f2fs: code cleanup for scan_nat_page() and build_free_nids()
[linux-2.6-block.git] / fs / f2fs / node.c
CommitLineData
0a8165d7 1/*
e05df3b1
JK
2 * fs/f2fs/node.c
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11#include <linux/fs.h>
12#include <linux/f2fs_fs.h>
13#include <linux/mpage.h>
14#include <linux/backing-dev.h>
15#include <linux/blkdev.h>
16#include <linux/pagevec.h>
17#include <linux/swap.h>
18
19#include "f2fs.h"
20#include "node.h"
21#include "segment.h"
51dd6249 22#include <trace/events/f2fs.h>
e05df3b1
JK
23
24static struct kmem_cache *nat_entry_slab;
25static struct kmem_cache *free_nid_slab;
26
27static void clear_node_page_dirty(struct page *page)
28{
29 struct address_space *mapping = page->mapping;
30 struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
31 unsigned int long flags;
32
33 if (PageDirty(page)) {
34 spin_lock_irqsave(&mapping->tree_lock, flags);
35 radix_tree_tag_clear(&mapping->page_tree,
36 page_index(page),
37 PAGECACHE_TAG_DIRTY);
38 spin_unlock_irqrestore(&mapping->tree_lock, flags);
39
40 clear_page_dirty_for_io(page);
41 dec_page_count(sbi, F2FS_DIRTY_NODES);
42 }
43 ClearPageUptodate(page);
44}
45
46static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
47{
48 pgoff_t index = current_nat_addr(sbi, nid);
49 return get_meta_page(sbi, index);
50}
51
52static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
53{
54 struct page *src_page;
55 struct page *dst_page;
56 pgoff_t src_off;
57 pgoff_t dst_off;
58 void *src_addr;
59 void *dst_addr;
60 struct f2fs_nm_info *nm_i = NM_I(sbi);
61
62 src_off = current_nat_addr(sbi, nid);
63 dst_off = next_nat_addr(sbi, src_off);
64
65 /* get current nat block page with lock */
66 src_page = get_meta_page(sbi, src_off);
67
68 /* Dirty src_page means that it is already the new target NAT page. */
69 if (PageDirty(src_page))
70 return src_page;
71
72 dst_page = grab_meta_page(sbi, dst_off);
73
74 src_addr = page_address(src_page);
75 dst_addr = page_address(dst_page);
76 memcpy(dst_addr, src_addr, PAGE_CACHE_SIZE);
77 set_page_dirty(dst_page);
78 f2fs_put_page(src_page, 1);
79
80 set_to_next_nat(nm_i, nid);
81
82 return dst_page;
83}
84
0a8165d7 85/*
e05df3b1
JK
86 * Readahead NAT pages
87 */
88static void ra_nat_pages(struct f2fs_sb_info *sbi, int nid)
89{
90 struct address_space *mapping = sbi->meta_inode->i_mapping;
91 struct f2fs_nm_info *nm_i = NM_I(sbi);
c718379b 92 struct blk_plug plug;
e05df3b1
JK
93 struct page *page;
94 pgoff_t index;
95 int i;
96
c718379b
JK
97 blk_start_plug(&plug);
98
e05df3b1
JK
99 for (i = 0; i < FREE_NID_PAGES; i++, nid += NAT_ENTRY_PER_BLOCK) {
100 if (nid >= nm_i->max_nid)
101 nid = 0;
102 index = current_nat_addr(sbi, nid);
103
104 page = grab_cache_page(mapping, index);
105 if (!page)
106 continue;
393ff91f 107 if (PageUptodate(page)) {
e05df3b1
JK
108 f2fs_put_page(page, 1);
109 continue;
110 }
393ff91f
JK
111 if (f2fs_readpage(sbi, page, index, READ))
112 continue;
113
369a708c 114 f2fs_put_page(page, 0);
e05df3b1 115 }
c718379b 116 blk_finish_plug(&plug);
e05df3b1
JK
117}
118
119static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
120{
121 return radix_tree_lookup(&nm_i->nat_root, n);
122}
123
124static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
125 nid_t start, unsigned int nr, struct nat_entry **ep)
126{
127 return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
128}
129
130static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
131{
132 list_del(&e->list);
133 radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
134 nm_i->nat_cnt--;
135 kmem_cache_free(nat_entry_slab, e);
136}
137
138int is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
139{
140 struct f2fs_nm_info *nm_i = NM_I(sbi);
141 struct nat_entry *e;
142 int is_cp = 1;
143
144 read_lock(&nm_i->nat_tree_lock);
145 e = __lookup_nat_cache(nm_i, nid);
146 if (e && !e->checkpointed)
147 is_cp = 0;
148 read_unlock(&nm_i->nat_tree_lock);
149 return is_cp;
150}
151
152static struct nat_entry *grab_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid)
153{
154 struct nat_entry *new;
155
156 new = kmem_cache_alloc(nat_entry_slab, GFP_ATOMIC);
157 if (!new)
158 return NULL;
159 if (radix_tree_insert(&nm_i->nat_root, nid, new)) {
160 kmem_cache_free(nat_entry_slab, new);
161 return NULL;
162 }
163 memset(new, 0, sizeof(struct nat_entry));
164 nat_set_nid(new, nid);
165 list_add_tail(&new->list, &nm_i->nat_entries);
166 nm_i->nat_cnt++;
167 return new;
168}
169
170static void cache_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid,
171 struct f2fs_nat_entry *ne)
172{
173 struct nat_entry *e;
174retry:
175 write_lock(&nm_i->nat_tree_lock);
176 e = __lookup_nat_cache(nm_i, nid);
177 if (!e) {
178 e = grab_nat_entry(nm_i, nid);
179 if (!e) {
180 write_unlock(&nm_i->nat_tree_lock);
181 goto retry;
182 }
183 nat_set_blkaddr(e, le32_to_cpu(ne->block_addr));
184 nat_set_ino(e, le32_to_cpu(ne->ino));
185 nat_set_version(e, ne->version);
186 e->checkpointed = true;
187 }
188 write_unlock(&nm_i->nat_tree_lock);
189}
190
191static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
192 block_t new_blkaddr)
193{
194 struct f2fs_nm_info *nm_i = NM_I(sbi);
195 struct nat_entry *e;
196retry:
197 write_lock(&nm_i->nat_tree_lock);
198 e = __lookup_nat_cache(nm_i, ni->nid);
199 if (!e) {
200 e = grab_nat_entry(nm_i, ni->nid);
201 if (!e) {
202 write_unlock(&nm_i->nat_tree_lock);
203 goto retry;
204 }
205 e->ni = *ni;
206 e->checkpointed = true;
207 BUG_ON(ni->blk_addr == NEW_ADDR);
208 } else if (new_blkaddr == NEW_ADDR) {
209 /*
210 * when nid is reallocated,
211 * previous nat entry can be remained in nat cache.
212 * So, reinitialize it with new information.
