Merge branch 'for-viro' of git://git.kernel.org/pub/scm/linux/kernel/git/mszeredi...
[linux-2.6-block.git] / fs / fs-writeback.c
CommitLineData
1da177e4
LT
1/*
2 * fs/fs-writeback.c
3 *
4 * Copyright (C) 2002, Linus Torvalds.
5 *
6 * Contains all the functions related to writing back and waiting
7 * upon dirty inodes against superblocks, and writing back dirty
8 * pages against inodes. ie: data writeback. Writeout of the
9 * inode itself is not handled here.
10 *
e1f8e874 11 * 10Apr2002 Andrew Morton
1da177e4
LT
12 * Split out of fs/inode.c
13 * Additions for address_space-based writeback
14 */
15
16#include <linux/kernel.h>
630d9c47 17#include <linux/export.h>
1da177e4 18#include <linux/spinlock.h>
5a0e3ad6 19#include <linux/slab.h>
1da177e4
LT
20#include <linux/sched.h>
21#include <linux/fs.h>
22#include <linux/mm.h>
bc31b86a 23#include <linux/pagemap.h>
03ba3782 24#include <linux/kthread.h>
1da177e4
LT
25#include <linux/writeback.h>
26#include <linux/blkdev.h>
27#include <linux/backing-dev.h>
455b2864 28#include <linux/tracepoint.h>
719ea2fb 29#include <linux/device.h>
21c6321f 30#include <linux/memcontrol.h>
07f3f05c 31#include "internal.h"
1da177e4 32
bc31b86a
WF
33/*
34 * 4MB minimal write chunk size
35 */
09cbfeaf 36#define MIN_WRITEBACK_PAGES (4096UL >> (PAGE_SHIFT - 10))
bc31b86a 37
cc395d7f
TH
38struct wb_completion {
39 atomic_t cnt;
40};
41
c4a77a6c
JA
42/*
43 * Passed into wb_writeback(), essentially a subset of writeback_control
44 */
83ba7b07 45struct wb_writeback_work {
c4a77a6c
JA
46 long nr_pages;
47 struct super_block *sb;
0dc83bd3 48 unsigned long *older_than_this;
c4a77a6c 49 enum writeback_sync_modes sync_mode;
6e6938b6 50 unsigned int tagged_writepages:1;
52957fe1
HS
51 unsigned int for_kupdate:1;
52 unsigned int range_cyclic:1;
53 unsigned int for_background:1;
7747bd4b 54 unsigned int for_sync:1; /* sync(2) WB_SYNC_ALL writeback */
ac7b19a3 55 unsigned int auto_free:1; /* free on completion */
0e175a18 56 enum wb_reason reason; /* why was writeback initiated? */
c4a77a6c 57
8010c3b6 58 struct list_head list; /* pending work list */
cc395d7f 59 struct wb_completion *done; /* set if the caller waits */
03ba3782
JA
60};
61
cc395d7f
TH
62/*
63 * If one wants to wait for one or more wb_writeback_works, each work's
64 * ->done should be set to a wb_completion defined using the following
65 * macro. Once all work items are issued with wb_queue_work(), the caller
66 * can wait for the completion of all using wb_wait_for_completion(). Work
67 * items which are waited upon aren't freed automatically on completion.
68 */
69#define DEFINE_WB_COMPLETION_ONSTACK(cmpl) \
70 struct wb_completion cmpl = { \
71 .cnt = ATOMIC_INIT(1), \
72 }
73
74
a2f48706
TT
75/*
76 * If an inode is constantly having its pages dirtied, but then the
77 * updates stop dirtytime_expire_interval seconds in the past, it's
78 * possible for the worst case time between when an inode has its
79 * timestamps updated and when they finally get written out to be two
80 * dirtytime_expire_intervals. We set the default to 12 hours (in
81 * seconds), which means most of the time inodes will have their
82 * timestamps written to disk after 12 hours, but in the worst case a
83 * few inodes might not their timestamps updated for 24 hours.
84 */
85unsigned int dirtytime_expire_interval = 12 * 60 * 60;
86
7ccf19a8
NP
87static inline struct inode *wb_inode(struct list_head *head)
88{
c7f54084 89 return list_entry(head, struct inode, i_io_list);
7ccf19a8
NP
90}
91
15eb77a0
WF
92/*
93 * Include the creation of the trace points after defining the
94 * wb_writeback_work structure and inline functions so that the definition
95 * remains local to this file.
96 */
97#define CREATE_TRACE_POINTS
98#include <trace/events/writeback.h>
99
774016b2
SW
100EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
101
d6c10f1f
TH
102static bool wb_io_lists_populated(struct bdi_writeback *wb)
103{
104 if (wb_has_dirty_io(wb)) {
105 return false;
106 } else {
107 set_bit(WB_has_dirty_io, &wb->state);
95a46c65 108 WARN_ON_ONCE(!wb->avg_write_bandwidth);
766a9d6e
TH
109 atomic_long_add(wb->avg_write_bandwidth,
110 &wb->bdi->tot_write_bandwidth);
d6c10f1f
TH
111 return true;
112 }
113}
114
115static void wb_io_lists_depopulated(struct bdi_writeback *wb)
116{
117 if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
766a9d6e 118 list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
d6c10f1f 119 clear_bit(WB_has_dirty_io, &wb->state);
95a46c65
TH
120 WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
121 &wb->bdi->tot_write_bandwidth) < 0);
766a9d6e 122 }
d6c10f1f
TH
123}
124
125/**
c7f54084 126 * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list
d6c10f1f
TH
127 * @inode: inode to be moved
128 * @wb: target bdi_writeback
129 * @head: one of @wb->b_{dirty|io|more_io}
130 *
c7f54084 131 * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io.
d6c10f1f
TH
132 * Returns %true if @inode is the first occupant of the !dirty_time IO
133 * lists; otherwise, %false.
134 */
c7f54084 135static bool inode_io_list_move_locked(struct inode *inode,
d6c10f1f
TH
136 struct bdi_writeback *wb,
137 struct list_head *head)
138{
139 assert_spin_locked(&wb->list_lock);
140
c7f54084 141 list_move(&inode->i_io_list, head);
d6c10f1f
TH
142
143 /* dirty_time doesn't count as dirty_io until expiration */
144 if (head != &wb->b_dirty_time)
145 return wb_io_lists_populated(wb);
146
147 wb_io_lists_depopulated(wb);
148 return false;
149}
150
151/**
c7f54084 152 * inode_io_list_del_locked - remove an inode from its bdi_writeback IO list
d6c10f1f
TH
153 * @inode: inode to be removed
154 * @wb: bdi_writeback @inode is being removed from
155 *
156 * Remove @inode which may be on one of @wb->b_{dirty|io|more_io} lists and
157 * clear %WB_has_dirty_io if all are empty afterwards.
158 */
c7f54084 159static void inode_io_list_del_locked(struct inode *inode,
d6c10f1f
TH
160 struct bdi_writeback *wb)
161{
162 assert_spin_locked(&wb->list_lock);
163
c7f54084 164 list_del_init(&inode->i_io_list);
d6c10f1f
TH
165 wb_io_lists_depopulated(wb);
166}
167
f0054bb1 168static void wb_wakeup(struct bdi_writeback *wb)
5acda9d1 169{
f0054bb1
TH
170 spin_lock_bh(&wb->work_lock);
171 if (test_bit(WB_registered, &wb->state))
172 mod_delayed_work(bdi_wq, &wb->dwork, 0);
173 spin_unlock_bh(&wb->work_lock);
5acda9d1
JK
174}
175
f0054bb1
TH
176static void wb_queue_work(struct bdi_writeback *wb,
177 struct wb_writeback_work *work)
6585027a 178{
5634cc2a 179 trace_writeback_queue(wb, work);
6585027a 180
f0054bb1 181 spin_lock_bh(&wb->work_lock);
8a1270cd 182 if (!test_bit(WB_registered, &wb->state))
5acda9d1 183 goto out_unlock;
cc395d7f
TH
184 if (work->done)
185 atomic_inc(&work->done->cnt);
f0054bb1
TH
186 list_add_tail(&work->list, &wb->work_list);
187 mod_delayed_work(bdi_wq, &wb->dwork, 0);
5acda9d1 188out_unlock:
f0054bb1 189 spin_unlock_bh(&wb->work_lock);
1da177e4
LT
190}
191
cc395d7f
TH
192/**
193 * wb_wait_for_completion - wait for completion of bdi_writeback_works
194 * @bdi: bdi work items were issued to
195 * @done: target wb_completion
196 *
197 * Wait for one or more work items issued to @bdi with their ->done field
198 * set to @done, which should have been defined with
199 * DEFINE_WB_COMPLETION_ONSTACK(). This function returns after all such
200 * work items are completed. Work items which are waited upon aren't freed
201 * automatically on completion.
202 */
203static void wb_wait_for_completion(struct backing_dev_info *bdi,
204 struct wb_completion *done)
205{
206 atomic_dec(&done->cnt); /* put down the initial count */
207 wait_event(bdi->wb_waitq, !atomic_read(&done->cnt));
208}
209
703c2708
TH
210#ifdef CONFIG_CGROUP_WRITEBACK
211
2a814908
TH
212/* parameters for foreign inode detection, see wb_detach_inode() */
213#define WB_FRN_TIME_SHIFT 13 /* 1s = 2^13, upto 8 secs w/ 16bit */
214#define WB_FRN_TIME_AVG_SHIFT 3 /* avg = avg * 7/8 + new * 1/8 */
215#define WB_FRN_TIME_CUT_DIV 2 /* ignore rounds < avg / 2 */
216#define WB_FRN_TIME_PERIOD (2 * (1 << WB_FRN_TIME_SHIFT)) /* 2s */
217
218#define WB_FRN_HIST_SLOTS 16 /* inode->i_wb_frn_history is 16bit */
219#define WB_FRN_HIST_UNIT (WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS)
220 /* each slot's duration is 2s / 16 */
221#define WB_FRN_HIST_THR_SLOTS (WB_FRN_HIST_SLOTS / 2)
222 /* if foreign slots >= 8, switch */
223#define WB_FRN_HIST_MAX_SLOTS (WB_FRN_HIST_THR_SLOTS / 2 + 1)
224 /* one round can affect upto 5 slots */
225
a1a0e23e
TH
226static atomic_t isw_nr_in_flight = ATOMIC_INIT(0);
227static struct workqueue_struct *isw_wq;
228
21c6321f
TH
229void __inode_attach_wb(struct inode *inode, struct page *page)
230{
231 struct backing_dev_info *bdi = inode_to_bdi(inode);
232 struct bdi_writeback *wb = NULL;
233
234 if (inode_cgwb_enabled(inode)) {
235 struct cgroup_subsys_state *memcg_css;
236
237 if (page) {
238 memcg_css = mem_cgroup_css_from_page(page);
239 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
240 } else {
241 /* must pin memcg_css, see wb_get_create() */
242 memcg_css = task_get_css(current, memory_cgrp_id);
243 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
244 css_put(memcg_css);
245 }
246 }
247
248 if (!wb)
249 wb = &bdi->wb;
250
251 /*
252 * There may be multiple instances of this function racing to
253 * update the same inode. Use cmpxchg() to tell the winner.
254 */
255 if (unlikely(cmpxchg(&inode->i_wb, NULL, wb)))
256 wb_put(wb);
257}
258
87e1d789
TH
259/**
260 * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it
261 * @inode: inode of interest with i_lock held
262 *
263 * Returns @inode's wb with its list_lock held. @inode->i_lock must be
264 * held on entry and is released on return. The returned wb is guaranteed
265 * to stay @inode's associated wb until its list_lock is released.
266 */
267static struct bdi_writeback *
268locked_inode_to_wb_and_lock_list(struct inode *inode)
269 __releases(&inode->i_lock)
270 __acquires(&wb->list_lock)
271{
272 while (true) {
273 struct bdi_writeback *wb = inode_to_wb(inode);
274
275 /*
276 * inode_to_wb() association is protected by both
277 * @inode->i_lock and @wb->list_lock but list_lock nests
278 * outside i_lock. Drop i_lock and verify that the
279 * association hasn't changed after acquiring list_lock.
280 */
281 wb_get(wb);
282 spin_unlock(&inode->i_lock);
283 spin_lock(&wb->list_lock);
87e1d789 284
aaa2cacf 285 /* i_wb may have changed inbetween, can't use inode_to_wb() */
614a4e37
TH
286 if (likely(wb == inode->i_wb)) {
287 wb_put(wb); /* @inode already has ref */
288 return wb;
289 }
87e1d789
TH
290
291 spin_unlock(&wb->list_lock);
614a4e37 292 wb_put(wb);
87e1d789
TH
293 cpu_relax();
294 spin_lock(&inode->i_lock);
295 }
296}
297
298/**
299 * inode_to_wb_and_lock_list - determine an inode's wb and lock it
300 * @inode: inode of interest
301 *
302 * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held
303 * on entry.
