Merge git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6
[linux-2.6-block.git] / fs / fs-writeback.c
CommitLineData
1da177e4
LT
1/*
2 * fs/fs-writeback.c
3 *
4 * Copyright (C) 2002, Linus Torvalds.
5 *
6 * Contains all the functions related to writing back and waiting
7 * upon dirty inodes against superblocks, and writing back dirty
8 * pages against inodes. ie: data writeback. Writeout of the
9 * inode itself is not handled here.
10 *
e1f8e874 11 * 10Apr2002 Andrew Morton
1da177e4
LT
12 * Split out of fs/inode.c
13 * Additions for address_space-based writeback
14 */
15
16#include <linux/kernel.h>
630d9c47 17#include <linux/export.h>
1da177e4 18#include <linux/spinlock.h>
5a0e3ad6 19#include <linux/slab.h>
1da177e4
LT
20#include <linux/sched.h>
21#include <linux/fs.h>
22#include <linux/mm.h>
bc31b86a 23#include <linux/pagemap.h>
03ba3782 24#include <linux/kthread.h>
1da177e4
LT
25#include <linux/writeback.h>
26#include <linux/blkdev.h>
27#include <linux/backing-dev.h>
455b2864 28#include <linux/tracepoint.h>
719ea2fb 29#include <linux/device.h>
21c6321f 30#include <linux/memcontrol.h>
07f3f05c 31#include "internal.h"
1da177e4 32
bc31b86a
WF
33/*
34 * 4MB minimal write chunk size
35 */
36#define MIN_WRITEBACK_PAGES (4096UL >> (PAGE_CACHE_SHIFT - 10))
37
cc395d7f
TH
38struct wb_completion {
39 atomic_t cnt;
40};
41
c4a77a6c
JA
42/*
43 * Passed into wb_writeback(), essentially a subset of writeback_control
44 */
83ba7b07 45struct wb_writeback_work {
c4a77a6c
JA
46 long nr_pages;
47 struct super_block *sb;
0dc83bd3 48 unsigned long *older_than_this;
c4a77a6c 49 enum writeback_sync_modes sync_mode;
6e6938b6 50 unsigned int tagged_writepages:1;
52957fe1
HS
51 unsigned int for_kupdate:1;
52 unsigned int range_cyclic:1;
53 unsigned int for_background:1;
7747bd4b 54 unsigned int for_sync:1; /* sync(2) WB_SYNC_ALL writeback */
ac7b19a3 55 unsigned int auto_free:1; /* free on completion */
98754bf7
TH
56 unsigned int single_wait:1;
57 unsigned int single_done:1;
0e175a18 58 enum wb_reason reason; /* why was writeback initiated? */
c4a77a6c 59
8010c3b6 60 struct list_head list; /* pending work list */
cc395d7f 61 struct wb_completion *done; /* set if the caller waits */
03ba3782
JA
62};
63
cc395d7f
TH
64/*
65 * If one wants to wait for one or more wb_writeback_works, each work's
66 * ->done should be set to a wb_completion defined using the following
67 * macro. Once all work items are issued with wb_queue_work(), the caller
68 * can wait for the completion of all using wb_wait_for_completion(). Work
69 * items which are waited upon aren't freed automatically on completion.
70 */
71#define DEFINE_WB_COMPLETION_ONSTACK(cmpl) \
72 struct wb_completion cmpl = { \
73 .cnt = ATOMIC_INIT(1), \
74 }
75
76
a2f48706
TT
77/*
78 * If an inode is constantly having its pages dirtied, but then the
79 * updates stop dirtytime_expire_interval seconds in the past, it's
80 * possible for the worst case time between when an inode has its
81 * timestamps updated and when they finally get written out to be two
82 * dirtytime_expire_intervals. We set the default to 12 hours (in
83 * seconds), which means most of the time inodes will have their
84 * timestamps written to disk after 12 hours, but in the worst case a
85 * few inodes might not their timestamps updated for 24 hours.
86 */
87unsigned int dirtytime_expire_interval = 12 * 60 * 60;
88
7ccf19a8
NP
89static inline struct inode *wb_inode(struct list_head *head)
90{
91 return list_entry(head, struct inode, i_wb_list);
92}
93
15eb77a0
WF
94/*
95 * Include the creation of the trace points after defining the
96 * wb_writeback_work structure and inline functions so that the definition
97 * remains local to this file.
98 */
99#define CREATE_TRACE_POINTS
100#include <trace/events/writeback.h>
101
774016b2
SW
102EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
103
d6c10f1f
TH
104static bool wb_io_lists_populated(struct bdi_writeback *wb)
105{
106 if (wb_has_dirty_io(wb)) {
107 return false;
108 } else {
109 set_bit(WB_has_dirty_io, &wb->state);
95a46c65 110 WARN_ON_ONCE(!wb->avg_write_bandwidth);
766a9d6e
TH
111 atomic_long_add(wb->avg_write_bandwidth,
112 &wb->bdi->tot_write_bandwidth);
d6c10f1f
TH
113 return true;
114 }
115}
116
117static void wb_io_lists_depopulated(struct bdi_writeback *wb)
118{
119 if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
766a9d6e 120 list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
d6c10f1f 121 clear_bit(WB_has_dirty_io, &wb->state);
95a46c65
TH
122 WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
123 &wb->bdi->tot_write_bandwidth) < 0);
766a9d6e 124 }
d6c10f1f
TH
125}
126
127/**
128 * inode_wb_list_move_locked - move an inode onto a bdi_writeback IO list
129 * @inode: inode to be moved
130 * @wb: target bdi_writeback
131 * @head: one of @wb->b_{dirty|io|more_io}
132 *
133 * Move @inode->i_wb_list to @list of @wb and set %WB_has_dirty_io.
134 * Returns %true if @inode is the first occupant of the !dirty_time IO
135 * lists; otherwise, %false.
136 */
137static bool inode_wb_list_move_locked(struct inode *inode,
138 struct bdi_writeback *wb,
139 struct list_head *head)
140{
141 assert_spin_locked(&wb->list_lock);
142
143 list_move(&inode->i_wb_list, head);
144
145 /* dirty_time doesn't count as dirty_io until expiration */
146 if (head != &wb->b_dirty_time)
147 return wb_io_lists_populated(wb);
148
149 wb_io_lists_depopulated(wb);
150 return false;
151}
152
153/**
154 * inode_wb_list_del_locked - remove an inode from its bdi_writeback IO list
155 * @inode: inode to be removed
156 * @wb: bdi_writeback @inode is being removed from
157 *
158 * Remove @inode which may be on one of @wb->b_{dirty|io|more_io} lists and
159 * clear %WB_has_dirty_io if all are empty afterwards.
160 */
161static void inode_wb_list_del_locked(struct inode *inode,
162 struct bdi_writeback *wb)
163{
164 assert_spin_locked(&wb->list_lock);
165
166 list_del_init(&inode->i_wb_list);
167 wb_io_lists_depopulated(wb);
168}
169
f0054bb1 170static void wb_wakeup(struct bdi_writeback *wb)
5acda9d1 171{
f0054bb1
TH
172 spin_lock_bh(&wb->work_lock);
173 if (test_bit(WB_registered, &wb->state))
174 mod_delayed_work(bdi_wq, &wb->dwork, 0);
175 spin_unlock_bh(&wb->work_lock);
5acda9d1
JK
176}
177
f0054bb1
TH
178static void wb_queue_work(struct bdi_writeback *wb,
179 struct wb_writeback_work *work)
6585027a 180{
f0054bb1 181 trace_writeback_queue(wb->bdi, work);
6585027a 182
f0054bb1 183 spin_lock_bh(&wb->work_lock);
98754bf7
TH
184 if (!test_bit(WB_registered, &wb->state)) {
185 if (work->single_wait)
186 work->single_done = 1;
5acda9d1 187 goto out_unlock;
98754bf7 188 }
cc395d7f
TH
189 if (work->done)
190 atomic_inc(&work->done->cnt);
f0054bb1
TH
191 list_add_tail(&work->list, &wb->work_list);
192 mod_delayed_work(bdi_wq, &wb->dwork, 0);
5acda9d1 193out_unlock:
f0054bb1 194 spin_unlock_bh(&wb->work_lock);
1da177e4
LT
195}
196
cc395d7f
TH
197/**
198 * wb_wait_for_completion - wait for completion of bdi_writeback_works
199 * @bdi: bdi work items were issued to
200 * @done: target wb_completion
201 *
202 * Wait for one or more work items issued to @bdi with their ->done field
203 * set to @done, which should have been defined with
204 * DEFINE_WB_COMPLETION_ONSTACK(). This function returns after all such
205 * work items are completed. Work items which are waited upon aren't freed
206 * automatically on completion.
207 */
208static void wb_wait_for_completion(struct backing_dev_info *bdi,
209 struct wb_completion *done)
210{
211 atomic_dec(&done->cnt); /* put down the initial count */
212 wait_event(bdi->wb_waitq, !atomic_read(&done->cnt));
213}
214
703c2708
TH
215#ifdef CONFIG_CGROUP_WRITEBACK
216
2a814908
TH
217/* parameters for foreign inode detection, see wb_detach_inode() */
218#define WB_FRN_TIME_SHIFT 13 /* 1s = 2^13, upto 8 secs w/ 16bit */
219#define WB_FRN_TIME_AVG_SHIFT 3 /* avg = avg * 7/8 + new * 1/8 */
220#define WB_FRN_TIME_CUT_DIV 2 /* ignore rounds < avg / 2 */
221#define WB_FRN_TIME_PERIOD (2 * (1 << WB_FRN_TIME_SHIFT)) /* 2s */
222
223#define WB_FRN_HIST_SLOTS 16 /* inode->i_wb_frn_history is 16bit */
224#define WB_FRN_HIST_UNIT (WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS)
225 /* each slot's duration is 2s / 16 */
226#define WB_FRN_HIST_THR_SLOTS (WB_FRN_HIST_SLOTS / 2)
227 /* if foreign slots >= 8, switch */
228#define WB_FRN_HIST_MAX_SLOTS (WB_FRN_HIST_THR_SLOTS / 2 + 1)
229 /* one round can affect upto 5 slots */
230
21c6321f
TH
231void __inode_attach_wb(struct inode *inode, struct page *page)
232{
233 struct backing_dev_info *bdi = inode_to_bdi(inode);
234 struct bdi_writeback *wb = NULL;
235
236 if (inode_cgwb_enabled(inode)) {
237 struct cgroup_subsys_state *memcg_css;
238
239 if (page) {
240 memcg_css = mem_cgroup_css_from_page(page);
241 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
242 } else {
243 /* must pin memcg_css, see wb_get_create() */
244 memcg_css = task_get_css(current, memory_cgrp_id);
245 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
246 css_put(memcg_css);
247 }
248 }
249
250 if (!wb)
251 wb = &bdi->wb;
252
253 /*
254 * There may be multiple instances of this function racing to
255 * update the same inode. Use cmpxchg() to tell the winner.
256 */
257 if (unlikely(cmpxchg(&inode->i_wb, NULL, wb)))
258 wb_put(wb);
259}
260
87e1d789
TH
261/**
262 * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it
263 * @inode: inode of interest with i_lock held
264 *
265 * Returns @inode's wb with its list_lock held. @inode->i_lock must be
266 * held on entry and is released on return. The returned wb is guaranteed
267 * to stay @inode's associated wb until its list_lock is released.
268 */
269static struct bdi_writeback *
270locked_inode_to_wb_and_lock_list(struct inode *inode)
271 __releases(&inode->i_lock)
272 __acquires(&wb->list_lock)
273{
274 while (true) {
275 struct bdi_writeback *wb = inode_to_wb(inode);
276
277 /*
278 * inode_to_wb() association is protected by both
279 * @inode->i_lock and @wb->list_lock but list_lock nests
280 * outside i_lock. Drop i_lock and verify that the
281 * association hasn't changed after acquiring list_lock.
