/proc/kpageflags: return KPF_BUDDY for "tail" buddy pages
[linux-2.6-block.git] / fs / fs-writeback.c
CommitLineData
1da177e4
LT
1/*
2 * fs/fs-writeback.c
3 *
4 * Copyright (C) 2002, Linus Torvalds.
5 *
6 * Contains all the functions related to writing back and waiting
7 * upon dirty inodes against superblocks, and writing back dirty
8 * pages against inodes. ie: data writeback. Writeout of the
9 * inode itself is not handled here.
10 *
e1f8e874 11 * 10Apr2002 Andrew Morton
1da177e4
LT
12 * Split out of fs/inode.c
13 * Additions for address_space-based writeback
14 */
15
16#include <linux/kernel.h>
630d9c47 17#include <linux/export.h>
1da177e4 18#include <linux/spinlock.h>
5a0e3ad6 19#include <linux/slab.h>
1da177e4
LT
20#include <linux/sched.h>
21#include <linux/fs.h>
22#include <linux/mm.h>
bc31b86a 23#include <linux/pagemap.h>
03ba3782 24#include <linux/kthread.h>
1da177e4
LT
25#include <linux/writeback.h>
26#include <linux/blkdev.h>
27#include <linux/backing-dev.h>
455b2864 28#include <linux/tracepoint.h>
719ea2fb 29#include <linux/device.h>
21c6321f 30#include <linux/memcontrol.h>
07f3f05c 31#include "internal.h"
1da177e4 32
bc31b86a
WF
33/*
34 * 4MB minimal write chunk size
35 */
36#define MIN_WRITEBACK_PAGES (4096UL >> (PAGE_CACHE_SHIFT - 10))
37
cc395d7f
TH
38struct wb_completion {
39 atomic_t cnt;
40};
41
c4a77a6c
JA
42/*
43 * Passed into wb_writeback(), essentially a subset of writeback_control
44 */
83ba7b07 45struct wb_writeback_work {
c4a77a6c
JA
46 long nr_pages;
47 struct super_block *sb;
0dc83bd3 48 unsigned long *older_than_this;
c4a77a6c 49 enum writeback_sync_modes sync_mode;
6e6938b6 50 unsigned int tagged_writepages:1;
52957fe1
HS
51 unsigned int for_kupdate:1;
52 unsigned int range_cyclic:1;
53 unsigned int for_background:1;
7747bd4b 54 unsigned int for_sync:1; /* sync(2) WB_SYNC_ALL writeback */
ac7b19a3 55 unsigned int auto_free:1; /* free on completion */
0e175a18 56 enum wb_reason reason; /* why was writeback initiated? */
c4a77a6c 57
8010c3b6 58 struct list_head list; /* pending work list */
cc395d7f 59 struct wb_completion *done; /* set if the caller waits */
03ba3782
JA
60};
61
cc395d7f
TH
62/*
63 * If one wants to wait for one or more wb_writeback_works, each work's
64 * ->done should be set to a wb_completion defined using the following
65 * macro. Once all work items are issued with wb_queue_work(), the caller
66 * can wait for the completion of all using wb_wait_for_completion(). Work
67 * items which are waited upon aren't freed automatically on completion.
68 */
69#define DEFINE_WB_COMPLETION_ONSTACK(cmpl) \
70 struct wb_completion cmpl = { \
71 .cnt = ATOMIC_INIT(1), \
72 }
73
74
a2f48706
TT
75/*
76 * If an inode is constantly having its pages dirtied, but then the
77 * updates stop dirtytime_expire_interval seconds in the past, it's
78 * possible for the worst case time between when an inode has its
79 * timestamps updated and when they finally get written out to be two
80 * dirtytime_expire_intervals. We set the default to 12 hours (in
81 * seconds), which means most of the time inodes will have their
82 * timestamps written to disk after 12 hours, but in the worst case a
83 * few inodes might not their timestamps updated for 24 hours.
84 */
85unsigned int dirtytime_expire_interval = 12 * 60 * 60;
86
7ccf19a8
NP
87static inline struct inode *wb_inode(struct list_head *head)
88{
c7f54084 89 return list_entry(head, struct inode, i_io_list);
7ccf19a8
NP
90}
91
15eb77a0
WF
92/*
93 * Include the creation of the trace points after defining the
94 * wb_writeback_work structure and inline functions so that the definition
95 * remains local to this file.
96 */
97#define CREATE_TRACE_POINTS
98#include <trace/events/writeback.h>
99
774016b2
SW
100EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
101
d6c10f1f
TH
102static bool wb_io_lists_populated(struct bdi_writeback *wb)
103{
104 if (wb_has_dirty_io(wb)) {
105 return false;
106 } else {
107 set_bit(WB_has_dirty_io, &wb->state);
95a46c65 108 WARN_ON_ONCE(!wb->avg_write_bandwidth);
766a9d6e
TH
109 atomic_long_add(wb->avg_write_bandwidth,
110 &wb->bdi->tot_write_bandwidth);
d6c10f1f
TH
111 return true;
112 }
113}
114
115static void wb_io_lists_depopulated(struct bdi_writeback *wb)
116{
117 if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
766a9d6e 118 list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
d6c10f1f 119 clear_bit(WB_has_dirty_io, &wb->state);
95a46c65
TH
120 WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
121 &wb->bdi->tot_write_bandwidth) < 0);
766a9d6e 122 }
d6c10f1f
TH
123}
124
125/**
c7f54084 126 * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list
d6c10f1f
TH
127 * @inode: inode to be moved
128 * @wb: target bdi_writeback
129 * @head: one of @wb->b_{dirty|io|more_io}
130 *
c7f54084 131 * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io.
d6c10f1f
TH
132 * Returns %true if @inode is the first occupant of the !dirty_time IO
133 * lists; otherwise, %false.
134 */
c7f54084 135static bool inode_io_list_move_locked(struct inode *inode,
d6c10f1f
TH
136 struct bdi_writeback *wb,
137 struct list_head *head)
138{
139 assert_spin_locked(&wb->list_lock);
140
c7f54084 141 list_move(&inode->i_io_list, head);
d6c10f1f
TH
142
143 /* dirty_time doesn't count as dirty_io until expiration */
144 if (head != &wb->b_dirty_time)
145 return wb_io_lists_populated(wb);
146
147 wb_io_lists_depopulated(wb);
148 return false;
149}
150
151/**
c7f54084 152 * inode_io_list_del_locked - remove an inode from its bdi_writeback IO list
d6c10f1f
TH
153 * @inode: inode to be removed
154 * @wb: bdi_writeback @inode is being removed from
155 *
156 * Remove @inode which may be on one of @wb->b_{dirty|io|more_io} lists and
157 * clear %WB_has_dirty_io if all are empty afterwards.
158 */
c7f54084 159static void inode_io_list_del_locked(struct inode *inode,
d6c10f1f
TH
160 struct bdi_writeback *wb)
161{
162 assert_spin_locked(&wb->list_lock);
163
c7f54084 164 list_del_init(&inode->i_io_list);
d6c10f1f
TH
165 wb_io_lists_depopulated(wb);
166}
167
f0054bb1 168static void wb_wakeup(struct bdi_writeback *wb)
5acda9d1 169{
f0054bb1
TH
170 spin_lock_bh(&wb->work_lock);
171 if (test_bit(WB_registered, &wb->state))
172 mod_delayed_work(bdi_wq, &wb->dwork, 0);
173 spin_unlock_bh(&wb->work_lock);
5acda9d1
JK
174}
175
f0054bb1
TH
176static void wb_queue_work(struct bdi_writeback *wb,
177 struct wb_writeback_work *work)
6585027a 178{
5634cc2a 179 trace_writeback_queue(wb, work);
6585027a 180
f0054bb1 181 spin_lock_bh(&wb->work_lock);
8a1270cd 182 if (!test_bit(WB_registered, &wb->state))
5acda9d1 183 goto out_unlock;
cc395d7f
TH
184 if (work->done)
185 atomic_inc(&work->done->cnt);
f0054bb1
TH
186 list_add_tail(&work->list, &wb->work_list);
187 mod_delayed_work(bdi_wq, &wb->dwork, 0);
5acda9d1 188out_unlock:
f0054bb1 189 spin_unlock_bh(&wb->work_lock);
1da177e4
LT
190}
191
cc395d7f
TH
192/**
193 * wb_wait_for_completion - wait for completion of bdi_writeback_works
194 * @bdi: bdi work items were issued to
195 * @done: target wb_completion
196 *
197 * Wait for one or more work items issued to @bdi with their ->done field
198 * set to @done, which should have been defined with
199 * DEFINE_WB_COMPLETION_ONSTACK(). This function returns after all such
200 * work items are completed. Work items which are waited upon aren't freed
201 * automatically on completion.
202 */
203static void wb_wait_for_completion(struct backing_dev_info *bdi,
204 struct wb_completion *done)
205{
206 atomic_dec(&done->cnt); /* put down the initial count */
207 wait_event(bdi->wb_waitq, !atomic_read(&done->cnt));
208}
209
703c2708
TH
210#ifdef CONFIG_CGROUP_WRITEBACK
211
2a814908
TH
212/* parameters for foreign inode detection, see wb_detach_inode() */
213#define WB_FRN_TIME_SHIFT 13 /* 1s = 2^13, upto 8 secs w/ 16bit */
214#define WB_FRN_TIME_AVG_SHIFT 3 /* avg = avg * 7/8 + new * 1/8 */
215#define WB_FRN_TIME_CUT_DIV 2 /* ignore rounds < avg / 2 */
216#define WB_FRN_TIME_PERIOD (2 * (1 << WB_FRN_TIME_SHIFT)) /* 2s */
217
218#define WB_FRN_HIST_SLOTS 16 /* inode->i_wb_frn_history is 16bit */
219#define WB_FRN_HIST_UNIT (WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS)
220 /* each slot's duration is 2s / 16 */
221#define WB_FRN_HIST_THR_SLOTS (WB_FRN_HIST_SLOTS / 2)
222 /* if foreign slots >= 8, switch */
223#define WB_FRN_HIST_MAX_SLOTS (WB_FRN_HIST_THR_SLOTS / 2 + 1)
224 /* one round can affect upto 5 slots */
225
a1a0e23e
TH
226static atomic_t isw_nr_in_flight = ATOMIC_INIT(0);
227static struct workqueue_struct *isw_wq;
228
21c6321f
TH
229void __inode_attach_wb(struct inode *inode, struct page *page)
230{
231 struct backing_dev_info *bdi = inode_to_bdi(inode);
232 struct bdi_writeback *wb = NULL;
233
234 if (inode_cgwb_enabled(inode)) {
235 struct cgroup_subsys_state *memcg_css;
236
237 if (page) {
238 memcg_css = mem_cgroup_css_from_page(page);
239 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
240 } else {
241 /* must pin memcg_css, see wb_get_create() */
242 memcg_css = task_get_css(current, memory_cgrp_id);
243 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
244 css_put(memcg_css);
245 }
246 }
247
248 if (!wb)
249 wb = &bdi->wb;
250
251 /*
252 * There may be multiple instances of this function racing to
253 * update the same inode. Use cmpxchg() to tell the winner.
254 */
255 if (unlikely(cmpxchg(&inode->i_wb, NULL, wb)))
256 wb_put(wb);
257}
258
87e1d789
TH
259/**
260 * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it
261 * @inode: inode of interest with i_lock held
262 *
263 * Returns @inode's wb with its list_lock held. @inode->i_lock must be
264 * held on entry and is released on return. The returned wb is guaranteed
265 * to stay @inode's associated wb until its list_lock is released.
266 */
267static struct bdi_writeback *
268locked_inode_to_wb_and_lock_list(struct inode *inode)
269 __releases(&inode->i_lock)
270 __acquires(&wb->list_lock)
271{
272 while (true) {
273 struct bdi_writeback *wb = inode_to_wb(inode);
274
275 /*
276 * inode_to_wb() association is protected by both
277 * @inode->i_lock and @wb->list_lock but list_lock nests
278 * outside i_lock. Drop i_lock and verify that the
279 * association hasn't changed after acquiring list_lock.
280 */
281 wb_get(wb);
282 spin_unlock(&inode->i_lock);
283 spin_lock(&wb->list_lock);
284 wb_put(wb); /* not gonna deref it anymore */
285
aaa2cacf
TH
286 /* i_wb may have changed inbetween, can't use inode_to_wb() */
287 if (likely(wb == inode->i_wb))
87e1d789
TH
288 return wb; /* @inode already has ref */
289
290 spin_unlock(&wb->list_lock);
291 cpu_relax();
292 spin_lock(&inode->i_lock);
293 }
294}
295
296/**
297 * inode_to_wb_and_lock_list - determine an inode's wb and lock it
298 * @inode: inode of interest
299 *
300 * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held
301 * on entry.