304 */
305static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
306 __acquires(&wb->list_lock)
307{
308 spin_lock(&inode->i_lock);
309 return locked_inode_to_wb_and_lock_list(inode);
310}
311
682aa8e1
TH
312struct inode_switch_wbs_context {
313 struct inode *inode;
314 struct bdi_writeback *new_wb;
315
316 struct rcu_head rcu_head;
317 struct work_struct work;
318};
319
320static void inode_switch_wbs_work_fn(struct work_struct *work)
321{
322 struct inode_switch_wbs_context *isw =
323 container_of(work, struct inode_switch_wbs_context, work);
324 struct inode *inode = isw->inode;
d10c8095
TH
325 struct address_space *mapping = inode->i_mapping;
326 struct bdi_writeback *old_wb = inode->i_wb;
682aa8e1 327 struct bdi_writeback *new_wb = isw->new_wb;
d10c8095
TH
328 struct radix_tree_iter iter;
329 bool switched = false;
330 void **slot;
682aa8e1
TH
331
332 /*
333 * By the time control reaches here, RCU grace period has passed
334 * since I_WB_SWITCH assertion and all wb stat update transactions
335 * between unlocked_inode_to_wb_begin/end() are guaranteed to be
336 * synchronizing against mapping->tree_lock.
d10c8095
TH
337 *
338 * Grabbing old_wb->list_lock, inode->i_lock and mapping->tree_lock
339 * gives us exclusion against all wb related operations on @inode
340 * including IO list manipulations and stat updates.
682aa8e1 341 */
d10c8095
TH
342 if (old_wb < new_wb) {
343 spin_lock(&old_wb->list_lock);
344 spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING);
345 } else {
346 spin_lock(&new_wb->list_lock);
347 spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING);
348 }
682aa8e1 349 spin_lock(&inode->i_lock);
d10c8095
TH
350 spin_lock_irq(&mapping->tree_lock);
351
352 /*
353 * Once I_FREEING is visible under i_lock, the eviction path owns
c7f54084 354 * the inode and we shouldn't modify ->i_io_list.
d10c8095
TH
355 */
356 if (unlikely(inode->i_state & I_FREEING))
357 goto skip_switch;
358
359 /*
360 * Count and transfer stats. Note that PAGECACHE_TAG_DIRTY points
361 * to possibly dirty pages while PAGECACHE_TAG_WRITEBACK points to
362 * pages actually under underwriteback.
363 */
364 radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter, 0,
365 PAGECACHE_TAG_DIRTY) {
366 struct page *page = radix_tree_deref_slot_protected(slot,
367 &mapping->tree_lock);
368 if (likely(page) && PageDirty(page)) {
369 __dec_wb_stat(old_wb, WB_RECLAIMABLE);
370 __inc_wb_stat(new_wb, WB_RECLAIMABLE);
371 }
372 }
373
374 radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter, 0,
375 PAGECACHE_TAG_WRITEBACK) {
376 struct page *page = radix_tree_deref_slot_protected(slot,
377 &mapping->tree_lock);
378 if (likely(page)) {
379 WARN_ON_ONCE(!PageWriteback(page));
380 __dec_wb_stat(old_wb, WB_WRITEBACK);
381 __inc_wb_stat(new_wb, WB_WRITEBACK);
382 }
383 }
384
385 wb_get(new_wb);
386
387 /*
388 * Transfer to @new_wb's IO list if necessary. The specific list
389 * @inode was on is ignored and the inode is put on ->b_dirty which
390 * is always correct including from ->b_dirty_time. The transfer
391 * preserves @inode->dirtied_when ordering.
392 */
c7f54084 393 if (!list_empty(&inode->i_io_list)) {
d10c8095
TH
394 struct inode *pos;
395
c7f54084 396 inode_io_list_del_locked(inode, old_wb);
d10c8095 397 inode->i_wb = new_wb;
c7f54084 398 list_for_each_entry(pos, &new_wb->b_dirty, i_io_list)
d10c8095
TH
399 if (time_after_eq(inode->dirtied_when,
400 pos->dirtied_when))
401 break;
c7f54084 402 inode_io_list_move_locked(inode, new_wb, pos->i_io_list.prev);
d10c8095
TH
403 } else {
404 inode->i_wb = new_wb;
405 }
682aa8e1 406
d10c8095 407 /* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */
682aa8e1
TH
408 inode->i_wb_frn_winner = 0;
409 inode->i_wb_frn_avg_time = 0;
410 inode->i_wb_frn_history = 0;
d10c8095
TH
411 switched = true;
412skip_switch:
682aa8e1
TH
413 /*
414 * Paired with load_acquire in unlocked_inode_to_wb_begin() and
415 * ensures that the new wb is visible if they see !I_WB_SWITCH.
416 */
417 smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH);
418
d10c8095 419 spin_unlock_irq(&mapping->tree_lock);
682aa8e1 420 spin_unlock(&inode->i_lock);
d10c8095
TH
421 spin_unlock(&new_wb->list_lock);
422 spin_unlock(&old_wb->list_lock);
682aa8e1 423
d10c8095
TH
424 if (switched) {
425 wb_wakeup(new_wb);
426 wb_put(old_wb);
427 }
682aa8e1 428 wb_put(new_wb);
d10c8095
TH
429
430 iput(inode);
682aa8e1 431 kfree(isw);
a1a0e23e
TH
432
433 atomic_dec(&isw_nr_in_flight);
682aa8e1
TH
434}
435
436static void inode_switch_wbs_rcu_fn(struct rcu_head *rcu_head)
437{
438 struct inode_switch_wbs_context *isw = container_of(rcu_head,
439 struct inode_switch_wbs_context, rcu_head);
440
441 /* needs to grab bh-unsafe locks, bounce to work item */
442 INIT_WORK(&isw->work, inode_switch_wbs_work_fn);
a1a0e23e 443 queue_work(isw_wq, &isw->work);
682aa8e1
TH
444}
445
446/**
447 * inode_switch_wbs - change the wb association of an inode
448 * @inode: target inode
449 * @new_wb_id: ID of the new wb
450 *
451 * Switch @inode's wb association to the wb identified by @new_wb_id. The
452 * switching is performed asynchronously and may fail silently.
453 */
454static void inode_switch_wbs(struct inode *inode, int new_wb_id)
455{
456 struct backing_dev_info *bdi = inode_to_bdi(inode);
457 struct cgroup_subsys_state *memcg_css;
458 struct inode_switch_wbs_context *isw;
459
460 /* noop if seems to be already in progress */
461 if (inode->i_state & I_WB_SWITCH)
462 return;
463
464 isw = kzalloc(sizeof(*isw), GFP_ATOMIC);
465 if (!isw)
466 return;
467
468 /* find and pin the new wb */
469 rcu_read_lock();
470 memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys);
471 if (memcg_css)
472 isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
473 rcu_read_unlock();
474 if (!isw->new_wb)
475 goto out_free;
476
477 /* while holding I_WB_SWITCH, no one else can update the association */
478 spin_lock(&inode->i_lock);
a1a0e23e
TH
479 if (!(inode->i_sb->s_flags & MS_ACTIVE) ||
480 inode->i_state & (I_WB_SWITCH | I_FREEING) ||
481 inode_to_wb(inode) == isw->new_wb) {
482 spin_unlock(&inode->i_lock);
483 goto out_free;
484 }
682aa8e1 485 inode->i_state |= I_WB_SWITCH;
74524955 486 __iget(inode);
682aa8e1
TH
487 spin_unlock(&inode->i_lock);
488
682aa8e1
TH
489 isw->inode = inode;
490
a1a0e23e
TH
491 atomic_inc(&isw_nr_in_flight);
492
682aa8e1
TH
493 /*
494 * In addition to synchronizing among switchers, I_WB_SWITCH tells
495 * the RCU protected stat update paths to grab the mapping's
496 * tree_lock so that stat transfer can synchronize against them.
497 * Let's continue after I_WB_SWITCH is guaranteed to be visible.
498 */
499 call_rcu(&isw->rcu_head, inode_switch_wbs_rcu_fn);
500 return;
501
502out_free:
503 if (isw->new_wb)
504 wb_put(isw->new_wb);
505 kfree(isw);
506}
507
b16b1deb
TH
508/**
509 * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
510 * @wbc: writeback_control of interest
511 * @inode: target inode
512 *
513 * @inode is locked and about to be written back under the control of @wbc.
514 * Record @inode's writeback context into @wbc and unlock the i_lock. On
515 * writeback completion, wbc_detach_inode() should be called. This is used
516 * to track the cgroup writeback context.
517 */
518void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
519 struct inode *inode)
520{
dd73e4b7
TH
521 if (!inode_cgwb_enabled(inode)) {
522 spin_unlock(&inode->i_lock);
523 return;
524 }
525
b16b1deb 526 wbc->wb = inode_to_wb(inode);
2a814908
TH
527 wbc->inode = inode;
528
529 wbc->wb_id = wbc->wb->memcg_css->id;
530 wbc->wb_lcand_id = inode->i_wb_frn_winner;
531 wbc->wb_tcand_id = 0;
532 wbc->wb_bytes = 0;
533 wbc->wb_lcand_bytes = 0;
534 wbc->wb_tcand_bytes = 0;
535
b16b1deb
TH
536 wb_get(wbc->wb);
537 spin_unlock(&inode->i_lock);
e8a7abf5
TH
538
539 /*
540 * A dying wb indicates that the memcg-blkcg mapping has changed
541 * and a new wb is already serving the memcg. Switch immediately.
542 */
543 if (unlikely(wb_dying(wbc->wb)))
544 inode_switch_wbs(inode, wbc->wb_id);
b16b1deb
TH
545}
546
547/**
2a814908
TH
548 * wbc_detach_inode - disassociate wbc from inode and perform foreign detection
549 * @wbc: writeback_control of the just finished writeback
b16b1deb
TH
550 *
551 * To be called after a writeback attempt of an inode finishes and undoes
552 * wbc_attach_and_unlock_inode(). Can be called under any context.
2a814908
TH
553 *
554 * As concurrent write sharing of an inode is expected to be very rare and
555 * memcg only tracks page ownership on first-use basis severely confining
556 * the usefulness of such sharing, cgroup writeback tracks ownership
557 * per-inode. While the support for concurrent write sharing of an inode
558 * is deemed unnecessary, an inode being written to by different cgroups at
559 * different points in time is a lot more common, and, more importantly,
560 * charging only by first-use can too readily lead to grossly incorrect
561 * behaviors (single foreign page can lead to gigabytes of writeback to be
562 * incorrectly attributed).
563 *
564 * To resolve this issue, cgroup writeback detects the majority dirtier of
565 * an inode and transfers the ownership to it. To avoid unnnecessary
566 * oscillation, the detection mechanism keeps track of history and gives
567 * out the switch verdict only if the foreign usage pattern is stable over
568 * a certain amount of time and/or writeback attempts.
569 *
570 * On each writeback attempt, @wbc tries to detect the majority writer
571 * using Boyer-Moore majority vote algorithm. In addition to the byte
572 * count from the majority voting, it also counts the bytes written for the
573 * current wb and the last round's winner wb (max of last round's current
574 * wb, the winner from two rounds ago, and the last round's majority
575 * candidate). Keeping track of the historical winner helps the algorithm
576 * to semi-reliably detect the most active writer even when it's not the
577 * absolute majority.
578 *
579 * Once the winner of the round is determined, whether the winner is
580 * foreign or not and how much IO time the round consumed is recorded in
581 * inode->i_wb_frn_history. If the amount of recorded foreign IO time is
582 * over a certain threshold, the switch verdict is given.
b16b1deb
TH
583 */
584void wbc_detach_inode(struct writeback_control *wbc)
585{
2a814908
TH
586 struct bdi_writeback *wb = wbc->wb;
587 struct inode *inode = wbc->inode;
dd73e4b7
TH
588 unsigned long avg_time, max_bytes, max_time;
589 u16 history;
2a814908
TH
590 int max_id;
591
dd73e4b7
TH
592 if (!wb)
593 return;
594
595 history = inode->i_wb_frn_history;
596 avg_time = inode->i_wb_frn_avg_time;
597
2a814908
TH
598 /* pick the winner of this round */
599 if (wbc->wb_bytes >= wbc->wb_lcand_bytes &&
600 wbc->wb_bytes >= wbc->wb_tcand_bytes) {
601 max_id = wbc->wb_id;
602 max_bytes = wbc->wb_bytes;
603 } else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) {
604 max_id = wbc->wb_lcand_id;
605 max_bytes = wbc->wb_lcand_bytes;
606 } else {
607 max_id = wbc->wb_tcand_id;
608 max_bytes = wbc->wb_tcand_bytes;
609 }
610
611 /*
612 * Calculate the amount of IO time the winner consumed and fold it
613 * into the running average kept per inode. If the consumed IO
614 * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for
615 * deciding whether to switch or not. This is to prevent one-off
616 * small dirtiers from skewing the verdict.
