f2fs: add tracepoints for sync & inode operations
[linux-2.6-block.git] / fs / f2fs / node.c
CommitLineData
0a8165d7 1/*
e05df3b1
JK
2 * fs/f2fs/node.c
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11#include <linux/fs.h>
12#include <linux/f2fs_fs.h>
13#include <linux/mpage.h>
14#include <linux/backing-dev.h>
15#include <linux/blkdev.h>
16#include <linux/pagevec.h>
17#include <linux/swap.h>
18
19#include "f2fs.h"
20#include "node.h"
21#include "segment.h"
22
23static struct kmem_cache *nat_entry_slab;
24static struct kmem_cache *free_nid_slab;
25
26static void clear_node_page_dirty(struct page *page)
27{
28 struct address_space *mapping = page->mapping;
29 struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
30 unsigned int long flags;
31
32 if (PageDirty(page)) {
33 spin_lock_irqsave(&mapping->tree_lock, flags);
34 radix_tree_tag_clear(&mapping->page_tree,
35 page_index(page),
36 PAGECACHE_TAG_DIRTY);
37 spin_unlock_irqrestore(&mapping->tree_lock, flags);
38
39 clear_page_dirty_for_io(page);
40 dec_page_count(sbi, F2FS_DIRTY_NODES);
41 }
42 ClearPageUptodate(page);
43}
44
45static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
46{
47 pgoff_t index = current_nat_addr(sbi, nid);
48 return get_meta_page(sbi, index);
49}
50
51static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
52{
53 struct page *src_page;
54 struct page *dst_page;
55 pgoff_t src_off;
56 pgoff_t dst_off;
57 void *src_addr;
58 void *dst_addr;
59 struct f2fs_nm_info *nm_i = NM_I(sbi);
60
61 src_off = current_nat_addr(sbi, nid);
62 dst_off = next_nat_addr(sbi, src_off);
63
64 /* get current nat block page with lock */
65 src_page = get_meta_page(sbi, src_off);
66
67 /* Dirty src_page means that it is already the new target NAT page. */
68 if (PageDirty(src_page))
69 return src_page;
70
71 dst_page = grab_meta_page(sbi, dst_off);
72
73 src_addr = page_address(src_page);
74 dst_addr = page_address(dst_page);
75 memcpy(dst_addr, src_addr, PAGE_CACHE_SIZE);
76 set_page_dirty(dst_page);
77 f2fs_put_page(src_page, 1);
78
79 set_to_next_nat(nm_i, nid);
80
81 return dst_page;
82}
83
0a8165d7 84/*
e05df3b1
JK
85 * Readahead NAT pages
86 */
87static void ra_nat_pages(struct f2fs_sb_info *sbi, int nid)
88{
89 struct address_space *mapping = sbi->meta_inode->i_mapping;
90 struct f2fs_nm_info *nm_i = NM_I(sbi);
91 struct page *page;
92 pgoff_t index;
93 int i;
94
95 for (i = 0; i < FREE_NID_PAGES; i++, nid += NAT_ENTRY_PER_BLOCK) {
96 if (nid >= nm_i->max_nid)
97 nid = 0;
98 index = current_nat_addr(sbi, nid);
99
100 page = grab_cache_page(mapping, index);
101 if (!page)
102 continue;
393ff91f 103 if (PageUptodate(page)) {
e05df3b1
JK
104 f2fs_put_page(page, 1);
105 continue;
106 }
393ff91f
JK
107 if (f2fs_readpage(sbi, page, index, READ))
108 continue;
109
369a708c 110 f2fs_put_page(page, 0);
e05df3b1
JK
111 }
112}
113
114static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
115{
116 return radix_tree_lookup(&nm_i->nat_root, n);
117}
118
119static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
120 nid_t start, unsigned int nr, struct nat_entry **ep)
121{
122 return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
123}
124
125static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
126{
127 list_del(&e->list);
128 radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
129 nm_i->nat_cnt--;
130 kmem_cache_free(nat_entry_slab, e);
131}
132
133int is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
134{
135 struct f2fs_nm_info *nm_i = NM_I(sbi);
136 struct nat_entry *e;
137 int is_cp = 1;
138
139 read_lock(&nm_i->nat_tree_lock);
140 e = __lookup_nat_cache(nm_i, nid);
141 if (e && !e->checkpointed)
142 is_cp = 0;
143 read_unlock(&nm_i->nat_tree_lock);
144 return is_cp;
145}
146
147static struct nat_entry *grab_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid)
148{
149 struct nat_entry *new;
150
151 new = kmem_cache_alloc(nat_entry_slab, GFP_ATOMIC);
152 if (!new)
153 return NULL;
154 if (radix_tree_insert(&nm_i->nat_root, nid, new)) {
155 kmem_cache_free(nat_entry_slab, new);
156 return NULL;
157 }
158 memset(new, 0, sizeof(struct nat_entry));
159 nat_set_nid(new, nid);
160 list_add_tail(&new->list, &nm_i->nat_entries);
161 nm_i->nat_cnt++;
162 return new;
163}
164
165static void cache_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid,
166 struct f2fs_nat_entry *ne)
167{
168 struct nat_entry *e;
169retry:
170 write_lock(&nm_i->nat_tree_lock);
171 e = __lookup_nat_cache(nm_i, nid);
172 if (!e) {
173 e = grab_nat_entry(nm_i, nid);
174 if (!e) {
175 write_unlock(&nm_i->nat_tree_lock);
176 goto retry;
177 }
178 nat_set_blkaddr(e, le32_to_cpu(ne->block_addr));
179 nat_set_ino(e, le32_to_cpu(ne->ino));
180 nat_set_version(e, ne->version);
181 e->checkpointed = true;
182 }
183 write_unlock(&nm_i->nat_tree_lock);
184}
185
186static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
187 block_t new_blkaddr)
188{
189 struct f2fs_nm_info *nm_i = NM_I(sbi);
190 struct nat_entry *e;
191retry:
192 write_lock(&nm_i->nat_tree_lock);
193 e = __lookup_nat_cache(nm_i, ni->nid);
194 if (!e) {
195 e = grab_nat_entry(nm_i, ni->nid);
196 if (!e) {
197 write_unlock(&nm_i->nat_tree_lock);
198 goto retry;
199 }
200 e->ni = *ni;
201 e->checkpointed = true;
202 BUG_ON(ni->blk_addr == NEW_ADDR);
203 } else if (new_blkaddr == NEW_ADDR) {
204 /*
205 * when nid is reallocated,
206 * previous nat entry can be remained in nat cache.
207 * So, reinitialize it with new information.
