f2fs: enhance alloc_nid and build_free_nids flows
[linux-2.6-block.git] / fs / f2fs / node.c
CommitLineData
0a8165d7 1/*
e05df3b1
JK
2 * fs/f2fs/node.c
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11#include <linux/fs.h>
12#include <linux/f2fs_fs.h>
13#include <linux/mpage.h>
14#include <linux/backing-dev.h>
15#include <linux/blkdev.h>
16#include <linux/pagevec.h>
17#include <linux/swap.h>
18
19#include "f2fs.h"
20#include "node.h"
21#include "segment.h"
51dd6249 22#include <trace/events/f2fs.h>
e05df3b1
JK
23
24static struct kmem_cache *nat_entry_slab;
25static struct kmem_cache *free_nid_slab;
26
27static void clear_node_page_dirty(struct page *page)
28{
29 struct address_space *mapping = page->mapping;
30 struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
31 unsigned int long flags;
32
33 if (PageDirty(page)) {
34 spin_lock_irqsave(&mapping->tree_lock, flags);
35 radix_tree_tag_clear(&mapping->page_tree,
36 page_index(page),
37 PAGECACHE_TAG_DIRTY);
38 spin_unlock_irqrestore(&mapping->tree_lock, flags);
39
40 clear_page_dirty_for_io(page);
41 dec_page_count(sbi, F2FS_DIRTY_NODES);
42 }
43 ClearPageUptodate(page);
44}
45
46static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
47{
48 pgoff_t index = current_nat_addr(sbi, nid);
49 return get_meta_page(sbi, index);
50}
51
52static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
53{
54 struct page *src_page;
55 struct page *dst_page;
56 pgoff_t src_off;
57 pgoff_t dst_off;
58 void *src_addr;
59 void *dst_addr;
60 struct f2fs_nm_info *nm_i = NM_I(sbi);
61
62 src_off = current_nat_addr(sbi, nid);
63 dst_off = next_nat_addr(sbi, src_off);
64
65 /* get current nat block page with lock */
66 src_page = get_meta_page(sbi, src_off);
67
68 /* Dirty src_page means that it is already the new target NAT page. */
69 if (PageDirty(src_page))
70 return src_page;
71
72 dst_page = grab_meta_page(sbi, dst_off);
73
74 src_addr = page_address(src_page);
75 dst_addr = page_address(dst_page);
76 memcpy(dst_addr, src_addr, PAGE_CACHE_SIZE);
77 set_page_dirty(dst_page);
78 f2fs_put_page(src_page, 1);
79
80 set_to_next_nat(nm_i, nid);
81
82 return dst_page;
83}
84
0a8165d7 85/*
e05df3b1
JK
86 * Readahead NAT pages
87 */
88static void ra_nat_pages(struct f2fs_sb_info *sbi, int nid)
89{
90 struct address_space *mapping = sbi->meta_inode->i_mapping;
91 struct f2fs_nm_info *nm_i = NM_I(sbi);
c718379b 92 struct blk_plug plug;
e05df3b1
JK
93 struct page *page;
94 pgoff_t index;
95 int i;
96
c718379b
JK
97 blk_start_plug(&plug);
98
e05df3b1
JK
99 for (i = 0; i < FREE_NID_PAGES; i++, nid += NAT_ENTRY_PER_BLOCK) {
100 if (nid >= nm_i->max_nid)
101 nid = 0;
102 index = current_nat_addr(sbi, nid);
103
104 page = grab_cache_page(mapping, index);
105 if (!page)
106 continue;
393ff91f 107 if (PageUptodate(page)) {
e05df3b1
JK
108 f2fs_put_page(page, 1);
109 continue;
110 }
393ff91f
JK
111 if (f2fs_readpage(sbi, page, index, READ))
112 continue;
113
369a708c 114 f2fs_put_page(page, 0);
e05df3b1 115 }
c718379b 116 blk_finish_plug(&plug);
e05df3b1
JK
117}
118
119static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
120{
121 return radix_tree_lookup(&nm_i->nat_root, n);
122}
123
124static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
125 nid_t start, unsigned int nr, struct nat_entry **ep)