617 */
618 max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT,
619 wb->avg_write_bandwidth);
620 if (avg_time)
621 avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) -
622 (avg_time >> WB_FRN_TIME_AVG_SHIFT);
623 else
624 avg_time = max_time; /* immediate catch up on first run */
625
626 if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) {
627 int slots;
628
629 /*
630 * The switch verdict is reached if foreign wb's consume
631 * more than a certain proportion of IO time in a
632 * WB_FRN_TIME_PERIOD. This is loosely tracked by 16 slot
633 * history mask where each bit represents one sixteenth of
634 * the period. Determine the number of slots to shift into
635 * history from @max_time.
636 */
637 slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT),
638 (unsigned long)WB_FRN_HIST_MAX_SLOTS);
639 history <<= slots;
640 if (wbc->wb_id != max_id)
641 history |= (1U << slots) - 1;
642
643 /*
644 * Switch if the current wb isn't the consistent winner.
645 * If there are multiple closely competing dirtiers, the
646 * inode may switch across them repeatedly over time, which
647 * is okay. The main goal is avoiding keeping an inode on
648 * the wrong wb for an extended period of time.
649 */
682aa8e1
TH
650 if (hweight32(history) > WB_FRN_HIST_THR_SLOTS)
651 inode_switch_wbs(inode, max_id);
2a814908
TH
652 }
653
654 /*
655 * Multiple instances of this function may race to update the
656 * following fields but we don't mind occassional inaccuracies.
657 */
658 inode->i_wb_frn_winner = max_id;
659 inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX);
660 inode->i_wb_frn_history = history;
661
b16b1deb
TH
662 wb_put(wbc->wb);
663 wbc->wb = NULL;
664}
665
2a814908
TH
666/**
667 * wbc_account_io - account IO issued during writeback
668 * @wbc: writeback_control of the writeback in progress
669 * @page: page being written out
670 * @bytes: number of bytes being written out
671 *
672 * @bytes from @page are about to written out during the writeback
673 * controlled by @wbc. Keep the book for foreign inode detection. See
674 * wbc_detach_inode().
675 */
676void wbc_account_io(struct writeback_control *wbc, struct page *page,
677 size_t bytes)
678{
679 int id;
680
681 /*
682 * pageout() path doesn't attach @wbc to the inode being written
683 * out. This is intentional as we don't want the function to block
684 * behind a slow cgroup. Ultimately, we want pageout() to kick off
685 * regular writeback instead of writing things out itself.
686 */
687 if (!wbc->wb)
688 return;
689
2a814908 690 id = mem_cgroup_css_from_page(page)->id;
2a814908
TH
691
692 if (id == wbc->wb_id) {
693 wbc->wb_bytes += bytes;
694 return;
695 }
696
697 if (id == wbc->wb_lcand_id)
698 wbc->wb_lcand_bytes += bytes;
699
700 /* Boyer-Moore majority vote algorithm */
701 if (!wbc->wb_tcand_bytes)
702 wbc->wb_tcand_id = id;
703 if (id == wbc->wb_tcand_id)
704 wbc->wb_tcand_bytes += bytes;
705 else
706 wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes);
707}
5aa2a96b 708EXPORT_SYMBOL_GPL(wbc_account_io);
2a814908 709
703c2708
TH
710/**
711 * inode_congested - test whether an inode is congested
60292bcc 712 * @inode: inode to test for congestion (may be NULL)
703c2708
TH
713 * @cong_bits: mask of WB_[a]sync_congested bits to test
714 *
715 * Tests whether @inode is congested. @cong_bits is the mask of congestion
716 * bits to test and the return value is the mask of set bits.
717 *
718 * If cgroup writeback is enabled for @inode, the congestion state is
719 * determined by whether the cgwb (cgroup bdi_writeback) for the blkcg
720 * associated with @inode is congested; otherwise, the root wb's congestion
721 * state is used.
60292bcc
TH
722 *
723 * @inode is allowed to be NULL as this function is often called on
724 * mapping->host which is NULL for the swapper space.
703c2708
TH
725 */
726int inode_congested(struct inode *inode, int cong_bits)
727{
5cb8b824
TH
728 /*
729 * Once set, ->i_wb never becomes NULL while the inode is alive.
730 * Start transaction iff ->i_wb is visible.
731 */
aaa2cacf 732 if (inode && inode_to_wb_is_valid(inode)) {
5cb8b824
TH
733 struct bdi_writeback *wb;
734 bool locked, congested;
735
736 wb = unlocked_inode_to_wb_begin(inode, &locked);
737 congested = wb_congested(wb, cong_bits);
738 unlocked_inode_to_wb_end(inode, locked);
739 return congested;
703c2708
TH
740 }
741
742 return wb_congested(&inode_to_bdi(inode)->wb, cong_bits);
743}
744EXPORT_SYMBOL_GPL(inode_congested);
745
f2b65121
TH
746/**
747 * wb_split_bdi_pages - split nr_pages to write according to bandwidth
748 * @wb: target bdi_writeback to split @nr_pages to
749 * @nr_pages: number of pages to write for the whole bdi
750 *
751 * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
752 * relation to the total write bandwidth of all wb's w/ dirty inodes on
753 * @wb->bdi.
754 */
755static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
756{
757 unsigned long this_bw = wb->avg_write_bandwidth;
758 unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
759
760 if (nr_pages == LONG_MAX)
761 return LONG_MAX;
762
763 /*
764 * This may be called on clean wb's and proportional distribution
765 * may not make sense, just use the original @nr_pages in those
766 * cases. In general, we wanna err on the side of writing more.
767 */
768 if (!tot_bw || this_bw >= tot_bw)
769 return nr_pages;
770 else
771 return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw);
772}
773
db125360
TH
774/**
775 * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
776 * @bdi: target backing_dev_info
777 * @base_work: wb_writeback_work to issue
778 * @skip_if_busy: skip wb's which already have writeback in progress
779 *
780 * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
781 * have dirty inodes. If @base_work->nr_page isn't %LONG_MAX, it's
782 * distributed to the busy wbs according to each wb's proportion in the
783 * total active write bandwidth of @bdi.
784 */
785static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
786 struct wb_writeback_work *base_work,
787 bool skip_if_busy)
788{
b817525a 789 struct bdi_writeback *last_wb = NULL;
b33e18f6
TH
790 struct bdi_writeback *wb = list_entry(&bdi->wb_list,
791 struct bdi_writeback, bdi_node);
db125360
TH
792
793 might_sleep();
db125360
TH
794restart:
795 rcu_read_lock();
b817525a 796 list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) {
8a1270cd
TH
797 DEFINE_WB_COMPLETION_ONSTACK(fallback_work_done);
798 struct wb_writeback_work fallback_work;
799 struct wb_writeback_work *work;
800 long nr_pages;
801
b817525a
TH
802 if (last_wb) {
803 wb_put(last_wb);
804 last_wb = NULL;
805 }
806
006a0973
TH
807 /* SYNC_ALL writes out I_DIRTY_TIME too */
808 if (!wb_has_dirty_io(wb) &&
809 (base_work->sync_mode == WB_SYNC_NONE ||
810 list_empty(&wb->b_dirty_time)))
811 continue;
812 if (skip_if_busy && writeback_in_progress(wb))
db125360
TH
813 continue;
814
8a1270cd
TH
815 nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages);
816
817 work = kmalloc(sizeof(*work), GFP_ATOMIC);
818 if (work) {
819 *work = *base_work;
820 work->nr_pages = nr_pages;
821 work->auto_free = 1;
822 wb_queue_work(wb, work);
823 continue;
db125360 824 }
8a1270cd
TH
825
826 /* alloc failed, execute synchronously using on-stack fallback */
827 work = &fallback_work;
828 *work = *base_work;
829 work->nr_pages = nr_pages;
830 work->auto_free = 0;
831 work->done = &fallback_work_done;
832
833 wb_queue_work(wb, work);
834
b817525a
TH
835 /*
836 * Pin @wb so that it stays on @bdi->wb_list. This allows
837 * continuing iteration from @wb after dropping and
838 * regrabbing rcu read lock.
839 */
840 wb_get(wb);
841 last_wb = wb;
842
8a1270cd
TH
843 rcu_read_unlock();
844 wb_wait_for_completion(bdi, &fallback_work_done);
845 goto restart;
db125360
TH
846 }
847 rcu_read_unlock();
b817525a
TH
848
849 if (last_wb)
850 wb_put(last_wb);
db125360
TH
851}
852
a1a0e23e
TH
853/**
854 * cgroup_writeback_umount - flush inode wb switches for umount
855 *
856 * This function is called when a super_block is about to be destroyed and
857 * flushes in-flight inode wb switches. An inode wb switch goes through
858 * RCU and then workqueue, so the two need to be flushed in order to ensure
859 * that all previously scheduled switches are finished. As wb switches are
860 * rare occurrences and synchronize_rcu() can take a while, perform
861 * flushing iff wb switches are in flight.
862 */
863void cgroup_writeback_umount(void)
864{
865 if (atomic_read(&isw_nr_in_flight)) {
866 synchronize_rcu();
867 flush_workqueue(isw_wq);
868 }
869}
870
871static int __init cgroup_writeback_init(void)
872{
873 isw_wq = alloc_workqueue("inode_switch_wbs", 0, 0);
874 if (!isw_wq)
875 return -ENOMEM;
876 return 0;
877}
878fs_initcall(cgroup_writeback_init);
879
f2b65121
TH
880#else /* CONFIG_CGROUP_WRITEBACK */
881
87e1d789
TH
882static struct bdi_writeback *
883locked_inode_to_wb_and_lock_list(struct inode *inode)
884 __releases(&inode->i_lock)
885 __acquires(&wb->list_lock)
886{
887 struct bdi_writeback *wb = inode_to_wb(inode);
888
889 spin_unlock(&inode->i_lock);
890 spin_lock(&wb->list_lock);
891 return wb;
892}
893
894static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
895 __acquires(&wb->list_lock)
896{
897 struct bdi_writeback *wb = inode_to_wb(inode);
898
899 spin_lock(&wb->list_lock);
900 return wb;
901}
902
f2b65121
TH
903static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
904{
905 return nr_pages;
906}
907
db125360
TH
908static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
909 struct wb_writeback_work *base_work,
910 bool skip_if_busy)
911{
912 might_sleep();
913
006a0973 914 if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) {
db125360 915 base_work->auto_free = 0;
db125360
TH
916 wb_queue_work(&bdi->wb, base_work);
917 }
918}
919
703c2708
TH
920#endif /* CONFIG_CGROUP_WRITEBACK */
921
c00ddad3
TH
922void wb_start_writeback(struct bdi_writeback *wb, long nr_pages,
923 bool range_cyclic, enum wb_reason reason)
b6e51316 924{
c00ddad3
TH
925 struct wb_writeback_work *work;
926
927 if (!wb_has_dirty_io(wb))
928 return;
929
930 /*
931 * This is WB_SYNC_NONE writeback, so if allocation fails just
932 * wakeup the thread for old dirty data writeback
933 */
78ebc2f7
TH
934 work = kzalloc(sizeof(*work),
935 GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN);
c00ddad3 936 if (!work) {
5634cc2a 937 trace_writeback_nowork(wb);
c00ddad3
TH
938 wb_wakeup(wb);
939 return;
940 }
941
942 work->sync_mode = WB_SYNC_NONE;
943 work->nr_pages = nr_pages;
944 work->range_cyclic = range_cyclic;
945 work->reason = reason;
ac7b19a3 946 work->auto_free = 1;
c00ddad3
TH
947
948 wb_queue_work(wb, work);
c5444198 949}
d3ddec76 950
c5444198 951/**
9ecf4866
TH
952 * wb_start_background_writeback - start background writeback
953 * @wb: bdi_writback to write from
c5444198
CH
954 *
955 * Description:
6585027a 956 * This makes sure WB_SYNC_NONE background writeback happens. When
9ecf4866 957 * this function returns, it is only guaranteed that for given wb
6585027a
JK
958 * some IO is happening if we are over background dirty threshold.
959 * Caller need not hold sb s_umount semaphore.
c5444198 960 */
9ecf4866 961void wb_start_background_writeback(struct bdi_writeback *wb)
c5444198 962{
6585027a
JK
963 /*
964 * We just wake up the flusher thread. It will perform background
965 * writeback as soon as there is no other work to do.
966 */
5634cc2a 967 trace_writeback_wake_background(wb);
9ecf4866 968 wb_wakeup(wb);
1da177e4
LT
969}
970
a66979ab
DC
971/*
972 * Remove the inode from the writeback list it is on.
