f2fs: fix iget/iput of dir during recovery
[linux-2.6-block.git] / fs / f2fs / node.c
CommitLineData
0a8165d7 1/*
e05df3b1
JK
2 * fs/f2fs/node.c
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11#include <linux/fs.h>
12#include <linux/f2fs_fs.h>
13#include <linux/mpage.h>
14#include <linux/backing-dev.h>
15#include <linux/blkdev.h>
16#include <linux/pagevec.h>
17#include <linux/swap.h>
18
19#include "f2fs.h"
20#include "node.h"
21#include "segment.h"
51dd6249 22#include <trace/events/f2fs.h>
e05df3b1
JK
23
24static struct kmem_cache *nat_entry_slab;
25static struct kmem_cache *free_nid_slab;
26
27static void clear_node_page_dirty(struct page *page)
28{
29 struct address_space *mapping = page->mapping;
30 struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
31 unsigned int long flags;
32
33 if (PageDirty(page)) {
34 spin_lock_irqsave(&mapping->tree_lock, flags);
35 radix_tree_tag_clear(&mapping->page_tree,
36 page_index(page),
37 PAGECACHE_TAG_DIRTY);
38 spin_unlock_irqrestore(&mapping->tree_lock, flags);
39
40 clear_page_dirty_for_io(page);
41 dec_page_count(sbi, F2FS_DIRTY_NODES);
42 }
43 ClearPageUptodate(page);
44}
45
46static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
47{
48 pgoff_t index = current_nat_addr(sbi, nid);
49 return get_meta_page(sbi, index);
50}
51
52static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
53{
54 struct page *src_page;
55 struct page *dst_page;
56 pgoff_t src_off;
57 pgoff_t dst_off;
58 void *src_addr;
59 void *dst_addr;
60 struct f2fs_nm_info *nm_i = NM_I(sbi);
61
62 src_off = current_nat_addr(sbi, nid);
63 dst_off = next_nat_addr(sbi, src_off);
64
65 /* get current nat block page with lock */
66 src_page = get_meta_page(sbi, src_off);
67
68 /* Dirty src_page means that it is already the new target NAT page. */
69 if (PageDirty(src_page))
70 return src_page;
71
72 dst_page = grab_meta_page(sbi, dst_off);
73
74 src_addr = page_address(src_page);
75 dst_addr = page_address(dst_page);
76 memcpy(dst_addr, src_addr, PAGE_CACHE_SIZE);
77 set_page_dirty(dst_page);
78 f2fs_put_page(src_page, 1);
79
80 set_to_next_nat(nm_i, nid);
81
82 return dst_page;
83}
84
0a8165d7 85/*
e05df3b1
JK
86 * Readahead NAT pages
87 */
88static void ra_nat_pages(struct f2fs_sb_info *sbi, int nid)
89{
90 struct address_space *mapping = sbi->meta_inode->i_mapping;
91 struct f2fs_nm_info *nm_i = NM_I(sbi);
c718379b 92 struct blk_plug plug;
e05df3b1
JK
93 struct page *page;
94 pgoff_t index;
95 int i;
96
c718379b
JK
97 blk_start_plug(&plug);
98
e05df3b1
JK
99 for (i = 0; i < FREE_NID_PAGES; i++, nid += NAT_ENTRY_PER_BLOCK) {
100 if (nid >= nm_i->max_nid)
101 nid = 0;
102 index = current_nat_addr(sbi, nid);
103
104 page = grab_cache_page(mapping, index);
105 if (!page)
106 continue;
393ff91f 107 if (PageUptodate(page)) {
e05df3b1
JK
108 f2fs_put_page(page, 1);
109 continue;
110 }
393ff91f
JK
111 if (f2fs_readpage(sbi, page, index, READ))
112 continue;
113
369a708c 114 f2fs_put_page(page, 0);
e05df3b1 115 }
c718379b 116 blk_finish_plug(&plug);
e05df3b1
JK
117}
118
119static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
120{
121 return radix_tree_lookup(&nm_i->nat_root, n);
122}
123
124static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
125 nid_t start, unsigned int nr, struct nat_entry **ep)
126{
127 return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
128}
129
130static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
131{
132 list_del(&e->list);
133 radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
134 nm_i->nat_cnt--;
135 kmem_cache_free(nat_entry_slab, e);
136}
137
138int is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
139{
140 struct f2fs_nm_info *nm_i = NM_I(sbi);
141 struct nat_entry *e;
142 int is_cp = 1;
143
144 read_lock(&nm_i->nat_tree_lock);
145 e = __lookup_nat_cache(nm_i, nid);
146 if (e && !e->checkpointed)
147 is_cp = 0;
148 read_unlock(&nm_i->nat_tree_lock);
149 return is_cp;
150}
151
152static struct nat_entry *grab_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid)
153{
154 struct nat_entry *new;
155
156 new = kmem_cache_alloc(nat_entry_slab, GFP_ATOMIC);
157 if (!new)
158 return NULL;
159 if (radix_tree_insert(&nm_i->nat_root, nid, new)) {
160 kmem_cache_free(nat_entry_slab, new);
161 return NULL;
162 }
163 memset(new, 0, sizeof(struct nat_entry));
164 nat_set_nid(new, nid);
165 list_add_tail(&new->list, &nm_i->nat_entries);
166 nm_i->nat_cnt++;
167 return new;
168}
169
170static void cache_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid,
171 struct f2fs_nat_entry *ne)
172{
173 struct nat_entry *e;
174retry:
175 write_lock(&nm_i->nat_tree_lock);
176 e = __lookup_nat_cache(nm_i, nid);
177 if (!e) {
178 e = grab_nat_entry(nm_i, nid);
179 if (!e) {
180 write_unlock(&nm_i->nat_tree_lock);
181 goto retry;
182 }
183 nat_set_blkaddr(e, le32_to_cpu(ne->block_addr));
184 nat_set_ino(e, le32_to_cpu(ne->ino));
185 nat_set_version(e, ne->version);
186 e->checkpointed = true;
187 }
188 write_unlock(&nm_i->nat_tree_lock);
189}
190
191static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
192 block_t new_blkaddr)
193{
194 struct f2fs_nm_info *nm_i = NM_I(sbi);
195 struct nat_entry *e;
196retry:
197 write_lock(&nm_i->nat_tree_lock);
198 e = __lookup_nat_cache(nm_i, ni->nid);
199 if (!e) {
200 e = grab_nat_entry(nm_i, ni->nid);
201 if (!e) {
202 write_unlock(&nm_i->nat_tree_lock);
203 goto retry;
204 }
205 e->ni = *ni;
206 e->checkpointed = true;
207 BUG_ON(ni->blk_addr == NEW_ADDR);
208 } else if (new_blkaddr == NEW_ADDR) {
209 /*
210 * when nid is reallocated,
211 * previous nat entry can be remained in nat cache.
212 * So, reinitialize it with new information.
