cpufreq: Register drivers only after CPU devices have been registered
[linux-2.6-block.git] / fs / fs-writeback.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * fs/fs-writeback.c
4 *
5 * Copyright (C) 2002, Linus Torvalds.
6 *
7 * Contains all the functions related to writing back and waiting
8 * upon dirty inodes against superblocks, and writing back dirty
9 * pages against inodes. ie: data writeback. Writeout of the
10 * inode itself is not handled here.
11 *
e1f8e874 12 * 10Apr2002 Andrew Morton
1da177e4
LT
13 * Split out of fs/inode.c
14 * Additions for address_space-based writeback
15 */
16
17#include <linux/kernel.h>
630d9c47 18#include <linux/export.h>
1da177e4 19#include <linux/spinlock.h>
5a0e3ad6 20#include <linux/slab.h>
1da177e4
LT
21#include <linux/sched.h>
22#include <linux/fs.h>
23#include <linux/mm.h>
bc31b86a 24#include <linux/pagemap.h>
03ba3782 25#include <linux/kthread.h>
1da177e4
LT
26#include <linux/writeback.h>
27#include <linux/blkdev.h>
28#include <linux/backing-dev.h>
455b2864 29#include <linux/tracepoint.h>
719ea2fb 30#include <linux/device.h>
21c6321f 31#include <linux/memcontrol.h>
07f3f05c 32#include "internal.h"
1da177e4 33
bc31b86a
WF
34/*
35 * 4MB minimal write chunk size
36 */
09cbfeaf 37#define MIN_WRITEBACK_PAGES (4096UL >> (PAGE_SHIFT - 10))
bc31b86a 38
c4a77a6c
JA
39/*
40 * Passed into wb_writeback(), essentially a subset of writeback_control
41 */
83ba7b07 42struct wb_writeback_work {
c4a77a6c
JA
43 long nr_pages;
44 struct super_block *sb;
0dc83bd3 45 unsigned long *older_than_this;
c4a77a6c 46 enum writeback_sync_modes sync_mode;
6e6938b6 47 unsigned int tagged_writepages:1;
52957fe1
HS
48 unsigned int for_kupdate:1;
49 unsigned int range_cyclic:1;
50 unsigned int for_background:1;
7747bd4b 51 unsigned int for_sync:1; /* sync(2) WB_SYNC_ALL writeback */
ac7b19a3 52 unsigned int auto_free:1; /* free on completion */
0e175a18 53 enum wb_reason reason; /* why was writeback initiated? */
c4a77a6c 54
8010c3b6 55 struct list_head list; /* pending work list */
cc395d7f 56 struct wb_completion *done; /* set if the caller waits */
03ba3782
JA
57};
58
a2f48706
TT
59/*
60 * If an inode is constantly having its pages dirtied, but then the
61 * updates stop dirtytime_expire_interval seconds in the past, it's
62 * possible for the worst case time between when an inode has its
63 * timestamps updated and when they finally get written out to be two
64 * dirtytime_expire_intervals. We set the default to 12 hours (in
65 * seconds), which means most of the time inodes will have their
66 * timestamps written to disk after 12 hours, but in the worst case a
67 * few inodes might not their timestamps updated for 24 hours.
68 */
69unsigned int dirtytime_expire_interval = 12 * 60 * 60;
70
7ccf19a8
NP
71static inline struct inode *wb_inode(struct list_head *head)
72{
c7f54084 73 return list_entry(head, struct inode, i_io_list);
7ccf19a8
NP
74}
75
15eb77a0
WF
76/*
77 * Include the creation of the trace points after defining the
78 * wb_writeback_work structure and inline functions so that the definition
79 * remains local to this file.
80 */
81#define CREATE_TRACE_POINTS
82#include <trace/events/writeback.h>
83
774016b2
SW
84EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
85
d6c10f1f
TH
86static bool wb_io_lists_populated(struct bdi_writeback *wb)
87{
88 if (wb_has_dirty_io(wb)) {
89 return false;
90 } else {
91 set_bit(WB_has_dirty_io, &wb->state);
95a46c65 92 WARN_ON_ONCE(!wb->avg_write_bandwidth);
766a9d6e
TH
93 atomic_long_add(wb->avg_write_bandwidth,
94 &wb->bdi->tot_write_bandwidth);
d6c10f1f
TH
95 return true;
96 }
97}
98
99static void wb_io_lists_depopulated(struct bdi_writeback *wb)
100{
101 if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
766a9d6e 102 list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
d6c10f1f 103 clear_bit(WB_has_dirty_io, &wb->state);
95a46c65
TH
104 WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
105 &wb->bdi->tot_write_bandwidth) < 0);
766a9d6e 106 }
d6c10f1f
TH
107}
108
109/**
c7f54084 110 * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list
d6c10f1f
TH
111 * @inode: inode to be moved
112 * @wb: target bdi_writeback
bbbc3c1c 113 * @head: one of @wb->b_{dirty|io|more_io|dirty_time}
d6c10f1f 114 *
c7f54084 115 * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io.
d6c10f1f
TH
116 * Returns %true if @inode is the first occupant of the !dirty_time IO
117 * lists; otherwise, %false.
118 */
c7f54084 119static bool inode_io_list_move_locked(struct inode *inode,
d6c10f1f
TH
120 struct bdi_writeback *wb,
121 struct list_head *head)
122{
123 assert_spin_locked(&wb->list_lock);
124
c7f54084 125 list_move(&inode->i_io_list, head);
d6c10f1f
TH
126
127 /* dirty_time doesn't count as dirty_io until expiration */
128 if (head != &wb->b_dirty_time)
129 return wb_io_lists_populated(wb);
130
131 wb_io_lists_depopulated(wb);
132 return false;
133}
134
135/**
c7f54084 136 * inode_io_list_del_locked - remove an inode from its bdi_writeback IO list
d6c10f1f
TH
137 * @inode: inode to be removed
138 * @wb: bdi_writeback @inode is being removed from
139 *
140 * Remove @inode which may be on one of @wb->b_{dirty|io|more_io} lists and
141 * clear %WB_has_dirty_io if all are empty afterwards.
142 */
c7f54084 143static void inode_io_list_del_locked(struct inode *inode,
d6c10f1f
TH
144 struct bdi_writeback *wb)
145{
146 assert_spin_locked(&wb->list_lock);
147
c7f54084 148 list_del_init(&inode->i_io_list);
d6c10f1f
TH
149 wb_io_lists_depopulated(wb);
150}
151
f0054bb1 152static void wb_wakeup(struct bdi_writeback *wb)
5acda9d1 153{
f0054bb1
TH
154 spin_lock_bh(&wb->work_lock);
155 if (test_bit(WB_registered, &wb->state))
156 mod_delayed_work(bdi_wq, &wb->dwork, 0);
157 spin_unlock_bh(&wb->work_lock);
5acda9d1
JK
158}
159
4a3a485b
TE
160static void finish_writeback_work(struct bdi_writeback *wb,
161 struct wb_writeback_work *work)
162{
163 struct wb_completion *done = work->done;
164
165 if (work->auto_free)
166 kfree(work);
8e00c4e9
TH
167 if (done) {
168 wait_queue_head_t *waitq = done->waitq;
169
170 /* @done can't be accessed after the following dec */
171 if (atomic_dec_and_test(&done->cnt))
172 wake_up_all(waitq);
173 }
4a3a485b
TE
174}
175
f0054bb1
TH
176static void wb_queue_work(struct bdi_writeback *wb,
177 struct wb_writeback_work *work)
6585027a 178{
5634cc2a 179 trace_writeback_queue(wb, work);
6585027a 180
cc395d7f
TH
181 if (work->done)
182 atomic_inc(&work->done->cnt);
4a3a485b
TE
183
184 spin_lock_bh(&wb->work_lock);
185
186 if (test_bit(WB_registered, &wb->state)) {
187 list_add_tail(&work->list, &wb->work_list);
188 mod_delayed_work(bdi_wq, &wb->dwork, 0);
189 } else
190 finish_writeback_work(wb, work);
191
f0054bb1 192 spin_unlock_bh(&wb->work_lock);
1da177e4
LT
193}
194
cc395d7f
TH
195/**
196 * wb_wait_for_completion - wait for completion of bdi_writeback_works
cc395d7f
TH
197 * @done: target wb_completion
198 *
199 * Wait for one or more work items issued to @bdi with their ->done field
5b9cce4c
TH
200 * set to @done, which should have been initialized with
201 * DEFINE_WB_COMPLETION(). This function returns after all such work items
202 * are completed. Work items which are waited upon aren't freed
cc395d7f
TH
203 * automatically on completion.
204 */
5b9cce4c 205void wb_wait_for_completion(struct wb_completion *done)
cc395d7f
TH
206{
207 atomic_dec(&done->cnt); /* put down the initial count */
5b9cce4c 208 wait_event(*done->waitq, !atomic_read(&done->cnt));
cc395d7f
TH
209}
210
703c2708
TH
211#ifdef CONFIG_CGROUP_WRITEBACK
212
55a694df
TH
213/*
214 * Parameters for foreign inode detection, see wbc_detach_inode() to see
215 * how they're used.
216 *
217 * These paramters are inherently heuristical as the detection target
218 * itself is fuzzy. All we want to do is detaching an inode from the
219 * current owner if it's being written to by some other cgroups too much.
220 *
221 * The current cgroup writeback is built on the assumption that multiple
222 * cgroups writing to the same inode concurrently is very rare and a mode
223 * of operation which isn't well supported. As such, the goal is not
224 * taking too long when a different cgroup takes over an inode while
225 * avoiding too aggressive flip-flops from occasional foreign writes.
226 *
227 * We record, very roughly, 2s worth of IO time history and if more than
228 * half of that is foreign, trigger the switch. The recording is quantized
229 * to 16 slots. To avoid tiny writes from swinging the decision too much,
230 * writes smaller than 1/8 of avg size are ignored.
231 */
2a814908
TH
232#define WB_FRN_TIME_SHIFT 13 /* 1s = 2^13, upto 8 secs w/ 16bit */
233#define WB_FRN_TIME_AVG_SHIFT 3 /* avg = avg * 7/8 + new * 1/8 */
55a694df 234#define WB_FRN_TIME_CUT_DIV 8 /* ignore rounds < avg / 8 */
2a814908
TH
235#define WB_FRN_TIME_PERIOD (2 * (1 << WB_FRN_TIME_SHIFT)) /* 2s */
236
237#define WB_FRN_HIST_SLOTS 16 /* inode->i_wb_frn_history is 16bit */
238#define WB_FRN_HIST_UNIT (WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS)
239 /* each slot's duration is 2s / 16 */
240#define WB_FRN_HIST_THR_SLOTS (WB_FRN_HIST_SLOTS / 2)
241 /* if foreign slots >= 8, switch */
242#define WB_FRN_HIST_MAX_SLOTS (WB_FRN_HIST_THR_SLOTS / 2 + 1)
243 /* one round can affect upto 5 slots */
6444f47e 244#define WB_FRN_MAX_IN_FLIGHT 1024 /* don't queue too many concurrently */
2a814908 245
a1a0e23e
TH
246static atomic_t isw_nr_in_flight = ATOMIC_INIT(0);
247static struct workqueue_struct *isw_wq;
248
21c6321f
TH
249void __inode_attach_wb(struct inode *inode, struct page *page)
250{
251 struct backing_dev_info *bdi = inode_to_bdi(inode);
252 struct bdi_writeback *wb = NULL;
253
254 if (inode_cgwb_enabled(inode)) {
255 struct cgroup_subsys_state *memcg_css;
256
257 if (page) {
258 memcg_css = mem_cgroup_css_from_page(page);
259 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
260 } else {
261 /* must pin memcg_css, see wb_get_create() */
262 memcg_css = task_get_css(current, memory_cgrp_id);
263 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
264 css_put(memcg_css);
265 }
266 }
267
268 if (!wb)
269 wb = &bdi->wb;
270
271 /*
272 * There may be multiple instances of this function racing to
273 * update the same inode. Use cmpxchg() to tell the winner.
274 */
275 if (unlikely(cmpxchg(&inode->i_wb, NULL, wb)))
276 wb_put(wb);
277}
9b0eb69b 278EXPORT_SYMBOL_GPL(__inode_attach_wb);
21c6321f 279
87e1d789
TH
280/**
281 * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it
282 * @inode: inode of interest with i_lock held
283 *
284 * Returns @inode's wb with its list_lock held. @inode->i_lock must be
285 * held on entry and is released on return. The returned wb is guaranteed
286 * to stay @inode's associated wb until its list_lock is released.
287 */
288static struct bdi_writeback *
289locked_inode_to_wb_and_lock_list(struct inode *inode)
290 __releases(&inode->i_lock)
291 __acquires(&wb->list_lock)
292{
293 while (true) {
294 struct bdi_writeback *wb = inode_to_wb(inode);
295
296 /*
297 * inode_to_wb() association is protected by both
298 * @inode->i_lock and @wb->list_lock but list_lock nests
299 * outside i_lock. Drop i_lock and verify that the
300 * association hasn't changed after acquiring list_lock.
301 */
302 wb_get(wb);
303 spin_unlock(&inode->i_lock);
304 spin_lock(&wb->list_lock);
87e1d789 305
aaa2cacf 306 /* i_wb may have changed inbetween, can't use inode_to_wb() */
614a4e37
TH
307 if (likely(wb == inode->i_wb)) {
308 wb_put(wb); /* @inode already has ref */
309 return wb;
310 }
87e1d789
TH
311
312 spin_unlock(&wb->list_lock);
614a4e37 313 wb_put(wb);
87e1d789
TH
314 cpu_relax();
315 spin_lock(&inode->i_lock);
316 }
317}
318
319/**
320 * inode_to_wb_and_lock_list - determine an inode's wb and lock it
321 * @inode: inode of interest
322 *
323 * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held
324 * on entry.