282 */
283 wb_get(wb);
284 spin_unlock(&inode->i_lock);
285 spin_lock(&wb->list_lock);
286 wb_put(wb); /* not gonna deref it anymore */
287
aaa2cacf
TH
288 /* i_wb may have changed inbetween, can't use inode_to_wb() */
289 if (likely(wb == inode->i_wb))
87e1d789
TH
290 return wb; /* @inode already has ref */
291
292 spin_unlock(&wb->list_lock);
293 cpu_relax();
294 spin_lock(&inode->i_lock);
295 }
296}
297
298/**
299 * inode_to_wb_and_lock_list - determine an inode's wb and lock it
300 * @inode: inode of interest
301 *
302 * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held
303 * on entry.
304 */
305static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
306 __acquires(&wb->list_lock)
307{
308 spin_lock(&inode->i_lock);
309 return locked_inode_to_wb_and_lock_list(inode);
310}
311
682aa8e1
TH
312struct inode_switch_wbs_context {
313 struct inode *inode;
314 struct bdi_writeback *new_wb;
315
316 struct rcu_head rcu_head;
317 struct work_struct work;
318};
319
320static void inode_switch_wbs_work_fn(struct work_struct *work)
321{
322 struct inode_switch_wbs_context *isw =
323 container_of(work, struct inode_switch_wbs_context, work);
324 struct inode *inode = isw->inode;
d10c8095
TH
325 struct address_space *mapping = inode->i_mapping;
326 struct bdi_writeback *old_wb = inode->i_wb;
682aa8e1 327 struct bdi_writeback *new_wb = isw->new_wb;
d10c8095
TH
328 struct radix_tree_iter iter;
329 bool switched = false;
330 void **slot;
682aa8e1
TH
331
332 /*
333 * By the time control reaches here, RCU grace period has passed
334 * since I_WB_SWITCH assertion and all wb stat update transactions
335 * between unlocked_inode_to_wb_begin/end() are guaranteed to be
336 * synchronizing against mapping->tree_lock.
d10c8095
TH
337 *
338 * Grabbing old_wb->list_lock, inode->i_lock and mapping->tree_lock
339 * gives us exclusion against all wb related operations on @inode
340 * including IO list manipulations and stat updates.
682aa8e1 341 */
d10c8095
TH
342 if (old_wb < new_wb) {
343 spin_lock(&old_wb->list_lock);
344 spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING);
345 } else {
346 spin_lock(&new_wb->list_lock);
347 spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING);
348 }
682aa8e1 349 spin_lock(&inode->i_lock);
d10c8095
TH
350 spin_lock_irq(&mapping->tree_lock);
351
352 /*
353 * Once I_FREEING is visible under i_lock, the eviction path owns
354 * the inode and we shouldn't modify ->i_wb_list.
355 */
356 if (unlikely(inode->i_state & I_FREEING))
357 goto skip_switch;
358
359 /*
360 * Count and transfer stats. Note that PAGECACHE_TAG_DIRTY points
361 * to possibly dirty pages while PAGECACHE_TAG_WRITEBACK points to
362 * pages actually under underwriteback.
363 */
364 radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter, 0,
365 PAGECACHE_TAG_DIRTY) {
366 struct page *page = radix_tree_deref_slot_protected(slot,
367 &mapping->tree_lock);
368 if (likely(page) && PageDirty(page)) {
369 __dec_wb_stat(old_wb, WB_RECLAIMABLE);
370 __inc_wb_stat(new_wb, WB_RECLAIMABLE);
371 }
372 }
373
374 radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter, 0,
375 PAGECACHE_TAG_WRITEBACK) {
376 struct page *page = radix_tree_deref_slot_protected(slot,
377 &mapping->tree_lock);
378 if (likely(page)) {
379 WARN_ON_ONCE(!PageWriteback(page));
380 __dec_wb_stat(old_wb, WB_WRITEBACK);
381 __inc_wb_stat(new_wb, WB_WRITEBACK);
382 }
383 }
384
385 wb_get(new_wb);
386
387 /*
388 * Transfer to @new_wb's IO list if necessary. The specific list
389 * @inode was on is ignored and the inode is put on ->b_dirty which
390 * is always correct including from ->b_dirty_time. The transfer
391 * preserves @inode->dirtied_when ordering.
392 */
393 if (!list_empty(&inode->i_wb_list)) {
394 struct inode *pos;
395
396 inode_wb_list_del_locked(inode, old_wb);
397 inode->i_wb = new_wb;
398 list_for_each_entry(pos, &new_wb->b_dirty, i_wb_list)
399 if (time_after_eq(inode->dirtied_when,
400 pos->dirtied_when))
401 break;
402 inode_wb_list_move_locked(inode, new_wb, pos->i_wb_list.prev);
403 } else {
404 inode->i_wb = new_wb;
405 }
682aa8e1 406
d10c8095 407 /* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */
682aa8e1
TH
408 inode->i_wb_frn_winner = 0;
409 inode->i_wb_frn_avg_time = 0;
410 inode->i_wb_frn_history = 0;
d10c8095
TH
411 switched = true;
412skip_switch:
682aa8e1
TH
413 /*
414 * Paired with load_acquire in unlocked_inode_to_wb_begin() and
415 * ensures that the new wb is visible if they see !I_WB_SWITCH.
416 */
417 smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH);
418
d10c8095 419 spin_unlock_irq(&mapping->tree_lock);
682aa8e1 420 spin_unlock(&inode->i_lock);
d10c8095
TH
421 spin_unlock(&new_wb->list_lock);
422 spin_unlock(&old_wb->list_lock);
682aa8e1 423
d10c8095
TH
424 if (switched) {
425 wb_wakeup(new_wb);
426 wb_put(old_wb);
427 }
682aa8e1 428 wb_put(new_wb);
d10c8095
TH
429
430 iput(inode);
682aa8e1
TH
431 kfree(isw);
432}
433
434static void inode_switch_wbs_rcu_fn(struct rcu_head *rcu_head)
435{
436 struct inode_switch_wbs_context *isw = container_of(rcu_head,
437 struct inode_switch_wbs_context, rcu_head);
438
439 /* needs to grab bh-unsafe locks, bounce to work item */
440 INIT_WORK(&isw->work, inode_switch_wbs_work_fn);
441 schedule_work(&isw->work);
442}
443
444/**
445 * inode_switch_wbs - change the wb association of an inode
446 * @inode: target inode
447 * @new_wb_id: ID of the new wb
448 *
449 * Switch @inode's wb association to the wb identified by @new_wb_id. The
450 * switching is performed asynchronously and may fail silently.
451 */
452static void inode_switch_wbs(struct inode *inode, int new_wb_id)
453{
454 struct backing_dev_info *bdi = inode_to_bdi(inode);
455 struct cgroup_subsys_state *memcg_css;
456 struct inode_switch_wbs_context *isw;
457
458 /* noop if seems to be already in progress */
459 if (inode->i_state & I_WB_SWITCH)
460 return;
461
462 isw = kzalloc(sizeof(*isw), GFP_ATOMIC);
463 if (!isw)
464 return;
465
466 /* find and pin the new wb */
467 rcu_read_lock();
468 memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys);
469 if (memcg_css)
470 isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
471 rcu_read_unlock();
472 if (!isw->new_wb)
473 goto out_free;
474
475 /* while holding I_WB_SWITCH, no one else can update the association */
476 spin_lock(&inode->i_lock);
477 if (inode->i_state & (I_WB_SWITCH | I_FREEING) ||
478 inode_to_wb(inode) == isw->new_wb) {
479 spin_unlock(&inode->i_lock);
480 goto out_free;
481 }
482 inode->i_state |= I_WB_SWITCH;
483 spin_unlock(&inode->i_lock);
484
485 ihold(inode);
486 isw->inode = inode;
487
488 /*
489 * In addition to synchronizing among switchers, I_WB_SWITCH tells
490 * the RCU protected stat update paths to grab the mapping's
491 * tree_lock so that stat transfer can synchronize against them.
492 * Let's continue after I_WB_SWITCH is guaranteed to be visible.
493 */
494 call_rcu(&isw->rcu_head, inode_switch_wbs_rcu_fn);
495 return;
496
497out_free:
498 if (isw->new_wb)
499 wb_put(isw->new_wb);
500 kfree(isw);
501}
502
b16b1deb
TH
503/**
504 * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
505 * @wbc: writeback_control of interest
506 * @inode: target inode
507 *
508 * @inode is locked and about to be written back under the control of @wbc.
509 * Record @inode's writeback context into @wbc and unlock the i_lock. On
510 * writeback completion, wbc_detach_inode() should be called. This is used
511 * to track the cgroup writeback context.
512 */
513void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
514 struct inode *inode)
515{
dd73e4b7
TH
516 if (!inode_cgwb_enabled(inode)) {
517 spin_unlock(&inode->i_lock);
518 return;
519 }
520
b16b1deb 521 wbc->wb = inode_to_wb(inode);
2a814908
TH
522 wbc->inode = inode;
523
524 wbc->wb_id = wbc->wb->memcg_css->id;
525 wbc->wb_lcand_id = inode->i_wb_frn_winner;
526 wbc->wb_tcand_id = 0;
527 wbc->wb_bytes = 0;
528 wbc->wb_lcand_bytes = 0;
529 wbc->wb_tcand_bytes = 0;
530
b16b1deb
TH
531 wb_get(wbc->wb);
532 spin_unlock(&inode->i_lock);
e8a7abf5
TH
533
534 /*
535 * A dying wb indicates that the memcg-blkcg mapping has changed
536 * and a new wb is already serving the memcg. Switch immediately.
537 */
538 if (unlikely(wb_dying(wbc->wb)))
539 inode_switch_wbs(inode, wbc->wb_id);
b16b1deb
TH
540}
541
542/**
2a814908
TH
543 * wbc_detach_inode - disassociate wbc from inode and perform foreign detection
544 * @wbc: writeback_control of the just finished writeback
b16b1deb
TH
545 *
546 * To be called after a writeback attempt of an inode finishes and undoes
547 * wbc_attach_and_unlock_inode(). Can be called under any context.
2a814908
TH
548 *
549 * As concurrent write sharing of an inode is expected to be very rare and
550 * memcg only tracks page ownership on first-use basis severely confining
551 * the usefulness of such sharing, cgroup writeback tracks ownership
552 * per-inode. While the support for concurrent write sharing of an inode
553 * is deemed unnecessary, an inode being written to by different cgroups at
554 * different points in time is a lot more common, and, more importantly,
555 * charging only by first-use can too readily lead to grossly incorrect
556 * behaviors (single foreign page can lead to gigabytes of writeback to be
557 * incorrectly attributed).
558 *
559 * To resolve this issue, cgroup writeback detects the majority dirtier of
560 * an inode and transfers the ownership to it. To avoid unnnecessary
561 * oscillation, the detection mechanism keeps track of history and gives
562 * out the switch verdict only if the foreign usage pattern is stable over
563 * a certain amount of time and/or writeback attempts.
564 *
565 * On each writeback attempt, @wbc tries to detect the majority writer
566 * using Boyer-Moore majority vote algorithm. In addition to the byte
567 * count from the majority voting, it also counts the bytes written for the
568 * current wb and the last round's winner wb (max of last round's current
569 * wb, the winner from two rounds ago, and the last round's majority
570 * candidate). Keeping track of the historical winner helps the algorithm
571 * to semi-reliably detect the most active writer even when it's not the
572 * absolute majority.
573 *
574 * Once the winner of the round is determined, whether the winner is
575 * foreign or not and how much IO time the round consumed is recorded in
576 * inode->i_wb_frn_history. If the amount of recorded foreign IO time is
577 * over a certain threshold, the switch verdict is given.
b16b1deb
TH
578 */
579void wbc_detach_inode(struct writeback_control *wbc)
580{
2a814908
TH
581 struct bdi_writeback *wb = wbc->wb;
582 struct inode *inode = wbc->inode;
dd73e4b7
TH
583 unsigned long avg_time, max_bytes, max_time;
584 u16 history;
2a814908
TH
585 int max_id;
586
dd73e4b7
TH
587 if (!wb)
588 return;
589
590 history = inode->i_wb_frn_history;
591 avg_time = inode->i_wb_frn_avg_time;
592
2a814908
TH
593 /* pick the winner of this round */
594 if (wbc->wb_bytes >= wbc->wb_lcand_bytes &&
595 wbc->wb_bytes >= wbc->wb_tcand_bytes) {
596 max_id = wbc->wb_id;
597 max_bytes = wbc->wb_bytes;
598 } else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) {
599 max_id = wbc->wb_lcand_id;
600 max_bytes = wbc->wb_lcand_bytes;
601 } else {
602 max_id = wbc->wb_tcand_id;
603 max_bytes = wbc->wb_tcand_bytes;
604 }
605
606 /*
607 * Calculate the amount of IO time the winner consumed and fold it
608 * into the running average kept per inode. If the consumed IO
609 * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for
610 * deciding whether to switch or not. This is to prevent one-off
611 * small dirtiers from skewing the verdict.