208 */
209 e->ni = *ni;
210 BUG_ON(ni->blk_addr != NULL_ADDR);
211 }
212
213 if (new_blkaddr == NEW_ADDR)
214 e->checkpointed = false;
215
216 /* sanity check */
217 BUG_ON(nat_get_blkaddr(e) != ni->blk_addr);
218 BUG_ON(nat_get_blkaddr(e) == NULL_ADDR &&
219 new_blkaddr == NULL_ADDR);
220 BUG_ON(nat_get_blkaddr(e) == NEW_ADDR &&
221 new_blkaddr == NEW_ADDR);
222 BUG_ON(nat_get_blkaddr(e) != NEW_ADDR &&
223 nat_get_blkaddr(e) != NULL_ADDR &&
224 new_blkaddr == NEW_ADDR);
225
226 /* increament version no as node is removed */
227 if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
228 unsigned char version = nat_get_version(e);
229 nat_set_version(e, inc_node_version(version));
230 }
231
232 /* change address */
233 nat_set_blkaddr(e, new_blkaddr);
234 __set_nat_cache_dirty(nm_i, e);
235 write_unlock(&nm_i->nat_tree_lock);
236}
237
238static int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
239{
240 struct f2fs_nm_info *nm_i = NM_I(sbi);
241
242 if (nm_i->nat_cnt < 2 * NM_WOUT_THRESHOLD)
243 return 0;
244
245 write_lock(&nm_i->nat_tree_lock);
246 while (nr_shrink && !list_empty(&nm_i->nat_entries)) {
247 struct nat_entry *ne;
248 ne = list_first_entry(&nm_i->nat_entries,
249 struct nat_entry, list);
250 __del_from_nat_cache(nm_i, ne);
251 nr_shrink--;
252 }
253 write_unlock(&nm_i->nat_tree_lock);
254 return nr_shrink;
255}
256
0a8165d7 257/*
e05df3b1
JK
258 * This function returns always success
259 */
260void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni)
261{
262 struct f2fs_nm_info *nm_i = NM_I(sbi);
263 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
264 struct f2fs_summary_block *sum = curseg->sum_blk;
265 nid_t start_nid = START_NID(nid);
266 struct f2fs_nat_block *nat_blk;
267 struct page *page = NULL;
268 struct f2fs_nat_entry ne;
269 struct nat_entry *e;
270 int i;
271
be4124f8 272 memset(&ne, 0, sizeof(struct f2fs_nat_entry));
e05df3b1
JK
273 ni->nid = nid;
274
275 /* Check nat cache */
276 read_lock(&nm_i->nat_tree_lock);
277 e = __lookup_nat_cache(nm_i, nid);
278 if (e) {
279 ni->ino = nat_get_ino(e);
280 ni->blk_addr = nat_get_blkaddr(e);
281 ni->version = nat_get_version(e);
282 }
283 read_unlock(&nm_i->nat_tree_lock);
284 if (e)
285 return;
286
287 /* Check current segment summary */
288 mutex_lock(&curseg->curseg_mutex);
289 i = lookup_journal_in_cursum(sum, NAT_JOURNAL, nid, 0);
290 if (i >= 0) {
291 ne = nat_in_journal(sum, i);
292 node_info_from_raw_nat(ni, &ne);
293 }
294 mutex_unlock(&curseg->curseg_mutex);
295 if (i >= 0)
296 goto cache;
297
298 /* Fill node_info from nat page */
299 page = get_current_nat_page(sbi, start_nid);
300 nat_blk = (struct f2fs_nat_block *)page_address(page);
301 ne = nat_blk->entries[nid - start_nid];
302 node_info_from_raw_nat(ni, &ne);
303 f2fs_put_page(page, 1);
304cache:
305 /* cache nat entry */
306 cache_nat_entry(NM_I(sbi), nid, &ne);
307}
308
0a8165d7 309/*
e05df3b1
JK
310 * The maximum depth is four.
311 * Offset[0] will have raw inode offset.
312 */
313static int get_node_path(long block, int offset[4], unsigned int noffset[4])
314{
315 const long direct_index = ADDRS_PER_INODE;
316 const long direct_blks = ADDRS_PER_BLOCK;
317 const long dptrs_per_blk = NIDS_PER_BLOCK;
318 const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
319 const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
320 int n = 0;
321 int level = 0;
322
323 noffset[0] = 0;
324
325 if (block < direct_index) {
25c0a6e5 326 offset[n] = block;
e05df3b1
JK
327 goto got;
328 }
329 block -= direct_index;
330 if (block < direct_blks) {
331 offset[n++] = NODE_DIR1_BLOCK;
332 noffset[n] = 1;
25c0a6e5 333 offset[n] = block;
e05df3b1
JK
334 level = 1;
335 goto got;
336 }
337 block -= direct_blks;
338 if (block < direct_blks) {
339 offset[n++] = NODE_DIR2_BLOCK;
340 noffset[n] = 2;
25c0a6e5 341 offset[n] = block;
e05df3b1
JK
342 level = 1;
343 goto got;
344 }
345 block -= direct_blks;
346 if (block < indirect_blks) {
347 offset[n++] = NODE_IND1_BLOCK;
348 noffset[n] = 3;
349 offset[n++] = block / direct_blks;
350 noffset[n] = 4 + offset[n - 1];
25c0a6e5 351 offset[n] = block % direct_blks;
e05df3b1
JK
352 level = 2;
353 goto got;
354 }
355 block -= indirect_blks;
356 if (block < indirect_blks) {
357 offset[n++] = NODE_IND2_BLOCK;
358 noffset[n] = 4 + dptrs_per_blk;
359 offset[n++] = block / direct_blks;
360 noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
25c0a6e5 361 offset[n] = block % direct_blks;
e05df3b1
JK
362 level = 2;
363 goto got;
364 }
365 block -= indirect_blks;
366 if (block < dindirect_blks) {
367 offset[n++] = NODE_DIND_BLOCK;
368 noffset[n] = 5 + (dptrs_per_blk * 2);
369 offset[n++] = block / indirect_blks;
370 noffset[n] = 6 + (dptrs_per_blk * 2) +
371 offset[n - 1] * (dptrs_per_blk + 1);
372 offset[n++] = (block / direct_blks) % dptrs_per_blk;
373 noffset[n] = 7 + (dptrs_per_blk * 2) +
374 offset[n - 2] * (dptrs_per_blk + 1) +
375 offset[n - 1];
25c0a6e5 376 offset[n] = block % direct_blks;
e05df3b1
JK
377 level = 3;
378 goto got;
379 } else {
380 BUG();
381 }
382got:
383 return level;
384}
385
386/*
387 * Caller should call f2fs_put_dnode(dn).
39936837
JK
388 * Also, it should grab and release a mutex by calling mutex_lock_op() and
389 * mutex_unlock_op() only if ro is not set RDONLY_NODE.
390 * In the case of RDONLY_NODE, we don't need to care about mutex.