325 */
326static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
327 __acquires(&wb->list_lock)
328{
329 spin_lock(&inode->i_lock);
330 return locked_inode_to_wb_and_lock_list(inode);
331}
332
682aa8e1
TH
333struct inode_switch_wbs_context {
334 struct inode *inode;
335 struct bdi_writeback *new_wb;
336
337 struct rcu_head rcu_head;
338 struct work_struct work;
339};
340
7fc5854f
TH
341static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi)
342{
343 down_write(&bdi->wb_switch_rwsem);
344}
345
346static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi)
347{
348 up_write(&bdi->wb_switch_rwsem);
349}
350
682aa8e1
TH
351static void inode_switch_wbs_work_fn(struct work_struct *work)
352{
353 struct inode_switch_wbs_context *isw =
354 container_of(work, struct inode_switch_wbs_context, work);
355 struct inode *inode = isw->inode;
7fc5854f 356 struct backing_dev_info *bdi = inode_to_bdi(inode);
d10c8095
TH
357 struct address_space *mapping = inode->i_mapping;
358 struct bdi_writeback *old_wb = inode->i_wb;
682aa8e1 359 struct bdi_writeback *new_wb = isw->new_wb;
04edf02c
MW
360 XA_STATE(xas, &mapping->i_pages, 0);
361 struct page *page;
d10c8095 362 bool switched = false;
682aa8e1 363
7fc5854f
TH
364 /*
365 * If @inode switches cgwb membership while sync_inodes_sb() is
366 * being issued, sync_inodes_sb() might miss it. Synchronize.
367 */
368 down_read(&bdi->wb_switch_rwsem);
369
682aa8e1
TH
370 /*
371 * By the time control reaches here, RCU grace period has passed
372 * since I_WB_SWITCH assertion and all wb stat update transactions
373 * between unlocked_inode_to_wb_begin/end() are guaranteed to be
b93b0163 374 * synchronizing against the i_pages lock.
d10c8095 375 *
b93b0163 376 * Grabbing old_wb->list_lock, inode->i_lock and the i_pages lock
d10c8095
TH
377 * gives us exclusion against all wb related operations on @inode
378 * including IO list manipulations and stat updates.
682aa8e1 379 */
d10c8095
TH
380 if (old_wb < new_wb) {
381 spin_lock(&old_wb->list_lock);
382 spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING);
383 } else {
384 spin_lock(&new_wb->list_lock);
385 spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING);
386 }
682aa8e1 387 spin_lock(&inode->i_lock);
b93b0163 388 xa_lock_irq(&mapping->i_pages);
d10c8095
TH
389
390 /*
391 * Once I_FREEING is visible under i_lock, the eviction path owns
c7f54084 392 * the inode and we shouldn't modify ->i_io_list.
d10c8095
TH
393 */
394 if (unlikely(inode->i_state & I_FREEING))
395 goto skip_switch;
396
3a8e9ac8
TH
397 trace_inode_switch_wbs(inode, old_wb, new_wb);
398
d10c8095
TH
399 /*
400 * Count and transfer stats. Note that PAGECACHE_TAG_DIRTY points
401 * to possibly dirty pages while PAGECACHE_TAG_WRITEBACK points to
b93b0163 402 * pages actually under writeback.
d10c8095 403 */
04edf02c
MW
404 xas_for_each_marked(&xas, page, ULONG_MAX, PAGECACHE_TAG_DIRTY) {
405 if (PageDirty(page)) {
3e8f399d
NB
406 dec_wb_stat(old_wb, WB_RECLAIMABLE);
407 inc_wb_stat(new_wb, WB_RECLAIMABLE);
d10c8095
TH
408 }
409 }
410
04edf02c
MW
411 xas_set(&xas, 0);
412 xas_for_each_marked(&xas, page, ULONG_MAX, PAGECACHE_TAG_WRITEBACK) {
413 WARN_ON_ONCE(!PageWriteback(page));
414 dec_wb_stat(old_wb, WB_WRITEBACK);
415 inc_wb_stat(new_wb, WB_WRITEBACK);
d10c8095
TH
416 }
417
418 wb_get(new_wb);
419
420 /*
421 * Transfer to @new_wb's IO list if necessary. The specific list
422 * @inode was on is ignored and the inode is put on ->b_dirty which
423 * is always correct including from ->b_dirty_time. The transfer
424 * preserves @inode->dirtied_when ordering.
425 */
c7f54084 426 if (!list_empty(&inode->i_io_list)) {
d10c8095
TH
427 struct inode *pos;
428
c7f54084 429 inode_io_list_del_locked(inode, old_wb);
d10c8095 430 inode->i_wb = new_wb;
c7f54084 431 list_for_each_entry(pos, &new_wb->b_dirty, i_io_list)
d10c8095
TH
432 if (time_after_eq(inode->dirtied_when,
433 pos->dirtied_when))
434 break;
c7f54084 435 inode_io_list_move_locked(inode, new_wb, pos->i_io_list.prev);
d10c8095
TH
436 } else {
437 inode->i_wb = new_wb;
438 }
682aa8e1 439
d10c8095 440 /* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */
682aa8e1
TH
441 inode->i_wb_frn_winner = 0;
442 inode->i_wb_frn_avg_time = 0;
443 inode->i_wb_frn_history = 0;
d10c8095
TH
444 switched = true;
445skip_switch:
682aa8e1
TH
446 /*
447 * Paired with load_acquire in unlocked_inode_to_wb_begin() and
448 * ensures that the new wb is visible if they see !I_WB_SWITCH.
449 */
450 smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH);
451
b93b0163 452 xa_unlock_irq(&mapping->i_pages);
682aa8e1 453 spin_unlock(&inode->i_lock);
d10c8095
TH
454 spin_unlock(&new_wb->list_lock);
455 spin_unlock(&old_wb->list_lock);
682aa8e1 456
7fc5854f
TH
457 up_read(&bdi->wb_switch_rwsem);
458
d10c8095
TH
459 if (switched) {
460 wb_wakeup(new_wb);
461 wb_put(old_wb);
462 }
682aa8e1 463 wb_put(new_wb);
d10c8095
TH
464
465 iput(inode);
682aa8e1 466 kfree(isw);
a1a0e23e
TH
467
468 atomic_dec(&isw_nr_in_flight);
682aa8e1
TH
469}
470
471static void inode_switch_wbs_rcu_fn(struct rcu_head *rcu_head)
472{
473 struct inode_switch_wbs_context *isw = container_of(rcu_head,
474 struct inode_switch_wbs_context, rcu_head);
475
476 /* needs to grab bh-unsafe locks, bounce to work item */
477 INIT_WORK(&isw->work, inode_switch_wbs_work_fn);
a1a0e23e 478 queue_work(isw_wq, &isw->work);
682aa8e1
TH
479}
480
481/**
482 * inode_switch_wbs - change the wb association of an inode
483 * @inode: target inode
484 * @new_wb_id: ID of the new wb
485 *
486 * Switch @inode's wb association to the wb identified by @new_wb_id. The
487 * switching is performed asynchronously and may fail silently.
488 */
489static void inode_switch_wbs(struct inode *inode, int new_wb_id)
490{
491 struct backing_dev_info *bdi = inode_to_bdi(inode);
492 struct cgroup_subsys_state *memcg_css;
493 struct inode_switch_wbs_context *isw;
494
495 /* noop if seems to be already in progress */
496 if (inode->i_state & I_WB_SWITCH)
497 return;
498
6444f47e
TH
499 /* avoid queueing a new switch if too many are already in flight */
500 if (atomic_read(&isw_nr_in_flight) > WB_FRN_MAX_IN_FLIGHT)
7fc5854f
TH
501 return;
502
682aa8e1
TH
503 isw = kzalloc(sizeof(*isw), GFP_ATOMIC);
504 if (!isw)
6444f47e 505 return;
682aa8e1
TH
506
507 /* find and pin the new wb */
508 rcu_read_lock();
509 memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys);
510 if (memcg_css)
511 isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
512 rcu_read_unlock();
513 if (!isw->new_wb)
514 goto out_free;
515
516 /* while holding I_WB_SWITCH, no one else can update the association */
517 spin_lock(&inode->i_lock);
1751e8a6 518 if (!(inode->i_sb->s_flags & SB_ACTIVE) ||
a1a0e23e
TH
519 inode->i_state & (I_WB_SWITCH | I_FREEING) ||
520 inode_to_wb(inode) == isw->new_wb) {
521 spin_unlock(&inode->i_lock);
522 goto out_free;
523 }
682aa8e1 524 inode->i_state |= I_WB_SWITCH;
74524955 525 __iget(inode);
682aa8e1
TH
526 spin_unlock(&inode->i_lock);
527
682aa8e1
TH
528 isw->inode = inode;
529
530 /*
531 * In addition to synchronizing among switchers, I_WB_SWITCH tells
b93b0163
MW
532 * the RCU protected stat update paths to grab the i_page
533 * lock so that stat transfer can synchronize against them.
682aa8e1
TH
534 * Let's continue after I_WB_SWITCH is guaranteed to be visible.
535 */
536 call_rcu(&isw->rcu_head, inode_switch_wbs_rcu_fn);
ec084de9
JX
537
538 atomic_inc(&isw_nr_in_flight);
6444f47e 539 return;
682aa8e1
TH
540
541out_free:
542 if (isw->new_wb)
543 wb_put(isw->new_wb);
544 kfree(isw);
545}
546
b16b1deb
TH
547/**
548 * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
549 * @wbc: writeback_control of interest
550 * @inode: target inode
551 *
552 * @inode is locked and about to be written back under the control of @wbc.
553 * Record @inode's writeback context into @wbc and unlock the i_lock. On
554 * writeback completion, wbc_detach_inode() should be called. This is used
555 * to track the cgroup writeback context.
556 */
557void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
558 struct inode *inode)
559{
dd73e4b7
TH
560 if (!inode_cgwb_enabled(inode)) {
561 spin_unlock(&inode->i_lock);
562 return;
563 }
564
b16b1deb 565 wbc->wb = inode_to_wb(inode);
2a814908
TH
566 wbc->inode = inode;
567
568 wbc->wb_id = wbc->wb->memcg_css->id;
569 wbc->wb_lcand_id = inode->i_wb_frn_winner;
570 wbc->wb_tcand_id = 0;
571 wbc->wb_bytes = 0;
572 wbc->wb_lcand_bytes = 0;
573 wbc->wb_tcand_bytes = 0;
574
b16b1deb
TH
575 wb_get(wbc->wb);
576 spin_unlock(&inode->i_lock);
e8a7abf5
TH
577
578 /*
579 * A dying wb indicates that the memcg-blkcg mapping has changed
580 * and a new wb is already serving the memcg. Switch immediately.
581 */
582 if (unlikely(wb_dying(wbc->wb)))
583 inode_switch_wbs(inode, wbc->wb_id);
b16b1deb 584}
9b0eb69b 585EXPORT_SYMBOL_GPL(wbc_attach_and_unlock_inode);
b16b1deb
TH
586
587/**
2a814908
TH
588 * wbc_detach_inode - disassociate wbc from inode and perform foreign detection
589 * @wbc: writeback_control of the just finished writeback
b16b1deb
TH
590 *
591 * To be called after a writeback attempt of an inode finishes and undoes
592 * wbc_attach_and_unlock_inode(). Can be called under any context.
2a814908
TH
593 *
594 * As concurrent write sharing of an inode is expected to be very rare and
595 * memcg only tracks page ownership on first-use basis severely confining
596 * the usefulness of such sharing, cgroup writeback tracks ownership
597 * per-inode. While the support for concurrent write sharing of an inode
598 * is deemed unnecessary, an inode being written to by different cgroups at
599 * different points in time is a lot more common, and, more importantly,
600 * charging only by first-use can too readily lead to grossly incorrect
601 * behaviors (single foreign page can lead to gigabytes of writeback to be
602 * incorrectly attributed).
603 *
604 * To resolve this issue, cgroup writeback detects the majority dirtier of
605 * an inode and transfers the ownership to it. To avoid unnnecessary
606 * oscillation, the detection mechanism keeps track of history and gives
607 * out the switch verdict only if the foreign usage pattern is stable over
608 * a certain amount of time and/or writeback attempts.
609 *
610 * On each writeback attempt, @wbc tries to detect the majority writer
611 * using Boyer-Moore majority vote algorithm. In addition to the byte
612 * count from the majority voting, it also counts the bytes written for the
613 * current wb and the last round's winner wb (max of last round's current
614 * wb, the winner from two rounds ago, and the last round's majority
615 * candidate). Keeping track of the historical winner helps the algorithm
616 * to semi-reliably detect the most active writer even when it's not the
617 * absolute majority.
618 *
619 * Once the winner of the round is determined, whether the winner is
620 * foreign or not and how much IO time the round consumed is recorded in
621 * inode->i_wb_frn_history. If the amount of recorded foreign IO time is
622 * over a certain threshold, the switch verdict is given.
b16b1deb
TH
623 */
624void wbc_detach_inode(struct writeback_control *wbc)
625{
2a814908
TH
626 struct bdi_writeback *wb = wbc->wb;
627 struct inode *inode = wbc->inode;
dd73e4b7
TH
628 unsigned long avg_time, max_bytes, max_time;
629 u16 history;
2a814908
TH
630 int max_id;
631
dd73e4b7
TH
632 if (!wb)
633 return;
634
635 history = inode->i_wb_frn_history;
636 avg_time = inode->i_wb_frn_avg_time;
637
2a814908
TH
638 /* pick the winner of this round */
639 if (wbc->wb_bytes >= wbc->wb_lcand_bytes &&
640 wbc->wb_bytes >= wbc->wb_tcand_bytes) {
641 max_id = wbc->wb_id;
642 max_bytes = wbc->wb_bytes;
643 } else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) {
644 max_id = wbc->wb_lcand_id;
645 max_bytes = wbc->wb_lcand_bytes;
646 } else {
647 max_id = wbc->wb_tcand_id;
648 max_bytes = wbc->wb_tcand_bytes;
649 }
650
651 /*
652 * Calculate the amount of IO time the winner consumed and fold it
653 * into the running average kept per inode. If the consumed IO
654 * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for
655 * deciding whether to switch or not. This is to prevent one-off
656 * small dirtiers from skewing the verdict.