213 */
214 e->ni = *ni;
215 BUG_ON(ni->blk_addr != NULL_ADDR);
216 }
217
218 if (new_blkaddr == NEW_ADDR)
219 e->checkpointed = false;
220
221 /* sanity check */
222 BUG_ON(nat_get_blkaddr(e) != ni->blk_addr);
223 BUG_ON(nat_get_blkaddr(e) == NULL_ADDR &&
224 new_blkaddr == NULL_ADDR);
225 BUG_ON(nat_get_blkaddr(e) == NEW_ADDR &&
226 new_blkaddr == NEW_ADDR);
227 BUG_ON(nat_get_blkaddr(e) != NEW_ADDR &&
228 nat_get_blkaddr(e) != NULL_ADDR &&
229 new_blkaddr == NEW_ADDR);
230
231 /* increament version no as node is removed */
232 if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
233 unsigned char version = nat_get_version(e);
234 nat_set_version(e, inc_node_version(version));
235 }
236
237 /* change address */
238 nat_set_blkaddr(e, new_blkaddr);
239 __set_nat_cache_dirty(nm_i, e);
240 write_unlock(&nm_i->nat_tree_lock);
241}
242
243static int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
244{
245 struct f2fs_nm_info *nm_i = NM_I(sbi);
246
6cac3759 247 if (nm_i->nat_cnt <= NM_WOUT_THRESHOLD)
e05df3b1
JK
248 return 0;
249
250 write_lock(&nm_i->nat_tree_lock);
251 while (nr_shrink && !list_empty(&nm_i->nat_entries)) {
252 struct nat_entry *ne;
253 ne = list_first_entry(&nm_i->nat_entries,
254 struct nat_entry, list);
255 __del_from_nat_cache(nm_i, ne);
256 nr_shrink--;
257 }
258 write_unlock(&nm_i->nat_tree_lock);
259 return nr_shrink;
260}
261
0a8165d7 262/*
e05df3b1
JK
263 * This function returns always success
264 */
265void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni)
266{
267 struct f2fs_nm_info *nm_i = NM_I(sbi);
268 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
269 struct f2fs_summary_block *sum = curseg->sum_blk;
270 nid_t start_nid = START_NID(nid);
271 struct f2fs_nat_block *nat_blk;
272 struct page *page = NULL;
273 struct f2fs_nat_entry ne;
274 struct nat_entry *e;
275 int i;
276
be4124f8 277 memset(&ne, 0, sizeof(struct f2fs_nat_entry));
e05df3b1
JK
278 ni->nid = nid;
279
280 /* Check nat cache */
281 read_lock(&nm_i->nat_tree_lock);
282 e = __lookup_nat_cache(nm_i, nid);
283 if (e) {
284 ni->ino = nat_get_ino(e);
285 ni->blk_addr = nat_get_blkaddr(e);
286 ni->version = nat_get_version(e);
287 }
288 read_unlock(&nm_i->nat_tree_lock);
289 if (e)
290 return;
291
292 /* Check current segment summary */
293 mutex_lock(&curseg->curseg_mutex);
294 i = lookup_journal_in_cursum(sum, NAT_JOURNAL, nid, 0);
295 if (i >= 0) {
296 ne = nat_in_journal(sum, i);
297 node_info_from_raw_nat(ni, &ne);
298 }
299 mutex_unlock(&curseg->curseg_mutex);
300 if (i >= 0)
301 goto cache;
302
303 /* Fill node_info from nat page */
304 page = get_current_nat_page(sbi, start_nid);
305 nat_blk = (struct f2fs_nat_block *)page_address(page);
306 ne = nat_blk->entries[nid - start_nid];
307 node_info_from_raw_nat(ni, &ne);
308 f2fs_put_page(page, 1);
309cache:
310 /* cache nat entry */
311 cache_nat_entry(NM_I(sbi), nid, &ne);
312}
313
0a8165d7 314/*
e05df3b1
JK
315 * The maximum depth is four.
316 * Offset[0] will have raw inode offset.
317 */
318static int get_node_path(long block, int offset[4], unsigned int noffset[4])
319{
320 const long direct_index = ADDRS_PER_INODE;
321 const long direct_blks = ADDRS_PER_BLOCK;
322 const long dptrs_per_blk = NIDS_PER_BLOCK;
323 const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
324 const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
325 int n = 0;
326 int level = 0;
327
328 noffset[0] = 0;
329
330 if (block < direct_index) {
25c0a6e5 331 offset[n] = block;
e05df3b1
JK
332 goto got;
333 }
334 block -= direct_index;
335 if (block < direct_blks) {
336 offset[n++] = NODE_DIR1_BLOCK;
337 noffset[n] = 1;
25c0a6e5 338 offset[n] = block;
e05df3b1
JK
339 level = 1;
340 goto got;
341 }
342 block -= direct_blks;
343 if (block < direct_blks) {
344 offset[n++] = NODE_DIR2_BLOCK;
345 noffset[n] = 2;
25c0a6e5 346 offset[n] = block;
e05df3b1
JK
347 level = 1;
348 goto got;
349 }
350 block -= direct_blks;
351 if (block < indirect_blks) {
352 offset[n++] = NODE_IND1_BLOCK;
353 noffset[n] = 3;
354 offset[n++] = block / direct_blks;
355 noffset[n] = 4 + offset[n - 1];
25c0a6e5 356 offset[n] = block % direct_blks;
e05df3b1
JK
357 level = 2;
358 goto got;
359 }
360 block -= indirect_blks;
361 if (block < indirect_blks) {
362 offset[n++] = NODE_IND2_BLOCK;
363 noffset[n] = 4 + dptrs_per_blk;
364 offset[n++] = block / direct_blks;
365 noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
25c0a6e5 366 offset[n] = block % direct_blks;
e05df3b1
JK
367 level = 2;
368 goto got;
369 }
370 block -= indirect_blks;
371 if (block < dindirect_blks) {
372 offset[n++] = NODE_DIND_BLOCK;
373 noffset[n] = 5 + (dptrs_per_blk * 2);
374 offset[n++] = block / indirect_blks;
375 noffset[n] = 6 + (dptrs_per_blk * 2) +
376 offset[n - 1] * (dptrs_per_blk + 1);
377 offset[n++] = (block / direct_blks) % dptrs_per_blk;
378 noffset[n] = 7 + (dptrs_per_blk * 2) +
379 offset[n - 2] * (dptrs_per_blk + 1) +
380 offset[n - 1];
25c0a6e5 381 offset[n] = block % direct_blks;
e05df3b1
JK
382 level = 3;
383 goto got;
384 } else {
385 BUG();
386 }
387got:
388 return level;
389}
390
391/*
392 * Caller should call f2fs_put_dnode(dn).
39936837
JK
393 * Also, it should grab and release a mutex by calling mutex_lock_op() and
394 * mutex_unlock_op() only if ro is not set RDONLY_NODE.
395 * In the case of RDONLY_NODE, we don't need to care about mutex.
e05df3b1 396 */
266e97a8 397int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
e05df3b1
JK
398{
399 struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
400 struct page *npage[4];
401 struct page *parent;
402 int offset[4];
403 unsigned int noffset[4];
404 nid_t nids[4];
405 int level, i;
406 int err = 0;
407
408 level = get_node_path(index, offset, noffset);
409
410 nids[0] = dn->inode->i_ino;
411 npage[0] = get_node_page(sbi, nids[0]);
412 if (IS_ERR(npage[0]))
413 return PTR_ERR(npage[0]);
414
415 parent = npage[0];
52c2db3f
CL
416 if (level != 0)
417 nids[1] = get_nid(parent, offset[0], true);
e05df3b1
JK
418 dn->inode_page = npage[0];
419 dn->inode_page_locked = true;
420
421 /* get indirect or direct nodes */
422 for (i = 1; i <= level; i++) {
423 bool done = false;
424
266e97a8 425 if (!nids[i] && mode == ALLOC_NODE) {
e05df3b1
JK
426 /* alloc new node */
427 if (!alloc_nid(sbi, &(nids[i]))) {
e05df3b1
JK
428 err = -ENOSPC;
429 goto release_pages;
430 }
431
432 dn->nid = nids[i];
433 npage[i] = new_node_page(dn, noffset[i]);
434 if (IS_ERR(npage[i])) {
435 alloc_nid_failed(sbi, nids[i]);
e05df3b1
JK
436 err = PTR_ERR(npage[i]);
437 goto release_pages;
438 }
439
440 set_nid(parent, offset[i - 1], nids[i], i == 1);
441 alloc_nid_done(sbi, nids[i]);
e05df3b1 442 done = true;
266e97a8 443 } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
e05df3b1
JK
444 npage[i] = get_node_page_ra(parent, offset[i - 1]);
445 if (IS_ERR(npage[i])) {
446 err = PTR_ERR(npage[i]);
447 goto release_pages;
448 }
449 done = true;
450 }
451 if (i == 1) {
452 dn->inode_page_locked = false;
453 unlock_page(parent);
454 } else {
455 f2fs_put_page(parent, 1);
456 }
457
458 if (!done) {
459 npage[i] = get_node_page(sbi, nids[i]);
460 if (IS_ERR(npage[i])) {
461 err = PTR_ERR(npage[i]);
462 f2fs_put_page(npage[0], 0);
463 goto release_out;
464 }
465 }
466 if (i < level) {
467 parent = npage[i];
468 nids[i + 1] = get_nid(parent, offset[i], false);
469 }
470 }
471 dn->nid = nids[level];
472 dn->ofs_in_node = offset[level];
473 dn->node_page = npage[level];
474 dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node);
475 return 0;
476
477release_pages:
478 f2fs_put_page(parent, 1);
479 if (i > 1)
480 f2fs_put_page(npage[0], 0);
481release_out:
482 dn->inode_page = NULL;
483 dn->node_page = NULL;
484 return err;
485}
486