612 */
613 max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT,
614 wb->avg_write_bandwidth);
615 if (avg_time)
616 avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) -
617 (avg_time >> WB_FRN_TIME_AVG_SHIFT);
618 else
619 avg_time = max_time; /* immediate catch up on first run */
620
621 if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) {
622 int slots;
623
624 /*
625 * The switch verdict is reached if foreign wb's consume
626 * more than a certain proportion of IO time in a
627 * WB_FRN_TIME_PERIOD. This is loosely tracked by 16 slot
628 * history mask where each bit represents one sixteenth of
629 * the period. Determine the number of slots to shift into
630 * history from @max_time.
631 */
632 slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT),
633 (unsigned long)WB_FRN_HIST_MAX_SLOTS);
634 history <<= slots;
635 if (wbc->wb_id != max_id)
636 history |= (1U << slots) - 1;
637
638 /*
639 * Switch if the current wb isn't the consistent winner.
640 * If there are multiple closely competing dirtiers, the
641 * inode may switch across them repeatedly over time, which
642 * is okay. The main goal is avoiding keeping an inode on
643 * the wrong wb for an extended period of time.
644 */
682aa8e1
TH
645 if (hweight32(history) > WB_FRN_HIST_THR_SLOTS)
646 inode_switch_wbs(inode, max_id);
2a814908
TH
647 }
648
649 /*
650 * Multiple instances of this function may race to update the
651 * following fields but we don't mind occassional inaccuracies.
652 */
653 inode->i_wb_frn_winner = max_id;
654 inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX);
655 inode->i_wb_frn_history = history;
656
b16b1deb
TH
657 wb_put(wbc->wb);
658 wbc->wb = NULL;
659}
660
2a814908
TH
661/**
662 * wbc_account_io - account IO issued during writeback
663 * @wbc: writeback_control of the writeback in progress
664 * @page: page being written out
665 * @bytes: number of bytes being written out
666 *
667 * @bytes from @page are about to written out during the writeback
668 * controlled by @wbc. Keep the book for foreign inode detection. See
669 * wbc_detach_inode().
670 */
671void wbc_account_io(struct writeback_control *wbc, struct page *page,
672 size_t bytes)
673{
674 int id;
675
676 /*
677 * pageout() path doesn't attach @wbc to the inode being written
678 * out. This is intentional as we don't want the function to block
679 * behind a slow cgroup. Ultimately, we want pageout() to kick off
680 * regular writeback instead of writing things out itself.
681 */
682 if (!wbc->wb)
683 return;
684
685 rcu_read_lock();
686 id = mem_cgroup_css_from_page(page)->id;
687 rcu_read_unlock();
688
689 if (id == wbc->wb_id) {
690 wbc->wb_bytes += bytes;
691 return;
692 }
693
694 if (id == wbc->wb_lcand_id)
695 wbc->wb_lcand_bytes += bytes;
696
697 /* Boyer-Moore majority vote algorithm */
698 if (!wbc->wb_tcand_bytes)
699 wbc->wb_tcand_id = id;
700 if (id == wbc->wb_tcand_id)
701 wbc->wb_tcand_bytes += bytes;
702 else
703 wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes);
704}
5aa2a96b 705EXPORT_SYMBOL_GPL(wbc_account_io);
2a814908 706
703c2708
TH
707/**
708 * inode_congested - test whether an inode is congested
709 * @inode: inode to test for congestion
710 * @cong_bits: mask of WB_[a]sync_congested bits to test
711 *
712 * Tests whether @inode is congested. @cong_bits is the mask of congestion
713 * bits to test and the return value is the mask of set bits.
714 *
715 * If cgroup writeback is enabled for @inode, the congestion state is
716 * determined by whether the cgwb (cgroup bdi_writeback) for the blkcg
717 * associated with @inode is congested; otherwise, the root wb's congestion
718 * state is used.
719 */
720int inode_congested(struct inode *inode, int cong_bits)
721{
5cb8b824
TH
722 /*
723 * Once set, ->i_wb never becomes NULL while the inode is alive.
724 * Start transaction iff ->i_wb is visible.
725 */
aaa2cacf 726 if (inode && inode_to_wb_is_valid(inode)) {
5cb8b824
TH
727 struct bdi_writeback *wb;
728 bool locked, congested;
729
730 wb = unlocked_inode_to_wb_begin(inode, &locked);
731 congested = wb_congested(wb, cong_bits);
732 unlocked_inode_to_wb_end(inode, locked);
733 return congested;
703c2708
TH
734 }
735
736 return wb_congested(&inode_to_bdi(inode)->wb, cong_bits);
737}
738EXPORT_SYMBOL_GPL(inode_congested);
739
98754bf7
TH
740/**
741 * wb_wait_for_single_work - wait for completion of a single bdi_writeback_work
742 * @bdi: bdi the work item was issued to
743 * @work: work item to wait for
744 *
745 * Wait for the completion of @work which was issued to one of @bdi's
746 * bdi_writeback's. The caller must have set @work->single_wait before
747 * issuing it. This wait operates independently fo
748 * wb_wait_for_completion() and also disables automatic freeing of @work.
749 */
750static void wb_wait_for_single_work(struct backing_dev_info *bdi,
751 struct wb_writeback_work *work)
752{
753 if (WARN_ON_ONCE(!work->single_wait))
754 return;
755
756 wait_event(bdi->wb_waitq, work->single_done);
757
758 /*
759 * Paired with smp_wmb() in wb_do_writeback() and ensures that all
760 * modifications to @work prior to assertion of ->single_done is
761 * visible to the caller once this function returns.
762 */
763 smp_rmb();
764}
765
f2b65121
TH
766/**
767 * wb_split_bdi_pages - split nr_pages to write according to bandwidth
768 * @wb: target bdi_writeback to split @nr_pages to
769 * @nr_pages: number of pages to write for the whole bdi
770 *
771 * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
772 * relation to the total write bandwidth of all wb's w/ dirty inodes on
773 * @wb->bdi.
774 */
775static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
776{
777 unsigned long this_bw = wb->avg_write_bandwidth;
778 unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
779
780 if (nr_pages == LONG_MAX)
781 return LONG_MAX;
782
783 /*
784 * This may be called on clean wb's and proportional distribution
785 * may not make sense, just use the original @nr_pages in those
786 * cases. In general, we wanna err on the side of writing more.
787 */
788 if (!tot_bw || this_bw >= tot_bw)
789 return nr_pages;
790 else
791 return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw);
792}
793
db125360
TH
794/**
795 * wb_clone_and_queue_work - clone a wb_writeback_work and issue it to a wb
796 * @wb: target bdi_writeback
797 * @base_work: source wb_writeback_work
798 *
799 * Try to make a clone of @base_work and issue it to @wb. If cloning
800 * succeeds, %true is returned; otherwise, @base_work is issued directly
801 * and %false is returned. In the latter case, the caller is required to
802 * wait for @base_work's completion using wb_wait_for_single_work().
803 *
804 * A clone is auto-freed on completion. @base_work never is.
805 */
806static bool wb_clone_and_queue_work(struct bdi_writeback *wb,
807 struct wb_writeback_work *base_work)
808{
809 struct wb_writeback_work *work;
810
811 work = kmalloc(sizeof(*work), GFP_ATOMIC);
812 if (work) {
813 *work = *base_work;
814 work->auto_free = 1;
815 work->single_wait = 0;
816 } else {
817 work = base_work;
818 work->auto_free = 0;
819 work->single_wait = 1;
820 }
821 work->single_done = 0;
822 wb_queue_work(wb, work);
823 return work != base_work;
824}
825
826/**
827 * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
828 * @bdi: target backing_dev_info
829 * @base_work: wb_writeback_work to issue
830 * @skip_if_busy: skip wb's which already have writeback in progress
831 *
832 * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
833 * have dirty inodes. If @base_work->nr_page isn't %LONG_MAX, it's
834 * distributed to the busy wbs according to each wb's proportion in the
835 * total active write bandwidth of @bdi.
836 */
837static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
838 struct wb_writeback_work *base_work,
839 bool skip_if_busy)
840{
841 long nr_pages = base_work->nr_pages;
842 int next_blkcg_id = 0;
843 struct bdi_writeback *wb;
844 struct wb_iter iter;
845
846 might_sleep();
847
848 if (!bdi_has_dirty_io(bdi))
849 return;
850restart:
851 rcu_read_lock();
852 bdi_for_each_wb(wb, bdi, &iter, next_blkcg_id) {
853 if (!wb_has_dirty_io(wb) ||
854 (skip_if_busy && writeback_in_progress(wb)))
855 continue;
856
857 base_work->nr_pages = wb_split_bdi_pages(wb, nr_pages);
858 if (!wb_clone_and_queue_work(wb, base_work)) {
859 next_blkcg_id = wb->blkcg_css->id + 1;
860 rcu_read_unlock();
861 wb_wait_for_single_work(bdi, base_work);
862 goto restart;
863 }
864 }
865 rcu_read_unlock();
866}
867
f2b65121
TH
868#else /* CONFIG_CGROUP_WRITEBACK */
869
87e1d789
TH
870static struct bdi_writeback *
871locked_inode_to_wb_and_lock_list(struct inode *inode)
872 __releases(&inode->i_lock)
873 __acquires(&wb->list_lock)
874{
875 struct bdi_writeback *wb = inode_to_wb(inode);
876
877 spin_unlock(&inode->i_lock);
878 spin_lock(&wb->list_lock);
879 return wb;
880}
881
882static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
883 __acquires(&wb->list_lock)
884{
885 struct bdi_writeback *wb = inode_to_wb(inode);
886
887 spin_lock(&wb->list_lock);
888 return wb;
889}
890
f2b65121
TH
891static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
892{
893 return nr_pages;
894}
895
db125360
TH
896static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
897 struct wb_writeback_work *base_work,
898 bool skip_if_busy)
899{
900 might_sleep();
901
902 if (bdi_has_dirty_io(bdi) &&
903 (!skip_if_busy || !writeback_in_progress(&bdi->wb))) {
904 base_work->auto_free = 0;
905 base_work->single_wait = 0;
906 base_work->single_done = 0;
907 wb_queue_work(&bdi->wb, base_work);
908 }
909}
910
703c2708
TH
911#endif /* CONFIG_CGROUP_WRITEBACK */
912
c00ddad3
TH
913void wb_start_writeback(struct bdi_writeback *wb, long nr_pages,
914 bool range_cyclic, enum wb_reason reason)
b6e51316 915{
c00ddad3
TH
916 struct wb_writeback_work *work;
917
918 if (!wb_has_dirty_io(wb))
919 return;
920
921 /*
922 * This is WB_SYNC_NONE writeback, so if allocation fails just
923 * wakeup the thread for old dirty data writeback
924 */
925 work = kzalloc(sizeof(*work), GFP_ATOMIC);
926 if (!work) {
927 trace_writeback_nowork(wb->bdi);
928 wb_wakeup(wb);
929 return;
930 }
931
932 work->sync_mode = WB_SYNC_NONE;
933 work->nr_pages = nr_pages;
934 work->range_cyclic = range_cyclic;
935 work->reason = reason;
ac7b19a3 936 work->auto_free = 1;
c00ddad3
TH
937
938 wb_queue_work(wb, work);
c5444198 939}
d3ddec76 940
c5444198 941/**
9ecf4866
TH
942 * wb_start_background_writeback - start background writeback
943 * @wb: bdi_writback to write from
c5444198
CH
944 *
945 * Description:
6585027a 946 * This makes sure WB_SYNC_NONE background writeback happens. When
9ecf4866 947 * this function returns, it is only guaranteed that for given wb
6585027a
JK
948 * some IO is happening if we are over background dirty threshold.