657 */
658 max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT,
659 wb->avg_write_bandwidth);
660 if (avg_time)
661 avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) -
662 (avg_time >> WB_FRN_TIME_AVG_SHIFT);
663 else
664 avg_time = max_time; /* immediate catch up on first run */
665
666 if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) {
667 int slots;
668
669 /*
670 * The switch verdict is reached if foreign wb's consume
671 * more than a certain proportion of IO time in a
672 * WB_FRN_TIME_PERIOD. This is loosely tracked by 16 slot
673 * history mask where each bit represents one sixteenth of
674 * the period. Determine the number of slots to shift into
675 * history from @max_time.
676 */
677 slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT),
678 (unsigned long)WB_FRN_HIST_MAX_SLOTS);
679 history <<= slots;
680 if (wbc->wb_id != max_id)
681 history |= (1U << slots) - 1;
682
3a8e9ac8
TH
683 if (history)
684 trace_inode_foreign_history(inode, wbc, history);
685
2a814908
TH
686 /*
687 * Switch if the current wb isn't the consistent winner.
688 * If there are multiple closely competing dirtiers, the
689 * inode may switch across them repeatedly over time, which
690 * is okay. The main goal is avoiding keeping an inode on
691 * the wrong wb for an extended period of time.
692 */
682aa8e1
TH
693 if (hweight32(history) > WB_FRN_HIST_THR_SLOTS)
694 inode_switch_wbs(inode, max_id);
2a814908
TH
695 }
696
697 /*
698 * Multiple instances of this function may race to update the
699 * following fields but we don't mind occassional inaccuracies.
700 */
701 inode->i_wb_frn_winner = max_id;
702 inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX);
703 inode->i_wb_frn_history = history;
704
b16b1deb
TH
705 wb_put(wbc->wb);
706 wbc->wb = NULL;
707}
9b0eb69b 708EXPORT_SYMBOL_GPL(wbc_detach_inode);
b16b1deb 709
2a814908 710/**
34e51a5e 711 * wbc_account_cgroup_owner - account writeback to update inode cgroup ownership
2a814908
TH
712 * @wbc: writeback_control of the writeback in progress
713 * @page: page being written out
714 * @bytes: number of bytes being written out
715 *
716 * @bytes from @page are about to written out during the writeback
717 * controlled by @wbc. Keep the book for foreign inode detection. See
718 * wbc_detach_inode().
719 */
34e51a5e
TH
720void wbc_account_cgroup_owner(struct writeback_control *wbc, struct page *page,
721 size_t bytes)
2a814908 722{
66311422 723 struct cgroup_subsys_state *css;
2a814908
TH
724 int id;
725
726 /*
727 * pageout() path doesn't attach @wbc to the inode being written
728 * out. This is intentional as we don't want the function to block
729 * behind a slow cgroup. Ultimately, we want pageout() to kick off
730 * regular writeback instead of writing things out itself.
731 */
27b36d8f 732 if (!wbc->wb || wbc->no_cgroup_owner)
2a814908
TH
733 return;
734
66311422
TH
735 css = mem_cgroup_css_from_page(page);
736 /* dead cgroups shouldn't contribute to inode ownership arbitration */
737 if (!(css->flags & CSS_ONLINE))
738 return;
739
740 id = css->id;
2a814908
TH
741
742 if (id == wbc->wb_id) {
743 wbc->wb_bytes += bytes;
744 return;
745 }
746
747 if (id == wbc->wb_lcand_id)
748 wbc->wb_lcand_bytes += bytes;
749
750 /* Boyer-Moore majority vote algorithm */
751 if (!wbc->wb_tcand_bytes)
752 wbc->wb_tcand_id = id;
753 if (id == wbc->wb_tcand_id)
754 wbc->wb_tcand_bytes += bytes;
755 else
756 wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes);
757}
34e51a5e 758EXPORT_SYMBOL_GPL(wbc_account_cgroup_owner);
2a814908 759
703c2708
TH
760/**
761 * inode_congested - test whether an inode is congested
60292bcc 762 * @inode: inode to test for congestion (may be NULL)
703c2708
TH
763 * @cong_bits: mask of WB_[a]sync_congested bits to test
764 *
765 * Tests whether @inode is congested. @cong_bits is the mask of congestion
766 * bits to test and the return value is the mask of set bits.
767 *
768 * If cgroup writeback is enabled for @inode, the congestion state is
769 * determined by whether the cgwb (cgroup bdi_writeback) for the blkcg
770 * associated with @inode is congested; otherwise, the root wb's congestion
771 * state is used.
60292bcc
TH
772 *
773 * @inode is allowed to be NULL as this function is often called on
774 * mapping->host which is NULL for the swapper space.
703c2708
TH
775 */
776int inode_congested(struct inode *inode, int cong_bits)
777{
5cb8b824
TH
778 /*
779 * Once set, ->i_wb never becomes NULL while the inode is alive.
780 * Start transaction iff ->i_wb is visible.
781 */
aaa2cacf 782 if (inode && inode_to_wb_is_valid(inode)) {
5cb8b824 783 struct bdi_writeback *wb;
2e898e4c
GT
784 struct wb_lock_cookie lock_cookie = {};
785 bool congested;
5cb8b824 786
2e898e4c 787 wb = unlocked_inode_to_wb_begin(inode, &lock_cookie);
5cb8b824 788 congested = wb_congested(wb, cong_bits);
2e898e4c 789 unlocked_inode_to_wb_end(inode, &lock_cookie);
5cb8b824 790 return congested;
703c2708
TH
791 }
792
793 return wb_congested(&inode_to_bdi(inode)->wb, cong_bits);
794}
795EXPORT_SYMBOL_GPL(inode_congested);
796
f2b65121
TH
797/**
798 * wb_split_bdi_pages - split nr_pages to write according to bandwidth
799 * @wb: target bdi_writeback to split @nr_pages to
800 * @nr_pages: number of pages to write for the whole bdi
801 *
802 * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
803 * relation to the total write bandwidth of all wb's w/ dirty inodes on
804 * @wb->bdi.
805 */
806static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
807{
808 unsigned long this_bw = wb->avg_write_bandwidth;
809 unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
810
811 if (nr_pages == LONG_MAX)
812 return LONG_MAX;
813
814 /*
815 * This may be called on clean wb's and proportional distribution
816 * may not make sense, just use the original @nr_pages in those
817 * cases. In general, we wanna err on the side of writing more.
818 */
819 if (!tot_bw || this_bw >= tot_bw)
820 return nr_pages;
821 else
822 return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw);
823}
824
db125360
TH
825/**
826 * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
827 * @bdi: target backing_dev_info
828 * @base_work: wb_writeback_work to issue
829 * @skip_if_busy: skip wb's which already have writeback in progress
830 *
831 * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
832 * have dirty inodes. If @base_work->nr_page isn't %LONG_MAX, it's
833 * distributed to the busy wbs according to each wb's proportion in the
834 * total active write bandwidth of @bdi.
835 */
836static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
837 struct wb_writeback_work *base_work,
838 bool skip_if_busy)
839{
b817525a 840 struct bdi_writeback *last_wb = NULL;
b33e18f6
TH
841 struct bdi_writeback *wb = list_entry(&bdi->wb_list,
842 struct bdi_writeback, bdi_node);
db125360
TH
843
844 might_sleep();
db125360
TH
845restart:
846 rcu_read_lock();
b817525a 847 list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) {
5b9cce4c 848 DEFINE_WB_COMPLETION(fallback_work_done, bdi);
8a1270cd
TH
849 struct wb_writeback_work fallback_work;
850 struct wb_writeback_work *work;
851 long nr_pages;
852
b817525a
TH
853 if (last_wb) {
854 wb_put(last_wb);
855 last_wb = NULL;
856 }
857
006a0973
TH
858 /* SYNC_ALL writes out I_DIRTY_TIME too */
859 if (!wb_has_dirty_io(wb) &&
860 (base_work->sync_mode == WB_SYNC_NONE ||
861 list_empty(&wb->b_dirty_time)))
862 continue;
863 if (skip_if_busy && writeback_in_progress(wb))
db125360
TH
864 continue;
865
8a1270cd
TH
866 nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages);
867
868 work = kmalloc(sizeof(*work), GFP_ATOMIC);
869 if (work) {
870 *work = *base_work;
871 work->nr_pages = nr_pages;
872 work->auto_free = 1;
873 wb_queue_work(wb, work);
874 continue;
db125360 875 }
8a1270cd
TH
876
877 /* alloc failed, execute synchronously using on-stack fallback */
878 work = &fallback_work;
879 *work = *base_work;
880 work->nr_pages = nr_pages;
881 work->auto_free = 0;
882 work->done = &fallback_work_done;
883
884 wb_queue_work(wb, work);
885
b817525a
TH
886 /*
887 * Pin @wb so that it stays on @bdi->wb_list. This allows
888 * continuing iteration from @wb after dropping and
889 * regrabbing rcu read lock.
890 */
891 wb_get(wb);
892 last_wb = wb;
893
8a1270cd 894 rcu_read_unlock();
5b9cce4c 895 wb_wait_for_completion(&fallback_work_done);
8a1270cd 896 goto restart;
db125360
TH
897 }
898 rcu_read_unlock();
b817525a
TH
899
900 if (last_wb)
901 wb_put(last_wb);
db125360
TH
902}
903
d62241c7
TH
904/**
905 * cgroup_writeback_by_id - initiate cgroup writeback from bdi and memcg IDs
906 * @bdi_id: target bdi id
907 * @memcg_id: target memcg css id
b46ec1da 908 * @nr: number of pages to write, 0 for best-effort dirty flushing
d62241c7
TH
909 * @reason: reason why some writeback work initiated
910 * @done: target wb_completion
911 *
912 * Initiate flush of the bdi_writeback identified by @bdi_id and @memcg_id
913 * with the specified parameters.
914 */
915int cgroup_writeback_by_id(u64 bdi_id, int memcg_id, unsigned long nr,
916 enum wb_reason reason, struct wb_completion *done)
917{
918 struct backing_dev_info *bdi;
919 struct cgroup_subsys_state *memcg_css;
920 struct bdi_writeback *wb;
921 struct wb_writeback_work *work;
922 int ret;
923
924 /* lookup bdi and memcg */
925 bdi = bdi_get_by_id(bdi_id);
926 if (!bdi)
927 return -ENOENT;
928
929 rcu_read_lock();
930 memcg_css = css_from_id(memcg_id, &memory_cgrp_subsys);
931 if (memcg_css && !css_tryget(memcg_css))
932 memcg_css = NULL;
933 rcu_read_unlock();
934 if (!memcg_css) {
935 ret = -ENOENT;
936 goto out_bdi_put;
937 }
938
939 /*
940 * And find the associated wb. If the wb isn't there already
941 * there's nothing to flush, don't create one.
942 */
943 wb = wb_get_lookup(bdi, memcg_css);
944 if (!wb) {
945 ret = -ENOENT;
946 goto out_css_put;
947 }
948
949 /*
950 * If @nr is zero, the caller is attempting to write out most of
951 * the currently dirty pages. Let's take the current dirty page
952 * count and inflate it by 25% which should be large enough to
953 * flush out most dirty pages while avoiding getting livelocked by
954 * concurrent dirtiers.
955 */
956 if (!nr) {
957 unsigned long filepages, headroom, dirty, writeback;
958
959 mem_cgroup_wb_stats(wb, &filepages, &headroom, &dirty,
960 &writeback);
961 nr = dirty * 10 / 8;
962 }
963
964 /* issue the writeback work */
965 work = kzalloc(sizeof(*work), GFP_NOWAIT | __GFP_NOWARN);
966 if (work) {
967 work->nr_pages = nr;
968 work->sync_mode = WB_SYNC_NONE;
969 work->range_cyclic = 1;
970 work->reason = reason;
971 work->done = done;
972 work->auto_free = 1;
973 wb_queue_work(wb, work);
974 ret = 0;
975 } else {
976 ret = -ENOMEM;
977 }
978
979 wb_put(wb);
980out_css_put:
981 css_put(memcg_css);
982out_bdi_put:
983 bdi_put(bdi);
984 return ret;
985}
986
a1a0e23e
TH
987/**
988 * cgroup_writeback_umount - flush inode wb switches for umount
989 *
990 * This function is called when a super_block is about to be destroyed and
991 * flushes in-flight inode wb switches. An inode wb switch goes through
992 * RCU and then workqueue, so the two need to be flushed in order to ensure
993 * that all previously scheduled switches are finished. As wb switches are
994 * rare occurrences and synchronize_rcu() can take a while, perform
995 * flushing iff wb switches are in flight.
996 */
997void cgroup_writeback_umount(void)
998{
999 if (atomic_read(&isw_nr_in_flight)) {
ec084de9
JX
1000 /*
1001 * Use rcu_barrier() to wait for all pending callbacks to
1002 * ensure that all in-flight wb switches are in the workqueue.
