selftests: net: avoid ptl lock contention in tcp_mmap
[linux-2.6-block.git] / fs / fs-writeback.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * fs/fs-writeback.c
4 *
5 * Copyright (C) 2002, Linus Torvalds.
6 *
7 * Contains all the functions related to writing back and waiting
8 * upon dirty inodes against superblocks, and writing back dirty
9 * pages against inodes. ie: data writeback. Writeout of the
10 * inode itself is not handled here.
11 *
e1f8e874 12 * 10Apr2002 Andrew Morton
1da177e4
LT
13 * Split out of fs/inode.c
14 * Additions for address_space-based writeback
15 */
16
17#include <linux/kernel.h>
630d9c47 18#include <linux/export.h>
1da177e4 19#include <linux/spinlock.h>
5a0e3ad6 20#include <linux/slab.h>
1da177e4
LT
21#include <linux/sched.h>
22#include <linux/fs.h>
23#include <linux/mm.h>
bc31b86a 24#include <linux/pagemap.h>
03ba3782 25#include <linux/kthread.h>
1da177e4
LT
26#include <linux/writeback.h>
27#include <linux/blkdev.h>
28#include <linux/backing-dev.h>
455b2864 29#include <linux/tracepoint.h>
719ea2fb 30#include <linux/device.h>
21c6321f 31#include <linux/memcontrol.h>
07f3f05c 32#include "internal.h"
1da177e4 33
bc31b86a
WF
34/*
35 * 4MB minimal write chunk size
36 */
09cbfeaf 37#define MIN_WRITEBACK_PAGES (4096UL >> (PAGE_SHIFT - 10))
bc31b86a 38
c4a77a6c
JA
39/*
40 * Passed into wb_writeback(), essentially a subset of writeback_control
41 */
83ba7b07 42struct wb_writeback_work {
c4a77a6c
JA
43 long nr_pages;
44 struct super_block *sb;
0dc83bd3 45 unsigned long *older_than_this;
c4a77a6c 46 enum writeback_sync_modes sync_mode;
6e6938b6 47 unsigned int tagged_writepages:1;
52957fe1
HS
48 unsigned int for_kupdate:1;
49 unsigned int range_cyclic:1;
50 unsigned int for_background:1;
7747bd4b 51 unsigned int for_sync:1; /* sync(2) WB_SYNC_ALL writeback */
ac7b19a3 52 unsigned int auto_free:1; /* free on completion */
0e175a18 53 enum wb_reason reason; /* why was writeback initiated? */
c4a77a6c 54
8010c3b6 55 struct list_head list; /* pending work list */
cc395d7f 56 struct wb_completion *done; /* set if the caller waits */
03ba3782
JA
57};
58
a2f48706
TT
59/*
60 * If an inode is constantly having its pages dirtied, but then the
61 * updates stop dirtytime_expire_interval seconds in the past, it's
62 * possible for the worst case time between when an inode has its
63 * timestamps updated and when they finally get written out to be two
64 * dirtytime_expire_intervals. We set the default to 12 hours (in
65 * seconds), which means most of the time inodes will have their
66 * timestamps written to disk after 12 hours, but in the worst case a
67 * few inodes might not their timestamps updated for 24 hours.
68 */
69unsigned int dirtytime_expire_interval = 12 * 60 * 60;
70
7ccf19a8
NP
71static inline struct inode *wb_inode(struct list_head *head)
72{
c7f54084 73 return list_entry(head, struct inode, i_io_list);
7ccf19a8
NP
74}
75
15eb77a0
WF
76/*
77 * Include the creation of the trace points after defining the
78 * wb_writeback_work structure and inline functions so that the definition
79 * remains local to this file.
80 */
81#define CREATE_TRACE_POINTS
82#include <trace/events/writeback.h>
83
774016b2
SW
84EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
85
d6c10f1f
TH
86static bool wb_io_lists_populated(struct bdi_writeback *wb)
87{
88 if (wb_has_dirty_io(wb)) {
89 return false;
90 } else {
91 set_bit(WB_has_dirty_io, &wb->state);
95a46c65 92 WARN_ON_ONCE(!wb->avg_write_bandwidth);
766a9d6e
TH
93 atomic_long_add(wb->avg_write_bandwidth,
94 &wb->bdi->tot_write_bandwidth);
d6c10f1f
TH
95 return true;
96 }
97}
98
99static void wb_io_lists_depopulated(struct bdi_writeback *wb)
100{
101 if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
766a9d6e 102 list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
d6c10f1f 103 clear_bit(WB_has_dirty_io, &wb->state);
95a46c65
TH
104 WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
105 &wb->bdi->tot_write_bandwidth) < 0);
766a9d6e 106 }
d6c10f1f
TH
107}
108
109/**
c7f54084 110 * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list
d6c10f1f
TH
111 * @inode: inode to be moved
112 * @wb: target bdi_writeback
bbbc3c1c 113 * @head: one of @wb->b_{dirty|io|more_io|dirty_time}
d6c10f1f 114 *
c7f54084 115 * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io.
d6c10f1f
TH
116 * Returns %true if @inode is the first occupant of the !dirty_time IO
117 * lists; otherwise, %false.
118 */
c7f54084 119static bool inode_io_list_move_locked(struct inode *inode,
d6c10f1f
TH
120 struct bdi_writeback *wb,
121 struct list_head *head)
122{
123 assert_spin_locked(&wb->list_lock);
124
c7f54084 125 list_move(&inode->i_io_list, head);
d6c10f1f
TH
126
127 /* dirty_time doesn't count as dirty_io until expiration */
128 if (head != &wb->b_dirty_time)
129 return wb_io_lists_populated(wb);
130
131 wb_io_lists_depopulated(wb);
132 return false;
133}
134
135/**
c7f54084 136 * inode_io_list_del_locked - remove an inode from its bdi_writeback IO list
d6c10f1f
TH
137 * @inode: inode to be removed
138 * @wb: bdi_writeback @inode is being removed from
139 *
140 * Remove @inode which may be on one of @wb->b_{dirty|io|more_io} lists and
141 * clear %WB_has_dirty_io if all are empty afterwards.
142 */
c7f54084 143static void inode_io_list_del_locked(struct inode *inode,
d6c10f1f
TH
144 struct bdi_writeback *wb)
145{
146 assert_spin_locked(&wb->list_lock);
147
c7f54084 148 list_del_init(&inode->i_io_list);
d6c10f1f
TH
149 wb_io_lists_depopulated(wb);
150}
151
f0054bb1 152static void wb_wakeup(struct bdi_writeback *wb)
5acda9d1 153{
f0054bb1
TH
154 spin_lock_bh(&wb->work_lock);
155 if (test_bit(WB_registered, &wb->state))
156 mod_delayed_work(bdi_wq, &wb->dwork, 0);
157 spin_unlock_bh(&wb->work_lock);
5acda9d1
JK
158}
159
4a3a485b
TE
160static void finish_writeback_work(struct bdi_writeback *wb,
161 struct wb_writeback_work *work)
162{
163 struct wb_completion *done = work->done;
164
165 if (work->auto_free)
166 kfree(work);
8e00c4e9
TH
167 if (done) {
168 wait_queue_head_t *waitq = done->waitq;
169
170 /* @done can't be accessed after the following dec */
171 if (atomic_dec_and_test(&done->cnt))
172 wake_up_all(waitq);
173 }
4a3a485b
TE
174}
175
f0054bb1
TH
176static void wb_queue_work(struct bdi_writeback *wb,
177 struct wb_writeback_work *work)
6585027a 178{
5634cc2a 179 trace_writeback_queue(wb, work);
6585027a 180
cc395d7f
TH
181 if (work->done)
182 atomic_inc(&work->done->cnt);
4a3a485b
TE
183
184 spin_lock_bh(&wb->work_lock);
185
186 if (test_bit(WB_registered, &wb->state)) {
187 list_add_tail(&work->list, &wb->work_list);
188 mod_delayed_work(bdi_wq, &wb->dwork, 0);
189 } else
190 finish_writeback_work(wb, work);
191
f0054bb1 192 spin_unlock_bh(&wb->work_lock);
1da177e4
LT
193}
194
cc395d7f
TH
195/**
196 * wb_wait_for_completion - wait for completion of bdi_writeback_works
cc395d7f
TH
197 * @done: target wb_completion
198 *
199 * Wait for one or more work items issued to @bdi with their ->done field
5b9cce4c
TH
200 * set to @done, which should have been initialized with
201 * DEFINE_WB_COMPLETION(). This function returns after all such work items
202 * are completed. Work items which are waited upon aren't freed
cc395d7f
TH
203 * automatically on completion.
204 */
5b9cce4c 205void wb_wait_for_completion(struct wb_completion *done)
cc395d7f
TH
206{
207 atomic_dec(&done->cnt); /* put down the initial count */
5b9cce4c 208 wait_event(*done->waitq, !atomic_read(&done->cnt));
cc395d7f
TH
209}
210
703c2708
TH
211#ifdef CONFIG_CGROUP_WRITEBACK
212
55a694df
TH
213/*
214 * Parameters for foreign inode detection, see wbc_detach_inode() to see
215 * how they're used.
216 *
217 * These paramters are inherently heuristical as the detection target
218 * itself is fuzzy. All we want to do is detaching an inode from the
219 * current owner if it's being written to by some other cgroups too much.
220 *
221 * The current cgroup writeback is built on the assumption that multiple
222 * cgroups writing to the same inode concurrently is very rare and a mode
223 * of operation which isn't well supported. As such, the goal is not
224 * taking too long when a different cgroup takes over an inode while
225 * avoiding too aggressive flip-flops from occasional foreign writes.
226 *
227 * We record, very roughly, 2s worth of IO time history and if more than
228 * half of that is foreign, trigger the switch. The recording is quantized
229 * to 16 slots. To avoid tiny writes from swinging the decision too much,
230 * writes smaller than 1/8 of avg size are ignored.
231 */
2a814908
TH
232#define WB_FRN_TIME_SHIFT 13 /* 1s = 2^13, upto 8 secs w/ 16bit */
233#define WB_FRN_TIME_AVG_SHIFT 3 /* avg = avg * 7/8 + new * 1/8 */
55a694df 234#define WB_FRN_TIME_CUT_DIV 8 /* ignore rounds < avg / 8 */
2a814908
TH
235#define WB_FRN_TIME_PERIOD (2 * (1 << WB_FRN_TIME_SHIFT)) /* 2s */
236
237#define WB_FRN_HIST_SLOTS 16 /* inode->i_wb_frn_history is 16bit */
238#define WB_FRN_HIST_UNIT (WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS)
239 /* each slot's duration is 2s / 16 */
240#define WB_FRN_HIST_THR_SLOTS (WB_FRN_HIST_SLOTS / 2)
241 /* if foreign slots >= 8, switch */
242#define WB_FRN_HIST_MAX_SLOTS (WB_FRN_HIST_THR_SLOTS / 2 + 1)
243 /* one round can affect upto 5 slots */
6444f47e 244#define WB_FRN_MAX_IN_FLIGHT 1024 /* don't queue too many concurrently */
2a814908 245
a1a0e23e
TH
246static atomic_t isw_nr_in_flight = ATOMIC_INIT(0);
247static struct workqueue_struct *isw_wq;
248
21c6321f
TH
249void __inode_attach_wb(struct inode *inode, struct page *page)
250{
251 struct backing_dev_info *bdi = inode_to_bdi(inode);
252 struct bdi_writeback *wb = NULL;
253
254 if (inode_cgwb_enabled(inode)) {
255 struct cgroup_subsys_state *memcg_css;
256
257 if (page) {
258 memcg_css = mem_cgroup_css_from_page(page);
259 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
260 } else {
261 /* must pin memcg_css, see wb_get_create() */
262 memcg_css = task_get_css(current, memory_cgrp_id);
263 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
264 css_put(memcg_css);
265 }
266 }
267
268 if (!wb)
269 wb = &bdi->wb;
270
271 /*
272 * There may be multiple instances of this function racing to
273 * update the same inode. Use cmpxchg() to tell the winner.
274 */
275 if (unlikely(cmpxchg(&inode->i_wb, NULL, wb)))
276 wb_put(wb);
277}
9b0eb69b 278EXPORT_SYMBOL_GPL(__inode_attach_wb);
21c6321f 279
87e1d789
TH
280/**
281 * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it
282 * @inode: inode of interest with i_lock held
283 *
284 * Returns @inode's wb with its list_lock held. @inode->i_lock must be
285 * held on entry and is released on return. The returned wb is guaranteed
286 * to stay @inode's associated wb until its list_lock is released.
287 */
288static struct bdi_writeback *
289locked_inode_to_wb_and_lock_list(struct inode *inode)
290 __releases(&inode->i_lock)
291 __acquires(&wb->list_lock)
292{
293 while (true) {
294 struct bdi_writeback *wb = inode_to_wb(inode);
295
296 /*
297 * inode_to_wb() association is protected by both
298 * @inode->i_lock and @wb->list_lock but list_lock nests
299 * outside i_lock. Drop i_lock and verify that the
300 * association hasn't changed after acquiring list_lock.
301 */
302 wb_get(wb);
303 spin_unlock(&inode->i_lock);
304 spin_lock(&wb->list_lock);
87e1d789 305
aaa2cacf 306 /* i_wb may have changed inbetween, can't use inode_to_wb() */
614a4e37
TH
307 if (likely(wb == inode->i_wb)) {
308 wb_put(wb); /* @inode already has ref */
309 return wb;
310 }
87e1d789
TH
311
312 spin_unlock(&wb->list_lock);
614a4e37 313 wb_put(wb);
87e1d789
TH
314 cpu_relax();
315 spin_lock(&inode->i_lock);
316 }
317}
318
319/**
320 * inode_to_wb_and_lock_list - determine an inode's wb and lock it
321 * @inode: inode of interest
322 *
323 * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held
324 * on entry.
