f2fs: reclaim prefree segments periodically
[linux-2.6-block.git] / fs / f2fs / node.c
CommitLineData
0a8165d7 1/*
e05df3b1
JK
2 * fs/f2fs/node.c
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11#include <linux/fs.h>
12#include <linux/f2fs_fs.h>
13#include <linux/mpage.h>
14#include <linux/backing-dev.h>
15#include <linux/blkdev.h>
16#include <linux/pagevec.h>
17#include <linux/swap.h>
18
19#include "f2fs.h"
20#include "node.h"
21#include "segment.h"
51dd6249 22#include <trace/events/f2fs.h>
e05df3b1
JK
23
24static struct kmem_cache *nat_entry_slab;
25static struct kmem_cache *free_nid_slab;
26
27static void clear_node_page_dirty(struct page *page)
28{
29 struct address_space *mapping = page->mapping;
30 struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
31 unsigned int long flags;
32
33 if (PageDirty(page)) {
34 spin_lock_irqsave(&mapping->tree_lock, flags);
35 radix_tree_tag_clear(&mapping->page_tree,
36 page_index(page),
37 PAGECACHE_TAG_DIRTY);
38 spin_unlock_irqrestore(&mapping->tree_lock, flags);
39
40 clear_page_dirty_for_io(page);
41 dec_page_count(sbi, F2FS_DIRTY_NODES);
42 }
43 ClearPageUptodate(page);
44}
45
46static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
47{
48 pgoff_t index = current_nat_addr(sbi, nid);
49 return get_meta_page(sbi, index);
50}
51
52static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
53{
54 struct page *src_page;
55 struct page *dst_page;
56 pgoff_t src_off;
57 pgoff_t dst_off;
58 void *src_addr;
59 void *dst_addr;
60 struct f2fs_nm_info *nm_i = NM_I(sbi);
61
62 src_off = current_nat_addr(sbi, nid);
63 dst_off = next_nat_addr(sbi, src_off);
64
65 /* get current nat block page with lock */
66 src_page = get_meta_page(sbi, src_off);
67
68 /* Dirty src_page means that it is already the new target NAT page. */
69 if (PageDirty(src_page))
70 return src_page;
71
72 dst_page = grab_meta_page(sbi, dst_off);
73
74 src_addr = page_address(src_page);
75 dst_addr = page_address(dst_page);
76 memcpy(dst_addr, src_addr, PAGE_CACHE_SIZE);
77 set_page_dirty(dst_page);
78 f2fs_put_page(src_page, 1);
79
80 set_to_next_nat(nm_i, nid);
81
82 return dst_page;
83}
84
0a8165d7 85/*
e05df3b1
JK
86 * Readahead NAT pages
87 */
88static void ra_nat_pages(struct f2fs_sb_info *sbi, int nid)
89{
90 struct address_space *mapping = sbi->meta_inode->i_mapping;
91 struct f2fs_nm_info *nm_i = NM_I(sbi);
c718379b 92 struct blk_plug plug;
e05df3b1
JK
93 struct page *page;
94 pgoff_t index;
95 int i;
96
c718379b
JK
97 blk_start_plug(&plug);
98
e05df3b1
JK
99 for (i = 0; i < FREE_NID_PAGES; i++, nid += NAT_ENTRY_PER_BLOCK) {
100 if (nid >= nm_i->max_nid)
101 nid = 0;
102 index = current_nat_addr(sbi, nid);
103
104 page = grab_cache_page(mapping, index);
105 if (!page)
106 continue;
393ff91f 107 if (PageUptodate(page)) {
e05df3b1
JK
108 f2fs_put_page(page, 1);
109 continue;
110 }
393ff91f
JK
111 if (f2fs_readpage(sbi, page, index, READ))
112 continue;
113
369a708c 114 f2fs_put_page(page, 0);
e05df3b1 115 }
c718379b 116 blk_finish_plug(&plug);
e05df3b1
JK
117}
118
119static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
120{
121 return radix_tree_lookup(&nm_i->nat_root, n);
122}
123
124static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
125 nid_t start, unsigned int nr, struct nat_entry **ep)
126{
127 return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
128}
129
130static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
131{
132 list_del(&e->list);
133 radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
134 nm_i->nat_cnt--;
135 kmem_cache_free(nat_entry_slab, e);
136}
137
138int is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
139{
140 struct f2fs_nm_info *nm_i = NM_I(sbi);
141 struct nat_entry *e;
142 int is_cp = 1;
143
144 read_lock(&nm_i->nat_tree_lock);
145 e = __lookup_nat_cache(nm_i, nid);
146 if (e && !e->checkpointed)
147 is_cp = 0;
148 read_unlock(&nm_i->nat_tree_lock);
149 return is_cp;
150}
151
152static struct nat_entry *grab_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid)
153{
154 struct nat_entry *new;
155
156 new = kmem_cache_alloc(nat_entry_slab, GFP_ATOMIC);
157 if (!new)
158 return NULL;
159 if (radix_tree_insert(&nm_i->nat_root, nid, new)) {
160 kmem_cache_free(nat_entry_slab, new);
161 return NULL;
162 }
163 memset(new, 0, sizeof(struct nat_entry));
164 nat_set_nid(new, nid);
165 list_add_tail(&new->list, &nm_i->nat_entries);
166 nm_i->nat_cnt++;
167 return new;
168}
169
170static void cache_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid,
171 struct f2fs_nat_entry *ne)
172{
173 struct nat_entry *e;
174retry:
175 write_lock(&nm_i->nat_tree_lock);
176 e = __lookup_nat_cache(nm_i, nid);
177 if (!e) {
178 e = grab_nat_entry(nm_i, nid);
179 if (!e) {
180 write_unlock(&nm_i->nat_tree_lock);
181 goto retry;
182 }
183 nat_set_blkaddr(e, le32_to_cpu(ne->block_addr));
184 nat_set_ino(e, le32_to_cpu(ne->ino));
185 nat_set_version(e, ne->version);
186 e->checkpointed = true;
187 }
188 write_unlock(&nm_i->nat_tree_lock);
189}
190
191static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
192 block_t new_blkaddr)
193{
194 struct f2fs_nm_info *nm_i = NM_I(sbi);
195 struct nat_entry *e;
196retry:
197 write_lock(&nm_i->nat_tree_lock);
198 e = __lookup_nat_cache(nm_i, ni->nid);
199 if (!e) {
200 e = grab_nat_entry(nm_i, ni->nid);
201 if (!e) {
202 write_unlock(&nm_i->nat_tree_lock);
203 goto retry;
204 }
205 e->ni = *ni;
206 e->checkpointed = true;
207 BUG_ON(ni->blk_addr == NEW_ADDR);
208 } else if (new_blkaddr == NEW_ADDR) {
209 /*
210 * when nid is reallocated,
211 * previous nat entry can be remained in nat cache.
212 * So, reinitialize it with new information.