e05df3b1 391 */
266e97a8 392int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
e05df3b1
JK
393{
394 struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
395 struct page *npage[4];
396 struct page *parent;
397 int offset[4];
398 unsigned int noffset[4];
399 nid_t nids[4];
400 int level, i;
401 int err = 0;
402
403 level = get_node_path(index, offset, noffset);
404
405 nids[0] = dn->inode->i_ino;
406 npage[0] = get_node_page(sbi, nids[0]);
407 if (IS_ERR(npage[0]))
408 return PTR_ERR(npage[0]);
409
410 parent = npage[0];
52c2db3f
CL
411 if (level != 0)
412 nids[1] = get_nid(parent, offset[0], true);
e05df3b1
JK
413 dn->inode_page = npage[0];
414 dn->inode_page_locked = true;
415
416 /* get indirect or direct nodes */
417 for (i = 1; i <= level; i++) {
418 bool done = false;
419
266e97a8 420 if (!nids[i] && mode == ALLOC_NODE) {
e05df3b1
JK
421 /* alloc new node */
422 if (!alloc_nid(sbi, &(nids[i]))) {
e05df3b1
JK
423 err = -ENOSPC;
424 goto release_pages;
425 }
426
427 dn->nid = nids[i];
428 npage[i] = new_node_page(dn, noffset[i]);
429 if (IS_ERR(npage[i])) {
430 alloc_nid_failed(sbi, nids[i]);
e05df3b1
JK
431 err = PTR_ERR(npage[i]);
432 goto release_pages;
433 }
434
435 set_nid(parent, offset[i - 1], nids[i], i == 1);
436 alloc_nid_done(sbi, nids[i]);
e05df3b1 437 done = true;
266e97a8 438 } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
e05df3b1
JK
439 npage[i] = get_node_page_ra(parent, offset[i - 1]);
440 if (IS_ERR(npage[i])) {
441 err = PTR_ERR(npage[i]);
442 goto release_pages;
443 }
444 done = true;
445 }
446 if (i == 1) {
447 dn->inode_page_locked = false;
448 unlock_page(parent);
449 } else {
450 f2fs_put_page(parent, 1);
451 }
452
453 if (!done) {
454 npage[i] = get_node_page(sbi, nids[i]);
455 if (IS_ERR(npage[i])) {
456 err = PTR_ERR(npage[i]);
457 f2fs_put_page(npage[0], 0);
458 goto release_out;
459 }
460 }
461 if (i < level) {
462 parent = npage[i];
463 nids[i + 1] = get_nid(parent, offset[i], false);
464 }
465 }
466 dn->nid = nids[level];
467 dn->ofs_in_node = offset[level];
468 dn->node_page = npage[level];
469 dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node);
470 return 0;
471
472release_pages:
473 f2fs_put_page(parent, 1);
474 if (i > 1)
475 f2fs_put_page(npage[0], 0);
476release_out:
477 dn->inode_page = NULL;
478 dn->node_page = NULL;
479 return err;
480}
481
482static void truncate_node(struct dnode_of_data *dn)
483{
484 struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
485 struct node_info ni;
486
487 get_node_info(sbi, dn->nid, &ni);
71e9fec5
JK
488 if (dn->inode->i_blocks == 0) {
489 BUG_ON(ni.blk_addr != NULL_ADDR);
490 goto invalidate;
491 }
e05df3b1
JK
492 BUG_ON(ni.blk_addr == NULL_ADDR);
493
e05df3b1 494 /* Deallocate node address */
71e9fec5 495 invalidate_blocks(sbi, ni.blk_addr);
e05df3b1
JK
496 dec_valid_node_count(sbi, dn->inode, 1);
497 set_node_addr(sbi, &ni, NULL_ADDR);
498
499 if (dn->nid == dn->inode->i_ino) {
500 remove_orphan_inode(sbi, dn->nid);
501 dec_valid_inode_count(sbi);
502 } else {
503 sync_inode_page(dn);
504 }
71e9fec5 505invalidate:
e05df3b1
JK
506 clear_node_page_dirty(dn->node_page);
507 F2FS_SET_SB_DIRT(sbi);
508
509 f2fs_put_page(dn->node_page, 1);
510 dn->node_page = NULL;
511}
512
513static int truncate_dnode(struct dnode_of_data *dn)
514{
515 struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
516 struct page *page;
517
518 if (dn->nid == 0)
519 return 1;
520
521 /* get direct node */
522 page = get_node_page(sbi, dn->nid);
523 if (IS_ERR(page) && PTR_ERR(page) == -ENOENT)
524 return 1;
525 else if (IS_ERR(page))
526 return PTR_ERR(page);
527
528 /* Make dnode_of_data for parameter */
529 dn->node_page = page;
530 dn->ofs_in_node = 0;
531 truncate_data_blocks(dn);
532 truncate_node(dn);
533 return 1;
534}
535
536static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
537 int ofs, int depth)
538{
539 struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
540 struct dnode_of_data rdn = *dn;
541 struct page *page;
542 struct f2fs_node *rn;
543 nid_t child_nid;
544 unsigned int child_nofs;
545 int freed = 0;
546 int i, ret;
547
548 if (dn->nid == 0)
549 return NIDS_PER_BLOCK + 1;
550
551 page = get_node_page(sbi, dn->nid);
552 if (IS_ERR(page))
553 return PTR_ERR(page);
554
555 rn = (struct f2fs_node *)page_address(page);
556 if (depth < 3) {
557 for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
558 child_nid = le32_to_cpu(rn->in.nid[i]);
559 if (child_nid == 0)
560 continue;
561 rdn.nid = child_nid;
562 ret = truncate_dnode(&rdn);
563 if (ret < 0)
564 goto out_err;
565 set_nid(page, i, 0, false);
566 }
567 } else {
568 child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
569 for (i = ofs; i < NIDS_PER_BLOCK; i++) {
570 child_nid = le32_to_cpu(rn->in.nid[i]);
571 if (child_nid == 0) {
572 child_nofs += NIDS_PER_BLOCK + 1;
573 continue;
574 }
575 rdn.nid = child_nid;
576 ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
577 if (ret == (NIDS_PER_BLOCK + 1)) {
578 set_nid(page, i, 0, false);
579 child_nofs += ret;
580 } else if (ret < 0 && ret != -ENOENT) {
581 goto out_err;
582 }
583 }
584 freed = child_nofs;
585 }
586
587 if (!ofs) {
588 /* remove current indirect node */
589 dn->node_page = page;
590 truncate_node(dn);
591 freed++;
592 } else {
593 f2fs_put_page(page, 1);
594 }
595 return freed;
596
597out_err:
598 f2fs_put_page(page, 1);
599 return ret;
600}
601
602static int truncate_partial_nodes(struct dnode_of_data *dn,
603 struct f2fs_inode *ri, int *offset, int depth)
604{
605 struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
606 struct page *pages[2];
607 nid_t nid[3];
608 nid_t child_nid;
609 int err = 0;
610 int i;
611 int idx = depth - 2;
612
613 nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
614 if (!nid[0])
615 return 0;
616
617 /* get indirect nodes in the path */
618 for (i = 0; i < depth - 1; i++) {
619 /* refernece count'll be increased */
620 pages[i] = get_node_page(sbi, nid[i]);
621 if (IS_ERR(pages[i])) {
622 depth = i + 1;
623 err = PTR_ERR(pages[i]);
624 goto fail;
625 }
626 nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
627 }
628
629 /* free direct nodes linked to a partial indirect node */
630 for (i = offset[depth - 1]; i < NIDS_PER_BLOCK; i++) {
631 child_nid = get_nid(pages[idx], i, false);
632 if (!child_nid)
633 continue;
634 dn->nid = child_nid;
635 err = truncate_dnode(dn);
636 if (err < 0)
637 goto fail;
638 set_nid(pages[idx], i, 0, false);
639 }
640
641 if (offset[depth - 1] == 0) {
642 dn->node_page = pages[idx];
643 dn->nid = nid[idx];
644 truncate_node(dn);
645 } else {
646 f2fs_put_page(pages[idx], 1);
647 }
648 offset[idx]++;
649 offset[depth - 1] = 0;
650fail:
651 for (i = depth - 3; i >= 0; i--)
652 f2fs_put_page(pages[i], 1);
653 return err;
654}
655
0a8165d7 656/*
e05df3b1
JK
657 * All the block addresses of data and nodes should be nullified.
658 */
659int truncate_inode_blocks(struct inode *inode, pgoff_t from)
660{
661 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
662 int err = 0, cont = 1;
663 int level, offset[4], noffset[4];
7dd690c8 664 unsigned int nofs = 0;
e05df3b1
JK
665 struct f2fs_node *rn;
666 struct dnode_of_data dn;
667 struct page *page;
668
669 level = get_node_path(from, offset, noffset);
670
671 page = get_node_page(sbi, inode->i_ino);
672 if (IS_ERR(page))
673 return PTR_ERR(page);
674
675 set_new_dnode(&dn, inode, page, NULL, 0);
676 unlock_page(page);
677
678 rn = page_address(page);
679 switch (level) {
680 case 0:
681 case 1:
682 nofs = noffset[1];
683 break;
684 case 2:
685 nofs = noffset[1];
686 if (!offset[level - 1])
687 goto skip_partial;
688 err = truncate_partial_nodes(&dn, &rn->i, offset, level);
689 if (err < 0 && err != -ENOENT)
690 goto fail;
691 nofs += 1 + NIDS_PER_BLOCK;
692 break;
693 case 3:
694 nofs = 5 + 2 * NIDS_PER_BLOCK;
695 if (!offset[level - 1])
696 goto skip_partial;
697 err = truncate_partial_nodes(&dn, &rn->i, offset, level);
698 if (err < 0 && err != -ENOENT)
699 goto fail;
700 break;
701 default:
702 BUG();
703 }
704
705skip_partial:
706 while (cont) {
707 dn.nid = le32_to_cpu(rn->i.i_nid[offset[0] - NODE_DIR1_BLOCK]);
708 switch (offset[0]) {
709 case NODE_DIR1_BLOCK:
710 case NODE_DIR2_BLOCK:
711 err = truncate_dnode(&dn);
712 break;
713
714 case NODE_IND1_BLOCK:
715 case NODE_IND2_BLOCK:
716 err = truncate_nodes(&dn, nofs, offset[1], 2);
717 break;
718
719 case NODE_DIND_BLOCK:
720 err = truncate_nodes(&dn, nofs, offset[1], 3);
721 cont = 0;
722 break;
723
724 default:
725 BUG();
726 }
727 if (err < 0 && err != -ENOENT)
728 goto fail;
729 if (offset[1] == 0 &&
730 rn->i.i_nid[offset[0] - NODE_DIR1_BLOCK]) {
731 lock_page(page);
732 wait_on_page_writeback(page);
733 rn->i.i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
734 set_page_dirty(page);
735 unlock_page(page);
736 }
737 offset[1] = 0;
738 offset[0]++;
739 nofs += err;
740 }
741fail:
742 f2fs_put_page(page, 0);
743 return err > 0 ? 0 : err;
744}
745
39936837
JK
746/*
747 * Caller should grab and release a mutex by calling mutex_lock_op() and
748 * mutex_unlock_op().