1003 */
1004 rcu_barrier();
a1a0e23e
TH
1005 flush_workqueue(isw_wq);
1006 }
1007}
1008
1009static int __init cgroup_writeback_init(void)
1010{
1011 isw_wq = alloc_workqueue("inode_switch_wbs", 0, 0);
1012 if (!isw_wq)
1013 return -ENOMEM;
1014 return 0;
1015}
1016fs_initcall(cgroup_writeback_init);
1017
f2b65121
TH
1018#else /* CONFIG_CGROUP_WRITEBACK */
1019
7fc5854f
TH
1020static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
1021static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
1022
87e1d789
TH
1023static struct bdi_writeback *
1024locked_inode_to_wb_and_lock_list(struct inode *inode)
1025 __releases(&inode->i_lock)
1026 __acquires(&wb->list_lock)
1027{
1028 struct bdi_writeback *wb = inode_to_wb(inode);
1029
1030 spin_unlock(&inode->i_lock);
1031 spin_lock(&wb->list_lock);
1032 return wb;
1033}
1034
1035static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
1036 __acquires(&wb->list_lock)
1037{
1038 struct bdi_writeback *wb = inode_to_wb(inode);
1039
1040 spin_lock(&wb->list_lock);
1041 return wb;
1042}
1043
f2b65121
TH
1044static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
1045{
1046 return nr_pages;
1047}
1048
db125360
TH
1049static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
1050 struct wb_writeback_work *base_work,
1051 bool skip_if_busy)
1052{
1053 might_sleep();
1054
006a0973 1055 if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) {
db125360 1056 base_work->auto_free = 0;
db125360
TH
1057 wb_queue_work(&bdi->wb, base_work);
1058 }
1059}
1060
703c2708
TH
1061#endif /* CONFIG_CGROUP_WRITEBACK */
1062
e8e8a0c6
JA
1063/*
1064 * Add in the number of potentially dirty inodes, because each inode
1065 * write can dirty pagecache in the underlying blockdev.
1066 */
1067static unsigned long get_nr_dirty_pages(void)
1068{
1069 return global_node_page_state(NR_FILE_DIRTY) +
1070 global_node_page_state(NR_UNSTABLE_NFS) +
1071 get_nr_dirty_inodes();
1072}
1073
1074static void wb_start_writeback(struct bdi_writeback *wb, enum wb_reason reason)
b6e51316 1075{
c00ddad3
TH
1076 if (!wb_has_dirty_io(wb))
1077 return;
1078
aac8d41c
JA
1079 /*
1080 * All callers of this function want to start writeback of all
1081 * dirty pages. Places like vmscan can call this at a very
1082 * high frequency, causing pointless allocations of tons of
1083 * work items and keeping the flusher threads busy retrieving
1084 * that work. Ensure that we only allow one of them pending and
85009b4f 1085 * inflight at the time.
aac8d41c 1086 */
85009b4f
JA
1087 if (test_bit(WB_start_all, &wb->state) ||
1088 test_and_set_bit(WB_start_all, &wb->state))
aac8d41c
JA
1089 return;
1090
85009b4f
JA
1091 wb->start_all_reason = reason;
1092 wb_wakeup(wb);
c5444198 1093}
d3ddec76 1094
c5444198 1095/**
9ecf4866
TH
1096 * wb_start_background_writeback - start background writeback
1097 * @wb: bdi_writback to write from
c5444198
CH
1098 *
1099 * Description:
6585027a 1100 * This makes sure WB_SYNC_NONE background writeback happens. When
9ecf4866 1101 * this function returns, it is only guaranteed that for given wb
6585027a
JK
1102 * some IO is happening if we are over background dirty threshold.
1103 * Caller need not hold sb s_umount semaphore.
c5444198 1104 */
9ecf4866 1105void wb_start_background_writeback(struct bdi_writeback *wb)
c5444198 1106{
6585027a
JK
1107 /*
1108 * We just wake up the flusher thread. It will perform background
1109 * writeback as soon as there is no other work to do.
1110 */
5634cc2a 1111 trace_writeback_wake_background(wb);
9ecf4866 1112 wb_wakeup(wb);
1da177e4
LT
1113}
1114
a66979ab
DC
1115/*
1116 * Remove the inode from the writeback list it is on.
1117 */
c7f54084 1118void inode_io_list_del(struct inode *inode)
a66979ab 1119{
87e1d789 1120 struct bdi_writeback *wb;
f758eeab 1121
87e1d789 1122 wb = inode_to_wb_and_lock_list(inode);
c7f54084 1123 inode_io_list_del_locked(inode, wb);
52ebea74 1124 spin_unlock(&wb->list_lock);
a66979ab
DC
1125}
1126
6c60d2b5
DC
1127/*
1128 * mark an inode as under writeback on the sb
1129 */
1130void sb_mark_inode_writeback(struct inode *inode)
1131{
1132 struct super_block *sb = inode->i_sb;
1133 unsigned long flags;
1134
1135 if (list_empty(&inode->i_wb_list)) {
1136 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
9a46b04f 1137 if (list_empty(&inode->i_wb_list)) {
6c60d2b5 1138 list_add_tail(&inode->i_wb_list, &sb->s_inodes_wb);
9a46b04f
BF
1139 trace_sb_mark_inode_writeback(inode);
1140 }
6c60d2b5
DC
1141 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1142 }
1143}
1144
1145/*
1146 * clear an inode as under writeback on the sb
1147 */
1148void sb_clear_inode_writeback(struct inode *inode)
1149{
1150 struct super_block *sb = inode->i_sb;
1151 unsigned long flags;
1152
1153 if (!list_empty(&inode->i_wb_list)) {
1154 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
9a46b04f
BF
1155 if (!list_empty(&inode->i_wb_list)) {
1156 list_del_init(&inode->i_wb_list);
1157 trace_sb_clear_inode_writeback(inode);
1158 }
6c60d2b5
DC
1159 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1160 }
1161}
1162
6610a0bc
AM
1163/*
1164 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
1165 * furthest end of its superblock's dirty-inode list.
1166 *
1167 * Before stamping the inode's ->dirtied_when, we check to see whether it is
66f3b8e2 1168 * already the most-recently-dirtied inode on the b_dirty list. If that is
6610a0bc
AM
1169 * the case then the inode must have been redirtied while it was being written
1170 * out and we don't reset its dirtied_when.
1171 */
f758eeab 1172static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
6610a0bc 1173{
03ba3782 1174 if (!list_empty(&wb->b_dirty)) {
66f3b8e2 1175 struct inode *tail;
6610a0bc 1176
7ccf19a8 1177 tail = wb_inode(wb->b_dirty.next);
66f3b8e2 1178 if (time_before(inode->dirtied_when, tail->dirtied_when))
6610a0bc
AM
1179 inode->dirtied_when = jiffies;
1180 }
c7f54084 1181 inode_io_list_move_locked(inode, wb, &wb->b_dirty);
6610a0bc
AM
1182}
1183
c986d1e2 1184/*
66f3b8e2 1185 * requeue inode for re-scanning after bdi->b_io list is exhausted.
c986d1e2 1186 */
f758eeab 1187static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
c986d1e2 1188{
c7f54084 1189 inode_io_list_move_locked(inode, wb, &wb->b_more_io);
c986d1e2
AM
1190}
1191
1c0eeaf5
JE
1192static void inode_sync_complete(struct inode *inode)
1193{
365b94ae 1194 inode->i_state &= ~I_SYNC;
4eff96dd
JK
1195 /* If inode is clean an unused, put it into LRU now... */
1196 inode_add_lru(inode);
365b94ae 1197 /* Waiters must see I_SYNC cleared before being woken up */
1c0eeaf5
JE
1198 smp_mb();
1199 wake_up_bit(&inode->i_state, __I_SYNC);
1200}
1201
d2caa3c5
JL
1202static bool inode_dirtied_after(struct inode *inode, unsigned long t)
1203{
1204 bool ret = time_after(inode->dirtied_when, t);
1205#ifndef CONFIG_64BIT
1206 /*
1207 * For inodes being constantly redirtied, dirtied_when can get stuck.
1208 * It _appears_ to be in the future, but is actually in distant past.
1209 * This test is necessary to prevent such wrapped-around relative times
5b0830cb 1210 * from permanently stopping the whole bdi writeback.
d2caa3c5
JL
1211 */
1212 ret = ret && time_before_eq(inode->dirtied_when, jiffies);
1213#endif
1214 return ret;
1215}
1216
0ae45f63
TT
1217#define EXPIRE_DIRTY_ATIME 0x0001
1218
2c136579 1219/*
0e2f2b23 1220 * Move expired (dirtied before work->older_than_this) dirty inodes from
697e6fed 1221 * @delaying_queue to @dispatch_queue.
2c136579 1222 */
e84d0a4f 1223static int move_expired_inodes(struct list_head *delaying_queue,
2c136579 1224 struct list_head *dispatch_queue,
0ae45f63 1225 int flags,
ad4e38dd 1226 struct wb_writeback_work *work)
2c136579 1227{
0ae45f63
TT
1228 unsigned long *older_than_this = NULL;
1229 unsigned long expire_time;
5c03449d
SL
1230 LIST_HEAD(tmp);
1231 struct list_head *pos, *node;
cf137307 1232 struct super_block *sb = NULL;
5c03449d 1233 struct inode *inode;
cf137307 1234 int do_sb_sort = 0;
e84d0a4f 1235 int moved = 0;
5c03449d 1236
0ae45f63
TT
1237 if ((flags & EXPIRE_DIRTY_ATIME) == 0)
1238 older_than_this = work->older_than_this;
a2f48706
TT
1239 else if (!work->for_sync) {
1240 expire_time = jiffies - (dirtytime_expire_interval * HZ);
0ae45f63
TT
1241 older_than_this = &expire_time;
1242 }
2c136579 1243 while (!list_empty(delaying_queue)) {
7ccf19a8 1244 inode = wb_inode(delaying_queue->prev);
0ae45f63
TT
1245 if (older_than_this &&
1246 inode_dirtied_after(inode, *older_than_this))
2c136579 1247 break;
c7f54084 1248 list_move(&inode->i_io_list, &tmp);
a8855990 1249 moved++;
0ae45f63
TT
1250 if (flags & EXPIRE_DIRTY_ATIME)
1251 set_bit(__I_DIRTY_TIME_EXPIRED, &inode->i_state);
a8855990
JK
1252 if (sb_is_blkdev_sb(inode->i_sb))
1253 continue;
cf137307
JA
1254 if (sb && sb != inode->i_sb)
1255 do_sb_sort = 1;
1256 sb = inode->i_sb;
5c03449d
SL
1257 }
1258
cf137307
JA
1259 /* just one sb in list, splice to dispatch_queue and we're done */
1260 if (!do_sb_sort) {
1261 list_splice(&tmp, dispatch_queue);
e84d0a4f 1262 goto out;
cf137307
JA
1263 }
1264
5c03449d
SL
1265 /* Move inodes from one superblock together */
1266 while (!list_empty(&tmp)) {
7ccf19a8 1267 sb = wb_inode(tmp.prev)->i_sb;
5c03449d 1268 list_for_each_prev_safe(pos, node, &tmp) {
7ccf19a8 1269 inode = wb_inode(pos);
5c03449d 1270 if (inode->i_sb == sb)
c7f54084 1271 list_move(&inode->i_io_list, dispatch_queue);
5c03449d 1272 }
2c136579 1273 }
e84d0a4f
WF
1274out:
1275 return moved;
2c136579
FW
1276}
1277
1278/*
1279 * Queue all expired dirty inodes for io, eldest first.
4ea879b9
WF
1280 * Before
1281 * newly dirtied b_dirty b_io b_more_io
1282 * =============> gf edc BA
1283 * After
1284 * newly dirtied b_dirty b_io b_more_io
1285 * =============> g fBAedc
1286 * |
1287 * +--> dequeue for IO
2c136579 1288 */
ad4e38dd 1289static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work)
66f3b8e2 1290{
e84d0a4f 1291 int moved;
0ae45f63 1292
f758eeab 1293 assert_spin_locked(&wb->list_lock);
4ea879b9 1294 list_splice_init(&wb->b_more_io, &wb->b_io);
0ae45f63
TT
1295 moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, 0, work);
1296 moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
1297 EXPIRE_DIRTY_ATIME, work);
d6c10f1f
TH
1298 if (moved)
1299 wb_io_lists_populated(wb);
ad4e38dd 1300 trace_writeback_queue_io(wb, work, moved);
66f3b8e2
JA
1301}
1302
a9185b41 1303static int write_inode(struct inode *inode, struct writeback_control *wbc)
08d8e974 1304{
9fb0a7da
TH
1305 int ret;
1306
1307 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
1308 trace_writeback_write_inode_start(inode, wbc);
1309 ret = inode->i_sb->s_op->write_inode(inode, wbc);
1310 trace_writeback_write_inode(inode, wbc);
1311 return ret;
1312 }
03ba3782 1313 return 0;
08d8e974 1314}
08d8e974 1315
1da177e4 1316/*
169ebd90
JK
1317 * Wait for writeback on an inode to complete. Called with i_lock held.
1318 * Caller must make sure inode cannot go away when we drop i_lock.
01c03194 1319 */
169ebd90
JK
1320static void __inode_wait_for_writeback(struct inode *inode)
1321 __releases(inode->i_lock)
1322 __acquires(inode->i_lock)
01c03194
CH
1323{
1324 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
1325 wait_queue_head_t *wqh;
1326
1327 wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
250df6ed
DC
1328 while (inode->i_state & I_SYNC) {
1329 spin_unlock(&inode->i_lock);
74316201
N
1330 __wait_on_bit(wqh, &wq, bit_wait,
1331 TASK_UNINTERRUPTIBLE);
250df6ed 1332 spin_lock(&inode->i_lock);
58a9d3d8 1333 }
01c03194
CH
1334}
1335
169ebd90
JK
1336/*
1337 * Wait for writeback on an inode to complete. Caller must have inode pinned.