213 */
214 e->ni = *ni;
215 BUG_ON(ni->blk_addr != NULL_ADDR);
216 }
217
218 if (new_blkaddr == NEW_ADDR)
219 e->checkpointed = false;
220
221 /* sanity check */
222 BUG_ON(nat_get_blkaddr(e) != ni->blk_addr);
223 BUG_ON(nat_get_blkaddr(e) == NULL_ADDR &&
224 new_blkaddr == NULL_ADDR);
225 BUG_ON(nat_get_blkaddr(e) == NEW_ADDR &&
226 new_blkaddr == NEW_ADDR);
227 BUG_ON(nat_get_blkaddr(e) != NEW_ADDR &&
228 nat_get_blkaddr(e) != NULL_ADDR &&
229 new_blkaddr == NEW_ADDR);
230
231 /* increament version no as node is removed */
232 if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
233 unsigned char version = nat_get_version(e);
234 nat_set_version(e, inc_node_version(version));
235 }
236
237 /* change address */
238 nat_set_blkaddr(e, new_blkaddr);
239 __set_nat_cache_dirty(nm_i, e);
240 write_unlock(&nm_i->nat_tree_lock);
241}
242
243static int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
244{
245 struct f2fs_nm_info *nm_i = NM_I(sbi);
246
6cac3759 247 if (nm_i->nat_cnt <= NM_WOUT_THRESHOLD)
e05df3b1
JK
248 return 0;
249
250 write_lock(&nm_i->nat_tree_lock);
251 while (nr_shrink && !list_empty(&nm_i->nat_entries)) {
252 struct nat_entry *ne;
253 ne = list_first_entry(&nm_i->nat_entries,
254 struct nat_entry, list);
255 __del_from_nat_cache(nm_i, ne);
256 nr_shrink--;
257 }
258 write_unlock(&nm_i->nat_tree_lock);
259 return nr_shrink;
260}
261
0a8165d7 262/*
e05df3b1
JK
263 * This function returns always success
264 */
265void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni)
266{
267 struct f2fs_nm_info *nm_i = NM_I(sbi);
268 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
269 struct f2fs_summary_block *sum = curseg->sum_blk;
270 nid_t start_nid = START_NID(nid);
271 struct f2fs_nat_block *nat_blk;
272 struct page *page = NULL;
273 struct f2fs_nat_entry ne;
274 struct nat_entry *e;
275 int i;
276
be4124f8 277 memset(&ne, 0, sizeof(struct f2fs_nat_entry));
e05df3b1
JK
278 ni->nid = nid;
279
280 /* Check nat cache */
281 read_lock(&nm_i->nat_tree_lock);
282 e = __lookup_nat_cache(nm_i, nid);
283 if (e) {
284 ni->ino = nat_get_ino(e);
285 ni->blk_addr = nat_get_blkaddr(e);
286 ni->version = nat_get_version(e);
287 }
288 read_unlock(&nm_i->nat_tree_lock);
289 if (e)
290 return;
291
292 /* Check current segment summary */
293 mutex_lock(&curseg->curseg_mutex);
294 i = lookup_journal_in_cursum(sum, NAT_JOURNAL, nid, 0);
295 if (i >= 0) {
296 ne = nat_in_journal(sum, i);
297 node_info_from_raw_nat(ni, &ne);
298 }
299 mutex_unlock(&curseg->curseg_mutex);
300 if (i >= 0)
301 goto cache;
302
303 /* Fill node_info from nat page */
304 page = get_current_nat_page(sbi, start_nid);
305 nat_blk = (struct f2fs_nat_block *)page_address(page);
306 ne = nat_blk->entries[nid - start_nid];
307 node_info_from_raw_nat(ni, &ne);
308 f2fs_put_page(page, 1);
309cache:
310 /* cache nat entry */
311 cache_nat_entry(NM_I(sbi), nid, &ne);
312}
313
0a8165d7 314/*
e05df3b1
JK
315 * The maximum depth is four.
316 * Offset[0] will have raw inode offset.
317 */
de93653f
JK
318static int get_node_path(struct f2fs_inode_info *fi, long block,
319 int offset[4], unsigned int noffset[4])
e05df3b1 320{
de93653f 321 const long direct_index = ADDRS_PER_INODE(fi);
e05df3b1
JK
322 const long direct_blks = ADDRS_PER_BLOCK;
323 const long dptrs_per_blk = NIDS_PER_BLOCK;
324 const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
325 const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
326 int n = 0;
327 int level = 0;
328
329 noffset[0] = 0;
330
331 if (block < direct_index) {
25c0a6e5 332 offset[n] = block;
e05df3b1
JK
333 goto got;
334 }
335 block -= direct_index;
336 if (block < direct_blks) {
337 offset[n++] = NODE_DIR1_BLOCK;
338 noffset[n] = 1;
25c0a6e5 339 offset[n] = block;
e05df3b1
JK
340 level = 1;
341 goto got;
342 }
343 block -= direct_blks;
344 if (block < direct_blks) {
345 offset[n++] = NODE_DIR2_BLOCK;
346 noffset[n] = 2;
25c0a6e5 347 offset[n] = block;
e05df3b1
JK
348 level = 1;
349 goto got;
350 }
351 block -= direct_blks;
352 if (block < indirect_blks) {
353 offset[n++] = NODE_IND1_BLOCK;
354 noffset[n] = 3;
355 offset[n++] = block / direct_blks;
356 noffset[n] = 4 + offset[n - 1];
25c0a6e5 357 offset[n] = block % direct_blks;
e05df3b1
JK
358 level = 2;
359 goto got;
360 }
361 block -= indirect_blks;
362 if (block < indirect_blks) {
363 offset[n++] = NODE_IND2_BLOCK;
364 noffset[n] = 4 + dptrs_per_blk;
365 offset[n++] = block / direct_blks;
366 noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
25c0a6e5 367 offset[n] = block % direct_blks;
e05df3b1
JK
368 level = 2;
369 goto got;
370 }
371 block -= indirect_blks;
372 if (block < dindirect_blks) {
373 offset[n++] = NODE_DIND_BLOCK;
374 noffset[n] = 5 + (dptrs_per_blk * 2);
375 offset[n++] = block / indirect_blks;
376 noffset[n] = 6 + (dptrs_per_blk * 2) +
377 offset[n - 1] * (dptrs_per_blk + 1);
378 offset[n++] = (block / direct_blks) % dptrs_per_blk;
379 noffset[n] = 7 + (dptrs_per_blk * 2) +
380 offset[n - 2] * (dptrs_per_blk + 1) +
381 offset[n - 1];
25c0a6e5 382 offset[n] = block % direct_blks;
e05df3b1
JK
383 level = 3;
384 goto got;
385 } else {
386 BUG();
387 }
388got:
389 return level;
390}
391
392/*
393 * Caller should call f2fs_put_dnode(dn).
39936837
JK
394 * Also, it should grab and release a mutex by calling mutex_lock_op() and
395 * mutex_unlock_op() only if ro is not set RDONLY_NODE.
396 * In the case of RDONLY_NODE, we don't need to care about mutex.
e05df3b1 397 */
266e97a8 398int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
e05df3b1
JK
399{
400 struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
401 struct page *npage[4];
402 struct page *parent;
403 int offset[4];
404 unsigned int noffset[4];
405 nid_t nids[4];
406 int level, i;
407 int err = 0;
408
de93653f 409 level = get_node_path(F2FS_I(dn->inode), index, offset, noffset);
e05df3b1
JK
410
411 nids[0] = dn->inode->i_ino;
1646cfac 412 npage[0] = dn->inode_page;
e05df3b1 413
1646cfac
JK
414 if (!npage[0]) {
415 npage[0] = get_node_page(sbi, nids[0]);
416 if (IS_ERR(npage[0]))
417 return PTR_ERR(npage[0]);
418 }
e05df3b1 419 parent = npage[0];
52c2db3f
CL
420 if (level != 0)
421 nids[1] = get_nid(parent, offset[0], true);
e05df3b1
JK
422 dn->inode_page = npage[0];
423 dn->inode_page_locked = true;
424
425 /* get indirect or direct nodes */
426 for (i = 1; i <= level; i++) {
427 bool done = false;
428
266e97a8 429 if (!nids[i] && mode == ALLOC_NODE) {
e05df3b1
JK
430 /* alloc new node */
431 if (!alloc_nid(sbi, &(nids[i]))) {
e05df3b1
JK
432 err = -ENOSPC;
433 goto release_pages;
434 }
435
436 dn->nid = nids[i];
8ae8f162 437 npage[i] = new_node_page(dn, noffset[i], NULL);
e05df3b1
JK
438 if (IS_ERR(npage[i])) {
439 alloc_nid_failed(sbi, nids[i]);
e05df3b1
JK
440 err = PTR_ERR(npage[i]);
441 goto release_pages;
442 }
443
444 set_nid(parent, offset[i - 1], nids[i], i == 1);
445 alloc_nid_done(sbi, nids[i]);
e05df3b1 446 done = true;
266e97a8 447 } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
e05df3b1
JK
448 npage[i] = get_node_page_ra(parent, offset[i - 1]);
449 if (IS_ERR(npage[i])) {
450 err = PTR_ERR(npage[i]);
451 goto release_pages;
452 }
453 done = true;
454 }
455 if (i == 1) {
456 dn->inode_page_locked = false;
457 unlock_page(parent);
458 } else {
459 f2fs_put_page(parent, 1);
460 }
461
462 if (!done) {
463 npage[i] = get_node_page(sbi, nids[i]);
464 if (IS_ERR(npage[i])) {
465 err = PTR_ERR(npage[i]);
466 f2fs_put_page(npage[0], 0);
467 goto release_out;
468 }
469 }
470 if (i < level) {
471 parent = npage[i];
472 nids[i + 1] = get_nid(parent, offset[i], false);
473 }
474 }
475 dn->nid = nids[level];
476 dn->ofs_in_node = offset[level];
477 dn->node_page = npage[level];
478 dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node);
479 return 0;
480
481release_pages:
482 f2fs_put_page(parent, 1);
483 if (i > 1)
484 f2fs_put_page(npage[0], 0);
485release_out:
486 dn->inode_page = NULL;
487 dn->node_page = NULL;
488 return err;
489}
490
491static void truncate_node(struct dnode_of_data *dn)
492{
493 struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
494 struct node_info ni;
495
496 get_node_info(sbi, dn->nid, &ni);
71e9fec5
JK
497 if (dn->inode->i_blocks == 0) {