949 * Caller need not hold sb s_umount semaphore.
c5444198 950 */
9ecf4866 951void wb_start_background_writeback(struct bdi_writeback *wb)
c5444198 952{
6585027a
JK
953 /*
954 * We just wake up the flusher thread. It will perform background
955 * writeback as soon as there is no other work to do.
956 */
9ecf4866
TH
957 trace_writeback_wake_background(wb->bdi);
958 wb_wakeup(wb);
1da177e4
LT
959}
960
a66979ab
DC
961/*
962 * Remove the inode from the writeback list it is on.
963 */
964void inode_wb_list_del(struct inode *inode)
965{
87e1d789 966 struct bdi_writeback *wb;
f758eeab 967
87e1d789 968 wb = inode_to_wb_and_lock_list(inode);
d6c10f1f 969 inode_wb_list_del_locked(inode, wb);
52ebea74 970 spin_unlock(&wb->list_lock);
a66979ab
DC
971}
972
6610a0bc
AM
973/*
974 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
975 * furthest end of its superblock's dirty-inode list.
976 *
977 * Before stamping the inode's ->dirtied_when, we check to see whether it is
66f3b8e2 978 * already the most-recently-dirtied inode on the b_dirty list. If that is
6610a0bc
AM
979 * the case then the inode must have been redirtied while it was being written
980 * out and we don't reset its dirtied_when.
981 */
f758eeab 982static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
6610a0bc 983{
03ba3782 984 if (!list_empty(&wb->b_dirty)) {
66f3b8e2 985 struct inode *tail;
6610a0bc 986
7ccf19a8 987 tail = wb_inode(wb->b_dirty.next);
66f3b8e2 988 if (time_before(inode->dirtied_when, tail->dirtied_when))
6610a0bc
AM
989 inode->dirtied_when = jiffies;
990 }
d6c10f1f 991 inode_wb_list_move_locked(inode, wb, &wb->b_dirty);
6610a0bc
AM
992}
993
c986d1e2 994/*
66f3b8e2 995 * requeue inode for re-scanning after bdi->b_io list is exhausted.
c986d1e2 996 */
f758eeab 997static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
c986d1e2 998{
d6c10f1f 999 inode_wb_list_move_locked(inode, wb, &wb->b_more_io);
c986d1e2
AM
1000}
1001
1c0eeaf5
JE
1002static void inode_sync_complete(struct inode *inode)
1003{
365b94ae 1004 inode->i_state &= ~I_SYNC;
4eff96dd
JK
1005 /* If inode is clean an unused, put it into LRU now... */
1006 inode_add_lru(inode);
365b94ae 1007 /* Waiters must see I_SYNC cleared before being woken up */
1c0eeaf5
JE
1008 smp_mb();
1009 wake_up_bit(&inode->i_state, __I_SYNC);
1010}
1011
d2caa3c5
JL
1012static bool inode_dirtied_after(struct inode *inode, unsigned long t)
1013{
1014 bool ret = time_after(inode->dirtied_when, t);
1015#ifndef CONFIG_64BIT
1016 /*
1017 * For inodes being constantly redirtied, dirtied_when can get stuck.
1018 * It _appears_ to be in the future, but is actually in distant past.
1019 * This test is necessary to prevent such wrapped-around relative times
5b0830cb 1020 * from permanently stopping the whole bdi writeback.
d2caa3c5
JL
1021 */
1022 ret = ret && time_before_eq(inode->dirtied_when, jiffies);
1023#endif
1024 return ret;
1025}
1026
0ae45f63
TT
1027#define EXPIRE_DIRTY_ATIME 0x0001
1028
2c136579 1029/*
0e2f2b23 1030 * Move expired (dirtied before work->older_than_this) dirty inodes from
697e6fed 1031 * @delaying_queue to @dispatch_queue.
2c136579 1032 */
e84d0a4f 1033static int move_expired_inodes(struct list_head *delaying_queue,
2c136579 1034 struct list_head *dispatch_queue,
0ae45f63 1035 int flags,
ad4e38dd 1036 struct wb_writeback_work *work)
2c136579 1037{
0ae45f63
TT
1038 unsigned long *older_than_this = NULL;
1039 unsigned long expire_time;
5c03449d
SL
1040 LIST_HEAD(tmp);
1041 struct list_head *pos, *node;
cf137307 1042 struct super_block *sb = NULL;
5c03449d 1043 struct inode *inode;
cf137307 1044 int do_sb_sort = 0;
e84d0a4f 1045 int moved = 0;
5c03449d 1046
0ae45f63
TT
1047 if ((flags & EXPIRE_DIRTY_ATIME) == 0)
1048 older_than_this = work->older_than_this;
a2f48706
TT
1049 else if (!work->for_sync) {
1050 expire_time = jiffies - (dirtytime_expire_interval * HZ);
0ae45f63
TT
1051 older_than_this = &expire_time;
1052 }
2c136579 1053 while (!list_empty(delaying_queue)) {
7ccf19a8 1054 inode = wb_inode(delaying_queue->prev);
0ae45f63
TT
1055 if (older_than_this &&
1056 inode_dirtied_after(inode, *older_than_this))
2c136579 1057 break;
a8855990
JK
1058 list_move(&inode->i_wb_list, &tmp);
1059 moved++;
0ae45f63
TT
1060 if (flags & EXPIRE_DIRTY_ATIME)
1061 set_bit(__I_DIRTY_TIME_EXPIRED, &inode->i_state);
a8855990
JK
1062 if (sb_is_blkdev_sb(inode->i_sb))
1063 continue;
cf137307
JA
1064 if (sb && sb != inode->i_sb)
1065 do_sb_sort = 1;
1066 sb = inode->i_sb;
5c03449d
SL
1067 }
1068
cf137307
JA
1069 /* just one sb in list, splice to dispatch_queue and we're done */
1070 if (!do_sb_sort) {
1071 list_splice(&tmp, dispatch_queue);
e84d0a4f 1072 goto out;
cf137307
JA
1073 }
1074
5c03449d
SL
1075 /* Move inodes from one superblock together */
1076 while (!list_empty(&tmp)) {
7ccf19a8 1077 sb = wb_inode(tmp.prev)->i_sb;
5c03449d 1078 list_for_each_prev_safe(pos, node, &tmp) {
7ccf19a8 1079 inode = wb_inode(pos);
5c03449d 1080 if (inode->i_sb == sb)
7ccf19a8 1081 list_move(&inode->i_wb_list, dispatch_queue);
5c03449d 1082 }
2c136579 1083 }
e84d0a4f
WF
1084out:
1085 return moved;
2c136579
FW
1086}
1087
1088/*
1089 * Queue all expired dirty inodes for io, eldest first.
4ea879b9
WF
1090 * Before
1091 * newly dirtied b_dirty b_io b_more_io
1092 * =============> gf edc BA
1093 * After
1094 * newly dirtied b_dirty b_io b_more_io
1095 * =============> g fBAedc
1096 * |
1097 * +--> dequeue for IO
2c136579 1098 */
ad4e38dd 1099static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work)
66f3b8e2 1100{
e84d0a4f 1101 int moved;
0ae45f63 1102
f758eeab 1103 assert_spin_locked(&wb->list_lock);
4ea879b9 1104 list_splice_init(&wb->b_more_io, &wb->b_io);
0ae45f63
TT
1105 moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, 0, work);
1106 moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
1107 EXPIRE_DIRTY_ATIME, work);
d6c10f1f
TH
1108 if (moved)
1109 wb_io_lists_populated(wb);
ad4e38dd 1110 trace_writeback_queue_io(wb, work, moved);
66f3b8e2
JA
1111}
1112
a9185b41 1113static int write_inode(struct inode *inode, struct writeback_control *wbc)
08d8e974 1114{
9fb0a7da
TH
1115 int ret;
1116
1117 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
1118 trace_writeback_write_inode_start(inode, wbc);
1119 ret = inode->i_sb->s_op->write_inode(inode, wbc);
1120 trace_writeback_write_inode(inode, wbc);
1121 return ret;
1122 }
03ba3782 1123 return 0;
08d8e974 1124}
08d8e974 1125
1da177e4 1126/*
169ebd90
JK
1127 * Wait for writeback on an inode to complete. Called with i_lock held.
1128 * Caller must make sure inode cannot go away when we drop i_lock.
01c03194 1129 */
169ebd90
JK
1130static void __inode_wait_for_writeback(struct inode *inode)
1131 __releases(inode->i_lock)
1132 __acquires(inode->i_lock)
01c03194
CH
1133{
1134 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
1135 wait_queue_head_t *wqh;
1136
1137 wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
250df6ed
DC
1138 while (inode->i_state & I_SYNC) {
1139 spin_unlock(&inode->i_lock);
74316201
N
1140 __wait_on_bit(wqh, &wq, bit_wait,
1141 TASK_UNINTERRUPTIBLE);
250df6ed 1142 spin_lock(&inode->i_lock);
58a9d3d8 1143 }
01c03194
CH
1144}
1145
169ebd90
JK
1146/*
1147 * Wait for writeback on an inode to complete. Caller must have inode pinned.
1148 */
1149void inode_wait_for_writeback(struct inode *inode)
1150{
1151 spin_lock(&inode->i_lock);
1152 __inode_wait_for_writeback(inode);
1153 spin_unlock(&inode->i_lock);
1154}
1155
1156/*
1157 * Sleep until I_SYNC is cleared. This function must be called with i_lock
1158 * held and drops it. It is aimed for callers not holding any inode reference
1159 * so once i_lock is dropped, inode can go away.
1160 */
1161static void inode_sleep_on_writeback(struct inode *inode)
1162 __releases(inode->i_lock)
1163{
1164 DEFINE_WAIT(wait);
1165 wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1166 int sleep;
1167
1168 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1169 sleep = inode->i_state & I_SYNC;
1170 spin_unlock(&inode->i_lock);
1171 if (sleep)
1172 schedule();
1173 finish_wait(wqh, &wait);
1174}
1175
ccb26b5a
JK
1176/*
1177 * Find proper writeback list for the inode depending on its current state and
1178 * possibly also change of its state while we were doing writeback. Here we
1179 * handle things such as livelock prevention or fairness of writeback among
1180 * inodes. This function can be called only by flusher thread - noone else
1181 * processes all inodes in writeback lists and requeueing inodes behind flusher
1182 * thread's back can have unexpected consequences.
1183 */
1184static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
1185 struct writeback_control *wbc)
1186{
1187 if (inode->i_state & I_FREEING)
1188 return;
1189
1190 /*
1191 * Sync livelock prevention. Each inode is tagged and synced in one
1192 * shot. If still dirty, it will be redirty_tail()'ed below. Update
1193 * the dirty time to prevent enqueue and sync it again.
1194 */
1195 if ((inode->i_state & I_DIRTY) &&
1196 (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
1197 inode->dirtied_when = jiffies;
1198
4f8ad655
JK
1199 if (wbc->pages_skipped) {
1200 /*
1201 * writeback is not making progress due to locked
1202 * buffers. Skip this inode for now.
1203 */
1204 redirty_tail(inode, wb);
1205 return;
1206 }
1207
ccb26b5a
JK
1208 if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
1209 /*
1210 * We didn't write back all the pages. nfs_writepages()
1211 * sometimes bales out without doing anything.
1212 */
1213 if (wbc->nr_to_write <= 0) {
1214 /* Slice used up. Queue for next turn. */
1215 requeue_io(inode, wb);
1216 } else {
1217 /*
1218 * Writeback blocked by something other than
1219 * congestion. Delay the inode for some time to
1220 * avoid spinning on the CPU (100% iowait)
1221 * retrying writeback of the dirty page/inode
1222 * that cannot be performed immediately.
1223 */
1224 redirty_tail(inode, wb);
1225 }
1226 } else if (inode->i_state & I_DIRTY) {
1227 /*
1228 * Filesystems can dirty the inode during writeback operations,
1229 * such as delayed allocation during submission or metadata
1230 * updates after data IO completion.