213 */
214 e->ni = *ni;
215 BUG_ON(ni->blk_addr != NULL_ADDR);
216 }
217
218 if (new_blkaddr == NEW_ADDR)
219 e->checkpointed = false;
220
221 /* sanity check */
222 BUG_ON(nat_get_blkaddr(e) != ni->blk_addr);
223 BUG_ON(nat_get_blkaddr(e) == NULL_ADDR &&
224 new_blkaddr == NULL_ADDR);
225 BUG_ON(nat_get_blkaddr(e) == NEW_ADDR &&
226 new_blkaddr == NEW_ADDR);
227 BUG_ON(nat_get_blkaddr(e) != NEW_ADDR &&
228 nat_get_blkaddr(e) != NULL_ADDR &&
229 new_blkaddr == NEW_ADDR);
230
231 /* increament version no as node is removed */
232 if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
233 unsigned char version = nat_get_version(e);
234 nat_set_version(e, inc_node_version(version));
235 }
236
237 /* change address */
238 nat_set_blkaddr(e, new_blkaddr);
239 __set_nat_cache_dirty(nm_i, e);
240 write_unlock(&nm_i->nat_tree_lock);
241}
242
243static int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
244{
245 struct f2fs_nm_info *nm_i = NM_I(sbi);
246
6cac3759 247 if (nm_i->nat_cnt <= NM_WOUT_THRESHOLD)
e05df3b1
JK
248 return 0;
249
250 write_lock(&nm_i->nat_tree_lock);
251 while (nr_shrink && !list_empty(&nm_i->nat_entries)) {
252 struct nat_entry *ne;
253 ne = list_first_entry(&nm_i->nat_entries,
254 struct nat_entry, list);
255 __del_from_nat_cache(nm_i, ne);
256 nr_shrink--;
257 }
258 write_unlock(&nm_i->nat_tree_lock);
259 return nr_shrink;
260}
261
0a8165d7 262/*
e05df3b1
JK
263 * This function returns always success
264 */
265void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni)
266{
267 struct f2fs_nm_info *nm_i = NM_I(sbi);
268 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
269 struct f2fs_summary_block *sum = curseg->sum_blk;
270 nid_t start_nid = START_NID(nid);
271 struct f2fs_nat_block *nat_blk;
272 struct page *page = NULL;
273 struct f2fs_nat_entry ne;
274 struct nat_entry *e;
275 int i;
276
be4124f8 277 memset(&ne, 0, sizeof(struct f2fs_nat_entry));
e05df3b1
JK
278 ni->nid = nid;
279
280 /* Check nat cache */
281 read_lock(&nm_i->nat_tree_lock);
282 e = __lookup_nat_cache(nm_i, nid);
283 if (e) {
284 ni->ino = nat_get_ino(e);
285 ni->blk_addr = nat_get_blkaddr(e);
286 ni->version = nat_get_version(e);
287 }
288 read_unlock(&nm_i->nat_tree_lock);
289 if (e)
290 return;
291
292 /* Check current segment summary */
293 mutex_lock(&curseg->curseg_mutex);
294 i = lookup_journal_in_cursum(sum, NAT_JOURNAL, nid, 0);
295 if (i >= 0) {
296 ne = nat_in_journal(sum, i);
297 node_info_from_raw_nat(ni, &ne);
298 }
299 mutex_unlock(&curseg->curseg_mutex);
300 if (i >= 0)
301 goto cache;
302
303 /* Fill node_info from nat page */
304 page = get_current_nat_page(sbi, start_nid);
305 nat_blk = (struct f2fs_nat_block *)page_address(page);
306 ne = nat_blk->entries[nid - start_nid];
307 node_info_from_raw_nat(ni, &ne);
308 f2fs_put_page(page, 1);
309cache:
310 /* cache nat entry */
311 cache_nat_entry(NM_I(sbi), nid, &ne);
312}
313
0a8165d7 314/*
e05df3b1
JK
315 * The maximum depth is four.
316 * Offset[0] will have raw inode offset.
317 */
318static int get_node_path(long block, int offset[4], unsigned int noffset[4])
319{
320 const long direct_index = ADDRS_PER_INODE;
321 const long direct_blks = ADDRS_PER_BLOCK;
322 const long dptrs_per_blk = NIDS_PER_BLOCK;
323 const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
324 const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
325 int n = 0;
326 int level = 0;
327
328 noffset[0] = 0;
329
330 if (block < direct_index) {
25c0a6e5 331 offset[n] = block;
e05df3b1
JK
332 goto got;
333 }
334 block -= direct_index;
335 if (block < direct_blks) {
336 offset[n++] = NODE_DIR1_BLOCK;
337 noffset[n] = 1;
25c0a6e5 338 offset[n] = block;
e05df3b1
JK
339 level = 1;
340 goto got;
341 }
342 block -= direct_blks;
343 if (block < direct_blks) {
344 offset[n++] = NODE_DIR2_BLOCK;
345 noffset[n] = 2;
25c0a6e5 346 offset[n] = block;
e05df3b1
JK
347 level = 1;
348 goto got;
349 }
350 block -= direct_blks;
351 if (block < indirect_blks) {
352 offset[n++] = NODE_IND1_BLOCK;
353 noffset[n] = 3;
354 offset[n++] = block / direct_blks;
355 noffset[n] = 4 + offset[n - 1];
25c0a6e5 356 offset[n] = block % direct_blks;
e05df3b1
JK
357 level = 2;
358 goto got;
359 }
360 block -= indirect_blks;
361 if (block < indirect_blks) {
362 offset[n++] = NODE_IND2_BLOCK;
363 noffset[n] = 4 + dptrs_per_blk;
364 offset[n++] = block / direct_blks;
365 noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
25c0a6e5 366 offset[n] = block % direct_blks;
e05df3b1
JK
367 level = 2;
368 goto got;
369 }
370 block -= indirect_blks;
371 if (block < dindirect_blks) {
372 offset[n++] = NODE_DIND_BLOCK;
373 noffset[n] = 5 + (dptrs_per_blk * 2);
374 offset[n++] = block / indirect_blks;
375 noffset[n] = 6 + (dptrs_per_blk * 2) +
376 offset[n - 1] * (dptrs_per_blk + 1);
377 offset[n++] = (block / direct_blks) % dptrs_per_blk;
378 noffset[n] = 7 + (dptrs_per_blk * 2) +
379 offset[n - 2] * (dptrs_per_blk + 1) +
380 offset[n - 1];
25c0a6e5 381 offset[n] = block % direct_blks;
e05df3b1
JK
382 level = 3;
383 goto got;
384 } else {
385 BUG();
386 }
387got:
388 return level;
389}
390
391/*
392 * Caller should call f2fs_put_dnode(dn).
39936837
JK
393 * Also, it should grab and release a mutex by calling mutex_lock_op() and
394 * mutex_unlock_op() only if ro is not set RDONLY_NODE.
395 * In the case of RDONLY_NODE, we don't need to care about mutex.
e05df3b1 396 */
266e97a8 397int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
e05df3b1
JK
398{
399 struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
400 struct page *npage[4];
401 struct page *parent;
402 int offset[4];
403 unsigned int noffset[4];
404 nid_t nids[4];
405 int level, i;
406 int err = 0;
407
408 level = get_node_path(index, offset, noffset);
409
410 nids[0] = dn->inode->i_ino;
1646cfac 411 npage[0] = dn->inode_page;
e05df3b1 412
1646cfac
JK
413 if (!npage[0]) {
414 npage[0] = get_node_page(sbi, nids[0]);
415 if (IS_ERR(npage[0]))
416 return PTR_ERR(npage[0]);
417 }
e05df3b1 418 parent = npage[0];
52c2db3f
CL
419 if (level != 0)
420 nids[1] = get_nid(parent, offset[0], true);
e05df3b1
JK
421 dn->inode_page = npage[0];
422 dn->inode_page_locked = true;
423
424 /* get indirect or direct nodes */
425 for (i = 1; i <= level; i++) {
426 bool done = false;
427
266e97a8 428 if (!nids[i] && mode == ALLOC_NODE) {
e05df3b1
JK
429 /* alloc new node */
430 if (!alloc_nid(sbi, &(nids[i]))) {
e05df3b1
JK
431 err = -ENOSPC;
432 goto release_pages;
433 }
434
435 dn->nid = nids[i];
436 npage[i] = new_node_page(dn, noffset[i]);
437 if (IS_ERR(npage[i])) {
438 alloc_nid_failed(sbi, nids[i]);
e05df3b1
JK
439 err = PTR_ERR(npage[i]);
440 goto release_pages;
441 }
442
443 set_nid(parent, offset[i - 1], nids[i], i == 1);
444 alloc_nid_done(sbi, nids[i]);
e05df3b1 445 done = true;
266e97a8 446 } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
e05df3b1
JK
447 npage[i] = get_node_page_ra(parent, offset[i - 1]);
448 if (IS_ERR(npage[i])) {
449 err = PTR_ERR(npage[i]);
450 goto release_pages;
451 }
452 done = true;
453 }
454 if (i == 1) {
455 dn->inode_page_locked = false;
456 unlock_page(parent);
457 } else {
458 f2fs_put_page(parent, 1);
459 }
460
461 if (!done) {
462 npage[i] = get_node_page(sbi, nids[i]);
463 if (IS_ERR(npage[i])) {
464 err = PTR_ERR(npage[i]);
465 f2fs_put_page(npage[0], 0);
466 goto release_out;
467 }
468 }
469 if (i < level) {
470 parent = npage[i];
471 nids[i + 1] = get_nid(parent, offset[i], false);
472 }
473 }
474 dn->nid = nids[level];
475 dn->ofs_in_node = offset[level];
476 dn->node_page = npage[level];
477 dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node);
478 return 0;
479
480release_pages:
481 f2fs_put_page(parent, 1);
482 if (i > 1)
483 f2fs_put_page(npage[0], 0);
484release_out:
485 dn->inode_page = NULL;