126{
127 return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
128}
129
130static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
131{
132 list_del(&e->list);
133 radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
134 nm_i->nat_cnt--;
135 kmem_cache_free(nat_entry_slab, e);
136}
137
138int is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
139{
140 struct f2fs_nm_info *nm_i = NM_I(sbi);
141 struct nat_entry *e;
142 int is_cp = 1;
143
144 read_lock(&nm_i->nat_tree_lock);
145 e = __lookup_nat_cache(nm_i, nid);
146 if (e && !e->checkpointed)
147 is_cp = 0;
148 read_unlock(&nm_i->nat_tree_lock);
149 return is_cp;
150}
151
152static struct nat_entry *grab_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid)
153{
154 struct nat_entry *new;
155
156 new = kmem_cache_alloc(nat_entry_slab, GFP_ATOMIC);
157 if (!new)
158 return NULL;
159 if (radix_tree_insert(&nm_i->nat_root, nid, new)) {
160 kmem_cache_free(nat_entry_slab, new);
161 return NULL;
162 }
163 memset(new, 0, sizeof(struct nat_entry));
164 nat_set_nid(new, nid);
165 list_add_tail(&new->list, &nm_i->nat_entries);
166 nm_i->nat_cnt++;
167 return new;
168}
169
170static void cache_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid,
171 struct f2fs_nat_entry *ne)
172{
173 struct nat_entry *e;
174retry:
175 write_lock(&nm_i->nat_tree_lock);
176 e = __lookup_nat_cache(nm_i, nid);
177 if (!e) {
178 e = grab_nat_entry(nm_i, nid);
179 if (!e) {
180 write_unlock(&nm_i->nat_tree_lock);
181 goto retry;
182 }
183 nat_set_blkaddr(e, le32_to_cpu(ne->block_addr));
184 nat_set_ino(e, le32_to_cpu(ne->ino));
185 nat_set_version(e, ne->version);
186 e->checkpointed = true;
187 }
188 write_unlock(&nm_i->nat_tree_lock);
189}
190
191static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
192 block_t new_blkaddr)
193{
194 struct f2fs_nm_info *nm_i = NM_I(sbi);
195 struct nat_entry *e;
196retry:
197 write_lock(&nm_i->nat_tree_lock);
198 e = __lookup_nat_cache(nm_i, ni->nid);
199 if (!e) {
200 e = grab_nat_entry(nm_i, ni->nid);
201 if (!e) {
202 write_unlock(&nm_i->nat_tree_lock);
203 goto retry;
204 }
205 e->ni = *ni;
206 e->checkpointed = true;
207 BUG_ON(ni->blk_addr == NEW_ADDR);
208 } else if (new_blkaddr == NEW_ADDR) {
209 /*
210 * when nid is reallocated,
211 * previous nat entry can be remained in nat cache.
212 * So, reinitialize it with new information.
213 */
214 e->ni = *ni;
215 BUG_ON(ni->blk_addr != NULL_ADDR);
216 }
217
218 if (new_blkaddr == NEW_ADDR)
219 e->checkpointed = false;
220
221 /* sanity check */
222 BUG_ON(nat_get_blkaddr(e) != ni->blk_addr);
223 BUG_ON(nat_get_blkaddr(e) == NULL_ADDR &&
224 new_blkaddr == NULL_ADDR);
225 BUG_ON(nat_get_blkaddr(e) == NEW_ADDR &&
226 new_blkaddr == NEW_ADDR);
227 BUG_ON(nat_get_blkaddr(e) != NEW_ADDR &&
228 nat_get_blkaddr(e) != NULL_ADDR &&
229 new_blkaddr == NEW_ADDR);
230
231 /* increament version no as node is removed */
232 if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
233 unsigned char version = nat_get_version(e);
234 nat_set_version(e, inc_node_version(version));
235 }
236
237 /* change address */
238 nat_set_blkaddr(e, new_blkaddr);
239 __set_nat_cache_dirty(nm_i, e);
240 write_unlock(&nm_i->nat_tree_lock);
241}
242
243static int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