973 */
c7f54084 974void inode_io_list_del(struct inode *inode)
a66979ab 975{
87e1d789 976 struct bdi_writeback *wb;
f758eeab 977
87e1d789 978 wb = inode_to_wb_and_lock_list(inode);
c7f54084 979 inode_io_list_del_locked(inode, wb);
52ebea74 980 spin_unlock(&wb->list_lock);
a66979ab
DC
981}
982
6c60d2b5
DC
983/*
984 * mark an inode as under writeback on the sb
985 */
986void sb_mark_inode_writeback(struct inode *inode)
987{
988 struct super_block *sb = inode->i_sb;
989 unsigned long flags;
990
991 if (list_empty(&inode->i_wb_list)) {
992 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
9a46b04f 993 if (list_empty(&inode->i_wb_list)) {
6c60d2b5 994 list_add_tail(&inode->i_wb_list, &sb->s_inodes_wb);
9a46b04f
BF
995 trace_sb_mark_inode_writeback(inode);
996 }
6c60d2b5
DC
997 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
998 }
999}
1000
1001/*
1002 * clear an inode as under writeback on the sb
1003 */
1004void sb_clear_inode_writeback(struct inode *inode)
1005{
1006 struct super_block *sb = inode->i_sb;
1007 unsigned long flags;
1008
1009 if (!list_empty(&inode->i_wb_list)) {
1010 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
9a46b04f
BF
1011 if (!list_empty(&inode->i_wb_list)) {
1012 list_del_init(&inode->i_wb_list);
1013 trace_sb_clear_inode_writeback(inode);
1014 }
6c60d2b5
DC
1015 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1016 }
1017}
1018
6610a0bc
AM
1019/*
1020 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
1021 * furthest end of its superblock's dirty-inode list.
1022 *
1023 * Before stamping the inode's ->dirtied_when, we check to see whether it is
66f3b8e2 1024 * already the most-recently-dirtied inode on the b_dirty list. If that is
6610a0bc
AM
1025 * the case then the inode must have been redirtied while it was being written
1026 * out and we don't reset its dirtied_when.
1027 */
f758eeab 1028static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
6610a0bc 1029{
03ba3782 1030 if (!list_empty(&wb->b_dirty)) {
66f3b8e2 1031 struct inode *tail;
6610a0bc 1032
7ccf19a8 1033 tail = wb_inode(wb->b_dirty.next);
66f3b8e2 1034 if (time_before(inode->dirtied_when, tail->dirtied_when))
6610a0bc
AM
1035 inode->dirtied_when = jiffies;
1036 }
c7f54084 1037 inode_io_list_move_locked(inode, wb, &wb->b_dirty);
6610a0bc
AM
1038}
1039
c986d1e2 1040/*
66f3b8e2 1041 * requeue inode for re-scanning after bdi->b_io list is exhausted.
c986d1e2 1042 */
f758eeab 1043static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
c986d1e2 1044{
c7f54084 1045 inode_io_list_move_locked(inode, wb, &wb->b_more_io);
c986d1e2
AM
1046}
1047
1c0eeaf5
JE
1048static void inode_sync_complete(struct inode *inode)
1049{
365b94ae 1050 inode->i_state &= ~I_SYNC;
4eff96dd
JK
1051 /* If inode is clean an unused, put it into LRU now... */
1052 inode_add_lru(inode);
365b94ae 1053 /* Waiters must see I_SYNC cleared before being woken up */
1c0eeaf5
JE
1054 smp_mb();
1055 wake_up_bit(&inode->i_state, __I_SYNC);
1056}
1057
d2caa3c5
JL
1058static bool inode_dirtied_after(struct inode *inode, unsigned long t)
1059{
1060 bool ret = time_after(inode->dirtied_when, t);
1061#ifndef CONFIG_64BIT
1062 /*
1063 * For inodes being constantly redirtied, dirtied_when can get stuck.
1064 * It _appears_ to be in the future, but is actually in distant past.
1065 * This test is necessary to prevent such wrapped-around relative times
5b0830cb 1066 * from permanently stopping the whole bdi writeback.
d2caa3c5
JL
1067 */
1068 ret = ret && time_before_eq(inode->dirtied_when, jiffies);
1069#endif
1070 return ret;
1071}
1072
0ae45f63
TT
1073#define EXPIRE_DIRTY_ATIME 0x0001
1074
2c136579 1075/*
0e2f2b23 1076 * Move expired (dirtied before work->older_than_this) dirty inodes from
697e6fed 1077 * @delaying_queue to @dispatch_queue.
2c136579 1078 */
e84d0a4f 1079static int move_expired_inodes(struct list_head *delaying_queue,
2c136579 1080 struct list_head *dispatch_queue,
0ae45f63 1081 int flags,
ad4e38dd 1082 struct wb_writeback_work *work)
2c136579 1083{
0ae45f63
TT
1084 unsigned long *older_than_this = NULL;
1085 unsigned long expire_time;
5c03449d
SL
1086 LIST_HEAD(tmp);
1087 struct list_head *pos, *node;
cf137307 1088 struct super_block *sb = NULL;
5c03449d 1089 struct inode *inode;
cf137307 1090 int do_sb_sort = 0;
e84d0a4f 1091 int moved = 0;
5c03449d 1092
0ae45f63
TT
1093 if ((flags & EXPIRE_DIRTY_ATIME) == 0)
1094 older_than_this = work->older_than_this;
a2f48706
TT
1095 else if (!work->for_sync) {
1096 expire_time = jiffies - (dirtytime_expire_interval * HZ);
0ae45f63
TT
1097 older_than_this = &expire_time;
1098 }
2c136579 1099 while (!list_empty(delaying_queue)) {
7ccf19a8 1100 inode = wb_inode(delaying_queue->prev);
0ae45f63
TT
1101 if (older_than_this &&
1102 inode_dirtied_after(inode, *older_than_this))
2c136579 1103 break;
c7f54084 1104 list_move(&inode->i_io_list, &tmp);
a8855990 1105 moved++;
0ae45f63
TT
1106 if (flags & EXPIRE_DIRTY_ATIME)
1107 set_bit(__I_DIRTY_TIME_EXPIRED, &inode->i_state);
a8855990
JK
1108 if (sb_is_blkdev_sb(inode->i_sb))
1109 continue;
cf137307
JA
1110 if (sb && sb != inode->i_sb)
1111 do_sb_sort = 1;
1112 sb = inode->i_sb;
5c03449d
SL
1113 }
1114
cf137307
JA
1115 /* just one sb in list, splice to dispatch_queue and we're done */
1116 if (!do_sb_sort) {
1117 list_splice(&tmp, dispatch_queue);
e84d0a4f 1118 goto out;
cf137307
JA
1119 }
1120
5c03449d
SL
1121 /* Move inodes from one superblock together */
1122 while (!list_empty(&tmp)) {
7ccf19a8 1123 sb = wb_inode(tmp.prev)->i_sb;
5c03449d 1124 list_for_each_prev_safe(pos, node, &tmp) {
7ccf19a8 1125 inode = wb_inode(pos);
5c03449d 1126 if (inode->i_sb == sb)
c7f54084 1127 list_move(&inode->i_io_list, dispatch_queue);
5c03449d 1128 }
2c136579 1129 }
e84d0a4f
WF
1130out:
1131 return moved;
2c136579
FW
1132}
1133
1134/*
1135 * Queue all expired dirty inodes for io, eldest first.
4ea879b9
WF
1136 * Before
1137 * newly dirtied b_dirty b_io b_more_io
1138 * =============> gf edc BA
1139 * After
1140 * newly dirtied b_dirty b_io b_more_io
1141 * =============> g fBAedc
1142 * |
1143 * +--> dequeue for IO
2c136579 1144 */
ad4e38dd 1145static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work)
66f3b8e2 1146{
e84d0a4f 1147 int moved;
0ae45f63 1148
f758eeab 1149 assert_spin_locked(&wb->list_lock);
4ea879b9 1150 list_splice_init(&wb->b_more_io, &wb->b_io);
0ae45f63
TT
1151 moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, 0, work);
1152 moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
1153 EXPIRE_DIRTY_ATIME, work);
d6c10f1f
TH
1154 if (moved)
1155 wb_io_lists_populated(wb);
ad4e38dd 1156 trace_writeback_queue_io(wb, work, moved);
66f3b8e2
JA
1157}
1158
a9185b41 1159static int write_inode(struct inode *inode, struct writeback_control *wbc)
08d8e974 1160{
9fb0a7da
TH
1161 int ret;
1162
1163 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
1164 trace_writeback_write_inode_start(inode, wbc);
1165 ret = inode->i_sb->s_op->write_inode(inode, wbc);
1166 trace_writeback_write_inode(inode, wbc);
1167 return ret;
1168 }
03ba3782 1169 return 0;
08d8e974 1170}
08d8e974 1171
1da177e4 1172/*
169ebd90
JK
1173 * Wait for writeback on an inode to complete. Called with i_lock held.
1174 * Caller must make sure inode cannot go away when we drop i_lock.
01c03194 1175 */
169ebd90
JK
1176static void __inode_wait_for_writeback(struct inode *inode)
1177 __releases(inode->i_lock)
1178 __acquires(inode->i_lock)
01c03194
CH
1179{
1180 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
1181 wait_queue_head_t *wqh;
1182
1183 wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
250df6ed
DC
1184 while (inode->i_state & I_SYNC) {
1185 spin_unlock(&inode->i_lock);
74316201
N
1186 __wait_on_bit(wqh, &wq, bit_wait,
1187 TASK_UNINTERRUPTIBLE);
250df6ed 1188 spin_lock(&inode->i_lock);
58a9d3d8 1189 }
01c03194
CH
1190}
1191
169ebd90
JK
1192/*
1193 * Wait for writeback on an inode to complete. Caller must have inode pinned.
1194 */
1195void inode_wait_for_writeback(struct inode *inode)
1196{
1197 spin_lock(&inode->i_lock);
1198 __inode_wait_for_writeback(inode);
1199 spin_unlock(&inode->i_lock);
1200}
1201
1202/*
1203 * Sleep until I_SYNC is cleared. This function must be called with i_lock
1204 * held and drops it. It is aimed for callers not holding any inode reference
1205 * so once i_lock is dropped, inode can go away.
1206 */
1207static void inode_sleep_on_writeback(struct inode *inode)
1208 __releases(inode->i_lock)
1209{
1210 DEFINE_WAIT(wait);
1211 wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1212 int sleep;
1213
1214 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1215 sleep = inode->i_state & I_SYNC;
1216 spin_unlock(&inode->i_lock);
1217 if (sleep)
1218 schedule();
1219 finish_wait(wqh, &wait);
1220}
1221
ccb26b5a
JK
1222/*
1223 * Find proper writeback list for the inode depending on its current state and
1224 * possibly also change of its state while we were doing writeback. Here we
1225 * handle things such as livelock prevention or fairness of writeback among
1226 * inodes. This function can be called only by flusher thread - noone else
1227 * processes all inodes in writeback lists and requeueing inodes behind flusher
1228 * thread's back can have unexpected consequences.
1229 */
1230static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
1231 struct writeback_control *wbc)
1232{
1233 if (inode->i_state & I_FREEING)
1234 return;
1235
1236 /*
1237 * Sync livelock prevention. Each inode is tagged and synced in one
1238 * shot. If still dirty, it will be redirty_tail()'ed below. Update
1239 * the dirty time to prevent enqueue and sync it again.
1240 */
1241 if ((inode->i_state & I_DIRTY) &&
1242 (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
1243 inode->dirtied_when = jiffies;
1244
4f8ad655
JK
1245 if (wbc->pages_skipped) {
1246 /*
1247 * writeback is not making progress due to locked
1248 * buffers. Skip this inode for now.
1249 */
1250 redirty_tail(inode, wb);
1251 return;
1252 }
1253
ccb26b5a
JK
1254 if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
1255 /*
1256 * We didn't write back all the pages. nfs_writepages()
1257 * sometimes bales out without doing anything.
1258 */
1259 if (wbc->nr_to_write <= 0) {
1260 /* Slice used up. Queue for next turn. */
1261 requeue_io(inode, wb);
1262 } else {
1263 /*
1264 * Writeback blocked by something other than
1265 * congestion. Delay the inode for some time to
1266 * avoid spinning on the CPU (100% iowait)
1267 * retrying writeback of the dirty page/inode
1268 * that cannot be performed immediately.
1269 */
1270 redirty_tail(inode, wb);
1271 }
1272 } else if (inode->i_state & I_DIRTY) {
1273 /*
1274 * Filesystems can dirty the inode during writeback operations,
1275 * such as delayed allocation during submission or metadata
1276 * updates after data IO completion.
1277 */
1278 redirty_tail(inode, wb);
0ae45f63 1279 } else if (inode->i_state & I_DIRTY_TIME) {
a2f48706 1280 inode->dirtied_when = jiffies;
c7f54084 1281 inode_io_list_move_locked(inode, wb, &wb->b_dirty_time);
ccb26b5a
JK
1282 } else {
1283 /* The inode is clean. Remove from writeback lists. */
c7f54084 1284 inode_io_list_del_locked(inode, wb);
ccb26b5a
JK
1285 }
1286}
1287
01c03194 1288/*
4f8ad655
JK
1289 * Write out an inode and its dirty pages. Do not update the writeback list
1290 * linkage. That is left to the caller. The caller is also responsible for
1291 * setting I_SYNC flag and calling inode_sync_complete() to clear it.
