA
2172 */
2173 smp_mb();
2174
0ae45f63
TT
2175 if (((inode->i_state & flags) == flags) ||
2176 (dirtytime && (inode->i_state & I_DIRTY_INODE)))
03ba3782
JA
2177 return;
2178
2179 if (unlikely(block_dump))
2180 block_dump___mark_inode_dirty(inode);
2181
250df6ed 2182 spin_lock(&inode->i_lock);
0ae45f63
TT
2183 if (dirtytime && (inode->i_state & I_DIRTY_INODE))
2184 goto out_unlock_inode;
03ba3782
JA
2185 if ((inode->i_state & flags) != flags) {
2186 const int was_dirty = inode->i_state & I_DIRTY;
2187
52ebea74
TH
2188 inode_attach_wb(inode, NULL);
2189
0ae45f63
TT
2190 if (flags & I_DIRTY_INODE)
2191 inode->i_state &= ~I_DIRTY_TIME;
03ba3782
JA
2192 inode->i_state |= flags;
2193
2194 /*
2195 * If the inode is being synced, just update its dirty state.
2196 * The unlocker will place the inode on the appropriate
2197 * superblock list, based upon its state.
2198 */
2199 if (inode->i_state & I_SYNC)
250df6ed 2200 goto out_unlock_inode;
03ba3782
JA
2201
2202 /*
2203 * Only add valid (hashed) inodes to the superblock's
2204 * dirty list. Add blockdev inodes as well.
2205 */
2206 if (!S_ISBLK(inode->i_mode)) {
1d3382cb 2207 if (inode_unhashed(inode))
250df6ed 2208 goto out_unlock_inode;
03ba3782 2209 }
a4ffdde6 2210 if (inode->i_state & I_FREEING)
250df6ed 2211 goto out_unlock_inode;
03ba3782
JA
2212
2213 /*
2214 * If the inode was already on b_dirty/b_io/b_more_io, don't
2215 * reposition it (that would break b_dirty time-ordering).
2216 */
2217 if (!was_dirty) {
87e1d789 2218 struct bdi_writeback *wb;
d6c10f1f 2219 struct list_head *dirty_list;
a66979ab 2220 bool wakeup_bdi = false;
253c34e9 2221
87e1d789 2222 wb = locked_inode_to_wb_and_lock_list(inode);
253c34e9 2223
0747259d
TH
2224 WARN(bdi_cap_writeback_dirty(wb->bdi) &&
2225 !test_bit(WB_registered, &wb->state),
2226 "bdi-%s not registered\n", wb->bdi->name);
03ba3782
JA
2227
2228 inode->dirtied_when = jiffies;
a2f48706
TT
2229 if (dirtytime)
2230 inode->dirtied_time_when = jiffies;
d6c10f1f 2231
0e11f644 2232 if (inode->i_state & I_DIRTY)
0747259d 2233 dirty_list = &wb->b_dirty;
a2f48706 2234 else
0747259d 2235 dirty_list = &wb->b_dirty_time;
d6c10f1f 2236
c7f54084 2237 wakeup_bdi = inode_io_list_move_locked(inode, wb,
d6c10f1f
TH
2238 dirty_list);
2239
0747259d 2240 spin_unlock(&wb->list_lock);
0ae45f63 2241 trace_writeback_dirty_inode_enqueue(inode);
a66979ab 2242
d6c10f1f
TH
2243 /*
2244 * If this is the first dirty inode for this bdi,
2245 * we have to wake-up the corresponding bdi thread
2246 * to make sure background write-back happens
2247 * later.
2248 */
0747259d
TH
2249 if (bdi_cap_writeback_dirty(wb->bdi) && wakeup_bdi)
2250 wb_wakeup_delayed(wb);
a66979ab 2251 return;
1da177e4 2252 }
1da177e4 2253 }
250df6ed
DC
2254out_unlock_inode:
2255 spin_unlock(&inode->i_lock);
03ba3782
JA
2256}
2257EXPORT_SYMBOL(__mark_inode_dirty);
2258
e97fedb9
DC
2259/*
2260 * The @s_sync_lock is used to serialise concurrent sync operations
2261 * to avoid lock contention problems with concurrent wait_sb_inodes() calls.