1231 */
1232 redirty_tail(inode, wb);
0ae45f63 1233 } else if (inode->i_state & I_DIRTY_TIME) {
a2f48706 1234 inode->dirtied_when = jiffies;
d6c10f1f 1235 inode_wb_list_move_locked(inode, wb, &wb->b_dirty_time);
ccb26b5a
JK
1236 } else {
1237 /* The inode is clean. Remove from writeback lists. */
d6c10f1f 1238 inode_wb_list_del_locked(inode, wb);
ccb26b5a
JK
1239 }
1240}
1241
01c03194 1242/*
4f8ad655
JK
1243 * Write out an inode and its dirty pages. Do not update the writeback list
1244 * linkage. That is left to the caller. The caller is also responsible for
1245 * setting I_SYNC flag and calling inode_sync_complete() to clear it.
1da177e4
LT
1246 */
1247static int
cd8ed2a4 1248__writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
1da177e4 1249{
1da177e4 1250 struct address_space *mapping = inode->i_mapping;
251d6a47 1251 long nr_to_write = wbc->nr_to_write;
01c03194 1252 unsigned dirty;
1da177e4
LT
1253 int ret;
1254
4f8ad655 1255 WARN_ON(!(inode->i_state & I_SYNC));
1da177e4 1256
9fb0a7da
TH
1257 trace_writeback_single_inode_start(inode, wbc, nr_to_write);
1258
1da177e4
LT
1259 ret = do_writepages(mapping, wbc);
1260
26821ed4
CH
1261 /*
1262 * Make sure to wait on the data before writing out the metadata.
1263 * This is important for filesystems that modify metadata on data
7747bd4b
DC
1264 * I/O completion. We don't do it for sync(2) writeback because it has a
1265 * separate, external IO completion path and ->sync_fs for guaranteeing
1266 * inode metadata is written back correctly.
26821ed4 1267 */
7747bd4b 1268 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
26821ed4 1269 int err = filemap_fdatawait(mapping);
1da177e4
LT
1270 if (ret == 0)
1271 ret = err;
1272 }
1273
5547e8aa
DM
1274 /*
1275 * Some filesystems may redirty the inode during the writeback
1276 * due to delalloc, clear dirty metadata flags right before
1277 * write_inode()
1278 */
250df6ed 1279 spin_lock(&inode->i_lock);
9c6ac78e 1280
5547e8aa 1281 dirty = inode->i_state & I_DIRTY;
a2f48706
TT
1282 if (inode->i_state & I_DIRTY_TIME) {
1283 if ((dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
1284 unlikely(inode->i_state & I_DIRTY_TIME_EXPIRED) ||
1285 unlikely(time_after(jiffies,
1286 (inode->dirtied_time_when +
1287 dirtytime_expire_interval * HZ)))) {
1288 dirty |= I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED;
1289 trace_writeback_lazytime(inode);
1290 }
1291 } else
1292 inode->i_state &= ~I_DIRTY_TIME_EXPIRED;
0ae45f63 1293 inode->i_state &= ~dirty;
9c6ac78e
TH
1294
1295 /*
1296 * Paired with smp_mb() in __mark_inode_dirty(). This allows
1297 * __mark_inode_dirty() to test i_state without grabbing i_lock -
1298 * either they see the I_DIRTY bits cleared or we see the dirtied
1299 * inode.
1300 *
1301 * I_DIRTY_PAGES is always cleared together above even if @mapping
1302 * still has dirty pages. The flag is reinstated after smp_mb() if
1303 * necessary. This guarantees that either __mark_inode_dirty()
1304 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
1305 */
1306 smp_mb();
1307
1308 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1309 inode->i_state |= I_DIRTY_PAGES;
1310
250df6ed 1311 spin_unlock(&inode->i_lock);
9c6ac78e 1312
0ae45f63
TT
1313 if (dirty & I_DIRTY_TIME)
1314 mark_inode_dirty_sync(inode);
26821ed4 1315 /* Don't write the inode if only I_DIRTY_PAGES was set */
0ae45f63 1316 if (dirty & ~I_DIRTY_PAGES) {
a9185b41 1317 int err = write_inode(inode, wbc);
1da177e4
LT
1318 if (ret == 0)
1319 ret = err;
1320 }
4f8ad655
JK
1321 trace_writeback_single_inode(inode, wbc, nr_to_write);
1322 return ret;
1323}
1324
1325/*
1326 * Write out an inode's dirty pages. Either the caller has an active reference
1327 * on the inode or the inode has I_WILL_FREE set.
1328 *
1329 * This function is designed to be called for writing back one inode which
1330 * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
1331 * and does more profound writeback list handling in writeback_sb_inodes().
1332 */
1333static int
1334writeback_single_inode(struct inode *inode, struct bdi_writeback *wb,
1335 struct writeback_control *wbc)
1336{
1337 int ret = 0;
1338
1339 spin_lock(&inode->i_lock);
1340 if (!atomic_read(&inode->i_count))
1341 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
1342 else
1343 WARN_ON(inode->i_state & I_WILL_FREE);
1344
1345 if (inode->i_state & I_SYNC) {
1346 if (wbc->sync_mode != WB_SYNC_ALL)
1347 goto out;
1348 /*
169ebd90
JK
1349 * It's a data-integrity sync. We must wait. Since callers hold
1350 * inode reference or inode has I_WILL_FREE set, it cannot go
1351 * away under us.
4f8ad655 1352 */
169ebd90 1353 __inode_wait_for_writeback(inode);
4f8ad655
JK
1354 }
1355 WARN_ON(inode->i_state & I_SYNC);
1356 /*
f9b0e058
JK
1357 * Skip inode if it is clean and we have no outstanding writeback in
1358 * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this
1359 * function since flusher thread may be doing for example sync in
1360 * parallel and if we move the inode, it could get skipped. So here we
1361 * make sure inode is on some writeback list and leave it there unless
1362 * we have completely cleaned the inode.
4f8ad655 1363 */
0ae45f63 1364 if (!(inode->i_state & I_DIRTY_ALL) &&
f9b0e058
JK
1365 (wbc->sync_mode != WB_SYNC_ALL ||
1366 !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
4f8ad655
JK
1367 goto out;
1368 inode->i_state |= I_SYNC;
b16b1deb 1369 wbc_attach_and_unlock_inode(wbc, inode);
4f8ad655 1370
cd8ed2a4 1371 ret = __writeback_single_inode(inode, wbc);
1da177e4 1372
b16b1deb 1373 wbc_detach_inode(wbc);
f758eeab 1374 spin_lock(&wb->list_lock);
250df6ed 1375 spin_lock(&inode->i_lock);
4f8ad655
JK
1376 /*
1377 * If inode is clean, remove it from writeback lists. Otherwise don't
1378 * touch it. See comment above for explanation.
1379 */
0ae45f63 1380 if (!(inode->i_state & I_DIRTY_ALL))
d6c10f1f 1381 inode_wb_list_del_locked(inode, wb);
4f8ad655 1382 spin_unlock(&wb->list_lock);
1c0eeaf5 1383 inode_sync_complete(inode);
4f8ad655
JK
1384out:
1385 spin_unlock(&inode->i_lock);
1da177e4
LT
1386 return ret;
1387}
1388
a88a341a 1389static long writeback_chunk_size(struct bdi_writeback *wb,
1a12d8bd 1390 struct wb_writeback_work *work)
d46db3d5
WF
1391{
1392 long pages;
1393
1394 /*
1395 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
1396 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
1397 * here avoids calling into writeback_inodes_wb() more than once.
1398 *
1399 * The intended call sequence for WB_SYNC_ALL writeback is:
1400 *
1401 * wb_writeback()
1402 * writeback_sb_inodes() <== called only once
1403 * write_cache_pages() <== called once for each inode
1404 * (quickly) tag currently dirty pages
1405 * (maybe slowly) sync all tagged pages
1406 */
1407 if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
1408 pages = LONG_MAX;
1a12d8bd 1409 else {
a88a341a 1410 pages = min(wb->avg_write_bandwidth / 2,
dcc25ae7 1411 global_wb_domain.dirty_limit / DIRTY_SCOPE);
1a12d8bd
WF
1412 pages = min(pages, work->nr_pages);
1413 pages = round_down(pages + MIN_WRITEBACK_PAGES,
1414 MIN_WRITEBACK_PAGES);
1415 }
d46db3d5
WF
1416
1417 return pages;
1418}
1419
f11c9c5c
ES
1420/*
1421 * Write a portion of b_io inodes which belong to @sb.
edadfb10 1422 *
d46db3d5 1423 * Return the number of pages and/or inodes written.
f11c9c5c 1424 */
d46db3d5
WF
1425static long writeback_sb_inodes(struct super_block *sb,
1426 struct bdi_writeback *wb,
1427 struct wb_writeback_work *work)
1da177e4 1428{
d46db3d5
WF
1429 struct writeback_control wbc = {
1430 .sync_mode = work->sync_mode,
1431 .tagged_writepages = work->tagged_writepages,
1432 .for_kupdate = work->for_kupdate,
1433 .for_background = work->for_background,
7747bd4b 1434 .for_sync = work->for_sync,
d46db3d5
WF
1435 .range_cyclic = work->range_cyclic,
1436 .range_start = 0,
1437 .range_end = LLONG_MAX,
1438 };
1439 unsigned long start_time = jiffies;
1440 long write_chunk;
1441 long wrote = 0; /* count both pages and inodes */
1442
03ba3782 1443 while (!list_empty(&wb->b_io)) {
7ccf19a8 1444 struct inode *inode = wb_inode(wb->b_io.prev);
edadfb10
CH
1445
1446 if (inode->i_sb != sb) {
d46db3d5 1447 if (work->sb) {
edadfb10
CH
1448 /*
1449 * We only want to write back data for this
1450 * superblock, move all inodes not belonging
1451 * to it back onto the dirty list.
1452 */
f758eeab 1453 redirty_tail(inode, wb);
edadfb10
CH
1454 continue;
1455 }
1456
1457 /*
1458 * The inode belongs to a different superblock.
1459 * Bounce back to the caller to unpin this and
1460 * pin the next superblock.
1461 */
d46db3d5 1462 break;
edadfb10
CH
1463 }
1464
9843b76a 1465 /*
331cbdee
WL
1466 * Don't bother with new inodes or inodes being freed, first
1467 * kind does not need periodic writeout yet, and for the latter
9843b76a
CH
1468 * kind writeout is handled by the freer.
1469 */
250df6ed 1470 spin_lock(&inode->i_lock);
9843b76a 1471 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
250df6ed 1472 spin_unlock(&inode->i_lock);
fcc5c222 1473 redirty_tail(inode, wb);
7ef0d737
NP
1474 continue;
1475 }
cc1676d9
JK
1476 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
1477 /*
1478 * If this inode is locked for writeback and we are not
1479 * doing writeback-for-data-integrity, move it to
1480 * b_more_io so that writeback can proceed with the
1481 * other inodes on s_io.
1482 *
1483 * We'll have another go at writing back this inode
1484 * when we completed a full scan of b_io.
1485 */
1486 spin_unlock(&inode->i_lock);
1487 requeue_io(inode, wb);
1488 trace_writeback_sb_inodes_requeue(inode);
1489 continue;
1490 }
f0d07b7f
JK
1491 spin_unlock(&wb->list_lock);
1492
4f8ad655
JK
1493 /*
1494 * We already requeued the inode if it had I_SYNC set and we
1495 * are doing WB_SYNC_NONE writeback. So this catches only the
1496 * WB_SYNC_ALL case.
1497 */
169ebd90
JK
1498 if (inode->i_state & I_SYNC) {
1499 /* Wait for I_SYNC. This function drops i_lock... */
1500 inode_sleep_on_writeback(inode);
1501 /* Inode may be gone, start again */
ead188f9 1502 spin_lock(&wb->list_lock);
169ebd90
JK
1503 continue;
1504 }
4f8ad655 1505 inode->i_state |= I_SYNC;
b16b1deb 1506 wbc_attach_and_unlock_inode(&wbc, inode);
169ebd90 1507
a88a341a 1508 write_chunk = writeback_chunk_size(wb, work);
d46db3d5
WF
1509 wbc.nr_to_write = write_chunk;
1510 wbc.pages_skipped = 0;
250df6ed 1511
169ebd90
JK
1512 /*
1513 * We use I_SYNC to pin the inode in memory. While it is set
1514 * evict_inode() will wait so the inode cannot be freed.