1da177e4
LT
1292 */
1293static int
cd8ed2a4 1294__writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
1da177e4 1295{
1da177e4 1296 struct address_space *mapping = inode->i_mapping;
251d6a47 1297 long nr_to_write = wbc->nr_to_write;
01c03194 1298 unsigned dirty;
1da177e4
LT
1299 int ret;
1300
4f8ad655 1301 WARN_ON(!(inode->i_state & I_SYNC));
1da177e4 1302
9fb0a7da
TH
1303 trace_writeback_single_inode_start(inode, wbc, nr_to_write);
1304
1da177e4
LT
1305 ret = do_writepages(mapping, wbc);
1306
26821ed4
CH
1307 /*
1308 * Make sure to wait on the data before writing out the metadata.
1309 * This is important for filesystems that modify metadata on data
7747bd4b
DC
1310 * I/O completion. We don't do it for sync(2) writeback because it has a
1311 * separate, external IO completion path and ->sync_fs for guaranteeing
1312 * inode metadata is written back correctly.
26821ed4 1313 */
7747bd4b 1314 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
26821ed4 1315 int err = filemap_fdatawait(mapping);
1da177e4
LT
1316 if (ret == 0)
1317 ret = err;
1318 }
1319
5547e8aa
DM
1320 /*
1321 * Some filesystems may redirty the inode during the writeback
1322 * due to delalloc, clear dirty metadata flags right before
1323 * write_inode()
1324 */
250df6ed 1325 spin_lock(&inode->i_lock);
9c6ac78e 1326
5547e8aa 1327 dirty = inode->i_state & I_DIRTY;
a2f48706
TT
1328 if (inode->i_state & I_DIRTY_TIME) {
1329 if ((dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
1330 unlikely(inode->i_state & I_DIRTY_TIME_EXPIRED) ||
1331 unlikely(time_after(jiffies,
1332 (inode->dirtied_time_when +
1333 dirtytime_expire_interval * HZ)))) {
1334 dirty |= I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED;
1335 trace_writeback_lazytime(inode);
1336 }
1337 } else
1338 inode->i_state &= ~I_DIRTY_TIME_EXPIRED;
0ae45f63 1339 inode->i_state &= ~dirty;
9c6ac78e
TH
1340
1341 /*
1342 * Paired with smp_mb() in __mark_inode_dirty(). This allows
1343 * __mark_inode_dirty() to test i_state without grabbing i_lock -
1344 * either they see the I_DIRTY bits cleared or we see the dirtied
1345 * inode.
1346 *
1347 * I_DIRTY_PAGES is always cleared together above even if @mapping
1348 * still has dirty pages. The flag is reinstated after smp_mb() if
1349 * necessary. This guarantees that either __mark_inode_dirty()
1350 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
1351 */
1352 smp_mb();
1353
1354 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1355 inode->i_state |= I_DIRTY_PAGES;
1356
250df6ed 1357 spin_unlock(&inode->i_lock);
9c6ac78e 1358
0ae45f63
TT
1359 if (dirty & I_DIRTY_TIME)
1360 mark_inode_dirty_sync(inode);
26821ed4 1361 /* Don't write the inode if only I_DIRTY_PAGES was set */
0ae45f63 1362 if (dirty & ~I_DIRTY_PAGES) {
a9185b41 1363 int err = write_inode(inode, wbc);
1da177e4
LT
1364 if (ret == 0)
1365 ret = err;
1366 }
4f8ad655
JK
1367 trace_writeback_single_inode(inode, wbc, nr_to_write);
1368 return ret;
1369}
1370
1371/*
1372 * Write out an inode's dirty pages. Either the caller has an active reference
1373 * on the inode or the inode has I_WILL_FREE set.
1374 *
1375 * This function is designed to be called for writing back one inode which
1376 * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
1377 * and does more profound writeback list handling in writeback_sb_inodes().
1378 */
aaf25593
TH
1379static int writeback_single_inode(struct inode *inode,
1380 struct writeback_control *wbc)
4f8ad655 1381{
aaf25593 1382 struct bdi_writeback *wb;
4f8ad655
JK
1383 int ret = 0;
1384
1385 spin_lock(&inode->i_lock);
1386 if (!atomic_read(&inode->i_count))
1387 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
1388 else
1389 WARN_ON(inode->i_state & I_WILL_FREE);
1390
1391 if (inode->i_state & I_SYNC) {
1392 if (wbc->sync_mode != WB_SYNC_ALL)
1393 goto out;
1394 /*
169ebd90
JK
1395 * It's a data-integrity sync. We must wait. Since callers hold
1396 * inode reference or inode has I_WILL_FREE set, it cannot go
1397 * away under us.
4f8ad655 1398 */
169ebd90 1399 __inode_wait_for_writeback(inode);
4f8ad655
JK
1400 }
1401 WARN_ON(inode->i_state & I_SYNC);
1402 /*
f9b0e058
JK
1403 * Skip inode if it is clean and we have no outstanding writeback in
1404 * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this
1405 * function since flusher thread may be doing for example sync in
1406 * parallel and if we move the inode, it could get skipped. So here we
1407 * make sure inode is on some writeback list and leave it there unless
1408 * we have completely cleaned the inode.
4f8ad655 1409 */
0ae45f63 1410 if (!(inode->i_state & I_DIRTY_ALL) &&
f9b0e058
JK
1411 (wbc->sync_mode != WB_SYNC_ALL ||
1412 !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
4f8ad655
JK
1413 goto out;
1414 inode->i_state |= I_SYNC;
b16b1deb 1415 wbc_attach_and_unlock_inode(wbc, inode);
4f8ad655 1416
cd8ed2a4 1417 ret = __writeback_single_inode(inode, wbc);
1da177e4 1418
b16b1deb 1419 wbc_detach_inode(wbc);
aaf25593
TH
1420
1421 wb = inode_to_wb_and_lock_list(inode);
250df6ed 1422 spin_lock(&inode->i_lock);
4f8ad655
JK
1423 /*
1424 * If inode is clean, remove it from writeback lists. Otherwise don't
1425 * touch it. See comment above for explanation.
1426 */
0ae45f63 1427 if (!(inode->i_state & I_DIRTY_ALL))
c7f54084 1428 inode_io_list_del_locked(inode, wb);
4f8ad655 1429 spin_unlock(&wb->list_lock);
1c0eeaf5 1430 inode_sync_complete(inode);
4f8ad655
JK
1431out:
1432 spin_unlock(&inode->i_lock);
1da177e4
LT
1433 return ret;
1434}
1435
a88a341a 1436static long writeback_chunk_size(struct bdi_writeback *wb,
1a12d8bd 1437 struct wb_writeback_work *work)
d46db3d5
WF
1438{
1439 long pages;
1440
1441 /*
1442 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
1443 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
1444 * here avoids calling into writeback_inodes_wb() more than once.
1445 *
1446 * The intended call sequence for WB_SYNC_ALL writeback is:
1447 *
1448 * wb_writeback()
1449 * writeback_sb_inodes() <== called only once
1450 * write_cache_pages() <== called once for each inode
1451 * (quickly) tag currently dirty pages
1452 * (maybe slowly) sync all tagged pages
1453 */
1454 if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
1455 pages = LONG_MAX;
1a12d8bd 1456 else {
a88a341a 1457 pages = min(wb->avg_write_bandwidth / 2,
dcc25ae7 1458 global_wb_domain.dirty_limit / DIRTY_SCOPE);
1a12d8bd
WF
1459 pages = min(pages, work->nr_pages);
1460 pages = round_down(pages + MIN_WRITEBACK_PAGES,
1461 MIN_WRITEBACK_PAGES);
1462 }
d46db3d5
WF
1463
1464 return pages;
1465}
1466
f11c9c5c
ES
1467/*
1468 * Write a portion of b_io inodes which belong to @sb.
edadfb10 1469 *
d46db3d5 1470 * Return the number of pages and/or inodes written.
0ba13fd1
LT
1471 *
1472 * NOTE! This is called with wb->list_lock held, and will
1473 * unlock and relock that for each inode it ends up doing
1474 * IO for.
f11c9c5c 1475 */
d46db3d5
WF
1476static long writeback_sb_inodes(struct super_block *sb,
1477 struct bdi_writeback *wb,
1478 struct wb_writeback_work *work)
1da177e4 1479{
d46db3d5
WF
1480 struct writeback_control wbc = {
1481 .sync_mode = work->sync_mode,
1482 .tagged_writepages = work->tagged_writepages,
1483 .for_kupdate = work->for_kupdate,
1484 .for_background = work->for_background,
7747bd4b 1485 .for_sync = work->for_sync,
d46db3d5
WF
1486 .range_cyclic = work->range_cyclic,
1487 .range_start = 0,
1488 .range_end = LLONG_MAX,
1489 };
1490 unsigned long start_time = jiffies;
1491 long write_chunk;
1492 long wrote = 0; /* count both pages and inodes */
1493
03ba3782 1494 while (!list_empty(&wb->b_io)) {
7ccf19a8 1495 struct inode *inode = wb_inode(wb->b_io.prev);
aaf25593 1496 struct bdi_writeback *tmp_wb;
edadfb10
CH
1497
1498 if (inode->i_sb != sb) {
d46db3d5 1499 if (work->sb) {
edadfb10
CH
1500 /*
1501 * We only want to write back data for this
1502 * superblock, move all inodes not belonging
1503 * to it back onto the dirty list.
1504 */
f758eeab 1505 redirty_tail(inode, wb);
edadfb10
CH
1506 continue;
1507 }
1508
1509 /*
1510 * The inode belongs to a different superblock.
1511 * Bounce back to the caller to unpin this and
1512 * pin the next superblock.
1513 */
d46db3d5 1514 break;
edadfb10
CH
1515 }
1516
9843b76a 1517 /*
331cbdee
WL
1518 * Don't bother with new inodes or inodes being freed, first
1519 * kind does not need periodic writeout yet, and for the latter
9843b76a
CH
1520 * kind writeout is handled by the freer.
1521 */
250df6ed 1522 spin_lock(&inode->i_lock);
9843b76a 1523 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
250df6ed 1524 spin_unlock(&inode->i_lock);
fcc5c222 1525 redirty_tail(inode, wb);
7ef0d737
NP
1526 continue;
1527 }
cc1676d9
JK
1528 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
1529 /*
1530 * If this inode is locked for writeback and we are not
1531 * doing writeback-for-data-integrity, move it to
1532 * b_more_io so that writeback can proceed with the
1533 * other inodes on s_io.
1534 *
1535 * We'll have another go at writing back this inode
1536 * when we completed a full scan of b_io.
1537 */
1538 spin_unlock(&inode->i_lock);
1539 requeue_io(inode, wb);
1540 trace_writeback_sb_inodes_requeue(inode);
1541 continue;
1542 }
f0d07b7f
JK
1543 spin_unlock(&wb->list_lock);
1544
4f8ad655
JK
1545 /*
1546 * We already requeued the inode if it had I_SYNC set and we
1547 * are doing WB_SYNC_NONE writeback. So this catches only the
1548 * WB_SYNC_ALL case.
1549 */
169ebd90
JK
1550 if (inode->i_state & I_SYNC) {
1551 /* Wait for I_SYNC. This function drops i_lock... */
1552 inode_sleep_on_writeback(inode);
1553 /* Inode may be gone, start again */
ead188f9 1554 spin_lock(&wb->list_lock);
169ebd90
JK
1555 continue;
1556 }
4f8ad655 1557 inode->i_state |= I_SYNC;
b16b1deb 1558 wbc_attach_and_unlock_inode(&wbc, inode);
169ebd90 1559
a88a341a 1560 write_chunk = writeback_chunk_size(wb, work);
d46db3d5
WF
1561 wbc.nr_to_write = write_chunk;
1562 wbc.pages_skipped = 0;
250df6ed 1563
169ebd90
JK
1564 /*
1565 * We use I_SYNC to pin the inode in memory. While it is set
1566 * evict_inode() will wait so the inode cannot be freed.
1567 */
cd8ed2a4 1568 __writeback_single_inode(inode, &wbc);
250df6ed 1569
b16b1deb 1570 wbc_detach_inode(&wbc);
d46db3d5
WF
1571 work->nr_pages -= write_chunk - wbc.nr_to_write;
1572 wrote += write_chunk - wbc.nr_to_write;
590dca3a
CM
1573
1574 if (need_resched()) {
1575 /*
1576 * We're trying to balance between building up a nice
1577 * long list of IOs to improve our merge rate, and
1578 * getting those IOs out quickly for anyone throttling
1579 * in balance_dirty_pages(). cond_resched() doesn't
1580 * unplug, so get our IOs out the door before we
1581 * give up the CPU.