302 */
303static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
304 __acquires(&wb->list_lock)
305{
306 spin_lock(&inode->i_lock);
307 return locked_inode_to_wb_and_lock_list(inode);
308}
309
682aa8e1
TH
310struct inode_switch_wbs_context {
311 struct inode *inode;
312 struct bdi_writeback *new_wb;
313
314 struct rcu_head rcu_head;
315 struct work_struct work;
316};
317
318static void inode_switch_wbs_work_fn(struct work_struct *work)
319{
320 struct inode_switch_wbs_context *isw =
321 container_of(work, struct inode_switch_wbs_context, work);
322 struct inode *inode = isw->inode;
d10c8095
TH
323 struct address_space *mapping = inode->i_mapping;
324 struct bdi_writeback *old_wb = inode->i_wb;
682aa8e1 325 struct bdi_writeback *new_wb = isw->new_wb;
d10c8095
TH
326 struct radix_tree_iter iter;
327 bool switched = false;
328 void **slot;
682aa8e1
TH
329
330 /*
331 * By the time control reaches here, RCU grace period has passed
332 * since I_WB_SWITCH assertion and all wb stat update transactions
333 * between unlocked_inode_to_wb_begin/end() are guaranteed to be
334 * synchronizing against mapping->tree_lock.
d10c8095
TH
335 *
336 * Grabbing old_wb->list_lock, inode->i_lock and mapping->tree_lock
337 * gives us exclusion against all wb related operations on @inode
338 * including IO list manipulations and stat updates.
682aa8e1 339 */
d10c8095
TH
340 if (old_wb < new_wb) {
341 spin_lock(&old_wb->list_lock);
342 spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING);
343 } else {
344 spin_lock(&new_wb->list_lock);
345 spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING);
346 }
682aa8e1 347 spin_lock(&inode->i_lock);
d10c8095
TH
348 spin_lock_irq(&mapping->tree_lock);
349
350 /*
351 * Once I_FREEING is visible under i_lock, the eviction path owns
c7f54084 352 * the inode and we shouldn't modify ->i_io_list.
d10c8095
TH
353 */
354 if (unlikely(inode->i_state & I_FREEING))
355 goto skip_switch;
356
357 /*
358 * Count and transfer stats. Note that PAGECACHE_TAG_DIRTY points
359 * to possibly dirty pages while PAGECACHE_TAG_WRITEBACK points to
360 * pages actually under underwriteback.
361 */
362 radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter, 0,
363 PAGECACHE_TAG_DIRTY) {
364 struct page *page = radix_tree_deref_slot_protected(slot,
365 &mapping->tree_lock);
366 if (likely(page) && PageDirty(page)) {
367 __dec_wb_stat(old_wb, WB_RECLAIMABLE);
368 __inc_wb_stat(new_wb, WB_RECLAIMABLE);
369 }
370 }
371
372 radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter, 0,
373 PAGECACHE_TAG_WRITEBACK) {
374 struct page *page = radix_tree_deref_slot_protected(slot,
375 &mapping->tree_lock);
376 if (likely(page)) {
377 WARN_ON_ONCE(!PageWriteback(page));
378 __dec_wb_stat(old_wb, WB_WRITEBACK);
379 __inc_wb_stat(new_wb, WB_WRITEBACK);
380 }
381 }
382
383 wb_get(new_wb);
384
385 /*
386 * Transfer to @new_wb's IO list if necessary. The specific list
387 * @inode was on is ignored and the inode is put on ->b_dirty which
388 * is always correct including from ->b_dirty_time. The transfer
389 * preserves @inode->dirtied_when ordering.
390 */
c7f54084 391 if (!list_empty(&inode->i_io_list)) {
d10c8095
TH
392 struct inode *pos;
393
c7f54084 394 inode_io_list_del_locked(inode, old_wb);
d10c8095 395 inode->i_wb = new_wb;
c7f54084 396 list_for_each_entry(pos, &new_wb->b_dirty, i_io_list)
d10c8095
TH
397 if (time_after_eq(inode->dirtied_when,
398 pos->dirtied_when))
399 break;
c7f54084 400 inode_io_list_move_locked(inode, new_wb, pos->i_io_list.prev);
d10c8095
TH
401 } else {
402 inode->i_wb = new_wb;
403 }
682aa8e1 404
d10c8095 405 /* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */
682aa8e1
TH
406 inode->i_wb_frn_winner = 0;
407 inode->i_wb_frn_avg_time = 0;
408 inode->i_wb_frn_history = 0;
d10c8095
TH
409 switched = true;
410skip_switch:
682aa8e1
TH
411 /*
412 * Paired with load_acquire in unlocked_inode_to_wb_begin() and
413 * ensures that the new wb is visible if they see !I_WB_SWITCH.
414 */
415 smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH);
416
d10c8095 417 spin_unlock_irq(&mapping->tree_lock);
682aa8e1 418 spin_unlock(&inode->i_lock);
d10c8095
TH
419 spin_unlock(&new_wb->list_lock);
420 spin_unlock(&old_wb->list_lock);
682aa8e1 421
d10c8095
TH
422 if (switched) {
423 wb_wakeup(new_wb);
424 wb_put(old_wb);
425 }
682aa8e1 426 wb_put(new_wb);
d10c8095
TH
427
428 iput(inode);
682aa8e1 429 kfree(isw);
a1a0e23e
TH
430
431 atomic_dec(&isw_nr_in_flight);
682aa8e1
TH
432}
433
434static void inode_switch_wbs_rcu_fn(struct rcu_head *rcu_head)
435{
436 struct inode_switch_wbs_context *isw = container_of(rcu_head,
437 struct inode_switch_wbs_context, rcu_head);
438
439 /* needs to grab bh-unsafe locks, bounce to work item */
440 INIT_WORK(&isw->work, inode_switch_wbs_work_fn);
a1a0e23e 441 queue_work(isw_wq, &isw->work);
682aa8e1
TH
442}
443
444/**
445 * inode_switch_wbs - change the wb association of an inode
446 * @inode: target inode
447 * @new_wb_id: ID of the new wb
448 *
449 * Switch @inode's wb association to the wb identified by @new_wb_id. The
450 * switching is performed asynchronously and may fail silently.
451 */
452static void inode_switch_wbs(struct inode *inode, int new_wb_id)
453{
454 struct backing_dev_info *bdi = inode_to_bdi(inode);
455 struct cgroup_subsys_state *memcg_css;
456 struct inode_switch_wbs_context *isw;
457
458 /* noop if seems to be already in progress */
459 if (inode->i_state & I_WB_SWITCH)
460 return;
461
462 isw = kzalloc(sizeof(*isw), GFP_ATOMIC);
463 if (!isw)
464 return;
465
466 /* find and pin the new wb */
467 rcu_read_lock();
468 memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys);
469 if (memcg_css)
470 isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
471 rcu_read_unlock();
472 if (!isw->new_wb)
473 goto out_free;
474
475 /* while holding I_WB_SWITCH, no one else can update the association */
476 spin_lock(&inode->i_lock);
a1a0e23e
TH
477 if (!(inode->i_sb->s_flags & MS_ACTIVE) ||
478 inode->i_state & (I_WB_SWITCH | I_FREEING) ||
479 inode_to_wb(inode) == isw->new_wb) {
480 spin_unlock(&inode->i_lock);
481 goto out_free;
482 }
682aa8e1
TH
483 inode->i_state |= I_WB_SWITCH;
484 spin_unlock(&inode->i_lock);
485
486 ihold(inode);
487 isw->inode = inode;
488
a1a0e23e
TH
489 atomic_inc(&isw_nr_in_flight);
490
682aa8e1
TH
491 /*
492 * In addition to synchronizing among switchers, I_WB_SWITCH tells
493 * the RCU protected stat update paths to grab the mapping's
494 * tree_lock so that stat transfer can synchronize against them.
495 * Let's continue after I_WB_SWITCH is guaranteed to be visible.
496 */
497 call_rcu(&isw->rcu_head, inode_switch_wbs_rcu_fn);
498 return;
499
500out_free:
501 if (isw->new_wb)
502 wb_put(isw->new_wb);
503 kfree(isw);
504}
505
b16b1deb
TH
506/**
507 * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
508 * @wbc: writeback_control of interest
509 * @inode: target inode
510 *
511 * @inode is locked and about to be written back under the control of @wbc.
512 * Record @inode's writeback context into @wbc and unlock the i_lock. On
513 * writeback completion, wbc_detach_inode() should be called. This is used
514 * to track the cgroup writeback context.
515 */
516void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
517 struct inode *inode)
518{
dd73e4b7
TH
519 if (!inode_cgwb_enabled(inode)) {
520 spin_unlock(&inode->i_lock);
521 return;
522 }
523
b16b1deb 524 wbc->wb = inode_to_wb(inode);
2a814908
TH
525 wbc->inode = inode;
526
527 wbc->wb_id = wbc->wb->memcg_css->id;
528 wbc->wb_lcand_id = inode->i_wb_frn_winner;
529 wbc->wb_tcand_id = 0;
530 wbc->wb_bytes = 0;
531 wbc->wb_lcand_bytes = 0;
532 wbc->wb_tcand_bytes = 0;
533
b16b1deb
TH
534 wb_get(wbc->wb);
535 spin_unlock(&inode->i_lock);
e8a7abf5
TH
536
537 /*
538 * A dying wb indicates that the memcg-blkcg mapping has changed
539 * and a new wb is already serving the memcg. Switch immediately.
540 */
541 if (unlikely(wb_dying(wbc->wb)))
542 inode_switch_wbs(inode, wbc->wb_id);
b16b1deb
TH
543}
544
545/**
2a814908
TH
546 * wbc_detach_inode - disassociate wbc from inode and perform foreign detection
547 * @wbc: writeback_control of the just finished writeback
b16b1deb
TH
548 *
549 * To be called after a writeback attempt of an inode finishes and undoes
550 * wbc_attach_and_unlock_inode(). Can be called under any context.
2a814908
TH
551 *
552 * As concurrent write sharing of an inode is expected to be very rare and
553 * memcg only tracks page ownership on first-use basis severely confining
554 * the usefulness of such sharing, cgroup writeback tracks ownership
555 * per-inode. While the support for concurrent write sharing of an inode
556 * is deemed unnecessary, an inode being written to by different cgroups at
557 * different points in time is a lot more common, and, more importantly,
558 * charging only by first-use can too readily lead to grossly incorrect
559 * behaviors (single foreign page can lead to gigabytes of writeback to be
560 * incorrectly attributed).
561 *
562 * To resolve this issue, cgroup writeback detects the majority dirtier of
563 * an inode and transfers the ownership to it. To avoid unnnecessary
564 * oscillation, the detection mechanism keeps track of history and gives
565 * out the switch verdict only if the foreign usage pattern is stable over
566 * a certain amount of time and/or writeback attempts.
567 *
568 * On each writeback attempt, @wbc tries to detect the majority writer
569 * using Boyer-Moore majority vote algorithm. In addition to the byte
570 * count from the majority voting, it also counts the bytes written for the
571 * current wb and the last round's winner wb (max of last round's current
572 * wb, the winner from two rounds ago, and the last round's majority
573 * candidate). Keeping track of the historical winner helps the algorithm
574 * to semi-reliably detect the most active writer even when it's not the
575 * absolute majority.
576 *
577 * Once the winner of the round is determined, whether the winner is
578 * foreign or not and how much IO time the round consumed is recorded in
579 * inode->i_wb_frn_history. If the amount of recorded foreign IO time is
580 * over a certain threshold, the switch verdict is given.
b16b1deb
TH
581 */
582void wbc_detach_inode(struct writeback_control *wbc)
583{
2a814908
TH
584 struct bdi_writeback *wb = wbc->wb;
585 struct inode *inode = wbc->inode;
dd73e4b7
TH
586 unsigned long avg_time, max_bytes, max_time;
587 u16 history;
2a814908
TH
588 int max_id;
589
dd73e4b7
TH
590 if (!wb)
591 return;
592
593 history = inode->i_wb_frn_history;
594 avg_time = inode->i_wb_frn_avg_time;
595
2a814908
TH
596 /* pick the winner of this round */
597 if (wbc->wb_bytes >= wbc->wb_lcand_bytes &&
598 wbc->wb_bytes >= wbc->wb_tcand_bytes) {
599 max_id = wbc->wb_id;
600 max_bytes = wbc->wb_bytes;
601 } else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) {
602 max_id = wbc->wb_lcand_id;
603 max_bytes = wbc->wb_lcand_bytes;
604 } else {
605 max_id = wbc->wb_tcand_id;
606 max_bytes = wbc->wb_tcand_bytes;
607 }
608
609 /*
610 * Calculate the amount of IO time the winner consumed and fold it
611 * into the running average kept per inode. If the consumed IO
612 * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for
613 * deciding whether to switch or not. This is to prevent one-off
614 * small dirtiers from skewing the verdict.