486 dn->node_page = NULL;
487 return err;
488}
489
490static void truncate_node(struct dnode_of_data *dn)
491{
492 struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
493 struct node_info ni;
494
495 get_node_info(sbi, dn->nid, &ni);
71e9fec5
JK
496 if (dn->inode->i_blocks == 0) {
497 BUG_ON(ni.blk_addr != NULL_ADDR);
498 goto invalidate;
499 }
e05df3b1
JK
500 BUG_ON(ni.blk_addr == NULL_ADDR);
501
e05df3b1 502 /* Deallocate node address */
71e9fec5 503 invalidate_blocks(sbi, ni.blk_addr);
e05df3b1
JK
504 dec_valid_node_count(sbi, dn->inode, 1);
505 set_node_addr(sbi, &ni, NULL_ADDR);
506
507 if (dn->nid == dn->inode->i_ino) {
508 remove_orphan_inode(sbi, dn->nid);
509 dec_valid_inode_count(sbi);
510 } else {
511 sync_inode_page(dn);
512 }
71e9fec5 513invalidate:
e05df3b1
JK
514 clear_node_page_dirty(dn->node_page);
515 F2FS_SET_SB_DIRT(sbi);
516
517 f2fs_put_page(dn->node_page, 1);
518 dn->node_page = NULL;
51dd6249 519 trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
e05df3b1
JK
520}
521
522static int truncate_dnode(struct dnode_of_data *dn)
523{
524 struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
525 struct page *page;
526
527 if (dn->nid == 0)
528 return 1;
529
530 /* get direct node */
531 page = get_node_page(sbi, dn->nid);
532 if (IS_ERR(page) && PTR_ERR(page) == -ENOENT)
533 return 1;
534 else if (IS_ERR(page))
535 return PTR_ERR(page);
536
537 /* Make dnode_of_data for parameter */
538 dn->node_page = page;
539 dn->ofs_in_node = 0;
540 truncate_data_blocks(dn);
541 truncate_node(dn);
542 return 1;
543}
544
545static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
546 int ofs, int depth)
547{
548 struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
549 struct dnode_of_data rdn = *dn;
550 struct page *page;
551 struct f2fs_node *rn;
552 nid_t child_nid;
553 unsigned int child_nofs;
554 int freed = 0;
555 int i, ret;
556
557 if (dn->nid == 0)
558 return NIDS_PER_BLOCK + 1;
559
51dd6249
NJ
560 trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
561
e05df3b1 562 page = get_node_page(sbi, dn->nid);
51dd6249
NJ
563 if (IS_ERR(page)) {
564 trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
e05df3b1 565 return PTR_ERR(page);
51dd6249 566 }
e05df3b1
JK
567
568 rn = (struct f2fs_node *)page_address(page);
569 if (depth < 3) {
570 for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
571 child_nid = le32_to_cpu(rn->in.nid[i]);
572 if (child_nid == 0)
573 continue;
574 rdn.nid = child_nid;
575 ret = truncate_dnode(&rdn);
576 if (ret < 0)
577 goto out_err;
578 set_nid(page, i, 0, false);
579 }
580 } else {
581 child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
582 for (i = ofs; i < NIDS_PER_BLOCK; i++) {
583 child_nid = le32_to_cpu(rn->in.nid[i]);
584 if (child_nid == 0) {
585 child_nofs += NIDS_PER_BLOCK + 1;
586 continue;
587 }
588 rdn.nid = child_nid;
589 ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
590 if (ret == (NIDS_PER_BLOCK + 1)) {
591 set_nid(page, i, 0, false);
592 child_nofs += ret;
593 } else if (ret < 0 && ret != -ENOENT) {
594 goto out_err;
595 }
596 }
597 freed = child_nofs;
598 }
599
600 if (!ofs) {
601 /* remove current indirect node */
602 dn->node_page = page;
603 truncate_node(dn);
604 freed++;
605 } else {
606 f2fs_put_page(page, 1);
607 }
51dd6249 608 trace_f2fs_truncate_nodes_exit(dn->inode, freed);
e05df3b1
JK
609 return freed;
610
611out_err:
612 f2fs_put_page(page, 1);
51dd6249 613 trace_f2fs_truncate_nodes_exit(dn->inode, ret);
e05df3b1
JK
614 return ret;
615}
616
617static int truncate_partial_nodes(struct dnode_of_data *dn,
618 struct f2fs_inode *ri, int *offset, int depth)
619{
620 struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
621 struct page *pages[2];
622 nid_t nid[3];
623 nid_t child_nid;
624 int err = 0;
625 int i;
626 int idx = depth - 2;
627
628 nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
629 if (!nid[0])
630 return 0;
631
632 /* get indirect nodes in the path */
633 for (i = 0; i < depth - 1; i++) {
634 /* refernece count'll be increased */
635 pages[i] = get_node_page(sbi, nid[i]);
636 if (IS_ERR(pages[i])) {
637 depth = i + 1;
638 err = PTR_ERR(pages[i]);
639 goto fail;
640 }
641 nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
642 }
643
644 /* free direct nodes linked to a partial indirect node */
645 for (i = offset[depth - 1]; i < NIDS_PER_BLOCK; i++) {
646 child_nid = get_nid(pages[idx], i, false);
647 if (!child_nid)
648 continue;
649 dn->nid = child_nid;
650 err = truncate_dnode(dn);
651 if (err < 0)
652 goto fail;
653 set_nid(pages[idx], i, 0, false);
654 }
655
656 if (offset[depth - 1] == 0) {
657 dn->node_page = pages[idx];
658 dn->nid = nid[idx];
659 truncate_node(dn);
660 } else {
661 f2fs_put_page(pages[idx], 1);
662 }
663 offset[idx]++;
664 offset[depth - 1] = 0;
665fail:
666 for (i = depth - 3; i >= 0; i--)
667 f2fs_put_page(pages[i], 1);
51dd6249
NJ
668
669 trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
670
e05df3b1
JK
671 return err;
672}
673
0a8165d7 674/*
e05df3b1
JK
675 * All the block addresses of data and nodes should be nullified.
676 */
677int truncate_inode_blocks(struct inode *inode, pgoff_t from)
678{
679 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
afcb7ca0 680 struct address_space *node_mapping = sbi->node_inode->i_mapping;
e05df3b1
JK
681 int err = 0, cont = 1;
682 int level, offset[4], noffset[4];
7dd690c8 683 unsigned int nofs = 0;
e05df3b1
JK
684 struct f2fs_node *rn;
685 struct dnode_of_data dn;
686 struct page *page;
687
51dd6249
NJ
688 trace_f2fs_truncate_inode_blocks_enter(inode, from);
689
e05df3b1 690 level = get_node_path(from, offset, noffset);
afcb7ca0 691restart:
e05df3b1 692 page = get_node_page(sbi, inode->i_ino);
51dd6249
NJ
693 if (IS_ERR(page)) {
694 trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
e05df3b1 695 return PTR_ERR(page);
51dd6249 696 }
e05df3b1
JK
697
698 set_new_dnode(&dn, inode, page, NULL, 0);
699 unlock_page(page);
700
701 rn = page_address(page);
702 switch (level) {
703 case 0:
704 case 1:
705 nofs = noffset[1];
706 break;
707 case 2:
708 nofs = noffset[1];
709 if (!offset[level - 1])
710 goto skip_partial;
711 err = truncate_partial_nodes(&dn, &rn->i, offset, level);
712 if (err < 0 && err != -ENOENT)
713 goto fail;
714 nofs += 1 + NIDS_PER_BLOCK;
715 break;
716 case 3:
717 nofs = 5 + 2 * NIDS_PER_BLOCK;
718 if (!offset[level - 1])
719 goto skip_partial;
720 err = truncate_partial_nodes(&dn, &rn->i, offset, level);
721 if (err < 0 && err != -ENOENT)
722 goto fail;
723 break;
724 default:
725 BUG();
726 }
727
728skip_partial:
729 while (cont) {
730 dn.nid = le32_to_cpu(rn->i.i_nid[offset[0] - NODE_DIR1_BLOCK]);
731 switch (offset[0]) {
732 case NODE_DIR1_BLOCK:
733 case NODE_DIR2_BLOCK:
734 err = truncate_dnode(&dn);
735 break;
736
737 case NODE_IND1_BLOCK:
738 case NODE_IND2_BLOCK:
739 err = truncate_nodes(&dn, nofs, offset[1], 2);
740 break;
741
742 case NODE_DIND_BLOCK:
743 err = truncate_nodes(&dn, nofs, offset[1], 3);
744 cont = 0;
745 break;
746
747 default:
748 BUG();
749 }
750 if (err < 0 && err != -ENOENT)
751 goto fail;
752 if (offset[1] == 0 &&
753 rn->i.i_nid[offset[0] - NODE_DIR1_BLOCK]) {
754 lock_page(page);
afcb7ca0
JK
755 if (page->mapping != node_mapping) {
756 f2fs_put_page(page, 1);
757 goto restart;
758 }
e05df3b1
JK
759 wait_on_page_writeback(page);
760 rn->i.i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
761 set_page_dirty(page);
762 unlock_page(page);
763 }
764 offset[1] = 0;
765 offset[0]++;
766 nofs += err;
767 }
768fail:
769 f2fs_put_page(page, 0);
51dd6249 770 trace_f2fs_truncate_inode_blocks_exit(inode, err);
e05df3b1
JK
771 return err > 0 ? 0 : err;
772}
773
39936837
JK
774/*
775 * Caller should grab and release a mutex by calling mutex_lock_op() and
776 * mutex_unlock_op().