1582 */
1583 blk_flush_plug(current);
1584 cond_resched();
1585 }
1586
aaf25593
TH
1587 /*
1588 * Requeue @inode if still dirty. Be careful as @inode may
1589 * have been switched to another wb in the meantime.
1590 */
1591 tmp_wb = inode_to_wb_and_lock_list(inode);
4f8ad655 1592 spin_lock(&inode->i_lock);
0ae45f63 1593 if (!(inode->i_state & I_DIRTY_ALL))
d46db3d5 1594 wrote++;
aaf25593 1595 requeue_inode(inode, tmp_wb, &wbc);
4f8ad655 1596 inode_sync_complete(inode);
0f1b1fd8 1597 spin_unlock(&inode->i_lock);
590dca3a 1598
aaf25593
TH
1599 if (unlikely(tmp_wb != wb)) {
1600 spin_unlock(&tmp_wb->list_lock);
1601 spin_lock(&wb->list_lock);
1602 }
1603
d46db3d5
WF
1604 /*
1605 * bail out to wb_writeback() often enough to check
1606 * background threshold and other termination conditions.
1607 */
1608 if (wrote) {
1609 if (time_is_before_jiffies(start_time + HZ / 10UL))
1610 break;
1611 if (work->nr_pages <= 0)
1612 break;
8bc3be27 1613 }
1da177e4 1614 }
d46db3d5 1615 return wrote;
f11c9c5c
ES
1616}
1617
d46db3d5
WF
1618static long __writeback_inodes_wb(struct bdi_writeback *wb,
1619 struct wb_writeback_work *work)
f11c9c5c 1620{
d46db3d5
WF
1621 unsigned long start_time = jiffies;
1622 long wrote = 0;
38f21977 1623
f11c9c5c 1624 while (!list_empty(&wb->b_io)) {
7ccf19a8 1625 struct inode *inode = wb_inode(wb->b_io.prev);
f11c9c5c 1626 struct super_block *sb = inode->i_sb;
9ecc2738 1627
eb6ef3df 1628 if (!trylock_super(sb)) {
0e995816 1629 /*
eb6ef3df 1630 * trylock_super() may fail consistently due to
0e995816
WF
1631 * s_umount being grabbed by someone else. Don't use
1632 * requeue_io() to avoid busy retrying the inode/sb.
1633 */
1634 redirty_tail(inode, wb);
edadfb10 1635 continue;
f11c9c5c 1636 }
d46db3d5 1637 wrote += writeback_sb_inodes(sb, wb, work);
eb6ef3df 1638 up_read(&sb->s_umount);
f11c9c5c 1639
d46db3d5
WF
1640 /* refer to the same tests at the end of writeback_sb_inodes */
1641 if (wrote) {
1642 if (time_is_before_jiffies(start_time + HZ / 10UL))
1643 break;
1644 if (work->nr_pages <= 0)
1645 break;
1646 }
f11c9c5c 1647 }
66f3b8e2 1648 /* Leave any unwritten inodes on b_io */
d46db3d5 1649 return wrote;
66f3b8e2
JA
1650}
1651
7d9f073b 1652static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
0e175a18 1653 enum wb_reason reason)
edadfb10 1654{
d46db3d5
WF
1655 struct wb_writeback_work work = {
1656 .nr_pages = nr_pages,
1657 .sync_mode = WB_SYNC_NONE,
1658 .range_cyclic = 1,
0e175a18 1659 .reason = reason,
d46db3d5 1660 };
505a666e 1661 struct blk_plug plug;
edadfb10 1662
505a666e 1663 blk_start_plug(&plug);
f758eeab 1664 spin_lock(&wb->list_lock);
424b351f 1665 if (list_empty(&wb->b_io))
ad4e38dd 1666 queue_io(wb, &work);
d46db3d5 1667 __writeback_inodes_wb(wb, &work);
f758eeab 1668 spin_unlock(&wb->list_lock);
505a666e 1669 blk_finish_plug(&plug);
edadfb10 1670
d46db3d5
WF
1671 return nr_pages - work.nr_pages;
1672}
03ba3782 1673
03ba3782
JA
1674/*
1675 * Explicit flushing or periodic writeback of "old" data.
66f3b8e2 1676 *
03ba3782
JA
1677 * Define "old": the first time one of an inode's pages is dirtied, we mark the
1678 * dirtying-time in the inode's address_space. So this periodic writeback code
1679 * just walks the superblock inode list, writing back any inodes which are
1680 * older than a specific point in time.
66f3b8e2 1681 *
03ba3782
JA
1682 * Try to run once per dirty_writeback_interval. But if a writeback event
1683 * takes longer than a dirty_writeback_interval interval, then leave a
1684 * one-second gap.
66f3b8e2 1685 *
03ba3782
JA
1686 * older_than_this takes precedence over nr_to_write. So we'll only write back
1687 * all dirty pages if they are all attached to "old" mappings.
66f3b8e2 1688 */
c4a77a6c 1689static long wb_writeback(struct bdi_writeback *wb,
83ba7b07 1690 struct wb_writeback_work *work)
66f3b8e2 1691{
e98be2d5 1692 unsigned long wb_start = jiffies;
d46db3d5 1693 long nr_pages = work->nr_pages;
0dc83bd3 1694 unsigned long oldest_jif;
a5989bdc 1695 struct inode *inode;
d46db3d5 1696 long progress;
505a666e 1697 struct blk_plug plug;
66f3b8e2 1698
0dc83bd3
JK
1699 oldest_jif = jiffies;
1700 work->older_than_this = &oldest_jif;
38f21977 1701
505a666e 1702 blk_start_plug(&plug);
e8dfc305 1703 spin_lock(&wb->list_lock);
03ba3782
JA
1704 for (;;) {
1705 /*
d3ddec76 1706 * Stop writeback when nr_pages has been consumed
03ba3782 1707 */
83ba7b07 1708 if (work->nr_pages <= 0)
03ba3782 1709 break;
66f3b8e2 1710
aa373cf5
JK
1711 /*
1712 * Background writeout and kupdate-style writeback may
1713 * run forever. Stop them if there is other work to do
1714 * so that e.g. sync can proceed. They'll be restarted
1715 * after the other works are all done.
1716 */
1717 if ((work->for_background || work->for_kupdate) &&
f0054bb1 1718 !list_empty(&wb->work_list))
aa373cf5
JK
1719 break;
1720
38f21977 1721 /*
d3ddec76
WF
1722 * For background writeout, stop when we are below the
1723 * background dirty threshold
38f21977 1724 */
aa661bbe 1725 if (work->for_background && !wb_over_bg_thresh(wb))
03ba3782 1726 break;
38f21977 1727
1bc36b64
JK
1728 /*
1729 * Kupdate and background works are special and we want to
1730 * include all inodes that need writing. Livelock avoidance is
1731 * handled by these works yielding to any other work so we are
1732 * safe.
1733 */
ba9aa839 1734 if (work->for_kupdate) {
0dc83bd3 1735 oldest_jif = jiffies -
ba9aa839 1736 msecs_to_jiffies(dirty_expire_interval * 10);
1bc36b64 1737 } else if (work->for_background)
0dc83bd3 1738 oldest_jif = jiffies;
028c2dd1 1739
5634cc2a 1740 trace_writeback_start(wb, work);
e8dfc305 1741 if (list_empty(&wb->b_io))
ad4e38dd 1742 queue_io(wb, work);
83ba7b07 1743 if (work->sb)
d46db3d5 1744 progress = writeback_sb_inodes(work->sb, wb, work);
edadfb10 1745 else
d46db3d5 1746 progress = __writeback_inodes_wb(wb, work);
5634cc2a 1747 trace_writeback_written(wb, work);
028c2dd1 1748
e98be2d5 1749 wb_update_bandwidth(wb, wb_start);
03ba3782
JA
1750
1751 /*
e6fb6da2
WF
1752 * Did we write something? Try for more
1753 *
1754 * Dirty inodes are moved to b_io for writeback in batches.
1755 * The completion of the current batch does not necessarily
1756 * mean the overall work is done. So we keep looping as long
1757 * as made some progress on cleaning pages or inodes.
03ba3782 1758 */
d46db3d5 1759 if (progress)
71fd05a8
JA
1760 continue;
1761 /*
e6fb6da2 1762 * No more inodes for IO, bail
71fd05a8 1763 */
b7a2441f 1764 if (list_empty(&wb->b_more_io))
03ba3782 1765 break;
71fd05a8
JA
1766 /*
1767 * Nothing written. Wait for some inode to
1768 * become available for writeback. Otherwise
1769 * we'll just busyloop.
1770 */
71fd05a8 1771 if (!list_empty(&wb->b_more_io)) {
5634cc2a 1772 trace_writeback_wait(wb, work);
7ccf19a8 1773 inode = wb_inode(wb->b_more_io.prev);
250df6ed 1774 spin_lock(&inode->i_lock);
f0d07b7f 1775 spin_unlock(&wb->list_lock);
169ebd90
JK
1776 /* This function drops i_lock... */
1777 inode_sleep_on_writeback(inode);
f0d07b7f 1778 spin_lock(&wb->list_lock);
03ba3782
JA
1779 }
1780 }
e8dfc305 1781 spin_unlock(&wb->list_lock);
505a666e 1782 blk_finish_plug(&plug);
03ba3782 1783
d46db3d5 1784 return nr_pages - work->nr_pages;
03ba3782
JA
1785}
1786
1787/*
83ba7b07 1788 * Return the next wb_writeback_work struct that hasn't been processed yet.
03ba3782 1789 */
f0054bb1 1790static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
03ba3782 1791{
83ba7b07 1792 struct wb_writeback_work *work = NULL;
03ba3782 1793
f0054bb1
TH
1794 spin_lock_bh(&wb->work_lock);
1795 if (!list_empty(&wb->work_list)) {
1796 work = list_entry(wb->work_list.next,
83ba7b07
CH
1797 struct wb_writeback_work, list);
1798 list_del_init(&work->list);
03ba3782 1799 }
f0054bb1 1800 spin_unlock_bh(&wb->work_lock);
83ba7b07 1801 return work;
03ba3782
JA
1802}
1803
cdf01dd5
LT
1804/*
1805 * Add in the number of potentially dirty inodes, because each inode
1806 * write can dirty pagecache in the underlying blockdev.
1807 */
1808static unsigned long get_nr_dirty_pages(void)
1809{
11fb9989
MG
1810 return global_node_page_state(NR_FILE_DIRTY) +
1811 global_node_page_state(NR_UNSTABLE_NFS) +
cdf01dd5
LT
1812 get_nr_dirty_inodes();
1813}
1814
6585027a
JK
1815static long wb_check_background_flush(struct bdi_writeback *wb)
1816{
aa661bbe 1817 if (wb_over_bg_thresh(wb)) {
6585027a
JK
1818
1819 struct wb_writeback_work work = {
1820 .nr_pages = LONG_MAX,
1821 .sync_mode = WB_SYNC_NONE,
1822 .for_background = 1,
1823 .range_cyclic = 1,
0e175a18 1824 .reason = WB_REASON_BACKGROUND,
6585027a
JK
1825 };
1826
1827 return wb_writeback(wb, &work);
1828 }
1829
1830 return 0;
1831}
1832
03ba3782
JA
1833static long wb_check_old_data_flush(struct bdi_writeback *wb)
1834{
1835 unsigned long expired;
1836 long nr_pages;
1837
69b62d01
JA
1838 /*
1839 * When set to zero, disable periodic writeback
1840 */
1841 if (!dirty_writeback_interval)
1842 return 0;
1843
03ba3782
JA
1844 expired = wb->last_old_flush +
1845 msecs_to_jiffies(dirty_writeback_interval * 10);
1846 if (time_before(jiffies, expired))
1847 return 0;
1848
1849 wb->last_old_flush = jiffies;
cdf01dd5 1850 nr_pages = get_nr_dirty_pages();
03ba3782 1851
c4a77a6c 1852 if (nr_pages) {
83ba7b07 1853 struct wb_writeback_work work = {
c4a77a6c
JA
1854 .nr_pages = nr_pages,
1855 .sync_mode = WB_SYNC_NONE,
1856 .for_kupdate = 1,
1857 .range_cyclic = 1,
0e175a18 1858 .reason = WB_REASON_PERIODIC,
c4a77a6c
JA
1859 };
1860
83ba7b07 1861 return wb_writeback(wb, &work);
c4a77a6c 1862 }
03ba3782
JA
1863
1864 return 0;
1865}
1866
1867/*
1868 * Retrieve work items and do the writeback they describe
1869 */
25d130ba 1870static long wb_do_writeback(struct bdi_writeback *wb)
03ba3782 1871{
83ba7b07 1872 struct wb_writeback_work *work;
c4a77a6c 1873 long wrote = 0;
03ba3782 1874
4452226e 1875 set_bit(WB_writeback_running, &wb->state);
f0054bb1 1876 while ((work = get_next_work_item(wb)) != NULL) {
cc395d7f 1877 struct wb_completion *done = work->done;
03ba3782 1878
5634cc2a 1879 trace_writeback_exec(wb, work);
455b2864 1880
83ba7b07 1881 wrote += wb_writeback(wb, work);
03ba3782 1882
8a1270cd 1883 if (work->auto_free)
83ba7b07 1884 kfree(work);
cc395d7f
TH
1885 if (done && atomic_dec_and_test(&done->cnt))
1886 wake_up_all(&wb->bdi->wb_waitq);
03ba3782
JA
1887 }
1888
1889 /*
1890 * Check for periodic writeback, kupdated() style
1891 */
1892 wrote += wb_check_old_data_flush(wb);
6585027a 1893 wrote += wb_check_background_flush(wb);
4452226e 1894 clear_bit(WB_writeback_running, &wb->state);
03ba3782
JA
1895
1896 return wrote;
1897}
1898
1899/*
1900 * Handle writeback of dirty data for the device backed by this bdi. Also
839a8e86 1901 * reschedules periodically and does kupdated style flushing.