615 */
616 max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT,
617 wb->avg_write_bandwidth);
618 if (avg_time)
619 avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) -
620 (avg_time >> WB_FRN_TIME_AVG_SHIFT);
621 else
622 avg_time = max_time; /* immediate catch up on first run */
623
624 if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) {
625 int slots;
626
627 /*
628 * The switch verdict is reached if foreign wb's consume
629 * more than a certain proportion of IO time in a
630 * WB_FRN_TIME_PERIOD. This is loosely tracked by 16 slot
631 * history mask where each bit represents one sixteenth of
632 * the period. Determine the number of slots to shift into
633 * history from @max_time.
634 */
635 slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT),
636 (unsigned long)WB_FRN_HIST_MAX_SLOTS);
637 history <<= slots;
638 if (wbc->wb_id != max_id)
639 history |= (1U << slots) - 1;
640
641 /*
642 * Switch if the current wb isn't the consistent winner.
643 * If there are multiple closely competing dirtiers, the
644 * inode may switch across them repeatedly over time, which
645 * is okay. The main goal is avoiding keeping an inode on
646 * the wrong wb for an extended period of time.
647 */
682aa8e1
TH
648 if (hweight32(history) > WB_FRN_HIST_THR_SLOTS)
649 inode_switch_wbs(inode, max_id);
2a814908
TH
650 }
651
652 /*
653 * Multiple instances of this function may race to update the
654 * following fields but we don't mind occassional inaccuracies.
655 */
656 inode->i_wb_frn_winner = max_id;
657 inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX);
658 inode->i_wb_frn_history = history;
659
b16b1deb
TH
660 wb_put(wbc->wb);
661 wbc->wb = NULL;
662}
663
2a814908
TH
664/**
665 * wbc_account_io - account IO issued during writeback
666 * @wbc: writeback_control of the writeback in progress
667 * @page: page being written out
668 * @bytes: number of bytes being written out
669 *
670 * @bytes from @page are about to written out during the writeback
671 * controlled by @wbc. Keep the book for foreign inode detection. See
672 * wbc_detach_inode().
673 */
674void wbc_account_io(struct writeback_control *wbc, struct page *page,
675 size_t bytes)
676{
677 int id;
678
679 /*
680 * pageout() path doesn't attach @wbc to the inode being written
681 * out. This is intentional as we don't want the function to block
682 * behind a slow cgroup. Ultimately, we want pageout() to kick off
683 * regular writeback instead of writing things out itself.
684 */
685 if (!wbc->wb)
686 return;
687
2a814908 688 id = mem_cgroup_css_from_page(page)->id;
2a814908
TH
689
690 if (id == wbc->wb_id) {
691 wbc->wb_bytes += bytes;
692 return;
693 }
694
695 if (id == wbc->wb_lcand_id)
696 wbc->wb_lcand_bytes += bytes;
697
698 /* Boyer-Moore majority vote algorithm */
699 if (!wbc->wb_tcand_bytes)
700 wbc->wb_tcand_id = id;
701 if (id == wbc->wb_tcand_id)
702 wbc->wb_tcand_bytes += bytes;
703 else
704 wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes);
705}
5aa2a96b 706EXPORT_SYMBOL_GPL(wbc_account_io);
2a814908 707
703c2708
TH
708/**
709 * inode_congested - test whether an inode is congested
60292bcc 710 * @inode: inode to test for congestion (may be NULL)
703c2708
TH
711 * @cong_bits: mask of WB_[a]sync_congested bits to test
712 *
713 * Tests whether @inode is congested. @cong_bits is the mask of congestion
714 * bits to test and the return value is the mask of set bits.
715 *
716 * If cgroup writeback is enabled for @inode, the congestion state is
717 * determined by whether the cgwb (cgroup bdi_writeback) for the blkcg
718 * associated with @inode is congested; otherwise, the root wb's congestion
719 * state is used.
60292bcc
TH
720 *
721 * @inode is allowed to be NULL as this function is often called on
722 * mapping->host which is NULL for the swapper space.
703c2708
TH
723 */
724int inode_congested(struct inode *inode, int cong_bits)
725{
5cb8b824
TH
726 /*
727 * Once set, ->i_wb never becomes NULL while the inode is alive.
728 * Start transaction iff ->i_wb is visible.
729 */
aaa2cacf 730 if (inode && inode_to_wb_is_valid(inode)) {
5cb8b824
TH
731 struct bdi_writeback *wb;
732 bool locked, congested;
733
734 wb = unlocked_inode_to_wb_begin(inode, &locked);
735 congested = wb_congested(wb, cong_bits);
736 unlocked_inode_to_wb_end(inode, locked);
737 return congested;
703c2708
TH
738 }
739
740 return wb_congested(&inode_to_bdi(inode)->wb, cong_bits);
741}
742EXPORT_SYMBOL_GPL(inode_congested);
743
f2b65121
TH
744/**
745 * wb_split_bdi_pages - split nr_pages to write according to bandwidth
746 * @wb: target bdi_writeback to split @nr_pages to
747 * @nr_pages: number of pages to write for the whole bdi
748 *
749 * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
750 * relation to the total write bandwidth of all wb's w/ dirty inodes on
751 * @wb->bdi.
752 */
753static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
754{
755 unsigned long this_bw = wb->avg_write_bandwidth;
756 unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
757
758 if (nr_pages == LONG_MAX)
759 return LONG_MAX;
760
761 /*
762 * This may be called on clean wb's and proportional distribution
763 * may not make sense, just use the original @nr_pages in those
764 * cases. In general, we wanna err on the side of writing more.
765 */
766 if (!tot_bw || this_bw >= tot_bw)
767 return nr_pages;
768 else
769 return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw);
770}
771
db125360
TH
772/**
773 * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
774 * @bdi: target backing_dev_info
775 * @base_work: wb_writeback_work to issue
776 * @skip_if_busy: skip wb's which already have writeback in progress
777 *
778 * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
779 * have dirty inodes. If @base_work->nr_page isn't %LONG_MAX, it's
780 * distributed to the busy wbs according to each wb's proportion in the
781 * total active write bandwidth of @bdi.
782 */
783static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
784 struct wb_writeback_work *base_work,
785 bool skip_if_busy)
786{
b817525a 787 struct bdi_writeback *last_wb = NULL;
b33e18f6
TH
788 struct bdi_writeback *wb = list_entry(&bdi->wb_list,
789 struct bdi_writeback, bdi_node);
db125360
TH
790
791 might_sleep();
db125360
TH
792restart:
793 rcu_read_lock();
b817525a 794 list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) {
8a1270cd
TH
795 DEFINE_WB_COMPLETION_ONSTACK(fallback_work_done);
796 struct wb_writeback_work fallback_work;
797 struct wb_writeback_work *work;
798 long nr_pages;
799
b817525a
TH
800 if (last_wb) {
801 wb_put(last_wb);
802 last_wb = NULL;
803 }
804
006a0973
TH
805 /* SYNC_ALL writes out I_DIRTY_TIME too */
806 if (!wb_has_dirty_io(wb) &&
807 (base_work->sync_mode == WB_SYNC_NONE ||
808 list_empty(&wb->b_dirty_time)))
809 continue;
810 if (skip_if_busy && writeback_in_progress(wb))
db125360
TH
811 continue;
812
8a1270cd
TH
813 nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages);
814
815 work = kmalloc(sizeof(*work), GFP_ATOMIC);
816 if (work) {
817 *work = *base_work;
818 work->nr_pages = nr_pages;
819 work->auto_free = 1;
820 wb_queue_work(wb, work);
821 continue;
db125360 822 }
8a1270cd
TH
823
824 /* alloc failed, execute synchronously using on-stack fallback */
825 work = &fallback_work;
826 *work = *base_work;
827 work->nr_pages = nr_pages;
828 work->auto_free = 0;
829 work->done = &fallback_work_done;
830
831 wb_queue_work(wb, work);
832
b817525a
TH
833 /*
834 * Pin @wb so that it stays on @bdi->wb_list. This allows
835 * continuing iteration from @wb after dropping and
836 * regrabbing rcu read lock.
837 */
838 wb_get(wb);
839 last_wb = wb;
840
8a1270cd
TH
841 rcu_read_unlock();
842 wb_wait_for_completion(bdi, &fallback_work_done);
843 goto restart;
db125360
TH
844 }
845 rcu_read_unlock();
b817525a
TH
846
847 if (last_wb)
848 wb_put(last_wb);
db125360
TH
849}
850
a1a0e23e
TH
851/**
852 * cgroup_writeback_umount - flush inode wb switches for umount
853 *
854 * This function is called when a super_block is about to be destroyed and
855 * flushes in-flight inode wb switches. An inode wb switch goes through
856 * RCU and then workqueue, so the two need to be flushed in order to ensure
857 * that all previously scheduled switches are finished. As wb switches are
858 * rare occurrences and synchronize_rcu() can take a while, perform
859 * flushing iff wb switches are in flight.
860 */
861void cgroup_writeback_umount(void)
862{
863 if (atomic_read(&isw_nr_in_flight)) {
864 synchronize_rcu();
865 flush_workqueue(isw_wq);
866 }
867}
868
869static int __init cgroup_writeback_init(void)
870{
871 isw_wq = alloc_workqueue("inode_switch_wbs", 0, 0);
872 if (!isw_wq)
873 return -ENOMEM;
874 return 0;
875}
876fs_initcall(cgroup_writeback_init);
877
f2b65121
TH
878#else /* CONFIG_CGROUP_WRITEBACK */
879
87e1d789
TH
880static struct bdi_writeback *
881locked_inode_to_wb_and_lock_list(struct inode *inode)
882 __releases(&inode->i_lock)
883 __acquires(&wb->list_lock)
884{
885 struct bdi_writeback *wb = inode_to_wb(inode);
886
887 spin_unlock(&inode->i_lock);
888 spin_lock(&wb->list_lock);
889 return wb;
890}
891
892static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
893 __acquires(&wb->list_lock)
894{
895 struct bdi_writeback *wb = inode_to_wb(inode);
896
897 spin_lock(&wb->list_lock);
898 return wb;
899}
900
f2b65121
TH
901static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
902{
903 return nr_pages;
904}
905
db125360
TH
906static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
907 struct wb_writeback_work *base_work,
908 bool skip_if_busy)
909{
910 might_sleep();
911
006a0973 912 if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) {
db125360 913 base_work->auto_free = 0;
db125360
TH
914 wb_queue_work(&bdi->wb, base_work);
915 }
916}
917
703c2708
TH
918#endif /* CONFIG_CGROUP_WRITEBACK */
919
c00ddad3
TH
920void wb_start_writeback(struct bdi_writeback *wb, long nr_pages,
921 bool range_cyclic, enum wb_reason reason)
b6e51316 922{
c00ddad3
TH
923 struct wb_writeback_work *work;
924
925 if (!wb_has_dirty_io(wb))
926 return;
927
928 /*
929 * This is WB_SYNC_NONE writeback, so if allocation fails just
930 * wakeup the thread for old dirty data writeback
931 */
932 work = kzalloc(sizeof(*work), GFP_ATOMIC);
933 if (!work) {
5634cc2a 934 trace_writeback_nowork(wb);
c00ddad3
TH
935 wb_wakeup(wb);
936 return;
937 }
938
939 work->sync_mode = WB_SYNC_NONE;
940 work->nr_pages = nr_pages;
941 work->range_cyclic = range_cyclic;
942 work->reason = reason;
ac7b19a3 943 work->auto_free = 1;
c00ddad3
TH
944
945 wb_queue_work(wb, work);
c5444198 946}
d3ddec76 947
c5444198 948/**
9ecf4866
TH
949 * wb_start_background_writeback - start background writeback
950 * @wb: bdi_writback to write from
c5444198
CH
951 *
952 * Description:
6585027a 953 * This makes sure WB_SYNC_NONE background writeback happens. When
9ecf4866 954 * this function returns, it is only guaranteed that for given wb
6585027a
JK
955 * some IO is happening if we are over background dirty threshold.