244{
245 struct f2fs_nm_info *nm_i = NM_I(sbi);
246
247 if (nm_i->nat_cnt < 2 * NM_WOUT_THRESHOLD)
248 return 0;
249
250 write_lock(&nm_i->nat_tree_lock);
251 while (nr_shrink && !list_empty(&nm_i->nat_entries)) {
252 struct nat_entry *ne;
253 ne = list_first_entry(&nm_i->nat_entries,
254 struct nat_entry, list);
255 __del_from_nat_cache(nm_i, ne);
256 nr_shrink--;
257 }
258 write_unlock(&nm_i->nat_tree_lock);
259 return nr_shrink;
260}
261
0a8165d7 262/*
e05df3b1
JK
263 * This function returns always success
264 */
265void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni)
266{
267 struct f2fs_nm_info *nm_i = NM_I(sbi);
268 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
269 struct f2fs_summary_block *sum = curseg->sum_blk;
270 nid_t start_nid = START_NID(nid);
271 struct f2fs_nat_block *nat_blk;
272 struct page *page = NULL;
273 struct f2fs_nat_entry ne;
274 struct nat_entry *e;
275 int i;
276
be4124f8 277 memset(&ne, 0, sizeof(struct f2fs_nat_entry));
e05df3b1
JK
278 ni->nid = nid;
279
280 /* Check nat cache */
281 read_lock(&nm_i->nat_tree_lock);
282 e = __lookup_nat_cache(nm_i, nid);
283 if (e) {
284 ni->ino = nat_get_ino(e);
285 ni->blk_addr = nat_get_blkaddr(e);
286 ni->version = nat_get_version(e);
287 }
288 read_unlock(&nm_i->nat_tree_lock);
289 if (e)
290 return;
291
292 /* Check current segment summary */
293 mutex_lock(&curseg->curseg_mutex);
294 i = lookup_journal_in_cursum(sum, NAT_JOURNAL, nid, 0);
295 if (i >= 0) {
296 ne = nat_in_journal(sum, i);
297 node_info_from_raw_nat(ni, &ne);
298 }
299 mutex_unlock(&curseg->curseg_mutex);
300 if (i >= 0)
301 goto cache;
302
303 /* Fill node_info from nat page */
304 page = get_current_nat_page(sbi, start_nid);
305 nat_blk = (struct f2fs_nat_block *)page_address(page);
306 ne = nat_blk->entries[nid - start_nid];
307 node_info_from_raw_nat(ni, &ne);
308 f2fs_put_page(page, 1);
309cache:
310 /* cache nat entry */
311 cache_nat_entry(NM_I(sbi), nid, &ne);
312}
313
0a8165d7 314/*
e05df3b1
JK
315 * The maximum depth is four.
316 * Offset[0] will have raw inode offset.
317 */
318static int get_node_path(long block, int offset[4], unsigned int noffset[4])
319{
320 const long direct_index = ADDRS_PER_INODE;
321 const long direct_blks = ADDRS_PER_BLOCK;
322 const long dptrs_per_blk = NIDS_PER_BLOCK;
323 const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
324 const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
325 int n = 0;
326 int level = 0;
327
328 noffset[0] = 0;
329
330 if (block < direct_index) {
25c0a6e5 331 offset[n] = block;
e05df3b1
JK
332 goto got;
333 }
334 block -= direct_index;
335 if (block < direct_blks) {
336 offset[n++] = NODE_DIR1_BLOCK;
337 noffset[n] = 1;
25c0a6e5 338 offset[n] = block;
e05df3b1
JK
339 level = 1;
340 goto got;
341 }
342 block -= direct_blks;
343 if (block < direct_blks) {
344 offset[n++] = NODE_DIR2_BLOCK;
345 noffset[n] = 2;
25c0a6e5 346 offset[n] = block;
e05df3b1
JK
347 level = 1;
348 goto got;
349 }
350 block -= direct_blks;
351 if (block < indirect_blks) {
352 offset[n++] = NODE_IND1_BLOCK;
353 noffset[n] = 3;
354 offset[n++] = block / direct_blks;
355 noffset[n] = 4 + offset[n - 1];
25c0a6e5 356 offset[n] = block % direct_blks;
e05df3b1
JK
357 level = 2;
358 goto got;
359 }