325 */
326static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
327 __acquires(&wb->list_lock)
328{
329 spin_lock(&inode->i_lock);
330 return locked_inode_to_wb_and_lock_list(inode);
331}
332
682aa8e1
TH
333struct inode_switch_wbs_context {
334 struct inode *inode;
335 struct bdi_writeback *new_wb;
336
337 struct rcu_head rcu_head;
338 struct work_struct work;
339};
340
7fc5854f
TH
341static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi)
342{
343 down_write(&bdi->wb_switch_rwsem);
344}
345
346static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi)
347{
348 up_write(&bdi->wb_switch_rwsem);
349}
350
682aa8e1
TH
351static void inode_switch_wbs_work_fn(struct work_struct *work)
352{
353 struct inode_switch_wbs_context *isw =
354 container_of(work, struct inode_switch_wbs_context, work);
355 struct inode *inode = isw->inode;
7fc5854f 356 struct backing_dev_info *bdi = inode_to_bdi(inode);
d10c8095
TH
357 struct address_space *mapping = inode->i_mapping;
358 struct bdi_writeback *old_wb = inode->i_wb;
682aa8e1 359 struct bdi_writeback *new_wb = isw->new_wb;
04edf02c
MW
360 XA_STATE(xas, &mapping->i_pages, 0);
361 struct page *page;
d10c8095 362 bool switched = false;
682aa8e1 363
7fc5854f
TH
364 /*
365 * If @inode switches cgwb membership while sync_inodes_sb() is
366 * being issued, sync_inodes_sb() might miss it. Synchronize.
367 */
368 down_read(&bdi->wb_switch_rwsem);
369
682aa8e1
TH
370 /*
371 * By the time control reaches here, RCU grace period has passed
372 * since I_WB_SWITCH assertion and all wb stat update transactions
373 * between unlocked_inode_to_wb_begin/end() are guaranteed to be
b93b0163 374 * synchronizing against the i_pages lock.
d10c8095 375 *
b93b0163 376 * Grabbing old_wb->list_lock, inode->i_lock and the i_pages lock
d10c8095
TH
377 * gives us exclusion against all wb related operations on @inode
378 * including IO list manipulations and stat updates.
682aa8e1 379 */
d10c8095
TH
380 if (old_wb < new_wb) {
381 spin_lock(&old_wb->list_lock);
382 spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING);
383 } else {
384 spin_lock(&new_wb->list_lock);
385 spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING);
386 }
682aa8e1 387 spin_lock(&inode->i_lock);
b93b0163 388 xa_lock_irq(&mapping->i_pages);
d10c8095
TH
389
390 /*
391 * Once I_FREEING is visible under i_lock, the eviction path owns
c7f54084 392 * the inode and we shouldn't modify ->i_io_list.
d10c8095
TH
393 */
394 if (unlikely(inode->i_state & I_FREEING))
395 goto skip_switch;
396
3a8e9ac8
TH
397 trace_inode_switch_wbs(inode, old_wb, new_wb);
398
d10c8095
TH
399 /*
400 * Count and transfer stats. Note that PAGECACHE_TAG_DIRTY points
401 * to possibly dirty pages while PAGECACHE_TAG_WRITEBACK points to
b93b0163 402 * pages actually under writeback.
d10c8095 403 */
04edf02c
MW
404 xas_for_each_marked(&xas, page, ULONG_MAX, PAGECACHE_TAG_DIRTY) {
405 if (PageDirty(page)) {
3e8f399d
NB
406 dec_wb_stat(old_wb, WB_RECLAIMABLE);
407 inc_wb_stat(new_wb, WB_RECLAIMABLE);
d10c8095
TH
408 }
409 }
410
04edf02c
MW
411 xas_set(&xas, 0);
412 xas_for_each_marked(&xas, page, ULONG_MAX, PAGECACHE_TAG_WRITEBACK) {
413 WARN_ON_ONCE(!PageWriteback(page));
414 dec_wb_stat(old_wb, WB_WRITEBACK);
415 inc_wb_stat(new_wb, WB_WRITEBACK);
d10c8095
TH
416 }
417
418 wb_get(new_wb);
419
420 /*
421 * Transfer to @new_wb's IO list if necessary. The specific list
422 * @inode was on is ignored and the inode is put on ->b_dirty which
423 * is always correct including from ->b_dirty_time. The transfer
424 * preserves @inode->dirtied_when ordering.
425 */
c7f54084 426 if (!list_empty(&inode->i_io_list)) {
d10c8095
TH
427 struct inode *pos;
428
c7f54084 429 inode_io_list_del_locked(inode, old_wb);
d10c8095 430 inode->i_wb = new_wb;
c7f54084 431 list_for_each_entry(pos, &new_wb->b_dirty, i_io_list)
d10c8095
TH
432 if (time_after_eq(inode->dirtied_when,
433 pos->dirtied_when))
434 break;
c7f54084 435 inode_io_list_move_locked(inode, new_wb, pos->i_io_list.prev);
d10c8095
TH
436 } else {
437 inode->i_wb = new_wb;
438 }
682aa8e1 439
d10c8095 440 /* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */
682aa8e1
TH
441 inode->i_wb_frn_winner = 0;
442 inode->i_wb_frn_avg_time = 0;
443 inode->i_wb_frn_history = 0;
d10c8095
TH
444 switched = true;
445skip_switch:
682aa8e1
TH
446 /*
447 * Paired with load_acquire in unlocked_inode_to_wb_begin() and
448 * ensures that the new wb is visible if they see !I_WB_SWITCH.
449 */
450 smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH);
451
b93b0163 452 xa_unlock_irq(&mapping->i_pages);
682aa8e1 453 spin_unlock(&inode->i_lock);
d10c8095
TH
454 spin_unlock(&new_wb->list_lock);
455 spin_unlock(&old_wb->list_lock);
682aa8e1 456
7fc5854f
TH
457 up_read(&bdi->wb_switch_rwsem);
458
d10c8095
TH
459 if (switched) {
460 wb_wakeup(new_wb);
461 wb_put(old_wb);
462 }
682aa8e1 463 wb_put(new_wb);
d10c8095
TH
464
465 iput(inode);
682aa8e1 466 kfree(isw);
a1a0e23e
TH
467
468 atomic_dec(&isw_nr_in_flight);
682aa8e1
TH
469}
470
471static void inode_switch_wbs_rcu_fn(struct rcu_head *rcu_head)
472{
473 struct inode_switch_wbs_context *isw = container_of(rcu_head,
474 struct inode_switch_wbs_context, rcu_head);
475
476 /* needs to grab bh-unsafe locks, bounce to work item */
477 INIT_WORK(&isw->work, inode_switch_wbs_work_fn);
a1a0e23e 478 queue_work(isw_wq, &isw->work);
682aa8e1
TH
479}
480
481/**
482 * inode_switch_wbs - change the wb association of an inode
483 * @inode: target inode
484 * @new_wb_id: ID of the new wb
485 *
486 * Switch @inode's wb association to the wb identified by @new_wb_id. The
487 * switching is performed asynchronously and may fail silently.
488 */
489static void inode_switch_wbs(struct inode *inode, int new_wb_id)
490{
491 struct backing_dev_info *bdi = inode_to_bdi(inode);
492 struct cgroup_subsys_state *memcg_css;
493 struct inode_switch_wbs_context *isw;
494
495 /* noop if seems to be already in progress */
496 if (inode->i_state & I_WB_SWITCH)
497 return;
498
6444f47e
TH
499 /* avoid queueing a new switch if too many are already in flight */
500 if (atomic_read(&isw_nr_in_flight) > WB_FRN_MAX_IN_FLIGHT)
7fc5854f
TH
501 return;
502
682aa8e1
TH
503 isw = kzalloc(sizeof(*isw), GFP_ATOMIC);
504 if (!isw)
6444f47e 505 return;
682aa8e1
TH
506
507 /* find and pin the new wb */
508 rcu_read_lock();
509 memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys);
510 if (memcg_css)
511 isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
512 rcu_read_unlock();
513 if (!isw->new_wb)
514 goto out_free;
515
516 /* while holding I_WB_SWITCH, no one else can update the association */
517 spin_lock(&inode->i_lock);
1751e8a6 518 if (!(inode->i_sb->s_flags & SB_ACTIVE) ||
a1a0e23e
TH
519 inode->i_state & (I_WB_SWITCH | I_FREEING) ||
520 inode_to_wb(inode) == isw->new_wb) {
521 spin_unlock(&inode->i_lock);
522 goto out_free;
523 }
682aa8e1 524 inode->i_state |= I_WB_SWITCH;
74524955 525 __iget(inode);
682aa8e1
TH
526 spin_unlock(&inode->i_lock);
527
682aa8e1
TH
528 isw->inode = inode;
529
530 /*
531 * In addition to synchronizing among switchers, I_WB_SWITCH tells
b93b0163
MW
532 * the RCU protected stat update paths to grab the i_page
533 * lock so that stat transfer can synchronize against them.
682aa8e1
TH
534 * Let's continue after I_WB_SWITCH is guaranteed to be visible.
535 */
536 call_rcu(&isw->rcu_head, inode_switch_wbs_rcu_fn);
ec084de9
JX
537
538 atomic_inc(&isw_nr_in_flight);
6444f47e 539 return;
682aa8e1
TH
540
541out_free:
542 if (isw->new_wb)
543 wb_put(isw->new_wb);
544 kfree(isw);
545}
546
b16b1deb
TH
547/**
548 * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
549 * @wbc: writeback_control of interest
550 * @inode: target inode
551 *
552 * @inode is locked and about to be written back under the control of @wbc.
553 * Record @inode's writeback context into @wbc and unlock the i_lock. On
554 * writeback completion, wbc_detach_inode() should be called. This is used
555 * to track the cgroup writeback context.
556 */
557void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
558 struct inode *inode)
559{
dd73e4b7
TH
560 if (!inode_cgwb_enabled(inode)) {
561 spin_unlock(&inode->i_lock);
562 return;
563 }
564
b16b1deb 565 wbc->wb = inode_to_wb(inode);
2a814908
TH
566 wbc->inode = inode;
567
568 wbc->wb_id = wbc->wb->memcg_css->id;
569 wbc->wb_lcand_id = inode->i_wb_frn_winner;
570 wbc->wb_tcand_id = 0;
571 wbc->wb_bytes = 0;
572 wbc->wb_lcand_bytes = 0;
573 wbc->wb_tcand_bytes = 0;
574
b16b1deb
TH
575 wb_get(wbc->wb);
576 spin_unlock(&inode->i_lock);
e8a7abf5
TH
577
578 /*
65de03e2
TH
579 * A dying wb indicates that either the blkcg associated with the
580 * memcg changed or the associated memcg is dying. In the first
581 * case, a replacement wb should already be available and we should
582 * refresh the wb immediately. In the second case, trying to
583 * refresh will keep failing.
e8a7abf5 584 */
65de03e2 585 if (unlikely(wb_dying(wbc->wb) && !css_is_dying(wbc->wb->memcg_css)))
e8a7abf5 586 inode_switch_wbs(inode, wbc->wb_id);
b16b1deb 587}
9b0eb69b 588EXPORT_SYMBOL_GPL(wbc_attach_and_unlock_inode);
b16b1deb
TH
589
590/**
2a814908
TH
591 * wbc_detach_inode - disassociate wbc from inode and perform foreign detection
592 * @wbc: writeback_control of the just finished writeback
b16b1deb
TH
593 *
594 * To be called after a writeback attempt of an inode finishes and undoes
595 * wbc_attach_and_unlock_inode(). Can be called under any context.
2a814908
TH
596 *
597 * As concurrent write sharing of an inode is expected to be very rare and
598 * memcg only tracks page ownership on first-use basis severely confining
599 * the usefulness of such sharing, cgroup writeback tracks ownership
600 * per-inode. While the support for concurrent write sharing of an inode
601 * is deemed unnecessary, an inode being written to by different cgroups at
602 * different points in time is a lot more common, and, more importantly,
603 * charging only by first-use can too readily lead to grossly incorrect
604 * behaviors (single foreign page can lead to gigabytes of writeback to be
605 * incorrectly attributed).
606 *
607 * To resolve this issue, cgroup writeback detects the majority dirtier of
608 * an inode and transfers the ownership to it. To avoid unnnecessary
609 * oscillation, the detection mechanism keeps track of history and gives
610 * out the switch verdict only if the foreign usage pattern is stable over
611 * a certain amount of time and/or writeback attempts.
612 *
613 * On each writeback attempt, @wbc tries to detect the majority writer
614 * using Boyer-Moore majority vote algorithm. In addition to the byte
615 * count from the majority voting, it also counts the bytes written for the
616 * current wb and the last round's winner wb (max of last round's current
617 * wb, the winner from two rounds ago, and the last round's majority
618 * candidate). Keeping track of the historical winner helps the algorithm
619 * to semi-reliably detect the most active writer even when it's not the
620 * absolute majority.