956 * Caller need not hold sb s_umount semaphore.
c5444198 957 */
9ecf4866 958void wb_start_background_writeback(struct bdi_writeback *wb)
c5444198 959{
6585027a
JK
960 /*
961 * We just wake up the flusher thread. It will perform background
962 * writeback as soon as there is no other work to do.
963 */
5634cc2a 964 trace_writeback_wake_background(wb);
9ecf4866 965 wb_wakeup(wb);
1da177e4
LT
966}
967
a66979ab
DC
968/*
969 * Remove the inode from the writeback list it is on.
970 */
c7f54084 971void inode_io_list_del(struct inode *inode)
a66979ab 972{
87e1d789 973 struct bdi_writeback *wb;
f758eeab 974
87e1d789 975 wb = inode_to_wb_and_lock_list(inode);
c7f54084 976 inode_io_list_del_locked(inode, wb);
52ebea74 977 spin_unlock(&wb->list_lock);
a66979ab
DC
978}
979
6610a0bc
AM
980/*
981 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
982 * furthest end of its superblock's dirty-inode list.
983 *
984 * Before stamping the inode's ->dirtied_when, we check to see whether it is
66f3b8e2 985 * already the most-recently-dirtied inode on the b_dirty list. If that is
6610a0bc
AM
986 * the case then the inode must have been redirtied while it was being written
987 * out and we don't reset its dirtied_when.
988 */
f758eeab 989static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
6610a0bc 990{
03ba3782 991 if (!list_empty(&wb->b_dirty)) {
66f3b8e2 992 struct inode *tail;
6610a0bc 993
7ccf19a8 994 tail = wb_inode(wb->b_dirty.next);
66f3b8e2 995 if (time_before(inode->dirtied_when, tail->dirtied_when))
6610a0bc
AM
996 inode->dirtied_when = jiffies;
997 }
c7f54084 998 inode_io_list_move_locked(inode, wb, &wb->b_dirty);
6610a0bc
AM
999}
1000
c986d1e2 1001/*
66f3b8e2 1002 * requeue inode for re-scanning after bdi->b_io list is exhausted.
c986d1e2 1003 */
f758eeab 1004static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
c986d1e2 1005{
c7f54084 1006 inode_io_list_move_locked(inode, wb, &wb->b_more_io);
c986d1e2
AM
1007}
1008
1c0eeaf5
JE
1009static void inode_sync_complete(struct inode *inode)
1010{
365b94ae 1011 inode->i_state &= ~I_SYNC;
4eff96dd
JK
1012 /* If inode is clean an unused, put it into LRU now... */
1013 inode_add_lru(inode);
365b94ae 1014 /* Waiters must see I_SYNC cleared before being woken up */
1c0eeaf5
JE
1015 smp_mb();
1016 wake_up_bit(&inode->i_state, __I_SYNC);
1017}
1018
d2caa3c5
JL
1019static bool inode_dirtied_after(struct inode *inode, unsigned long t)
1020{
1021 bool ret = time_after(inode->dirtied_when, t);
1022#ifndef CONFIG_64BIT
1023 /*
1024 * For inodes being constantly redirtied, dirtied_when can get stuck.
1025 * It _appears_ to be in the future, but is actually in distant past.
1026 * This test is necessary to prevent such wrapped-around relative times
5b0830cb 1027 * from permanently stopping the whole bdi writeback.
d2caa3c5
JL
1028 */
1029 ret = ret && time_before_eq(inode->dirtied_when, jiffies);
1030#endif
1031 return ret;
1032}
1033
0ae45f63
TT
1034#define EXPIRE_DIRTY_ATIME 0x0001
1035
2c136579 1036/*
0e2f2b23 1037 * Move expired (dirtied before work->older_than_this) dirty inodes from
697e6fed 1038 * @delaying_queue to @dispatch_queue.
2c136579 1039 */
e84d0a4f 1040static int move_expired_inodes(struct list_head *delaying_queue,
2c136579 1041 struct list_head *dispatch_queue,
0ae45f63 1042 int flags,
ad4e38dd 1043 struct wb_writeback_work *work)
2c136579 1044{
0ae45f63
TT
1045 unsigned long *older_than_this = NULL;
1046 unsigned long expire_time;
5c03449d
SL
1047 LIST_HEAD(tmp);
1048 struct list_head *pos, *node;
cf137307 1049 struct super_block *sb = NULL;
5c03449d 1050 struct inode *inode;
cf137307 1051 int do_sb_sort = 0;
e84d0a4f 1052 int moved = 0;
5c03449d 1053
0ae45f63
TT
1054 if ((flags & EXPIRE_DIRTY_ATIME) == 0)
1055 older_than_this = work->older_than_this;
a2f48706
TT
1056 else if (!work->for_sync) {
1057 expire_time = jiffies - (dirtytime_expire_interval * HZ);
0ae45f63
TT
1058 older_than_this = &expire_time;
1059 }
2c136579 1060 while (!list_empty(delaying_queue)) {
7ccf19a8 1061 inode = wb_inode(delaying_queue->prev);
0ae45f63
TT
1062 if (older_than_this &&
1063 inode_dirtied_after(inode, *older_than_this))
2c136579 1064 break;
c7f54084 1065 list_move(&inode->i_io_list, &tmp);
a8855990 1066 moved++;
0ae45f63
TT
1067 if (flags & EXPIRE_DIRTY_ATIME)
1068 set_bit(__I_DIRTY_TIME_EXPIRED, &inode->i_state);
a8855990
JK
1069 if (sb_is_blkdev_sb(inode->i_sb))
1070 continue;
cf137307
JA
1071 if (sb && sb != inode->i_sb)
1072 do_sb_sort = 1;
1073 sb = inode->i_sb;
5c03449d
SL
1074 }
1075
cf137307
JA
1076 /* just one sb in list, splice to dispatch_queue and we're done */
1077 if (!do_sb_sort) {
1078 list_splice(&tmp, dispatch_queue);
e84d0a4f 1079 goto out;
cf137307
JA
1080 }
1081
5c03449d
SL
1082 /* Move inodes from one superblock together */
1083 while (!list_empty(&tmp)) {
7ccf19a8 1084 sb = wb_inode(tmp.prev)->i_sb;
5c03449d 1085 list_for_each_prev_safe(pos, node, &tmp) {
7ccf19a8 1086 inode = wb_inode(pos);
5c03449d 1087 if (inode->i_sb == sb)
c7f54084 1088 list_move(&inode->i_io_list, dispatch_queue);
5c03449d 1089 }
2c136579 1090 }
e84d0a4f
WF
1091out:
1092 return moved;
2c136579
FW
1093}
1094
1095/*
1096 * Queue all expired dirty inodes for io, eldest first.
4ea879b9
WF
1097 * Before
1098 * newly dirtied b_dirty b_io b_more_io
1099 * =============> gf edc BA
1100 * After
1101 * newly dirtied b_dirty b_io b_more_io
1102 * =============> g fBAedc
1103 * |
1104 * +--> dequeue for IO
2c136579 1105 */
ad4e38dd 1106static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work)
66f3b8e2 1107{
e84d0a4f 1108 int moved;
0ae45f63 1109
f758eeab 1110 assert_spin_locked(&wb->list_lock);
4ea879b9 1111 list_splice_init(&wb->b_more_io, &wb->b_io);
0ae45f63
TT
1112 moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, 0, work);
1113 moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
1114 EXPIRE_DIRTY_ATIME, work);
d6c10f1f
TH
1115 if (moved)
1116 wb_io_lists_populated(wb);
ad4e38dd 1117 trace_writeback_queue_io(wb, work, moved);
66f3b8e2
JA
1118}
1119
a9185b41 1120static int write_inode(struct inode *inode, struct writeback_control *wbc)
08d8e974 1121{
9fb0a7da
TH
1122 int ret;
1123
1124 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
1125 trace_writeback_write_inode_start(inode, wbc);
1126 ret = inode->i_sb->s_op->write_inode(inode, wbc);
1127 trace_writeback_write_inode(inode, wbc);
1128 return ret;
1129 }
03ba3782 1130 return 0;
08d8e974 1131}
08d8e974 1132
1da177e4 1133/*
169ebd90
JK
1134 * Wait for writeback on an inode to complete. Called with i_lock held.
1135 * Caller must make sure inode cannot go away when we drop i_lock.
01c03194 1136 */
169ebd90
JK
1137static void __inode_wait_for_writeback(struct inode *inode)
1138 __releases(inode->i_lock)
1139 __acquires(inode->i_lock)
01c03194
CH
1140{
1141 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
1142 wait_queue_head_t *wqh;
1143
1144 wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
250df6ed
DC
1145 while (inode->i_state & I_SYNC) {
1146 spin_unlock(&inode->i_lock);
74316201
N
1147 __wait_on_bit(wqh, &wq, bit_wait,
1148 TASK_UNINTERRUPTIBLE);
250df6ed 1149 spin_lock(&inode->i_lock);
58a9d3d8 1150 }
01c03194
CH
1151}
1152
169ebd90
JK
1153/*
1154 * Wait for writeback on an inode to complete. Caller must have inode pinned.
1155 */
1156void inode_wait_for_writeback(struct inode *inode)
1157{
1158 spin_lock(&inode->i_lock);
1159 __inode_wait_for_writeback(inode);
1160 spin_unlock(&inode->i_lock);
1161}
1162
1163/*
1164 * Sleep until I_SYNC is cleared. This function must be called with i_lock
1165 * held and drops it. It is aimed for callers not holding any inode reference
1166 * so once i_lock is dropped, inode can go away.
1167 */
1168static void inode_sleep_on_writeback(struct inode *inode)
1169 __releases(inode->i_lock)
1170{
1171 DEFINE_WAIT(wait);
1172 wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1173 int sleep;
1174
1175 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1176 sleep = inode->i_state & I_SYNC;
1177 spin_unlock(&inode->i_lock);
1178 if (sleep)
1179 schedule();
1180 finish_wait(wqh, &wait);
1181}
1182
ccb26b5a
JK
1183/*
1184 * Find proper writeback list for the inode depending on its current state and
1185 * possibly also change of its state while we were doing writeback. Here we
1186 * handle things such as livelock prevention or fairness of writeback among
1187 * inodes. This function can be called only by flusher thread - noone else
1188 * processes all inodes in writeback lists and requeueing inodes behind flusher
1189 * thread's back can have unexpected consequences.
1190 */
1191static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
1192 struct writeback_control *wbc)
1193{
1194 if (inode->i_state & I_FREEING)
1195 return;
1196
1197 /*
1198 * Sync livelock prevention. Each inode is tagged and synced in one
1199 * shot. If still dirty, it will be redirty_tail()'ed below. Update
1200 * the dirty time to prevent enqueue and sync it again.
1201 */
1202 if ((inode->i_state & I_DIRTY) &&
1203 (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
1204 inode->dirtied_when = jiffies;
1205
4f8ad655
JK
1206 if (wbc->pages_skipped) {
1207 /*
1208 * writeback is not making progress due to locked
1209 * buffers. Skip this inode for now.
1210 */
1211 redirty_tail(inode, wb);
1212 return;
1213 }
1214
ccb26b5a
JK
1215 if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
1216 /*
1217 * We didn't write back all the pages. nfs_writepages()
1218 * sometimes bales out without doing anything.
1219 */
1220 if (wbc->nr_to_write <= 0) {
1221 /* Slice used up. Queue for next turn. */
1222 requeue_io(inode, wb);
1223 } else {
1224 /*
1225 * Writeback blocked by something other than
1226 * congestion. Delay the inode for some time to
1227 * avoid spinning on the CPU (100% iowait)
1228 * retrying writeback of the dirty page/inode
1229 * that cannot be performed immediately.
1230 */
1231 redirty_tail(inode, wb);
1232 }
1233 } else if (inode->i_state & I_DIRTY) {
1234 /*
1235 * Filesystems can dirty the inode during writeback operations,
1236 * such as delayed allocation during submission or metadata
1237 * updates after data IO completion.
1238 */
1239 redirty_tail(inode, wb);
0ae45f63 1240 } else if (inode->i_state & I_DIRTY_TIME) {
a2f48706 1241 inode->dirtied_when = jiffies;
c7f54084 1242 inode_io_list_move_locked(inode, wb, &wb->b_dirty_time);
ccb26b5a
JK
1243 } else {
1244 /* The inode is clean. Remove from writeback lists. */
c7f54084 1245 inode_io_list_del_locked(inode, wb);
ccb26b5a
JK
1246 }
1247}
1248
01c03194 1249/*
4f8ad655
JK
1250 * Write out an inode and its dirty pages. Do not update the writeback list
1251 * linkage. That is left to the caller. The caller is also responsible for
1252 * setting I_SYNC flag and calling inode_sync_complete() to clear it.