777 */
e05df3b1
JK
778int remove_inode_page(struct inode *inode)
779{
780 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
781 struct page *page;
782 nid_t ino = inode->i_ino;
783 struct dnode_of_data dn;
784
e05df3b1 785 page = get_node_page(sbi, ino);
39936837 786 if (IS_ERR(page))
e05df3b1 787 return PTR_ERR(page);
e05df3b1
JK
788
789 if (F2FS_I(inode)->i_xattr_nid) {
790 nid_t nid = F2FS_I(inode)->i_xattr_nid;
791 struct page *npage = get_node_page(sbi, nid);
792
39936837 793 if (IS_ERR(npage))
e05df3b1 794 return PTR_ERR(npage);
e05df3b1
JK
795
796 F2FS_I(inode)->i_xattr_nid = 0;
797 set_new_dnode(&dn, inode, page, npage, nid);
798 dn.inode_page_locked = 1;
799 truncate_node(&dn);
800 }
e05df3b1 801
71e9fec5
JK
802 /* 0 is possible, after f2fs_new_inode() is failed */
803 BUG_ON(inode->i_blocks != 0 && inode->i_blocks != 1);
804 set_new_dnode(&dn, inode, page, page, ino);
805 truncate_node(&dn);
e05df3b1
JK
806 return 0;
807}
808
44a83ff6 809struct page *new_inode_page(struct inode *inode, const struct qstr *name)
e05df3b1 810{
e05df3b1
JK
811 struct dnode_of_data dn;
812
813 /* allocate inode page for new inode */
814 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
44a83ff6
JK
815
816 /* caller should f2fs_put_page(page, 1); */
817 return new_node_page(&dn, 0);
e05df3b1
JK
818}
819
820struct page *new_node_page(struct dnode_of_data *dn, unsigned int ofs)
821{
822 struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
823 struct address_space *mapping = sbi->node_inode->i_mapping;
824 struct node_info old_ni, new_ni;
825 struct page *page;
826 int err;
827
828 if (is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC))
829 return ERR_PTR(-EPERM);
830
831 page = grab_cache_page(mapping, dn->nid);
832 if (!page)
833 return ERR_PTR(-ENOMEM);
834
835 get_node_info(sbi, dn->nid, &old_ni);
836
837 SetPageUptodate(page);
838 fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
839
840 /* Reinitialize old_ni with new node page */
841 BUG_ON(old_ni.blk_addr != NULL_ADDR);
842 new_ni = old_ni;
843 new_ni.ino = dn->inode->i_ino;
844
845 if (!inc_valid_node_count(sbi, dn->inode, 1)) {
846 err = -ENOSPC;
847 goto fail;
848 }
849 set_node_addr(sbi, &new_ni, NEW_ADDR);
398b1ac5 850 set_cold_node(dn->inode, page);
e05df3b1
JK
851
852 dn->node_page = page;
853 sync_inode_page(dn);
854 set_page_dirty(page);
e05df3b1
JK
855 if (ofs == 0)
856 inc_valid_inode_count(sbi);
857
858 return page;
859
860fail:
71e9fec5 861 clear_node_page_dirty(page);
e05df3b1
JK
862 f2fs_put_page(page, 1);
863 return ERR_PTR(err);
864}
865
56ae674c
JK
866/*
867 * Caller should do after getting the following values.
868 * 0: f2fs_put_page(page, 0)
869 * LOCKED_PAGE: f2fs_put_page(page, 1)
870 * error: nothing
871 */
e05df3b1
JK
872static int read_node_page(struct page *page, int type)
873{
874 struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb);
875 struct node_info ni;
876
877 get_node_info(sbi, page->index, &ni);
878
393ff91f
JK
879 if (ni.blk_addr == NULL_ADDR) {
880 f2fs_put_page(page, 1);
e05df3b1 881 return -ENOENT;
393ff91f
JK
882 }
883
56ae674c
JK
884 if (PageUptodate(page))
885 return LOCKED_PAGE;
393ff91f 886
e05df3b1
JK
887 return f2fs_readpage(sbi, page, ni.blk_addr, type);
888}
889
0a8165d7 890/*
e05df3b1
JK
891 * Readahead a node page
892 */
893void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
894{
895 struct address_space *mapping = sbi->node_inode->i_mapping;
896 struct page *apage;
56ae674c 897 int err;
e05df3b1
JK
898
899 apage = find_get_page(mapping, nid);
393ff91f
JK
900 if (apage && PageUptodate(apage)) {
901 f2fs_put_page(apage, 0);
902 return;
903 }
e05df3b1
JK
904 f2fs_put_page(apage, 0);
905
906 apage = grab_cache_page(mapping, nid);
907 if (!apage)
908 return;
909
56ae674c
JK
910 err = read_node_page(apage, READA);
911 if (err == 0)
393ff91f 912 f2fs_put_page(apage, 0);
56ae674c
JK
913 else if (err == LOCKED_PAGE)
914 f2fs_put_page(apage, 1);
a2b52a59 915 return;
e05df3b1
JK
916}
917
918struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
919{
e05df3b1 920 struct address_space *mapping = sbi->node_inode->i_mapping;
56ae674c
JK
921 struct page *page;
922 int err;
afcb7ca0 923repeat:
e05df3b1
JK
924 page = grab_cache_page(mapping, nid);
925 if (!page)
926 return ERR_PTR(-ENOMEM);
927
928 err = read_node_page(page, READ_SYNC);
56ae674c 929 if (err < 0)
e05df3b1 930 return ERR_PTR(err);
56ae674c
JK
931 else if (err == LOCKED_PAGE)
932 goto got_it;
e05df3b1 933
393ff91f
JK
934 lock_page(page);
935 if (!PageUptodate(page)) {
936 f2fs_put_page(page, 1);
937 return ERR_PTR(-EIO);
938 }
afcb7ca0
JK
939 if (page->mapping != mapping) {
940 f2fs_put_page(page, 1);
941 goto repeat;
942 }
56ae674c 943got_it:
e05df3b1
JK
944 BUG_ON(nid != nid_of_node(page));
945 mark_page_accessed(page);
946 return page;
947}
948
0a8165d7 949/*
e05df3b1
JK
950 * Return a locked page for the desired node page.
951 * And, readahead MAX_RA_NODE number of node pages.