487static void truncate_node(struct dnode_of_data *dn)
488{
489 struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
490 struct node_info ni;
491
492 get_node_info(sbi, dn->nid, &ni);
71e9fec5
JK
493 if (dn->inode->i_blocks == 0) {
494 BUG_ON(ni.blk_addr != NULL_ADDR);
495 goto invalidate;
496 }
e05df3b1
JK
497 BUG_ON(ni.blk_addr == NULL_ADDR);
498
e05df3b1 499 /* Deallocate node address */
71e9fec5 500 invalidate_blocks(sbi, ni.blk_addr);
e05df3b1
JK
501 dec_valid_node_count(sbi, dn->inode, 1);
502 set_node_addr(sbi, &ni, NULL_ADDR);
503
504 if (dn->nid == dn->inode->i_ino) {
505 remove_orphan_inode(sbi, dn->nid);
506 dec_valid_inode_count(sbi);
507 } else {
508 sync_inode_page(dn);
509 }
71e9fec5 510invalidate:
e05df3b1
JK
511 clear_node_page_dirty(dn->node_page);
512 F2FS_SET_SB_DIRT(sbi);
513
514 f2fs_put_page(dn->node_page, 1);
515 dn->node_page = NULL;
51dd6249 516 trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
e05df3b1
JK
517}
518
519static int truncate_dnode(struct dnode_of_data *dn)
520{
521 struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
522 struct page *page;
523
524 if (dn->nid == 0)
525 return 1;
526
527 /* get direct node */
528 page = get_node_page(sbi, dn->nid);
529 if (IS_ERR(page) && PTR_ERR(page) == -ENOENT)
530 return 1;
531 else if (IS_ERR(page))
532 return PTR_ERR(page);
533
534 /* Make dnode_of_data for parameter */
535 dn->node_page = page;
536 dn->ofs_in_node = 0;
537 truncate_data_blocks(dn);
538 truncate_node(dn);
539 return 1;
540}
541
542static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
543 int ofs, int depth)
544{
545 struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
546 struct dnode_of_data rdn = *dn;
547 struct page *page;
548 struct f2fs_node *rn;
549 nid_t child_nid;
550 unsigned int child_nofs;
551 int freed = 0;
552 int i, ret;
553
554 if (dn->nid == 0)
555 return NIDS_PER_BLOCK + 1;
556
51dd6249
NJ
557 trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
558
e05df3b1 559 page = get_node_page(sbi, dn->nid);
51dd6249
NJ
560 if (IS_ERR(page)) {
561 trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
e05df3b1 562 return PTR_ERR(page);
51dd6249 563 }
e05df3b1
JK
564
565 rn = (struct f2fs_node *)page_address(page);
566 if (depth < 3) {
567 for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
568 child_nid = le32_to_cpu(rn->in.nid[i]);
569 if (child_nid == 0)
570 continue;
571 rdn.nid = child_nid;
572 ret = truncate_dnode(&rdn);
573 if (ret < 0)
574 goto out_err;
575 set_nid(page, i, 0, false);
576 }
577 } else {
578 child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
579 for (i = ofs; i < NIDS_PER_BLOCK; i++) {
580 child_nid = le32_to_cpu(rn->in.nid[i]);
581 if (child_nid == 0) {
582 child_nofs += NIDS_PER_BLOCK + 1;
583 continue;
584 }
585 rdn.nid = child_nid;
586 ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
587 if (ret == (NIDS_PER_BLOCK + 1)) {
588 set_nid(page, i, 0, false);
589 child_nofs += ret;
590 } else if (ret < 0 && ret != -ENOENT) {
591 goto out_err;
592 }
593 }
594 freed = child_nofs;
595 }
596
597 if (!ofs) {
598 /* remove current indirect node */
599 dn->node_page = page;
600 truncate_node(dn);
601 freed++;
602 } else {
603 f2fs_put_page(page, 1);
604 }
51dd6249 605 trace_f2fs_truncate_nodes_exit(dn->inode, freed);
e05df3b1
JK
606 return freed;
607
608out_err:
609 f2fs_put_page(page, 1);
51dd6249 610 trace_f2fs_truncate_nodes_exit(dn->inode, ret);
e05df3b1
JK
611 return ret;
612}
613
614static int truncate_partial_nodes(struct dnode_of_data *dn,
615 struct f2fs_inode *ri, int *offset, int depth)
616{
617 struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
618 struct page *pages[2];
619 nid_t nid[3];
620 nid_t child_nid;
621 int err = 0;
622 int i;
623 int idx = depth - 2;
624
625 nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
626 if (!nid[0])
627 return 0;
628
629 /* get indirect nodes in the path */
630 for (i = 0; i < depth - 1; i++) {
631 /* refernece count'll be increased */
632 pages[i] = get_node_page(sbi, nid[i]);
633 if (IS_ERR(pages[i])) {
634 depth = i + 1;
635 err = PTR_ERR(pages[i]);
636 goto fail;
637 }
638 nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
639 }
640
641 /* free direct nodes linked to a partial indirect node */
642 for (i = offset[depth - 1]; i < NIDS_PER_BLOCK; i++) {
643 child_nid = get_nid(pages[idx], i, false);
644 if (!child_nid)
645 continue;
646 dn->nid = child_nid;
647 err = truncate_dnode(dn);
648 if (err < 0)
649 goto fail;
650 set_nid(pages[idx], i, 0, false);
651 }
652
653 if (offset[depth - 1] == 0) {
654 dn->node_page = pages[idx];
655 dn->nid = nid[idx];
656 truncate_node(dn);
657 } else {
658 f2fs_put_page(pages[idx], 1);
659 }
660 offset[idx]++;
661 offset[depth - 1] = 0;
662fail:
663 for (i = depth - 3; i >= 0; i--)
664 f2fs_put_page(pages[i], 1);
51dd6249
NJ
665
666 trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
667
e05df3b1
JK
668 return err;
669}
670
0a8165d7 671/*
e05df3b1
JK
672 * All the block addresses of data and nodes should be nullified.
673 */
674int truncate_inode_blocks(struct inode *inode, pgoff_t from)
675{
676 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
afcb7ca0 677 struct address_space *node_mapping = sbi->node_inode->i_mapping;
e05df3b1
JK
678 int err = 0, cont = 1;
679 int level, offset[4], noffset[4];
7dd690c8 680 unsigned int nofs = 0;
e05df3b1
JK
681 struct f2fs_node *rn;
682 struct dnode_of_data dn;
683 struct page *page;
684
51dd6249
NJ
685 trace_f2fs_truncate_inode_blocks_enter(inode, from);
686
e05df3b1 687 level = get_node_path(from, offset, noffset);
afcb7ca0 688restart:
e05df3b1 689 page = get_node_page(sbi, inode->i_ino);
51dd6249
NJ
690 if (IS_ERR(page)) {
691 trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
e05df3b1 692 return PTR_ERR(page);
51dd6249 693 }
e05df3b1
JK
694
695 set_new_dnode(&dn, inode, page, NULL, 0);
696 unlock_page(page);
697
698 rn = page_address(page);
699 switch (level) {
700 case 0:
701 case 1:
702 nofs = noffset[1];
703 break;
704 case 2:
705 nofs = noffset[1];
706 if (!offset[level - 1])
707 goto skip_partial;
708 err = truncate_partial_nodes(&dn, &rn->i, offset, level);
709 if (err < 0 && err != -ENOENT)
710 goto fail;
711 nofs += 1 + NIDS_PER_BLOCK;
712 break;
713 case 3:
714 nofs = 5 + 2 * NIDS_PER_BLOCK;
715 if (!offset[level - 1])
716 goto skip_partial;
717 err = truncate_partial_nodes(&dn, &rn->i, offset, level);
718 if (err < 0 && err != -ENOENT)
719 goto fail;
720 break;
721 default:
722 BUG();
723 }
724
725skip_partial:
726 while (cont) {
727 dn.nid = le32_to_cpu(rn->i.i_nid[offset[0] - NODE_DIR1_BLOCK]);
728 switch (offset[0]) {
729 case NODE_DIR1_BLOCK:
730 case NODE_DIR2_BLOCK:
731 err = truncate_dnode(&dn);
732 break;
733
734 case NODE_IND1_BLOCK:
735 case NODE_IND2_BLOCK:
736 err = truncate_nodes(&dn, nofs, offset[1], 2);
737 break;
738
739 case NODE_DIND_BLOCK:
740 err = truncate_nodes(&dn, nofs, offset[1], 3);
741 cont = 0;
742 break;
743
744 default:
745 BUG();
746 }
747 if (err < 0 && err != -ENOENT)
748 goto fail;
749 if (offset[1] == 0 &&
750 rn->i.i_nid[offset[0] - NODE_DIR1_BLOCK]) {
751 lock_page(page);
afcb7ca0
JK
752 if (page->mapping != node_mapping) {
753 f2fs_put_page(page, 1);
754 goto restart;
755 }
e05df3b1
JK
756 wait_on_page_writeback(page);
757 rn->i.i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
758 set_page_dirty(page);
759 unlock_page(page);
760 }
761 offset[1] = 0;
762 offset[0]++;
763 nofs += err;
764 }
765fail:
766 f2fs_put_page(page, 0);
51dd6249 767 trace_f2fs_truncate_inode_blocks_exit(inode, err);
e05df3b1
JK
768 return err > 0 ? 0 : err;
769}
770
39936837
JK
771/*
772 * Caller should grab and release a mutex by calling mutex_lock_op() and
773 * mutex_unlock_op().