1da177e4
LT
1253 */
1254static int
cd8ed2a4 1255__writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
1da177e4 1256{
1da177e4 1257 struct address_space *mapping = inode->i_mapping;
251d6a47 1258 long nr_to_write = wbc->nr_to_write;
01c03194 1259 unsigned dirty;
1da177e4
LT
1260 int ret;
1261
4f8ad655 1262 WARN_ON(!(inode->i_state & I_SYNC));
1da177e4 1263
9fb0a7da
TH
1264 trace_writeback_single_inode_start(inode, wbc, nr_to_write);
1265
1da177e4
LT
1266 ret = do_writepages(mapping, wbc);
1267
26821ed4
CH
1268 /*
1269 * Make sure to wait on the data before writing out the metadata.
1270 * This is important for filesystems that modify metadata on data
7747bd4b
DC
1271 * I/O completion. We don't do it for sync(2) writeback because it has a
1272 * separate, external IO completion path and ->sync_fs for guaranteeing
1273 * inode metadata is written back correctly.
26821ed4 1274 */
7747bd4b 1275 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
26821ed4 1276 int err = filemap_fdatawait(mapping);
1da177e4
LT
1277 if (ret == 0)
1278 ret = err;
1279 }
1280
5547e8aa
DM
1281 /*
1282 * Some filesystems may redirty the inode during the writeback
1283 * due to delalloc, clear dirty metadata flags right before
1284 * write_inode()
1285 */
250df6ed 1286 spin_lock(&inode->i_lock);
9c6ac78e 1287
5547e8aa 1288 dirty = inode->i_state & I_DIRTY;
a2f48706
TT
1289 if (inode->i_state & I_DIRTY_TIME) {
1290 if ((dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
1291 unlikely(inode->i_state & I_DIRTY_TIME_EXPIRED) ||
1292 unlikely(time_after(jiffies,
1293 (inode->dirtied_time_when +
1294 dirtytime_expire_interval * HZ)))) {
1295 dirty |= I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED;
1296 trace_writeback_lazytime(inode);
1297 }
1298 } else
1299 inode->i_state &= ~I_DIRTY_TIME_EXPIRED;
0ae45f63 1300 inode->i_state &= ~dirty;
9c6ac78e
TH
1301
1302 /*
1303 * Paired with smp_mb() in __mark_inode_dirty(). This allows
1304 * __mark_inode_dirty() to test i_state without grabbing i_lock -
1305 * either they see the I_DIRTY bits cleared or we see the dirtied
1306 * inode.
1307 *
1308 * I_DIRTY_PAGES is always cleared together above even if @mapping
1309 * still has dirty pages. The flag is reinstated after smp_mb() if
1310 * necessary. This guarantees that either __mark_inode_dirty()
1311 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
1312 */
1313 smp_mb();
1314
1315 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1316 inode->i_state |= I_DIRTY_PAGES;
1317
250df6ed 1318 spin_unlock(&inode->i_lock);
9c6ac78e 1319
0ae45f63
TT
1320 if (dirty & I_DIRTY_TIME)
1321 mark_inode_dirty_sync(inode);
26821ed4 1322 /* Don't write the inode if only I_DIRTY_PAGES was set */
0ae45f63 1323 if (dirty & ~I_DIRTY_PAGES) {
a9185b41 1324 int err = write_inode(inode, wbc);
1da177e4
LT
1325 if (ret == 0)
1326 ret = err;
1327 }
4f8ad655
JK
1328 trace_writeback_single_inode(inode, wbc, nr_to_write);
1329 return ret;
1330}
1331
1332/*
1333 * Write out an inode's dirty pages. Either the caller has an active reference
1334 * on the inode or the inode has I_WILL_FREE set.
1335 *
1336 * This function is designed to be called for writing back one inode which
1337 * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
1338 * and does more profound writeback list handling in writeback_sb_inodes().
1339 */
1340static int
1341writeback_single_inode(struct inode *inode, struct bdi_writeback *wb,
1342 struct writeback_control *wbc)
1343{
1344 int ret = 0;
1345
1346 spin_lock(&inode->i_lock);
1347 if (!atomic_read(&inode->i_count))
1348 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
1349 else
1350 WARN_ON(inode->i_state & I_WILL_FREE);
1351
1352 if (inode->i_state & I_SYNC) {
1353 if (wbc->sync_mode != WB_SYNC_ALL)
1354 goto out;
1355 /*
169ebd90
JK
1356 * It's a data-integrity sync. We must wait. Since callers hold
1357 * inode reference or inode has I_WILL_FREE set, it cannot go
1358 * away under us.
4f8ad655 1359 */
169ebd90 1360 __inode_wait_for_writeback(inode);
4f8ad655
JK
1361 }
1362 WARN_ON(inode->i_state & I_SYNC);
1363 /*
f9b0e058
JK
1364 * Skip inode if it is clean and we have no outstanding writeback in
1365 * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this
1366 * function since flusher thread may be doing for example sync in
1367 * parallel and if we move the inode, it could get skipped. So here we
1368 * make sure inode is on some writeback list and leave it there unless
1369 * we have completely cleaned the inode.
4f8ad655 1370 */
0ae45f63 1371 if (!(inode->i_state & I_DIRTY_ALL) &&
f9b0e058
JK
1372 (wbc->sync_mode != WB_SYNC_ALL ||
1373 !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
4f8ad655
JK
1374 goto out;
1375 inode->i_state |= I_SYNC;
b16b1deb 1376 wbc_attach_and_unlock_inode(wbc, inode);
4f8ad655 1377
cd8ed2a4 1378 ret = __writeback_single_inode(inode, wbc);
1da177e4 1379
b16b1deb 1380 wbc_detach_inode(wbc);
f758eeab 1381 spin_lock(&wb->list_lock);
250df6ed 1382 spin_lock(&inode->i_lock);
4f8ad655
JK
1383 /*
1384 * If inode is clean, remove it from writeback lists. Otherwise don't
1385 * touch it. See comment above for explanation.
1386 */
0ae45f63 1387 if (!(inode->i_state & I_DIRTY_ALL))
c7f54084 1388 inode_io_list_del_locked(inode, wb);
4f8ad655 1389 spin_unlock(&wb->list_lock);
1c0eeaf5 1390 inode_sync_complete(inode);
4f8ad655
JK
1391out:
1392 spin_unlock(&inode->i_lock);
1da177e4
LT
1393 return ret;
1394}
1395
a88a341a 1396static long writeback_chunk_size(struct bdi_writeback *wb,
1a12d8bd 1397 struct wb_writeback_work *work)
d46db3d5
WF
1398{
1399 long pages;
1400
1401 /*
1402 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
1403 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
1404 * here avoids calling into writeback_inodes_wb() more than once.
1405 *
1406 * The intended call sequence for WB_SYNC_ALL writeback is:
1407 *
1408 * wb_writeback()
1409 * writeback_sb_inodes() <== called only once
1410 * write_cache_pages() <== called once for each inode
1411 * (quickly) tag currently dirty pages
1412 * (maybe slowly) sync all tagged pages
1413 */
1414 if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
1415 pages = LONG_MAX;
1a12d8bd 1416 else {
a88a341a 1417 pages = min(wb->avg_write_bandwidth / 2,
dcc25ae7 1418 global_wb_domain.dirty_limit / DIRTY_SCOPE);
1a12d8bd
WF
1419 pages = min(pages, work->nr_pages);
1420 pages = round_down(pages + MIN_WRITEBACK_PAGES,
1421 MIN_WRITEBACK_PAGES);
1422 }
d46db3d5
WF
1423
1424 return pages;
1425}
1426
f11c9c5c
ES
1427/*
1428 * Write a portion of b_io inodes which belong to @sb.
edadfb10 1429 *
d46db3d5 1430 * Return the number of pages and/or inodes written.
0ba13fd1
LT
1431 *
1432 * NOTE! This is called with wb->list_lock held, and will
1433 * unlock and relock that for each inode it ends up doing
1434 * IO for.
f11c9c5c 1435 */
d46db3d5
WF
1436static long writeback_sb_inodes(struct super_block *sb,
1437 struct bdi_writeback *wb,
1438 struct wb_writeback_work *work)
1da177e4 1439{
d46db3d5
WF
1440 struct writeback_control wbc = {
1441 .sync_mode = work->sync_mode,
1442 .tagged_writepages = work->tagged_writepages,
1443 .for_kupdate = work->for_kupdate,
1444 .for_background = work->for_background,
7747bd4b 1445 .for_sync = work->for_sync,
d46db3d5
WF
1446 .range_cyclic = work->range_cyclic,
1447 .range_start = 0,
1448 .range_end = LLONG_MAX,
1449 };
1450 unsigned long start_time = jiffies;
1451 long write_chunk;
1452 long wrote = 0; /* count both pages and inodes */
1453
03ba3782 1454 while (!list_empty(&wb->b_io)) {
7ccf19a8 1455 struct inode *inode = wb_inode(wb->b_io.prev);
edadfb10
CH
1456
1457 if (inode->i_sb != sb) {
d46db3d5 1458 if (work->sb) {
edadfb10
CH
1459 /*
1460 * We only want to write back data for this
1461 * superblock, move all inodes not belonging
1462 * to it back onto the dirty list.
1463 */
f758eeab 1464 redirty_tail(inode, wb);
edadfb10
CH
1465 continue;
1466 }
1467
1468 /*
1469 * The inode belongs to a different superblock.
1470 * Bounce back to the caller to unpin this and
1471 * pin the next superblock.
1472 */
d46db3d5 1473 break;
edadfb10
CH
1474 }
1475
9843b76a 1476 /*
331cbdee
WL
1477 * Don't bother with new inodes or inodes being freed, first
1478 * kind does not need periodic writeout yet, and for the latter
9843b76a
CH
1479 * kind writeout is handled by the freer.
1480 */
250df6ed 1481 spin_lock(&inode->i_lock);
9843b76a 1482 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
250df6ed 1483 spin_unlock(&inode->i_lock);
fcc5c222 1484 redirty_tail(inode, wb);
7ef0d737
NP
1485 continue;
1486 }
cc1676d9
JK
1487 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
1488 /*
1489 * If this inode is locked for writeback and we are not
1490 * doing writeback-for-data-integrity, move it to
1491 * b_more_io so that writeback can proceed with the
1492 * other inodes on s_io.
1493 *
1494 * We'll have another go at writing back this inode
1495 * when we completed a full scan of b_io.
1496 */
1497 spin_unlock(&inode->i_lock);
1498 requeue_io(inode, wb);
1499 trace_writeback_sb_inodes_requeue(inode);
1500 continue;
1501 }
f0d07b7f
JK
1502 spin_unlock(&wb->list_lock);
1503
4f8ad655
JK
1504 /*
1505 * We already requeued the inode if it had I_SYNC set and we
1506 * are doing WB_SYNC_NONE writeback. So this catches only the
1507 * WB_SYNC_ALL case.
1508 */
169ebd90
JK
1509 if (inode->i_state & I_SYNC) {
1510 /* Wait for I_SYNC. This function drops i_lock... */
1511 inode_sleep_on_writeback(inode);
1512 /* Inode may be gone, start again */
ead188f9 1513 spin_lock(&wb->list_lock);
169ebd90
JK
1514 continue;
1515 }
4f8ad655 1516 inode->i_state |= I_SYNC;
b16b1deb 1517 wbc_attach_and_unlock_inode(&wbc, inode);
169ebd90 1518
a88a341a 1519 write_chunk = writeback_chunk_size(wb, work);
d46db3d5
WF
1520 wbc.nr_to_write = write_chunk;
1521 wbc.pages_skipped = 0;
250df6ed 1522
169ebd90
JK
1523 /*
1524 * We use I_SYNC to pin the inode in memory. While it is set
1525 * evict_inode() will wait so the inode cannot be freed.
1526 */
cd8ed2a4 1527 __writeback_single_inode(inode, &wbc);
250df6ed 1528
b16b1deb 1529 wbc_detach_inode(&wbc);
d46db3d5
WF
1530 work->nr_pages -= write_chunk - wbc.nr_to_write;
1531 wrote += write_chunk - wbc.nr_to_write;
590dca3a
CM
1532
1533 if (need_resched()) {
1534 /*
1535 * We're trying to balance between building up a nice
1536 * long list of IOs to improve our merge rate, and
1537 * getting those IOs out quickly for anyone throttling
1538 * in balance_dirty_pages(). cond_resched() doesn't
1539 * unplug, so get our IOs out the door before we
1540 * give up the CPU.