952 */
953struct page *get_node_page_ra(struct page *parent, int start)
954{
955 struct f2fs_sb_info *sbi = F2FS_SB(parent->mapping->host->i_sb);
956 struct address_space *mapping = sbi->node_inode->i_mapping;
c718379b 957 struct blk_plug plug;
e05df3b1 958 struct page *page;
56ae674c
JK
959 int err, i, end;
960 nid_t nid;
e05df3b1
JK
961
962 /* First, try getting the desired direct node. */
963 nid = get_nid(parent, start, false);
964 if (!nid)
965 return ERR_PTR(-ENOENT);
afcb7ca0 966repeat:
e05df3b1
JK
967 page = grab_cache_page(mapping, nid);
968 if (!page)
969 return ERR_PTR(-ENOMEM);
970
66d36a29 971 err = read_node_page(page, READ_SYNC);
56ae674c 972 if (err < 0)
e05df3b1 973 return ERR_PTR(err);
56ae674c
JK
974 else if (err == LOCKED_PAGE)
975 goto page_hit;
e05df3b1 976
c718379b
JK
977 blk_start_plug(&plug);
978
e05df3b1
JK
979 /* Then, try readahead for siblings of the desired node */
980 end = start + MAX_RA_NODE;
981 end = min(end, NIDS_PER_BLOCK);
982 for (i = start + 1; i < end; i++) {
983 nid = get_nid(parent, i, false);
984 if (!nid)
985 continue;
986 ra_node_page(sbi, nid);
987 }
988
c718379b
JK
989 blk_finish_plug(&plug);
990
e05df3b1 991 lock_page(page);
afcb7ca0
JK
992 if (page->mapping != mapping) {
993 f2fs_put_page(page, 1);
994 goto repeat;
995 }
e0f56cb4 996page_hit:
56ae674c 997 if (!PageUptodate(page)) {
e05df3b1
JK
998 f2fs_put_page(page, 1);
999 return ERR_PTR(-EIO);
1000 }
393ff91f 1001 mark_page_accessed(page);
e05df3b1
JK
1002 return page;
1003}
1004
1005void sync_inode_page(struct dnode_of_data *dn)
1006{
1007 if (IS_INODE(dn->node_page) || dn->inode_page == dn->node_page) {
1008 update_inode(dn->inode, dn->node_page);
1009 } else if (dn->inode_page) {
1010 if (!dn->inode_page_locked)
1011 lock_page(dn->inode_page);
1012 update_inode(dn->inode, dn->inode_page);
1013 if (!dn->inode_page_locked)
1014 unlock_page(dn->inode_page);
1015 } else {
39936837 1016 update_inode_page(dn->inode);
e05df3b1
JK
1017 }
1018}
1019
1020int sync_node_pages(struct f2fs_sb_info *sbi, nid_t ino,
1021 struct writeback_control *wbc)
1022{
1023 struct address_space *mapping = sbi->node_inode->i_mapping;
1024 pgoff_t index, end;
1025 struct pagevec pvec;
1026 int step = ino ? 2 : 0;
1027 int nwritten = 0, wrote = 0;
1028
1029 pagevec_init(&pvec, 0);
1030
1031next_step:
1032 index = 0;
1033 end = LONG_MAX;
1034
1035 while (index <= end) {
1036 int i, nr_pages;
1037 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
1038 PAGECACHE_TAG_DIRTY,
1039 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1040 if (nr_pages == 0)
1041 break;
1042
1043 for (i = 0; i < nr_pages; i++) {
1044 struct page *page = pvec.pages[i];
1045
1046 /*
1047 * flushing sequence with step:
1048 * 0. indirect nodes
1049 * 1. dentry dnodes
1050 * 2. file dnodes
1051 */
1052 if (step == 0 && IS_DNODE(page))
1053 continue;
1054 if (step == 1 && (!IS_DNODE(page) ||
1055 is_cold_node(page)))
1056 continue;
1057 if (step == 2 && (!IS_DNODE(page) ||
1058 !is_cold_node(page)))
1059 continue;
1060
1061 /*
1062 * If an fsync mode,
1063 * we should not skip writing node pages.
1064 */
1065 if (ino && ino_of_node(page) == ino)
1066 lock_page(page);
1067 else if (!trylock_page(page))
1068 continue;
1069
1070 if (unlikely(page->mapping != mapping)) {
1071continue_unlock:
1072 unlock_page(page);
1073 continue;
1074 }
1075 if (ino && ino_of_node(page) != ino)
1076 goto continue_unlock;
1077
1078 if (!PageDirty(page)) {
1079 /* someone wrote it for us */
1080 goto continue_unlock;
1081 }
1082
1083 if (!clear_page_dirty_for_io(page))
1084 goto continue_unlock;
1085
1086 /* called by fsync() */
1087 if (ino && IS_DNODE(page)) {
1088 int mark = !is_checkpointed_node(sbi, ino);
1089 set_fsync_mark(page, 1);
1090 if (IS_INODE(page))
1091 set_dentry_mark(page, mark);
1092 nwritten++;
1093 } else {
1094 set_fsync_mark(page, 0);
1095 set_dentry_mark(page, 0);
1096 }
1097 mapping->a_ops->writepage(page, wbc);
1098 wrote++;
1099
1100 if (--wbc->nr_to_write == 0)
1101 break;
1102 }
1103 pagevec_release(&pvec);
1104 cond_resched();
1105
1106 if (wbc->nr_to_write == 0) {
1107 step = 2;
1108 break;
1109 }
1110 }
1111
1112 if (step < 2) {
1113 step++;
1114 goto next_step;
1115 }
1116
1117 if (wrote)
1118 f2fs_submit_bio(sbi, NODE, wbc->sync_mode == WB_SYNC_ALL);
1119
1120 return nwritten;
1121}
1122
1123static int f2fs_write_node_page(struct page *page,
1124 struct writeback_control *wbc)
1125{
1126 struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb);
1127 nid_t nid;
e05df3b1
JK
1128 block_t new_addr;
1129 struct node_info ni;
1130
e05df3b1
JK
1131 wait_on_page_writeback(page);
1132
e05df3b1
JK
1133 /* get old block addr of this node page */
1134 nid = nid_of_node(page);
e05df3b1
JK
1135 BUG_ON(page->index != nid);
1136
1137 get_node_info(sbi, nid, &ni);
1138
1139 /* This page is already truncated */
39936837
JK
1140 if (ni.blk_addr == NULL_ADDR) {
1141 dec_page_count(sbi, F2FS_DIRTY_NODES);
1142 unlock_page(page);
1143 return 0;
1144 }
e05df3b1 1145
08d8058b
JK
1146 if (wbc->for_reclaim) {
1147 dec_page_count(sbi, F2FS_DIRTY_NODES);
1148 wbc->pages_skipped++;
1149 set_page_dirty(page);
08d8058b
JK
1150 return AOP_WRITEPAGE_ACTIVATE;
1151 }
1152
39936837 1153 mutex_lock(&sbi->node_write);
e05df3b1 1154 set_page_writeback(page);
e05df3b1
JK
1155 write_node_page(sbi, page, nid, ni.blk_addr, &new_addr);
1156 set_node_addr(sbi, &ni, new_addr);
1157 dec_page_count(sbi, F2FS_DIRTY_NODES);
39936837 1158 mutex_unlock(&sbi->node_write);
e05df3b1
JK
1159 unlock_page(page);
1160 return 0;
1161}
1162
a7fdffbd
JK
1163/*
1164 * It is very important to gather dirty pages and write at once, so that we can
1165 * submit a big bio without interfering other data writes.
1166 * Be default, 512 pages (2MB), a segment size, is quite reasonable.