498 BUG_ON(ni.blk_addr != NULL_ADDR);
499 goto invalidate;
500 }
e05df3b1
JK
501 BUG_ON(ni.blk_addr == NULL_ADDR);
502
e05df3b1 503 /* Deallocate node address */
71e9fec5 504 invalidate_blocks(sbi, ni.blk_addr);
e05df3b1
JK
505 dec_valid_node_count(sbi, dn->inode, 1);
506 set_node_addr(sbi, &ni, NULL_ADDR);
507
508 if (dn->nid == dn->inode->i_ino) {
509 remove_orphan_inode(sbi, dn->nid);
510 dec_valid_inode_count(sbi);
511 } else {
512 sync_inode_page(dn);
513 }
71e9fec5 514invalidate:
e05df3b1
JK
515 clear_node_page_dirty(dn->node_page);
516 F2FS_SET_SB_DIRT(sbi);
517
518 f2fs_put_page(dn->node_page, 1);
519 dn->node_page = NULL;
51dd6249 520 trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
e05df3b1
JK
521}
522
523static int truncate_dnode(struct dnode_of_data *dn)
524{
525 struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
526 struct page *page;
527
528 if (dn->nid == 0)
529 return 1;
530
531 /* get direct node */
532 page = get_node_page(sbi, dn->nid);
533 if (IS_ERR(page) && PTR_ERR(page) == -ENOENT)
534 return 1;
535 else if (IS_ERR(page))
536 return PTR_ERR(page);
537
538 /* Make dnode_of_data for parameter */
539 dn->node_page = page;
540 dn->ofs_in_node = 0;
541 truncate_data_blocks(dn);
542 truncate_node(dn);
543 return 1;
544}
545
546static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
547 int ofs, int depth)
548{
549 struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
550 struct dnode_of_data rdn = *dn;
551 struct page *page;
552 struct f2fs_node *rn;
553 nid_t child_nid;
554 unsigned int child_nofs;
555 int freed = 0;
556 int i, ret;
557
558 if (dn->nid == 0)
559 return NIDS_PER_BLOCK + 1;
560
51dd6249
NJ
561 trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
562
e05df3b1 563 page = get_node_page(sbi, dn->nid);
51dd6249
NJ
564 if (IS_ERR(page)) {
565 trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
e05df3b1 566 return PTR_ERR(page);
51dd6249 567 }
e05df3b1 568
45590710 569 rn = F2FS_NODE(page);
e05df3b1
JK
570 if (depth < 3) {
571 for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
572 child_nid = le32_to_cpu(rn->in.nid[i]);
573 if (child_nid == 0)
574 continue;
575 rdn.nid = child_nid;
576 ret = truncate_dnode(&rdn);
577 if (ret < 0)
578 goto out_err;
579 set_nid(page, i, 0, false);
580 }
581 } else {
582 child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
583 for (i = ofs; i < NIDS_PER_BLOCK; i++) {
584 child_nid = le32_to_cpu(rn->in.nid[i]);
585 if (child_nid == 0) {
586 child_nofs += NIDS_PER_BLOCK + 1;
587 continue;
588 }
589 rdn.nid = child_nid;
590 ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
591 if (ret == (NIDS_PER_BLOCK + 1)) {
592 set_nid(page, i, 0, false);
593 child_nofs += ret;
594 } else if (ret < 0 && ret != -ENOENT) {
595 goto out_err;
596 }
597 }
598 freed = child_nofs;
599 }
600
601 if (!ofs) {
602 /* remove current indirect node */
603 dn->node_page = page;
604 truncate_node(dn);
605 freed++;
606 } else {
607 f2fs_put_page(page, 1);
608 }
51dd6249 609 trace_f2fs_truncate_nodes_exit(dn->inode, freed);
e05df3b1
JK
610 return freed;
611
612out_err:
613 f2fs_put_page(page, 1);
51dd6249 614 trace_f2fs_truncate_nodes_exit(dn->inode, ret);
e05df3b1
JK
615 return ret;
616}
617
618static int truncate_partial_nodes(struct dnode_of_data *dn,
619 struct f2fs_inode *ri, int *offset, int depth)
620{
621 struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
622 struct page *pages[2];
623 nid_t nid[3];
624 nid_t child_nid;
625 int err = 0;
626 int i;
627 int idx = depth - 2;
628
629 nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
630 if (!nid[0])
631 return 0;
632
633 /* get indirect nodes in the path */
634 for (i = 0; i < depth - 1; i++) {
635 /* refernece count'll be increased */
636 pages[i] = get_node_page(sbi, nid[i]);
637 if (IS_ERR(pages[i])) {
638 depth = i + 1;
639 err = PTR_ERR(pages[i]);
640 goto fail;
641 }
642 nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
643 }
644
645 /* free direct nodes linked to a partial indirect node */
646 for (i = offset[depth - 1]; i < NIDS_PER_BLOCK; i++) {
647 child_nid = get_nid(pages[idx], i, false);
648 if (!child_nid)
649 continue;
650 dn->nid = child_nid;
651 err = truncate_dnode(dn);
652 if (err < 0)
653 goto fail;
654 set_nid(pages[idx], i, 0, false);
655 }
656
657 if (offset[depth - 1] == 0) {
658 dn->node_page = pages[idx];
659 dn->nid = nid[idx];
660 truncate_node(dn);
661 } else {
662 f2fs_put_page(pages[idx], 1);
663 }
664 offset[idx]++;
665 offset[depth - 1] = 0;
666fail:
667 for (i = depth - 3; i >= 0; i--)
668 f2fs_put_page(pages[i], 1);
51dd6249
NJ
669
670 trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
671
e05df3b1
JK
672 return err;
673}
674
0a8165d7 675/*
e05df3b1
JK
676 * All the block addresses of data and nodes should be nullified.
677 */
678int truncate_inode_blocks(struct inode *inode, pgoff_t from)
679{
680 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
afcb7ca0 681 struct address_space *node_mapping = sbi->node_inode->i_mapping;
e05df3b1
JK
682 int err = 0, cont = 1;
683 int level, offset[4], noffset[4];
7dd690c8 684 unsigned int nofs = 0;
e05df3b1
JK
685 struct f2fs_node *rn;
686 struct dnode_of_data dn;
687 struct page *page;
688
51dd6249
NJ
689 trace_f2fs_truncate_inode_blocks_enter(inode, from);
690
de93653f 691 level = get_node_path(F2FS_I(inode), from, offset, noffset);
afcb7ca0 692restart:
e05df3b1 693 page = get_node_page(sbi, inode->i_ino);
51dd6249
NJ
694 if (IS_ERR(page)) {
695 trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
e05df3b1 696 return PTR_ERR(page);
51dd6249 697 }
e05df3b1
JK
698
699 set_new_dnode(&dn, inode, page, NULL, 0);
700 unlock_page(page);
701
45590710 702 rn = F2FS_NODE(page);
e05df3b1
JK
703 switch (level) {
704 case 0:
705 case 1:
706 nofs = noffset[1];
707 break;
708 case 2:
709 nofs = noffset[1];
710 if (!offset[level - 1])
711 goto skip_partial;
712 err = truncate_partial_nodes(&dn, &rn->i, offset, level);
713 if (err < 0 && err != -ENOENT)
714 goto fail;
715 nofs += 1 + NIDS_PER_BLOCK;
716 break;
717 case 3:
718 nofs = 5 + 2 * NIDS_PER_BLOCK;
719 if (!offset[level - 1])
720 goto skip_partial;
721 err = truncate_partial_nodes(&dn, &rn->i, offset, level);
722 if (err < 0 && err != -ENOENT)
723 goto fail;
724 break;
725 default:
726 BUG();
727 }
728
729skip_partial:
730 while (cont) {
731 dn.nid = le32_to_cpu(rn->i.i_nid[offset[0] - NODE_DIR1_BLOCK]);
732 switch (offset[0]) {
733 case NODE_DIR1_BLOCK:
734 case NODE_DIR2_BLOCK:
735 err = truncate_dnode(&dn);
736 break;
737
738 case NODE_IND1_BLOCK:
739 case NODE_IND2_BLOCK:
740 err = truncate_nodes(&dn, nofs, offset[1], 2);
741 break;
742
743 case NODE_DIND_BLOCK:
744 err = truncate_nodes(&dn, nofs, offset[1], 3);
745 cont = 0;
746 break;
747
748 default:
749 BUG();
750 }
751 if (err < 0 && err != -ENOENT)
752 goto fail;
753 if (offset[1] == 0 &&
754 rn->i.i_nid[offset[0] - NODE_DIR1_BLOCK]) {
755 lock_page(page);
afcb7ca0
JK
756 if (page->mapping != node_mapping) {
757 f2fs_put_page(page, 1);
758 goto restart;
759 }
e05df3b1
JK
760 wait_on_page_writeback(page);
761 rn->i.i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
762 set_page_dirty(page);
763 unlock_page(page);
764 }
765 offset[1] = 0;
766 offset[0]++;
767 nofs += err;
768 }
769fail:
770 f2fs_put_page(page, 0);
51dd6249 771 trace_f2fs_truncate_inode_blocks_exit(inode, err);
e05df3b1
JK
772 return err > 0 ? 0 : err;
773}
774
4f16fb0f
JK
775int truncate_xattr_node(struct inode *inode, struct page *page)
776{
777 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
778 nid_t nid = F2FS_I(inode)->i_xattr_nid;
779 struct dnode_of_data dn;
780 struct page *npage;
781
782 if (!nid)
783 return 0;
784
785 npage = get_node_page(sbi, nid);
786 if (IS_ERR(npage))
787 return PTR_ERR(npage);
788
789 F2FS_I(inode)->i_xattr_nid = 0;
65985d93
JK
790
791 /* need to do checkpoint during fsync */
792 F2FS_I(inode)->xattr_ver = cur_cp_version(F2FS_CKPT(sbi));
793
4f16fb0f
JK
794 set_new_dnode(&dn, inode, page, npage, nid);
795
796 if (page)
797 dn.inode_page_locked = 1;
798 truncate_node(&dn);
799 return 0;
800}
801
39936837
JK
802/*
803 * Caller should grab and release a mutex by calling mutex_lock_op() and
804 * mutex_unlock_op().