621 *
622 * Once the winner of the round is determined, whether the winner is
623 * foreign or not and how much IO time the round consumed is recorded in
624 * inode->i_wb_frn_history. If the amount of recorded foreign IO time is
625 * over a certain threshold, the switch verdict is given.
b16b1deb
TH
626 */
627void wbc_detach_inode(struct writeback_control *wbc)
628{
2a814908
TH
629 struct bdi_writeback *wb = wbc->wb;
630 struct inode *inode = wbc->inode;
dd73e4b7
TH
631 unsigned long avg_time, max_bytes, max_time;
632 u16 history;
2a814908
TH
633 int max_id;
634
dd73e4b7
TH
635 if (!wb)
636 return;
637
638 history = inode->i_wb_frn_history;
639 avg_time = inode->i_wb_frn_avg_time;
640
2a814908
TH
641 /* pick the winner of this round */
642 if (wbc->wb_bytes >= wbc->wb_lcand_bytes &&
643 wbc->wb_bytes >= wbc->wb_tcand_bytes) {
644 max_id = wbc->wb_id;
645 max_bytes = wbc->wb_bytes;
646 } else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) {
647 max_id = wbc->wb_lcand_id;
648 max_bytes = wbc->wb_lcand_bytes;
649 } else {
650 max_id = wbc->wb_tcand_id;
651 max_bytes = wbc->wb_tcand_bytes;
652 }
653
654 /*
655 * Calculate the amount of IO time the winner consumed and fold it
656 * into the running average kept per inode. If the consumed IO
657 * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for
658 * deciding whether to switch or not. This is to prevent one-off
659 * small dirtiers from skewing the verdict.
660 */
661 max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT,
662 wb->avg_write_bandwidth);
663 if (avg_time)
664 avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) -
665 (avg_time >> WB_FRN_TIME_AVG_SHIFT);
666 else
667 avg_time = max_time; /* immediate catch up on first run */
668
669 if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) {
670 int slots;
671
672 /*
673 * The switch verdict is reached if foreign wb's consume
674 * more than a certain proportion of IO time in a
675 * WB_FRN_TIME_PERIOD. This is loosely tracked by 16 slot
676 * history mask where each bit represents one sixteenth of
677 * the period. Determine the number of slots to shift into
678 * history from @max_time.
679 */
680 slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT),
681 (unsigned long)WB_FRN_HIST_MAX_SLOTS);
682 history <<= slots;
683 if (wbc->wb_id != max_id)
684 history |= (1U << slots) - 1;
685
3a8e9ac8
TH
686 if (history)
687 trace_inode_foreign_history(inode, wbc, history);
688
2a814908
TH
689 /*
690 * Switch if the current wb isn't the consistent winner.
691 * If there are multiple closely competing dirtiers, the
692 * inode may switch across them repeatedly over time, which
693 * is okay. The main goal is avoiding keeping an inode on
694 * the wrong wb for an extended period of time.
695 */
682aa8e1
TH
696 if (hweight32(history) > WB_FRN_HIST_THR_SLOTS)
697 inode_switch_wbs(inode, max_id);
2a814908
TH
698 }
699
700 /*
701 * Multiple instances of this function may race to update the
702 * following fields but we don't mind occassional inaccuracies.
703 */
704 inode->i_wb_frn_winner = max_id;
705 inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX);
706 inode->i_wb_frn_history = history;
707
b16b1deb
TH
708 wb_put(wbc->wb);
709 wbc->wb = NULL;
710}
9b0eb69b 711EXPORT_SYMBOL_GPL(wbc_detach_inode);
b16b1deb 712
2a814908 713/**
34e51a5e 714 * wbc_account_cgroup_owner - account writeback to update inode cgroup ownership
2a814908
TH
715 * @wbc: writeback_control of the writeback in progress
716 * @page: page being written out
717 * @bytes: number of bytes being written out
718 *
719 * @bytes from @page are about to written out during the writeback
720 * controlled by @wbc. Keep the book for foreign inode detection. See
721 * wbc_detach_inode().
722 */
34e51a5e
TH
723void wbc_account_cgroup_owner(struct writeback_control *wbc, struct page *page,
724 size_t bytes)
2a814908 725{
66311422 726 struct cgroup_subsys_state *css;
2a814908
TH
727 int id;
728
729 /*
730 * pageout() path doesn't attach @wbc to the inode being written
731 * out. This is intentional as we don't want the function to block
732 * behind a slow cgroup. Ultimately, we want pageout() to kick off
733 * regular writeback instead of writing things out itself.
734 */
27b36d8f 735 if (!wbc->wb || wbc->no_cgroup_owner)
2a814908
TH
736 return;
737
66311422
TH
738 css = mem_cgroup_css_from_page(page);
739 /* dead cgroups shouldn't contribute to inode ownership arbitration */
740 if (!(css->flags & CSS_ONLINE))
741 return;
742
743 id = css->id;
2a814908
TH
744
745 if (id == wbc->wb_id) {
746 wbc->wb_bytes += bytes;
747 return;
748 }
749
750 if (id == wbc->wb_lcand_id)
751 wbc->wb_lcand_bytes += bytes;
752
753 /* Boyer-Moore majority vote algorithm */
754 if (!wbc->wb_tcand_bytes)
755 wbc->wb_tcand_id = id;
756 if (id == wbc->wb_tcand_id)
757 wbc->wb_tcand_bytes += bytes;
758 else
759 wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes);
760}
34e51a5e 761EXPORT_SYMBOL_GPL(wbc_account_cgroup_owner);
2a814908 762
703c2708
TH
763/**
764 * inode_congested - test whether an inode is congested
60292bcc 765 * @inode: inode to test for congestion (may be NULL)
703c2708
TH
766 * @cong_bits: mask of WB_[a]sync_congested bits to test
767 *
768 * Tests whether @inode is congested. @cong_bits is the mask of congestion
769 * bits to test and the return value is the mask of set bits.
770 *
771 * If cgroup writeback is enabled for @inode, the congestion state is
772 * determined by whether the cgwb (cgroup bdi_writeback) for the blkcg
773 * associated with @inode is congested; otherwise, the root wb's congestion
774 * state is used.
60292bcc
TH
775 *
776 * @inode is allowed to be NULL as this function is often called on
777 * mapping->host which is NULL for the swapper space.
703c2708
TH
778 */
779int inode_congested(struct inode *inode, int cong_bits)
780{
5cb8b824
TH
781 /*
782 * Once set, ->i_wb never becomes NULL while the inode is alive.
783 * Start transaction iff ->i_wb is visible.
784 */
aaa2cacf 785 if (inode && inode_to_wb_is_valid(inode)) {
5cb8b824 786 struct bdi_writeback *wb;
2e898e4c
GT
787 struct wb_lock_cookie lock_cookie = {};
788 bool congested;
5cb8b824 789
2e898e4c 790 wb = unlocked_inode_to_wb_begin(inode, &lock_cookie);
5cb8b824 791 congested = wb_congested(wb, cong_bits);
2e898e4c 792 unlocked_inode_to_wb_end(inode, &lock_cookie);
5cb8b824 793 return congested;
703c2708
TH
794 }
795
796 return wb_congested(&inode_to_bdi(inode)->wb, cong_bits);
797}
798EXPORT_SYMBOL_GPL(inode_congested);
799
f2b65121
TH
800/**
801 * wb_split_bdi_pages - split nr_pages to write according to bandwidth
802 * @wb: target bdi_writeback to split @nr_pages to
803 * @nr_pages: number of pages to write for the whole bdi
804 *
805 * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
806 * relation to the total write bandwidth of all wb's w/ dirty inodes on
807 * @wb->bdi.
808 */
809static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
810{
811 unsigned long this_bw = wb->avg_write_bandwidth;
812 unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
813
814 if (nr_pages == LONG_MAX)
815 return LONG_MAX;
816
817 /*
818 * This may be called on clean wb's and proportional distribution
819 * may not make sense, just use the original @nr_pages in those
820 * cases. In general, we wanna err on the side of writing more.
821 */
822 if (!tot_bw || this_bw >= tot_bw)
823 return nr_pages;
824 else
825 return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw);
826}
827
db125360
TH
828/**
829 * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
830 * @bdi: target backing_dev_info
831 * @base_work: wb_writeback_work to issue
832 * @skip_if_busy: skip wb's which already have writeback in progress
833 *
834 * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
835 * have dirty inodes. If @base_work->nr_page isn't %LONG_MAX, it's
836 * distributed to the busy wbs according to each wb's proportion in the
837 * total active write bandwidth of @bdi.
838 */
839static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
840 struct wb_writeback_work *base_work,
841 bool skip_if_busy)
842{
b817525a 843 struct bdi_writeback *last_wb = NULL;
b33e18f6
TH
844 struct bdi_writeback *wb = list_entry(&bdi->wb_list,
845 struct bdi_writeback, bdi_node);
db125360
TH
846
847 might_sleep();
db125360
TH
848restart:
849 rcu_read_lock();
b817525a 850 list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) {
5b9cce4c 851 DEFINE_WB_COMPLETION(fallback_work_done, bdi);
8a1270cd
TH
852 struct wb_writeback_work fallback_work;
853 struct wb_writeback_work *work;
854 long nr_pages;
855
b817525a
TH
856 if (last_wb) {
857 wb_put(last_wb);
858 last_wb = NULL;
859 }
860
006a0973
TH
861 /* SYNC_ALL writes out I_DIRTY_TIME too */
862 if (!wb_has_dirty_io(wb) &&
863 (base_work->sync_mode == WB_SYNC_NONE ||
864 list_empty(&wb->b_dirty_time)))
865 continue;
866 if (skip_if_busy && writeback_in_progress(wb))
db125360
TH
867 continue;
868
8a1270cd
TH
869 nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages);
870
871 work = kmalloc(sizeof(*work), GFP_ATOMIC);
872 if (work) {
873 *work = *base_work;
874 work->nr_pages = nr_pages;
875 work->auto_free = 1;
876 wb_queue_work(wb, work);
877 continue;
db125360 878 }
8a1270cd
TH
879
880 /* alloc failed, execute synchronously using on-stack fallback */
881 work = &fallback_work;
882 *work = *base_work;
883 work->nr_pages = nr_pages;
884 work->auto_free = 0;
885 work->done = &fallback_work_done;
886
887 wb_queue_work(wb, work);
888
b817525a
TH
889 /*
890 * Pin @wb so that it stays on @bdi->wb_list. This allows
891 * continuing iteration from @wb after dropping and
892 * regrabbing rcu read lock.
893 */
894 wb_get(wb);
895 last_wb = wb;
896
8a1270cd 897 rcu_read_unlock();
5b9cce4c 898 wb_wait_for_completion(&fallback_work_done);
8a1270cd 899 goto restart;
db125360
TH
900 }
901 rcu_read_unlock();
b817525a
TH
902
903 if (last_wb)
904 wb_put(last_wb);
db125360
TH
905}
906
d62241c7
TH
907/**
908 * cgroup_writeback_by_id - initiate cgroup writeback from bdi and memcg IDs
909 * @bdi_id: target bdi id
910 * @memcg_id: target memcg css id
b46ec1da 911 * @nr: number of pages to write, 0 for best-effort dirty flushing
d62241c7
TH
912 * @reason: reason why some writeback work initiated
913 * @done: target wb_completion
914 *
915 * Initiate flush of the bdi_writeback identified by @bdi_id and @memcg_id
916 * with the specified parameters.
917 */
918int cgroup_writeback_by_id(u64 bdi_id, int memcg_id, unsigned long nr,
919 enum wb_reason reason, struct wb_completion *done)
920{
921 struct backing_dev_info *bdi;
922 struct cgroup_subsys_state *memcg_css;
923 struct bdi_writeback *wb;
924 struct wb_writeback_work *work;
925 int ret;
926
927 /* lookup bdi and memcg */
928 bdi = bdi_get_by_id(bdi_id);
929 if (!bdi)
930 return -ENOENT;
931
932 rcu_read_lock();
933 memcg_css = css_from_id(memcg_id, &memory_cgrp_subsys);
934 if (memcg_css && !css_tryget(memcg_css))
935 memcg_css = NULL;
936 rcu_read_unlock();
937 if (!memcg_css) {
938 ret = -ENOENT;
939 goto out_bdi_put;
940 }
941
942 /*
943 * And find the associated wb. If the wb isn't there already
944 * there's nothing to flush, don't create one.
945 */
946 wb = wb_get_lookup(bdi, memcg_css);
947 if (!wb) {
948 ret = -ENOENT;
949 goto out_css_put;
950 }
951
952 /*
953 * If @nr is zero, the caller is attempting to write out most of
954 * the currently dirty pages. Let's take the current dirty page
955 * count and inflate it by 25% which should be large enough to
956 * flush out most dirty pages while avoiding getting livelocked by
957 * concurrent dirtiers.
958 */
959 if (!nr) {
960 unsigned long filepages, headroom, dirty, writeback;
961
962 mem_cgroup_wb_stats(wb, &filepages, &headroom, &dirty,
963 &writeback);
964 nr = dirty * 10 / 8;
965 }
966
967 /* issue the writeback work */
968 work = kzalloc(sizeof(*work), GFP_NOWAIT | __GFP_NOWARN);
969 if (work) {
970 work->nr_pages = nr;
971 work->sync_mode = WB_SYNC_NONE;
972 work->range_cyclic = 1;
973 work->reason = reason;
974 work->done = done;
975 work->auto_free = 1;
976 wb_queue_work(wb, work);
977 ret = 0;
978 } else {
979 ret = -ENOMEM;
980 }
981
982 wb_put(wb);
983out_css_put:
984 css_put(memcg_css);
985out_bdi_put:
986 bdi_put(bdi);
987 return ret;
988}
989
a1a0e23e
TH
990/**
991 * cgroup_writeback_umount - flush inode wb switches for umount
992 *
993 * This function is called when a super_block is about to be destroyed and
994 * flushes in-flight inode wb switches. An inode wb switch goes through
995 * RCU and then workqueue, so the two need to be flushed in order to ensure
996 * that all previously scheduled switches are finished. As wb switches are
997 * rare occurrences and synchronize_rcu() can take a while, perform
998 * flushing iff wb switches are in flight.
999 */
1000void cgroup_writeback_umount(void)
1001{
1002 if (atomic_read(&isw_nr_in_flight)) {
ec084de9
JX
1003 /*
1004 * Use rcu_barrier() to wait for all pending callbacks to
1005 * ensure that all in-flight wb switches are in the workqueue.