749 */
e05df3b1
JK
750int remove_inode_page(struct inode *inode)
751{
752 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
753 struct page *page;
754 nid_t ino = inode->i_ino;
755 struct dnode_of_data dn;
756
e05df3b1 757 page = get_node_page(sbi, ino);
39936837 758 if (IS_ERR(page))
e05df3b1 759 return PTR_ERR(page);
e05df3b1
JK
760
761 if (F2FS_I(inode)->i_xattr_nid) {
762 nid_t nid = F2FS_I(inode)->i_xattr_nid;
763 struct page *npage = get_node_page(sbi, nid);
764
39936837 765 if (IS_ERR(npage))
e05df3b1 766 return PTR_ERR(npage);
e05df3b1
JK
767
768 F2FS_I(inode)->i_xattr_nid = 0;
769 set_new_dnode(&dn, inode, page, npage, nid);
770 dn.inode_page_locked = 1;
771 truncate_node(&dn);
772 }
e05df3b1 773
71e9fec5
JK
774 /* 0 is possible, after f2fs_new_inode() is failed */
775 BUG_ON(inode->i_blocks != 0 && inode->i_blocks != 1);
776 set_new_dnode(&dn, inode, page, page, ino);
777 truncate_node(&dn);
e05df3b1
JK
778 return 0;
779}
780
c004363d 781int new_inode_page(struct inode *inode, const struct qstr *name)
e05df3b1 782{
e05df3b1
JK
783 struct page *page;
784 struct dnode_of_data dn;
785
786 /* allocate inode page for new inode */
787 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
e05df3b1 788 page = new_node_page(&dn, 0);
c004363d 789 init_dent_inode(name, page);
e05df3b1
JK
790 if (IS_ERR(page))
791 return PTR_ERR(page);
792 f2fs_put_page(page, 1);
793 return 0;
794}
795
796struct page *new_node_page(struct dnode_of_data *dn, unsigned int ofs)
797{
798 struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
799 struct address_space *mapping = sbi->node_inode->i_mapping;
800 struct node_info old_ni, new_ni;
801 struct page *page;
802 int err;
803
804 if (is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC))
805 return ERR_PTR(-EPERM);
806
807 page = grab_cache_page(mapping, dn->nid);
808 if (!page)
809 return ERR_PTR(-ENOMEM);
810
811 get_node_info(sbi, dn->nid, &old_ni);
812
813 SetPageUptodate(page);
814 fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
815
816 /* Reinitialize old_ni with new node page */
817 BUG_ON(old_ni.blk_addr != NULL_ADDR);
818 new_ni = old_ni;
819 new_ni.ino = dn->inode->i_ino;
820
821 if (!inc_valid_node_count(sbi, dn->inode, 1)) {
822 err = -ENOSPC;
823 goto fail;
824 }
825 set_node_addr(sbi, &new_ni, NEW_ADDR);
398b1ac5 826 set_cold_node(dn->inode, page);
e05df3b1
JK
827
828 dn->node_page = page;
829 sync_inode_page(dn);
830 set_page_dirty(page);
e05df3b1
JK
831 if (ofs == 0)
832 inc_valid_inode_count(sbi);
833
834 return page;
835
836fail:
71e9fec5 837 clear_node_page_dirty(page);
e05df3b1
JK
838 f2fs_put_page(page, 1);
839 return ERR_PTR(err);
840}
841
56ae674c
JK
842/*
843 * Caller should do after getting the following values.
844 * 0: f2fs_put_page(page, 0)
845 * LOCKED_PAGE: f2fs_put_page(page, 1)
846 * error: nothing
847 */
e05df3b1
JK
848static int read_node_page(struct page *page, int type)
849{
850 struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb);
851 struct node_info ni;
852
853 get_node_info(sbi, page->index, &ni);
854
393ff91f
JK
855 if (ni.blk_addr == NULL_ADDR) {
856 f2fs_put_page(page, 1);
e05df3b1 857 return -ENOENT;
393ff91f
JK
858 }
859
56ae674c
JK
860 if (PageUptodate(page))
861 return LOCKED_PAGE;
393ff91f 862
e05df3b1
JK
863 return f2fs_readpage(sbi, page, ni.blk_addr, type);
864}
865
0a8165d7 866/*
e05df3b1
JK
867 * Readahead a node page
868 */
869void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
870{
871 struct address_space *mapping = sbi->node_inode->i_mapping;
872 struct page *apage;
56ae674c 873 int err;
e05df3b1
JK
874
875 apage = find_get_page(mapping, nid);
393ff91f
JK
876 if (apage && PageUptodate(apage)) {
877 f2fs_put_page(apage, 0);
878 return;
879 }
e05df3b1
JK
880 f2fs_put_page(apage, 0);
881
882 apage = grab_cache_page(mapping, nid);
883 if (!apage)
884 return;
885
56ae674c
JK
886 err = read_node_page(apage, READA);
887 if (err == 0)
393ff91f 888 f2fs_put_page(apage, 0);
56ae674c
JK
889 else if (err == LOCKED_PAGE)
890 f2fs_put_page(apage, 1);
a2b52a59 891 return;
e05df3b1
JK
892}
893
894struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
895{
e05df3b1 896 struct address_space *mapping = sbi->node_inode->i_mapping;
56ae674c
JK
897 struct page *page;
898 int err;
e05df3b1
JK
899
900 page = grab_cache_page(mapping, nid);
901 if (!page)
902 return ERR_PTR(-ENOMEM);
903
904 err = read_node_page(page, READ_SYNC);
56ae674c 905 if (err < 0)
e05df3b1 906 return ERR_PTR(err);
56ae674c
JK
907 else if (err == LOCKED_PAGE)
908 goto got_it;
e05df3b1 909
393ff91f
JK
910 lock_page(page);
911 if (!PageUptodate(page)) {
912 f2fs_put_page(page, 1);
913 return ERR_PTR(-EIO);
914 }
56ae674c 915got_it:
e05df3b1
JK
916 BUG_ON(nid != nid_of_node(page));
917 mark_page_accessed(page);
918 return page;
919}
920
0a8165d7 921/*
e05df3b1
JK
922 * Return a locked page for the desired node page.
923 * And, readahead MAX_RA_NODE number of node pages.