805 */
e05df3b1
JK
806int remove_inode_page(struct inode *inode)
807{
808 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
809 struct page *page;
810 nid_t ino = inode->i_ino;
811 struct dnode_of_data dn;
4f16fb0f 812 int err;
e05df3b1 813
e05df3b1 814 page = get_node_page(sbi, ino);
39936837 815 if (IS_ERR(page))
e05df3b1 816 return PTR_ERR(page);
e05df3b1 817
4f16fb0f
JK
818 err = truncate_xattr_node(inode, page);
819 if (err) {
820 f2fs_put_page(page, 1);
821 return err;
e05df3b1 822 }
e05df3b1 823
71e9fec5
JK
824 /* 0 is possible, after f2fs_new_inode() is failed */
825 BUG_ON(inode->i_blocks != 0 && inode->i_blocks != 1);
826 set_new_dnode(&dn, inode, page, page, ino);
827 truncate_node(&dn);
e05df3b1
JK
828 return 0;
829}
830
44a83ff6 831struct page *new_inode_page(struct inode *inode, const struct qstr *name)
e05df3b1 832{
e05df3b1
JK
833 struct dnode_of_data dn;
834
835 /* allocate inode page for new inode */
836 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
44a83ff6
JK
837
838 /* caller should f2fs_put_page(page, 1); */
8ae8f162 839 return new_node_page(&dn, 0, NULL);
e05df3b1
JK
840}
841
8ae8f162
JK
842struct page *new_node_page(struct dnode_of_data *dn,
843 unsigned int ofs, struct page *ipage)
e05df3b1
JK
844{
845 struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
846 struct address_space *mapping = sbi->node_inode->i_mapping;
847 struct node_info old_ni, new_ni;
848 struct page *page;
849 int err;
850
851 if (is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC))
852 return ERR_PTR(-EPERM);
853
854 page = grab_cache_page(mapping, dn->nid);
855 if (!page)
856 return ERR_PTR(-ENOMEM);
857
9c02740c
JK
858 if (!inc_valid_node_count(sbi, dn->inode, 1)) {
859 err = -ENOSPC;
860 goto fail;
861 }
e05df3b1 862
9c02740c 863 get_node_info(sbi, dn->nid, &old_ni);
e05df3b1
JK
864
865 /* Reinitialize old_ni with new node page */
866 BUG_ON(old_ni.blk_addr != NULL_ADDR);
867 new_ni = old_ni;
868 new_ni.ino = dn->inode->i_ino;
e05df3b1 869 set_node_addr(sbi, &new_ni, NEW_ADDR);
9c02740c
JK
870
871 fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
398b1ac5 872 set_cold_node(dn->inode, page);
9c02740c
JK
873 SetPageUptodate(page);
874 set_page_dirty(page);
e05df3b1 875
479bd73a
JK
876 if (ofs == XATTR_NODE_OFFSET)
877 F2FS_I(dn->inode)->i_xattr_nid = dn->nid;
878
e05df3b1 879 dn->node_page = page;
8ae8f162
JK
880 if (ipage)
881 update_inode(dn->inode, ipage);
882 else
883 sync_inode_page(dn);
e05df3b1
JK
884 if (ofs == 0)
885 inc_valid_inode_count(sbi);
886
887 return page;
888
889fail:
71e9fec5 890 clear_node_page_dirty(page);
e05df3b1
JK
891 f2fs_put_page(page, 1);
892 return ERR_PTR(err);
893}
894
56ae674c
JK
895/*
896 * Caller should do after getting the following values.
897 * 0: f2fs_put_page(page, 0)
898 * LOCKED_PAGE: f2fs_put_page(page, 1)
899 * error: nothing
900 */
e05df3b1
JK
901static int read_node_page(struct page *page, int type)
902{
903 struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb);
904 struct node_info ni;
905
906 get_node_info(sbi, page->index, &ni);
907
393ff91f
JK
908 if (ni.blk_addr == NULL_ADDR) {
909 f2fs_put_page(page, 1);
e05df3b1 910 return -ENOENT;
393ff91f
JK
911 }
912
56ae674c
JK
913 if (PageUptodate(page))
914 return LOCKED_PAGE;
393ff91f 915
e05df3b1
JK
916 return f2fs_readpage(sbi, page, ni.blk_addr, type);
917}
918
0a8165d7 919/*
e05df3b1
JK
920 * Readahead a node page
921 */
922void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
923{
924 struct address_space *mapping = sbi->node_inode->i_mapping;
925 struct page *apage;
56ae674c 926 int err;
e05df3b1
JK
927
928 apage = find_get_page(mapping, nid);
393ff91f
JK
929 if (apage && PageUptodate(apage)) {
930 f2fs_put_page(apage, 0);
931 return;
932 }
e05df3b1
JK
933 f2fs_put_page(apage, 0);
934
935 apage = grab_cache_page(mapping, nid);
936 if (!apage)
937 return;
938
56ae674c
JK
939 err = read_node_page(apage, READA);
940 if (err == 0)
393ff91f 941 f2fs_put_page(apage, 0);
56ae674c
JK
942 else if (err == LOCKED_PAGE)
943 f2fs_put_page(apage, 1);
e05df3b1
JK
944}
945
946struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
947{
e05df3b1 948 struct address_space *mapping = sbi->node_inode->i_mapping;
56ae674c
JK
949 struct page *page;
950 int err;
afcb7ca0 951repeat:
e05df3b1
JK
952 page = grab_cache_page(mapping, nid);
953 if (!page)
954 return ERR_PTR(-ENOMEM);
955
956 err = read_node_page(page, READ_SYNC);
56ae674c 957 if (err < 0)
e05df3b1 958 return ERR_PTR(err);
56ae674c
JK
959 else if (err == LOCKED_PAGE)
960 goto got_it;
e05df3b1 961
393ff91f
JK
962 lock_page(page);
963 if (!PageUptodate(page)) {
964 f2fs_put_page(page, 1);
965 return ERR_PTR(-EIO);
966 }
afcb7ca0
JK
967 if (page->mapping != mapping) {
968 f2fs_put_page(page, 1);
969 goto repeat;
970 }
56ae674c 971got_it:
e05df3b1
JK
972 BUG_ON(nid != nid_of_node(page));
973 mark_page_accessed(page);
974 return page;
975}
976
0a8165d7 977/*
e05df3b1
JK
978 * Return a locked page for the desired node page.