1006 */
1007 rcu_barrier();
a1a0e23e
TH
1008 flush_workqueue(isw_wq);
1009 }
1010}
1011
1012static int __init cgroup_writeback_init(void)
1013{
1014 isw_wq = alloc_workqueue("inode_switch_wbs", 0, 0);
1015 if (!isw_wq)
1016 return -ENOMEM;
1017 return 0;
1018}
1019fs_initcall(cgroup_writeback_init);
1020
f2b65121
TH
1021#else /* CONFIG_CGROUP_WRITEBACK */
1022
7fc5854f
TH
1023static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
1024static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
1025
87e1d789
TH
1026static struct bdi_writeback *
1027locked_inode_to_wb_and_lock_list(struct inode *inode)
1028 __releases(&inode->i_lock)
1029 __acquires(&wb->list_lock)
1030{
1031 struct bdi_writeback *wb = inode_to_wb(inode);
1032
1033 spin_unlock(&inode->i_lock);
1034 spin_lock(&wb->list_lock);
1035 return wb;
1036}
1037
1038static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
1039 __acquires(&wb->list_lock)
1040{
1041 struct bdi_writeback *wb = inode_to_wb(inode);
1042
1043 spin_lock(&wb->list_lock);
1044 return wb;
1045}
1046
f2b65121
TH
1047static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
1048{
1049 return nr_pages;
1050}
1051
db125360
TH
1052static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
1053 struct wb_writeback_work *base_work,
1054 bool skip_if_busy)
1055{
1056 might_sleep();
1057
006a0973 1058 if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) {
db125360 1059 base_work->auto_free = 0;
db125360
TH
1060 wb_queue_work(&bdi->wb, base_work);
1061 }
1062}
1063
703c2708
TH
1064#endif /* CONFIG_CGROUP_WRITEBACK */
1065
e8e8a0c6
JA
1066/*
1067 * Add in the number of potentially dirty inodes, because each inode
1068 * write can dirty pagecache in the underlying blockdev.
1069 */
1070static unsigned long get_nr_dirty_pages(void)
1071{
1072 return global_node_page_state(NR_FILE_DIRTY) +
1073 global_node_page_state(NR_UNSTABLE_NFS) +
1074 get_nr_dirty_inodes();
1075}
1076
1077static void wb_start_writeback(struct bdi_writeback *wb, enum wb_reason reason)
b6e51316 1078{
c00ddad3
TH
1079 if (!wb_has_dirty_io(wb))
1080 return;
1081
aac8d41c
JA
1082 /*
1083 * All callers of this function want to start writeback of all
1084 * dirty pages. Places like vmscan can call this at a very
1085 * high frequency, causing pointless allocations of tons of
1086 * work items and keeping the flusher threads busy retrieving
1087 * that work. Ensure that we only allow one of them pending and
85009b4f 1088 * inflight at the time.
aac8d41c 1089 */
85009b4f
JA
1090 if (test_bit(WB_start_all, &wb->state) ||
1091 test_and_set_bit(WB_start_all, &wb->state))
aac8d41c
JA
1092 return;
1093
85009b4f
JA
1094 wb->start_all_reason = reason;
1095 wb_wakeup(wb);
c5444198 1096}
d3ddec76 1097
c5444198 1098/**
9ecf4866
TH
1099 * wb_start_background_writeback - start background writeback
1100 * @wb: bdi_writback to write from
c5444198
CH
1101 *
1102 * Description:
6585027a 1103 * This makes sure WB_SYNC_NONE background writeback happens. When
9ecf4866 1104 * this function returns, it is only guaranteed that for given wb
6585027a
JK
1105 * some IO is happening if we are over background dirty threshold.
1106 * Caller need not hold sb s_umount semaphore.
c5444198 1107 */
9ecf4866 1108void wb_start_background_writeback(struct bdi_writeback *wb)
c5444198 1109{
6585027a
JK
1110 /*
1111 * We just wake up the flusher thread. It will perform background
1112 * writeback as soon as there is no other work to do.
1113 */
5634cc2a 1114 trace_writeback_wake_background(wb);
9ecf4866 1115 wb_wakeup(wb);
1da177e4
LT
1116}
1117
a66979ab
DC
1118/*
1119 * Remove the inode from the writeback list it is on.
1120 */
c7f54084 1121void inode_io_list_del(struct inode *inode)
a66979ab 1122{
87e1d789 1123 struct bdi_writeback *wb;
f758eeab 1124
87e1d789 1125 wb = inode_to_wb_and_lock_list(inode);
c7f54084 1126 inode_io_list_del_locked(inode, wb);
52ebea74 1127 spin_unlock(&wb->list_lock);
a66979ab
DC
1128}
1129
6c60d2b5
DC
1130/*
1131 * mark an inode as under writeback on the sb
1132 */
1133void sb_mark_inode_writeback(struct inode *inode)
1134{
1135 struct super_block *sb = inode->i_sb;
1136 unsigned long flags;
1137
1138 if (list_empty(&inode->i_wb_list)) {
1139 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
9a46b04f 1140 if (list_empty(&inode->i_wb_list)) {
6c60d2b5 1141 list_add_tail(&inode->i_wb_list, &sb->s_inodes_wb);
9a46b04f
BF
1142 trace_sb_mark_inode_writeback(inode);
1143 }
6c60d2b5
DC
1144 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1145 }
1146}
1147
1148/*
1149 * clear an inode as under writeback on the sb
1150 */
1151void sb_clear_inode_writeback(struct inode *inode)
1152{
1153 struct super_block *sb = inode->i_sb;
1154 unsigned long flags;
1155
1156 if (!list_empty(&inode->i_wb_list)) {
1157 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
9a46b04f
BF
1158 if (!list_empty(&inode->i_wb_list)) {
1159 list_del_init(&inode->i_wb_list);
1160 trace_sb_clear_inode_writeback(inode);
1161 }
6c60d2b5
DC
1162 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1163 }
1164}
1165
6610a0bc
AM
1166/*
1167 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
1168 * furthest end of its superblock's dirty-inode list.
1169 *
1170 * Before stamping the inode's ->dirtied_when, we check to see whether it is
66f3b8e2 1171 * already the most-recently-dirtied inode on the b_dirty list. If that is
6610a0bc
AM
1172 * the case then the inode must have been redirtied while it was being written
1173 * out and we don't reset its dirtied_when.
1174 */
f758eeab 1175static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
6610a0bc 1176{
03ba3782 1177 if (!list_empty(&wb->b_dirty)) {
66f3b8e2 1178 struct inode *tail;
6610a0bc 1179
7ccf19a8 1180 tail = wb_inode(wb->b_dirty.next);
66f3b8e2 1181 if (time_before(inode->dirtied_when, tail->dirtied_when))
6610a0bc
AM
1182 inode->dirtied_when = jiffies;
1183 }
c7f54084 1184 inode_io_list_move_locked(inode, wb, &wb->b_dirty);
6610a0bc
AM
1185}
1186
c986d1e2 1187/*
66f3b8e2 1188 * requeue inode for re-scanning after bdi->b_io list is exhausted.
c986d1e2 1189 */
f758eeab 1190static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
c986d1e2 1191{
c7f54084 1192 inode_io_list_move_locked(inode, wb, &wb->b_more_io);
c986d1e2
AM
1193}
1194
1c0eeaf5
JE
1195static void inode_sync_complete(struct inode *inode)
1196{
365b94ae 1197 inode->i_state &= ~I_SYNC;
4eff96dd
JK
1198 /* If inode is clean an unused, put it into LRU now... */
1199 inode_add_lru(inode);
365b94ae 1200 /* Waiters must see I_SYNC cleared before being woken up */
1c0eeaf5
JE
1201 smp_mb();
1202 wake_up_bit(&inode->i_state, __I_SYNC);
1203}
1204
d2caa3c5
JL
1205static bool inode_dirtied_after(struct inode *inode, unsigned long t)
1206{
1207 bool ret = time_after(inode->dirtied_when, t);
1208#ifndef CONFIG_64BIT
1209 /*
1210 * For inodes being constantly redirtied, dirtied_when can get stuck.
1211 * It _appears_ to be in the future, but is actually in distant past.
1212 * This test is necessary to prevent such wrapped-around relative times
5b0830cb 1213 * from permanently stopping the whole bdi writeback.
d2caa3c5
JL
1214 */
1215 ret = ret && time_before_eq(inode->dirtied_when, jiffies);
1216#endif
1217 return ret;
1218}
1219
0ae45f63
TT
1220#define EXPIRE_DIRTY_ATIME 0x0001
1221
2c136579 1222/*
0e2f2b23 1223 * Move expired (dirtied before work->older_than_this) dirty inodes from
697e6fed 1224 * @delaying_queue to @dispatch_queue.
2c136579 1225 */
e84d0a4f 1226static int move_expired_inodes(struct list_head *delaying_queue,
2c136579 1227 struct list_head *dispatch_queue,
0ae45f63 1228 int flags,
ad4e38dd 1229 struct wb_writeback_work *work)
2c136579 1230{
0ae45f63
TT
1231 unsigned long *older_than_this = NULL;
1232 unsigned long expire_time;
5c03449d
SL
1233 LIST_HEAD(tmp);
1234 struct list_head *pos, *node;
cf137307 1235 struct super_block *sb = NULL;
5c03449d 1236 struct inode *inode;
cf137307 1237 int do_sb_sort = 0;
e84d0a4f 1238 int moved = 0;
5c03449d 1239
0ae45f63
TT
1240 if ((flags & EXPIRE_DIRTY_ATIME) == 0)
1241 older_than_this = work->older_than_this;
a2f48706
TT
1242 else if (!work->for_sync) {
1243 expire_time = jiffies - (dirtytime_expire_interval * HZ);
0ae45f63
TT
1244 older_than_this = &expire_time;
1245 }
2c136579 1246 while (!list_empty(delaying_queue)) {
7ccf19a8 1247 inode = wb_inode(delaying_queue->prev);
0ae45f63
TT
1248 if (older_than_this &&
1249 inode_dirtied_after(inode, *older_than_this))
2c136579 1250 break;
c7f54084 1251 list_move(&inode->i_io_list, &tmp);
a8855990 1252 moved++;
0ae45f63
TT
1253 if (flags & EXPIRE_DIRTY_ATIME)
1254 set_bit(__I_DIRTY_TIME_EXPIRED, &inode->i_state);
a8855990
JK
1255 if (sb_is_blkdev_sb(inode->i_sb))
1256 continue;
cf137307
JA
1257 if (sb && sb != inode->i_sb)
1258 do_sb_sort = 1;
1259 sb = inode->i_sb;
5c03449d
SL
1260 }
1261
cf137307
JA
1262 /* just one sb in list, splice to dispatch_queue and we're done */
1263 if (!do_sb_sort) {
1264 list_splice(&tmp, dispatch_queue);
e84d0a4f 1265 goto out;
cf137307
JA
1266 }
1267
5c03449d
SL
1268 /* Move inodes from one superblock together */
1269 while (!list_empty(&tmp)) {
7ccf19a8 1270 sb = wb_inode(tmp.prev)->i_sb;
5c03449d 1271 list_for_each_prev_safe(pos, node, &tmp) {
7ccf19a8 1272 inode = wb_inode(pos);
5c03449d 1273 if (inode->i_sb == sb)
c7f54084 1274 list_move(&inode->i_io_list, dispatch_queue);
5c03449d 1275 }
2c136579 1276 }
e84d0a4f
WF
1277out:
1278 return moved;
2c136579
FW
1279}
1280
1281/*
1282 * Queue all expired dirty inodes for io, eldest first.
4ea879b9
WF
1283 * Before
1284 * newly dirtied b_dirty b_io b_more_io
1285 * =============> gf edc BA
1286 * After
1287 * newly dirtied b_dirty b_io b_more_io
1288 * =============> g fBAedc
1289 * |
1290 * +--> dequeue for IO
2c136579 1291 */
ad4e38dd 1292static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work)
66f3b8e2 1293{
e84d0a4f 1294 int moved;
0ae45f63 1295
f758eeab 1296 assert_spin_locked(&wb->list_lock);
4ea879b9 1297 list_splice_init(&wb->b_more_io, &wb->b_io);
0ae45f63
TT
1298 moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, 0, work);
1299 moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
1300 EXPIRE_DIRTY_ATIME, work);
d6c10f1f
TH
1301 if (moved)
1302 wb_io_lists_populated(wb);
ad4e38dd 1303 trace_writeback_queue_io(wb, work, moved);
66f3b8e2
JA
1304}
1305
a9185b41 1306static int write_inode(struct inode *inode, struct writeback_control *wbc)
08d8e974 1307{
9fb0a7da
TH
1308 int ret;
1309
1310 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
1311 trace_writeback_write_inode_start(inode, wbc);
1312 ret = inode->i_sb->s_op->write_inode(inode, wbc);
1313 trace_writeback_write_inode(inode, wbc);
1314 return ret;
1315 }
03ba3782 1316 return 0;
08d8e974 1317}
08d8e974 1318
1da177e4 1319/*
169ebd90
JK
1320 * Wait for writeback on an inode to complete. Called with i_lock held.
1321 * Caller must make sure inode cannot go away when we drop i_lock.
01c03194 1322 */
169ebd90
JK
1323static void __inode_wait_for_writeback(struct inode *inode)
1324 __releases(inode->i_lock)
1325 __acquires(inode->i_lock)
01c03194
CH
1326{
1327 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
1328 wait_queue_head_t *wqh;
1329
1330 wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
250df6ed
DC
1331 while (inode->i_state & I_SYNC) {
1332 spin_unlock(&inode->i_lock);
74316201
N
1333 __wait_on_bit(wqh, &wq, bit_wait,
1334 TASK_UNINTERRUPTIBLE);
250df6ed 1335 spin_lock(&inode->i_lock);
58a9d3d8 1336 }
01c03194
CH
1337}
1338
169ebd90
JK
1339/*
1340 * Wait for writeback on an inode to complete. Caller must have inode pinned.