774 */
e05df3b1
JK
775int remove_inode_page(struct inode *inode)
776{
777 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
778 struct page *page;
779 nid_t ino = inode->i_ino;
780 struct dnode_of_data dn;
781
e05df3b1 782 page = get_node_page(sbi, ino);
39936837 783 if (IS_ERR(page))
e05df3b1 784 return PTR_ERR(page);
e05df3b1
JK
785
786 if (F2FS_I(inode)->i_xattr_nid) {
787 nid_t nid = F2FS_I(inode)->i_xattr_nid;
788 struct page *npage = get_node_page(sbi, nid);
789
39936837 790 if (IS_ERR(npage))
e05df3b1 791 return PTR_ERR(npage);
e05df3b1
JK
792
793 F2FS_I(inode)->i_xattr_nid = 0;
794 set_new_dnode(&dn, inode, page, npage, nid);
795 dn.inode_page_locked = 1;
796 truncate_node(&dn);
797 }
e05df3b1 798
71e9fec5
JK
799 /* 0 is possible, after f2fs_new_inode() is failed */
800 BUG_ON(inode->i_blocks != 0 && inode->i_blocks != 1);
801 set_new_dnode(&dn, inode, page, page, ino);
802 truncate_node(&dn);
e05df3b1
JK
803 return 0;
804}
805
c004363d 806int new_inode_page(struct inode *inode, const struct qstr *name)
e05df3b1 807{
e05df3b1
JK
808 struct page *page;
809 struct dnode_of_data dn;
810
811 /* allocate inode page for new inode */
812 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
e05df3b1 813 page = new_node_page(&dn, 0);
c004363d 814 init_dent_inode(name, page);
e05df3b1
JK
815 if (IS_ERR(page))
816 return PTR_ERR(page);
817 f2fs_put_page(page, 1);
818 return 0;
819}
820
821struct page *new_node_page(struct dnode_of_data *dn, unsigned int ofs)
822{
823 struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
824 struct address_space *mapping = sbi->node_inode->i_mapping;
825 struct node_info old_ni, new_ni;
826 struct page *page;
827 int err;
828
829 if (is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC))
830 return ERR_PTR(-EPERM);
831
832 page = grab_cache_page(mapping, dn->nid);
833 if (!page)
834 return ERR_PTR(-ENOMEM);
835
836 get_node_info(sbi, dn->nid, &old_ni);
837
838 SetPageUptodate(page);
839 fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
840
841 /* Reinitialize old_ni with new node page */
842 BUG_ON(old_ni.blk_addr != NULL_ADDR);
843 new_ni = old_ni;
844 new_ni.ino = dn->inode->i_ino;
845
846 if (!inc_valid_node_count(sbi, dn->inode, 1)) {
847 err = -ENOSPC;
848 goto fail;
849 }
850 set_node_addr(sbi, &new_ni, NEW_ADDR);
398b1ac5 851 set_cold_node(dn->inode, page);
e05df3b1
JK
852
853 dn->node_page = page;
854 sync_inode_page(dn);
855 set_page_dirty(page);
e05df3b1
JK
856 if (ofs == 0)
857 inc_valid_inode_count(sbi);
858
859 return page;
860
861fail:
71e9fec5 862 clear_node_page_dirty(page);
e05df3b1
JK
863 f2fs_put_page(page, 1);
864 return ERR_PTR(err);
865}
866
56ae674c
JK
867/*
868 * Caller should do after getting the following values.
869 * 0: f2fs_put_page(page, 0)
870 * LOCKED_PAGE: f2fs_put_page(page, 1)
871 * error: nothing
872 */
e05df3b1
JK
873static int read_node_page(struct page *page, int type)
874{
875 struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb);
876 struct node_info ni;
877
878 get_node_info(sbi, page->index, &ni);
879
393ff91f
JK
880 if (ni.blk_addr == NULL_ADDR) {
881 f2fs_put_page(page, 1);
e05df3b1 882 return -ENOENT;
393ff91f
JK
883 }
884
56ae674c
JK
885 if (PageUptodate(page))
886 return LOCKED_PAGE;
393ff91f 887
e05df3b1
JK
888 return f2fs_readpage(sbi, page, ni.blk_addr, type);
889}
890
0a8165d7 891/*
e05df3b1
JK
892 * Readahead a node page
893 */
894void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
895{
896 struct address_space *mapping = sbi->node_inode->i_mapping;
897 struct page *apage;
56ae674c 898 int err;
e05df3b1
JK
899
900 apage = find_get_page(mapping, nid);
393ff91f
JK
901 if (apage && PageUptodate(apage)) {
902 f2fs_put_page(apage, 0);
903 return;
904 }
e05df3b1
JK
905 f2fs_put_page(apage, 0);
906
907 apage = grab_cache_page(mapping, nid);
908 if (!apage)
909 return;
910
56ae674c
JK
911 err = read_node_page(apage, READA);
912 if (err == 0)
393ff91f 913 f2fs_put_page(apage, 0);
56ae674c
JK
914 else if (err == LOCKED_PAGE)
915 f2fs_put_page(apage, 1);
a2b52a59 916 return;
e05df3b1
JK
917}
918
919struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
920{
e05df3b1 921 struct address_space *mapping = sbi->node_inode->i_mapping;
56ae674c
JK
922 struct page *page;
923 int err;
afcb7ca0 924repeat:
e05df3b1
JK
925 page = grab_cache_page(mapping, nid);
926 if (!page)
927 return ERR_PTR(-ENOMEM);
928
929 err = read_node_page(page, READ_SYNC);
56ae674c 930 if (err < 0)
e05df3b1 931 return ERR_PTR(err);
56ae674c
JK
932 else if (err == LOCKED_PAGE)
933 goto got_it;
e05df3b1 934
393ff91f
JK
935 lock_page(page);
936 if (!PageUptodate(page)) {
937 f2fs_put_page(page, 1);
938 return ERR_PTR(-EIO);
939 }
afcb7ca0
JK
940 if (page->mapping != mapping) {
941 f2fs_put_page(page, 1);
942 goto repeat;
943 }
56ae674c 944got_it:
e05df3b1
JK
945 BUG_ON(nid != nid_of_node(page));
946 mark_page_accessed(page);
947 return page;
948}
949
0a8165d7 950/*
e05df3b1
JK
951 * Return a locked page for the desired node page.
952 * And, readahead MAX_RA_NODE number of node pages.