1338 */
1339void inode_wait_for_writeback(struct inode *inode)
1340{
1341 spin_lock(&inode->i_lock);
1342 __inode_wait_for_writeback(inode);
1343 spin_unlock(&inode->i_lock);
1344}
1345
1346/*
1347 * Sleep until I_SYNC is cleared. This function must be called with i_lock
1348 * held and drops it. It is aimed for callers not holding any inode reference
1349 * so once i_lock is dropped, inode can go away.
1350 */
1351static void inode_sleep_on_writeback(struct inode *inode)
1352 __releases(inode->i_lock)
1353{
1354 DEFINE_WAIT(wait);
1355 wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1356 int sleep;
1357
1358 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1359 sleep = inode->i_state & I_SYNC;
1360 spin_unlock(&inode->i_lock);
1361 if (sleep)
1362 schedule();
1363 finish_wait(wqh, &wait);
1364}
1365
ccb26b5a
JK
1366/*
1367 * Find proper writeback list for the inode depending on its current state and
1368 * possibly also change of its state while we were doing writeback. Here we
1369 * handle things such as livelock prevention or fairness of writeback among
1370 * inodes. This function can be called only by flusher thread - noone else
1371 * processes all inodes in writeback lists and requeueing inodes behind flusher
1372 * thread's back can have unexpected consequences.
1373 */
1374static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
1375 struct writeback_control *wbc)
1376{
1377 if (inode->i_state & I_FREEING)
1378 return;
1379
1380 /*
1381 * Sync livelock prevention. Each inode is tagged and synced in one
1382 * shot. If still dirty, it will be redirty_tail()'ed below. Update
1383 * the dirty time to prevent enqueue and sync it again.
1384 */
1385 if ((inode->i_state & I_DIRTY) &&
1386 (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
1387 inode->dirtied_when = jiffies;
1388
4f8ad655
JK
1389 if (wbc->pages_skipped) {
1390 /*
1391 * writeback is not making progress due to locked
1392 * buffers. Skip this inode for now.
1393 */
1394 redirty_tail(inode, wb);
1395 return;
1396 }
1397
ccb26b5a
JK
1398 if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
1399 /*
1400 * We didn't write back all the pages. nfs_writepages()
1401 * sometimes bales out without doing anything.
1402 */
1403 if (wbc->nr_to_write <= 0) {
1404 /* Slice used up. Queue for next turn. */
1405 requeue_io(inode, wb);
1406 } else {
1407 /*
1408 * Writeback blocked by something other than
1409 * congestion. Delay the inode for some time to
1410 * avoid spinning on the CPU (100% iowait)
1411 * retrying writeback of the dirty page/inode
1412 * that cannot be performed immediately.
1413 */
1414 redirty_tail(inode, wb);
1415 }
1416 } else if (inode->i_state & I_DIRTY) {
1417 /*
1418 * Filesystems can dirty the inode during writeback operations,
1419 * such as delayed allocation during submission or metadata
1420 * updates after data IO completion.
1421 */
1422 redirty_tail(inode, wb);
0ae45f63 1423 } else if (inode->i_state & I_DIRTY_TIME) {
a2f48706 1424 inode->dirtied_when = jiffies;
c7f54084 1425 inode_io_list_move_locked(inode, wb, &wb->b_dirty_time);
ccb26b5a
JK
1426 } else {
1427 /* The inode is clean. Remove from writeback lists. */
c7f54084 1428 inode_io_list_del_locked(inode, wb);
ccb26b5a
JK
1429 }
1430}
1431
01c03194 1432/*
4f8ad655
JK
1433 * Write out an inode and its dirty pages. Do not update the writeback list
1434 * linkage. That is left to the caller. The caller is also responsible for
1435 * setting I_SYNC flag and calling inode_sync_complete() to clear it.
1da177e4
LT
1436 */
1437static int
cd8ed2a4 1438__writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
1da177e4 1439{
1da177e4 1440 struct address_space *mapping = inode->i_mapping;
251d6a47 1441 long nr_to_write = wbc->nr_to_write;
01c03194 1442 unsigned dirty;
1da177e4
LT
1443 int ret;
1444
4f8ad655 1445 WARN_ON(!(inode->i_state & I_SYNC));
1da177e4 1446
9fb0a7da
TH
1447 trace_writeback_single_inode_start(inode, wbc, nr_to_write);
1448
1da177e4
LT
1449 ret = do_writepages(mapping, wbc);
1450
26821ed4
CH
1451 /*
1452 * Make sure to wait on the data before writing out the metadata.
1453 * This is important for filesystems that modify metadata on data
7747bd4b
DC
1454 * I/O completion. We don't do it for sync(2) writeback because it has a
1455 * separate, external IO completion path and ->sync_fs for guaranteeing
1456 * inode metadata is written back correctly.
26821ed4 1457 */
7747bd4b 1458 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
26821ed4 1459 int err = filemap_fdatawait(mapping);
1da177e4
LT
1460 if (ret == 0)
1461 ret = err;
1462 }
1463
5547e8aa
DM
1464 /*
1465 * Some filesystems may redirty the inode during the writeback
1466 * due to delalloc, clear dirty metadata flags right before
1467 * write_inode()
1468 */
250df6ed 1469 spin_lock(&inode->i_lock);
9c6ac78e 1470
5547e8aa 1471 dirty = inode->i_state & I_DIRTY;
a2f48706 1472 if (inode->i_state & I_DIRTY_TIME) {
0e11f644 1473 if ((dirty & I_DIRTY_INODE) ||
dc5ff2b1 1474 wbc->sync_mode == WB_SYNC_ALL ||
a2f48706
TT
1475 unlikely(inode->i_state & I_DIRTY_TIME_EXPIRED) ||
1476 unlikely(time_after(jiffies,
1477 (inode->dirtied_time_when +
1478 dirtytime_expire_interval * HZ)))) {
1479 dirty |= I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED;
1480 trace_writeback_lazytime(inode);
1481 }
1482 } else
1483 inode->i_state &= ~I_DIRTY_TIME_EXPIRED;
0ae45f63 1484 inode->i_state &= ~dirty;
9c6ac78e
TH
1485
1486 /*
1487 * Paired with smp_mb() in __mark_inode_dirty(). This allows
1488 * __mark_inode_dirty() to test i_state without grabbing i_lock -
1489 * either they see the I_DIRTY bits cleared or we see the dirtied
1490 * inode.
1491 *
1492 * I_DIRTY_PAGES is always cleared together above even if @mapping
1493 * still has dirty pages. The flag is reinstated after smp_mb() if
1494 * necessary. This guarantees that either __mark_inode_dirty()
1495 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
1496 */
1497 smp_mb();
1498
1499 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1500 inode->i_state |= I_DIRTY_PAGES;
1501
250df6ed 1502 spin_unlock(&inode->i_lock);
9c6ac78e 1503
0ae45f63
TT
1504 if (dirty & I_DIRTY_TIME)
1505 mark_inode_dirty_sync(inode);
26821ed4 1506 /* Don't write the inode if only I_DIRTY_PAGES was set */
0ae45f63 1507 if (dirty & ~I_DIRTY_PAGES) {
a9185b41 1508 int err = write_inode(inode, wbc);
1da177e4
LT
1509 if (ret == 0)
1510 ret = err;
1511 }
4f8ad655
JK
1512 trace_writeback_single_inode(inode, wbc, nr_to_write);
1513 return ret;
1514}
1515
1516/*
1517 * Write out an inode's dirty pages. Either the caller has an active reference
1518 * on the inode or the inode has I_WILL_FREE set.
1519 *
1520 * This function is designed to be called for writing back one inode which
1521 * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
1522 * and does more profound writeback list handling in writeback_sb_inodes().
1523 */
aaf25593
TH
1524static int writeback_single_inode(struct inode *inode,
1525 struct writeback_control *wbc)
4f8ad655 1526{
aaf25593 1527 struct bdi_writeback *wb;
4f8ad655
JK
1528 int ret = 0;
1529
1530 spin_lock(&inode->i_lock);
1531 if (!atomic_read(&inode->i_count))
1532 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
1533 else
1534 WARN_ON(inode->i_state & I_WILL_FREE);
1535
1536 if (inode->i_state & I_SYNC) {
1537 if (wbc->sync_mode != WB_SYNC_ALL)
1538 goto out;
1539 /*
169ebd90
JK
1540 * It's a data-integrity sync. We must wait. Since callers hold
1541 * inode reference or inode has I_WILL_FREE set, it cannot go
1542 * away under us.
4f8ad655 1543 */
169ebd90 1544 __inode_wait_for_writeback(inode);
4f8ad655
JK
1545 }
1546 WARN_ON(inode->i_state & I_SYNC);
1547 /*
f9b0e058
JK
1548 * Skip inode if it is clean and we have no outstanding writeback in
1549 * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this
1550 * function since flusher thread may be doing for example sync in
1551 * parallel and if we move the inode, it could get skipped. So here we
1552 * make sure inode is on some writeback list and leave it there unless
1553 * we have completely cleaned the inode.
4f8ad655 1554 */
0ae45f63 1555 if (!(inode->i_state & I_DIRTY_ALL) &&
f9b0e058
JK
1556 (wbc->sync_mode != WB_SYNC_ALL ||
1557 !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
4f8ad655
JK
1558 goto out;
1559 inode->i_state |= I_SYNC;
b16b1deb 1560 wbc_attach_and_unlock_inode(wbc, inode);
4f8ad655 1561
cd8ed2a4 1562 ret = __writeback_single_inode(inode, wbc);
1da177e4 1563
b16b1deb 1564 wbc_detach_inode(wbc);
aaf25593
TH
1565
1566 wb = inode_to_wb_and_lock_list(inode);
250df6ed 1567 spin_lock(&inode->i_lock);
4f8ad655
JK
1568 /*
1569 * If inode is clean, remove it from writeback lists. Otherwise don't
1570 * touch it. See comment above for explanation.
1571 */
0ae45f63 1572 if (!(inode->i_state & I_DIRTY_ALL))
c7f54084 1573 inode_io_list_del_locked(inode, wb);
4f8ad655 1574 spin_unlock(&wb->list_lock);
1c0eeaf5 1575 inode_sync_complete(inode);
4f8ad655
JK
1576out:
1577 spin_unlock(&inode->i_lock);
1da177e4
LT
1578 return ret;
1579}
1580
a88a341a 1581static long writeback_chunk_size(struct bdi_writeback *wb,
1a12d8bd 1582 struct wb_writeback_work *work)
d46db3d5
WF
1583{
1584 long pages;
1585
1586 /*
1587 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
1588 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
1589 * here avoids calling into writeback_inodes_wb() more than once.
1590 *
1591 * The intended call sequence for WB_SYNC_ALL writeback is:
1592 *
1593 * wb_writeback()
1594 * writeback_sb_inodes() <== called only once
1595 * write_cache_pages() <== called once for each inode
1596 * (quickly) tag currently dirty pages
1597 * (maybe slowly) sync all tagged pages
1598 */
1599 if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
1600 pages = LONG_MAX;
1a12d8bd 1601 else {
a88a341a 1602 pages = min(wb->avg_write_bandwidth / 2,
dcc25ae7 1603 global_wb_domain.dirty_limit / DIRTY_SCOPE);
1a12d8bd
WF
1604 pages = min(pages, work->nr_pages);
1605 pages = round_down(pages + MIN_WRITEBACK_PAGES,
1606 MIN_WRITEBACK_PAGES);
1607 }
d46db3d5
WF
1608
1609 return pages;
1610}
1611
f11c9c5c
ES
1612/*
1613 * Write a portion of b_io inodes which belong to @sb.
edadfb10 1614 *
d46db3d5 1615 * Return the number of pages and/or inodes written.
0ba13fd1
LT
1616 *
1617 * NOTE! This is called with wb->list_lock held, and will
1618 * unlock and relock that for each inode it ends up doing
1619 * IO for.
f11c9c5c 1620 */
d46db3d5
WF
1621static long writeback_sb_inodes(struct super_block *sb,
1622 struct bdi_writeback *wb,
1623 struct wb_writeback_work *work)
1da177e4 1624{
d46db3d5
WF
1625 struct writeback_control wbc = {
1626 .sync_mode = work->sync_mode,
1627 .tagged_writepages = work->tagged_writepages,
1628 .for_kupdate = work->for_kupdate,
1629 .for_background = work->for_background,
7747bd4b 1630 .for_sync = work->for_sync,
d46db3d5
WF
1631 .range_cyclic = work->range_cyclic,
1632 .range_start = 0,
1633 .range_end = LLONG_MAX,
1634 };
1635 unsigned long start_time = jiffies;
1636 long write_chunk;
1637 long wrote = 0; /* count both pages and inodes */
1638
03ba3782 1639 while (!list_empty(&wb->b_io)) {
7ccf19a8 1640 struct inode *inode = wb_inode(wb->b_io.prev);
aaf25593 1641 struct bdi_writeback *tmp_wb;
edadfb10
CH
1642
1643 if (inode->i_sb != sb) {
d46db3d5 1644 if (work->sb) {
edadfb10
CH
1645 /*
1646 * We only want to write back data for this
1647 * superblock, move all inodes not belonging
1648 * to it back onto the dirty list.
1649 */
f758eeab 1650 redirty_tail(inode, wb);
edadfb10
CH
1651 continue;
1652 }
1653
1654 /*
1655 * The inode belongs to a different superblock.
1656 * Bounce back to the caller to unpin this and
1657 * pin the next superblock.
1658 */
d46db3d5 1659 break;
edadfb10
CH
1660 }
1661
9843b76a 1662 /*
331cbdee
WL
1663 * Don't bother with new inodes or inodes being freed, first
1664 * kind does not need periodic writeout yet, and for the latter
9843b76a
CH
1665 * kind writeout is handled by the freer.