1341 */
1342void inode_wait_for_writeback(struct inode *inode)
1343{
1344 spin_lock(&inode->i_lock);
1345 __inode_wait_for_writeback(inode);
1346 spin_unlock(&inode->i_lock);
1347}
1348
1349/*
1350 * Sleep until I_SYNC is cleared. This function must be called with i_lock
1351 * held and drops it. It is aimed for callers not holding any inode reference
1352 * so once i_lock is dropped, inode can go away.
1353 */
1354static void inode_sleep_on_writeback(struct inode *inode)
1355 __releases(inode->i_lock)
1356{
1357 DEFINE_WAIT(wait);
1358 wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1359 int sleep;
1360
1361 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1362 sleep = inode->i_state & I_SYNC;
1363 spin_unlock(&inode->i_lock);
1364 if (sleep)
1365 schedule();
1366 finish_wait(wqh, &wait);
1367}
1368
ccb26b5a
JK
1369/*
1370 * Find proper writeback list for the inode depending on its current state and
1371 * possibly also change of its state while we were doing writeback. Here we
1372 * handle things such as livelock prevention or fairness of writeback among
1373 * inodes. This function can be called only by flusher thread - noone else
1374 * processes all inodes in writeback lists and requeueing inodes behind flusher
1375 * thread's back can have unexpected consequences.
1376 */
1377static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
1378 struct writeback_control *wbc)
1379{
1380 if (inode->i_state & I_FREEING)
1381 return;
1382
1383 /*
1384 * Sync livelock prevention. Each inode is tagged and synced in one
1385 * shot. If still dirty, it will be redirty_tail()'ed below. Update
1386 * the dirty time to prevent enqueue and sync it again.
1387 */
1388 if ((inode->i_state & I_DIRTY) &&
1389 (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
1390 inode->dirtied_when = jiffies;
1391
4f8ad655
JK
1392 if (wbc->pages_skipped) {
1393 /*
1394 * writeback is not making progress due to locked
1395 * buffers. Skip this inode for now.
1396 */
1397 redirty_tail(inode, wb);
1398 return;
1399 }
1400
ccb26b5a
JK
1401 if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
1402 /*
1403 * We didn't write back all the pages. nfs_writepages()
1404 * sometimes bales out without doing anything.
1405 */
1406 if (wbc->nr_to_write <= 0) {
1407 /* Slice used up. Queue for next turn. */
1408 requeue_io(inode, wb);
1409 } else {
1410 /*
1411 * Writeback blocked by something other than
1412 * congestion. Delay the inode for some time to
1413 * avoid spinning on the CPU (100% iowait)
1414 * retrying writeback of the dirty page/inode
1415 * that cannot be performed immediately.
1416 */
1417 redirty_tail(inode, wb);
1418 }
1419 } else if (inode->i_state & I_DIRTY) {
1420 /*
1421 * Filesystems can dirty the inode during writeback operations,
1422 * such as delayed allocation during submission or metadata
1423 * updates after data IO completion.
1424 */
1425 redirty_tail(inode, wb);
0ae45f63 1426 } else if (inode->i_state & I_DIRTY_TIME) {
a2f48706 1427 inode->dirtied_when = jiffies;
c7f54084 1428 inode_io_list_move_locked(inode, wb, &wb->b_dirty_time);
ccb26b5a
JK
1429 } else {
1430 /* The inode is clean. Remove from writeback lists. */
c7f54084 1431 inode_io_list_del_locked(inode, wb);
ccb26b5a
JK
1432 }
1433}
1434
01c03194 1435/*
4f8ad655
JK
1436 * Write out an inode and its dirty pages. Do not update the writeback list
1437 * linkage. That is left to the caller. The caller is also responsible for
1438 * setting I_SYNC flag and calling inode_sync_complete() to clear it.
1da177e4
LT
1439 */
1440static int
cd8ed2a4 1441__writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
1da177e4 1442{
1da177e4 1443 struct address_space *mapping = inode->i_mapping;
251d6a47 1444 long nr_to_write = wbc->nr_to_write;
01c03194 1445 unsigned dirty;
1da177e4
LT
1446 int ret;
1447
4f8ad655 1448 WARN_ON(!(inode->i_state & I_SYNC));
1da177e4 1449
9fb0a7da
TH
1450 trace_writeback_single_inode_start(inode, wbc, nr_to_write);
1451
1da177e4
LT
1452 ret = do_writepages(mapping, wbc);
1453
26821ed4
CH
1454 /*
1455 * Make sure to wait on the data before writing out the metadata.
1456 * This is important for filesystems that modify metadata on data
7747bd4b
DC
1457 * I/O completion. We don't do it for sync(2) writeback because it has a
1458 * separate, external IO completion path and ->sync_fs for guaranteeing
1459 * inode metadata is written back correctly.
26821ed4 1460 */
7747bd4b 1461 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
26821ed4 1462 int err = filemap_fdatawait(mapping);
1da177e4
LT
1463 if (ret == 0)
1464 ret = err;
1465 }
1466
5547e8aa
DM
1467 /*
1468 * Some filesystems may redirty the inode during the writeback
1469 * due to delalloc, clear dirty metadata flags right before
1470 * write_inode()
1471 */
250df6ed 1472 spin_lock(&inode->i_lock);
9c6ac78e 1473
5547e8aa 1474 dirty = inode->i_state & I_DIRTY;
a2f48706 1475 if (inode->i_state & I_DIRTY_TIME) {
0e11f644 1476 if ((dirty & I_DIRTY_INODE) ||
dc5ff2b1 1477 wbc->sync_mode == WB_SYNC_ALL ||
a2f48706
TT
1478 unlikely(inode->i_state & I_DIRTY_TIME_EXPIRED) ||
1479 unlikely(time_after(jiffies,
1480 (inode->dirtied_time_when +
1481 dirtytime_expire_interval * HZ)))) {
1482 dirty |= I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED;
1483 trace_writeback_lazytime(inode);
1484 }
1485 } else
1486 inode->i_state &= ~I_DIRTY_TIME_EXPIRED;
0ae45f63 1487 inode->i_state &= ~dirty;
9c6ac78e
TH
1488
1489 /*
1490 * Paired with smp_mb() in __mark_inode_dirty(). This allows
1491 * __mark_inode_dirty() to test i_state without grabbing i_lock -
1492 * either they see the I_DIRTY bits cleared or we see the dirtied
1493 * inode.
1494 *
1495 * I_DIRTY_PAGES is always cleared together above even if @mapping
1496 * still has dirty pages. The flag is reinstated after smp_mb() if
1497 * necessary. This guarantees that either __mark_inode_dirty()
1498 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
1499 */
1500 smp_mb();
1501
1502 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1503 inode->i_state |= I_DIRTY_PAGES;
1504
250df6ed 1505 spin_unlock(&inode->i_lock);
9c6ac78e 1506
0ae45f63
TT
1507 if (dirty & I_DIRTY_TIME)
1508 mark_inode_dirty_sync(inode);
26821ed4 1509 /* Don't write the inode if only I_DIRTY_PAGES was set */
0ae45f63 1510 if (dirty & ~I_DIRTY_PAGES) {
a9185b41 1511 int err = write_inode(inode, wbc);
1da177e4
LT
1512 if (ret == 0)
1513 ret = err;
1514 }
4f8ad655
JK
1515 trace_writeback_single_inode(inode, wbc, nr_to_write);
1516 return ret;
1517}
1518
1519/*
1520 * Write out an inode's dirty pages. Either the caller has an active reference
1521 * on the inode or the inode has I_WILL_FREE set.
1522 *
1523 * This function is designed to be called for writing back one inode which
1524 * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
1525 * and does more profound writeback list handling in writeback_sb_inodes().
1526 */
aaf25593
TH
1527static int writeback_single_inode(struct inode *inode,
1528 struct writeback_control *wbc)
4f8ad655 1529{
aaf25593 1530 struct bdi_writeback *wb;
4f8ad655
JK
1531 int ret = 0;
1532
1533 spin_lock(&inode->i_lock);
1534 if (!atomic_read(&inode->i_count))
1535 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
1536 else
1537 WARN_ON(inode->i_state & I_WILL_FREE);
1538
1539 if (inode->i_state & I_SYNC) {
1540 if (wbc->sync_mode != WB_SYNC_ALL)
1541 goto out;
1542 /*
169ebd90
JK
1543 * It's a data-integrity sync. We must wait. Since callers hold
1544 * inode reference or inode has I_WILL_FREE set, it cannot go
1545 * away under us.
4f8ad655 1546 */
169ebd90 1547 __inode_wait_for_writeback(inode);
4f8ad655
JK
1548 }
1549 WARN_ON(inode->i_state & I_SYNC);
1550 /*
f9b0e058
JK
1551 * Skip inode if it is clean and we have no outstanding writeback in
1552 * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this
1553 * function since flusher thread may be doing for example sync in
1554 * parallel and if we move the inode, it could get skipped. So here we
1555 * make sure inode is on some writeback list and leave it there unless
1556 * we have completely cleaned the inode.
4f8ad655 1557 */
0ae45f63 1558 if (!(inode->i_state & I_DIRTY_ALL) &&
f9b0e058
JK
1559 (wbc->sync_mode != WB_SYNC_ALL ||
1560 !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
4f8ad655
JK
1561 goto out;
1562 inode->i_state |= I_SYNC;
b16b1deb 1563 wbc_attach_and_unlock_inode(wbc, inode);
4f8ad655 1564
cd8ed2a4 1565 ret = __writeback_single_inode(inode, wbc);
1da177e4 1566
b16b1deb 1567 wbc_detach_inode(wbc);
aaf25593
TH
1568
1569 wb = inode_to_wb_and_lock_list(inode);
250df6ed 1570 spin_lock(&inode->i_lock);
4f8ad655
JK
1571 /*
1572 * If inode is clean, remove it from writeback lists. Otherwise don't
1573 * touch it. See comment above for explanation.
1574 */
0ae45f63 1575 if (!(inode->i_state & I_DIRTY_ALL))
c7f54084 1576 inode_io_list_del_locked(inode, wb);
4f8ad655 1577 spin_unlock(&wb->list_lock);
1c0eeaf5 1578 inode_sync_complete(inode);
4f8ad655
JK
1579out:
1580 spin_unlock(&inode->i_lock);
1da177e4
LT
1581 return ret;
1582}
1583
a88a341a 1584static long writeback_chunk_size(struct bdi_writeback *wb,
1a12d8bd 1585 struct wb_writeback_work *work)
d46db3d5
WF
1586{
1587 long pages;
1588
1589 /*
1590 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
1591 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
1592 * here avoids calling into writeback_inodes_wb() more than once.
1593 *
1594 * The intended call sequence for WB_SYNC_ALL writeback is:
1595 *
1596 * wb_writeback()
1597 * writeback_sb_inodes() <== called only once
1598 * write_cache_pages() <== called once for each inode
1599 * (quickly) tag currently dirty pages
1600 * (maybe slowly) sync all tagged pages
1601 */
1602 if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
1603 pages = LONG_MAX;
1a12d8bd 1604 else {
a88a341a 1605 pages = min(wb->avg_write_bandwidth / 2,
dcc25ae7 1606 global_wb_domain.dirty_limit / DIRTY_SCOPE);
1a12d8bd
WF
1607 pages = min(pages, work->nr_pages);
1608 pages = round_down(pages + MIN_WRITEBACK_PAGES,
1609 MIN_WRITEBACK_PAGES);
1610 }
d46db3d5
WF
1611
1612 return pages;
1613}
1614
f11c9c5c
ES
1615/*
1616 * Write a portion of b_io inodes which belong to @sb.
edadfb10 1617 *
d46db3d5 1618 * Return the number of pages and/or inodes written.
0ba13fd1
LT
1619 *
1620 * NOTE! This is called with wb->list_lock held, and will
1621 * unlock and relock that for each inode it ends up doing
1622 * IO for.
f11c9c5c 1623 */
d46db3d5
WF
1624static long writeback_sb_inodes(struct super_block *sb,
1625 struct bdi_writeback *wb,
1626 struct wb_writeback_work *work)
1da177e4 1627{
d46db3d5
WF
1628 struct writeback_control wbc = {
1629 .sync_mode = work->sync_mode,
1630 .tagged_writepages = work->tagged_writepages,
1631 .for_kupdate = work->for_kupdate,
1632 .for_background = work->for_background,
7747bd4b 1633 .for_sync = work->for_sync,
d46db3d5
WF
1634 .range_cyclic = work->range_cyclic,
1635 .range_start = 0,
1636 .range_end = LLONG_MAX,
1637 };
1638 unsigned long start_time = jiffies;
1639 long write_chunk;
1640 long wrote = 0; /* count both pages and inodes */
1641
03ba3782 1642 while (!list_empty(&wb->b_io)) {
7ccf19a8 1643 struct inode *inode = wb_inode(wb->b_io.prev);
aaf25593 1644 struct bdi_writeback *tmp_wb;
edadfb10
CH
1645
1646 if (inode->i_sb != sb) {
d46db3d5 1647 if (work->sb) {
edadfb10
CH
1648 /*
1649 * We only want to write back data for this
1650 * superblock, move all inodes not belonging
1651 * to it back onto the dirty list.
1652 */
f758eeab 1653 redirty_tail(inode, wb);
edadfb10
CH
1654 continue;
1655 }
1656
1657 /*
1658 * The inode belongs to a different superblock.
1659 * Bounce back to the caller to unpin this and
1660 * pin the next superblock.