1515 */
cd8ed2a4 1516 __writeback_single_inode(inode, &wbc);
250df6ed 1517
b16b1deb 1518 wbc_detach_inode(&wbc);
d46db3d5
WF
1519 work->nr_pages -= write_chunk - wbc.nr_to_write;
1520 wrote += write_chunk - wbc.nr_to_write;
4f8ad655
JK
1521 spin_lock(&wb->list_lock);
1522 spin_lock(&inode->i_lock);
0ae45f63 1523 if (!(inode->i_state & I_DIRTY_ALL))
d46db3d5 1524 wrote++;
4f8ad655
JK
1525 requeue_inode(inode, wb, &wbc);
1526 inode_sync_complete(inode);
0f1b1fd8 1527 spin_unlock(&inode->i_lock);
169ebd90 1528 cond_resched_lock(&wb->list_lock);
d46db3d5
WF
1529 /*
1530 * bail out to wb_writeback() often enough to check
1531 * background threshold and other termination conditions.
1532 */
1533 if (wrote) {
1534 if (time_is_before_jiffies(start_time + HZ / 10UL))
1535 break;
1536 if (work->nr_pages <= 0)
1537 break;
8bc3be27 1538 }
1da177e4 1539 }
d46db3d5 1540 return wrote;
f11c9c5c
ES
1541}
1542
d46db3d5
WF
1543static long __writeback_inodes_wb(struct bdi_writeback *wb,
1544 struct wb_writeback_work *work)
f11c9c5c 1545{
d46db3d5
WF
1546 unsigned long start_time = jiffies;
1547 long wrote = 0;
38f21977 1548
f11c9c5c 1549 while (!list_empty(&wb->b_io)) {
7ccf19a8 1550 struct inode *inode = wb_inode(wb->b_io.prev);
f11c9c5c 1551 struct super_block *sb = inode->i_sb;
9ecc2738 1552
eb6ef3df 1553 if (!trylock_super(sb)) {
0e995816 1554 /*
eb6ef3df 1555 * trylock_super() may fail consistently due to
0e995816
WF
1556 * s_umount being grabbed by someone else. Don't use
1557 * requeue_io() to avoid busy retrying the inode/sb.
1558 */
1559 redirty_tail(inode, wb);
edadfb10 1560 continue;
f11c9c5c 1561 }
d46db3d5 1562 wrote += writeback_sb_inodes(sb, wb, work);
eb6ef3df 1563 up_read(&sb->s_umount);
f11c9c5c 1564
d46db3d5
WF
1565 /* refer to the same tests at the end of writeback_sb_inodes */
1566 if (wrote) {
1567 if (time_is_before_jiffies(start_time + HZ / 10UL))
1568 break;
1569 if (work->nr_pages <= 0)
1570 break;
1571 }
f11c9c5c 1572 }
66f3b8e2 1573 /* Leave any unwritten inodes on b_io */
d46db3d5 1574 return wrote;
66f3b8e2
JA
1575}
1576
7d9f073b 1577static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
0e175a18 1578 enum wb_reason reason)
edadfb10 1579{
d46db3d5
WF
1580 struct wb_writeback_work work = {
1581 .nr_pages = nr_pages,
1582 .sync_mode = WB_SYNC_NONE,
1583 .range_cyclic = 1,
0e175a18 1584 .reason = reason,
d46db3d5 1585 };
edadfb10 1586
f758eeab 1587 spin_lock(&wb->list_lock);
424b351f 1588 if (list_empty(&wb->b_io))
ad4e38dd 1589 queue_io(wb, &work);
d46db3d5 1590 __writeback_inodes_wb(wb, &work);
f758eeab 1591 spin_unlock(&wb->list_lock);
edadfb10 1592
d46db3d5
WF
1593 return nr_pages - work.nr_pages;
1594}
03ba3782 1595
03ba3782
JA
1596/*
1597 * Explicit flushing or periodic writeback of "old" data.
66f3b8e2 1598 *
03ba3782
JA
1599 * Define "old": the first time one of an inode's pages is dirtied, we mark the
1600 * dirtying-time in the inode's address_space. So this periodic writeback code
1601 * just walks the superblock inode list, writing back any inodes which are
1602 * older than a specific point in time.
66f3b8e2 1603 *
03ba3782
JA
1604 * Try to run once per dirty_writeback_interval. But if a writeback event
1605 * takes longer than a dirty_writeback_interval interval, then leave a
1606 * one-second gap.
66f3b8e2 1607 *
03ba3782
JA
1608 * older_than_this takes precedence over nr_to_write. So we'll only write back
1609 * all dirty pages if they are all attached to "old" mappings.
66f3b8e2 1610 */
c4a77a6c 1611static long wb_writeback(struct bdi_writeback *wb,
83ba7b07 1612 struct wb_writeback_work *work)
66f3b8e2 1613{
e98be2d5 1614 unsigned long wb_start = jiffies;
d46db3d5 1615 long nr_pages = work->nr_pages;
0dc83bd3 1616 unsigned long oldest_jif;
a5989bdc 1617 struct inode *inode;
d46db3d5 1618 long progress;
66f3b8e2 1619
0dc83bd3
JK
1620 oldest_jif = jiffies;
1621 work->older_than_this = &oldest_jif;
38f21977 1622
e8dfc305 1623 spin_lock(&wb->list_lock);
03ba3782
JA
1624 for (;;) {
1625 /*
d3ddec76 1626 * Stop writeback when nr_pages has been consumed
03ba3782 1627 */
83ba7b07 1628 if (work->nr_pages <= 0)
03ba3782 1629 break;
66f3b8e2 1630
aa373cf5
JK
1631 /*
1632 * Background writeout and kupdate-style writeback may
1633 * run forever. Stop them if there is other work to do
1634 * so that e.g. sync can proceed. They'll be restarted
1635 * after the other works are all done.
1636 */
1637 if ((work->for_background || work->for_kupdate) &&
f0054bb1 1638 !list_empty(&wb->work_list))
aa373cf5
JK
1639 break;
1640
38f21977 1641 /*
d3ddec76
WF
1642 * For background writeout, stop when we are below the
1643 * background dirty threshold
38f21977 1644 */
aa661bbe 1645 if (work->for_background && !wb_over_bg_thresh(wb))
03ba3782 1646 break;
38f21977 1647
1bc36b64
JK
1648 /*
1649 * Kupdate and background works are special and we want to
1650 * include all inodes that need writing. Livelock avoidance is
1651 * handled by these works yielding to any other work so we are
1652 * safe.
1653 */
ba9aa839 1654 if (work->for_kupdate) {
0dc83bd3 1655 oldest_jif = jiffies -
ba9aa839 1656 msecs_to_jiffies(dirty_expire_interval * 10);
1bc36b64 1657 } else if (work->for_background)
0dc83bd3 1658 oldest_jif = jiffies;
028c2dd1 1659
d46db3d5 1660 trace_writeback_start(wb->bdi, work);
e8dfc305 1661 if (list_empty(&wb->b_io))
ad4e38dd 1662 queue_io(wb, work);
83ba7b07 1663 if (work->sb)
d46db3d5 1664 progress = writeback_sb_inodes(work->sb, wb, work);
edadfb10 1665 else
d46db3d5
WF
1666 progress = __writeback_inodes_wb(wb, work);
1667 trace_writeback_written(wb->bdi, work);
028c2dd1 1668
e98be2d5 1669 wb_update_bandwidth(wb, wb_start);
03ba3782
JA
1670
1671 /*
e6fb6da2
WF
1672 * Did we write something? Try for more
1673 *
1674 * Dirty inodes are moved to b_io for writeback in batches.
1675 * The completion of the current batch does not necessarily
1676 * mean the overall work is done. So we keep looping as long
1677 * as made some progress on cleaning pages or inodes.
03ba3782 1678 */
d46db3d5 1679 if (progress)
71fd05a8
JA
1680 continue;
1681 /*
e6fb6da2 1682 * No more inodes for IO, bail
71fd05a8 1683 */
b7a2441f 1684 if (list_empty(&wb->b_more_io))
03ba3782 1685 break;
71fd05a8
JA
1686 /*
1687 * Nothing written. Wait for some inode to
1688 * become available for writeback. Otherwise
1689 * we'll just busyloop.
1690 */
71fd05a8 1691 if (!list_empty(&wb->b_more_io)) {
d46db3d5 1692 trace_writeback_wait(wb->bdi, work);
7ccf19a8 1693 inode = wb_inode(wb->b_more_io.prev);
250df6ed 1694 spin_lock(&inode->i_lock);
f0d07b7f 1695 spin_unlock(&wb->list_lock);
169ebd90
JK
1696 /* This function drops i_lock... */
1697 inode_sleep_on_writeback(inode);
f0d07b7f 1698 spin_lock(&wb->list_lock);
03ba3782
JA
1699 }
1700 }
e8dfc305 1701 spin_unlock(&wb->list_lock);
03ba3782 1702
d46db3d5 1703 return nr_pages - work->nr_pages;
03ba3782
JA
1704}
1705
1706/*
83ba7b07 1707 * Return the next wb_writeback_work struct that hasn't been processed yet.
03ba3782 1708 */
f0054bb1 1709static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
03ba3782 1710{
83ba7b07 1711 struct wb_writeback_work *work = NULL;
03ba3782 1712
f0054bb1
TH
1713 spin_lock_bh(&wb->work_lock);
1714 if (!list_empty(&wb->work_list)) {
1715 work = list_entry(wb->work_list.next,
83ba7b07
CH
1716 struct wb_writeback_work, list);
1717 list_del_init(&work->list);
03ba3782 1718 }
f0054bb1 1719 spin_unlock_bh(&wb->work_lock);
83ba7b07 1720 return work;
03ba3782
JA
1721}
1722
cdf01dd5
LT
1723/*
1724 * Add in the number of potentially dirty inodes, because each inode
1725 * write can dirty pagecache in the underlying blockdev.
1726 */
1727static unsigned long get_nr_dirty_pages(void)
1728{
1729 return global_page_state(NR_FILE_DIRTY) +
1730 global_page_state(NR_UNSTABLE_NFS) +
1731 get_nr_dirty_inodes();
1732}
1733
6585027a
JK
1734static long wb_check_background_flush(struct bdi_writeback *wb)
1735{
aa661bbe 1736 if (wb_over_bg_thresh(wb)) {
6585027a
JK
1737
1738 struct wb_writeback_work work = {
1739 .nr_pages = LONG_MAX,
1740 .sync_mode = WB_SYNC_NONE,
1741 .for_background = 1,
1742 .range_cyclic = 1,
0e175a18 1743 .reason = WB_REASON_BACKGROUND,
6585027a
JK
1744 };
1745
1746 return wb_writeback(wb, &work);
1747 }
1748
1749 return 0;
1750}
1751
03ba3782
JA
1752static long wb_check_old_data_flush(struct bdi_writeback *wb)
1753{
1754 unsigned long expired;
1755 long nr_pages;
1756
69b62d01
JA
1757 /*
1758 * When set to zero, disable periodic writeback
1759 */
1760 if (!dirty_writeback_interval)
1761 return 0;
1762
03ba3782
JA
1763 expired = wb->last_old_flush +
1764 msecs_to_jiffies(dirty_writeback_interval * 10);
1765 if (time_before(jiffies, expired))
1766 return 0;
1767
1768 wb->last_old_flush = jiffies;
cdf01dd5 1769 nr_pages = get_nr_dirty_pages();
03ba3782 1770
c4a77a6c 1771 if (nr_pages) {
83ba7b07 1772 struct wb_writeback_work work = {
c4a77a6c
JA
1773 .nr_pages = nr_pages,
1774 .sync_mode = WB_SYNC_NONE,
1775 .for_kupdate = 1,
1776 .range_cyclic = 1,
0e175a18 1777 .reason = WB_REASON_PERIODIC,
c4a77a6c
JA
1778 };
1779
83ba7b07 1780 return wb_writeback(wb, &work);
c4a77a6c 1781 }
03ba3782
JA
1782
1783 return 0;
1784}
1785
1786/*
1787 * Retrieve work items and do the writeback they describe
1788 */
25d130ba 1789static long wb_do_writeback(struct bdi_writeback *wb)
03ba3782 1790{
83ba7b07 1791 struct wb_writeback_work *work;
c4a77a6c 1792 long wrote = 0;
03ba3782 1793
4452226e 1794 set_bit(WB_writeback_running, &wb->state);
f0054bb1 1795 while ((work = get_next_work_item(wb)) != NULL) {
cc395d7f 1796 struct wb_completion *done = work->done;
98754bf7 1797 bool need_wake_up = false;
03ba3782 1798
f0054bb1 1799 trace_writeback_exec(wb->bdi, work);
455b2864 1800
83ba7b07 1801 wrote += wb_writeback(wb, work);
03ba3782 1802
98754bf7
TH
1803 if (work->single_wait) {
1804 WARN_ON_ONCE(work->auto_free);
1805 /* paired w/ rmb in wb_wait_for_single_work() */
1806 smp_wmb();
1807 work->single_done = 1;
1808 need_wake_up = true;
1809 } else if (work->auto_free) {
83ba7b07 1810 kfree(work);
98754bf7
TH
1811 }
1812
cc395d7f 1813 if (done && atomic_dec_and_test(&done->cnt))
98754bf7
TH
1814 need_wake_up = true;
1815
1816 if (need_wake_up)
cc395d7f 1817 wake_up_all(&wb->bdi->wb_waitq);
03ba3782
JA
1818 }
1819
1820 /*
1821 * Check for periodic writeback, kupdated() style
1822 */
1823 wrote += wb_check_old_data_flush(wb);
6585027a 1824 wrote += wb_check_background_flush(wb);
4452226e 1825 clear_bit(WB_writeback_running, &wb->state);
03ba3782
JA
1826
1827 return wrote;
1828}
1829
1830/*
1831 * Handle writeback of dirty data for the device backed by this bdi. Also
839a8e86 1832 * reschedules periodically and does kupdated style flushing.