1666 */
250df6ed 1667 spin_lock(&inode->i_lock);
9843b76a 1668 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
250df6ed 1669 spin_unlock(&inode->i_lock);
fcc5c222 1670 redirty_tail(inode, wb);
7ef0d737
NP
1671 continue;
1672 }
cc1676d9
JK
1673 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
1674 /*
1675 * If this inode is locked for writeback and we are not
1676 * doing writeback-for-data-integrity, move it to
1677 * b_more_io so that writeback can proceed with the
1678 * other inodes on s_io.
1679 *
1680 * We'll have another go at writing back this inode
1681 * when we completed a full scan of b_io.
1682 */
1683 spin_unlock(&inode->i_lock);
1684 requeue_io(inode, wb);
1685 trace_writeback_sb_inodes_requeue(inode);
1686 continue;
1687 }
f0d07b7f
JK
1688 spin_unlock(&wb->list_lock);
1689
4f8ad655
JK
1690 /*
1691 * We already requeued the inode if it had I_SYNC set and we
1692 * are doing WB_SYNC_NONE writeback. So this catches only the
1693 * WB_SYNC_ALL case.
1694 */
169ebd90
JK
1695 if (inode->i_state & I_SYNC) {
1696 /* Wait for I_SYNC. This function drops i_lock... */
1697 inode_sleep_on_writeback(inode);
1698 /* Inode may be gone, start again */
ead188f9 1699 spin_lock(&wb->list_lock);
169ebd90
JK
1700 continue;
1701 }
4f8ad655 1702 inode->i_state |= I_SYNC;
b16b1deb 1703 wbc_attach_and_unlock_inode(&wbc, inode);
169ebd90 1704
a88a341a 1705 write_chunk = writeback_chunk_size(wb, work);
d46db3d5
WF
1706 wbc.nr_to_write = write_chunk;
1707 wbc.pages_skipped = 0;
250df6ed 1708
169ebd90
JK
1709 /*
1710 * We use I_SYNC to pin the inode in memory. While it is set
1711 * evict_inode() will wait so the inode cannot be freed.
1712 */
cd8ed2a4 1713 __writeback_single_inode(inode, &wbc);
250df6ed 1714
b16b1deb 1715 wbc_detach_inode(&wbc);
d46db3d5
WF
1716 work->nr_pages -= write_chunk - wbc.nr_to_write;
1717 wrote += write_chunk - wbc.nr_to_write;
590dca3a
CM
1718
1719 if (need_resched()) {
1720 /*
1721 * We're trying to balance between building up a nice
1722 * long list of IOs to improve our merge rate, and
1723 * getting those IOs out quickly for anyone throttling
1724 * in balance_dirty_pages(). cond_resched() doesn't
1725 * unplug, so get our IOs out the door before we
1726 * give up the CPU.
1727 */
1728 blk_flush_plug(current);
1729 cond_resched();
1730 }
1731
aaf25593
TH
1732 /*
1733 * Requeue @inode if still dirty. Be careful as @inode may
1734 * have been switched to another wb in the meantime.
1735 */
1736 tmp_wb = inode_to_wb_and_lock_list(inode);
4f8ad655 1737 spin_lock(&inode->i_lock);
0ae45f63 1738 if (!(inode->i_state & I_DIRTY_ALL))
d46db3d5 1739 wrote++;
aaf25593 1740 requeue_inode(inode, tmp_wb, &wbc);
4f8ad655 1741 inode_sync_complete(inode);
0f1b1fd8 1742 spin_unlock(&inode->i_lock);
590dca3a 1743
aaf25593
TH
1744 if (unlikely(tmp_wb != wb)) {
1745 spin_unlock(&tmp_wb->list_lock);
1746 spin_lock(&wb->list_lock);
1747 }
1748
d46db3d5
WF
1749 /*
1750 * bail out to wb_writeback() often enough to check
1751 * background threshold and other termination conditions.
1752 */
1753 if (wrote) {
1754 if (time_is_before_jiffies(start_time + HZ / 10UL))
1755 break;
1756 if (work->nr_pages <= 0)
1757 break;
8bc3be27 1758 }
1da177e4 1759 }
d46db3d5 1760 return wrote;
f11c9c5c
ES
1761}
1762
d46db3d5
WF
1763static long __writeback_inodes_wb(struct bdi_writeback *wb,
1764 struct wb_writeback_work *work)
f11c9c5c 1765{
d46db3d5
WF
1766 unsigned long start_time = jiffies;
1767 long wrote = 0;
38f21977 1768
f11c9c5c 1769 while (!list_empty(&wb->b_io)) {
7ccf19a8 1770 struct inode *inode = wb_inode(wb->b_io.prev);
f11c9c5c 1771 struct super_block *sb = inode->i_sb;
9ecc2738 1772
eb6ef3df 1773 if (!trylock_super(sb)) {
0e995816 1774 /*
eb6ef3df 1775 * trylock_super() may fail consistently due to
0e995816
WF
1776 * s_umount being grabbed by someone else. Don't use
1777 * requeue_io() to avoid busy retrying the inode/sb.
1778 */
1779 redirty_tail(inode, wb);
edadfb10 1780 continue;
f11c9c5c 1781 }
d46db3d5 1782 wrote += writeback_sb_inodes(sb, wb, work);
eb6ef3df 1783 up_read(&sb->s_umount);
f11c9c5c 1784
d46db3d5
WF
1785 /* refer to the same tests at the end of writeback_sb_inodes */
1786 if (wrote) {
1787 if (time_is_before_jiffies(start_time + HZ / 10UL))
1788 break;
1789 if (work->nr_pages <= 0)
1790 break;
1791 }
f11c9c5c 1792 }
66f3b8e2 1793 /* Leave any unwritten inodes on b_io */
d46db3d5 1794 return wrote;
66f3b8e2
JA
1795}
1796
7d9f073b 1797static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
0e175a18 1798 enum wb_reason reason)
edadfb10 1799{
d46db3d5
WF
1800 struct wb_writeback_work work = {
1801 .nr_pages = nr_pages,
1802 .sync_mode = WB_SYNC_NONE,
1803 .range_cyclic = 1,
0e175a18 1804 .reason = reason,
d46db3d5 1805 };
505a666e 1806 struct blk_plug plug;
edadfb10 1807
505a666e 1808 blk_start_plug(&plug);
f758eeab 1809 spin_lock(&wb->list_lock);
424b351f 1810 if (list_empty(&wb->b_io))
ad4e38dd 1811 queue_io(wb, &work);
d46db3d5 1812 __writeback_inodes_wb(wb, &work);
f758eeab 1813 spin_unlock(&wb->list_lock);
505a666e 1814 blk_finish_plug(&plug);
edadfb10 1815
d46db3d5
WF
1816 return nr_pages - work.nr_pages;
1817}
03ba3782 1818
03ba3782
JA
1819/*
1820 * Explicit flushing or periodic writeback of "old" data.
66f3b8e2 1821 *
03ba3782
JA
1822 * Define "old": the first time one of an inode's pages is dirtied, we mark the
1823 * dirtying-time in the inode's address_space. So this periodic writeback code
1824 * just walks the superblock inode list, writing back any inodes which are
1825 * older than a specific point in time.
66f3b8e2 1826 *
03ba3782
JA
1827 * Try to run once per dirty_writeback_interval. But if a writeback event
1828 * takes longer than a dirty_writeback_interval interval, then leave a
1829 * one-second gap.
66f3b8e2 1830 *
03ba3782
JA
1831 * older_than_this takes precedence over nr_to_write. So we'll only write back
1832 * all dirty pages if they are all attached to "old" mappings.
66f3b8e2 1833 */
c4a77a6c 1834static long wb_writeback(struct bdi_writeback *wb,
83ba7b07 1835 struct wb_writeback_work *work)
66f3b8e2 1836{
e98be2d5 1837 unsigned long wb_start = jiffies;
d46db3d5 1838 long nr_pages = work->nr_pages;
0dc83bd3 1839 unsigned long oldest_jif;
a5989bdc 1840 struct inode *inode;
d46db3d5 1841 long progress;
505a666e 1842 struct blk_plug plug;
66f3b8e2 1843
0dc83bd3
JK
1844 oldest_jif = jiffies;
1845 work->older_than_this = &oldest_jif;
38f21977 1846
505a666e 1847 blk_start_plug(&plug);
e8dfc305 1848 spin_lock(&wb->list_lock);
03ba3782
JA
1849 for (;;) {
1850 /*
d3ddec76 1851 * Stop writeback when nr_pages has been consumed
03ba3782 1852 */
83ba7b07 1853 if (work->nr_pages <= 0)
03ba3782 1854 break;
66f3b8e2 1855
aa373cf5
JK
1856 /*
1857 * Background writeout and kupdate-style writeback may
1858 * run forever. Stop them if there is other work to do
1859 * so that e.g. sync can proceed. They'll be restarted
1860 * after the other works are all done.
1861 */
1862 if ((work->for_background || work->for_kupdate) &&
f0054bb1 1863 !list_empty(&wb->work_list))
aa373cf5
JK
1864 break;
1865
38f21977 1866 /*
d3ddec76
WF
1867 * For background writeout, stop when we are below the
1868 * background dirty threshold
38f21977 1869 */
aa661bbe 1870 if (work->for_background && !wb_over_bg_thresh(wb))
03ba3782 1871 break;
38f21977 1872
1bc36b64
JK
1873 /*
1874 * Kupdate and background works are special and we want to
1875 * include all inodes that need writing. Livelock avoidance is
1876 * handled by these works yielding to any other work so we are
1877 * safe.
1878 */
ba9aa839 1879 if (work->for_kupdate) {
0dc83bd3 1880 oldest_jif = jiffies -
ba9aa839 1881 msecs_to_jiffies(dirty_expire_interval * 10);
1bc36b64 1882 } else if (work->for_background)
0dc83bd3 1883 oldest_jif = jiffies;
028c2dd1 1884
5634cc2a 1885 trace_writeback_start(wb, work);
e8dfc305 1886 if (list_empty(&wb->b_io))
ad4e38dd 1887 queue_io(wb, work);
83ba7b07 1888 if (work->sb)
d46db3d5 1889 progress = writeback_sb_inodes(work->sb, wb, work);
edadfb10 1890 else
d46db3d5 1891 progress = __writeback_inodes_wb(wb, work);
5634cc2a 1892 trace_writeback_written(wb, work);
028c2dd1 1893
e98be2d5 1894 wb_update_bandwidth(wb, wb_start);
03ba3782
JA
1895
1896 /*
e6fb6da2
WF
1897 * Did we write something? Try for more
1898 *
1899 * Dirty inodes are moved to b_io for writeback in batches.
1900 * The completion of the current batch does not necessarily
1901 * mean the overall work is done. So we keep looping as long
1902 * as made some progress on cleaning pages or inodes.
03ba3782 1903 */
d46db3d5 1904 if (progress)
71fd05a8
JA
1905 continue;
1906 /*
e6fb6da2 1907 * No more inodes for IO, bail
71fd05a8 1908 */
b7a2441f 1909 if (list_empty(&wb->b_more_io))
03ba3782 1910 break;
71fd05a8
JA
1911 /*
1912 * Nothing written. Wait for some inode to
1913 * become available for writeback. Otherwise
1914 * we'll just busyloop.
1915 */
bace9248
TE
1916 trace_writeback_wait(wb, work);
1917 inode = wb_inode(wb->b_more_io.prev);
1918 spin_lock(&inode->i_lock);
1919 spin_unlock(&wb->list_lock);
1920 /* This function drops i_lock... */
1921 inode_sleep_on_writeback(inode);
1922 spin_lock(&wb->list_lock);
03ba3782 1923 }
e8dfc305 1924 spin_unlock(&wb->list_lock);
505a666e 1925 blk_finish_plug(&plug);
03ba3782 1926
d46db3d5 1927 return nr_pages - work->nr_pages;
03ba3782
JA
1928}
1929
1930/*
83ba7b07 1931 * Return the next wb_writeback_work struct that hasn't been processed yet.