979 * And, readahead MAX_RA_NODE number of node pages.
980 */
981struct page *get_node_page_ra(struct page *parent, int start)
982{
983 struct f2fs_sb_info *sbi = F2FS_SB(parent->mapping->host->i_sb);
984 struct address_space *mapping = sbi->node_inode->i_mapping;
c718379b 985 struct blk_plug plug;
e05df3b1 986 struct page *page;
56ae674c
JK
987 int err, i, end;
988 nid_t nid;
e05df3b1
JK
989
990 /* First, try getting the desired direct node. */
991 nid = get_nid(parent, start, false);
992 if (!nid)
993 return ERR_PTR(-ENOENT);
afcb7ca0 994repeat:
e05df3b1
JK
995 page = grab_cache_page(mapping, nid);
996 if (!page)
997 return ERR_PTR(-ENOMEM);
998
66d36a29 999 err = read_node_page(page, READ_SYNC);
56ae674c 1000 if (err < 0)
e05df3b1 1001 return ERR_PTR(err);
56ae674c
JK
1002 else if (err == LOCKED_PAGE)
1003 goto page_hit;
e05df3b1 1004
c718379b
JK
1005 blk_start_plug(&plug);
1006
e05df3b1
JK
1007 /* Then, try readahead for siblings of the desired node */
1008 end = start + MAX_RA_NODE;
1009 end = min(end, NIDS_PER_BLOCK);
1010 for (i = start + 1; i < end; i++) {
1011 nid = get_nid(parent, i, false);
1012 if (!nid)
1013 continue;
1014 ra_node_page(sbi, nid);
1015 }
1016
c718379b
JK
1017 blk_finish_plug(&plug);
1018
e05df3b1 1019 lock_page(page);
afcb7ca0
JK
1020 if (page->mapping != mapping) {
1021 f2fs_put_page(page, 1);
1022 goto repeat;
1023 }
e0f56cb4 1024page_hit:
56ae674c 1025 if (!PageUptodate(page)) {
e05df3b1
JK
1026 f2fs_put_page(page, 1);
1027 return ERR_PTR(-EIO);
1028 }
393ff91f 1029 mark_page_accessed(page);
e05df3b1
JK
1030 return page;
1031}
1032
1033void sync_inode_page(struct dnode_of_data *dn)
1034{
1035 if (IS_INODE(dn->node_page) || dn->inode_page == dn->node_page) {
1036 update_inode(dn->inode, dn->node_page);
1037 } else if (dn->inode_page) {
1038 if (!dn->inode_page_locked)
1039 lock_page(dn->inode_page);
1040 update_inode(dn->inode, dn->inode_page);
1041 if (!dn->inode_page_locked)
1042 unlock_page(dn->inode_page);
1043 } else {
39936837 1044 update_inode_page(dn->inode);
e05df3b1
JK
1045 }
1046}
1047
1048int sync_node_pages(struct f2fs_sb_info *sbi, nid_t ino,
1049 struct writeback_control *wbc)
1050{
1051 struct address_space *mapping = sbi->node_inode->i_mapping;
1052 pgoff_t index, end;
1053 struct pagevec pvec;
1054 int step = ino ? 2 : 0;
1055 int nwritten = 0, wrote = 0;
1056
1057 pagevec_init(&pvec, 0);
1058
1059next_step:
1060 index = 0;
1061 end = LONG_MAX;
1062
1063 while (index <= end) {
1064 int i, nr_pages;
1065 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
1066 PAGECACHE_TAG_DIRTY,
1067 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1068 if (nr_pages == 0)
1069 break;
1070
1071 for (i = 0; i < nr_pages; i++) {
1072 struct page *page = pvec.pages[i];
1073
1074 /*
1075 * flushing sequence with step:
1076 * 0. indirect nodes
1077 * 1. dentry dnodes
1078 * 2. file dnodes
1079 */
1080 if (step == 0 && IS_DNODE(page))
1081 continue;
1082 if (step == 1 && (!IS_DNODE(page) ||
1083 is_cold_node(page)))
1084 continue;
1085 if (step == 2 && (!IS_DNODE(page) ||
1086 !is_cold_node(page)))
1087 continue;
1088
1089 /*
1090 * If an fsync mode,
1091 * we should not skip writing node pages.
1092 */
1093 if (ino && ino_of_node(page) == ino)
1094 lock_page(page);
1095 else if (!trylock_page(page))
1096 continue;
1097
1098 if (unlikely(page->mapping != mapping)) {
1099continue_unlock:
1100 unlock_page(page);
1101 continue;
1102 }
1103 if (ino && ino_of_node(page) != ino)
1104 goto continue_unlock;
1105
1106 if (!PageDirty(page)) {
1107 /* someone wrote it for us */
1108 goto continue_unlock;
1109 }
1110
1111 if (!clear_page_dirty_for_io(page))
1112 goto continue_unlock;
1113
1114 /* called by fsync() */
1115 if (ino && IS_DNODE(page)) {
1116 int mark = !is_checkpointed_node(sbi, ino);
1117 set_fsync_mark(page, 1);
1118 if (IS_INODE(page))
1119 set_dentry_mark(page, mark);
1120 nwritten++;
1121 } else {
1122 set_fsync_mark(page, 0);
1123 set_dentry_mark(page, 0);
1124 }
1125 mapping->a_ops->writepage(page, wbc);
1126 wrote++;
1127
1128 if (--wbc->nr_to_write == 0)
1129 break;
1130 }
1131 pagevec_release(&pvec);
1132 cond_resched();
1133
1134 if (wbc->nr_to_write == 0) {
1135 step = 2;
1136 break;
1137 }
1138 }
1139
1140 if (step < 2) {
1141 step++;
1142 goto next_step;
1143 }
1144
1145 if (wrote)
1146 f2fs_submit_bio(sbi, NODE, wbc->sync_mode == WB_SYNC_ALL);
1147
1148 return nwritten;
1149}
1150
1151static int f2fs_write_node_page(struct page *page,
1152 struct writeback_control *wbc)
1153{
1154 struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb);
1155 nid_t nid;
e05df3b1
JK
1156 block_t new_addr;
1157 struct node_info ni;
1158
87a9bd26
JK
1159 if (sbi->por_doing)
1160 goto redirty_out;
1161
e05df3b1
JK
1162 wait_on_page_writeback(page);
1163
e05df3b1
JK
1164 /* get old block addr of this node page */
1165 nid = nid_of_node(page);
e05df3b1
JK
1166 BUG_ON(page->index != nid);
1167
1168 get_node_info(sbi, nid, &ni);
1169
1170 /* This page is already truncated */
39936837
JK
1171 if (ni.blk_addr == NULL_ADDR) {
1172 dec_page_count(sbi, F2FS_DIRTY_NODES);
1173 unlock_page(page);
1174 return 0;
1175 }
e05df3b1 1176
87a9bd26
JK
1177 if (wbc->for_reclaim)
1178 goto redirty_out;
08d8058b 1179
39936837 1180 mutex_lock(&sbi->node_write);
e05df3b1 1181 set_page_writeback(page);
e05df3b1
JK
1182 write_node_page(sbi, page, nid, ni.blk_addr, &new_addr);
1183 set_node_addr(sbi, &ni, new_addr);
1184 dec_page_count(sbi, F2FS_DIRTY_NODES);
39936837 1185 mutex_unlock(&sbi->node_write);
e05df3b1
JK
1186 unlock_page(page);
1187 return 0;
87a9bd26
JK
1188
1189redirty_out:
1190 dec_page_count(sbi, F2FS_DIRTY_NODES);
1191 wbc->pages_skipped++;
1192 set_page_dirty(page);
1193 return AOP_WRITEPAGE_ACTIVATE;
e05df3b1
JK
1194}
1195
a7fdffbd
JK
1196/*
1197 * It is very important to gather dirty pages and write at once, so that we can
1198 * submit a big bio without interfering other data writes.