1541 */
1542 blk_flush_plug(current);
1543 cond_resched();
1544 }
1545
1546
4f8ad655
JK
1547 spin_lock(&wb->list_lock);
1548 spin_lock(&inode->i_lock);
0ae45f63 1549 if (!(inode->i_state & I_DIRTY_ALL))
d46db3d5 1550 wrote++;
4f8ad655
JK
1551 requeue_inode(inode, wb, &wbc);
1552 inode_sync_complete(inode);
0f1b1fd8 1553 spin_unlock(&inode->i_lock);
590dca3a 1554
d46db3d5
WF
1555 /*
1556 * bail out to wb_writeback() often enough to check
1557 * background threshold and other termination conditions.
1558 */
1559 if (wrote) {
1560 if (time_is_before_jiffies(start_time + HZ / 10UL))
1561 break;
1562 if (work->nr_pages <= 0)
1563 break;
8bc3be27 1564 }
1da177e4 1565 }
d46db3d5 1566 return wrote;
f11c9c5c
ES
1567}
1568
d46db3d5
WF
1569static long __writeback_inodes_wb(struct bdi_writeback *wb,
1570 struct wb_writeback_work *work)
f11c9c5c 1571{
d46db3d5
WF
1572 unsigned long start_time = jiffies;
1573 long wrote = 0;
38f21977 1574
f11c9c5c 1575 while (!list_empty(&wb->b_io)) {
7ccf19a8 1576 struct inode *inode = wb_inode(wb->b_io.prev);
f11c9c5c 1577 struct super_block *sb = inode->i_sb;
9ecc2738 1578
eb6ef3df 1579 if (!trylock_super(sb)) {
0e995816 1580 /*
eb6ef3df 1581 * trylock_super() may fail consistently due to
0e995816
WF
1582 * s_umount being grabbed by someone else. Don't use
1583 * requeue_io() to avoid busy retrying the inode/sb.
1584 */
1585 redirty_tail(inode, wb);
edadfb10 1586 continue;
f11c9c5c 1587 }
d46db3d5 1588 wrote += writeback_sb_inodes(sb, wb, work);
eb6ef3df 1589 up_read(&sb->s_umount);
f11c9c5c 1590
d46db3d5
WF
1591 /* refer to the same tests at the end of writeback_sb_inodes */
1592 if (wrote) {
1593 if (time_is_before_jiffies(start_time + HZ / 10UL))
1594 break;
1595 if (work->nr_pages <= 0)
1596 break;
1597 }
f11c9c5c 1598 }
66f3b8e2 1599 /* Leave any unwritten inodes on b_io */
d46db3d5 1600 return wrote;
66f3b8e2
JA
1601}
1602
7d9f073b 1603static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
0e175a18 1604 enum wb_reason reason)
edadfb10 1605{
d46db3d5
WF
1606 struct wb_writeback_work work = {
1607 .nr_pages = nr_pages,
1608 .sync_mode = WB_SYNC_NONE,
1609 .range_cyclic = 1,
0e175a18 1610 .reason = reason,
d46db3d5 1611 };
505a666e 1612 struct blk_plug plug;
edadfb10 1613
505a666e 1614 blk_start_plug(&plug);
f758eeab 1615 spin_lock(&wb->list_lock);
424b351f 1616 if (list_empty(&wb->b_io))
ad4e38dd 1617 queue_io(wb, &work);
d46db3d5 1618 __writeback_inodes_wb(wb, &work);
f758eeab 1619 spin_unlock(&wb->list_lock);
505a666e 1620 blk_finish_plug(&plug);
edadfb10 1621
d46db3d5
WF
1622 return nr_pages - work.nr_pages;
1623}
03ba3782 1624
03ba3782
JA
1625/*
1626 * Explicit flushing or periodic writeback of "old" data.
66f3b8e2 1627 *
03ba3782
JA
1628 * Define "old": the first time one of an inode's pages is dirtied, we mark the
1629 * dirtying-time in the inode's address_space. So this periodic writeback code
1630 * just walks the superblock inode list, writing back any inodes which are
1631 * older than a specific point in time.
66f3b8e2 1632 *
03ba3782
JA
1633 * Try to run once per dirty_writeback_interval. But if a writeback event
1634 * takes longer than a dirty_writeback_interval interval, then leave a
1635 * one-second gap.
66f3b8e2 1636 *
03ba3782
JA
1637 * older_than_this takes precedence over nr_to_write. So we'll only write back
1638 * all dirty pages if they are all attached to "old" mappings.
66f3b8e2 1639 */
c4a77a6c 1640static long wb_writeback(struct bdi_writeback *wb,
83ba7b07 1641 struct wb_writeback_work *work)
66f3b8e2 1642{
e98be2d5 1643 unsigned long wb_start = jiffies;
d46db3d5 1644 long nr_pages = work->nr_pages;
0dc83bd3 1645 unsigned long oldest_jif;
a5989bdc 1646 struct inode *inode;
d46db3d5 1647 long progress;
505a666e 1648 struct blk_plug plug;
66f3b8e2 1649
0dc83bd3
JK
1650 oldest_jif = jiffies;
1651 work->older_than_this = &oldest_jif;
38f21977 1652
505a666e 1653 blk_start_plug(&plug);
e8dfc305 1654 spin_lock(&wb->list_lock);
03ba3782
JA
1655 for (;;) {
1656 /*
d3ddec76 1657 * Stop writeback when nr_pages has been consumed
03ba3782 1658 */
83ba7b07 1659 if (work->nr_pages <= 0)
03ba3782 1660 break;
66f3b8e2 1661
aa373cf5
JK
1662 /*
1663 * Background writeout and kupdate-style writeback may
1664 * run forever. Stop them if there is other work to do
1665 * so that e.g. sync can proceed. They'll be restarted
1666 * after the other works are all done.
1667 */
1668 if ((work->for_background || work->for_kupdate) &&
f0054bb1 1669 !list_empty(&wb->work_list))
aa373cf5
JK
1670 break;
1671
38f21977 1672 /*
d3ddec76
WF
1673 * For background writeout, stop when we are below the
1674 * background dirty threshold
38f21977 1675 */
aa661bbe 1676 if (work->for_background && !wb_over_bg_thresh(wb))
03ba3782 1677 break;
38f21977 1678
1bc36b64
JK
1679 /*
1680 * Kupdate and background works are special and we want to
1681 * include all inodes that need writing. Livelock avoidance is
1682 * handled by these works yielding to any other work so we are
1683 * safe.
1684 */
ba9aa839 1685 if (work->for_kupdate) {
0dc83bd3 1686 oldest_jif = jiffies -
ba9aa839 1687 msecs_to_jiffies(dirty_expire_interval * 10);
1bc36b64 1688 } else if (work->for_background)
0dc83bd3 1689 oldest_jif = jiffies;
028c2dd1 1690
5634cc2a 1691 trace_writeback_start(wb, work);
e8dfc305 1692 if (list_empty(&wb->b_io))
ad4e38dd 1693 queue_io(wb, work);
83ba7b07 1694 if (work->sb)
d46db3d5 1695 progress = writeback_sb_inodes(work->sb, wb, work);
edadfb10 1696 else
d46db3d5 1697 progress = __writeback_inodes_wb(wb, work);
5634cc2a 1698 trace_writeback_written(wb, work);
028c2dd1 1699
e98be2d5 1700 wb_update_bandwidth(wb, wb_start);
03ba3782
JA
1701
1702 /*
e6fb6da2
WF
1703 * Did we write something? Try for more
1704 *
1705 * Dirty inodes are moved to b_io for writeback in batches.
1706 * The completion of the current batch does not necessarily
1707 * mean the overall work is done. So we keep looping as long
1708 * as made some progress on cleaning pages or inodes.
03ba3782 1709 */
d46db3d5 1710 if (progress)
71fd05a8
JA
1711 continue;
1712 /*
e6fb6da2 1713 * No more inodes for IO, bail
71fd05a8 1714 */
b7a2441f 1715 if (list_empty(&wb->b_more_io))
03ba3782 1716 break;
71fd05a8
JA
1717 /*
1718 * Nothing written. Wait for some inode to
1719 * become available for writeback. Otherwise
1720 * we'll just busyloop.
1721 */
71fd05a8 1722 if (!list_empty(&wb->b_more_io)) {
5634cc2a 1723 trace_writeback_wait(wb, work);
7ccf19a8 1724 inode = wb_inode(wb->b_more_io.prev);
250df6ed 1725 spin_lock(&inode->i_lock);
f0d07b7f 1726 spin_unlock(&wb->list_lock);
169ebd90
JK
1727 /* This function drops i_lock... */
1728 inode_sleep_on_writeback(inode);
f0d07b7f 1729 spin_lock(&wb->list_lock);
03ba3782
JA
1730 }
1731 }
e8dfc305 1732 spin_unlock(&wb->list_lock);
505a666e 1733 blk_finish_plug(&plug);
03ba3782 1734
d46db3d5 1735 return nr_pages - work->nr_pages;
03ba3782
JA
1736}
1737
1738/*
83ba7b07 1739 * Return the next wb_writeback_work struct that hasn't been processed yet.
03ba3782 1740 */
f0054bb1 1741static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
03ba3782 1742{
83ba7b07 1743 struct wb_writeback_work *work = NULL;
03ba3782 1744
f0054bb1
TH
1745 spin_lock_bh(&wb->work_lock);
1746 if (!list_empty(&wb->work_list)) {
1747 work = list_entry(wb->work_list.next,
83ba7b07
CH
1748 struct wb_writeback_work, list);
1749 list_del_init(&work->list);
03ba3782 1750 }
f0054bb1 1751 spin_unlock_bh(&wb->work_lock);
83ba7b07 1752 return work;
03ba3782
JA
1753}
1754
cdf01dd5
LT
1755/*
1756 * Add in the number of potentially dirty inodes, because each inode
1757 * write can dirty pagecache in the underlying blockdev.
1758 */
1759static unsigned long get_nr_dirty_pages(void)
1760{
1761 return global_page_state(NR_FILE_DIRTY) +
1762 global_page_state(NR_UNSTABLE_NFS) +
1763 get_nr_dirty_inodes();
1764}
1765
6585027a
JK
1766static long wb_check_background_flush(struct bdi_writeback *wb)
1767{
aa661bbe 1768 if (wb_over_bg_thresh(wb)) {
6585027a
JK
1769
1770 struct wb_writeback_work work = {
1771 .nr_pages = LONG_MAX,
1772 .sync_mode = WB_SYNC_NONE,
1773 .for_background = 1,
1774 .range_cyclic = 1,
0e175a18 1775 .reason = WB_REASON_BACKGROUND,
6585027a
JK
1776 };
1777
1778 return wb_writeback(wb, &work);
1779 }
1780
1781 return 0;
1782}
1783
03ba3782
JA
1784static long wb_check_old_data_flush(struct bdi_writeback *wb)
1785{
1786 unsigned long expired;
1787 long nr_pages;
1788
69b62d01
JA
1789 /*
1790 * When set to zero, disable periodic writeback
1791 */
1792 if (!dirty_writeback_interval)
1793 return 0;
1794
03ba3782
JA
1795 expired = wb->last_old_flush +
1796 msecs_to_jiffies(dirty_writeback_interval * 10);
1797 if (time_before(jiffies, expired))
1798 return 0;
1799
1800 wb->last_old_flush = jiffies;
cdf01dd5 1801 nr_pages = get_nr_dirty_pages();
03ba3782 1802
c4a77a6c 1803 if (nr_pages) {
83ba7b07 1804 struct wb_writeback_work work = {
c4a77a6c
JA
1805 .nr_pages = nr_pages,
1806 .sync_mode = WB_SYNC_NONE,
1807 .for_kupdate = 1,
1808 .range_cyclic = 1,
0e175a18 1809 .reason = WB_REASON_PERIODIC,
c4a77a6c
JA
1810 };
1811
83ba7b07 1812 return wb_writeback(wb, &work);
c4a77a6c 1813 }
03ba3782
JA
1814
1815 return 0;
1816}
1817
1818/*
1819 * Retrieve work items and do the writeback they describe
1820 */
25d130ba 1821static long wb_do_writeback(struct bdi_writeback *wb)
03ba3782 1822{
83ba7b07 1823 struct wb_writeback_work *work;
c4a77a6c 1824 long wrote = 0;
03ba3782 1825
4452226e 1826 set_bit(WB_writeback_running, &wb->state);
f0054bb1 1827 while ((work = get_next_work_item(wb)) != NULL) {
cc395d7f 1828 struct wb_completion *done = work->done;
03ba3782 1829
5634cc2a 1830 trace_writeback_exec(wb, work);
455b2864 1831
83ba7b07 1832 wrote += wb_writeback(wb, work);
03ba3782 1833
8a1270cd 1834 if (work->auto_free)
83ba7b07 1835 kfree(work);
cc395d7f
TH
1836 if (done && atomic_dec_and_test(&done->cnt))
1837 wake_up_all(&wb->bdi->wb_waitq);
03ba3782
JA
1838 }
1839
1840 /*
1841 * Check for periodic writeback, kupdated() style
1842 */
1843 wrote += wb_check_old_data_flush(wb);
6585027a 1844 wrote += wb_check_background_flush(wb);
4452226e 1845 clear_bit(WB_writeback_running, &wb->state);
03ba3782
JA
1846
1847 return wrote;
1848}
1849
1850/*
1851 * Handle writeback of dirty data for the device backed by this bdi. Also
839a8e86 1852 * reschedules periodically and does kupdated style flushing.