360 block -= indirect_blks;
361 if (block < indirect_blks) {
362 offset[n++] = NODE_IND2_BLOCK;
363 noffset[n] = 4 + dptrs_per_blk;
364 offset[n++] = block / direct_blks;
365 noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
25c0a6e5 366 offset[n] = block % direct_blks;
e05df3b1
JK
367 level = 2;
368 goto got;
369 }
370 block -= indirect_blks;
371 if (block < dindirect_blks) {
372 offset[n++] = NODE_DIND_BLOCK;
373 noffset[n] = 5 + (dptrs_per_blk * 2);
374 offset[n++] = block / indirect_blks;
375 noffset[n] = 6 + (dptrs_per_blk * 2) +
376 offset[n - 1] * (dptrs_per_blk + 1);
377 offset[n++] = (block / direct_blks) % dptrs_per_blk;
378 noffset[n] = 7 + (dptrs_per_blk * 2) +
379 offset[n - 2] * (dptrs_per_blk + 1) +
380 offset[n - 1];
25c0a6e5 381 offset[n] = block % direct_blks;
e05df3b1
JK
382 level = 3;
383 goto got;
384 } else {
385 BUG();
386 }
387got:
388 return level;
389}
390
391/*
392 * Caller should call f2fs_put_dnode(dn).
39936837
JK
393 * Also, it should grab and release a mutex by calling mutex_lock_op() and
394 * mutex_unlock_op() only if ro is not set RDONLY_NODE.
395 * In the case of RDONLY_NODE, we don't need to care about mutex.
e05df3b1 396 */
266e97a8 397int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
e05df3b1
JK
398{
399 struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
400 struct page *npage[4];
401 struct page *parent;
402 int offset[4];
403 unsigned int noffset[4];
404 nid_t nids[4];
405 int level, i;
406 int err = 0;
407
408 level = get_node_path(index, offset, noffset);
409
410 nids[0] = dn->inode->i_ino;
411 npage[0] = get_node_page(sbi, nids[0]);
412 if (IS_ERR(npage[0]))
413 return PTR_ERR(npage[0]);
414
415 parent = npage[0];
52c2db3f
CL
416 if (level != 0)
417 nids[1] = get_nid(parent, offset[0], true);
e05df3b1
JK
418 dn->inode_page = npage[0];
419 dn->inode_page_locked = true;
420
421 /* get indirect or direct nodes */
422 for (i = 1; i <= level; i++) {
423 bool done = false;
424
266e97a8 425 if (!nids[i] && mode == ALLOC_NODE) {
e05df3b1
JK
426 /* alloc new node */
427 if (!alloc_nid(sbi, &(nids[i]))) {
e05df3b1
JK
428 err = -ENOSPC;
429 goto release_pages;
430 }
431
432 dn->nid = nids[i];
433 npage[i] = new_node_page(dn, noffset[i]);
434 if (IS_ERR(npage[i])) {
435 alloc_nid_failed(sbi, nids[i]);
e05df3b1
JK
436 err = PTR_ERR(npage[i]);
437 goto release_pages;
438 }
439
440 set_nid(parent, offset[i - 1], nids[i], i == 1);
441 alloc_nid_done(sbi, nids[i]);
e05df3b1 442 done = true;
266e97a8 443 } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
e05df3b1
JK
444 npage[i] = get_node_page_ra(parent, offset[i - 1]);
445 if (IS_ERR(npage[i])) {
446 err = PTR_ERR(npage[i]);
447 goto release_pages;
448 }
449 done = true;
450 }
451 if (i == 1) {
452 dn->inode_page_locked = false;
453 unlock_page(parent);
454 } else {
455 f2fs_put_page(parent, 1);
456 }
457
458 if (!done) {
459 npage[i] = get_node_page(sbi, nids[i]);
460 if (IS_ERR(npage[i])) {
461 err = PTR_ERR(npage[i]);
462 f2fs_put_page(npage[0], 0);
463 goto release_out;
464 }
465 }
466 if (i < level) {
467 parent = npage[i];
468 nids[i + 1] = get_nid(parent, offset[i], false);
469 }
470 }
471 dn->nid = nids[level];
472 dn->ofs_in_node = offset[level];
473 dn->node_page = npage[level];
474 dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node);