423e95cc 1199 * Be default, 512 pages (2MB) * 3 node types, is more reasonable.
a7fdffbd 1200 */
423e95cc 1201#define COLLECT_DIRTY_NODES 1536
e05df3b1
JK
1202static int f2fs_write_node_pages(struct address_space *mapping,
1203 struct writeback_control *wbc)
1204{
1205 struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
e05df3b1
JK
1206 long nr_to_write = wbc->nr_to_write;
1207
a7fdffbd 1208 /* First check balancing cached NAT entries */
81eb8d6e
JK
1209 if (try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK) ||
1210 excess_prefree_segs(sbi)) {
b7473754 1211 f2fs_sync_fs(sbi->sb, true);
e05df3b1
JK
1212 return 0;
1213 }
1214
a7fdffbd
JK
1215 /* collect a number of dirty node pages and write together */
1216 if (get_pages(sbi, F2FS_DIRTY_NODES) < COLLECT_DIRTY_NODES)
1217 return 0;
1218
e05df3b1 1219 /* if mounting is failed, skip writing node pages */
423e95cc 1220 wbc->nr_to_write = 3 * max_hw_blocks(sbi);
e05df3b1 1221 sync_node_pages(sbi, 0, wbc);
423e95cc
JK
1222 wbc->nr_to_write = nr_to_write - (3 * max_hw_blocks(sbi) -
1223 wbc->nr_to_write);
e05df3b1
JK
1224 return 0;
1225}
1226
1227static int f2fs_set_node_page_dirty(struct page *page)
1228{
1229 struct address_space *mapping = page->mapping;
1230 struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
1231
1232 SetPageUptodate(page);
1233 if (!PageDirty(page)) {
1234 __set_page_dirty_nobuffers(page);
1235 inc_page_count(sbi, F2FS_DIRTY_NODES);
1236 SetPagePrivate(page);
1237 return 1;
1238 }
1239 return 0;
1240}
1241
d47992f8
LC
1242static void f2fs_invalidate_node_page(struct page *page, unsigned int offset,
1243 unsigned int length)
e05df3b1
JK
1244{
1245 struct inode *inode = page->mapping->host;
1246 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
1247 if (PageDirty(page))
1248 dec_page_count(sbi, F2FS_DIRTY_NODES);
1249 ClearPagePrivate(page);
1250}
1251
1252static int f2fs_release_node_page(struct page *page, gfp_t wait)
1253{
1254 ClearPagePrivate(page);
c3850aa1 1255 return 1;
e05df3b1
JK
1256}
1257
0a8165d7 1258/*
e05df3b1
JK
1259 * Structure of the f2fs node operations
1260 */
1261const struct address_space_operations f2fs_node_aops = {
1262 .writepage = f2fs_write_node_page,
1263 .writepages = f2fs_write_node_pages,
1264 .set_page_dirty = f2fs_set_node_page_dirty,
1265 .invalidatepage = f2fs_invalidate_node_page,
1266 .releasepage = f2fs_release_node_page,
1267};
1268
1269static struct free_nid *__lookup_free_nid_list(nid_t n, struct list_head *head)
1270{
1271 struct list_head *this;
3aa770a9 1272 struct free_nid *i;
e05df3b1
JK
1273 list_for_each(this, head) {
1274 i = list_entry(this, struct free_nid, list);
1275 if (i->nid == n)
3aa770a9 1276 return i;
e05df3b1 1277 }
3aa770a9 1278 return NULL;
e05df3b1
JK
1279}
1280
1281static void __del_from_free_nid_list(struct free_nid *i)
1282{
1283 list_del(&i->list);
1284 kmem_cache_free(free_nid_slab, i);
1285}
1286
59bbd474 1287static int add_free_nid(struct f2fs_nm_info *nm_i, nid_t nid, bool build)
e05df3b1
JK
1288{
1289 struct free_nid *i;
59bbd474
JK
1290 struct nat_entry *ne;
1291 bool allocated = false;
e05df3b1
JK
1292
1293 if (nm_i->fcnt > 2 * MAX_FREE_NIDS)
23d38844 1294 return -1;
9198aceb
JK
1295
1296 /* 0 nid should not be used */
1297 if (nid == 0)
1298 return 0;
59bbd474 1299
7bd59381
GZ
1300 if (build) {
1301 /* do not add allocated nids */
1302 read_lock(&nm_i->nat_tree_lock);
1303 ne = __lookup_nat_cache(nm_i, nid);
1304 if (ne && nat_get_blkaddr(ne) != NULL_ADDR)
1305 allocated = true;
1306 read_unlock(&nm_i->nat_tree_lock);
1307 if (allocated)
1308 return 0;
e05df3b1 1309 }
7bd59381
GZ
1310
1311 i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS);
e05df3b1
JK
1312 i->nid = nid;
1313 i->state = NID_NEW;
1314
1315 spin_lock(&nm_i->free_nid_list_lock);
1316 if (__lookup_free_nid_list(nid, &nm_i->free_nid_list)) {
1317 spin_unlock(&nm_i->free_nid_list_lock);
1318 kmem_cache_free(free_nid_slab, i);
1319 return 0;
1320 }
1321 list_add_tail(&i->list, &nm_i->free_nid_list);
1322 nm_i->fcnt++;
1323 spin_unlock(&nm_i->free_nid_list_lock);
1324 return 1;
1325}
1326
1327static void remove_free_nid(struct f2fs_nm_info *nm_i, nid_t nid)
1328{
1329 struct free_nid *i;
1330 spin_lock(&nm_i->free_nid_list_lock);
1331 i = __lookup_free_nid_list(nid, &nm_i->free_nid_list);
1332 if (i && i->state == NID_NEW) {
1333 __del_from_free_nid_list(i);
1334 nm_i->fcnt--;
1335 }
1336 spin_unlock(&nm_i->free_nid_list_lock);
1337}
1338
8760952d 1339static void scan_nat_page(struct f2fs_nm_info *nm_i,
e05df3b1
JK
1340 struct page *nat_page, nid_t start_nid)
1341{
1342 struct f2fs_nat_block *nat_blk = page_address(nat_page);
1343 block_t blk_addr;
e05df3b1
JK
1344 int i;
1345
e05df3b1
JK
1346 i = start_nid % NAT_ENTRY_PER_BLOCK;
1347
1348 for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
23d38844 1349
04431c44
JK
1350 if (start_nid >= nm_i->max_nid)
1351 break;
23d38844
HL
1352
1353 blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
e05df3b1 1354 BUG_ON(blk_addr == NEW_ADDR);
23d38844 1355 if (blk_addr == NULL_ADDR) {
59bbd474 1356 if (add_free_nid(nm_i, start_nid, true) < 0)
23d38844
HL
1357 break;
1358 }
e05df3b1 1359 }
e05df3b1
JK
1360}
1361
1362static void build_free_nids(struct f2fs_sb_info *sbi)
1363{
e05df3b1
JK
1364 struct f2fs_nm_info *nm_i = NM_I(sbi);
1365 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1366 struct f2fs_summary_block *sum = curseg->sum_blk;
8760952d 1367 int i = 0;
55008d84 1368 nid_t nid = nm_i->next_scan_nid;
e05df3b1 1369
55008d84
JK
1370 /* Enough entries */
1371 if (nm_i->fcnt > NAT_ENTRY_PER_BLOCK)
1372 return;
e05df3b1 1373
55008d84 1374 /* readahead nat pages to be scanned */
e05df3b1
JK
1375 ra_nat_pages(sbi, nid);
1376
1377 while (1) {
1378 struct page *page = get_current_nat_page(sbi, nid);
1379
8760952d 1380 scan_nat_page(nm_i, page, nid);
e05df3b1
JK
1381 f2fs_put_page(page, 1);
1382
1383 nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
55008d84 1384 if (nid >= nm_i->max_nid)
e05df3b1 1385 nid = 0;
55008d84
JK
1386
1387 if (i++ == FREE_NID_PAGES)
e05df3b1
JK
1388 break;
1389 }
1390
55008d84
JK
1391 /* go to the next free nat pages to find free nids abundantly */
1392 nm_i->next_scan_nid = nid;
e05df3b1
JK
1393
1394 /* find free nids from current sum_pages */
1395 mutex_lock(&curseg->curseg_mutex);
1396 for (i = 0; i < nats_in_cursum(sum); i++) {
1397 block_t addr = le32_to_cpu(nat_in_journal(sum, i).block_addr);
1398 nid = le32_to_cpu(nid_in_journal(sum, i));
1399 if (addr == NULL_ADDR)
59bbd474 1400 add_free_nid(nm_i, nid, true);
e05df3b1
JK
1401 else
1402 remove_free_nid(nm_i, nid);
1403 }
1404 mutex_unlock(&curseg->curseg_mutex);
e05df3b1
JK
1405}
1406
1407/*
1408 * If this function returns success, caller can obtain a new nid
1409 * from second parameter of this function.
1410 * The returned nid could be used ino as well as nid when inode is created.