03ba3782 1932 */
f0054bb1 1933static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
03ba3782 1934{
83ba7b07 1935 struct wb_writeback_work *work = NULL;
03ba3782 1936
f0054bb1
TH
1937 spin_lock_bh(&wb->work_lock);
1938 if (!list_empty(&wb->work_list)) {
1939 work = list_entry(wb->work_list.next,
83ba7b07
CH
1940 struct wb_writeback_work, list);
1941 list_del_init(&work->list);
03ba3782 1942 }
f0054bb1 1943 spin_unlock_bh(&wb->work_lock);
83ba7b07 1944 return work;
03ba3782
JA
1945}
1946
6585027a
JK
1947static long wb_check_background_flush(struct bdi_writeback *wb)
1948{
aa661bbe 1949 if (wb_over_bg_thresh(wb)) {
6585027a
JK
1950
1951 struct wb_writeback_work work = {
1952 .nr_pages = LONG_MAX,
1953 .sync_mode = WB_SYNC_NONE,
1954 .for_background = 1,
1955 .range_cyclic = 1,
0e175a18 1956 .reason = WB_REASON_BACKGROUND,
6585027a
JK
1957 };
1958
1959 return wb_writeback(wb, &work);
1960 }
1961
1962 return 0;
1963}
1964
03ba3782
JA
1965static long wb_check_old_data_flush(struct bdi_writeback *wb)
1966{
1967 unsigned long expired;
1968 long nr_pages;
1969
69b62d01
JA
1970 /*
1971 * When set to zero, disable periodic writeback
1972 */
1973 if (!dirty_writeback_interval)
1974 return 0;
1975
03ba3782
JA
1976 expired = wb->last_old_flush +
1977 msecs_to_jiffies(dirty_writeback_interval * 10);
1978 if (time_before(jiffies, expired))
1979 return 0;
1980
1981 wb->last_old_flush = jiffies;
cdf01dd5 1982 nr_pages = get_nr_dirty_pages();
03ba3782 1983
c4a77a6c 1984 if (nr_pages) {
83ba7b07 1985 struct wb_writeback_work work = {
c4a77a6c
JA
1986 .nr_pages = nr_pages,
1987 .sync_mode = WB_SYNC_NONE,
1988 .for_kupdate = 1,
1989 .range_cyclic = 1,
0e175a18 1990 .reason = WB_REASON_PERIODIC,
c4a77a6c
JA
1991 };
1992
83ba7b07 1993 return wb_writeback(wb, &work);
c4a77a6c 1994 }
03ba3782
JA
1995
1996 return 0;
1997}
1998
85009b4f
JA
1999static long wb_check_start_all(struct bdi_writeback *wb)
2000{
2001 long nr_pages;
2002
2003 if (!test_bit(WB_start_all, &wb->state))
2004 return 0;
2005
2006 nr_pages = get_nr_dirty_pages();
2007 if (nr_pages) {
2008 struct wb_writeback_work work = {
2009 .nr_pages = wb_split_bdi_pages(wb, nr_pages),
2010 .sync_mode = WB_SYNC_NONE,
2011 .range_cyclic = 1,
2012 .reason = wb->start_all_reason,
2013 };
2014
2015 nr_pages = wb_writeback(wb, &work);
2016 }
2017
2018 clear_bit(WB_start_all, &wb->state);
2019 return nr_pages;
2020}
2021
2022
03ba3782
JA
2023/*
2024 * Retrieve work items and do the writeback they describe
2025 */
25d130ba 2026static long wb_do_writeback(struct bdi_writeback *wb)
03ba3782 2027{
83ba7b07 2028 struct wb_writeback_work *work;
c4a77a6c 2029 long wrote = 0;
03ba3782 2030
4452226e 2031 set_bit(WB_writeback_running, &wb->state);
f0054bb1 2032 while ((work = get_next_work_item(wb)) != NULL) {
5634cc2a 2033 trace_writeback_exec(wb, work);
83ba7b07 2034 wrote += wb_writeback(wb, work);
4a3a485b 2035 finish_writeback_work(wb, work);
03ba3782
JA
2036 }
2037
85009b4f
JA
2038 /*
2039 * Check for a flush-everything request
2040 */
2041 wrote += wb_check_start_all(wb);
2042
03ba3782
JA
2043 /*
2044 * Check for periodic writeback, kupdated() style
2045 */
2046 wrote += wb_check_old_data_flush(wb);
6585027a 2047 wrote += wb_check_background_flush(wb);
4452226e 2048 clear_bit(WB_writeback_running, &wb->state);
03ba3782
JA
2049
2050 return wrote;
2051}
2052
2053/*
2054 * Handle writeback of dirty data for the device backed by this bdi. Also
839a8e86 2055 * reschedules periodically and does kupdated style flushing.
03ba3782 2056 */
f0054bb1 2057void wb_workfn(struct work_struct *work)
03ba3782 2058{
839a8e86
TH
2059 struct bdi_writeback *wb = container_of(to_delayed_work(work),
2060 struct bdi_writeback, dwork);
03ba3782
JA
2061 long pages_written;
2062
f0054bb1 2063 set_worker_desc("flush-%s", dev_name(wb->bdi->dev));
766f9164 2064 current->flags |= PF_SWAPWRITE;
455b2864 2065
839a8e86 2066 if (likely(!current_is_workqueue_rescuer() ||
4452226e 2067 !test_bit(WB_registered, &wb->state))) {
6467716a 2068 /*
f0054bb1 2069 * The normal path. Keep writing back @wb until its
839a8e86 2070 * work_list is empty. Note that this path is also taken
f0054bb1 2071 * if @wb is shutting down even when we're running off the
839a8e86 2072 * rescuer as work_list needs to be drained.
6467716a 2073 */
839a8e86 2074 do {
25d130ba 2075 pages_written = wb_do_writeback(wb);
839a8e86 2076 trace_writeback_pages_written(pages_written);
f0054bb1 2077 } while (!list_empty(&wb->work_list));
839a8e86
TH
2078 } else {
2079 /*
2080 * bdi_wq can't get enough workers and we're running off
2081 * the emergency worker. Don't hog it. Hopefully, 1024 is
2082 * enough for efficient IO.
2083 */
f0054bb1 2084 pages_written = writeback_inodes_wb(wb, 1024,
839a8e86 2085 WB_REASON_FORKER_THREAD);
455b2864 2086 trace_writeback_pages_written(pages_written);
03ba3782
JA
2087 }
2088
f0054bb1 2089 if (!list_empty(&wb->work_list))
b8b78495 2090 wb_wakeup(wb);
6ca738d6 2091 else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
f0054bb1 2092 wb_wakeup_delayed(wb);
455b2864 2093
839a8e86 2094 current->flags &= ~PF_SWAPWRITE;
03ba3782
JA
2095}
2096
595043e5
JA
2097/*
2098 * Start writeback of `nr_pages' pages on this bdi. If `nr_pages' is zero,
2099 * write back the whole world.
2100 */
2101static void __wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
e8e8a0c6 2102 enum wb_reason reason)
595043e5
JA
2103{
2104 struct bdi_writeback *wb;
2105
2106 if (!bdi_has_dirty_io(bdi))
2107 return;
2108
2109 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
e8e8a0c6 2110 wb_start_writeback(wb, reason);
595043e5
JA
2111}
2112
2113void wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2114 enum wb_reason reason)
2115{
595043e5 2116 rcu_read_lock();
e8e8a0c6 2117 __wakeup_flusher_threads_bdi(bdi, reason);
595043e5
JA
2118 rcu_read_unlock();
2119}
2120
03ba3782 2121/*
9ba4b2df 2122 * Wakeup the flusher threads to start writeback of all currently dirty pages
03ba3782 2123 */
9ba4b2df 2124void wakeup_flusher_threads(enum wb_reason reason)
03ba3782 2125{
b8c2f347 2126 struct backing_dev_info *bdi;
03ba3782 2127
51350ea0
KK
2128 /*
2129 * If we are expecting writeback progress we must submit plugged IO.
2130 */
2131 if (blk_needs_flush_plug(current))
2132 blk_schedule_flush_plug(current);
2133
b8c2f347 2134 rcu_read_lock();
595043e5 2135 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
e8e8a0c6 2136 __wakeup_flusher_threads_bdi(bdi, reason);
cfc4ba53 2137 rcu_read_unlock();
1da177e4
LT
2138}
2139
a2f48706
TT
2140/*
2141 * Wake up bdi's periodically to make sure dirtytime inodes gets
2142 * written back periodically. We deliberately do *not* check the
2143 * b_dirtytime list in wb_has_dirty_io(), since this would cause the
2144 * kernel to be constantly waking up once there are any dirtytime
2145 * inodes on the system. So instead we define a separate delayed work
2146 * function which gets called much more rarely. (By default, only
2147 * once every 12 hours.)
2148 *
2149 * If there is any other write activity going on in the file system,
2150 * this function won't be necessary. But if the only thing that has
2151 * happened on the file system is a dirtytime inode caused by an atime
2152 * update, we need this infrastructure below to make sure that inode
2153 * eventually gets pushed out to disk.
2154 */
2155static void wakeup_dirtytime_writeback(struct work_struct *w);
2156static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);
2157
2158static void wakeup_dirtytime_writeback(struct work_struct *w)
2159{
2160 struct backing_dev_info *bdi;
2161
2162 rcu_read_lock();
2163 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
001fe6f6 2164 struct bdi_writeback *wb;
001fe6f6 2165
b817525a 2166 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
6fdf860f
TH
2167 if (!list_empty(&wb->b_dirty_time))
2168 wb_wakeup(wb);
a2f48706
TT
2169 }
2170 rcu_read_unlock();
2171 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2172}
2173
2174static int __init start_dirtytime_writeback(void)
2175{
2176 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2177 return 0;
2178}
2179__initcall(start_dirtytime_writeback);
2180
1efff914
TT
2181int dirtytime_interval_handler(struct ctl_table *table, int write,
2182 void __user *buffer, size_t *lenp, loff_t *ppos)
2183{
2184 int ret;
2185
2186 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2187 if (ret == 0 && write)
2188 mod_delayed_work(system_wq, &dirtytime_work, 0);
2189 return ret;
2190}
2191
03ba3782
JA
2192static noinline void block_dump___mark_inode_dirty(struct inode *inode)
2193{
2194 if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
2195 struct dentry *dentry;
2196 const char *name = "?";
2197
2198 dentry = d_find_alias(inode);
2199 if (dentry) {
2200 spin_lock(&dentry->d_lock);
2201 name = (const char *) dentry->d_name.name;
2202 }
2203 printk(KERN_DEBUG
2204 "%s(%d): dirtied inode %lu (%s) on %s\n",
2205 current->comm, task_pid_nr(current), inode->i_ino,
2206 name, inode->i_sb->s_id);
2207 if (dentry) {
2208 spin_unlock(&dentry->d_lock);
2209 dput(dentry);
2210 }
2211 }
2212}
2213
2214/**
0117d427
MCC
2215 * __mark_inode_dirty - internal function
2216 *
2217 * @inode: inode to mark
2218 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
2219 *
2220 * Mark an inode as dirty. Callers should use mark_inode_dirty or
2221 * mark_inode_dirty_sync.
1da177e4 2222 *
03ba3782
JA
2223 * Put the inode on the super block's dirty list.
2224 *
2225 * CAREFUL! We mark it dirty unconditionally, but move it onto the
2226 * dirty list only if it is hashed or if it refers to a blockdev.
2227 * If it was not hashed, it will never be added to the dirty list
2228 * even if it is later hashed, as it will have been marked dirty already.
2229 *
2230 * In short, make sure you hash any inodes _before_ you start marking
2231 * them dirty.
1da177e4 2232 *
03ba3782
JA
2233 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
2234 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of
2235 * the kernel-internal blockdev inode represents the dirtying time of the
2236 * blockdev's pages. This is why for I_DIRTY_PAGES we always use
2237 * page->mapping->host, so the page-dirtying time is recorded in the internal
2238 * blockdev inode.
1da177e4 2239 */
03ba3782 2240void __mark_inode_dirty(struct inode *inode, int flags)
1da177e4 2241{
03ba3782 2242 struct super_block *sb = inode->i_sb;
0ae45f63
TT
2243 int dirtytime;
2244
2245 trace_writeback_mark_inode_dirty(inode, flags);
1da177e4 2246
03ba3782
JA
2247 /*
2248 * Don't do this for I_DIRTY_PAGES - that doesn't actually
2249 * dirty the inode itself
2250 */
0e11f644 2251 if (flags & (I_DIRTY_INODE | I_DIRTY_TIME)) {
9fb0a7da
TH
2252 trace_writeback_dirty_inode_start(inode, flags);
2253
03ba3782 2254 if (sb->s_op->dirty_inode)
aa385729 2255 sb->s_op->dirty_inode(inode, flags);
9fb0a7da
TH
2256
2257 trace_writeback_dirty_inode(inode, flags);
03ba3782 2258 }
0ae45f63
TT
2259 if (flags & I_DIRTY_INODE)
2260 flags &= ~I_DIRTY_TIME;
2261 dirtytime = flags & I_DIRTY_TIME;
03ba3782
JA
2262
2263 /*
9c6ac78e
TH
2264 * Paired with smp_mb() in __writeback_single_inode() for the
2265 * following lockless i_state test. See there for details.
03ba3782
JA
2266 */
2267 smp_mb();
2268
0ae45f63
TT
2269 if (((inode->i_state & flags) == flags) ||
2270 (dirtytime && (inode->i_state & I_DIRTY_INODE)))
03ba3782
JA
2271 return;
2272
2273 if (unlikely(block_dump))
2274 block_dump___mark_inode_dirty(inode);
2275
250df6ed 2276 spin_lock(&inode->i_lock);
0ae45f63
TT
2277 if (dirtytime && (inode->i_state & I_DIRTY_INODE))
2278 goto out_unlock_inode;
03ba3782
JA
2279 if ((inode->i_state & flags) != flags) {
2280 const int was_dirty = inode->i_state & I_DIRTY;
2281
52ebea74
TH
2282 inode_attach_wb(inode, NULL);
2283
0ae45f63
TT
2284 if (flags & I_DIRTY_INODE)
2285 inode->i_state &= ~I_DIRTY_TIME;
03ba3782
JA
2286 inode->i_state |= flags;
2287
2288 /*
2289 * If the inode is being synced, just update its dirty state.
2290 * The unlocker will place the inode on the appropriate
2291 * superblock list, based upon its state.
2292 */
2293 if (inode->i_state & I_SYNC)
250df6ed 2294 goto out_unlock_inode;
03ba3782
JA
2295
2296 /*
2297 * Only add valid (hashed) inodes to the superblock's
2298 * dirty list. Add blockdev inodes as well.
2299 */
2300 if (!S_ISBLK(inode->i_mode)) {
1d3382cb 2301 if (inode_unhashed(inode))
250df6ed 2302 goto out_unlock_inode;
03ba3782 2303 }
a4ffdde6 2304 if (inode->i_state & I_FREEING)
250df6ed 2305 goto out_unlock_inode;
03ba3782
JA
2306
2307 /*
2308 * If the inode was already on b_dirty/b_io/b_more_io, don't
2309 * reposition it (that would break b_dirty time-ordering).