2262 * Concurrent callers will block on the s_sync_lock rather than doing contending
2263 * walks. The queueing maintains sync(2) required behaviour as all the IO that
2264 * has been issued up to the time this function is enter is guaranteed to be
2265 * completed by the time we have gained the lock and waited for all IO that is
2266 * in progress regardless of the order callers are granted the lock.
2267 */
b6e51316 2268static void wait_sb_inodes(struct super_block *sb)
03ba3782 2269{
6c60d2b5 2270 LIST_HEAD(sync_list);
03ba3782
JA
2271
2272 /*
2273 * We need to be protected against the filesystem going from
2274 * r/o to r/w or vice versa.
2275 */
b6e51316 2276 WARN_ON(!rwsem_is_locked(&sb->s_umount));
03ba3782 2277
e97fedb9 2278 mutex_lock(&sb->s_sync_lock);
03ba3782
JA
2279
2280 /*
6c60d2b5
DC
2281 * Splice the writeback list onto a temporary list to avoid waiting on
2282 * inodes that have started writeback after this point.
2283 *
2284 * Use rcu_read_lock() to keep the inodes around until we have a
2285 * reference. s_inode_wblist_lock protects sb->s_inodes_wb as well as
2286 * the local list because inodes can be dropped from either by writeback
2287 * completion.
2288 */
2289 rcu_read_lock();
2290 spin_lock_irq(&sb->s_inode_wblist_lock);
2291 list_splice_init(&sb->s_inodes_wb, &sync_list);
2292
2293 /*
2294 * Data integrity sync. Must wait for all pages under writeback, because
2295 * there may have been pages dirtied before our sync call, but which had
2296 * writeout started before we write it out. In which case, the inode
2297 * may not be on the dirty list, but we still have to wait for that
2298 * writeout.
03ba3782 2299 */
6c60d2b5
DC
2300 while (!list_empty(&sync_list)) {
2301 struct inode *inode = list_first_entry(&sync_list, struct inode,
2302 i_wb_list);
250df6ed 2303 struct address_space *mapping = inode->i_mapping;
03ba3782 2304
6c60d2b5
DC
2305 /*
2306 * Move each inode back to the wb list before we drop the lock
2307 * to preserve consistency between i_wb_list and the mapping
2308 * writeback tag. Writeback completion is responsible to remove
2309 * the inode from either list once the writeback tag is cleared.
2310 */
2311 list_move_tail(&inode->i_wb_list, &sb->s_inodes_wb);
2312
2313 /*
2314 * The mapping can appear untagged while still on-list since we
2315 * do not have the mapping lock. Skip it here, wb completion
2316 * will remove it.
2317 */
2318 if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
2319 continue;
2320
2321 spin_unlock_irq(&sb->s_inode_wblist_lock);
2322
250df6ed 2323 spin_lock(&inode->i_lock);
6c60d2b5 2324 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) {
250df6ed 2325 spin_unlock(&inode->i_lock);
6c60d2b5
DC
2326
2327 spin_lock_irq(&sb->s_inode_wblist_lock);
03ba3782 2328 continue;
250df6ed 2329 }
03ba3782 2330 __iget(inode);
250df6ed 2331 spin_unlock(&inode->i_lock);
6c60d2b5 2332 rcu_read_unlock();
03ba3782 2333
aa750fd7
JN
2334 /*
2335 * We keep the error status of individual mapping so that
2336 * applications can catch the writeback error using fsync(2).
2337 * See filemap_fdatawait_keep_errors() for details.