1411 */
1412bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
1413{
1414 struct f2fs_nm_info *nm_i = NM_I(sbi);
1415 struct free_nid *i = NULL;
1416 struct list_head *this;
1417retry:
55008d84
JK
1418 if (sbi->total_valid_node_count + 1 >= nm_i->max_nid)
1419 return false;
e05df3b1 1420
e05df3b1 1421 spin_lock(&nm_i->free_nid_list_lock);
e05df3b1 1422
55008d84
JK
1423 /* We should not use stale free nids created by build_free_nids */
1424 if (nm_i->fcnt && !sbi->on_build_free_nids) {
1425 BUG_ON(list_empty(&nm_i->free_nid_list));
1426 list_for_each(this, &nm_i->free_nid_list) {
1427 i = list_entry(this, struct free_nid, list);
1428 if (i->state == NID_NEW)
1429 break;
1430 }
e05df3b1 1431
55008d84
JK
1432 BUG_ON(i->state != NID_NEW);
1433 *nid = i->nid;
1434 i->state = NID_ALLOC;
1435 nm_i->fcnt--;
1436 spin_unlock(&nm_i->free_nid_list_lock);
1437 return true;
1438 }
e05df3b1 1439 spin_unlock(&nm_i->free_nid_list_lock);
55008d84
JK
1440
1441 /* Let's scan nat pages and its caches to get free nids */
1442 mutex_lock(&nm_i->build_lock);
aabe5136 1443 sbi->on_build_free_nids = true;
55008d84 1444 build_free_nids(sbi);
aabe5136 1445 sbi->on_build_free_nids = false;
55008d84
JK
1446 mutex_unlock(&nm_i->build_lock);
1447 goto retry;
e05df3b1
JK
1448}
1449
0a8165d7 1450/*
e05df3b1
JK
1451 * alloc_nid() should be called prior to this function.
1452 */
1453void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
1454{
1455 struct f2fs_nm_info *nm_i = NM_I(sbi);
1456 struct free_nid *i;
1457
1458 spin_lock(&nm_i->free_nid_list_lock);
1459 i = __lookup_free_nid_list(nid, &nm_i->free_nid_list);
49952fa1
JK
1460 BUG_ON(!i || i->state != NID_ALLOC);
1461 __del_from_free_nid_list(i);
e05df3b1
JK
1462 spin_unlock(&nm_i->free_nid_list_lock);
1463}
1464
0a8165d7 1465/*
e05df3b1
JK
1466 * alloc_nid() should be called prior to this function.
1467 */
1468void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
1469{
49952fa1
JK
1470 struct f2fs_nm_info *nm_i = NM_I(sbi);
1471 struct free_nid *i;
1472
65985d93
JK
1473 if (!nid)
1474 return;
1475
49952fa1
JK
1476 spin_lock(&nm_i->free_nid_list_lock);
1477 i = __lookup_free_nid_list(nid, &nm_i->free_nid_list);
1478 BUG_ON(!i || i->state != NID_ALLOC);
95630cba
HL
1479 if (nm_i->fcnt > 2 * MAX_FREE_NIDS) {
1480 __del_from_free_nid_list(i);
1481 } else {
1482 i->state = NID_NEW;
1483 nm_i->fcnt++;
1484 }
49952fa1 1485 spin_unlock(&nm_i->free_nid_list_lock);
e05df3b1
JK
1486}
1487
1488void recover_node_page(struct f2fs_sb_info *sbi, struct page *page,
1489 struct f2fs_summary *sum, struct node_info *ni,
1490 block_t new_blkaddr)
1491{
1492 rewrite_node_page(sbi, page, sum, ni->blk_addr, new_blkaddr);
1493 set_node_addr(sbi, ni, new_blkaddr);
1494 clear_node_page_dirty(page);
1495}
1496
1497int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
1498{
1499 struct address_space *mapping = sbi->node_inode->i_mapping;
1500 struct f2fs_node *src, *dst;
1501 nid_t ino = ino_of_node(page);
1502 struct node_info old_ni, new_ni;
1503 struct page *ipage;
1504
1505 ipage = grab_cache_page(mapping, ino);
1506 if (!ipage)
1507 return -ENOMEM;
1508
1509 /* Should not use this inode from free nid list */
1510 remove_free_nid(NM_I(sbi), ino);
1511
1512 get_node_info(sbi, ino, &old_ni);
1513 SetPageUptodate(ipage);
1514 fill_node_footer(ipage, ino, ino, 0, true);
1515
45590710
GZ
1516 src = F2FS_NODE(page);
1517 dst = F2FS_NODE(ipage);
e05df3b1
JK
1518
1519 memcpy(dst, src, (unsigned long)&src->i.i_ext - (unsigned long)&src->i);
1520 dst->i.i_size = 0;
25ca923b
JK
1521 dst->i.i_blocks = cpu_to_le64(1);
1522 dst->i.i_links = cpu_to_le32(1);
e05df3b1
JK
1523 dst->i.i_xattr_nid = 0;
1524
1525 new_ni = old_ni;
1526 new_ni.ino = ino;
1527
65e5cd0a
JK
1528 if (!inc_valid_node_count(sbi, NULL, 1))
1529 WARN_ON(1);
e05df3b1
JK
1530 set_node_addr(sbi, &new_ni, NEW_ADDR);
1531 inc_valid_inode_count(sbi);
e05df3b1
JK
1532 f2fs_put_page(ipage, 1);
1533 return 0;
1534}
1535
1536int restore_node_summary(struct f2fs_sb_info *sbi,
1537 unsigned int segno, struct f2fs_summary_block *sum)
1538{
1539 struct f2fs_node *rn;
1540 struct f2fs_summary *sum_entry;
1541 struct page *page;
1542 block_t addr;
1543 int i, last_offset;
1544
1545 /* alloc temporal page for read node */
1546 page = alloc_page(GFP_NOFS | __GFP_ZERO);
e27dae4d
DC
1547 if (!page)
1548 return -ENOMEM;
e05df3b1
JK
1549 lock_page(page);
1550
1551 /* scan the node segment */
1552 last_offset = sbi->blocks_per_seg;
1553 addr = START_BLOCK(sbi, segno);
1554 sum_entry = &sum->entries[0];
1555
1556 for (i = 0; i < last_offset; i++, sum_entry++) {
393ff91f
JK
1557 /*
1558 * In order to read next node page,
1559 * we must clear PageUptodate flag.
1560 */
1561 ClearPageUptodate(page);
1562
e05df3b1
JK
1563 if (f2fs_readpage(sbi, page, addr, READ_SYNC))
1564 goto out;
1565
393ff91f 1566 lock_page(page);
45590710 1567 rn = F2FS_NODE(page);
e05df3b1
JK
1568 sum_entry->nid = rn->footer.nid;
1569 sum_entry->version = 0;
1570 sum_entry->ofs_in_node = 0;
1571 addr++;
e05df3b1 1572 }
e05df3b1 1573 unlock_page(page);
393ff91f 1574out:
e05df3b1
JK
1575 __free_pages(page, 0);
1576 return 0;
1577}
1578
1579static bool flush_nats_in_journal(struct f2fs_sb_info *sbi)
1580{
1581 struct f2fs_nm_info *nm_i = NM_I(sbi);
1582 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1583 struct f2fs_summary_block *sum = curseg->sum_blk;
1584 int i;
1585
1586 mutex_lock(&curseg->curseg_mutex);
1587
1588 if (nats_in_cursum(sum) < NAT_JOURNAL_ENTRIES) {
1589 mutex_unlock(&curseg->curseg_mutex);
1590 return false;
1591 }
1592
1593 for (i = 0; i < nats_in_cursum(sum); i++) {
1594 struct nat_entry *ne;
1595 struct f2fs_nat_entry raw_ne;
1596 nid_t nid = le32_to_cpu(nid_in_journal(sum, i));
1597
1598 raw_ne = nat_in_journal(sum, i);
1599retry:
1600 write_lock(&nm_i->nat_tree_lock);
1601 ne = __lookup_nat_cache(nm_i, nid);
1602 if (ne) {
1603 __set_nat_cache_dirty(nm_i, ne);
1604 write_unlock(&nm_i->nat_tree_lock);
1605 continue;
1606 }
1607 ne = grab_nat_entry(nm_i, nid);
1608 if (!ne) {
1609 write_unlock(&nm_i->nat_tree_lock);
1610 goto retry;
1611 }
1612 nat_set_blkaddr(ne, le32_to_cpu(raw_ne.block_addr));
1613 nat_set_ino(ne, le32_to_cpu(raw_ne.ino));
1614 nat_set_version(ne, raw_ne.version);
1615 __set_nat_cache_dirty(nm_i, ne);
1616 write_unlock(&nm_i->nat_tree_lock);
1617 }
1618 update_nats_in_cursum(sum, -i);
1619 mutex_unlock(&curseg->curseg_mutex);
1620 return true;
1621}
1622
0a8165d7 1623/*
e05df3b1
JK
1624 * This function is called during the checkpointing process.