924 */
925struct page *get_node_page_ra(struct page *parent, int start)
926{
927 struct f2fs_sb_info *sbi = F2FS_SB(parent->mapping->host->i_sb);
928 struct address_space *mapping = sbi->node_inode->i_mapping;
e05df3b1 929 struct page *page;
56ae674c
JK
930 int err, i, end;
931 nid_t nid;
e05df3b1
JK
932
933 /* First, try getting the desired direct node. */
934 nid = get_nid(parent, start, false);
935 if (!nid)
936 return ERR_PTR(-ENOENT);
937
e05df3b1
JK
938 page = grab_cache_page(mapping, nid);
939 if (!page)
940 return ERR_PTR(-ENOMEM);
941
66d36a29 942 err = read_node_page(page, READ_SYNC);
56ae674c 943 if (err < 0)
e05df3b1 944 return ERR_PTR(err);
56ae674c
JK
945 else if (err == LOCKED_PAGE)
946 goto page_hit;
e05df3b1
JK
947
948 /* Then, try readahead for siblings of the desired node */
949 end = start + MAX_RA_NODE;
950 end = min(end, NIDS_PER_BLOCK);
951 for (i = start + 1; i < end; i++) {
952 nid = get_nid(parent, i, false);
953 if (!nid)
954 continue;
955 ra_node_page(sbi, nid);
956 }
957
e05df3b1 958 lock_page(page);
e0f56cb4
NJ
959
960page_hit:
56ae674c 961 if (!PageUptodate(page)) {
e05df3b1
JK
962 f2fs_put_page(page, 1);
963 return ERR_PTR(-EIO);
964 }
393ff91f 965 mark_page_accessed(page);
e05df3b1
JK
966 return page;
967}
968
969void sync_inode_page(struct dnode_of_data *dn)
970{
971 if (IS_INODE(dn->node_page) || dn->inode_page == dn->node_page) {
972 update_inode(dn->inode, dn->node_page);
973 } else if (dn->inode_page) {
974 if (!dn->inode_page_locked)
975 lock_page(dn->inode_page);
976 update_inode(dn->inode, dn->inode_page);
977 if (!dn->inode_page_locked)
978 unlock_page(dn->inode_page);
979 } else {
39936837 980 update_inode_page(dn->inode);
e05df3b1
JK
981 }
982}
983
984int sync_node_pages(struct f2fs_sb_info *sbi, nid_t ino,
985 struct writeback_control *wbc)
986{
987 struct address_space *mapping = sbi->node_inode->i_mapping;
988 pgoff_t index, end;
989 struct pagevec pvec;
990 int step = ino ? 2 : 0;
991 int nwritten = 0, wrote = 0;
992
993 pagevec_init(&pvec, 0);
994
995next_step:
996 index = 0;
997 end = LONG_MAX;
998
999 while (index <= end) {
1000 int i, nr_pages;
1001 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
1002 PAGECACHE_TAG_DIRTY,
1003 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1004 if (nr_pages == 0)
1005 break;
1006
1007 for (i = 0; i < nr_pages; i++) {
1008 struct page *page = pvec.pages[i];
1009
1010 /*
1011 * flushing sequence with step:
1012 * 0. indirect nodes
1013 * 1. dentry dnodes
1014 * 2. file dnodes
1015 */
1016 if (step == 0 && IS_DNODE(page))
1017 continue;
1018 if (step == 1 && (!IS_DNODE(page) ||
1019 is_cold_node(page)))
1020 continue;
1021 if (step == 2 && (!IS_DNODE(page) ||
1022 !is_cold_node(page)))
1023 continue;
1024
1025 /*
1026 * If an fsync mode,
1027 * we should not skip writing node pages.
1028 */
1029 if (ino && ino_of_node(page) == ino)
1030 lock_page(page);
1031 else if (!trylock_page(page))
1032 continue;
1033
1034 if (unlikely(page->mapping != mapping)) {
1035continue_unlock:
1036 unlock_page(page);
1037 continue;
1038 }
1039 if (ino && ino_of_node(page) != ino)
1040 goto continue_unlock;
1041
1042 if (!PageDirty(page)) {
1043 /* someone wrote it for us */
1044 goto continue_unlock;
1045 }
1046
1047 if (!clear_page_dirty_for_io(page))
1048 goto continue_unlock;
1049
1050 /* called by fsync() */
1051 if (ino && IS_DNODE(page)) {
1052 int mark = !is_checkpointed_node(sbi, ino);
1053 set_fsync_mark(page, 1);
1054 if (IS_INODE(page))
1055 set_dentry_mark(page, mark);
1056 nwritten++;
1057 } else {
1058 set_fsync_mark(page, 0);
1059 set_dentry_mark(page, 0);
1060 }
1061 mapping->a_ops->writepage(page, wbc);
1062 wrote++;
1063
1064 if (--wbc->nr_to_write == 0)
1065 break;
1066 }
1067 pagevec_release(&pvec);
1068 cond_resched();
1069
1070 if (wbc->nr_to_write == 0) {
1071 step = 2;
1072 break;
1073 }
1074 }
1075
1076 if (step < 2) {
1077 step++;
1078 goto next_step;
1079 }
1080
1081 if (wrote)
1082 f2fs_submit_bio(sbi, NODE, wbc->sync_mode == WB_SYNC_ALL);
1083
1084 return nwritten;
1085}
1086
1087static int f2fs_write_node_page(struct page *page,
1088 struct writeback_control *wbc)
1089{
1090 struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb);
1091 nid_t nid;
e05df3b1
JK
1092 block_t new_addr;
1093 struct node_info ni;
1094
e05df3b1
JK
1095 wait_on_page_writeback(page);
1096
e05df3b1
JK
1097 /* get old block addr of this node page */
1098 nid = nid_of_node(page);
e05df3b1
JK
1099 BUG_ON(page->index != nid);
1100
1101 get_node_info(sbi, nid, &ni);
1102
1103 /* This page is already truncated */
39936837
JK
1104 if (ni.blk_addr == NULL_ADDR) {
1105 dec_page_count(sbi, F2FS_DIRTY_NODES);
1106 unlock_page(page);
1107 return 0;
1108 }
e05df3b1 1109
08d8058b
JK
1110 if (wbc->for_reclaim) {
1111 dec_page_count(sbi, F2FS_DIRTY_NODES);
1112 wbc->pages_skipped++;
1113 set_page_dirty(page);
08d8058b
JK
1114 return AOP_WRITEPAGE_ACTIVATE;
1115 }
1116
39936837 1117 mutex_lock(&sbi->node_write);
e05df3b1 1118 set_page_writeback(page);
e05df3b1
JK
1119 write_node_page(sbi, page, nid, ni.blk_addr, &new_addr);
1120 set_node_addr(sbi, &ni, new_addr);
1121 dec_page_count(sbi, F2FS_DIRTY_NODES);
39936837 1122 mutex_unlock(&sbi->node_write);
e05df3b1
JK
1123 unlock_page(page);
1124 return 0;
1125}
1126
a7fdffbd
JK
1127/*
1128 * It is very important to gather dirty pages and write at once, so that we can
1129 * submit a big bio without interfering other data writes.
1130 * Be default, 512 pages (2MB), a segment size, is quite reasonable.