953 */
954struct page *get_node_page_ra(struct page *parent, int start)
955{
956 struct f2fs_sb_info *sbi = F2FS_SB(parent->mapping->host->i_sb);
957 struct address_space *mapping = sbi->node_inode->i_mapping;
c718379b 958 struct blk_plug plug;
e05df3b1 959 struct page *page;
56ae674c
JK
960 int err, i, end;
961 nid_t nid;
e05df3b1
JK
962
963 /* First, try getting the desired direct node. */
964 nid = get_nid(parent, start, false);
965 if (!nid)
966 return ERR_PTR(-ENOENT);
afcb7ca0 967repeat:
e05df3b1
JK
968 page = grab_cache_page(mapping, nid);
969 if (!page)
970 return ERR_PTR(-ENOMEM);
971
66d36a29 972 err = read_node_page(page, READ_SYNC);
56ae674c 973 if (err < 0)
e05df3b1 974 return ERR_PTR(err);
56ae674c
JK
975 else if (err == LOCKED_PAGE)
976 goto page_hit;
e05df3b1 977
c718379b
JK
978 blk_start_plug(&plug);
979
e05df3b1
JK
980 /* Then, try readahead for siblings of the desired node */
981 end = start + MAX_RA_NODE;
982 end = min(end, NIDS_PER_BLOCK);
983 for (i = start + 1; i < end; i++) {
984 nid = get_nid(parent, i, false);
985 if (!nid)
986 continue;
987 ra_node_page(sbi, nid);
988 }
989
c718379b
JK
990 blk_finish_plug(&plug);
991
e05df3b1 992 lock_page(page);
afcb7ca0
JK
993 if (page->mapping != mapping) {
994 f2fs_put_page(page, 1);
995 goto repeat;
996 }
e0f56cb4 997page_hit:
56ae674c 998 if (!PageUptodate(page)) {
e05df3b1
JK
999 f2fs_put_page(page, 1);
1000 return ERR_PTR(-EIO);
1001 }
393ff91f 1002 mark_page_accessed(page);
e05df3b1
JK
1003 return page;
1004}
1005
1006void sync_inode_page(struct dnode_of_data *dn)
1007{
1008 if (IS_INODE(dn->node_page) || dn->inode_page == dn->node_page) {
1009 update_inode(dn->inode, dn->node_page);
1010 } else if (dn->inode_page) {
1011 if (!dn->inode_page_locked)
1012 lock_page(dn->inode_page);
1013 update_inode(dn->inode, dn->inode_page);
1014 if (!dn->inode_page_locked)
1015 unlock_page(dn->inode_page);
1016 } else {
39936837 1017 update_inode_page(dn->inode);
e05df3b1
JK
1018 }
1019}
1020
1021int sync_node_pages(struct f2fs_sb_info *sbi, nid_t ino,
1022 struct writeback_control *wbc)
1023{
1024 struct address_space *mapping = sbi->node_inode->i_mapping;
1025 pgoff_t index, end;
1026 struct pagevec pvec;
1027 int step = ino ? 2 : 0;
1028 int nwritten = 0, wrote = 0;
1029
1030 pagevec_init(&pvec, 0);
1031
1032next_step:
1033 index = 0;
1034 end = LONG_MAX;
1035
1036 while (index <= end) {
1037 int i, nr_pages;
1038 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
1039 PAGECACHE_TAG_DIRTY,
1040 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1041 if (nr_pages == 0)
1042 break;
1043
1044 for (i = 0; i < nr_pages; i++) {
1045 struct page *page = pvec.pages[i];
1046
1047 /*
1048 * flushing sequence with step:
1049 * 0. indirect nodes
1050 * 1. dentry dnodes
1051 * 2. file dnodes
1052 */
1053 if (step == 0 && IS_DNODE(page))
1054 continue;
1055 if (step == 1 && (!IS_DNODE(page) ||
1056 is_cold_node(page)))
1057 continue;
1058 if (step == 2 && (!IS_DNODE(page) ||
1059 !is_cold_node(page)))
1060 continue;
1061
1062 /*
1063 * If an fsync mode,
1064 * we should not skip writing node pages.
1065 */
1066 if (ino && ino_of_node(page) == ino)
1067 lock_page(page);
1068 else if (!trylock_page(page))
1069 continue;
1070
1071 if (unlikely(page->mapping != mapping)) {
1072continue_unlock:
1073 unlock_page(page);
1074 continue;
1075 }
1076 if (ino && ino_of_node(page) != ino)
1077 goto continue_unlock;
1078
1079 if (!PageDirty(page)) {
1080 /* someone wrote it for us */
1081 goto continue_unlock;
1082 }
1083
1084 if (!clear_page_dirty_for_io(page))
1085 goto continue_unlock;
1086
1087 /* called by fsync() */
1088 if (ino && IS_DNODE(page)) {
1089 int mark = !is_checkpointed_node(sbi, ino);
1090 set_fsync_mark(page, 1);
1091 if (IS_INODE(page))
1092 set_dentry_mark(page, mark);
1093 nwritten++;
1094 } else {
1095 set_fsync_mark(page, 0);
1096 set_dentry_mark(page, 0);
1097 }
1098 mapping->a_ops->writepage(page, wbc);
1099 wrote++;
1100
1101 if (--wbc->nr_to_write == 0)
1102 break;
1103 }
1104 pagevec_release(&pvec);
1105 cond_resched();
1106
1107 if (wbc->nr_to_write == 0) {
1108 step = 2;
1109 break;
1110 }
1111 }
1112
1113 if (step < 2) {
1114 step++;
1115 goto next_step;
1116 }
1117
1118 if (wrote)
1119 f2fs_submit_bio(sbi, NODE, wbc->sync_mode == WB_SYNC_ALL);
1120
1121 return nwritten;
1122}
1123
1124static int f2fs_write_node_page(struct page *page,
1125 struct writeback_control *wbc)
1126{
1127 struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb);
1128 nid_t nid;
e05df3b1
JK
1129 block_t new_addr;
1130 struct node_info ni;
1131
e05df3b1
JK
1132 wait_on_page_writeback(page);
1133
e05df3b1
JK
1134 /* get old block addr of this node page */
1135 nid = nid_of_node(page);
e05df3b1
JK
1136 BUG_ON(page->index != nid);
1137
1138 get_node_info(sbi, nid, &ni);
1139
1140 /* This page is already truncated */
39936837
JK
1141 if (ni.blk_addr == NULL_ADDR) {
1142 dec_page_count(sbi, F2FS_DIRTY_NODES);
1143 unlock_page(page);
1144 return 0;
1145 }
e05df3b1 1146
08d8058b
JK
1147 if (wbc->for_reclaim) {
1148 dec_page_count(sbi, F2FS_DIRTY_NODES);
1149 wbc->pages_skipped++;
1150 set_page_dirty(page);
08d8058b
JK
1151 return AOP_WRITEPAGE_ACTIVATE;
1152 }
1153
39936837 1154 mutex_lock(&sbi->node_write);
e05df3b1 1155 set_page_writeback(page);
e05df3b1
JK
1156 write_node_page(sbi, page, nid, ni.blk_addr, &new_addr);
1157 set_node_addr(sbi, &ni, new_addr);
1158 dec_page_count(sbi, F2FS_DIRTY_NODES);
39936837 1159 mutex_unlock(&sbi->node_write);
e05df3b1
JK
1160 unlock_page(page);
1161 return 0;
1162}
1163
a7fdffbd
JK
1164/*
1165 * It is very important to gather dirty pages and write at once, so that we can
1166 * submit a big bio without interfering other data writes.
1167 * Be default, 512 pages (2MB), a segment size, is quite reasonable.