2310 */
2311 if (!was_dirty) {
87e1d789 2312 struct bdi_writeback *wb;
d6c10f1f 2313 struct list_head *dirty_list;
a66979ab 2314 bool wakeup_bdi = false;
253c34e9 2315
87e1d789 2316 wb = locked_inode_to_wb_and_lock_list(inode);
253c34e9 2317
0747259d
TH
2318 WARN(bdi_cap_writeback_dirty(wb->bdi) &&
2319 !test_bit(WB_registered, &wb->state),
2320 "bdi-%s not registered\n", wb->bdi->name);
03ba3782
JA
2321
2322 inode->dirtied_when = jiffies;
a2f48706
TT
2323 if (dirtytime)
2324 inode->dirtied_time_when = jiffies;
d6c10f1f 2325
0e11f644 2326 if (inode->i_state & I_DIRTY)
0747259d 2327 dirty_list = &wb->b_dirty;
a2f48706 2328 else
0747259d 2329 dirty_list = &wb->b_dirty_time;
d6c10f1f 2330
c7f54084 2331 wakeup_bdi = inode_io_list_move_locked(inode, wb,
d6c10f1f
TH
2332 dirty_list);
2333
0747259d 2334 spin_unlock(&wb->list_lock);
0ae45f63 2335 trace_writeback_dirty_inode_enqueue(inode);
a66979ab 2336
d6c10f1f
TH
2337 /*
2338 * If this is the first dirty inode for this bdi,
2339 * we have to wake-up the corresponding bdi thread
2340 * to make sure background write-back happens
2341 * later.
2342 */
0747259d
TH
2343 if (bdi_cap_writeback_dirty(wb->bdi) && wakeup_bdi)
2344 wb_wakeup_delayed(wb);
a66979ab 2345 return;
1da177e4 2346 }
1da177e4 2347 }
250df6ed
DC
2348out_unlock_inode:
2349 spin_unlock(&inode->i_lock);
03ba3782
JA
2350}
2351EXPORT_SYMBOL(__mark_inode_dirty);
2352
e97fedb9
DC
2353/*
2354 * The @s_sync_lock is used to serialise concurrent sync operations
2355 * to avoid lock contention problems with concurrent wait_sb_inodes() calls.
2356 * Concurrent callers will block on the s_sync_lock rather than doing contending
2357 * walks. The queueing maintains sync(2) required behaviour as all the IO that
2358 * has been issued up to the time this function is enter is guaranteed to be
2359 * completed by the time we have gained the lock and waited for all IO that is
2360 * in progress regardless of the order callers are granted the lock.
2361 */
b6e51316 2362static void wait_sb_inodes(struct super_block *sb)
03ba3782 2363{
6c60d2b5 2364 LIST_HEAD(sync_list);
03ba3782
JA
2365
2366 /*
2367 * We need to be protected against the filesystem going from
2368 * r/o to r/w or vice versa.
2369 */
b6e51316 2370 WARN_ON(!rwsem_is_locked(&sb->s_umount));
03ba3782 2371
e97fedb9 2372 mutex_lock(&sb->s_sync_lock);
03ba3782
JA
2373
2374 /*
6c60d2b5
DC
2375 * Splice the writeback list onto a temporary list to avoid waiting on
2376 * inodes that have started writeback after this point.
2377 *
2378 * Use rcu_read_lock() to keep the inodes around until we have a
2379 * reference. s_inode_wblist_lock protects sb->s_inodes_wb as well as
2380 * the local list because inodes can be dropped from either by writeback
2381 * completion.
2382 */
2383 rcu_read_lock();
2384 spin_lock_irq(&sb->s_inode_wblist_lock);
2385 list_splice_init(&sb->s_inodes_wb, &sync_list);
2386
2387 /*
2388 * Data integrity sync. Must wait for all pages under writeback, because
2389 * there may have been pages dirtied before our sync call, but which had
2390 * writeout started before we write it out. In which case, the inode
2391 * may not be on the dirty list, but we still have to wait for that
2392 * writeout.
03ba3782 2393 */
6c60d2b5
DC
2394 while (!list_empty(&sync_list)) {
2395 struct inode *inode = list_first_entry(&sync_list, struct inode,
2396 i_wb_list);
250df6ed 2397 struct address_space *mapping = inode->i_mapping;
03ba3782 2398
6c60d2b5
DC
2399 /*
2400 * Move each inode back to the wb list before we drop the lock
2401 * to preserve consistency between i_wb_list and the mapping
2402 * writeback tag. Writeback completion is responsible to remove
2403 * the inode from either list once the writeback tag is cleared.
2404 */
2405 list_move_tail(&inode->i_wb_list, &sb->s_inodes_wb);
2406
2407 /*
2408 * The mapping can appear untagged while still on-list since we
2409 * do not have the mapping lock. Skip it here, wb completion
2410 * will remove it.
2411 */
2412 if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
2413 continue;
2414
2415 spin_unlock_irq(&sb->s_inode_wblist_lock);
2416
250df6ed 2417 spin_lock(&inode->i_lock);
6c60d2b5 2418 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) {
250df6ed 2419 spin_unlock(&inode->i_lock);
6c60d2b5
DC
2420
2421 spin_lock_irq(&sb->s_inode_wblist_lock);
03ba3782 2422 continue;
250df6ed 2423 }
03ba3782 2424 __iget(inode);
250df6ed 2425 spin_unlock(&inode->i_lock);
6c60d2b5 2426 rcu_read_unlock();
03ba3782 2427
aa750fd7
JN
2428 /*
2429 * We keep the error status of individual mapping so that
2430 * applications can catch the writeback error using fsync(2).
2431 * See filemap_fdatawait_keep_errors() for details.
2432 */
2433 filemap_fdatawait_keep_errors(mapping);
03ba3782
JA
2434
2435 cond_resched();
2436
6c60d2b5
DC
2437 iput(inode);
2438
2439 rcu_read_lock();
2440 spin_lock_irq(&sb->s_inode_wblist_lock);
03ba3782 2441 }
6c60d2b5
DC
2442 spin_unlock_irq(&sb->s_inode_wblist_lock);
2443 rcu_read_unlock();
e97fedb9 2444 mutex_unlock(&sb->s_sync_lock);
1da177e4
LT
2445}
2446
f30a7d0c
TH
2447static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2448 enum wb_reason reason, bool skip_if_busy)
1da177e4 2449{
5b9cce4c
TH
2450 struct backing_dev_info *bdi = sb->s_bdi;
2451 DEFINE_WB_COMPLETION(done, bdi);
83ba7b07 2452 struct wb_writeback_work work = {
6e6938b6
WF
2453 .sb = sb,
2454 .sync_mode = WB_SYNC_NONE,
2455 .tagged_writepages = 1,
2456 .done = &done,
2457 .nr_pages = nr,
0e175a18 2458 .reason = reason,
3c4d7165 2459 };
d8a8559c 2460
e7972912 2461 if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
6eedc701 2462 return;
cf37e972 2463 WARN_ON(!rwsem_is_locked(&sb->s_umount));
f30a7d0c 2464
db125360 2465 bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy);
5b9cce4c 2466 wb_wait_for_completion(&done);
e913fc82 2467}
f30a7d0c
TH
2468
2469/**
2470 * writeback_inodes_sb_nr - writeback dirty inodes from given super_block
2471 * @sb: the superblock
2472 * @nr: the number of pages to write
2473 * @reason: reason why some writeback work initiated
2474 *
2475 * Start writeback on some inodes on this super_block. No guarantees are made
2476 * on how many (if any) will be written, and this function does not wait
2477 * for IO completion of submitted IO.
2478 */
2479void writeback_inodes_sb_nr(struct super_block *sb,
2480 unsigned long nr,
2481 enum wb_reason reason)
2482{
2483 __writeback_inodes_sb_nr(sb, nr, reason, false);
2484}
3259f8be
CM
2485EXPORT_SYMBOL(writeback_inodes_sb_nr);
2486
2487/**
2488 * writeback_inodes_sb - writeback dirty inodes from given super_block
2489 * @sb: the superblock
786228ab 2490 * @reason: reason why some writeback work was initiated
3259f8be
CM
2491 *
2492 * Start writeback on some inodes on this super_block. No guarantees are made
2493 * on how many (if any) will be written, and this function does not wait
2494 * for IO completion of submitted IO.
2495 */
0e175a18 2496void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
3259f8be 2497{
0e175a18 2498 return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
3259f8be 2499}
0e3c9a22 2500EXPORT_SYMBOL(writeback_inodes_sb);
e913fc82 2501
17bd55d0 2502/**
8264c321 2503 * try_to_writeback_inodes_sb - try to start writeback if none underway
17bd55d0 2504 * @sb: the superblock
8264c321 2505 * @reason: reason why some writeback work was initiated
17bd55d0 2506 *
8264c321 2507 * Invoke __writeback_inodes_sb_nr if no writeback is currently underway.
17bd55d0 2508 */
8264c321 2509void try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
17bd55d0 2510{
10ee27a0 2511 if (!down_read_trylock(&sb->s_umount))
8264c321 2512 return;
10ee27a0 2513
8264c321 2514 __writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason, true);
10ee27a0 2515 up_read(&sb->s_umount);
3259f8be 2516}
10ee27a0 2517EXPORT_SYMBOL(try_to_writeback_inodes_sb);
3259f8be 2518
d8a8559c
JA
2519/**
2520 * sync_inodes_sb - sync sb inode pages
0dc83bd3 2521 * @sb: the superblock
d8a8559c
JA
2522 *
2523 * This function writes and waits on any dirty inode belonging to this
0dc83bd3 2524 * super_block.
d8a8559c 2525 */
0dc83bd3 2526void sync_inodes_sb(struct super_block *sb)
d8a8559c 2527{
5b9cce4c
TH
2528 struct backing_dev_info *bdi = sb->s_bdi;
2529 DEFINE_WB_COMPLETION(done, bdi);
83ba7b07 2530 struct wb_writeback_work work = {
3c4d7165
CH
2531 .sb = sb,
2532 .sync_mode = WB_SYNC_ALL,
2533 .nr_pages = LONG_MAX,
2534 .range_cyclic = 0,
83ba7b07 2535 .done = &done,
0e175a18 2536 .reason = WB_REASON_SYNC,
7747bd4b 2537 .for_sync = 1,
3c4d7165
CH
2538 };
2539
006a0973
TH
2540 /*
2541 * Can't skip on !bdi_has_dirty() because we should wait for !dirty
2542 * inodes under writeback and I_DIRTY_TIME inodes ignored by
2543 * bdi_has_dirty() need to be written out too.
2544 */
2545 if (bdi == &noop_backing_dev_info)
6eedc701 2546 return;
cf37e972
CH
2547 WARN_ON(!rwsem_is_locked(&sb->s_umount));
2548
7fc5854f
TH
2549 /* protect against inode wb switch, see inode_switch_wbs_work_fn() */
2550 bdi_down_write_wb_switch_rwsem(bdi);
db125360 2551 bdi_split_work_to_wbs(bdi, &work, false);
5b9cce4c 2552 wb_wait_for_completion(&done);
7fc5854f 2553 bdi_up_write_wb_switch_rwsem(bdi);
83ba7b07 2554
b6e51316 2555 wait_sb_inodes(sb);
1da177e4 2556}
d8a8559c 2557EXPORT_SYMBOL(sync_inodes_sb);
1da177e4 2558
1da177e4 2559/**
7f04c26d
AA
2560 * write_inode_now - write an inode to disk
2561 * @inode: inode to write to disk
2562 * @sync: whether the write should be synchronous or not
2563 *
2564 * This function commits an inode to disk immediately if it is dirty. This is
2565 * primarily needed by knfsd.
1da177e4 2566 *
7f04c26d 2567 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
1da177e4 2568 */
1da177e4
LT
2569int write_inode_now(struct inode *inode, int sync)
2570{
1da177e4
LT
2571 struct writeback_control wbc = {
2572 .nr_to_write = LONG_MAX,
18914b18 2573 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
111ebb6e
OH
2574 .range_start = 0,
2575 .range_end = LLONG_MAX,
1da177e4
LT
2576 };
2577
2578 if (!mapping_cap_writeback_dirty(inode->i_mapping))
49364ce2 2579 wbc.nr_to_write = 0;
1da177e4
LT
2580
2581 might_sleep();
aaf25593 2582 return writeback_single_inode(inode, &wbc);
1da177e4
LT
2583}
2584EXPORT_SYMBOL(write_inode_now);
2585
2586/**
2587 * sync_inode - write an inode and its pages to disk.
2588 * @inode: the inode to sync
2589 * @wbc: controls the writeback mode
2590 *
2591 * sync_inode() will write an inode and its pages to disk. It will also
2592 * correctly update the inode on its superblock's dirty inode lists and will
2593 * update inode->i_state.
2594 *
2595 * The caller must have a ref on the inode.
2596 */
2597int sync_inode(struct inode *inode, struct writeback_control *wbc)
2598{
aaf25593 2599 return writeback_single_inode(inode, wbc);
1da177e4
LT
2600}
2601EXPORT_SYMBOL(sync_inode);
c3765016
CH
2602
2603/**
c691b9d9 2604 * sync_inode_metadata - write an inode to disk
c3765016
CH
2605 * @inode: the inode to sync
2606 * @wait: wait for I/O to complete.
2607 *
c691b9d9 2608 * Write an inode to disk and adjust its dirty state after completion.
c3765016
CH
2609 *
2610 * Note: only writes the actual inode, no associated data or other metadata.
2611 */
2612int sync_inode_metadata(struct inode *inode, int wait)
2613{
2614 struct writeback_control wbc = {
2615 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
2616 .nr_to_write = 0, /* metadata-only */
2617 };
2618
2619 return sync_inode(inode, &wbc);
2620}
2621EXPORT_SYMBOL(sync_inode_metadata);