1661 */
d46db3d5 1662 break;
edadfb10
CH
1663 }
1664
9843b76a 1665 /*
331cbdee
WL
1666 * Don't bother with new inodes or inodes being freed, first
1667 * kind does not need periodic writeout yet, and for the latter
9843b76a
CH
1668 * kind writeout is handled by the freer.
1669 */
250df6ed 1670 spin_lock(&inode->i_lock);
9843b76a 1671 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
250df6ed 1672 spin_unlock(&inode->i_lock);
fcc5c222 1673 redirty_tail(inode, wb);
7ef0d737
NP
1674 continue;
1675 }
cc1676d9
JK
1676 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
1677 /*
1678 * If this inode is locked for writeback and we are not
1679 * doing writeback-for-data-integrity, move it to
1680 * b_more_io so that writeback can proceed with the
1681 * other inodes on s_io.
1682 *
1683 * We'll have another go at writing back this inode
1684 * when we completed a full scan of b_io.
1685 */
1686 spin_unlock(&inode->i_lock);
1687 requeue_io(inode, wb);
1688 trace_writeback_sb_inodes_requeue(inode);
1689 continue;
1690 }
f0d07b7f
JK
1691 spin_unlock(&wb->list_lock);
1692
4f8ad655
JK
1693 /*
1694 * We already requeued the inode if it had I_SYNC set and we
1695 * are doing WB_SYNC_NONE writeback. So this catches only the
1696 * WB_SYNC_ALL case.
1697 */
169ebd90
JK
1698 if (inode->i_state & I_SYNC) {
1699 /* Wait for I_SYNC. This function drops i_lock... */
1700 inode_sleep_on_writeback(inode);
1701 /* Inode may be gone, start again */
ead188f9 1702 spin_lock(&wb->list_lock);
169ebd90
JK
1703 continue;
1704 }
4f8ad655 1705 inode->i_state |= I_SYNC;
b16b1deb 1706 wbc_attach_and_unlock_inode(&wbc, inode);
169ebd90 1707
a88a341a 1708 write_chunk = writeback_chunk_size(wb, work);
d46db3d5
WF
1709 wbc.nr_to_write = write_chunk;
1710 wbc.pages_skipped = 0;
250df6ed 1711
169ebd90
JK
1712 /*
1713 * We use I_SYNC to pin the inode in memory. While it is set
1714 * evict_inode() will wait so the inode cannot be freed.
1715 */
cd8ed2a4 1716 __writeback_single_inode(inode, &wbc);
250df6ed 1717
b16b1deb 1718 wbc_detach_inode(&wbc);
d46db3d5
WF
1719 work->nr_pages -= write_chunk - wbc.nr_to_write;
1720 wrote += write_chunk - wbc.nr_to_write;
590dca3a
CM
1721
1722 if (need_resched()) {
1723 /*
1724 * We're trying to balance between building up a nice
1725 * long list of IOs to improve our merge rate, and
1726 * getting those IOs out quickly for anyone throttling
1727 * in balance_dirty_pages(). cond_resched() doesn't
1728 * unplug, so get our IOs out the door before we
1729 * give up the CPU.
1730 */
1731 blk_flush_plug(current);
1732 cond_resched();
1733 }
1734
aaf25593
TH
1735 /*
1736 * Requeue @inode if still dirty. Be careful as @inode may
1737 * have been switched to another wb in the meantime.
1738 */
1739 tmp_wb = inode_to_wb_and_lock_list(inode);
4f8ad655 1740 spin_lock(&inode->i_lock);
0ae45f63 1741 if (!(inode->i_state & I_DIRTY_ALL))
d46db3d5 1742 wrote++;
aaf25593 1743 requeue_inode(inode, tmp_wb, &wbc);
4f8ad655 1744 inode_sync_complete(inode);
0f1b1fd8 1745 spin_unlock(&inode->i_lock);
590dca3a 1746
aaf25593
TH
1747 if (unlikely(tmp_wb != wb)) {
1748 spin_unlock(&tmp_wb->list_lock);
1749 spin_lock(&wb->list_lock);
1750 }
1751
d46db3d5
WF
1752 /*
1753 * bail out to wb_writeback() often enough to check
1754 * background threshold and other termination conditions.
1755 */
1756 if (wrote) {
1757 if (time_is_before_jiffies(start_time + HZ / 10UL))
1758 break;
1759 if (work->nr_pages <= 0)
1760 break;
8bc3be27 1761 }
1da177e4 1762 }
d46db3d5 1763 return wrote;
f11c9c5c
ES
1764}
1765
d46db3d5
WF
1766static long __writeback_inodes_wb(struct bdi_writeback *wb,
1767 struct wb_writeback_work *work)
f11c9c5c 1768{
d46db3d5
WF
1769 unsigned long start_time = jiffies;
1770 long wrote = 0;
38f21977 1771
f11c9c5c 1772 while (!list_empty(&wb->b_io)) {
7ccf19a8 1773 struct inode *inode = wb_inode(wb->b_io.prev);
f11c9c5c 1774 struct super_block *sb = inode->i_sb;
9ecc2738 1775
eb6ef3df 1776 if (!trylock_super(sb)) {
0e995816 1777 /*
eb6ef3df 1778 * trylock_super() may fail consistently due to
0e995816
WF
1779 * s_umount being grabbed by someone else. Don't use
1780 * requeue_io() to avoid busy retrying the inode/sb.
1781 */
1782 redirty_tail(inode, wb);
edadfb10 1783 continue;
f11c9c5c 1784 }
d46db3d5 1785 wrote += writeback_sb_inodes(sb, wb, work);
eb6ef3df 1786 up_read(&sb->s_umount);
f11c9c5c 1787
d46db3d5
WF
1788 /* refer to the same tests at the end of writeback_sb_inodes */
1789 if (wrote) {
1790 if (time_is_before_jiffies(start_time + HZ / 10UL))
1791 break;
1792 if (work->nr_pages <= 0)
1793 break;
1794 }
f11c9c5c 1795 }
66f3b8e2 1796 /* Leave any unwritten inodes on b_io */
d46db3d5 1797 return wrote;
66f3b8e2
JA
1798}
1799
7d9f073b 1800static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
0e175a18 1801 enum wb_reason reason)
edadfb10 1802{
d46db3d5
WF
1803 struct wb_writeback_work work = {
1804 .nr_pages = nr_pages,
1805 .sync_mode = WB_SYNC_NONE,
1806 .range_cyclic = 1,
0e175a18 1807 .reason = reason,
d46db3d5 1808 };
505a666e 1809 struct blk_plug plug;
edadfb10 1810
505a666e 1811 blk_start_plug(&plug);
f758eeab 1812 spin_lock(&wb->list_lock);
424b351f 1813 if (list_empty(&wb->b_io))
ad4e38dd 1814 queue_io(wb, &work);
d46db3d5 1815 __writeback_inodes_wb(wb, &work);
f758eeab 1816 spin_unlock(&wb->list_lock);
505a666e 1817 blk_finish_plug(&plug);
edadfb10 1818
d46db3d5
WF
1819 return nr_pages - work.nr_pages;
1820}
03ba3782 1821
03ba3782
JA
1822/*
1823 * Explicit flushing or periodic writeback of "old" data.
66f3b8e2 1824 *
03ba3782
JA
1825 * Define "old": the first time one of an inode's pages is dirtied, we mark the
1826 * dirtying-time in the inode's address_space. So this periodic writeback code
1827 * just walks the superblock inode list, writing back any inodes which are
1828 * older than a specific point in time.
66f3b8e2 1829 *
03ba3782
JA
1830 * Try to run once per dirty_writeback_interval. But if a writeback event
1831 * takes longer than a dirty_writeback_interval interval, then leave a
1832 * one-second gap.
66f3b8e2 1833 *
03ba3782
JA
1834 * older_than_this takes precedence over nr_to_write. So we'll only write back
1835 * all dirty pages if they are all attached to "old" mappings.
66f3b8e2 1836 */
c4a77a6c 1837static long wb_writeback(struct bdi_writeback *wb,
83ba7b07 1838 struct wb_writeback_work *work)
66f3b8e2 1839{
e98be2d5 1840 unsigned long wb_start = jiffies;
d46db3d5 1841 long nr_pages = work->nr_pages;
0dc83bd3 1842 unsigned long oldest_jif;
a5989bdc 1843 struct inode *inode;
d46db3d5 1844 long progress;
505a666e 1845 struct blk_plug plug;
66f3b8e2 1846
0dc83bd3
JK
1847 oldest_jif = jiffies;
1848 work->older_than_this = &oldest_jif;
38f21977 1849
505a666e 1850 blk_start_plug(&plug);
e8dfc305 1851 spin_lock(&wb->list_lock);
03ba3782
JA
1852 for (;;) {
1853 /*
d3ddec76 1854 * Stop writeback when nr_pages has been consumed
03ba3782 1855 */
83ba7b07 1856 if (work->nr_pages <= 0)
03ba3782 1857 break;
66f3b8e2 1858
aa373cf5
JK
1859 /*
1860 * Background writeout and kupdate-style writeback may
1861 * run forever. Stop them if there is other work to do
1862 * so that e.g. sync can proceed. They'll be restarted
1863 * after the other works are all done.
1864 */
1865 if ((work->for_background || work->for_kupdate) &&
f0054bb1 1866 !list_empty(&wb->work_list))
aa373cf5
JK
1867 break;
1868
38f21977 1869 /*
d3ddec76
WF
1870 * For background writeout, stop when we are below the
1871 * background dirty threshold
38f21977 1872 */
aa661bbe 1873 if (work->for_background && !wb_over_bg_thresh(wb))
03ba3782 1874 break;
38f21977 1875
1bc36b64
JK
1876 /*
1877 * Kupdate and background works are special and we want to
1878 * include all inodes that need writing. Livelock avoidance is
1879 * handled by these works yielding to any other work so we are
1880 * safe.
1881 */
ba9aa839 1882 if (work->for_kupdate) {
0dc83bd3 1883 oldest_jif = jiffies -
ba9aa839 1884 msecs_to_jiffies(dirty_expire_interval * 10);
1bc36b64 1885 } else if (work->for_background)
0dc83bd3 1886 oldest_jif = jiffies;
028c2dd1 1887
5634cc2a 1888 trace_writeback_start(wb, work);
e8dfc305 1889 if (list_empty(&wb->b_io))
ad4e38dd 1890 queue_io(wb, work);
83ba7b07 1891 if (work->sb)
d46db3d5 1892 progress = writeback_sb_inodes(work->sb, wb, work);
edadfb10 1893 else
d46db3d5 1894 progress = __writeback_inodes_wb(wb, work);
5634cc2a 1895 trace_writeback_written(wb, work);
028c2dd1 1896
e98be2d5 1897 wb_update_bandwidth(wb, wb_start);
03ba3782
JA
1898
1899 /*
e6fb6da2
WF
1900 * Did we write something? Try for more
1901 *
1902 * Dirty inodes are moved to b_io for writeback in batches.
1903 * The completion of the current batch does not necessarily
1904 * mean the overall work is done. So we keep looping as long
1905 * as made some progress on cleaning pages or inodes.
03ba3782 1906 */
d46db3d5 1907 if (progress)
71fd05a8
JA
1908 continue;
1909 /*
e6fb6da2 1910 * No more inodes for IO, bail
71fd05a8 1911 */
b7a2441f 1912 if (list_empty(&wb->b_more_io))
03ba3782 1913 break;
71fd05a8
JA
1914 /*
1915 * Nothing written. Wait for some inode to
1916 * become available for writeback. Otherwise
1917 * we'll just busyloop.
1918 */
bace9248
TE
1919 trace_writeback_wait(wb, work);
1920 inode = wb_inode(wb->b_more_io.prev);
1921 spin_lock(&inode->i_lock);
1922 spin_unlock(&wb->list_lock);
1923 /* This function drops i_lock... */
1924 inode_sleep_on_writeback(inode);
1925 spin_lock(&wb->list_lock);
03ba3782 1926 }
e8dfc305 1927 spin_unlock(&wb->list_lock);
505a666e 1928 blk_finish_plug(&plug);
03ba3782 1929
d46db3d5 1930 return nr_pages - work->nr_pages;
03ba3782
JA
1931}
1932
1933/*
83ba7b07 1934 * Return the next wb_writeback_work struct that hasn't been processed yet.