1168 */
1169#define COLLECT_DIRTY_NODES 512
e05df3b1
JK
1170static int f2fs_write_node_pages(struct address_space *mapping,
1171 struct writeback_control *wbc)
1172{
1173 struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
e05df3b1
JK
1174 long nr_to_write = wbc->nr_to_write;
1175
a7fdffbd 1176 /* First check balancing cached NAT entries */
e05df3b1 1177 if (try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK)) {
b7473754 1178 f2fs_sync_fs(sbi->sb, true);
e05df3b1
JK
1179 return 0;
1180 }
1181
a7fdffbd
JK
1182 /* collect a number of dirty node pages and write together */
1183 if (get_pages(sbi, F2FS_DIRTY_NODES) < COLLECT_DIRTY_NODES)
1184 return 0;
1185
e05df3b1 1186 /* if mounting is failed, skip writing node pages */
ac5d156c 1187 wbc->nr_to_write = max_hw_blocks(sbi);
e05df3b1 1188 sync_node_pages(sbi, 0, wbc);
ac5d156c 1189 wbc->nr_to_write = nr_to_write - (max_hw_blocks(sbi) - wbc->nr_to_write);
e05df3b1
JK
1190 return 0;
1191}
1192
1193static int f2fs_set_node_page_dirty(struct page *page)
1194{
1195 struct address_space *mapping = page->mapping;
1196 struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
1197
1198 SetPageUptodate(page);
1199 if (!PageDirty(page)) {
1200 __set_page_dirty_nobuffers(page);
1201 inc_page_count(sbi, F2FS_DIRTY_NODES);
1202 SetPagePrivate(page);
1203 return 1;
1204 }
1205 return 0;
1206}
1207
1208static void f2fs_invalidate_node_page(struct page *page, unsigned long offset)
1209{
1210 struct inode *inode = page->mapping->host;
1211 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
1212 if (PageDirty(page))
1213 dec_page_count(sbi, F2FS_DIRTY_NODES);
1214 ClearPagePrivate(page);
1215}
1216
1217static int f2fs_release_node_page(struct page *page, gfp_t wait)
1218{
1219 ClearPagePrivate(page);
c3850aa1 1220 return 1;
e05df3b1
JK
1221}
1222
0a8165d7 1223/*
e05df3b1
JK
1224 * Structure of the f2fs node operations
1225 */
1226const struct address_space_operations f2fs_node_aops = {
1227 .writepage = f2fs_write_node_page,
1228 .writepages = f2fs_write_node_pages,
1229 .set_page_dirty = f2fs_set_node_page_dirty,
1230 .invalidatepage = f2fs_invalidate_node_page,
1231 .releasepage = f2fs_release_node_page,
1232};
1233
1234static struct free_nid *__lookup_free_nid_list(nid_t n, struct list_head *head)
1235{
1236 struct list_head *this;
3aa770a9 1237 struct free_nid *i;
e05df3b1
JK
1238 list_for_each(this, head) {
1239 i = list_entry(this, struct free_nid, list);
1240 if (i->nid == n)
3aa770a9 1241 return i;
e05df3b1 1242 }
3aa770a9 1243 return NULL;
e05df3b1
JK
1244}
1245
1246static void __del_from_free_nid_list(struct free_nid *i)
1247{
1248 list_del(&i->list);
1249 kmem_cache_free(free_nid_slab, i);
1250}
1251
1252static int add_free_nid(struct f2fs_nm_info *nm_i, nid_t nid)
1253{
1254 struct free_nid *i;
1255
1256 if (nm_i->fcnt > 2 * MAX_FREE_NIDS)
1257 return 0;
9198aceb
JK
1258
1259 /* 0 nid should not be used */
1260 if (nid == 0)
1261 return 0;
e05df3b1
JK
1262retry:
1263 i = kmem_cache_alloc(free_nid_slab, GFP_NOFS);
1264 if (!i) {
1265 cond_resched();
1266 goto retry;
1267 }
1268 i->nid = nid;
1269 i->state = NID_NEW;
1270
1271 spin_lock(&nm_i->free_nid_list_lock);
1272 if (__lookup_free_nid_list(nid, &nm_i->free_nid_list)) {
1273 spin_unlock(&nm_i->free_nid_list_lock);
1274 kmem_cache_free(free_nid_slab, i);
1275 return 0;
1276 }
1277 list_add_tail(&i->list, &nm_i->free_nid_list);
1278 nm_i->fcnt++;
1279 spin_unlock(&nm_i->free_nid_list_lock);
1280 return 1;
1281}
1282
1283static void remove_free_nid(struct f2fs_nm_info *nm_i, nid_t nid)
1284{
1285 struct free_nid *i;
1286 spin_lock(&nm_i->free_nid_list_lock);
1287 i = __lookup_free_nid_list(nid, &nm_i->free_nid_list);
1288 if (i && i->state == NID_NEW) {
1289 __del_from_free_nid_list(i);
1290 nm_i->fcnt--;
1291 }
1292 spin_unlock(&nm_i->free_nid_list_lock);
1293}
1294
8760952d 1295static void scan_nat_page(struct f2fs_nm_info *nm_i,
e05df3b1
JK
1296 struct page *nat_page, nid_t start_nid)
1297{
1298 struct f2fs_nat_block *nat_blk = page_address(nat_page);
1299 block_t blk_addr;
e05df3b1
JK
1300 int i;
1301
e05df3b1
JK
1302 i = start_nid % NAT_ENTRY_PER_BLOCK;
1303
1304 for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
04431c44
JK
1305 if (start_nid >= nm_i->max_nid)
1306 break;
e05df3b1
JK
1307 blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
1308 BUG_ON(blk_addr == NEW_ADDR);
1309 if (blk_addr == NULL_ADDR)
8760952d 1310 add_free_nid(nm_i, start_nid);
e05df3b1 1311 }
e05df3b1
JK
1312}
1313
1314static void build_free_nids(struct f2fs_sb_info *sbi)
1315{
1316 struct free_nid *fnid, *next_fnid;
1317 struct f2fs_nm_info *nm_i = NM_I(sbi);
1318 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1319 struct f2fs_summary_block *sum = curseg->sum_blk;
8760952d 1320 int i = 0;
55008d84 1321 nid_t nid = nm_i->next_scan_nid;
e05df3b1 1322
55008d84
JK
1323 /* Enough entries */
1324 if (nm_i->fcnt > NAT_ENTRY_PER_BLOCK)
1325 return;
e05df3b1 1326
55008d84 1327 /* readahead nat pages to be scanned */
e05df3b1
JK
1328 ra_nat_pages(sbi, nid);
1329
1330 while (1) {
1331 struct page *page = get_current_nat_page(sbi, nid);
1332
8760952d 1333 scan_nat_page(nm_i, page, nid);
e05df3b1
JK
1334 f2fs_put_page(page, 1);
1335
1336 nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
55008d84 1337 if (nid >= nm_i->max_nid)
e05df3b1 1338 nid = 0;
55008d84
JK
1339
1340 if (i++ == FREE_NID_PAGES)
e05df3b1
JK
1341 break;
1342 }
1343
55008d84
JK
1344 /* go to the next free nat pages to find free nids abundantly */
1345 nm_i->next_scan_nid = nid;
e05df3b1
JK
1346
1347 /* find free nids from current sum_pages */
1348 mutex_lock(&curseg->curseg_mutex);
1349 for (i = 0; i < nats_in_cursum(sum); i++) {
1350 block_t addr = le32_to_cpu(nat_in_journal(sum, i).block_addr);
1351 nid = le32_to_cpu(nid_in_journal(sum, i));
1352 if (addr == NULL_ADDR)
1353 add_free_nid(nm_i, nid);
1354 else
1355 remove_free_nid(nm_i, nid);
1356 }
1357 mutex_unlock(&curseg->curseg_mutex);
1358
1359 /* remove the free nids from current allocated nids */
1360 list_for_each_entry_safe(fnid, next_fnid, &nm_i->free_nid_list, list) {
1361 struct nat_entry *ne;
1362
1363 read_lock(&nm_i->nat_tree_lock);
1364 ne = __lookup_nat_cache(nm_i, fnid->nid);
1365 if (ne && nat_get_blkaddr(ne) != NULL_ADDR)
1366 remove_free_nid(nm_i, fnid->nid);
1367 read_unlock(&nm_i->nat_tree_lock);
1368 }
1369}
1370
1371/*
1372 * If this function returns success, caller can obtain a new nid
1373 * from second parameter of this function.
1374 * The returned nid could be used ino as well as nid when inode is created.