1131 */
1132#define COLLECT_DIRTY_NODES 512
e05df3b1
JK
1133static int f2fs_write_node_pages(struct address_space *mapping,
1134 struct writeback_control *wbc)
1135{
1136 struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
1137 struct block_device *bdev = sbi->sb->s_bdev;
1138 long nr_to_write = wbc->nr_to_write;
1139
a7fdffbd 1140 /* First check balancing cached NAT entries */
e05df3b1 1141 if (try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK)) {
b7473754 1142 f2fs_sync_fs(sbi->sb, true);
e05df3b1
JK
1143 return 0;
1144 }
1145
a7fdffbd
JK
1146 /* collect a number of dirty node pages and write together */
1147 if (get_pages(sbi, F2FS_DIRTY_NODES) < COLLECT_DIRTY_NODES)
1148 return 0;
1149
e05df3b1
JK
1150 /* if mounting is failed, skip writing node pages */
1151 wbc->nr_to_write = bio_get_nr_vecs(bdev);
1152 sync_node_pages(sbi, 0, wbc);
1153 wbc->nr_to_write = nr_to_write -
1154 (bio_get_nr_vecs(bdev) - wbc->nr_to_write);
1155 return 0;
1156}
1157
1158static int f2fs_set_node_page_dirty(struct page *page)
1159{
1160 struct address_space *mapping = page->mapping;
1161 struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
1162
1163 SetPageUptodate(page);
1164 if (!PageDirty(page)) {
1165 __set_page_dirty_nobuffers(page);
1166 inc_page_count(sbi, F2FS_DIRTY_NODES);
1167 SetPagePrivate(page);
1168 return 1;
1169 }
1170 return 0;
1171}
1172
1173static void f2fs_invalidate_node_page(struct page *page, unsigned long offset)
1174{
1175 struct inode *inode = page->mapping->host;
1176 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
1177 if (PageDirty(page))
1178 dec_page_count(sbi, F2FS_DIRTY_NODES);
1179 ClearPagePrivate(page);
1180}
1181
1182static int f2fs_release_node_page(struct page *page, gfp_t wait)
1183{
1184 ClearPagePrivate(page);
c3850aa1 1185 return 1;
e05df3b1
JK
1186}
1187
0a8165d7 1188/*
e05df3b1
JK
1189 * Structure of the f2fs node operations
1190 */
1191const struct address_space_operations f2fs_node_aops = {
1192 .writepage = f2fs_write_node_page,
1193 .writepages = f2fs_write_node_pages,
1194 .set_page_dirty = f2fs_set_node_page_dirty,
1195 .invalidatepage = f2fs_invalidate_node_page,
1196 .releasepage = f2fs_release_node_page,
1197};
1198
1199static struct free_nid *__lookup_free_nid_list(nid_t n, struct list_head *head)
1200{
1201 struct list_head *this;
3aa770a9 1202 struct free_nid *i;
e05df3b1
JK
1203 list_for_each(this, head) {
1204 i = list_entry(this, struct free_nid, list);
1205 if (i->nid == n)
3aa770a9 1206 return i;
e05df3b1 1207 }
3aa770a9 1208 return NULL;
e05df3b1
JK
1209}
1210
1211static void __del_from_free_nid_list(struct free_nid *i)
1212{
1213 list_del(&i->list);
1214 kmem_cache_free(free_nid_slab, i);
1215}
1216
1217static int add_free_nid(struct f2fs_nm_info *nm_i, nid_t nid)
1218{
1219 struct free_nid *i;
1220
1221 if (nm_i->fcnt > 2 * MAX_FREE_NIDS)
1222 return 0;
1223retry:
1224 i = kmem_cache_alloc(free_nid_slab, GFP_NOFS);
1225 if (!i) {
1226 cond_resched();
1227 goto retry;
1228 }
1229 i->nid = nid;
1230 i->state = NID_NEW;
1231
1232 spin_lock(&nm_i->free_nid_list_lock);
1233 if (__lookup_free_nid_list(nid, &nm_i->free_nid_list)) {
1234 spin_unlock(&nm_i->free_nid_list_lock);
1235 kmem_cache_free(free_nid_slab, i);
1236 return 0;
1237 }
1238 list_add_tail(&i->list, &nm_i->free_nid_list);
1239 nm_i->fcnt++;
1240 spin_unlock(&nm_i->free_nid_list_lock);
1241 return 1;
1242}
1243
1244static void remove_free_nid(struct f2fs_nm_info *nm_i, nid_t nid)
1245{
1246 struct free_nid *i;
1247 spin_lock(&nm_i->free_nid_list_lock);
1248 i = __lookup_free_nid_list(nid, &nm_i->free_nid_list);
1249 if (i && i->state == NID_NEW) {
1250 __del_from_free_nid_list(i);
1251 nm_i->fcnt--;
1252 }
1253 spin_unlock(&nm_i->free_nid_list_lock);
1254}
1255
1256static int scan_nat_page(struct f2fs_nm_info *nm_i,
1257 struct page *nat_page, nid_t start_nid)
1258{
1259 struct f2fs_nat_block *nat_blk = page_address(nat_page);
1260 block_t blk_addr;
1261 int fcnt = 0;
1262 int i;
1263
1264 /* 0 nid should not be used */
1265 if (start_nid == 0)
1266 ++start_nid;
1267
1268 i = start_nid % NAT_ENTRY_PER_BLOCK;
1269
1270 for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
04431c44
JK
1271 if (start_nid >= nm_i->max_nid)
1272 break;
e05df3b1
JK
1273 blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
1274 BUG_ON(blk_addr == NEW_ADDR);
1275 if (blk_addr == NULL_ADDR)
1276 fcnt += add_free_nid(nm_i, start_nid);
1277 }
1278 return fcnt;
1279}
1280
1281static void build_free_nids(struct f2fs_sb_info *sbi)
1282{
1283 struct free_nid *fnid, *next_fnid;
1284 struct f2fs_nm_info *nm_i = NM_I(sbi);
1285 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1286 struct f2fs_summary_block *sum = curseg->sum_blk;
1287 nid_t nid = 0;
1288 bool is_cycled = false;
1289 int fcnt = 0;
1290 int i;
1291
1292 nid = nm_i->next_scan_nid;
1293 nm_i->init_scan_nid = nid;
1294
1295 ra_nat_pages(sbi, nid);
1296
1297 while (1) {
1298 struct page *page = get_current_nat_page(sbi, nid);
1299
1300 fcnt += scan_nat_page(nm_i, page, nid);
1301 f2fs_put_page(page, 1);
1302
1303 nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
1304
1305 if (nid >= nm_i->max_nid) {
1306 nid = 0;
1307 is_cycled = true;
1308 }
1309 if (fcnt > MAX_FREE_NIDS)
1310 break;
1311 if (is_cycled && nm_i->init_scan_nid <= nid)
1312 break;
1313 }
1314
48cb76c7
JK
1315 /* go to the next nat page in order to reuse free nids first */
1316 nm_i->next_scan_nid = nm_i->init_scan_nid + NAT_ENTRY_PER_BLOCK;
e05df3b1
JK
1317
1318 /* find free nids from current sum_pages */
1319 mutex_lock(&curseg->curseg_mutex);
1320 for (i = 0; i < nats_in_cursum(sum); i++) {
1321 block_t addr = le32_to_cpu(nat_in_journal(sum, i).block_addr);
1322 nid = le32_to_cpu(nid_in_journal(sum, i));
1323 if (addr == NULL_ADDR)
1324 add_free_nid(nm_i, nid);
1325 else
1326 remove_free_nid(nm_i, nid);
1327 }
1328 mutex_unlock(&curseg->curseg_mutex);
1329
1330 /* remove the free nids from current allocated nids */
1331 list_for_each_entry_safe(fnid, next_fnid, &nm_i->free_nid_list, list) {
1332 struct nat_entry *ne;
1333
1334 read_lock(&nm_i->nat_tree_lock);
1335 ne = __lookup_nat_cache(nm_i, fnid->nid);
1336 if (ne && nat_get_blkaddr(ne) != NULL_ADDR)
1337 remove_free_nid(nm_i, fnid->nid);
1338 read_unlock(&nm_i->nat_tree_lock);
1339 }
1340}
1341
1342/*
1343 * If this function returns success, caller can obtain a new nid
1344 * from second parameter of this function.
1345 * The returned nid could be used ino as well as nid when inode is created.
1346 */
1347bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
1348{
1349 struct f2fs_nm_info *nm_i = NM_I(sbi);
1350 struct free_nid *i = NULL;
1351 struct list_head *this;
1352retry:
1353 mutex_lock(&nm_i->build_lock);
1354 if (!nm_i->fcnt) {
1355 /* scan NAT in order to build free nid list */
1356 build_free_nids(sbi);
1357 if (!nm_i->fcnt) {
1358 mutex_unlock(&nm_i->build_lock);
1359 return false;
1360 }
1361 }
1362 mutex_unlock(&nm_i->build_lock);
1363
1364 /*
1365 * We check fcnt again since previous check is racy as
1366 * we didn't hold free_nid_list_lock. So other thread
1367 * could consume all of free nids.