03ba3782 1935 */
f0054bb1 1936static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
03ba3782 1937{
83ba7b07 1938 struct wb_writeback_work *work = NULL;
03ba3782 1939
f0054bb1
TH
1940 spin_lock_bh(&wb->work_lock);
1941 if (!list_empty(&wb->work_list)) {
1942 work = list_entry(wb->work_list.next,
83ba7b07
CH
1943 struct wb_writeback_work, list);
1944 list_del_init(&work->list);
03ba3782 1945 }
f0054bb1 1946 spin_unlock_bh(&wb->work_lock);
83ba7b07 1947 return work;
03ba3782
JA
1948}
1949
6585027a
JK
1950static long wb_check_background_flush(struct bdi_writeback *wb)
1951{
aa661bbe 1952 if (wb_over_bg_thresh(wb)) {
6585027a
JK
1953
1954 struct wb_writeback_work work = {
1955 .nr_pages = LONG_MAX,
1956 .sync_mode = WB_SYNC_NONE,
1957 .for_background = 1,
1958 .range_cyclic = 1,
0e175a18 1959 .reason = WB_REASON_BACKGROUND,
6585027a
JK
1960 };
1961
1962 return wb_writeback(wb, &work);
1963 }
1964
1965 return 0;
1966}
1967
03ba3782
JA
1968static long wb_check_old_data_flush(struct bdi_writeback *wb)
1969{
1970 unsigned long expired;
1971 long nr_pages;
1972
69b62d01
JA
1973 /*
1974 * When set to zero, disable periodic writeback
1975 */
1976 if (!dirty_writeback_interval)
1977 return 0;
1978
03ba3782
JA
1979 expired = wb->last_old_flush +
1980 msecs_to_jiffies(dirty_writeback_interval * 10);
1981 if (time_before(jiffies, expired))
1982 return 0;
1983
1984 wb->last_old_flush = jiffies;
cdf01dd5 1985 nr_pages = get_nr_dirty_pages();
03ba3782 1986
c4a77a6c 1987 if (nr_pages) {
83ba7b07 1988 struct wb_writeback_work work = {
c4a77a6c
JA
1989 .nr_pages = nr_pages,
1990 .sync_mode = WB_SYNC_NONE,
1991 .for_kupdate = 1,
1992 .range_cyclic = 1,
0e175a18 1993 .reason = WB_REASON_PERIODIC,
c4a77a6c
JA
1994 };
1995
83ba7b07 1996 return wb_writeback(wb, &work);
c4a77a6c 1997 }
03ba3782
JA
1998
1999 return 0;
2000}
2001
85009b4f
JA
2002static long wb_check_start_all(struct bdi_writeback *wb)
2003{
2004 long nr_pages;
2005
2006 if (!test_bit(WB_start_all, &wb->state))
2007 return 0;
2008
2009 nr_pages = get_nr_dirty_pages();
2010 if (nr_pages) {
2011 struct wb_writeback_work work = {
2012 .nr_pages = wb_split_bdi_pages(wb, nr_pages),
2013 .sync_mode = WB_SYNC_NONE,
2014 .range_cyclic = 1,
2015 .reason = wb->start_all_reason,
2016 };
2017
2018 nr_pages = wb_writeback(wb, &work);
2019 }
2020
2021 clear_bit(WB_start_all, &wb->state);
2022 return nr_pages;
2023}
2024
2025
03ba3782
JA
2026/*
2027 * Retrieve work items and do the writeback they describe
2028 */
25d130ba 2029static long wb_do_writeback(struct bdi_writeback *wb)
03ba3782 2030{
83ba7b07 2031 struct wb_writeback_work *work;
c4a77a6c 2032 long wrote = 0;
03ba3782 2033
4452226e 2034 set_bit(WB_writeback_running, &wb->state);
f0054bb1 2035 while ((work = get_next_work_item(wb)) != NULL) {
5634cc2a 2036 trace_writeback_exec(wb, work);
83ba7b07 2037 wrote += wb_writeback(wb, work);
4a3a485b 2038 finish_writeback_work(wb, work);
03ba3782
JA
2039 }
2040
85009b4f
JA
2041 /*
2042 * Check for a flush-everything request
2043 */
2044 wrote += wb_check_start_all(wb);
2045
03ba3782
JA
2046 /*
2047 * Check for periodic writeback, kupdated() style
2048 */
2049 wrote += wb_check_old_data_flush(wb);
6585027a 2050 wrote += wb_check_background_flush(wb);
4452226e 2051 clear_bit(WB_writeback_running, &wb->state);
03ba3782
JA
2052
2053 return wrote;
2054}
2055
2056/*
2057 * Handle writeback of dirty data for the device backed by this bdi. Also
839a8e86 2058 * reschedules periodically and does kupdated style flushing.
03ba3782 2059 */
f0054bb1 2060void wb_workfn(struct work_struct *work)
03ba3782 2061{
839a8e86
TH
2062 struct bdi_writeback *wb = container_of(to_delayed_work(work),
2063 struct bdi_writeback, dwork);
03ba3782
JA
2064 long pages_written;
2065
f0054bb1 2066 set_worker_desc("flush-%s", dev_name(wb->bdi->dev));
766f9164 2067 current->flags |= PF_SWAPWRITE;
455b2864 2068
839a8e86 2069 if (likely(!current_is_workqueue_rescuer() ||
4452226e 2070 !test_bit(WB_registered, &wb->state))) {
6467716a 2071 /*
f0054bb1 2072 * The normal path. Keep writing back @wb until its
839a8e86 2073 * work_list is empty. Note that this path is also taken
f0054bb1 2074 * if @wb is shutting down even when we're running off the
839a8e86 2075 * rescuer as work_list needs to be drained.
6467716a 2076 */
839a8e86 2077 do {
25d130ba 2078 pages_written = wb_do_writeback(wb);
839a8e86 2079 trace_writeback_pages_written(pages_written);
f0054bb1 2080 } while (!list_empty(&wb->work_list));
839a8e86
TH
2081 } else {
2082 /*
2083 * bdi_wq can't get enough workers and we're running off
2084 * the emergency worker. Don't hog it. Hopefully, 1024 is
2085 * enough for efficient IO.
2086 */
f0054bb1 2087 pages_written = writeback_inodes_wb(wb, 1024,
839a8e86 2088 WB_REASON_FORKER_THREAD);
455b2864 2089 trace_writeback_pages_written(pages_written);
03ba3782
JA
2090 }
2091
f0054bb1 2092 if (!list_empty(&wb->work_list))
b8b78495 2093 wb_wakeup(wb);
6ca738d6 2094 else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
f0054bb1 2095 wb_wakeup_delayed(wb);
455b2864 2096
839a8e86 2097 current->flags &= ~PF_SWAPWRITE;
03ba3782
JA
2098}
2099
595043e5
JA
2100/*
2101 * Start writeback of `nr_pages' pages on this bdi. If `nr_pages' is zero,
2102 * write back the whole world.
2103 */
2104static void __wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
e8e8a0c6 2105 enum wb_reason reason)
595043e5
JA
2106{
2107 struct bdi_writeback *wb;
2108
2109 if (!bdi_has_dirty_io(bdi))
2110 return;
2111
2112 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
e8e8a0c6 2113 wb_start_writeback(wb, reason);
595043e5
JA
2114}
2115
2116void wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2117 enum wb_reason reason)
2118{
595043e5 2119 rcu_read_lock();
e8e8a0c6 2120 __wakeup_flusher_threads_bdi(bdi, reason);
595043e5
JA
2121 rcu_read_unlock();
2122}
2123
03ba3782 2124/*
9ba4b2df 2125 * Wakeup the flusher threads to start writeback of all currently dirty pages
03ba3782 2126 */
9ba4b2df 2127void wakeup_flusher_threads(enum wb_reason reason)
03ba3782 2128{
b8c2f347 2129 struct backing_dev_info *bdi;
03ba3782 2130
51350ea0
KK
2131 /*
2132 * If we are expecting writeback progress we must submit plugged IO.
2133 */
2134 if (blk_needs_flush_plug(current))
2135 blk_schedule_flush_plug(current);
2136
b8c2f347 2137 rcu_read_lock();
595043e5 2138 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
e8e8a0c6 2139 __wakeup_flusher_threads_bdi(bdi, reason);
cfc4ba53 2140 rcu_read_unlock();
1da177e4
LT
2141}
2142
a2f48706
TT
2143/*
2144 * Wake up bdi's periodically to make sure dirtytime inodes gets
2145 * written back periodically. We deliberately do *not* check the
2146 * b_dirtytime list in wb_has_dirty_io(), since this would cause the
2147 * kernel to be constantly waking up once there are any dirtytime
2148 * inodes on the system. So instead we define a separate delayed work
2149 * function which gets called much more rarely. (By default, only
2150 * once every 12 hours.)
2151 *
2152 * If there is any other write activity going on in the file system,
2153 * this function won't be necessary. But if the only thing that has
2154 * happened on the file system is a dirtytime inode caused by an atime
2155 * update, we need this infrastructure below to make sure that inode
2156 * eventually gets pushed out to disk.
2157 */
2158static void wakeup_dirtytime_writeback(struct work_struct *w);
2159static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);
2160
2161static void wakeup_dirtytime_writeback(struct work_struct *w)
2162{
2163 struct backing_dev_info *bdi;
2164
2165 rcu_read_lock();
2166 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
001fe6f6 2167 struct bdi_writeback *wb;
001fe6f6 2168
b817525a 2169 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
6fdf860f
TH
2170 if (!list_empty(&wb->b_dirty_time))
2171 wb_wakeup(wb);
a2f48706
TT
2172 }
2173 rcu_read_unlock();
2174 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2175}
2176
2177static int __init start_dirtytime_writeback(void)
2178{
2179 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2180 return 0;
2181}
2182__initcall(start_dirtytime_writeback);
2183
1efff914
TT
2184int dirtytime_interval_handler(struct ctl_table *table, int write,
2185 void __user *buffer, size_t *lenp, loff_t *ppos)
2186{
2187 int ret;
2188
2189 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2190 if (ret == 0 && write)
2191 mod_delayed_work(system_wq, &dirtytime_work, 0);
2192 return ret;
2193}
2194
03ba3782
JA
2195static noinline void block_dump___mark_inode_dirty(struct inode *inode)
2196{
2197 if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
2198 struct dentry *dentry;
2199 const char *name = "?";
2200
2201 dentry = d_find_alias(inode);
2202 if (dentry) {
2203 spin_lock(&dentry->d_lock);
2204 name = (const char *) dentry->d_name.name;
2205 }
2206 printk(KERN_DEBUG
2207 "%s(%d): dirtied inode %lu (%s) on %s\n",
2208 current->comm, task_pid_nr(current), inode->i_ino,
2209 name, inode->i_sb->s_id);
2210 if (dentry) {
2211 spin_unlock(&dentry->d_lock);
2212 dput(dentry);
2213 }
2214 }
2215}
2216
2217/**
0117d427
MCC
2218 * __mark_inode_dirty - internal function
2219 *
2220 * @inode: inode to mark
2221 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
2222 *
2223 * Mark an inode as dirty. Callers should use mark_inode_dirty or
2224 * mark_inode_dirty_sync.
1da177e4 2225 *
03ba3782
JA
2226 * Put the inode on the super block's dirty list.
2227 *
2228 * CAREFUL! We mark it dirty unconditionally, but move it onto the
2229 * dirty list only if it is hashed or if it refers to a blockdev.
2230 * If it was not hashed, it will never be added to the dirty list
2231 * even if it is later hashed, as it will have been marked dirty already.
2232 *
2233 * In short, make sure you hash any inodes _before_ you start marking
2234 * them dirty.
1da177e4 2235 *
03ba3782
JA
2236 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
2237 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of
2238 * the kernel-internal blockdev inode represents the dirtying time of the
2239 * blockdev's pages. This is why for I_DIRTY_PAGES we always use
2240 * page->mapping->host, so the page-dirtying time is recorded in the internal
2241 * blockdev inode.
1da177e4 2242 */
03ba3782 2243void __mark_inode_dirty(struct inode *inode, int flags)
1da177e4 2244{
03ba3782 2245 struct super_block *sb = inode->i_sb;
0ae45f63
TT
2246 int dirtytime;
2247
2248 trace_writeback_mark_inode_dirty(inode, flags);
1da177e4 2249
03ba3782
JA
2250 /*
2251 * Don't do this for I_DIRTY_PAGES - that doesn't actually
2252 * dirty the inode itself
2253 */
0e11f644 2254 if (flags & (I_DIRTY_INODE | I_DIRTY_TIME)) {
9fb0a7da
TH
2255 trace_writeback_dirty_inode_start(inode, flags);
2256
03ba3782 2257 if (sb->s_op->dirty_inode)
aa385729 2258 sb->s_op->dirty_inode(inode, flags);
9fb0a7da
TH
2259
2260 trace_writeback_dirty_inode(inode, flags);
03ba3782 2261 }
0ae45f63
TT
2262 if (flags & I_DIRTY_INODE)
2263 flags &= ~I_DIRTY_TIME;
2264 dirtytime = flags & I_DIRTY_TIME;
03ba3782
JA
2265
2266 /*
9c6ac78e
TH
2267 * Paired with smp_mb() in __writeback_single_inode() for the
2268 * following lockless i_state test. See there for details.
03ba3782
JA
2269 */
2270 smp_mb();
2271
0ae45f63
TT
2272 if (((inode->i_state & flags) == flags) ||
2273 (dirtytime && (inode->i_state & I_DIRTY_INODE)))
03ba3782
JA
2274 return;
2275
2276 if (unlikely(block_dump))
2277 block_dump___mark_inode_dirty(inode);
2278
250df6ed 2279 spin_lock(&inode->i_lock);
0ae45f63
TT
2280 if (dirtytime && (inode->i_state & I_DIRTY_INODE))
2281 goto out_unlock_inode;
03ba3782
JA
2282 if ((inode->i_state & flags) != flags) {
2283 const int was_dirty = inode->i_state & I_DIRTY;
2284
52ebea74
TH
2285 inode_attach_wb(inode, NULL);
2286
0ae45f63
TT
2287 if (flags & I_DIRTY_INODE)
2288 inode->i_state &= ~I_DIRTY_TIME;
03ba3782
JA
2289 inode->i_state |= flags;
2290
2291 /*
2292 * If the inode is being synced, just update its dirty state.
2293 * The unlocker will place the inode on the appropriate
2294 * superblock list, based upon its state.
2295 */
2296 if (inode->i_state & I_SYNC)
250df6ed 2297 goto out_unlock_inode;
03ba3782
JA
2298
2299 /*
2300 * Only add valid (hashed) inodes to the superblock's
2301 * dirty list. Add blockdev inodes as well.
2302 */
2303 if (!S_ISBLK(inode->i_mode)) {
1d3382cb 2304 if (inode_unhashed(inode))
250df6ed 2305 goto out_unlock_inode;
03ba3782 2306 }
a4ffdde6 2307 if (inode->i_state & I_FREEING)
250df6ed 2308 goto out_unlock_inode;
03ba3782
JA
2309
2310 /*
2311 * If the inode was already on b_dirty/b_io/b_more_io, don't
2312 * reposition it (that would break b_dirty time-ordering).