475 return 0;
476
477release_pages:
478 f2fs_put_page(parent, 1);
479 if (i > 1)
480 f2fs_put_page(npage[0], 0);
481release_out:
482 dn->inode_page = NULL;
483 dn->node_page = NULL;
484 return err;
485}
486
487static void truncate_node(struct dnode_of_data *dn)
488{
489 struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
490 struct node_info ni;
491
492 get_node_info(sbi, dn->nid, &ni);
71e9fec5
JK
493 if (dn->inode->i_blocks == 0) {
494 BUG_ON(ni.blk_addr != NULL_ADDR);
495 goto invalidate;
496 }
e05df3b1
JK
497 BUG_ON(ni.blk_addr == NULL_ADDR);
498
e05df3b1 499 /* Deallocate node address */
71e9fec5 500 invalidate_blocks(sbi, ni.blk_addr);
e05df3b1
JK
501 dec_valid_node_count(sbi, dn->inode, 1);
502 set_node_addr(sbi, &ni, NULL_ADDR);
503
504 if (dn->nid == dn->inode->i_ino) {
505 remove_orphan_inode(sbi, dn->nid);
506 dec_valid_inode_count(sbi);
507 } else {
508 sync_inode_page(dn);
509 }
71e9fec5 510invalidate:
e05df3b1
JK
511 clear_node_page_dirty(dn->node_page);
512 F2FS_SET_SB_DIRT(sbi);
513
514 f2fs_put_page(dn->node_page, 1);
515 dn->node_page = NULL;
51dd6249 516 trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
e05df3b1
JK
517}
518
519static int truncate_dnode(struct dnode_of_data *dn)
520{
521 struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
522 struct page *page;
523
524 if (dn->nid == 0)
525 return 1;
526
527 /* get direct node */
528 page = get_node_page(sbi, dn->nid);
529 if (IS_ERR(page) && PTR_ERR(page) == -ENOENT)
530 return 1;
531 else if (IS_ERR(page))
532 return PTR_ERR(page);
533
534 /* Make dnode_of_data for parameter */
535 dn->node_page = page;
536 dn->ofs_in_node = 0;
537 truncate_data_blocks(dn);
538 truncate_node(dn);
539 return 1;
540}
541
542static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
543 int ofs, int depth)
544{
545 struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
546 struct dnode_of_data rdn = *dn;
547 struct page *page;
548 struct f2fs_node *rn;
549 nid_t child_nid;
550 unsigned int child_nofs;
551 int freed = 0;
552 int i, ret;
553
554 if (dn->nid == 0)
555 return NIDS_PER_BLOCK + 1;
556
51dd6249
NJ
557 trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
558
e05df3b1 559 page = get_node_page(sbi, dn->nid);
51dd6249
NJ
560 if (IS_ERR(page)) {
561 trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
e05df3b1 562 return PTR_ERR(page);
51dd6249 563 }
e05df3b1
JK
564
565 rn = (struct f2fs_node *)page_address(page);
566 if (depth < 3) {
567 for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
568 child_nid = le32_to_cpu(rn->in.nid[i]);
569 if (child_nid == 0)
570 continue;
571 rdn.nid = child_nid;
572 ret = truncate_dnode(&rdn);
573 if (ret < 0)
574 goto out_err;
575 set_nid(page, i, 0, false);
576 }
577 } else {
578 child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
579 for (i = ofs; i < NIDS_PER_BLOCK; i++) {
580 child_nid = le32_to_cpu(rn->in.nid[i]);
581 if (child_nid == 0) {
582 child_nofs += NIDS_PER_BLOCK + 1;
583 continue;
584 }
585 rdn.nid = child_nid;
586 ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
587 if (ret == (NIDS_PER_BLOCK + 1)) {
588 set_nid(page, i, 0, false);
589 child_nofs += ret;
590 } else if (ret < 0 && ret != -ENOENT) {
591 goto out_err;
592 }
593 }
594 freed = child_nofs;