1375 */
1376bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
1377{
1378 struct f2fs_nm_info *nm_i = NM_I(sbi);
1379 struct free_nid *i = NULL;
1380 struct list_head *this;
1381retry:
55008d84
JK
1382 if (sbi->total_valid_node_count + 1 >= nm_i->max_nid)
1383 return false;
e05df3b1 1384
e05df3b1 1385 spin_lock(&nm_i->free_nid_list_lock);
e05df3b1 1386
55008d84
JK
1387 /* We should not use stale free nids created by build_free_nids */
1388 if (nm_i->fcnt && !sbi->on_build_free_nids) {
1389 BUG_ON(list_empty(&nm_i->free_nid_list));
1390 list_for_each(this, &nm_i->free_nid_list) {
1391 i = list_entry(this, struct free_nid, list);
1392 if (i->state == NID_NEW)
1393 break;
1394 }
e05df3b1 1395
55008d84
JK
1396 BUG_ON(i->state != NID_NEW);
1397 *nid = i->nid;
1398 i->state = NID_ALLOC;
1399 nm_i->fcnt--;
1400 spin_unlock(&nm_i->free_nid_list_lock);
1401 return true;
1402 }
e05df3b1 1403 spin_unlock(&nm_i->free_nid_list_lock);
55008d84
JK
1404
1405 /* Let's scan nat pages and its caches to get free nids */
1406 mutex_lock(&nm_i->build_lock);
1407 sbi->on_build_free_nids = 1;
1408 build_free_nids(sbi);
1409 sbi->on_build_free_nids = 0;
1410 mutex_unlock(&nm_i->build_lock);
1411 goto retry;
e05df3b1
JK
1412}
1413
0a8165d7 1414/*
e05df3b1
JK
1415 * alloc_nid() should be called prior to this function.
1416 */
1417void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
1418{
1419 struct f2fs_nm_info *nm_i = NM_I(sbi);
1420 struct free_nid *i;
1421
1422 spin_lock(&nm_i->free_nid_list_lock);
1423 i = __lookup_free_nid_list(nid, &nm_i->free_nid_list);
49952fa1
JK
1424 BUG_ON(!i || i->state != NID_ALLOC);
1425 __del_from_free_nid_list(i);
e05df3b1
JK
1426 spin_unlock(&nm_i->free_nid_list_lock);
1427}
1428
0a8165d7 1429/*
e05df3b1
JK
1430 * alloc_nid() should be called prior to this function.
1431 */
1432void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
1433{
49952fa1
JK
1434 struct f2fs_nm_info *nm_i = NM_I(sbi);
1435 struct free_nid *i;
1436
1437 spin_lock(&nm_i->free_nid_list_lock);
1438 i = __lookup_free_nid_list(nid, &nm_i->free_nid_list);
1439 BUG_ON(!i || i->state != NID_ALLOC);
95630cba
HL
1440 if (nm_i->fcnt > 2 * MAX_FREE_NIDS) {
1441 __del_from_free_nid_list(i);
1442 } else {
1443 i->state = NID_NEW;
1444 nm_i->fcnt++;
1445 }
49952fa1 1446 spin_unlock(&nm_i->free_nid_list_lock);
e05df3b1
JK
1447}
1448
1449void recover_node_page(struct f2fs_sb_info *sbi, struct page *page,
1450 struct f2fs_summary *sum, struct node_info *ni,
1451 block_t new_blkaddr)
1452{
1453 rewrite_node_page(sbi, page, sum, ni->blk_addr, new_blkaddr);
1454 set_node_addr(sbi, ni, new_blkaddr);
1455 clear_node_page_dirty(page);
1456}
1457
1458int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
1459{
1460 struct address_space *mapping = sbi->node_inode->i_mapping;
1461 struct f2fs_node *src, *dst;
1462 nid_t ino = ino_of_node(page);
1463 struct node_info old_ni, new_ni;
1464 struct page *ipage;
1465
1466 ipage = grab_cache_page(mapping, ino);
1467 if (!ipage)
1468 return -ENOMEM;
1469
1470 /* Should not use this inode from free nid list */
1471 remove_free_nid(NM_I(sbi), ino);
1472
1473 get_node_info(sbi, ino, &old_ni);
1474 SetPageUptodate(ipage);
1475 fill_node_footer(ipage, ino, ino, 0, true);
1476
1477 src = (struct f2fs_node *)page_address(page);
1478 dst = (struct f2fs_node *)page_address(ipage);
1479
1480 memcpy(dst, src, (unsigned long)&src->i.i_ext - (unsigned long)&src->i);
1481 dst->i.i_size = 0;
25ca923b
JK
1482 dst->i.i_blocks = cpu_to_le64(1);
1483 dst->i.i_links = cpu_to_le32(1);
e05df3b1
JK
1484 dst->i.i_xattr_nid = 0;
1485
1486 new_ni = old_ni;
1487 new_ni.ino = ino;
1488
1489 set_node_addr(sbi, &new_ni, NEW_ADDR);
1490 inc_valid_inode_count(sbi);
1491
1492 f2fs_put_page(ipage, 1);
1493 return 0;
1494}
1495
1496int restore_node_summary(struct f2fs_sb_info *sbi,
1497 unsigned int segno, struct f2fs_summary_block *sum)
1498{
1499 struct f2fs_node *rn;
1500 struct f2fs_summary *sum_entry;
1501 struct page *page;
1502 block_t addr;
1503 int i, last_offset;
1504
1505 /* alloc temporal page for read node */
1506 page = alloc_page(GFP_NOFS | __GFP_ZERO);
1507 if (IS_ERR(page))
1508 return PTR_ERR(page);
1509 lock_page(page);
1510
1511 /* scan the node segment */
1512 last_offset = sbi->blocks_per_seg;
1513 addr = START_BLOCK(sbi, segno);
1514 sum_entry = &sum->entries[0];
1515
1516 for (i = 0; i < last_offset; i++, sum_entry++) {
393ff91f
JK
1517 /*
1518 * In order to read next node page,
1519 * we must clear PageUptodate flag.
1520 */
1521 ClearPageUptodate(page);
1522
e05df3b1
JK
1523 if (f2fs_readpage(sbi, page, addr, READ_SYNC))
1524 goto out;
1525
393ff91f 1526 lock_page(page);
e05df3b1
JK
1527 rn = (struct f2fs_node *)page_address(page);
1528 sum_entry->nid = rn->footer.nid;
1529 sum_entry->version = 0;
1530 sum_entry->ofs_in_node = 0;
1531 addr++;
e05df3b1 1532 }
e05df3b1 1533 unlock_page(page);
393ff91f 1534out:
e05df3b1
JK
1535 __free_pages(page, 0);
1536 return 0;
1537}
1538
1539static bool flush_nats_in_journal(struct f2fs_sb_info *sbi)
1540{
1541 struct f2fs_nm_info *nm_i = NM_I(sbi);
1542 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1543 struct f2fs_summary_block *sum = curseg->sum_blk;
1544 int i;
1545
1546 mutex_lock(&curseg->curseg_mutex);
1547
1548 if (nats_in_cursum(sum) < NAT_JOURNAL_ENTRIES) {
1549 mutex_unlock(&curseg->curseg_mutex);
1550 return false;
1551 }
1552
1553 for (i = 0; i < nats_in_cursum(sum); i++) {
1554 struct nat_entry *ne;
1555 struct f2fs_nat_entry raw_ne;
1556 nid_t nid = le32_to_cpu(nid_in_journal(sum, i));
1557
1558 raw_ne = nat_in_journal(sum, i);
1559retry:
1560 write_lock(&nm_i->nat_tree_lock);
1561 ne = __lookup_nat_cache(nm_i, nid);
1562 if (ne) {
1563 __set_nat_cache_dirty(nm_i, ne);
1564 write_unlock(&nm_i->nat_tree_lock);
1565 continue;
1566 }
1567 ne = grab_nat_entry(nm_i, nid);
1568 if (!ne) {
1569 write_unlock(&nm_i->nat_tree_lock);
1570 goto retry;
1571 }
1572 nat_set_blkaddr(ne, le32_to_cpu(raw_ne.block_addr));
1573 nat_set_ino(ne, le32_to_cpu(raw_ne.ino));
1574 nat_set_version(ne, raw_ne.version);
1575 __set_nat_cache_dirty(nm_i, ne);
1576 write_unlock(&nm_i->nat_tree_lock);
1577 }
1578 update_nats_in_cursum(sum, -i);
1579 mutex_unlock(&curseg->curseg_mutex);
1580 return true;
1581}
1582
0a8165d7 1583/*
e05df3b1
JK
1584 * This function is called during the checkpointing process.