1368 */
1369 spin_lock(&nm_i->free_nid_list_lock);
1370 if (!nm_i->fcnt) {
1371 spin_unlock(&nm_i->free_nid_list_lock);
1372 goto retry;
1373 }
1374
1375 BUG_ON(list_empty(&nm_i->free_nid_list));
1376 list_for_each(this, &nm_i->free_nid_list) {
1377 i = list_entry(this, struct free_nid, list);
1378 if (i->state == NID_NEW)
1379 break;
1380 }
1381
1382 BUG_ON(i->state != NID_NEW);
1383 *nid = i->nid;
1384 i->state = NID_ALLOC;
1385 nm_i->fcnt--;
1386 spin_unlock(&nm_i->free_nid_list_lock);
1387 return true;
1388}
1389
0a8165d7 1390/*
e05df3b1
JK
1391 * alloc_nid() should be called prior to this function.
1392 */
1393void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
1394{
1395 struct f2fs_nm_info *nm_i = NM_I(sbi);
1396 struct free_nid *i;
1397
1398 spin_lock(&nm_i->free_nid_list_lock);
1399 i = __lookup_free_nid_list(nid, &nm_i->free_nid_list);
49952fa1
JK
1400 BUG_ON(!i || i->state != NID_ALLOC);
1401 __del_from_free_nid_list(i);
e05df3b1
JK
1402 spin_unlock(&nm_i->free_nid_list_lock);
1403}
1404
0a8165d7 1405/*
e05df3b1
JK
1406 * alloc_nid() should be called prior to this function.
1407 */
1408void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
1409{
49952fa1
JK
1410 struct f2fs_nm_info *nm_i = NM_I(sbi);
1411 struct free_nid *i;
1412
1413 spin_lock(&nm_i->free_nid_list_lock);
1414 i = __lookup_free_nid_list(nid, &nm_i->free_nid_list);
1415 BUG_ON(!i || i->state != NID_ALLOC);
1416 i->state = NID_NEW;
1417 nm_i->fcnt++;
1418 spin_unlock(&nm_i->free_nid_list_lock);
e05df3b1
JK
1419}
1420
1421void recover_node_page(struct f2fs_sb_info *sbi, struct page *page,
1422 struct f2fs_summary *sum, struct node_info *ni,
1423 block_t new_blkaddr)
1424{
1425 rewrite_node_page(sbi, page, sum, ni->blk_addr, new_blkaddr);
1426 set_node_addr(sbi, ni, new_blkaddr);
1427 clear_node_page_dirty(page);
1428}
1429
1430int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
1431{
1432 struct address_space *mapping = sbi->node_inode->i_mapping;
1433 struct f2fs_node *src, *dst;
1434 nid_t ino = ino_of_node(page);
1435 struct node_info old_ni, new_ni;
1436 struct page *ipage;
1437
1438 ipage = grab_cache_page(mapping, ino);
1439 if (!ipage)
1440 return -ENOMEM;
1441
1442 /* Should not use this inode from free nid list */
1443 remove_free_nid(NM_I(sbi), ino);
1444
1445 get_node_info(sbi, ino, &old_ni);
1446 SetPageUptodate(ipage);
1447 fill_node_footer(ipage, ino, ino, 0, true);
1448
1449 src = (struct f2fs_node *)page_address(page);
1450 dst = (struct f2fs_node *)page_address(ipage);
1451
1452 memcpy(dst, src, (unsigned long)&src->i.i_ext - (unsigned long)&src->i);
1453 dst->i.i_size = 0;
25ca923b
JK
1454 dst->i.i_blocks = cpu_to_le64(1);
1455 dst->i.i_links = cpu_to_le32(1);
e05df3b1
JK
1456 dst->i.i_xattr_nid = 0;
1457
1458 new_ni = old_ni;
1459 new_ni.ino = ino;
1460
1461 set_node_addr(sbi, &new_ni, NEW_ADDR);
1462 inc_valid_inode_count(sbi);
1463
1464 f2fs_put_page(ipage, 1);
1465 return 0;
1466}
1467
1468int restore_node_summary(struct f2fs_sb_info *sbi,
1469 unsigned int segno, struct f2fs_summary_block *sum)
1470{
1471 struct f2fs_node *rn;
1472 struct f2fs_summary *sum_entry;
1473 struct page *page;
1474 block_t addr;
1475 int i, last_offset;
1476
1477 /* alloc temporal page for read node */
1478 page = alloc_page(GFP_NOFS | __GFP_ZERO);
1479 if (IS_ERR(page))
1480 return PTR_ERR(page);
1481 lock_page(page);
1482
1483 /* scan the node segment */
1484 last_offset = sbi->blocks_per_seg;
1485 addr = START_BLOCK(sbi, segno);
1486 sum_entry = &sum->entries[0];
1487
1488 for (i = 0; i < last_offset; i++, sum_entry++) {
393ff91f
JK
1489 /*
1490 * In order to read next node page,
1491 * we must clear PageUptodate flag.
1492 */
1493 ClearPageUptodate(page);
1494
e05df3b1
JK
1495 if (f2fs_readpage(sbi, page, addr, READ_SYNC))
1496 goto out;
1497
393ff91f 1498 lock_page(page);
e05df3b1
JK
1499 rn = (struct f2fs_node *)page_address(page);
1500 sum_entry->nid = rn->footer.nid;
1501 sum_entry->version = 0;
1502 sum_entry->ofs_in_node = 0;
1503 addr++;
e05df3b1 1504 }
e05df3b1 1505 unlock_page(page);
393ff91f 1506out:
e05df3b1
JK
1507 __free_pages(page, 0);
1508 return 0;
1509}
1510
1511static bool flush_nats_in_journal(struct f2fs_sb_info *sbi)
1512{
1513 struct f2fs_nm_info *nm_i = NM_I(sbi);
1514 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1515 struct f2fs_summary_block *sum = curseg->sum_blk;
1516 int i;
1517
1518 mutex_lock(&curseg->curseg_mutex);
1519
1520 if (nats_in_cursum(sum) < NAT_JOURNAL_ENTRIES) {
1521 mutex_unlock(&curseg->curseg_mutex);
1522 return false;
1523 }
1524
1525 for (i = 0; i < nats_in_cursum(sum); i++) {
1526 struct nat_entry *ne;
1527 struct f2fs_nat_entry raw_ne;
1528 nid_t nid = le32_to_cpu(nid_in_journal(sum, i));
1529
1530 raw_ne = nat_in_journal(sum, i);
1531retry:
1532 write_lock(&nm_i->nat_tree_lock);
1533 ne = __lookup_nat_cache(nm_i, nid);
1534 if (ne) {
1535 __set_nat_cache_dirty(nm_i, ne);
1536 write_unlock(&nm_i->nat_tree_lock);
1537 continue;
1538 }
1539 ne = grab_nat_entry(nm_i, nid);
1540 if (!ne) {
1541 write_unlock(&nm_i->nat_tree_lock);
1542 goto retry;
1543 }
1544 nat_set_blkaddr(ne, le32_to_cpu(raw_ne.block_addr));
1545 nat_set_ino(ne, le32_to_cpu(raw_ne.ino));
1546 nat_set_version(ne, raw_ne.version);
1547 __set_nat_cache_dirty(nm_i, ne);
1548 write_unlock(&nm_i->nat_tree_lock);
1549 }
1550 update_nats_in_cursum(sum, -i);
1551 mutex_unlock(&curseg->curseg_mutex);
1552 return true;
1553}
1554
0a8165d7 1555/*
e05df3b1
JK
1556 * This function is called during the checkpointing process.