1167 */
1168#define COLLECT_DIRTY_NODES 512
e05df3b1
JK
1169static int f2fs_write_node_pages(struct address_space *mapping,
1170 struct writeback_control *wbc)
1171{
1172 struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
e05df3b1
JK
1173 long nr_to_write = wbc->nr_to_write;
1174
a7fdffbd 1175 /* First check balancing cached NAT entries */
e05df3b1 1176 if (try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK)) {
b7473754 1177 f2fs_sync_fs(sbi->sb, true);
e05df3b1
JK
1178 return 0;
1179 }
1180
a7fdffbd
JK
1181 /* collect a number of dirty node pages and write together */
1182 if (get_pages(sbi, F2FS_DIRTY_NODES) < COLLECT_DIRTY_NODES)
1183 return 0;
1184
e05df3b1 1185 /* if mounting is failed, skip writing node pages */
ac5d156c 1186 wbc->nr_to_write = max_hw_blocks(sbi);
e05df3b1 1187 sync_node_pages(sbi, 0, wbc);
ac5d156c 1188 wbc->nr_to_write = nr_to_write - (max_hw_blocks(sbi) - wbc->nr_to_write);
e05df3b1
JK
1189 return 0;
1190}
1191
1192static int f2fs_set_node_page_dirty(struct page *page)
1193{
1194 struct address_space *mapping = page->mapping;
1195 struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
1196
1197 SetPageUptodate(page);
1198 if (!PageDirty(page)) {
1199 __set_page_dirty_nobuffers(page);
1200 inc_page_count(sbi, F2FS_DIRTY_NODES);
1201 SetPagePrivate(page);
1202 return 1;
1203 }
1204 return 0;
1205}
1206
1207static void f2fs_invalidate_node_page(struct page *page, unsigned long offset)
1208{
1209 struct inode *inode = page->mapping->host;
1210 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
1211 if (PageDirty(page))
1212 dec_page_count(sbi, F2FS_DIRTY_NODES);
1213 ClearPagePrivate(page);
1214}
1215
1216static int f2fs_release_node_page(struct page *page, gfp_t wait)
1217{
1218 ClearPagePrivate(page);
c3850aa1 1219 return 1;
e05df3b1
JK
1220}
1221
0a8165d7 1222/*
e05df3b1
JK
1223 * Structure of the f2fs node operations
1224 */
1225const struct address_space_operations f2fs_node_aops = {
1226 .writepage = f2fs_write_node_page,
1227 .writepages = f2fs_write_node_pages,
1228 .set_page_dirty = f2fs_set_node_page_dirty,
1229 .invalidatepage = f2fs_invalidate_node_page,
1230 .releasepage = f2fs_release_node_page,
1231};
1232
1233static struct free_nid *__lookup_free_nid_list(nid_t n, struct list_head *head)
1234{
1235 struct list_head *this;
3aa770a9 1236 struct free_nid *i;
e05df3b1
JK
1237 list_for_each(this, head) {
1238 i = list_entry(this, struct free_nid, list);
1239 if (i->nid == n)
3aa770a9 1240 return i;
e05df3b1 1241 }
3aa770a9 1242 return NULL;
e05df3b1
JK
1243}
1244
1245static void __del_from_free_nid_list(struct free_nid *i)
1246{
1247 list_del(&i->list);
1248 kmem_cache_free(free_nid_slab, i);
1249}
1250
59bbd474 1251static int add_free_nid(struct f2fs_nm_info *nm_i, nid_t nid, bool build)
e05df3b1
JK
1252{
1253 struct free_nid *i;
59bbd474
JK
1254 struct nat_entry *ne;
1255 bool allocated = false;
e05df3b1
JK
1256
1257 if (nm_i->fcnt > 2 * MAX_FREE_NIDS)
23d38844 1258 return -1;
9198aceb
JK
1259
1260 /* 0 nid should not be used */
1261 if (nid == 0)
1262 return 0;
59bbd474
JK
1263
1264 if (!build)
1265 goto retry;
1266
1267 /* do not add allocated nids */
1268 read_lock(&nm_i->nat_tree_lock);
1269 ne = __lookup_nat_cache(nm_i, nid);
1270 if (ne && nat_get_blkaddr(ne) != NULL_ADDR)
1271 allocated = true;
1272 read_unlock(&nm_i->nat_tree_lock);
1273 if (allocated)
1274 return 0;
e05df3b1
JK
1275retry:
1276 i = kmem_cache_alloc(free_nid_slab, GFP_NOFS);
1277 if (!i) {
1278 cond_resched();
1279 goto retry;
1280 }
1281 i->nid = nid;
1282 i->state = NID_NEW;
1283
1284 spin_lock(&nm_i->free_nid_list_lock);
1285 if (__lookup_free_nid_list(nid, &nm_i->free_nid_list)) {
1286 spin_unlock(&nm_i->free_nid_list_lock);
1287 kmem_cache_free(free_nid_slab, i);
1288 return 0;
1289 }
1290 list_add_tail(&i->list, &nm_i->free_nid_list);
1291 nm_i->fcnt++;
1292 spin_unlock(&nm_i->free_nid_list_lock);
1293 return 1;
1294}
1295
1296static void remove_free_nid(struct f2fs_nm_info *nm_i, nid_t nid)
1297{
1298 struct free_nid *i;
1299 spin_lock(&nm_i->free_nid_list_lock);
1300 i = __lookup_free_nid_list(nid, &nm_i->free_nid_list);
1301 if (i && i->state == NID_NEW) {
1302 __del_from_free_nid_list(i);
1303 nm_i->fcnt--;
1304 }
1305 spin_unlock(&nm_i->free_nid_list_lock);
1306}
1307
8760952d 1308static void scan_nat_page(struct f2fs_nm_info *nm_i,
e05df3b1
JK
1309 struct page *nat_page, nid_t start_nid)
1310{
1311 struct f2fs_nat_block *nat_blk = page_address(nat_page);
1312 block_t blk_addr;
e05df3b1
JK
1313 int i;
1314
e05df3b1
JK
1315 i = start_nid % NAT_ENTRY_PER_BLOCK;
1316
1317 for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
23d38844 1318
04431c44
JK
1319 if (start_nid >= nm_i->max_nid)
1320 break;
23d38844
HL
1321
1322 blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
e05df3b1 1323 BUG_ON(blk_addr == NEW_ADDR);
23d38844 1324 if (blk_addr == NULL_ADDR) {
59bbd474 1325 if (add_free_nid(nm_i, start_nid, true) < 0)
23d38844
HL
1326 break;
1327 }
e05df3b1 1328 }
e05df3b1
JK
1329}
1330
1331static void build_free_nids(struct f2fs_sb_info *sbi)
1332{
e05df3b1
JK
1333 struct f2fs_nm_info *nm_i = NM_I(sbi);
1334 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1335 struct f2fs_summary_block *sum = curseg->sum_blk;
8760952d 1336 int i = 0;
55008d84 1337 nid_t nid = nm_i->next_scan_nid;
e05df3b1 1338
55008d84
JK
1339 /* Enough entries */
1340 if (nm_i->fcnt > NAT_ENTRY_PER_BLOCK)
1341 return;
e05df3b1 1342
55008d84 1343 /* readahead nat pages to be scanned */
e05df3b1
JK
1344 ra_nat_pages(sbi, nid);
1345
1346 while (1) {
1347 struct page *page = get_current_nat_page(sbi, nid);
1348
8760952d 1349 scan_nat_page(nm_i, page, nid);
e05df3b1
JK
1350 f2fs_put_page(page, 1);
1351
1352 nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
55008d84 1353 if (nid >= nm_i->max_nid)
e05df3b1 1354 nid = 0;
55008d84
JK
1355
1356 if (i++ == FREE_NID_PAGES)
e05df3b1
JK
1357 break;
1358 }
1359
55008d84
JK
1360 /* go to the next free nat pages to find free nids abundantly */
1361 nm_i->next_scan_nid = nid;
e05df3b1
JK
1362
1363 /* find free nids from current sum_pages */
1364 mutex_lock(&curseg->curseg_mutex);
1365 for (i = 0; i < nats_in_cursum(sum); i++) {
1366 block_t addr = le32_to_cpu(nat_in_journal(sum, i).block_addr);
1367 nid = le32_to_cpu(nid_in_journal(sum, i));
1368 if (addr == NULL_ADDR)
59bbd474 1369 add_free_nid(nm_i, nid, true);
e05df3b1
JK
1370 else
1371 remove_free_nid(nm_i, nid);
1372 }
1373 mutex_unlock(&curseg->curseg_mutex);
e05df3b1
JK
1374}
1375
1376/*
1377 * If this function returns success, caller can obtain a new nid
1378 * from second parameter of this function.
1379 * The returned nid could be used ino as well as nid when inode is created.