03ba3782 1833 */
f0054bb1 1834void wb_workfn(struct work_struct *work)
03ba3782 1835{
839a8e86
TH
1836 struct bdi_writeback *wb = container_of(to_delayed_work(work),
1837 struct bdi_writeback, dwork);
03ba3782
JA
1838 long pages_written;
1839
f0054bb1 1840 set_worker_desc("flush-%s", dev_name(wb->bdi->dev));
766f9164 1841 current->flags |= PF_SWAPWRITE;
455b2864 1842
839a8e86 1843 if (likely(!current_is_workqueue_rescuer() ||
4452226e 1844 !test_bit(WB_registered, &wb->state))) {
6467716a 1845 /*
f0054bb1 1846 * The normal path. Keep writing back @wb until its
839a8e86 1847 * work_list is empty. Note that this path is also taken
f0054bb1 1848 * if @wb is shutting down even when we're running off the
839a8e86 1849 * rescuer as work_list needs to be drained.
6467716a 1850 */
839a8e86 1851 do {
25d130ba 1852 pages_written = wb_do_writeback(wb);
839a8e86 1853 trace_writeback_pages_written(pages_written);
f0054bb1 1854 } while (!list_empty(&wb->work_list));
839a8e86
TH
1855 } else {
1856 /*
1857 * bdi_wq can't get enough workers and we're running off
1858 * the emergency worker. Don't hog it. Hopefully, 1024 is
1859 * enough for efficient IO.
1860 */
f0054bb1 1861 pages_written = writeback_inodes_wb(wb, 1024,
839a8e86 1862 WB_REASON_FORKER_THREAD);
455b2864 1863 trace_writeback_pages_written(pages_written);
03ba3782
JA
1864 }
1865
f0054bb1 1866 if (!list_empty(&wb->work_list))
6ca738d6
DB
1867 mod_delayed_work(bdi_wq, &wb->dwork, 0);
1868 else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
f0054bb1 1869 wb_wakeup_delayed(wb);
455b2864 1870
839a8e86 1871 current->flags &= ~PF_SWAPWRITE;
03ba3782
JA
1872}
1873
1874/*
b8c2f347
CH
1875 * Start writeback of `nr_pages' pages. If `nr_pages' is zero, write back
1876 * the whole world.
03ba3782 1877 */
0e175a18 1878void wakeup_flusher_threads(long nr_pages, enum wb_reason reason)
03ba3782 1879{
b8c2f347 1880 struct backing_dev_info *bdi;
03ba3782 1881
47df3dde
JK
1882 if (!nr_pages)
1883 nr_pages = get_nr_dirty_pages();
03ba3782 1884
b8c2f347 1885 rcu_read_lock();
f2b65121
TH
1886 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
1887 struct bdi_writeback *wb;
1888 struct wb_iter iter;
1889
1890 if (!bdi_has_dirty_io(bdi))
1891 continue;
1892
1893 bdi_for_each_wb(wb, bdi, &iter, 0)
1894 wb_start_writeback(wb, wb_split_bdi_pages(wb, nr_pages),
1895 false, reason);
1896 }
cfc4ba53 1897 rcu_read_unlock();
1da177e4
LT
1898}
1899
a2f48706
TT
1900/*
1901 * Wake up bdi's periodically to make sure dirtytime inodes gets
1902 * written back periodically. We deliberately do *not* check the
1903 * b_dirtytime list in wb_has_dirty_io(), since this would cause the
1904 * kernel to be constantly waking up once there are any dirtytime
1905 * inodes on the system. So instead we define a separate delayed work
1906 * function which gets called much more rarely. (By default, only
1907 * once every 12 hours.)
1908 *
1909 * If there is any other write activity going on in the file system,
1910 * this function won't be necessary. But if the only thing that has
1911 * happened on the file system is a dirtytime inode caused by an atime
1912 * update, we need this infrastructure below to make sure that inode
1913 * eventually gets pushed out to disk.
1914 */
1915static void wakeup_dirtytime_writeback(struct work_struct *w);
1916static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);
1917
1918static void wakeup_dirtytime_writeback(struct work_struct *w)
1919{
1920 struct backing_dev_info *bdi;
1921
1922 rcu_read_lock();
1923 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
001fe6f6
TH
1924 struct bdi_writeback *wb;
1925 struct wb_iter iter;
1926
1927 bdi_for_each_wb(wb, bdi, &iter, 0)
1928 if (!list_empty(&bdi->wb.b_dirty_time))
1929 wb_wakeup(&bdi->wb);
a2f48706
TT
1930 }
1931 rcu_read_unlock();
1932 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
1933}
1934
1935static int __init start_dirtytime_writeback(void)
1936{
1937 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
1938 return 0;
1939}
1940__initcall(start_dirtytime_writeback);
1941
1efff914
TT
1942int dirtytime_interval_handler(struct ctl_table *table, int write,
1943 void __user *buffer, size_t *lenp, loff_t *ppos)
1944{
1945 int ret;
1946
1947 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
1948 if (ret == 0 && write)
1949 mod_delayed_work(system_wq, &dirtytime_work, 0);
1950 return ret;
1951}
1952
03ba3782
JA
1953static noinline void block_dump___mark_inode_dirty(struct inode *inode)
1954{
1955 if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
1956 struct dentry *dentry;
1957 const char *name = "?";
1958
1959 dentry = d_find_alias(inode);
1960 if (dentry) {
1961 spin_lock(&dentry->d_lock);
1962 name = (const char *) dentry->d_name.name;
1963 }
1964 printk(KERN_DEBUG
1965 "%s(%d): dirtied inode %lu (%s) on %s\n",
1966 current->comm, task_pid_nr(current), inode->i_ino,
1967 name, inode->i_sb->s_id);
1968 if (dentry) {
1969 spin_unlock(&dentry->d_lock);
1970 dput(dentry);
1971 }
1972 }
1973}
1974
1975/**
1976 * __mark_inode_dirty - internal function
1977 * @inode: inode to mark
1978 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
1979 * Mark an inode as dirty. Callers should use mark_inode_dirty or
1980 * mark_inode_dirty_sync.
1da177e4 1981 *
03ba3782
JA
1982 * Put the inode on the super block's dirty list.
1983 *
1984 * CAREFUL! We mark it dirty unconditionally, but move it onto the
1985 * dirty list only if it is hashed or if it refers to a blockdev.
1986 * If it was not hashed, it will never be added to the dirty list
1987 * even if it is later hashed, as it will have been marked dirty already.
1988 *
1989 * In short, make sure you hash any inodes _before_ you start marking
1990 * them dirty.
1da177e4 1991 *
03ba3782
JA
1992 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
1993 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of
1994 * the kernel-internal blockdev inode represents the dirtying time of the
1995 * blockdev's pages. This is why for I_DIRTY_PAGES we always use
1996 * page->mapping->host, so the page-dirtying time is recorded in the internal
1997 * blockdev inode.
1da177e4 1998 */
0ae45f63 1999#define I_DIRTY_INODE (I_DIRTY_SYNC | I_DIRTY_DATASYNC)
03ba3782 2000void __mark_inode_dirty(struct inode *inode, int flags)
1da177e4 2001{
03ba3782 2002 struct super_block *sb = inode->i_sb;
0ae45f63
TT
2003 int dirtytime;
2004
2005 trace_writeback_mark_inode_dirty(inode, flags);
1da177e4 2006
03ba3782
JA
2007 /*
2008 * Don't do this for I_DIRTY_PAGES - that doesn't actually
2009 * dirty the inode itself
2010 */
0ae45f63 2011 if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC | I_DIRTY_TIME)) {
9fb0a7da
TH
2012 trace_writeback_dirty_inode_start(inode, flags);
2013
03ba3782 2014 if (sb->s_op->dirty_inode)
aa385729 2015 sb->s_op->dirty_inode(inode, flags);
9fb0a7da
TH
2016
2017 trace_writeback_dirty_inode(inode, flags);
03ba3782 2018 }
0ae45f63
TT
2019 if (flags & I_DIRTY_INODE)
2020 flags &= ~I_DIRTY_TIME;
2021 dirtytime = flags & I_DIRTY_TIME;
03ba3782
JA
2022
2023 /*
9c6ac78e
TH
2024 * Paired with smp_mb() in __writeback_single_inode() for the
2025 * following lockless i_state test. See there for details.
03ba3782
JA
2026 */
2027 smp_mb();
2028
0ae45f63
TT
2029 if (((inode->i_state & flags) == flags) ||
2030 (dirtytime && (inode->i_state & I_DIRTY_INODE)))
03ba3782
JA
2031 return;
2032
2033 if (unlikely(block_dump))
2034 block_dump___mark_inode_dirty(inode);
2035
250df6ed 2036 spin_lock(&inode->i_lock);
0ae45f63
TT
2037 if (dirtytime && (inode->i_state & I_DIRTY_INODE))
2038 goto out_unlock_inode;
03ba3782
JA
2039 if ((inode->i_state & flags) != flags) {
2040 const int was_dirty = inode->i_state & I_DIRTY;
2041
52ebea74
TH
2042 inode_attach_wb(inode, NULL);
2043
0ae45f63
TT
2044 if (flags & I_DIRTY_INODE)
2045 inode->i_state &= ~I_DIRTY_TIME;
03ba3782
JA
2046 inode->i_state |= flags;
2047
2048 /*
2049 * If the inode is being synced, just update its dirty state.
2050 * The unlocker will place the inode on the appropriate
2051 * superblock list, based upon its state.
2052 */
2053 if (inode->i_state & I_SYNC)
250df6ed 2054 goto out_unlock_inode;
03ba3782
JA
2055
2056 /*
2057 * Only add valid (hashed) inodes to the superblock's
2058 * dirty list. Add blockdev inodes as well.
2059 */
2060 if (!S_ISBLK(inode->i_mode)) {
1d3382cb 2061 if (inode_unhashed(inode))
250df6ed 2062 goto out_unlock_inode;
03ba3782 2063 }
a4ffdde6 2064 if (inode->i_state & I_FREEING)
250df6ed 2065 goto out_unlock_inode;
03ba3782
JA
2066
2067 /*
2068 * If the inode was already on b_dirty/b_io/b_more_io, don't
2069 * reposition it (that would break b_dirty time-ordering).