595 }
596
597 if (!ofs) {
598 /* remove current indirect node */
599 dn->node_page = page;
600 truncate_node(dn);
601 freed++;
602 } else {
603 f2fs_put_page(page, 1);
604 }
51dd6249 605 trace_f2fs_truncate_nodes_exit(dn->inode, freed);
e05df3b1
JK
606 return freed;
607
608out_err:
609 f2fs_put_page(page, 1);
51dd6249 610 trace_f2fs_truncate_nodes_exit(dn->inode, ret);
e05df3b1
JK
611 return ret;
612}
613
614static int truncate_partial_nodes(struct dnode_of_data *dn,
615 struct f2fs_inode *ri, int *offset, int depth)
616{
617 struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
618 struct page *pages[2];
619 nid_t nid[3];
620 nid_t child_nid;
621 int err = 0;
622 int i;
623 int idx = depth - 2;
624
625 nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
626 if (!nid[0])
627 return 0;
628
629 /* get indirect nodes in the path */
630 for (i = 0; i < depth - 1; i++) {
631 /* refernece count'll be increased */
632 pages[i] = get_node_page(sbi, nid[i]);
633 if (IS_ERR(pages[i])) {
634 depth = i + 1;
635 err = PTR_ERR(pages[i]);
636 goto fail;
637 }
638 nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
639 }
640
641 /* free direct nodes linked to a partial indirect node */
642 for (i = offset[depth - 1]; i < NIDS_PER_BLOCK; i++) {
643 child_nid = get_nid(pages[idx], i, false);
644 if (!child_nid)
645 continue;
646 dn->nid = child_nid;
647 err = truncate_dnode(dn);
648 if (err < 0)
649 goto fail;
650 set_nid(pages[idx], i, 0, false);
651 }
652
653 if (offset[depth - 1] == 0) {
654 dn->node_page = pages[idx];
655 dn->nid = nid[idx];
656 truncate_node(dn);
657 } else {
658 f2fs_put_page(pages[idx], 1);
659 }
660 offset[idx]++;
661 offset[depth - 1] = 0;
662fail:
663 for (i = depth - 3; i >= 0; i--)
664 f2fs_put_page(pages[i], 1);
51dd6249
NJ
665
666 trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
667
e05df3b1
JK
668 return err;
669}
670
0a8165d7 671/*
e05df3b1
JK
672 * All the block addresses of data and nodes should be nullified.
673 */
674int truncate_inode_blocks(struct inode *inode, pgoff_t from)
675{
676 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
677 int err = 0, cont = 1;
678 int level, offset[4], noffset[4];
7dd690c8 679 unsigned int nofs = 0;
e05df3b1
JK
680 struct f2fs_node *rn;
681 struct dnode_of_data dn;
682 struct page *page;
683
51dd6249
NJ
684 trace_f2fs_truncate_inode_blocks_enter(inode, from);
685
e05df3b1
JK
686 level = get_node_path(from, offset, noffset);
687
688 page = get_node_page(sbi, inode->i_ino);
51dd6249
NJ
689 if (IS_ERR(page)) {
690 trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
e05df3b1 691 return PTR_ERR(page);
51dd6249 692 }
e05df3b1
JK
693
694 set_new_dnode(&dn, inode, page, NULL, 0);
695 unlock_page(page);
696
697 rn = page_address(page);
698 switch (level) {
699 case 0:
700 case 1:
701 nofs = noffset[1];
702 break;
703 case 2:
704 nofs = noffset[1];
705 if (!offset[level - 1])
706 goto skip_partial;
707 err = truncate_partial_nodes(&dn, &rn->i, offset, level);
708 if (err < 0 && err != -ENOENT)
709 goto fail;
710 nofs += 1 + NIDS_PER_BLOCK;
711 break;
712 case 3:
713 nofs = 5 + 2 * NIDS_PER_BLOCK;
714 if (!offset[level - 1])
715 goto skip_partial;
716 err = truncate_partial_nodes(&dn, &rn->i, offset, level);
717 if (err < 0 && err != -ENOENT)