2338 */
2339 filemap_fdatawait_keep_errors(mapping);
03ba3782
JA
2340
2341 cond_resched();
2342
6c60d2b5
DC
2343 iput(inode);
2344
2345 rcu_read_lock();
2346 spin_lock_irq(&sb->s_inode_wblist_lock);
03ba3782 2347 }
6c60d2b5
DC
2348 spin_unlock_irq(&sb->s_inode_wblist_lock);
2349 rcu_read_unlock();
e97fedb9 2350 mutex_unlock(&sb->s_sync_lock);
1da177e4
LT
2351}
2352
f30a7d0c
TH
2353static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2354 enum wb_reason reason, bool skip_if_busy)
1da177e4 2355{
cc395d7f 2356 DEFINE_WB_COMPLETION_ONSTACK(done);
83ba7b07 2357 struct wb_writeback_work work = {
6e6938b6
WF
2358 .sb = sb,
2359 .sync_mode = WB_SYNC_NONE,
2360 .tagged_writepages = 1,
2361 .done = &done,
2362 .nr_pages = nr,
0e175a18 2363 .reason = reason,
3c4d7165 2364 };
e7972912 2365 struct backing_dev_info *bdi = sb->s_bdi;
d8a8559c 2366
e7972912 2367 if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
6eedc701 2368 return;
cf37e972 2369 WARN_ON(!rwsem_is_locked(&sb->s_umount));
f30a7d0c 2370
db125360 2371 bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy);
cc395d7f 2372 wb_wait_for_completion(bdi, &done);
e913fc82 2373}
f30a7d0c
TH
2374
2375/**
2376 * writeback_inodes_sb_nr - writeback dirty inodes from given super_block
2377 * @sb: the superblock
2378 * @nr: the number of pages to write
2379 * @reason: reason why some writeback work initiated
2380 *
2381 * Start writeback on some inodes on this super_block. No guarantees are made
2382 * on how many (if any) will be written, and this function does not wait
2383 * for IO completion of submitted IO.
2384 */
2385void writeback_inodes_sb_nr(struct super_block *sb,
2386 unsigned long nr,
2387 enum wb_reason reason)
2388{
2389 __writeback_inodes_sb_nr(sb, nr, reason, false);
2390}
3259f8be
CM
2391EXPORT_SYMBOL(writeback_inodes_sb_nr);
2392
2393/**
2394 * writeback_inodes_sb - writeback dirty inodes from given super_block
2395 * @sb: the superblock
786228ab 2396 * @reason: reason why some writeback work was initiated
3259f8be
CM
2397 *
2398 * Start writeback on some inodes on this super_block. No guarantees are made
2399 * on how many (if any) will be written, and this function does not wait
2400 * for IO completion of submitted IO.
2401 */
0e175a18 2402void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
3259f8be 2403{
0e175a18 2404 return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
3259f8be 2405}
0e3c9a22 2406EXPORT_SYMBOL(writeback_inodes_sb);
e913fc82 2407
17bd55d0 2408/**
8264c321 2409 * try_to_writeback_inodes_sb - try to start writeback if none underway
17bd55d0 2410 * @sb: the superblock
8264c321 2411 * @reason: reason why some writeback work was initiated
17bd55d0 2412 *
8264c321 2413 * Invoke __writeback_inodes_sb_nr if no writeback is currently underway.
17bd55d0 2414 */
8264c321 2415void try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
17bd55d0 2416{
10ee27a0 2417 if (!down_read_trylock(&sb->s_umount))
8264c321 2418 return;
10ee27a0 2419
8264c321 2420 __writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason, true);
10ee27a0 2421 up_read(&sb->s_umount);
3259f8be 2422}
10ee27a0 2423EXPORT_SYMBOL(try_to_writeback_inodes_sb);
3259f8be 2424
d8a8559c
JA
2425/**
2426 * sync_inodes_sb - sync sb inode pages
0dc83bd3 2427 * @sb: the superblock
d8a8559c
JA
2428 *
2429 * This function writes and waits on any dirty inode belonging to this
0dc83bd3 2430 * super_block.