1380 */
1381bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
1382{
1383 struct f2fs_nm_info *nm_i = NM_I(sbi);
1384 struct free_nid *i = NULL;
1385 struct list_head *this;
1386retry:
55008d84
JK
1387 if (sbi->total_valid_node_count + 1 >= nm_i->max_nid)
1388 return false;
e05df3b1 1389
e05df3b1 1390 spin_lock(&nm_i->free_nid_list_lock);
e05df3b1 1391
55008d84
JK
1392 /* We should not use stale free nids created by build_free_nids */
1393 if (nm_i->fcnt && !sbi->on_build_free_nids) {
1394 BUG_ON(list_empty(&nm_i->free_nid_list));
1395 list_for_each(this, &nm_i->free_nid_list) {
1396 i = list_entry(this, struct free_nid, list);
1397 if (i->state == NID_NEW)
1398 break;
1399 }
e05df3b1 1400
55008d84
JK
1401 BUG_ON(i->state != NID_NEW);
1402 *nid = i->nid;
1403 i->state = NID_ALLOC;
1404 nm_i->fcnt--;
1405 spin_unlock(&nm_i->free_nid_list_lock);
1406 return true;
1407 }
e05df3b1 1408 spin_unlock(&nm_i->free_nid_list_lock);
55008d84
JK
1409
1410 /* Let's scan nat pages and its caches to get free nids */
1411 mutex_lock(&nm_i->build_lock);
1412 sbi->on_build_free_nids = 1;
1413 build_free_nids(sbi);
1414 sbi->on_build_free_nids = 0;
1415 mutex_unlock(&nm_i->build_lock);
1416 goto retry;
e05df3b1
JK
1417}
1418
0a8165d7 1419/*
e05df3b1
JK
1420 * alloc_nid() should be called prior to this function.
1421 */
1422void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
1423{
1424 struct f2fs_nm_info *nm_i = NM_I(sbi);
1425 struct free_nid *i;
1426
1427 spin_lock(&nm_i->free_nid_list_lock);
1428 i = __lookup_free_nid_list(nid, &nm_i->free_nid_list);
49952fa1
JK
1429 BUG_ON(!i || i->state != NID_ALLOC);
1430 __del_from_free_nid_list(i);
e05df3b1
JK
1431 spin_unlock(&nm_i->free_nid_list_lock);
1432}
1433
0a8165d7 1434/*
e05df3b1
JK
1435 * alloc_nid() should be called prior to this function.
1436 */
1437void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
1438{
49952fa1
JK
1439 struct f2fs_nm_info *nm_i = NM_I(sbi);
1440 struct free_nid *i;
1441
1442 spin_lock(&nm_i->free_nid_list_lock);
1443 i = __lookup_free_nid_list(nid, &nm_i->free_nid_list);
1444 BUG_ON(!i || i->state != NID_ALLOC);
95630cba
HL
1445 if (nm_i->fcnt > 2 * MAX_FREE_NIDS) {
1446 __del_from_free_nid_list(i);
1447 } else {
1448 i->state = NID_NEW;
1449 nm_i->fcnt++;
1450 }
49952fa1 1451 spin_unlock(&nm_i->free_nid_list_lock);
e05df3b1
JK
1452}
1453
1454void recover_node_page(struct f2fs_sb_info *sbi, struct page *page,
1455 struct f2fs_summary *sum, struct node_info *ni,
1456 block_t new_blkaddr)
1457{
1458 rewrite_node_page(sbi, page, sum, ni->blk_addr, new_blkaddr);
1459 set_node_addr(sbi, ni, new_blkaddr);
1460 clear_node_page_dirty(page);
1461}
1462
1463int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
1464{
1465 struct address_space *mapping = sbi->node_inode->i_mapping;
1466 struct f2fs_node *src, *dst;
1467 nid_t ino = ino_of_node(page);
1468 struct node_info old_ni, new_ni;
1469 struct page *ipage;
1470
1471 ipage = grab_cache_page(mapping, ino);
1472 if (!ipage)
1473 return -ENOMEM;
1474
1475 /* Should not use this inode from free nid list */
1476 remove_free_nid(NM_I(sbi), ino);
1477
1478 get_node_info(sbi, ino, &old_ni);
1479 SetPageUptodate(ipage);
1480 fill_node_footer(ipage, ino, ino, 0, true);
1481
1482 src = (struct f2fs_node *)page_address(page);
1483 dst = (struct f2fs_node *)page_address(ipage);
1484
1485 memcpy(dst, src, (unsigned long)&src->i.i_ext - (unsigned long)&src->i);
1486 dst->i.i_size = 0;
25ca923b
JK
1487 dst->i.i_blocks = cpu_to_le64(1);
1488 dst->i.i_links = cpu_to_le32(1);
e05df3b1
JK
1489 dst->i.i_xattr_nid = 0;
1490
1491 new_ni = old_ni;
1492 new_ni.ino = ino;
1493
65e5cd0a
JK
1494 if (!inc_valid_node_count(sbi, NULL, 1))
1495 WARN_ON(1);
e05df3b1
JK
1496 set_node_addr(sbi, &new_ni, NEW_ADDR);
1497 inc_valid_inode_count(sbi);
e05df3b1
JK
1498 f2fs_put_page(ipage, 1);
1499 return 0;
1500}
1501
1502int restore_node_summary(struct f2fs_sb_info *sbi,
1503 unsigned int segno, struct f2fs_summary_block *sum)
1504{
1505 struct f2fs_node *rn;
1506 struct f2fs_summary *sum_entry;
1507 struct page *page;
1508 block_t addr;
1509 int i, last_offset;
1510
1511 /* alloc temporal page for read node */
1512 page = alloc_page(GFP_NOFS | __GFP_ZERO);
1513 if (IS_ERR(page))
1514 return PTR_ERR(page);
1515 lock_page(page);
1516
1517 /* scan the node segment */
1518 last_offset = sbi->blocks_per_seg;
1519 addr = START_BLOCK(sbi, segno);
1520 sum_entry = &sum->entries[0];
1521
1522 for (i = 0; i < last_offset; i++, sum_entry++) {
393ff91f
JK
1523 /*
1524 * In order to read next node page,
1525 * we must clear PageUptodate flag.
1526 */
1527 ClearPageUptodate(page);
1528
e05df3b1
JK
1529 if (f2fs_readpage(sbi, page, addr, READ_SYNC))
1530 goto out;
1531
393ff91f 1532 lock_page(page);
e05df3b1
JK
1533 rn = (struct f2fs_node *)page_address(page);
1534 sum_entry->nid = rn->footer.nid;
1535 sum_entry->version = 0;
1536 sum_entry->ofs_in_node = 0;
1537 addr++;
e05df3b1 1538 }
e05df3b1 1539 unlock_page(page);
393ff91f 1540out:
e05df3b1
JK
1541 __free_pages(page, 0);
1542 return 0;
1543}
1544
1545static bool flush_nats_in_journal(struct f2fs_sb_info *sbi)
1546{
1547 struct f2fs_nm_info *nm_i = NM_I(sbi);
1548 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1549 struct f2fs_summary_block *sum = curseg->sum_blk;
1550 int i;
1551
1552 mutex_lock(&curseg->curseg_mutex);
1553
1554 if (nats_in_cursum(sum) < NAT_JOURNAL_ENTRIES) {
1555 mutex_unlock(&curseg->curseg_mutex);
1556 return false;
1557 }
1558
1559 for (i = 0; i < nats_in_cursum(sum); i++) {
1560 struct nat_entry *ne;
1561 struct f2fs_nat_entry raw_ne;
1562 nid_t nid = le32_to_cpu(nid_in_journal(sum, i));
1563
1564 raw_ne = nat_in_journal(sum, i);
1565retry:
1566 write_lock(&nm_i->nat_tree_lock);
1567 ne = __lookup_nat_cache(nm_i, nid);
1568 if (ne) {
1569 __set_nat_cache_dirty(nm_i, ne);
1570 write_unlock(&nm_i->nat_tree_lock);
1571 continue;
1572 }
1573 ne = grab_nat_entry(nm_i, nid);
1574 if (!ne) {
1575 write_unlock(&nm_i->nat_tree_lock);
1576 goto retry;
1577 }
1578 nat_set_blkaddr(ne, le32_to_cpu(raw_ne.block_addr));
1579 nat_set_ino(ne, le32_to_cpu(raw_ne.ino));
1580 nat_set_version(ne, raw_ne.version);
1581 __set_nat_cache_dirty(nm_i, ne);
1582 write_unlock(&nm_i->nat_tree_lock);
1583 }
1584 update_nats_in_cursum(sum, -i);
1585 mutex_unlock(&curseg->curseg_mutex);
1586 return true;
1587}
1588
0a8165d7 1589/*
e05df3b1
JK
1590 * This function is called during the checkpointing process.