1625 */
1626void flush_nat_entries(struct f2fs_sb_info *sbi)
1627{
1628 struct f2fs_nm_info *nm_i = NM_I(sbi);
1629 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1630 struct f2fs_summary_block *sum = curseg->sum_blk;
1631 struct list_head *cur, *n;
1632 struct page *page = NULL;
1633 struct f2fs_nat_block *nat_blk = NULL;
1634 nid_t start_nid = 0, end_nid = 0;
1635 bool flushed;
1636
1637 flushed = flush_nats_in_journal(sbi);
1638
1639 if (!flushed)
1640 mutex_lock(&curseg->curseg_mutex);
1641
1642 /* 1) flush dirty nat caches */
1643 list_for_each_safe(cur, n, &nm_i->dirty_nat_entries) {
1644 struct nat_entry *ne;
1645 nid_t nid;
1646 struct f2fs_nat_entry raw_ne;
1647 int offset = -1;
2b50638d 1648 block_t new_blkaddr;
e05df3b1
JK
1649
1650 ne = list_entry(cur, struct nat_entry, list);
1651 nid = nat_get_nid(ne);
1652
1653 if (nat_get_blkaddr(ne) == NEW_ADDR)
1654 continue;
1655 if (flushed)
1656 goto to_nat_page;
1657
1658 /* if there is room for nat enries in curseg->sumpage */
1659 offset = lookup_journal_in_cursum(sum, NAT_JOURNAL, nid, 1);
1660 if (offset >= 0) {
1661 raw_ne = nat_in_journal(sum, offset);
e05df3b1
JK
1662 goto flush_now;
1663 }
1664to_nat_page:
1665 if (!page || (start_nid > nid || nid > end_nid)) {
1666 if (page) {
1667 f2fs_put_page(page, 1);
1668 page = NULL;
1669 }
1670 start_nid = START_NID(nid);
1671 end_nid = start_nid + NAT_ENTRY_PER_BLOCK - 1;
1672
1673 /*
1674 * get nat block with dirty flag, increased reference
1675 * count, mapped and lock
1676 */
1677 page = get_next_nat_page(sbi, start_nid);
1678 nat_blk = page_address(page);
1679 }
1680
1681 BUG_ON(!nat_blk);
1682 raw_ne = nat_blk->entries[nid - start_nid];
e05df3b1
JK
1683flush_now:
1684 new_blkaddr = nat_get_blkaddr(ne);
1685
1686 raw_ne.ino = cpu_to_le32(nat_get_ino(ne));
1687 raw_ne.block_addr = cpu_to_le32(new_blkaddr);
1688 raw_ne.version = nat_get_version(ne);
1689
1690 if (offset < 0) {
1691 nat_blk->entries[nid - start_nid] = raw_ne;
1692 } else {
1693 nat_in_journal(sum, offset) = raw_ne;
1694 nid_in_journal(sum, offset) = cpu_to_le32(nid);
1695 }
1696
fa372417 1697 if (nat_get_blkaddr(ne) == NULL_ADDR &&
59bbd474 1698 add_free_nid(NM_I(sbi), nid, false) <= 0) {
e05df3b1
JK
1699 write_lock(&nm_i->nat_tree_lock);
1700 __del_from_nat_cache(nm_i, ne);
1701 write_unlock(&nm_i->nat_tree_lock);
e05df3b1
JK
1702 } else {
1703 write_lock(&nm_i->nat_tree_lock);
1704 __clear_nat_cache_dirty(nm_i, ne);
1705 ne->checkpointed = true;
1706 write_unlock(&nm_i->nat_tree_lock);
1707 }
1708 }
1709 if (!flushed)
1710 mutex_unlock(&curseg->curseg_mutex);
1711 f2fs_put_page(page, 1);
1712
1713 /* 2) shrink nat caches if necessary */
1714 try_to_free_nats(sbi, nm_i->nat_cnt - NM_WOUT_THRESHOLD);
1715}
1716
1717static int init_node_manager(struct f2fs_sb_info *sbi)
1718{
1719 struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
1720 struct f2fs_nm_info *nm_i = NM_I(sbi);
1721 unsigned char *version_bitmap;
1722 unsigned int nat_segs, nat_blocks;
1723
1724 nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
1725
1726 /* segment_count_nat includes pair segment so divide to 2. */
1727 nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
1728 nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
1729 nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nat_blocks;
1730 nm_i->fcnt = 0;
1731 nm_i->nat_cnt = 0;
1732
1733 INIT_LIST_HEAD(&nm_i->free_nid_list);
1734 INIT_RADIX_TREE(&nm_i->nat_root, GFP_ATOMIC);
1735 INIT_LIST_HEAD(&nm_i->nat_entries);
1736 INIT_LIST_HEAD(&nm_i->dirty_nat_entries);
1737
1738 mutex_init(&nm_i->build_lock);
1739 spin_lock_init(&nm_i->free_nid_list_lock);
1740 rwlock_init(&nm_i->nat_tree_lock);
1741
e05df3b1 1742 nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
79b5793b 1743 nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
e05df3b1
JK
1744 version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
1745 if (!version_bitmap)
1746 return -EFAULT;
1747
79b5793b
AG
1748 nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
1749 GFP_KERNEL);
1750 if (!nm_i->nat_bitmap)
1751 return -ENOMEM;
e05df3b1
JK
1752 return 0;
1753}
1754
1755int build_node_manager(struct f2fs_sb_info *sbi)
1756{
1757 int err;
1758
1759 sbi->nm_info = kzalloc(sizeof(struct f2fs_nm_info), GFP_KERNEL);
1760 if (!sbi->nm_info)
1761 return -ENOMEM;
1762
1763 err = init_node_manager(sbi);
1764 if (err)
1765 return err;
1766
1767 build_free_nids(sbi);
1768 return 0;
1769}
1770
1771void destroy_node_manager(struct f2fs_sb_info *sbi)
1772{
1773 struct f2fs_nm_info *nm_i = NM_I(sbi);
1774 struct free_nid *i, *next_i;
1775 struct nat_entry *natvec[NATVEC_SIZE];
1776 nid_t nid = 0;
1777 unsigned int found;
1778
1779 if (!nm_i)
1780 return;
1781
1782 /* destroy free nid list */
1783 spin_lock(&nm_i->free_nid_list_lock);
1784 list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
1785 BUG_ON(i->state == NID_ALLOC);
1786 __del_from_free_nid_list(i);
1787 nm_i->fcnt--;
1788 }
1789 BUG_ON(nm_i->fcnt);
1790 spin_unlock(&nm_i->free_nid_list_lock);
1791
1792 /* destroy nat cache */
1793 write_lock(&nm_i->nat_tree_lock);
1794 while ((found = __gang_lookup_nat_cache(nm_i,
1795 nid, NATVEC_SIZE, natvec))) {
1796 unsigned idx;
1797 for (idx = 0; idx < found; idx++) {
1798 struct nat_entry *e = natvec[idx];
1799 nid = nat_get_nid(e) + 1;
1800 __del_from_nat_cache(nm_i, e);
1801 }
1802 }
1803 BUG_ON(nm_i->nat_cnt);
1804 write_unlock(&nm_i->nat_tree_lock);
1805
1806 kfree(nm_i->nat_bitmap);
1807 sbi->nm_info = NULL;
1808 kfree(nm_i);
1809}
1810
6e6093a8 1811int __init create_node_manager_caches(void)
e05df3b1
JK
1812{
1813 nat_entry_slab = f2fs_kmem_cache_create("nat_entry",
1814 sizeof(struct nat_entry), NULL);
1815 if (!nat_entry_slab)
1816 return -ENOMEM;
1817
1818 free_nid_slab = f2fs_kmem_cache_create("free_nid",
1819 sizeof(struct free_nid), NULL);
1820 if (!free_nid_slab) {
1821 kmem_cache_destroy(nat_entry_slab);
1822 return -ENOMEM;
1823 }
1824 return 0;
1825}
1826
1827void destroy_node_manager_caches(void)
1828{
1829 kmem_cache_destroy(free_nid_slab);
1830 kmem_cache_destroy(nat_entry_slab);
1831}