d8a8559c 2431 */
0dc83bd3 2432void sync_inodes_sb(struct super_block *sb)
d8a8559c 2433{
cc395d7f 2434 DEFINE_WB_COMPLETION_ONSTACK(done);
83ba7b07 2435 struct wb_writeback_work work = {
3c4d7165
CH
2436 .sb = sb,
2437 .sync_mode = WB_SYNC_ALL,
2438 .nr_pages = LONG_MAX,
2439 .range_cyclic = 0,
83ba7b07 2440 .done = &done,
0e175a18 2441 .reason = WB_REASON_SYNC,
7747bd4b 2442 .for_sync = 1,
3c4d7165 2443 };
e7972912 2444 struct backing_dev_info *bdi = sb->s_bdi;
3c4d7165 2445
006a0973
TH
2446 /*
2447 * Can't skip on !bdi_has_dirty() because we should wait for !dirty
2448 * inodes under writeback and I_DIRTY_TIME inodes ignored by
2449 * bdi_has_dirty() need to be written out too.
2450 */
2451 if (bdi == &noop_backing_dev_info)
6eedc701 2452 return;
cf37e972
CH
2453 WARN_ON(!rwsem_is_locked(&sb->s_umount));
2454
7fc5854f
TH
2455 /* protect against inode wb switch, see inode_switch_wbs_work_fn() */
2456 bdi_down_write_wb_switch_rwsem(bdi);
db125360 2457 bdi_split_work_to_wbs(bdi, &work, false);
cc395d7f 2458 wb_wait_for_completion(bdi, &done);
7fc5854f 2459 bdi_up_write_wb_switch_rwsem(bdi);
83ba7b07 2460
b6e51316 2461 wait_sb_inodes(sb);
1da177e4 2462}
d8a8559c 2463EXPORT_SYMBOL(sync_inodes_sb);
1da177e4 2464
1da177e4 2465/**
7f04c26d
AA
2466 * write_inode_now - write an inode to disk
2467 * @inode: inode to write to disk
2468 * @sync: whether the write should be synchronous or not
2469 *
2470 * This function commits an inode to disk immediately if it is dirty. This is
2471 * primarily needed by knfsd.
1da177e4 2472 *
7f04c26d 2473 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
1da177e4 2474 */
1da177e4
LT
2475int write_inode_now(struct inode *inode, int sync)
2476{
1da177e4
LT
2477 struct writeback_control wbc = {
2478 .nr_to_write = LONG_MAX,
18914b18 2479 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
111ebb6e
OH
2480 .range_start = 0,
2481 .range_end = LLONG_MAX,
1da177e4
LT
2482 };
2483
2484 if (!mapping_cap_writeback_dirty(inode->i_mapping))
49364ce2 2485 wbc.nr_to_write = 0;
1da177e4
LT
2486
2487 might_sleep();
aaf25593 2488 return writeback_single_inode(inode, &wbc);
1da177e4
LT
2489}
2490EXPORT_SYMBOL(write_inode_now);
2491
2492/**
2493 * sync_inode - write an inode and its pages to disk.
2494 * @inode: the inode to sync
2495 * @wbc: controls the writeback mode
2496 *
2497 * sync_inode() will write an inode and its pages to disk. It will also
2498 * correctly update the inode on its superblock's dirty inode lists and will
2499 * update inode->i_state.
2500 *
2501 * The caller must have a ref on the inode.
2502 */
2503int sync_inode(struct inode *inode, struct writeback_control *wbc)
2504{
aaf25593 2505 return writeback_single_inode(inode, wbc);
1da177e4
LT
2506}
2507EXPORT_SYMBOL(sync_inode);
c3765016
CH
2508
2509/**
c691b9d9 2510 * sync_inode_metadata - write an inode to disk
c3765016
CH
2511 * @inode: the inode to sync
2512 * @wait: wait for I/O to complete.
2513 *
c691b9d9 2514 * Write an inode to disk and adjust its dirty state after completion.
c3765016
CH
2515 *
2516 * Note: only writes the actual inode, no associated data or other metadata.
2517 */
2518int sync_inode_metadata(struct inode *inode, int wait)
2519{
2520 struct writeback_control wbc = {
2521 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
2522 .nr_to_write = 0, /* metadata-only */
2523 };
2524
2525 return sync_inode(inode, &wbc);
2526}
2527EXPORT_SYMBOL(sync_inode_metadata);