1591 */
1592void flush_nat_entries(struct f2fs_sb_info *sbi)
1593{
1594 struct f2fs_nm_info *nm_i = NM_I(sbi);
1595 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1596 struct f2fs_summary_block *sum = curseg->sum_blk;
1597 struct list_head *cur, *n;
1598 struct page *page = NULL;
1599 struct f2fs_nat_block *nat_blk = NULL;
1600 nid_t start_nid = 0, end_nid = 0;
1601 bool flushed;
1602
1603 flushed = flush_nats_in_journal(sbi);
1604
1605 if (!flushed)
1606 mutex_lock(&curseg->curseg_mutex);
1607
1608 /* 1) flush dirty nat caches */
1609 list_for_each_safe(cur, n, &nm_i->dirty_nat_entries) {
1610 struct nat_entry *ne;
1611 nid_t nid;
1612 struct f2fs_nat_entry raw_ne;
1613 int offset = -1;
2b50638d 1614 block_t new_blkaddr;
e05df3b1
JK
1615
1616 ne = list_entry(cur, struct nat_entry, list);
1617 nid = nat_get_nid(ne);
1618
1619 if (nat_get_blkaddr(ne) == NEW_ADDR)
1620 continue;
1621 if (flushed)
1622 goto to_nat_page;
1623
1624 /* if there is room for nat enries in curseg->sumpage */
1625 offset = lookup_journal_in_cursum(sum, NAT_JOURNAL, nid, 1);
1626 if (offset >= 0) {
1627 raw_ne = nat_in_journal(sum, offset);
e05df3b1
JK
1628 goto flush_now;
1629 }
1630to_nat_page:
1631 if (!page || (start_nid > nid || nid > end_nid)) {
1632 if (page) {
1633 f2fs_put_page(page, 1);
1634 page = NULL;
1635 }
1636 start_nid = START_NID(nid);
1637 end_nid = start_nid + NAT_ENTRY_PER_BLOCK - 1;
1638
1639 /*
1640 * get nat block with dirty flag, increased reference
1641 * count, mapped and lock
1642 */
1643 page = get_next_nat_page(sbi, start_nid);
1644 nat_blk = page_address(page);
1645 }
1646
1647 BUG_ON(!nat_blk);
1648 raw_ne = nat_blk->entries[nid - start_nid];
e05df3b1
JK
1649flush_now:
1650 new_blkaddr = nat_get_blkaddr(ne);
1651
1652 raw_ne.ino = cpu_to_le32(nat_get_ino(ne));
1653 raw_ne.block_addr = cpu_to_le32(new_blkaddr);
1654 raw_ne.version = nat_get_version(ne);
1655
1656 if (offset < 0) {
1657 nat_blk->entries[nid - start_nid] = raw_ne;
1658 } else {
1659 nat_in_journal(sum, offset) = raw_ne;
1660 nid_in_journal(sum, offset) = cpu_to_le32(nid);
1661 }
1662
fa372417 1663 if (nat_get_blkaddr(ne) == NULL_ADDR &&
59bbd474 1664 add_free_nid(NM_I(sbi), nid, false) <= 0) {
e05df3b1
JK
1665 write_lock(&nm_i->nat_tree_lock);
1666 __del_from_nat_cache(nm_i, ne);
1667 write_unlock(&nm_i->nat_tree_lock);
e05df3b1
JK
1668 } else {
1669 write_lock(&nm_i->nat_tree_lock);
1670 __clear_nat_cache_dirty(nm_i, ne);
1671 ne->checkpointed = true;
1672 write_unlock(&nm_i->nat_tree_lock);
1673 }
1674 }
1675 if (!flushed)
1676 mutex_unlock(&curseg->curseg_mutex);
1677 f2fs_put_page(page, 1);
1678
1679 /* 2) shrink nat caches if necessary */
1680 try_to_free_nats(sbi, nm_i->nat_cnt - NM_WOUT_THRESHOLD);
1681}
1682
1683static int init_node_manager(struct f2fs_sb_info *sbi)
1684{
1685 struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
1686 struct f2fs_nm_info *nm_i = NM_I(sbi);
1687 unsigned char *version_bitmap;
1688 unsigned int nat_segs, nat_blocks;
1689
1690 nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
1691
1692 /* segment_count_nat includes pair segment so divide to 2. */
1693 nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
1694 nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
1695 nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nat_blocks;
1696 nm_i->fcnt = 0;
1697 nm_i->nat_cnt = 0;
1698
1699 INIT_LIST_HEAD(&nm_i->free_nid_list);
1700 INIT_RADIX_TREE(&nm_i->nat_root, GFP_ATOMIC);
1701 INIT_LIST_HEAD(&nm_i->nat_entries);
1702 INIT_LIST_HEAD(&nm_i->dirty_nat_entries);
1703
1704 mutex_init(&nm_i->build_lock);
1705 spin_lock_init(&nm_i->free_nid_list_lock);
1706 rwlock_init(&nm_i->nat_tree_lock);
1707
e05df3b1 1708 nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
79b5793b 1709 nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
e05df3b1
JK
1710 version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
1711 if (!version_bitmap)
1712 return -EFAULT;
1713
79b5793b
AG
1714 nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
1715 GFP_KERNEL);
1716 if (!nm_i->nat_bitmap)
1717 return -ENOMEM;
e05df3b1
JK
1718 return 0;
1719}
1720
1721int build_node_manager(struct f2fs_sb_info *sbi)
1722{
1723 int err;
1724
1725 sbi->nm_info = kzalloc(sizeof(struct f2fs_nm_info), GFP_KERNEL);
1726 if (!sbi->nm_info)
1727 return -ENOMEM;
1728
1729 err = init_node_manager(sbi);
1730 if (err)
1731 return err;
1732
1733 build_free_nids(sbi);
1734 return 0;
1735}
1736
1737void destroy_node_manager(struct f2fs_sb_info *sbi)
1738{
1739 struct f2fs_nm_info *nm_i = NM_I(sbi);
1740 struct free_nid *i, *next_i;
1741 struct nat_entry *natvec[NATVEC_SIZE];
1742 nid_t nid = 0;
1743 unsigned int found;
1744
1745 if (!nm_i)
1746 return;
1747
1748 /* destroy free nid list */
1749 spin_lock(&nm_i->free_nid_list_lock);
1750 list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
1751 BUG_ON(i->state == NID_ALLOC);
1752 __del_from_free_nid_list(i);
1753 nm_i->fcnt--;
1754 }
1755 BUG_ON(nm_i->fcnt);
1756 spin_unlock(&nm_i->free_nid_list_lock);
1757
1758 /* destroy nat cache */
1759 write_lock(&nm_i->nat_tree_lock);
1760 while ((found = __gang_lookup_nat_cache(nm_i,
1761 nid, NATVEC_SIZE, natvec))) {
1762 unsigned idx;
1763 for (idx = 0; idx < found; idx++) {
1764 struct nat_entry *e = natvec[idx];
1765 nid = nat_get_nid(e) + 1;
1766 __del_from_nat_cache(nm_i, e);
1767 }
1768 }
1769 BUG_ON(nm_i->nat_cnt);
1770 write_unlock(&nm_i->nat_tree_lock);
1771
1772 kfree(nm_i->nat_bitmap);
1773 sbi->nm_info = NULL;
1774 kfree(nm_i);
1775}
1776
6e6093a8 1777int __init create_node_manager_caches(void)
e05df3b1
JK
1778{
1779 nat_entry_slab = f2fs_kmem_cache_create("nat_entry",
1780 sizeof(struct nat_entry), NULL);
1781 if (!nat_entry_slab)
1782 return -ENOMEM;
1783
1784 free_nid_slab = f2fs_kmem_cache_create("free_nid",
1785 sizeof(struct free_nid), NULL);
1786 if (!free_nid_slab) {
1787 kmem_cache_destroy(nat_entry_slab);
1788 return -ENOMEM;
1789 }
1790 return 0;
1791}
1792
1793void destroy_node_manager_caches(void)
1794{
1795 kmem_cache_destroy(free_nid_slab);
1796 kmem_cache_destroy(nat_entry_slab);
1797}