2313 */
2314 if (!was_dirty) {
87e1d789 2315 struct bdi_writeback *wb;
d6c10f1f 2316 struct list_head *dirty_list;
a66979ab 2317 bool wakeup_bdi = false;
253c34e9 2318
87e1d789 2319 wb = locked_inode_to_wb_and_lock_list(inode);
253c34e9 2320
0747259d
TH
2321 WARN(bdi_cap_writeback_dirty(wb->bdi) &&
2322 !test_bit(WB_registered, &wb->state),
2323 "bdi-%s not registered\n", wb->bdi->name);
03ba3782
JA
2324
2325 inode->dirtied_when = jiffies;
a2f48706
TT
2326 if (dirtytime)
2327 inode->dirtied_time_when = jiffies;
d6c10f1f 2328
0e11f644 2329 if (inode->i_state & I_DIRTY)
0747259d 2330 dirty_list = &wb->b_dirty;
a2f48706 2331 else
0747259d 2332 dirty_list = &wb->b_dirty_time;
d6c10f1f 2333
c7f54084 2334 wakeup_bdi = inode_io_list_move_locked(inode, wb,
d6c10f1f
TH
2335 dirty_list);
2336
0747259d 2337 spin_unlock(&wb->list_lock);
0ae45f63 2338 trace_writeback_dirty_inode_enqueue(inode);
a66979ab 2339
d6c10f1f
TH
2340 /*
2341 * If this is the first dirty inode for this bdi,
2342 * we have to wake-up the corresponding bdi thread
2343 * to make sure background write-back happens
2344 * later.
2345 */
0747259d
TH
2346 if (bdi_cap_writeback_dirty(wb->bdi) && wakeup_bdi)
2347 wb_wakeup_delayed(wb);
a66979ab 2348 return;
1da177e4 2349 }
1da177e4 2350 }
250df6ed
DC
2351out_unlock_inode:
2352 spin_unlock(&inode->i_lock);
03ba3782
JA
2353}
2354EXPORT_SYMBOL(__mark_inode_dirty);
2355
e97fedb9
DC
2356/*
2357 * The @s_sync_lock is used to serialise concurrent sync operations
2358 * to avoid lock contention problems with concurrent wait_sb_inodes() calls.
2359 * Concurrent callers will block on the s_sync_lock rather than doing contending
2360 * walks. The queueing maintains sync(2) required behaviour as all the IO that
2361 * has been issued up to the time this function is enter is guaranteed to be
2362 * completed by the time we have gained the lock and waited for all IO that is
2363 * in progress regardless of the order callers are granted the lock.
2364 */
b6e51316 2365static void wait_sb_inodes(struct super_block *sb)
03ba3782 2366{
6c60d2b5 2367 LIST_HEAD(sync_list);
03ba3782
JA
2368
2369 /*
2370 * We need to be protected against the filesystem going from
2371 * r/o to r/w or vice versa.
2372 */
b6e51316 2373 WARN_ON(!rwsem_is_locked(&sb->s_umount));
03ba3782 2374
e97fedb9 2375 mutex_lock(&sb->s_sync_lock);
03ba3782
JA
2376
2377 /*
6c60d2b5
DC
2378 * Splice the writeback list onto a temporary list to avoid waiting on
2379 * inodes that have started writeback after this point.
2380 *
2381 * Use rcu_read_lock() to keep the inodes around until we have a
2382 * reference. s_inode_wblist_lock protects sb->s_inodes_wb as well as
2383 * the local list because inodes can be dropped from either by writeback
2384 * completion.
2385 */
2386 rcu_read_lock();
2387 spin_lock_irq(&sb->s_inode_wblist_lock);
2388 list_splice_init(&sb->s_inodes_wb, &sync_list);
2389
2390 /*
2391 * Data integrity sync. Must wait for all pages under writeback, because
2392 * there may have been pages dirtied before our sync call, but which had
2393 * writeout started before we write it out. In which case, the inode
2394 * may not be on the dirty list, but we still have to wait for that
2395 * writeout.
03ba3782 2396 */
6c60d2b5
DC
2397 while (!list_empty(&sync_list)) {
2398 struct inode *inode = list_first_entry(&sync_list, struct inode,
2399 i_wb_list);
250df6ed 2400 struct address_space *mapping = inode->i_mapping;
03ba3782 2401
6c60d2b5
DC
2402 /*
2403 * Move each inode back to the wb list before we drop the lock
2404 * to preserve consistency between i_wb_list and the mapping
2405 * writeback tag. Writeback completion is responsible to remove
2406 * the inode from either list once the writeback tag is cleared.
2407 */
2408 list_move_tail(&inode->i_wb_list, &sb->s_inodes_wb);
2409
2410 /*
2411 * The mapping can appear untagged while still on-list since we
2412 * do not have the mapping lock. Skip it here, wb completion
2413 * will remove it.
2414 */
2415 if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
2416 continue;
2417
2418 spin_unlock_irq(&sb->s_inode_wblist_lock);
2419
250df6ed 2420 spin_lock(&inode->i_lock);
6c60d2b5 2421 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) {
250df6ed 2422 spin_unlock(&inode->i_lock);
6c60d2b5
DC
2423
2424 spin_lock_irq(&sb->s_inode_wblist_lock);
03ba3782 2425 continue;
250df6ed 2426 }
03ba3782 2427 __iget(inode);
250df6ed 2428 spin_unlock(&inode->i_lock);
6c60d2b5 2429 rcu_read_unlock();
03ba3782 2430
aa750fd7
JN
2431 /*
2432 * We keep the error status of individual mapping so that
2433 * applications can catch the writeback error using fsync(2).
2434 * See filemap_fdatawait_keep_errors() for details.
2435 */
2436 filemap_fdatawait_keep_errors(mapping);
03ba3782
JA
2437
2438 cond_resched();
2439
6c60d2b5
DC
2440 iput(inode);
2441
2442 rcu_read_lock();
2443 spin_lock_irq(&sb->s_inode_wblist_lock);
03ba3782 2444 }
6c60d2b5
DC
2445 spin_unlock_irq(&sb->s_inode_wblist_lock);
2446 rcu_read_unlock();
e97fedb9 2447 mutex_unlock(&sb->s_sync_lock);
1da177e4
LT
2448}
2449
f30a7d0c
TH
2450static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2451 enum wb_reason reason, bool skip_if_busy)
1da177e4 2452{
5b9cce4c
TH
2453 struct backing_dev_info *bdi = sb->s_bdi;
2454 DEFINE_WB_COMPLETION(done, bdi);
83ba7b07 2455 struct wb_writeback_work work = {
6e6938b6
WF
2456 .sb = sb,
2457 .sync_mode = WB_SYNC_NONE,
2458 .tagged_writepages = 1,
2459 .done = &done,
2460 .nr_pages = nr,
0e175a18 2461 .reason = reason,
3c4d7165 2462 };
d8a8559c 2463
e7972912 2464 if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
6eedc701 2465 return;
cf37e972 2466 WARN_ON(!rwsem_is_locked(&sb->s_umount));
f30a7d0c 2467
db125360 2468 bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy);
5b9cce4c 2469 wb_wait_for_completion(&done);
e913fc82 2470}
f30a7d0c
TH
2471
2472/**
2473 * writeback_inodes_sb_nr - writeback dirty inodes from given super_block
2474 * @sb: the superblock
2475 * @nr: the number of pages to write
2476 * @reason: reason why some writeback work initiated
2477 *
2478 * Start writeback on some inodes on this super_block. No guarantees are made
2479 * on how many (if any) will be written, and this function does not wait
2480 * for IO completion of submitted IO.
2481 */
2482void writeback_inodes_sb_nr(struct super_block *sb,
2483 unsigned long nr,
2484 enum wb_reason reason)
2485{
2486 __writeback_inodes_sb_nr(sb, nr, reason, false);
2487}
3259f8be
CM
2488EXPORT_SYMBOL(writeback_inodes_sb_nr);
2489
2490/**
2491 * writeback_inodes_sb - writeback dirty inodes from given super_block
2492 * @sb: the superblock
786228ab 2493 * @reason: reason why some writeback work was initiated
3259f8be
CM
2494 *
2495 * Start writeback on some inodes on this super_block. No guarantees are made
2496 * on how many (if any) will be written, and this function does not wait
2497 * for IO completion of submitted IO.
2498 */
0e175a18 2499void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
3259f8be 2500{
0e175a18 2501 return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
3259f8be 2502}
0e3c9a22 2503EXPORT_SYMBOL(writeback_inodes_sb);
e913fc82 2504
17bd55d0 2505/**
8264c321 2506 * try_to_writeback_inodes_sb - try to start writeback if none underway
17bd55d0 2507 * @sb: the superblock
8264c321 2508 * @reason: reason why some writeback work was initiated
17bd55d0 2509 *
8264c321 2510 * Invoke __writeback_inodes_sb_nr if no writeback is currently underway.
17bd55d0 2511 */
8264c321 2512void try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
17bd55d0 2513{
10ee27a0 2514 if (!down_read_trylock(&sb->s_umount))
8264c321 2515 return;
10ee27a0 2516
8264c321 2517 __writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason, true);
10ee27a0 2518 up_read(&sb->s_umount);
3259f8be 2519}
10ee27a0 2520EXPORT_SYMBOL(try_to_writeback_inodes_sb);
3259f8be 2521
d8a8559c
JA
2522/**
2523 * sync_inodes_sb - sync sb inode pages
0dc83bd3 2524 * @sb: the superblock
d8a8559c
JA
2525 *
2526 * This function writes and waits on any dirty inode belonging to this
0dc83bd3 2527 * super_block.
d8a8559c 2528 */
0dc83bd3 2529void sync_inodes_sb(struct super_block *sb)
d8a8559c 2530{
5b9cce4c
TH
2531 struct backing_dev_info *bdi = sb->s_bdi;
2532 DEFINE_WB_COMPLETION(done, bdi);
83ba7b07 2533 struct wb_writeback_work work = {
3c4d7165
CH
2534 .sb = sb,
2535 .sync_mode = WB_SYNC_ALL,
2536 .nr_pages = LONG_MAX,
2537 .range_cyclic = 0,
83ba7b07 2538 .done = &done,
0e175a18 2539 .reason = WB_REASON_SYNC,
7747bd4b 2540 .for_sync = 1,
3c4d7165
CH
2541 };
2542
006a0973
TH
2543 /*
2544 * Can't skip on !bdi_has_dirty() because we should wait for !dirty
2545 * inodes under writeback and I_DIRTY_TIME inodes ignored by
2546 * bdi_has_dirty() need to be written out too.
2547 */
2548 if (bdi == &noop_backing_dev_info)
6eedc701 2549 return;
cf37e972
CH
2550 WARN_ON(!rwsem_is_locked(&sb->s_umount));
2551
7fc5854f
TH
2552 /* protect against inode wb switch, see inode_switch_wbs_work_fn() */
2553 bdi_down_write_wb_switch_rwsem(bdi);
db125360 2554 bdi_split_work_to_wbs(bdi, &work, false);
5b9cce4c 2555 wb_wait_for_completion(&done);
7fc5854f 2556 bdi_up_write_wb_switch_rwsem(bdi);
83ba7b07 2557
b6e51316 2558 wait_sb_inodes(sb);
1da177e4 2559}
d8a8559c 2560EXPORT_SYMBOL(sync_inodes_sb);
1da177e4 2561
1da177e4 2562/**
7f04c26d
AA
2563 * write_inode_now - write an inode to disk
2564 * @inode: inode to write to disk
2565 * @sync: whether the write should be synchronous or not
2566 *
2567 * This function commits an inode to disk immediately if it is dirty. This is
2568 * primarily needed by knfsd.
1da177e4 2569 *
7f04c26d 2570 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
1da177e4 2571 */
1da177e4
LT
2572int write_inode_now(struct inode *inode, int sync)
2573{
1da177e4
LT
2574 struct writeback_control wbc = {
2575 .nr_to_write = LONG_MAX,
18914b18 2576 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
111ebb6e
OH
2577 .range_start = 0,
2578 .range_end = LLONG_MAX,
1da177e4
LT
2579 };
2580
2581 if (!mapping_cap_writeback_dirty(inode->i_mapping))
49364ce2 2582 wbc.nr_to_write = 0;
1da177e4
LT
2583
2584 might_sleep();
aaf25593 2585 return writeback_single_inode(inode, &wbc);
1da177e4
LT
2586}
2587EXPORT_SYMBOL(write_inode_now);
2588
2589/**
2590 * sync_inode - write an inode and its pages to disk.
2591 * @inode: the inode to sync
2592 * @wbc: controls the writeback mode
2593 *
2594 * sync_inode() will write an inode and its pages to disk. It will also
2595 * correctly update the inode on its superblock's dirty inode lists and will
2596 * update inode->i_state.
2597 *
2598 * The caller must have a ref on the inode.
2599 */
2600int sync_inode(struct inode *inode, struct writeback_control *wbc)
2601{
aaf25593 2602 return writeback_single_inode(inode, wbc);
1da177e4
LT
2603}
2604EXPORT_SYMBOL(sync_inode);
c3765016
CH
2605
2606/**
c691b9d9 2607 * sync_inode_metadata - write an inode to disk
c3765016
CH
2608 * @inode: the inode to sync
2609 * @wait: wait for I/O to complete.
2610 *
c691b9d9 2611 * Write an inode to disk and adjust its dirty state after completion.
c3765016
CH
2612 *
2613 * Note: only writes the actual inode, no associated data or other metadata.
2614 */
2615int sync_inode_metadata(struct inode *inode, int wait)
2616{
2617 struct writeback_control wbc = {
2618 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
2619 .nr_to_write = 0, /* metadata-only */
2620 };
2621
2622 return sync_inode(inode, &wbc);
2623}
2624EXPORT_SYMBOL(sync_inode_metadata);