03ba3782 1902 */
f0054bb1 1903void wb_workfn(struct work_struct *work)
03ba3782 1904{
839a8e86
TH
1905 struct bdi_writeback *wb = container_of(to_delayed_work(work),
1906 struct bdi_writeback, dwork);
03ba3782
JA
1907 long pages_written;
1908
f0054bb1 1909 set_worker_desc("flush-%s", dev_name(wb->bdi->dev));
766f9164 1910 current->flags |= PF_SWAPWRITE;
455b2864 1911
839a8e86 1912 if (likely(!current_is_workqueue_rescuer() ||
4452226e 1913 !test_bit(WB_registered, &wb->state))) {
6467716a 1914 /*
f0054bb1 1915 * The normal path. Keep writing back @wb until its
839a8e86 1916 * work_list is empty. Note that this path is also taken
f0054bb1 1917 * if @wb is shutting down even when we're running off the
839a8e86 1918 * rescuer as work_list needs to be drained.
6467716a 1919 */
839a8e86 1920 do {
25d130ba 1921 pages_written = wb_do_writeback(wb);
839a8e86 1922 trace_writeback_pages_written(pages_written);
f0054bb1 1923 } while (!list_empty(&wb->work_list));
839a8e86
TH
1924 } else {
1925 /*
1926 * bdi_wq can't get enough workers and we're running off
1927 * the emergency worker. Don't hog it. Hopefully, 1024 is
1928 * enough for efficient IO.
1929 */
f0054bb1 1930 pages_written = writeback_inodes_wb(wb, 1024,
839a8e86 1931 WB_REASON_FORKER_THREAD);
455b2864 1932 trace_writeback_pages_written(pages_written);
03ba3782
JA
1933 }
1934
f0054bb1 1935 if (!list_empty(&wb->work_list))
6ca738d6
DB
1936 mod_delayed_work(bdi_wq, &wb->dwork, 0);
1937 else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
f0054bb1 1938 wb_wakeup_delayed(wb);
455b2864 1939
839a8e86 1940 current->flags &= ~PF_SWAPWRITE;
03ba3782
JA
1941}
1942
1943/*
b8c2f347
CH
1944 * Start writeback of `nr_pages' pages. If `nr_pages' is zero, write back
1945 * the whole world.
03ba3782 1946 */
0e175a18 1947void wakeup_flusher_threads(long nr_pages, enum wb_reason reason)
03ba3782 1948{
b8c2f347 1949 struct backing_dev_info *bdi;
03ba3782 1950
47df3dde
JK
1951 if (!nr_pages)
1952 nr_pages = get_nr_dirty_pages();
03ba3782 1953
b8c2f347 1954 rcu_read_lock();
f2b65121
TH
1955 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
1956 struct bdi_writeback *wb;
f2b65121
TH
1957
1958 if (!bdi_has_dirty_io(bdi))
1959 continue;
1960
b817525a 1961 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
f2b65121
TH
1962 wb_start_writeback(wb, wb_split_bdi_pages(wb, nr_pages),
1963 false, reason);
1964 }
cfc4ba53 1965 rcu_read_unlock();
1da177e4
LT
1966}
1967
a2f48706
TT
1968/*
1969 * Wake up bdi's periodically to make sure dirtytime inodes gets
1970 * written back periodically. We deliberately do *not* check the
1971 * b_dirtytime list in wb_has_dirty_io(), since this would cause the
1972 * kernel to be constantly waking up once there are any dirtytime
1973 * inodes on the system. So instead we define a separate delayed work
1974 * function which gets called much more rarely. (By default, only
1975 * once every 12 hours.)
1976 *
1977 * If there is any other write activity going on in the file system,
1978 * this function won't be necessary. But if the only thing that has
1979 * happened on the file system is a dirtytime inode caused by an atime
1980 * update, we need this infrastructure below to make sure that inode
1981 * eventually gets pushed out to disk.
1982 */
1983static void wakeup_dirtytime_writeback(struct work_struct *w);
1984static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);
1985
1986static void wakeup_dirtytime_writeback(struct work_struct *w)
1987{
1988 struct backing_dev_info *bdi;
1989
1990 rcu_read_lock();
1991 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
001fe6f6 1992 struct bdi_writeback *wb;
001fe6f6 1993
b817525a 1994 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
6fdf860f
TH
1995 if (!list_empty(&wb->b_dirty_time))
1996 wb_wakeup(wb);
a2f48706
TT
1997 }
1998 rcu_read_unlock();
1999 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2000}
2001
2002static int __init start_dirtytime_writeback(void)
2003{
2004 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2005 return 0;
2006}
2007__initcall(start_dirtytime_writeback);
2008
1efff914
TT
2009int dirtytime_interval_handler(struct ctl_table *table, int write,
2010 void __user *buffer, size_t *lenp, loff_t *ppos)
2011{
2012 int ret;
2013
2014 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2015 if (ret == 0 && write)
2016 mod_delayed_work(system_wq, &dirtytime_work, 0);
2017 return ret;
2018}
2019
03ba3782
JA
2020static noinline void block_dump___mark_inode_dirty(struct inode *inode)
2021{
2022 if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
2023 struct dentry *dentry;
2024 const char *name = "?";
2025
2026 dentry = d_find_alias(inode);
2027 if (dentry) {
2028 spin_lock(&dentry->d_lock);
2029 name = (const char *) dentry->d_name.name;
2030 }
2031 printk(KERN_DEBUG
2032 "%s(%d): dirtied inode %lu (%s) on %s\n",
2033 current->comm, task_pid_nr(current), inode->i_ino,
2034 name, inode->i_sb->s_id);
2035 if (dentry) {
2036 spin_unlock(&dentry->d_lock);
2037 dput(dentry);
2038 }
2039 }
2040}
2041
2042/**
2043 * __mark_inode_dirty - internal function
2044 * @inode: inode to mark
2045 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
2046 * Mark an inode as dirty. Callers should use mark_inode_dirty or
2047 * mark_inode_dirty_sync.
1da177e4 2048 *
03ba3782
JA
2049 * Put the inode on the super block's dirty list.
2050 *
2051 * CAREFUL! We mark it dirty unconditionally, but move it onto the
2052 * dirty list only if it is hashed or if it refers to a blockdev.
2053 * If it was not hashed, it will never be added to the dirty list
2054 * even if it is later hashed, as it will have been marked dirty already.
2055 *
2056 * In short, make sure you hash any inodes _before_ you start marking
2057 * them dirty.
1da177e4 2058 *
03ba3782
JA
2059 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
2060 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of
2061 * the kernel-internal blockdev inode represents the dirtying time of the
2062 * blockdev's pages. This is why for I_DIRTY_PAGES we always use
2063 * page->mapping->host, so the page-dirtying time is recorded in the internal
2064 * blockdev inode.
1da177e4 2065 */
03ba3782 2066void __mark_inode_dirty(struct inode *inode, int flags)
1da177e4 2067{
dbce03b9 2068#define I_DIRTY_INODE (I_DIRTY_SYNC | I_DIRTY_DATASYNC)
03ba3782 2069 struct super_block *sb = inode->i_sb;
0ae45f63
TT
2070 int dirtytime;
2071
2072 trace_writeback_mark_inode_dirty(inode, flags);
1da177e4 2073
03ba3782
JA
2074 /*
2075 * Don't do this for I_DIRTY_PAGES - that doesn't actually
2076 * dirty the inode itself
2077 */
0ae45f63 2078 if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC | I_DIRTY_TIME)) {
9fb0a7da
TH
2079 trace_writeback_dirty_inode_start(inode, flags);
2080
03ba3782 2081 if (sb->s_op->dirty_inode)
aa385729 2082 sb->s_op->dirty_inode(inode, flags);
9fb0a7da
TH
2083
2084 trace_writeback_dirty_inode(inode, flags);
03ba3782 2085 }
0ae45f63
TT
2086 if (flags & I_DIRTY_INODE)
2087 flags &= ~I_DIRTY_TIME;
2088 dirtytime = flags & I_DIRTY_TIME;
03ba3782
JA
2089
2090 /*
9c6ac78e
TH
2091 * Paired with smp_mb() in __writeback_single_inode() for the
2092 * following lockless i_state test. See there for details.
03ba3782
JA
2093 */
2094 smp_mb();
2095
0ae45f63
TT
2096 if (((inode->i_state & flags) == flags) ||
2097 (dirtytime && (inode->i_state & I_DIRTY_INODE)))
03ba3782
JA
2098 return;
2099
2100 if (unlikely(block_dump))
2101 block_dump___mark_inode_dirty(inode);
2102
250df6ed 2103 spin_lock(&inode->i_lock);
0ae45f63
TT
2104 if (dirtytime && (inode->i_state & I_DIRTY_INODE))
2105 goto out_unlock_inode;
03ba3782
JA
2106 if ((inode->i_state & flags) != flags) {
2107 const int was_dirty = inode->i_state & I_DIRTY;
2108
52ebea74
TH
2109 inode_attach_wb(inode, NULL);
2110
0ae45f63
TT
2111 if (flags & I_DIRTY_INODE)
2112 inode->i_state &= ~I_DIRTY_TIME;
03ba3782
JA
2113 inode->i_state |= flags;
2114
2115 /*
2116 * If the inode is being synced, just update its dirty state.
2117 * The unlocker will place the inode on the appropriate
2118 * superblock list, based upon its state.
2119 */
2120 if (inode->i_state & I_SYNC)
250df6ed 2121 goto out_unlock_inode;
03ba3782
JA
2122
2123 /*
2124 * Only add valid (hashed) inodes to the superblock's
2125 * dirty list. Add blockdev inodes as well.
2126 */
2127 if (!S_ISBLK(inode->i_mode)) {
1d3382cb 2128 if (inode_unhashed(inode))
250df6ed 2129 goto out_unlock_inode;
03ba3782 2130 }
a4ffdde6 2131 if (inode->i_state & I_FREEING)
250df6ed 2132 goto out_unlock_inode;
03ba3782
JA
2133
2134 /*
2135 * If the inode was already on b_dirty/b_io/b_more_io, don't
2136 * reposition it (that would break b_dirty time-ordering).
2137 */
2138 if (!was_dirty) {
87e1d789 2139 struct bdi_writeback *wb;
d6c10f1f 2140 struct list_head *dirty_list;
a66979ab 2141 bool wakeup_bdi = false;
253c34e9 2142
87e1d789 2143 wb = locked_inode_to_wb_and_lock_list(inode);
253c34e9 2144
0747259d
TH
2145 WARN(bdi_cap_writeback_dirty(wb->bdi) &&
2146 !test_bit(WB_registered, &wb->state),
2147 "bdi-%s not registered\n", wb->bdi->name);
03ba3782
JA
2148
2149 inode->dirtied_when = jiffies;
a2f48706
TT
2150 if (dirtytime)
2151 inode->dirtied_time_when = jiffies;
d6c10f1f 2152
a2f48706 2153 if (inode->i_state & (I_DIRTY_INODE | I_DIRTY_PAGES))
0747259d 2154 dirty_list = &wb->b_dirty;
a2f48706 2155 else
0747259d 2156 dirty_list = &wb->b_dirty_time;
d6c10f1f 2157
c7f54084 2158 wakeup_bdi = inode_io_list_move_locked(inode, wb,
d6c10f1f
TH
2159 dirty_list);
2160
0747259d 2161 spin_unlock(&wb->list_lock);
0ae45f63 2162 trace_writeback_dirty_inode_enqueue(inode);
a66979ab 2163
d6c10f1f
TH
2164 /*
2165 * If this is the first dirty inode for this bdi,
2166 * we have to wake-up the corresponding bdi thread
2167 * to make sure background write-back happens
2168 * later.