1585 */
1586void flush_nat_entries(struct f2fs_sb_info *sbi)
1587{
1588 struct f2fs_nm_info *nm_i = NM_I(sbi);
1589 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1590 struct f2fs_summary_block *sum = curseg->sum_blk;
1591 struct list_head *cur, *n;
1592 struct page *page = NULL;
1593 struct f2fs_nat_block *nat_blk = NULL;
1594 nid_t start_nid = 0, end_nid = 0;
1595 bool flushed;
1596
1597 flushed = flush_nats_in_journal(sbi);
1598
1599 if (!flushed)
1600 mutex_lock(&curseg->curseg_mutex);
1601
1602 /* 1) flush dirty nat caches */
1603 list_for_each_safe(cur, n, &nm_i->dirty_nat_entries) {
1604 struct nat_entry *ne;
1605 nid_t nid;
1606 struct f2fs_nat_entry raw_ne;
1607 int offset = -1;
2b50638d 1608 block_t new_blkaddr;
e05df3b1
JK
1609
1610 ne = list_entry(cur, struct nat_entry, list);
1611 nid = nat_get_nid(ne);
1612
1613 if (nat_get_blkaddr(ne) == NEW_ADDR)
1614 continue;
1615 if (flushed)
1616 goto to_nat_page;
1617
1618 /* if there is room for nat enries in curseg->sumpage */
1619 offset = lookup_journal_in_cursum(sum, NAT_JOURNAL, nid, 1);
1620 if (offset >= 0) {
1621 raw_ne = nat_in_journal(sum, offset);
e05df3b1
JK
1622 goto flush_now;
1623 }
1624to_nat_page:
1625 if (!page || (start_nid > nid || nid > end_nid)) {
1626 if (page) {
1627 f2fs_put_page(page, 1);
1628 page = NULL;
1629 }
1630 start_nid = START_NID(nid);
1631 end_nid = start_nid + NAT_ENTRY_PER_BLOCK - 1;
1632
1633 /*
1634 * get nat block with dirty flag, increased reference
1635 * count, mapped and lock
1636 */
1637 page = get_next_nat_page(sbi, start_nid);
1638 nat_blk = page_address(page);
1639 }
1640
1641 BUG_ON(!nat_blk);
1642 raw_ne = nat_blk->entries[nid - start_nid];
e05df3b1
JK
1643flush_now:
1644 new_blkaddr = nat_get_blkaddr(ne);
1645
1646 raw_ne.ino = cpu_to_le32(nat_get_ino(ne));
1647 raw_ne.block_addr = cpu_to_le32(new_blkaddr);
1648 raw_ne.version = nat_get_version(ne);
1649
1650 if (offset < 0) {
1651 nat_blk->entries[nid - start_nid] = raw_ne;
1652 } else {
1653 nat_in_journal(sum, offset) = raw_ne;
1654 nid_in_journal(sum, offset) = cpu_to_le32(nid);
1655 }
1656
fa372417
JK
1657 if (nat_get_blkaddr(ne) == NULL_ADDR &&
1658 !add_free_nid(NM_I(sbi), nid)) {
e05df3b1
JK
1659 write_lock(&nm_i->nat_tree_lock);
1660 __del_from_nat_cache(nm_i, ne);
1661 write_unlock(&nm_i->nat_tree_lock);
e05df3b1
JK
1662 } else {
1663 write_lock(&nm_i->nat_tree_lock);
1664 __clear_nat_cache_dirty(nm_i, ne);
1665 ne->checkpointed = true;
1666 write_unlock(&nm_i->nat_tree_lock);
1667 }
1668 }
1669 if (!flushed)
1670 mutex_unlock(&curseg->curseg_mutex);
1671 f2fs_put_page(page, 1);
1672
1673 /* 2) shrink nat caches if necessary */
1674 try_to_free_nats(sbi, nm_i->nat_cnt - NM_WOUT_THRESHOLD);
1675}
1676
1677static int init_node_manager(struct f2fs_sb_info *sbi)
1678{
1679 struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
1680 struct f2fs_nm_info *nm_i = NM_I(sbi);
1681 unsigned char *version_bitmap;
1682 unsigned int nat_segs, nat_blocks;
1683
1684 nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
1685
1686 /* segment_count_nat includes pair segment so divide to 2. */
1687 nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
1688 nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
1689 nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nat_blocks;
1690 nm_i->fcnt = 0;
1691 nm_i->nat_cnt = 0;
1692
1693 INIT_LIST_HEAD(&nm_i->free_nid_list);
1694 INIT_RADIX_TREE(&nm_i->nat_root, GFP_ATOMIC);
1695 INIT_LIST_HEAD(&nm_i->nat_entries);
1696 INIT_LIST_HEAD(&nm_i->dirty_nat_entries);
1697
1698 mutex_init(&nm_i->build_lock);
1699 spin_lock_init(&nm_i->free_nid_list_lock);
1700 rwlock_init(&nm_i->nat_tree_lock);
1701
e05df3b1 1702 nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
79b5793b 1703 nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
e05df3b1
JK
1704 version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
1705 if (!version_bitmap)
1706 return -EFAULT;
1707
79b5793b
AG
1708 nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
1709 GFP_KERNEL);
1710 if (!nm_i->nat_bitmap)
1711 return -ENOMEM;
e05df3b1
JK
1712 return 0;
1713}
1714
1715int build_node_manager(struct f2fs_sb_info *sbi)
1716{
1717 int err;
1718
1719 sbi->nm_info = kzalloc(sizeof(struct f2fs_nm_info), GFP_KERNEL);
1720 if (!sbi->nm_info)
1721 return -ENOMEM;
1722
1723 err = init_node_manager(sbi);
1724 if (err)
1725 return err;
1726
1727 build_free_nids(sbi);
1728 return 0;
1729}
1730
1731void destroy_node_manager(struct f2fs_sb_info *sbi)
1732{
1733 struct f2fs_nm_info *nm_i = NM_I(sbi);
1734 struct free_nid *i, *next_i;
1735 struct nat_entry *natvec[NATVEC_SIZE];
1736 nid_t nid = 0;
1737 unsigned int found;
1738
1739 if (!nm_i)
1740 return;
1741
1742 /* destroy free nid list */
1743 spin_lock(&nm_i->free_nid_list_lock);
1744 list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
1745 BUG_ON(i->state == NID_ALLOC);
1746 __del_from_free_nid_list(i);
1747 nm_i->fcnt--;
1748 }
1749 BUG_ON(nm_i->fcnt);
1750 spin_unlock(&nm_i->free_nid_list_lock);
1751
1752 /* destroy nat cache */
1753 write_lock(&nm_i->nat_tree_lock);
1754 while ((found = __gang_lookup_nat_cache(nm_i,
1755 nid, NATVEC_SIZE, natvec))) {
1756 unsigned idx;
1757 for (idx = 0; idx < found; idx++) {
1758 struct nat_entry *e = natvec[idx];
1759 nid = nat_get_nid(e) + 1;
1760 __del_from_nat_cache(nm_i, e);
1761 }
1762 }
1763 BUG_ON(nm_i->nat_cnt);
1764 write_unlock(&nm_i->nat_tree_lock);
1765
1766 kfree(nm_i->nat_bitmap);
1767 sbi->nm_info = NULL;
1768 kfree(nm_i);
1769}
1770
6e6093a8 1771int __init create_node_manager_caches(void)
e05df3b1
JK
1772{
1773 nat_entry_slab = f2fs_kmem_cache_create("nat_entry",
1774 sizeof(struct nat_entry), NULL);
1775 if (!nat_entry_slab)
1776 return -ENOMEM;
1777
1778 free_nid_slab = f2fs_kmem_cache_create("free_nid",
1779 sizeof(struct free_nid), NULL);
1780 if (!free_nid_slab) {
1781 kmem_cache_destroy(nat_entry_slab);
1782 return -ENOMEM;
1783 }
1784 return 0;
1785}
1786
1787void destroy_node_manager_caches(void)
1788{
1789 kmem_cache_destroy(free_nid_slab);
1790 kmem_cache_destroy(nat_entry_slab);
1791}