03ba3782 1853 */
f0054bb1 1854void wb_workfn(struct work_struct *work)
03ba3782 1855{
839a8e86
TH
1856 struct bdi_writeback *wb = container_of(to_delayed_work(work),
1857 struct bdi_writeback, dwork);
03ba3782
JA
1858 long pages_written;
1859
f0054bb1 1860 set_worker_desc("flush-%s", dev_name(wb->bdi->dev));
766f9164 1861 current->flags |= PF_SWAPWRITE;
455b2864 1862
839a8e86 1863 if (likely(!current_is_workqueue_rescuer() ||
4452226e 1864 !test_bit(WB_registered, &wb->state))) {
6467716a 1865 /*
f0054bb1 1866 * The normal path. Keep writing back @wb until its
839a8e86 1867 * work_list is empty. Note that this path is also taken
f0054bb1 1868 * if @wb is shutting down even when we're running off the
839a8e86 1869 * rescuer as work_list needs to be drained.
6467716a 1870 */
839a8e86 1871 do {
25d130ba 1872 pages_written = wb_do_writeback(wb);
839a8e86 1873 trace_writeback_pages_written(pages_written);
f0054bb1 1874 } while (!list_empty(&wb->work_list));
839a8e86
TH
1875 } else {
1876 /*
1877 * bdi_wq can't get enough workers and we're running off
1878 * the emergency worker. Don't hog it. Hopefully, 1024 is
1879 * enough for efficient IO.
1880 */
f0054bb1 1881 pages_written = writeback_inodes_wb(wb, 1024,
839a8e86 1882 WB_REASON_FORKER_THREAD);
455b2864 1883 trace_writeback_pages_written(pages_written);
03ba3782
JA
1884 }
1885
f0054bb1 1886 if (!list_empty(&wb->work_list))
6ca738d6
DB
1887 mod_delayed_work(bdi_wq, &wb->dwork, 0);
1888 else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
f0054bb1 1889 wb_wakeup_delayed(wb);
455b2864 1890
839a8e86 1891 current->flags &= ~PF_SWAPWRITE;
03ba3782
JA
1892}
1893
1894/*
b8c2f347
CH
1895 * Start writeback of `nr_pages' pages. If `nr_pages' is zero, write back
1896 * the whole world.
03ba3782 1897 */
0e175a18 1898void wakeup_flusher_threads(long nr_pages, enum wb_reason reason)
03ba3782 1899{
b8c2f347 1900 struct backing_dev_info *bdi;
03ba3782 1901
47df3dde
JK
1902 if (!nr_pages)
1903 nr_pages = get_nr_dirty_pages();
03ba3782 1904
b8c2f347 1905 rcu_read_lock();
f2b65121
TH
1906 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
1907 struct bdi_writeback *wb;
f2b65121
TH
1908
1909 if (!bdi_has_dirty_io(bdi))
1910 continue;
1911
b817525a 1912 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
f2b65121
TH
1913 wb_start_writeback(wb, wb_split_bdi_pages(wb, nr_pages),
1914 false, reason);
1915 }
cfc4ba53 1916 rcu_read_unlock();
1da177e4
LT
1917}
1918
a2f48706
TT
1919/*
1920 * Wake up bdi's periodically to make sure dirtytime inodes gets
1921 * written back periodically. We deliberately do *not* check the
1922 * b_dirtytime list in wb_has_dirty_io(), since this would cause the
1923 * kernel to be constantly waking up once there are any dirtytime
1924 * inodes on the system. So instead we define a separate delayed work
1925 * function which gets called much more rarely. (By default, only
1926 * once every 12 hours.)
1927 *
1928 * If there is any other write activity going on in the file system,
1929 * this function won't be necessary. But if the only thing that has
1930 * happened on the file system is a dirtytime inode caused by an atime
1931 * update, we need this infrastructure below to make sure that inode
1932 * eventually gets pushed out to disk.
1933 */
1934static void wakeup_dirtytime_writeback(struct work_struct *w);
1935static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);
1936
1937static void wakeup_dirtytime_writeback(struct work_struct *w)
1938{
1939 struct backing_dev_info *bdi;
1940
1941 rcu_read_lock();
1942 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
001fe6f6 1943 struct bdi_writeback *wb;
001fe6f6 1944
b817525a 1945 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
6fdf860f
TH
1946 if (!list_empty(&wb->b_dirty_time))
1947 wb_wakeup(wb);
a2f48706
TT
1948 }
1949 rcu_read_unlock();
1950 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
1951}
1952
1953static int __init start_dirtytime_writeback(void)
1954{
1955 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
1956 return 0;
1957}
1958__initcall(start_dirtytime_writeback);
1959
1efff914
TT
1960int dirtytime_interval_handler(struct ctl_table *table, int write,
1961 void __user *buffer, size_t *lenp, loff_t *ppos)
1962{
1963 int ret;
1964
1965 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
1966 if (ret == 0 && write)
1967 mod_delayed_work(system_wq, &dirtytime_work, 0);
1968 return ret;
1969}
1970
03ba3782
JA
1971static noinline void block_dump___mark_inode_dirty(struct inode *inode)
1972{
1973 if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
1974 struct dentry *dentry;
1975 const char *name = "?";
1976
1977 dentry = d_find_alias(inode);
1978 if (dentry) {
1979 spin_lock(&dentry->d_lock);
1980 name = (const char *) dentry->d_name.name;
1981 }
1982 printk(KERN_DEBUG
1983 "%s(%d): dirtied inode %lu (%s) on %s\n",
1984 current->comm, task_pid_nr(current), inode->i_ino,
1985 name, inode->i_sb->s_id);
1986 if (dentry) {
1987 spin_unlock(&dentry->d_lock);
1988 dput(dentry);
1989 }
1990 }
1991}
1992
1993/**
1994 * __mark_inode_dirty - internal function
1995 * @inode: inode to mark
1996 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
1997 * Mark an inode as dirty. Callers should use mark_inode_dirty or
1998 * mark_inode_dirty_sync.
1da177e4 1999 *
03ba3782
JA
2000 * Put the inode on the super block's dirty list.
2001 *
2002 * CAREFUL! We mark it dirty unconditionally, but move it onto the
2003 * dirty list only if it is hashed or if it refers to a blockdev.
2004 * If it was not hashed, it will never be added to the dirty list
2005 * even if it is later hashed, as it will have been marked dirty already.
2006 *
2007 * In short, make sure you hash any inodes _before_ you start marking
2008 * them dirty.
1da177e4 2009 *
03ba3782
JA
2010 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
2011 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of
2012 * the kernel-internal blockdev inode represents the dirtying time of the
2013 * blockdev's pages. This is why for I_DIRTY_PAGES we always use
2014 * page->mapping->host, so the page-dirtying time is recorded in the internal
2015 * blockdev inode.
1da177e4 2016 */
03ba3782 2017void __mark_inode_dirty(struct inode *inode, int flags)
1da177e4 2018{
dbce03b9 2019#define I_DIRTY_INODE (I_DIRTY_SYNC | I_DIRTY_DATASYNC)
03ba3782 2020 struct super_block *sb = inode->i_sb;
0ae45f63
TT
2021 int dirtytime;
2022
2023 trace_writeback_mark_inode_dirty(inode, flags);
1da177e4 2024
03ba3782
JA
2025 /*
2026 * Don't do this for I_DIRTY_PAGES - that doesn't actually
2027 * dirty the inode itself
2028 */
0ae45f63 2029 if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC | I_DIRTY_TIME)) {
9fb0a7da
TH
2030 trace_writeback_dirty_inode_start(inode, flags);
2031
03ba3782 2032 if (sb->s_op->dirty_inode)
aa385729 2033 sb->s_op->dirty_inode(inode, flags);
9fb0a7da
TH
2034
2035 trace_writeback_dirty_inode(inode, flags);
03ba3782 2036 }
0ae45f63
TT
2037 if (flags & I_DIRTY_INODE)
2038 flags &= ~I_DIRTY_TIME;
2039 dirtytime = flags & I_DIRTY_TIME;
03ba3782
JA
2040
2041 /*
9c6ac78e
TH
2042 * Paired with smp_mb() in __writeback_single_inode() for the
2043 * following lockless i_state test. See there for details.
03ba3782
JA
2044 */
2045 smp_mb();
2046
0ae45f63
TT
2047 if (((inode->i_state & flags) == flags) ||
2048 (dirtytime && (inode->i_state & I_DIRTY_INODE)))
03ba3782
JA
2049 return;
2050
2051 if (unlikely(block_dump))
2052 block_dump___mark_inode_dirty(inode);
2053
250df6ed 2054 spin_lock(&inode->i_lock);
0ae45f63
TT
2055 if (dirtytime && (inode->i_state & I_DIRTY_INODE))
2056 goto out_unlock_inode;
03ba3782
JA
2057 if ((inode->i_state & flags) != flags) {
2058 const int was_dirty = inode->i_state & I_DIRTY;
2059
52ebea74
TH
2060 inode_attach_wb(inode, NULL);
2061
0ae45f63
TT
2062 if (flags & I_DIRTY_INODE)
2063 inode->i_state &= ~I_DIRTY_TIME;
03ba3782
JA
2064 inode->i_state |= flags;
2065
2066 /*
2067 * If the inode is being synced, just update its dirty state.
2068 * The unlocker will place the inode on the appropriate
2069 * superblock list, based upon its state.
2070 */
2071 if (inode->i_state & I_SYNC)
250df6ed 2072 goto out_unlock_inode;
03ba3782
JA
2073
2074 /*
2075 * Only add valid (hashed) inodes to the superblock's
2076 * dirty list. Add blockdev inodes as well.
2077 */
2078 if (!S_ISBLK(inode->i_mode)) {
1d3382cb 2079 if (inode_unhashed(inode))
250df6ed 2080 goto out_unlock_inode;
03ba3782 2081 }
a4ffdde6 2082 if (inode->i_state & I_FREEING)
250df6ed 2083 goto out_unlock_inode;
03ba3782
JA
2084
2085 /*
2086 * If the inode was already on b_dirty/b_io/b_more_io, don't
2087 * reposition it (that would break b_dirty time-ordering).
2088 */
2089 if (!was_dirty) {
87e1d789 2090 struct bdi_writeback *wb;
d6c10f1f 2091 struct list_head *dirty_list;
a66979ab 2092 bool wakeup_bdi = false;
253c34e9 2093
87e1d789 2094 wb = locked_inode_to_wb_and_lock_list(inode);
253c34e9 2095
0747259d
TH
2096 WARN(bdi_cap_writeback_dirty(wb->bdi) &&
2097 !test_bit(WB_registered, &wb->state),
2098 "bdi-%s not registered\n", wb->bdi->name);
03ba3782
JA
2099
2100 inode->dirtied_when = jiffies;
a2f48706
TT
2101 if (dirtytime)
2102 inode->dirtied_time_when = jiffies;
d6c10f1f 2103
a2f48706 2104 if (inode->i_state & (I_DIRTY_INODE | I_DIRTY_PAGES))
0747259d 2105 dirty_list = &wb->b_dirty;
a2f48706 2106 else
0747259d 2107 dirty_list = &wb->b_dirty_time;
d6c10f1f 2108
c7f54084 2109 wakeup_bdi = inode_io_list_move_locked(inode, wb,
d6c10f1f
TH
2110 dirty_list);
2111
0747259d 2112 spin_unlock(&wb->list_lock);
0ae45f63 2113 trace_writeback_dirty_inode_enqueue(inode);
a66979ab 2114
d6c10f1f
TH
2115 /*
2116 * If this is the first dirty inode for this bdi,
2117 * we have to wake-up the corresponding bdi thread
2118 * to make sure background write-back happens
2119 * later.