2070 */
2071 if (!was_dirty) {
87e1d789 2072 struct bdi_writeback *wb;
d6c10f1f 2073 struct list_head *dirty_list;
a66979ab 2074 bool wakeup_bdi = false;
253c34e9 2075
87e1d789 2076 wb = locked_inode_to_wb_and_lock_list(inode);
253c34e9 2077
0747259d
TH
2078 WARN(bdi_cap_writeback_dirty(wb->bdi) &&
2079 !test_bit(WB_registered, &wb->state),
2080 "bdi-%s not registered\n", wb->bdi->name);
03ba3782
JA
2081
2082 inode->dirtied_when = jiffies;
a2f48706
TT
2083 if (dirtytime)
2084 inode->dirtied_time_when = jiffies;
d6c10f1f 2085
a2f48706 2086 if (inode->i_state & (I_DIRTY_INODE | I_DIRTY_PAGES))
0747259d 2087 dirty_list = &wb->b_dirty;
a2f48706 2088 else
0747259d 2089 dirty_list = &wb->b_dirty_time;
d6c10f1f 2090
0747259d 2091 wakeup_bdi = inode_wb_list_move_locked(inode, wb,
d6c10f1f
TH
2092 dirty_list);
2093
0747259d 2094 spin_unlock(&wb->list_lock);
0ae45f63 2095 trace_writeback_dirty_inode_enqueue(inode);
a66979ab 2096
d6c10f1f
TH
2097 /*
2098 * If this is the first dirty inode for this bdi,
2099 * we have to wake-up the corresponding bdi thread
2100 * to make sure background write-back happens
2101 * later.
2102 */
0747259d
TH
2103 if (bdi_cap_writeback_dirty(wb->bdi) && wakeup_bdi)
2104 wb_wakeup_delayed(wb);
a66979ab 2105 return;
1da177e4 2106 }
1da177e4 2107 }
250df6ed
DC
2108out_unlock_inode:
2109 spin_unlock(&inode->i_lock);
253c34e9 2110
03ba3782
JA
2111}
2112EXPORT_SYMBOL(__mark_inode_dirty);
2113
b6e51316 2114static void wait_sb_inodes(struct super_block *sb)
03ba3782
JA
2115{
2116 struct inode *inode, *old_inode = NULL;
2117
2118 /*
2119 * We need to be protected against the filesystem going from
2120 * r/o to r/w or vice versa.
2121 */
b6e51316 2122 WARN_ON(!rwsem_is_locked(&sb->s_umount));
03ba3782 2123
55fa6091 2124 spin_lock(&inode_sb_list_lock);
03ba3782
JA
2125
2126 /*
2127 * Data integrity sync. Must wait for all pages under writeback,
2128 * because there may have been pages dirtied before our sync
2129 * call, but which had writeout started before we write it out.
2130 * In which case, the inode may not be on the dirty list, but
2131 * we still have to wait for that writeout.
2132 */
b6e51316 2133 list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
250df6ed 2134 struct address_space *mapping = inode->i_mapping;
03ba3782 2135
250df6ed
DC
2136 spin_lock(&inode->i_lock);
2137 if ((inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) ||
2138 (mapping->nrpages == 0)) {
2139 spin_unlock(&inode->i_lock);
03ba3782 2140 continue;
250df6ed 2141 }
03ba3782 2142 __iget(inode);
250df6ed 2143 spin_unlock(&inode->i_lock);
55fa6091
DC
2144 spin_unlock(&inode_sb_list_lock);
2145
03ba3782 2146 /*
55fa6091
DC
2147 * We hold a reference to 'inode' so it couldn't have been
2148 * removed from s_inodes list while we dropped the
2149 * inode_sb_list_lock. We cannot iput the inode now as we can
2150 * be holding the last reference and we cannot iput it under
2151 * inode_sb_list_lock. So we keep the reference and iput it
2152 * later.
03ba3782
JA
2153 */
2154 iput(old_inode);
2155 old_inode = inode;
2156
2157 filemap_fdatawait(mapping);
2158
2159 cond_resched();
2160
55fa6091 2161 spin_lock(&inode_sb_list_lock);
03ba3782 2162 }
55fa6091 2163 spin_unlock(&inode_sb_list_lock);
03ba3782 2164 iput(old_inode);
1da177e4
LT
2165}
2166
f30a7d0c
TH
2167static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2168 enum wb_reason reason, bool skip_if_busy)
1da177e4 2169{
cc395d7f 2170 DEFINE_WB_COMPLETION_ONSTACK(done);
83ba7b07 2171 struct wb_writeback_work work = {
6e6938b6
WF
2172 .sb = sb,
2173 .sync_mode = WB_SYNC_NONE,
2174 .tagged_writepages = 1,
2175 .done = &done,
2176 .nr_pages = nr,
0e175a18 2177 .reason = reason,
3c4d7165 2178 };
e7972912 2179 struct backing_dev_info *bdi = sb->s_bdi;
d8a8559c 2180
e7972912 2181 if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
6eedc701 2182 return;
cf37e972 2183 WARN_ON(!rwsem_is_locked(&sb->s_umount));
f30a7d0c 2184
db125360 2185 bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy);
cc395d7f 2186 wb_wait_for_completion(bdi, &done);
e913fc82 2187}
f30a7d0c
TH
2188
2189/**
2190 * writeback_inodes_sb_nr - writeback dirty inodes from given super_block
2191 * @sb: the superblock
2192 * @nr: the number of pages to write
2193 * @reason: reason why some writeback work initiated
2194 *
2195 * Start writeback on some inodes on this super_block. No guarantees are made
2196 * on how many (if any) will be written, and this function does not wait
2197 * for IO completion of submitted IO.
2198 */
2199void writeback_inodes_sb_nr(struct super_block *sb,
2200 unsigned long nr,
2201 enum wb_reason reason)
2202{
2203 __writeback_inodes_sb_nr(sb, nr, reason, false);
2204}
3259f8be
CM
2205EXPORT_SYMBOL(writeback_inodes_sb_nr);
2206
2207/**
2208 * writeback_inodes_sb - writeback dirty inodes from given super_block
2209 * @sb: the superblock
786228ab 2210 * @reason: reason why some writeback work was initiated
3259f8be
CM
2211 *
2212 * Start writeback on some inodes on this super_block. No guarantees are made
2213 * on how many (if any) will be written, and this function does not wait
2214 * for IO completion of submitted IO.
2215 */
0e175a18 2216void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
3259f8be 2217{
0e175a18 2218 return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
3259f8be 2219}
0e3c9a22 2220EXPORT_SYMBOL(writeback_inodes_sb);
e913fc82 2221
17bd55d0 2222/**
10ee27a0 2223 * try_to_writeback_inodes_sb_nr - try to start writeback if none underway
17bd55d0 2224 * @sb: the superblock
10ee27a0
MX
2225 * @nr: the number of pages to write
2226 * @reason: the reason of writeback
17bd55d0 2227 *
10ee27a0 2228 * Invoke writeback_inodes_sb_nr if no writeback is currently underway.
17bd55d0
ES
2229 * Returns 1 if writeback was started, 0 if not.
2230 */
f30a7d0c
TH
2231bool try_to_writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2232 enum wb_reason reason)
17bd55d0 2233{
10ee27a0 2234 if (!down_read_trylock(&sb->s_umount))
f30a7d0c 2235 return false;
10ee27a0 2236
f30a7d0c 2237 __writeback_inodes_sb_nr(sb, nr, reason, true);
10ee27a0 2238 up_read(&sb->s_umount);
f30a7d0c 2239 return true;
17bd55d0 2240}
10ee27a0 2241EXPORT_SYMBOL(try_to_writeback_inodes_sb_nr);
17bd55d0 2242
3259f8be 2243/**
10ee27a0 2244 * try_to_writeback_inodes_sb - try to start writeback if none underway
3259f8be 2245 * @sb: the superblock
786228ab 2246 * @reason: reason why some writeback work was initiated
3259f8be 2247 *
10ee27a0 2248 * Implement by try_to_writeback_inodes_sb_nr()
3259f8be
CM
2249 * Returns 1 if writeback was started, 0 if not.
2250 */
f30a7d0c 2251bool try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
3259f8be 2252{
10ee27a0 2253 return try_to_writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
3259f8be 2254}
10ee27a0 2255EXPORT_SYMBOL(try_to_writeback_inodes_sb);
3259f8be 2256
d8a8559c
JA
2257/**
2258 * sync_inodes_sb - sync sb inode pages
0dc83bd3 2259 * @sb: the superblock
d8a8559c
JA
2260 *
2261 * This function writes and waits on any dirty inode belonging to this
0dc83bd3 2262 * super_block.
d8a8559c 2263 */
0dc83bd3 2264void sync_inodes_sb(struct super_block *sb)
d8a8559c 2265{
cc395d7f 2266 DEFINE_WB_COMPLETION_ONSTACK(done);
83ba7b07 2267 struct wb_writeback_work work = {
3c4d7165
CH
2268 .sb = sb,
2269 .sync_mode = WB_SYNC_ALL,
2270 .nr_pages = LONG_MAX,
2271 .range_cyclic = 0,
83ba7b07 2272 .done = &done,
0e175a18 2273 .reason = WB_REASON_SYNC,
7747bd4b 2274 .for_sync = 1,
3c4d7165 2275 };
e7972912 2276 struct backing_dev_info *bdi = sb->s_bdi;
3c4d7165 2277
6eedc701 2278 /* Nothing to do? */
e7972912 2279 if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
6eedc701 2280 return;
cf37e972
CH
2281 WARN_ON(!rwsem_is_locked(&sb->s_umount));
2282
db125360 2283 bdi_split_work_to_wbs(bdi, &work, false);
cc395d7f 2284 wb_wait_for_completion(bdi, &done);
83ba7b07 2285
b6e51316 2286 wait_sb_inodes(sb);
1da177e4 2287}
d8a8559c 2288EXPORT_SYMBOL(sync_inodes_sb);
1da177e4 2289
1da177e4 2290/**
7f04c26d
AA
2291 * write_inode_now - write an inode to disk
2292 * @inode: inode to write to disk
2293 * @sync: whether the write should be synchronous or not
2294 *
2295 * This function commits an inode to disk immediately if it is dirty. This is
2296 * primarily needed by knfsd.
1da177e4 2297 *
7f04c26d 2298 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
1da177e4 2299 */
1da177e4
LT
2300int write_inode_now(struct inode *inode, int sync)
2301{
f758eeab 2302 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
1da177e4
LT
2303 struct writeback_control wbc = {
2304 .nr_to_write = LONG_MAX,
18914b18 2305 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
111ebb6e
OH
2306 .range_start = 0,
2307 .range_end = LLONG_MAX,
1da177e4
LT
2308 };
2309
2310 if (!mapping_cap_writeback_dirty(inode->i_mapping))
49364ce2 2311 wbc.nr_to_write = 0;
1da177e4
LT
2312
2313 might_sleep();
4f8ad655 2314 return writeback_single_inode(inode, wb, &wbc);
1da177e4
LT
2315}
2316EXPORT_SYMBOL(write_inode_now);
2317
2318/**
2319 * sync_inode - write an inode and its pages to disk.
2320 * @inode: the inode to sync
2321 * @wbc: controls the writeback mode
2322 *
2323 * sync_inode() will write an inode and its pages to disk. It will also
2324 * correctly update the inode on its superblock's dirty inode lists and will
2325 * update inode->i_state.
2326 *
2327 * The caller must have a ref on the inode.
2328 */
2329int sync_inode(struct inode *inode, struct writeback_control *wbc)
2330{
4f8ad655 2331 return writeback_single_inode(inode, &inode_to_bdi(inode)->wb, wbc);
1da177e4
LT
2332}
2333EXPORT_SYMBOL(sync_inode);
c3765016
CH
2334
2335/**
c691b9d9 2336 * sync_inode_metadata - write an inode to disk
c3765016
CH
2337 * @inode: the inode to sync
2338 * @wait: wait for I/O to complete.
2339 *
c691b9d9 2340 * Write an inode to disk and adjust its dirty state after completion.
c3765016
CH
2341 *
2342 * Note: only writes the actual inode, no associated data or other metadata.
2343 */
2344int sync_inode_metadata(struct inode *inode, int wait)
2345{
2346 struct writeback_control wbc = {
2347 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
2348 .nr_to_write = 0, /* metadata-only */
2349 };
2350
2351 return sync_inode(inode, &wbc);
2352}
2353EXPORT_SYMBOL(sync_inode_metadata);