1557 */
1558void flush_nat_entries(struct f2fs_sb_info *sbi)
1559{
1560 struct f2fs_nm_info *nm_i = NM_I(sbi);
1561 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1562 struct f2fs_summary_block *sum = curseg->sum_blk;
1563 struct list_head *cur, *n;
1564 struct page *page = NULL;
1565 struct f2fs_nat_block *nat_blk = NULL;
1566 nid_t start_nid = 0, end_nid = 0;
1567 bool flushed;
1568
1569 flushed = flush_nats_in_journal(sbi);
1570
1571 if (!flushed)
1572 mutex_lock(&curseg->curseg_mutex);
1573
1574 /* 1) flush dirty nat caches */
1575 list_for_each_safe(cur, n, &nm_i->dirty_nat_entries) {
1576 struct nat_entry *ne;
1577 nid_t nid;
1578 struct f2fs_nat_entry raw_ne;
1579 int offset = -1;
2b50638d 1580 block_t new_blkaddr;
e05df3b1
JK
1581
1582 ne = list_entry(cur, struct nat_entry, list);
1583 nid = nat_get_nid(ne);
1584
1585 if (nat_get_blkaddr(ne) == NEW_ADDR)
1586 continue;
1587 if (flushed)
1588 goto to_nat_page;
1589
1590 /* if there is room for nat enries in curseg->sumpage */
1591 offset = lookup_journal_in_cursum(sum, NAT_JOURNAL, nid, 1);
1592 if (offset >= 0) {
1593 raw_ne = nat_in_journal(sum, offset);
e05df3b1
JK
1594 goto flush_now;
1595 }
1596to_nat_page:
1597 if (!page || (start_nid > nid || nid > end_nid)) {
1598 if (page) {
1599 f2fs_put_page(page, 1);
1600 page = NULL;
1601 }
1602 start_nid = START_NID(nid);
1603 end_nid = start_nid + NAT_ENTRY_PER_BLOCK - 1;
1604
1605 /*
1606 * get nat block with dirty flag, increased reference
1607 * count, mapped and lock
1608 */
1609 page = get_next_nat_page(sbi, start_nid);
1610 nat_blk = page_address(page);
1611 }
1612
1613 BUG_ON(!nat_blk);
1614 raw_ne = nat_blk->entries[nid - start_nid];
e05df3b1
JK
1615flush_now:
1616 new_blkaddr = nat_get_blkaddr(ne);
1617
1618 raw_ne.ino = cpu_to_le32(nat_get_ino(ne));
1619 raw_ne.block_addr = cpu_to_le32(new_blkaddr);
1620 raw_ne.version = nat_get_version(ne);
1621
1622 if (offset < 0) {
1623 nat_blk->entries[nid - start_nid] = raw_ne;
1624 } else {
1625 nat_in_journal(sum, offset) = raw_ne;
1626 nid_in_journal(sum, offset) = cpu_to_le32(nid);
1627 }
1628
fa372417
JK
1629 if (nat_get_blkaddr(ne) == NULL_ADDR &&
1630 !add_free_nid(NM_I(sbi), nid)) {
e05df3b1
JK
1631 write_lock(&nm_i->nat_tree_lock);
1632 __del_from_nat_cache(nm_i, ne);
1633 write_unlock(&nm_i->nat_tree_lock);
e05df3b1
JK
1634 } else {
1635 write_lock(&nm_i->nat_tree_lock);
1636 __clear_nat_cache_dirty(nm_i, ne);
1637 ne->checkpointed = true;
1638 write_unlock(&nm_i->nat_tree_lock);
1639 }
1640 }
1641 if (!flushed)
1642 mutex_unlock(&curseg->curseg_mutex);
1643 f2fs_put_page(page, 1);
1644
1645 /* 2) shrink nat caches if necessary */
1646 try_to_free_nats(sbi, nm_i->nat_cnt - NM_WOUT_THRESHOLD);
1647}
1648
1649static int init_node_manager(struct f2fs_sb_info *sbi)
1650{
1651 struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
1652 struct f2fs_nm_info *nm_i = NM_I(sbi);
1653 unsigned char *version_bitmap;
1654 unsigned int nat_segs, nat_blocks;
1655
1656 nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
1657
1658 /* segment_count_nat includes pair segment so divide to 2. */
1659 nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
1660 nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
1661 nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nat_blocks;
1662 nm_i->fcnt = 0;
1663 nm_i->nat_cnt = 0;
1664
1665 INIT_LIST_HEAD(&nm_i->free_nid_list);
1666 INIT_RADIX_TREE(&nm_i->nat_root, GFP_ATOMIC);
1667 INIT_LIST_HEAD(&nm_i->nat_entries);
1668 INIT_LIST_HEAD(&nm_i->dirty_nat_entries);
1669
1670 mutex_init(&nm_i->build_lock);
1671 spin_lock_init(&nm_i->free_nid_list_lock);
1672 rwlock_init(&nm_i->nat_tree_lock);
1673
e05df3b1
JK
1674 nm_i->init_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
1675 nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
79b5793b 1676 nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
e05df3b1
JK
1677 version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
1678 if (!version_bitmap)
1679 return -EFAULT;
1680
79b5793b
AG
1681 nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
1682 GFP_KERNEL);
1683 if (!nm_i->nat_bitmap)
1684 return -ENOMEM;
e05df3b1
JK
1685 return 0;
1686}
1687
1688int build_node_manager(struct f2fs_sb_info *sbi)
1689{
1690 int err;
1691
1692 sbi->nm_info = kzalloc(sizeof(struct f2fs_nm_info), GFP_KERNEL);
1693 if (!sbi->nm_info)
1694 return -ENOMEM;
1695
1696 err = init_node_manager(sbi);
1697 if (err)
1698 return err;
1699
1700 build_free_nids(sbi);
1701 return 0;
1702}
1703
1704void destroy_node_manager(struct f2fs_sb_info *sbi)
1705{
1706 struct f2fs_nm_info *nm_i = NM_I(sbi);
1707 struct free_nid *i, *next_i;
1708 struct nat_entry *natvec[NATVEC_SIZE];
1709 nid_t nid = 0;
1710 unsigned int found;
1711
1712 if (!nm_i)
1713 return;
1714
1715 /* destroy free nid list */
1716 spin_lock(&nm_i->free_nid_list_lock);
1717 list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
1718 BUG_ON(i->state == NID_ALLOC);
1719 __del_from_free_nid_list(i);
1720 nm_i->fcnt--;
1721 }
1722 BUG_ON(nm_i->fcnt);
1723 spin_unlock(&nm_i->free_nid_list_lock);
1724
1725 /* destroy nat cache */
1726 write_lock(&nm_i->nat_tree_lock);
1727 while ((found = __gang_lookup_nat_cache(nm_i,
1728 nid, NATVEC_SIZE, natvec))) {
1729 unsigned idx;
1730 for (idx = 0; idx < found; idx++) {
1731 struct nat_entry *e = natvec[idx];
1732 nid = nat_get_nid(e) + 1;
1733 __del_from_nat_cache(nm_i, e);
1734 }
1735 }
1736 BUG_ON(nm_i->nat_cnt);
1737 write_unlock(&nm_i->nat_tree_lock);
1738
1739 kfree(nm_i->nat_bitmap);
1740 sbi->nm_info = NULL;
1741 kfree(nm_i);
1742}
1743
6e6093a8 1744int __init create_node_manager_caches(void)
e05df3b1
JK
1745{
1746 nat_entry_slab = f2fs_kmem_cache_create("nat_entry",
1747 sizeof(struct nat_entry), NULL);
1748 if (!nat_entry_slab)
1749 return -ENOMEM;
1750
1751 free_nid_slab = f2fs_kmem_cache_create("free_nid",
1752 sizeof(struct free_nid), NULL);
1753 if (!free_nid_slab) {
1754 kmem_cache_destroy(nat_entry_slab);
1755 return -ENOMEM;
1756 }
1757 return 0;
1758}
1759
1760void destroy_node_manager_caches(void)
1761{
1762 kmem_cache_destroy(free_nid_slab);
1763 kmem_cache_destroy(nat_entry_slab);
1764}