2120 */
0747259d
TH
2121 if (bdi_cap_writeback_dirty(wb->bdi) && wakeup_bdi)
2122 wb_wakeup_delayed(wb);
a66979ab 2123 return;
1da177e4 2124 }
1da177e4 2125 }
250df6ed
DC
2126out_unlock_inode:
2127 spin_unlock(&inode->i_lock);
253c34e9 2128
dbce03b9 2129#undef I_DIRTY_INODE
03ba3782
JA
2130}
2131EXPORT_SYMBOL(__mark_inode_dirty);
2132
e97fedb9
DC
2133/*
2134 * The @s_sync_lock is used to serialise concurrent sync operations
2135 * to avoid lock contention problems with concurrent wait_sb_inodes() calls.
2136 * Concurrent callers will block on the s_sync_lock rather than doing contending
2137 * walks. The queueing maintains sync(2) required behaviour as all the IO that
2138 * has been issued up to the time this function is enter is guaranteed to be
2139 * completed by the time we have gained the lock and waited for all IO that is
2140 * in progress regardless of the order callers are granted the lock.
2141 */
b6e51316 2142static void wait_sb_inodes(struct super_block *sb)
03ba3782
JA
2143{
2144 struct inode *inode, *old_inode = NULL;
2145
2146 /*
2147 * We need to be protected against the filesystem going from
2148 * r/o to r/w or vice versa.
2149 */
b6e51316 2150 WARN_ON(!rwsem_is_locked(&sb->s_umount));
03ba3782 2151
e97fedb9 2152 mutex_lock(&sb->s_sync_lock);
74278da9 2153 spin_lock(&sb->s_inode_list_lock);
03ba3782
JA
2154
2155 /*
2156 * Data integrity sync. Must wait for all pages under writeback,
2157 * because there may have been pages dirtied before our sync
2158 * call, but which had writeout started before we write it out.
2159 * In which case, the inode may not be on the dirty list, but
2160 * we still have to wait for that writeout.
2161 */
b6e51316 2162 list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
250df6ed 2163 struct address_space *mapping = inode->i_mapping;
03ba3782 2164
250df6ed
DC
2165 spin_lock(&inode->i_lock);
2166 if ((inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) ||
2167 (mapping->nrpages == 0)) {
2168 spin_unlock(&inode->i_lock);
03ba3782 2169 continue;
250df6ed 2170 }
03ba3782 2171 __iget(inode);
250df6ed 2172 spin_unlock(&inode->i_lock);
74278da9 2173 spin_unlock(&sb->s_inode_list_lock);
55fa6091 2174
03ba3782 2175 /*
55fa6091
DC
2176 * We hold a reference to 'inode' so it couldn't have been
2177 * removed from s_inodes list while we dropped the
74278da9 2178 * s_inode_list_lock. We cannot iput the inode now as we can
55fa6091 2179 * be holding the last reference and we cannot iput it under
74278da9 2180 * s_inode_list_lock. So we keep the reference and iput it
55fa6091 2181 * later.
03ba3782
JA
2182 */
2183 iput(old_inode);
2184 old_inode = inode;
2185
aa750fd7
JN
2186 /*
2187 * We keep the error status of individual mapping so that
2188 * applications can catch the writeback error using fsync(2).
2189 * See filemap_fdatawait_keep_errors() for details.
2190 */
2191 filemap_fdatawait_keep_errors(mapping);
03ba3782
JA
2192
2193 cond_resched();
2194
74278da9 2195 spin_lock(&sb->s_inode_list_lock);
03ba3782 2196 }
74278da9 2197 spin_unlock(&sb->s_inode_list_lock);
03ba3782 2198 iput(old_inode);
e97fedb9 2199 mutex_unlock(&sb->s_sync_lock);
1da177e4
LT
2200}
2201
f30a7d0c
TH
2202static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2203 enum wb_reason reason, bool skip_if_busy)
1da177e4 2204{
cc395d7f 2205 DEFINE_WB_COMPLETION_ONSTACK(done);
83ba7b07 2206 struct wb_writeback_work work = {
6e6938b6
WF
2207 .sb = sb,
2208 .sync_mode = WB_SYNC_NONE,
2209 .tagged_writepages = 1,
2210 .done = &done,
2211 .nr_pages = nr,
0e175a18 2212 .reason = reason,
3c4d7165 2213 };
e7972912 2214 struct backing_dev_info *bdi = sb->s_bdi;
d8a8559c 2215
e7972912 2216 if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
6eedc701 2217 return;
cf37e972 2218 WARN_ON(!rwsem_is_locked(&sb->s_umount));
f30a7d0c 2219
db125360 2220 bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy);
cc395d7f 2221 wb_wait_for_completion(bdi, &done);
e913fc82 2222}
f30a7d0c
TH
2223
2224/**
2225 * writeback_inodes_sb_nr - writeback dirty inodes from given super_block
2226 * @sb: the superblock
2227 * @nr: the number of pages to write
2228 * @reason: reason why some writeback work initiated
2229 *
2230 * Start writeback on some inodes on this super_block. No guarantees are made
2231 * on how many (if any) will be written, and this function does not wait
2232 * for IO completion of submitted IO.
2233 */
2234void writeback_inodes_sb_nr(struct super_block *sb,
2235 unsigned long nr,
2236 enum wb_reason reason)
2237{
2238 __writeback_inodes_sb_nr(sb, nr, reason, false);
2239}
3259f8be
CM
2240EXPORT_SYMBOL(writeback_inodes_sb_nr);
2241
2242/**
2243 * writeback_inodes_sb - writeback dirty inodes from given super_block
2244 * @sb: the superblock
786228ab 2245 * @reason: reason why some writeback work was initiated
3259f8be
CM
2246 *
2247 * Start writeback on some inodes on this super_block. No guarantees are made
2248 * on how many (if any) will be written, and this function does not wait
2249 * for IO completion of submitted IO.
2250 */
0e175a18 2251void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
3259f8be 2252{
0e175a18 2253 return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
3259f8be 2254}
0e3c9a22 2255EXPORT_SYMBOL(writeback_inodes_sb);
e913fc82 2256
17bd55d0 2257/**
10ee27a0 2258 * try_to_writeback_inodes_sb_nr - try to start writeback if none underway
17bd55d0 2259 * @sb: the superblock
10ee27a0
MX
2260 * @nr: the number of pages to write
2261 * @reason: the reason of writeback
17bd55d0 2262 *
10ee27a0 2263 * Invoke writeback_inodes_sb_nr if no writeback is currently underway.
17bd55d0
ES
2264 * Returns 1 if writeback was started, 0 if not.
2265 */
f30a7d0c
TH
2266bool try_to_writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2267 enum wb_reason reason)
17bd55d0 2268{
10ee27a0 2269 if (!down_read_trylock(&sb->s_umount))
f30a7d0c 2270 return false;
10ee27a0 2271
f30a7d0c 2272 __writeback_inodes_sb_nr(sb, nr, reason, true);
10ee27a0 2273 up_read(&sb->s_umount);
f30a7d0c 2274 return true;
17bd55d0 2275}
10ee27a0 2276EXPORT_SYMBOL(try_to_writeback_inodes_sb_nr);
17bd55d0 2277
3259f8be 2278/**
10ee27a0 2279 * try_to_writeback_inodes_sb - try to start writeback if none underway
3259f8be 2280 * @sb: the superblock
786228ab 2281 * @reason: reason why some writeback work was initiated
3259f8be 2282 *
10ee27a0 2283 * Implement by try_to_writeback_inodes_sb_nr()
3259f8be
CM
2284 * Returns 1 if writeback was started, 0 if not.
2285 */
f30a7d0c 2286bool try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
3259f8be 2287{
10ee27a0 2288 return try_to_writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
3259f8be 2289}
10ee27a0 2290EXPORT_SYMBOL(try_to_writeback_inodes_sb);
3259f8be 2291
d8a8559c
JA
2292/**
2293 * sync_inodes_sb - sync sb inode pages
0dc83bd3 2294 * @sb: the superblock
d8a8559c
JA
2295 *
2296 * This function writes and waits on any dirty inode belonging to this
0dc83bd3 2297 * super_block.
d8a8559c 2298 */
0dc83bd3 2299void sync_inodes_sb(struct super_block *sb)
d8a8559c 2300{
cc395d7f 2301 DEFINE_WB_COMPLETION_ONSTACK(done);
83ba7b07 2302 struct wb_writeback_work work = {
3c4d7165
CH
2303 .sb = sb,
2304 .sync_mode = WB_SYNC_ALL,
2305 .nr_pages = LONG_MAX,
2306 .range_cyclic = 0,
83ba7b07 2307 .done = &done,
0e175a18 2308 .reason = WB_REASON_SYNC,
7747bd4b 2309 .for_sync = 1,
3c4d7165 2310 };
e7972912 2311 struct backing_dev_info *bdi = sb->s_bdi;
3c4d7165 2312
006a0973
TH
2313 /*
2314 * Can't skip on !bdi_has_dirty() because we should wait for !dirty
2315 * inodes under writeback and I_DIRTY_TIME inodes ignored by
2316 * bdi_has_dirty() need to be written out too.
2317 */
2318 if (bdi == &noop_backing_dev_info)
6eedc701 2319 return;
cf37e972
CH
2320 WARN_ON(!rwsem_is_locked(&sb->s_umount));
2321
db125360 2322 bdi_split_work_to_wbs(bdi, &work, false);
cc395d7f 2323 wb_wait_for_completion(bdi, &done);
83ba7b07 2324
b6e51316 2325 wait_sb_inodes(sb);
1da177e4 2326}
d8a8559c 2327EXPORT_SYMBOL(sync_inodes_sb);
1da177e4 2328
1da177e4 2329/**
7f04c26d
AA
2330 * write_inode_now - write an inode to disk
2331 * @inode: inode to write to disk
2332 * @sync: whether the write should be synchronous or not
2333 *
2334 * This function commits an inode to disk immediately if it is dirty. This is
2335 * primarily needed by knfsd.
1da177e4 2336 *
7f04c26d 2337 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
1da177e4 2338 */
1da177e4
LT
2339int write_inode_now(struct inode *inode, int sync)
2340{
f758eeab 2341 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
1da177e4
LT
2342 struct writeback_control wbc = {
2343 .nr_to_write = LONG_MAX,
18914b18 2344 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
111ebb6e
OH
2345 .range_start = 0,
2346 .range_end = LLONG_MAX,
1da177e4
LT
2347 };
2348
2349 if (!mapping_cap_writeback_dirty(inode->i_mapping))
49364ce2 2350 wbc.nr_to_write = 0;
1da177e4
LT
2351
2352 might_sleep();
4f8ad655 2353 return writeback_single_inode(inode, wb, &wbc);
1da177e4
LT
2354}
2355EXPORT_SYMBOL(write_inode_now);
2356
2357/**
2358 * sync_inode - write an inode and its pages to disk.
2359 * @inode: the inode to sync
2360 * @wbc: controls the writeback mode
2361 *
2362 * sync_inode() will write an inode and its pages to disk. It will also
2363 * correctly update the inode on its superblock's dirty inode lists and will
2364 * update inode->i_state.
2365 *
2366 * The caller must have a ref on the inode.
2367 */
2368int sync_inode(struct inode *inode, struct writeback_control *wbc)
2369{
4f8ad655 2370 return writeback_single_inode(inode, &inode_to_bdi(inode)->wb, wbc);
1da177e4
LT
2371}
2372EXPORT_SYMBOL(sync_inode);
c3765016
CH
2373
2374/**
c691b9d9 2375 * sync_inode_metadata - write an inode to disk
c3765016
CH
2376 * @inode: the inode to sync
2377 * @wait: wait for I/O to complete.
2378 *
c691b9d9 2379 * Write an inode to disk and adjust its dirty state after completion.
c3765016
CH
2380 *
2381 * Note: only writes the actual inode, no associated data or other metadata.
2382 */
2383int sync_inode_metadata(struct inode *inode, int wait)
2384{
2385 struct writeback_control wbc = {
2386 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
2387 .nr_to_write = 0, /* metadata-only */
2388 };
2389
2390 return sync_inode(inode, &wbc);
2391}
2392EXPORT_SYMBOL(sync_inode_metadata);