2169 */
0747259d
TH
2170 if (bdi_cap_writeback_dirty(wb->bdi) && wakeup_bdi)
2171 wb_wakeup_delayed(wb);
a66979ab 2172 return;
1da177e4 2173 }
1da177e4 2174 }
250df6ed
DC
2175out_unlock_inode:
2176 spin_unlock(&inode->i_lock);
253c34e9 2177
dbce03b9 2178#undef I_DIRTY_INODE
03ba3782
JA
2179}
2180EXPORT_SYMBOL(__mark_inode_dirty);
2181
e97fedb9
DC
2182/*
2183 * The @s_sync_lock is used to serialise concurrent sync operations
2184 * to avoid lock contention problems with concurrent wait_sb_inodes() calls.
2185 * Concurrent callers will block on the s_sync_lock rather than doing contending
2186 * walks. The queueing maintains sync(2) required behaviour as all the IO that
2187 * has been issued up to the time this function is enter is guaranteed to be
2188 * completed by the time we have gained the lock and waited for all IO that is
2189 * in progress regardless of the order callers are granted the lock.
2190 */
b6e51316 2191static void wait_sb_inodes(struct super_block *sb)
03ba3782 2192{
6c60d2b5 2193 LIST_HEAD(sync_list);
03ba3782
JA
2194
2195 /*
2196 * We need to be protected against the filesystem going from
2197 * r/o to r/w or vice versa.
2198 */
b6e51316 2199 WARN_ON(!rwsem_is_locked(&sb->s_umount));
03ba3782 2200
e97fedb9 2201 mutex_lock(&sb->s_sync_lock);
03ba3782
JA
2202
2203 /*
6c60d2b5
DC
2204 * Splice the writeback list onto a temporary list to avoid waiting on
2205 * inodes that have started writeback after this point.
2206 *
2207 * Use rcu_read_lock() to keep the inodes around until we have a
2208 * reference. s_inode_wblist_lock protects sb->s_inodes_wb as well as
2209 * the local list because inodes can be dropped from either by writeback
2210 * completion.
2211 */
2212 rcu_read_lock();
2213 spin_lock_irq(&sb->s_inode_wblist_lock);
2214 list_splice_init(&sb->s_inodes_wb, &sync_list);
2215
2216 /*
2217 * Data integrity sync. Must wait for all pages under writeback, because
2218 * there may have been pages dirtied before our sync call, but which had
2219 * writeout started before we write it out. In which case, the inode
2220 * may not be on the dirty list, but we still have to wait for that
2221 * writeout.
03ba3782 2222 */
6c60d2b5
DC
2223 while (!list_empty(&sync_list)) {
2224 struct inode *inode = list_first_entry(&sync_list, struct inode,
2225 i_wb_list);
250df6ed 2226 struct address_space *mapping = inode->i_mapping;
03ba3782 2227
6c60d2b5
DC
2228 /*
2229 * Move each inode back to the wb list before we drop the lock
2230 * to preserve consistency between i_wb_list and the mapping
2231 * writeback tag. Writeback completion is responsible to remove
2232 * the inode from either list once the writeback tag is cleared.
2233 */
2234 list_move_tail(&inode->i_wb_list, &sb->s_inodes_wb);
2235
2236 /*
2237 * The mapping can appear untagged while still on-list since we
2238 * do not have the mapping lock. Skip it here, wb completion
2239 * will remove it.
2240 */
2241 if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
2242 continue;
2243
2244 spin_unlock_irq(&sb->s_inode_wblist_lock);
2245
250df6ed 2246 spin_lock(&inode->i_lock);
6c60d2b5 2247 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) {
250df6ed 2248 spin_unlock(&inode->i_lock);
6c60d2b5
DC
2249
2250 spin_lock_irq(&sb->s_inode_wblist_lock);
03ba3782 2251 continue;
250df6ed 2252 }
03ba3782 2253 __iget(inode);
250df6ed 2254 spin_unlock(&inode->i_lock);
6c60d2b5 2255 rcu_read_unlock();
03ba3782 2256
aa750fd7
JN
2257 /*
2258 * We keep the error status of individual mapping so that
2259 * applications can catch the writeback error using fsync(2).
2260 * See filemap_fdatawait_keep_errors() for details.
2261 */
2262 filemap_fdatawait_keep_errors(mapping);
03ba3782
JA
2263
2264 cond_resched();
2265
6c60d2b5
DC
2266 iput(inode);
2267
2268 rcu_read_lock();
2269 spin_lock_irq(&sb->s_inode_wblist_lock);
03ba3782 2270 }
6c60d2b5
DC
2271 spin_unlock_irq(&sb->s_inode_wblist_lock);
2272 rcu_read_unlock();
e97fedb9 2273 mutex_unlock(&sb->s_sync_lock);
1da177e4
LT
2274}
2275
f30a7d0c
TH
2276static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2277 enum wb_reason reason, bool skip_if_busy)
1da177e4 2278{
cc395d7f 2279 DEFINE_WB_COMPLETION_ONSTACK(done);
83ba7b07 2280 struct wb_writeback_work work = {
6e6938b6
WF
2281 .sb = sb,
2282 .sync_mode = WB_SYNC_NONE,
2283 .tagged_writepages = 1,
2284 .done = &done,
2285 .nr_pages = nr,
0e175a18 2286 .reason = reason,
3c4d7165 2287 };
e7972912 2288 struct backing_dev_info *bdi = sb->s_bdi;
d8a8559c 2289
e7972912 2290 if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
6eedc701 2291 return;
cf37e972 2292 WARN_ON(!rwsem_is_locked(&sb->s_umount));
f30a7d0c 2293
db125360 2294 bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy);
cc395d7f 2295 wb_wait_for_completion(bdi, &done);
e913fc82 2296}
f30a7d0c
TH
2297
2298/**
2299 * writeback_inodes_sb_nr - writeback dirty inodes from given super_block
2300 * @sb: the superblock
2301 * @nr: the number of pages to write
2302 * @reason: reason why some writeback work initiated
2303 *
2304 * Start writeback on some inodes on this super_block. No guarantees are made
2305 * on how many (if any) will be written, and this function does not wait
2306 * for IO completion of submitted IO.
2307 */
2308void writeback_inodes_sb_nr(struct super_block *sb,
2309 unsigned long nr,
2310 enum wb_reason reason)
2311{
2312 __writeback_inodes_sb_nr(sb, nr, reason, false);
2313}
3259f8be
CM
2314EXPORT_SYMBOL(writeback_inodes_sb_nr);
2315
2316/**
2317 * writeback_inodes_sb - writeback dirty inodes from given super_block
2318 * @sb: the superblock
786228ab 2319 * @reason: reason why some writeback work was initiated
3259f8be
CM
2320 *
2321 * Start writeback on some inodes on this super_block. No guarantees are made
2322 * on how many (if any) will be written, and this function does not wait
2323 * for IO completion of submitted IO.
2324 */
0e175a18 2325void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
3259f8be 2326{
0e175a18 2327 return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
3259f8be 2328}
0e3c9a22 2329EXPORT_SYMBOL(writeback_inodes_sb);
e913fc82 2330
17bd55d0 2331/**
10ee27a0 2332 * try_to_writeback_inodes_sb_nr - try to start writeback if none underway
17bd55d0 2333 * @sb: the superblock
10ee27a0
MX
2334 * @nr: the number of pages to write
2335 * @reason: the reason of writeback
17bd55d0 2336 *
10ee27a0 2337 * Invoke writeback_inodes_sb_nr if no writeback is currently underway.
17bd55d0
ES
2338 * Returns 1 if writeback was started, 0 if not.
2339 */
f30a7d0c
TH
2340bool try_to_writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2341 enum wb_reason reason)
17bd55d0 2342{
10ee27a0 2343 if (!down_read_trylock(&sb->s_umount))
f30a7d0c 2344 return false;
10ee27a0 2345
f30a7d0c 2346 __writeback_inodes_sb_nr(sb, nr, reason, true);
10ee27a0 2347 up_read(&sb->s_umount);
f30a7d0c 2348 return true;
17bd55d0 2349}
10ee27a0 2350EXPORT_SYMBOL(try_to_writeback_inodes_sb_nr);
17bd55d0 2351
3259f8be 2352/**
10ee27a0 2353 * try_to_writeback_inodes_sb - try to start writeback if none underway
3259f8be 2354 * @sb: the superblock
786228ab 2355 * @reason: reason why some writeback work was initiated
3259f8be 2356 *
10ee27a0 2357 * Implement by try_to_writeback_inodes_sb_nr()
3259f8be
CM
2358 * Returns 1 if writeback was started, 0 if not.
2359 */
f30a7d0c 2360bool try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
3259f8be 2361{
10ee27a0 2362 return try_to_writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
3259f8be 2363}
10ee27a0 2364EXPORT_SYMBOL(try_to_writeback_inodes_sb);
3259f8be 2365
d8a8559c
JA
2366/**
2367 * sync_inodes_sb - sync sb inode pages
0dc83bd3 2368 * @sb: the superblock
d8a8559c
JA
2369 *
2370 * This function writes and waits on any dirty inode belonging to this
0dc83bd3 2371 * super_block.
d8a8559c 2372 */
0dc83bd3 2373void sync_inodes_sb(struct super_block *sb)
d8a8559c 2374{
cc395d7f 2375 DEFINE_WB_COMPLETION_ONSTACK(done);
83ba7b07 2376 struct wb_writeback_work work = {
3c4d7165
CH
2377 .sb = sb,
2378 .sync_mode = WB_SYNC_ALL,
2379 .nr_pages = LONG_MAX,
2380 .range_cyclic = 0,
83ba7b07 2381 .done = &done,
0e175a18 2382 .reason = WB_REASON_SYNC,
7747bd4b 2383 .for_sync = 1,
3c4d7165 2384 };
e7972912 2385 struct backing_dev_info *bdi = sb->s_bdi;
3c4d7165 2386
006a0973
TH
2387 /*
2388 * Can't skip on !bdi_has_dirty() because we should wait for !dirty
2389 * inodes under writeback and I_DIRTY_TIME inodes ignored by
2390 * bdi_has_dirty() need to be written out too.
2391 */
2392 if (bdi == &noop_backing_dev_info)
6eedc701 2393 return;
cf37e972
CH
2394 WARN_ON(!rwsem_is_locked(&sb->s_umount));
2395
db125360 2396 bdi_split_work_to_wbs(bdi, &work, false);
cc395d7f 2397 wb_wait_for_completion(bdi, &done);
83ba7b07 2398
b6e51316 2399 wait_sb_inodes(sb);
1da177e4 2400}
d8a8559c 2401EXPORT_SYMBOL(sync_inodes_sb);
1da177e4 2402
1da177e4 2403/**
7f04c26d
AA
2404 * write_inode_now - write an inode to disk
2405 * @inode: inode to write to disk
2406 * @sync: whether the write should be synchronous or not
2407 *
2408 * This function commits an inode to disk immediately if it is dirty. This is
2409 * primarily needed by knfsd.
1da177e4 2410 *
7f04c26d 2411 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
1da177e4 2412 */
1da177e4
LT
2413int write_inode_now(struct inode *inode, int sync)
2414{
1da177e4
LT
2415 struct writeback_control wbc = {
2416 .nr_to_write = LONG_MAX,
18914b18 2417 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
111ebb6e
OH
2418 .range_start = 0,
2419 .range_end = LLONG_MAX,
1da177e4
LT
2420 };
2421
2422 if (!mapping_cap_writeback_dirty(inode->i_mapping))
49364ce2 2423 wbc.nr_to_write = 0;
1da177e4
LT
2424
2425 might_sleep();
aaf25593 2426 return writeback_single_inode(inode, &wbc);
1da177e4
LT
2427}
2428EXPORT_SYMBOL(write_inode_now);
2429
2430/**
2431 * sync_inode - write an inode and its pages to disk.
2432 * @inode: the inode to sync
2433 * @wbc: controls the writeback mode
2434 *
2435 * sync_inode() will write an inode and its pages to disk. It will also
2436 * correctly update the inode on its superblock's dirty inode lists and will
2437 * update inode->i_state.
2438 *
2439 * The caller must have a ref on the inode.
2440 */
2441int sync_inode(struct inode *inode, struct writeback_control *wbc)
2442{
aaf25593 2443 return writeback_single_inode(inode, wbc);
1da177e4
LT
2444}
2445EXPORT_SYMBOL(sync_inode);
c3765016
CH
2446
2447/**
c691b9d9 2448 * sync_inode_metadata - write an inode to disk
c3765016
CH
2449 * @inode: the inode to sync
2450 * @wait: wait for I/O to complete.
2451 *
c691b9d9 2452 * Write an inode to disk and adjust its dirty state after completion.
c3765016
CH
2453 *
2454 * Note: only writes the actual inode, no associated data or other metadata.
2455 */
2456int sync_inode_metadata(struct inode *inode, int wait)
2457{
2458 struct writeback_control wbc = {
2459 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
2460 .nr_to_write = 0, /* metadata-only */
2461 };
2462
2463 return sync_inode(inode, &wbc);
2464}
2465EXPORT_SYMBOL(sync_inode_metadata);