718 goto fail;
719 break;
720 default:
721 BUG();
722 }
723
724skip_partial:
725 while (cont) {
726 dn.nid = le32_to_cpu(rn->i.i_nid[offset[0] - NODE_DIR1_BLOCK]);
727 switch (offset[0]) {
728 case NODE_DIR1_BLOCK:
729 case NODE_DIR2_BLOCK:
730 err = truncate_dnode(&dn);
731 break;
732
733 case NODE_IND1_BLOCK:
734 case NODE_IND2_BLOCK:
735 err = truncate_nodes(&dn, nofs, offset[1], 2);
736 break;
737
738 case NODE_DIND_BLOCK:
739 err = truncate_nodes(&dn, nofs, offset[1], 3);
740 cont = 0;
741 break;
742
743 default:
744 BUG();
745 }
746 if (err < 0 && err != -ENOENT)
747 goto fail;
748 if (offset[1] == 0 &&
749 rn->i.i_nid[offset[0] - NODE_DIR1_BLOCK]) {
750 lock_page(page);
751 wait_on_page_writeback(page);
752 rn->i.i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
753 set_page_dirty(page);
754 unlock_page(page);
755 }
756 offset[1] = 0;
757 offset[0]++;
758 nofs += err;
759 }
760fail:
761 f2fs_put_page(page, 0);
51dd6249 762 trace_f2fs_truncate_inode_blocks_exit(inode, err);
e05df3b1
JK
763 return err > 0 ? 0 : err;
764}
765
39936837
JK
766/*
767 * Caller should grab and release a mutex by calling mutex_lock_op() and
768 * mutex_unlock_op().
769 */
e05df3b1
JK
770int remove_inode_page(struct inode *inode)
771{
772 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
773 struct page *page;
774 nid_t ino = inode->i_ino;
775 struct dnode_of_data dn;
776
e05df3b1 777 page = get_node_page(sbi, ino);
39936837 778 if (IS_ERR(page))
e05df3b1 779 return PTR_ERR(page);
e05df3b1
JK
780
781 if (F2FS_I(inode)->i_xattr_nid) {
782 nid_t nid = F2FS_I(inode)->i_xattr_nid;
783 struct page *npage = get_node_page(sbi, nid);
784
39936837 785 if (IS_ERR(npage))
e05df3b1 786 return PTR_ERR(npage);
e05df3b1
JK
787
788 F2FS_I(inode)->i_xattr_nid = 0;
789 set_new_dnode(&dn, inode, page, npage, nid);
790 dn.inode_page_locked = 1;
791 truncate_node(&dn);
792 }
e05df3b1 793
71e9fec5
JK
794 /* 0 is possible, after f2fs_new_inode() is failed */
795 BUG_ON(inode->i_blocks != 0 && inode->i_blocks != 1);
796 set_new_dnode(&dn, inode, page, page, ino);
797 truncate_node(&dn);
e05df3b1
JK
798 return 0;
799}
800
c004363d 801int new_inode_page(struct inode *inode, const struct qstr *name)
e05df3b1 802{
e05df3b1
JK
803 struct page *page;
804 struct dnode_of_data dn;
805
806 /* allocate inode page for new inode */
807 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
e05df3b1 808 page = new_node_page(&dn, 0);
c004363d 809 init_dent_inode(name, page);
e05df3b1
JK
810 if (IS_ERR(page))
811 return PTR_ERR(page);
812 f2fs_put_page(page, 1);
813 return 0;
814}
815
816struct page *new_node_page(struct dnode_of_data *dn, unsigned int ofs)
817{
818 struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
819 struct address_space *mapping = sbi->node_inode->i_mapping;
820 struct node_info old_ni, new_ni;
821 struct page *page;
822 int err;
823
824 if (is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC))
825 return ERR_PTR(-EPERM);
826
827 page = grab_cache_page(mapping, dn->nid);
828 if (!page)
829 return ERR_PTR(-ENOMEM);
830
831 get_node_info(sbi, dn->nid, &old_ni);
832
833 SetPageUptodate(page);
834 fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
835
836 /* Reinitialize old_ni with new node page */
837 BUG_ON(old_ni.blk_addr != NULL_ADDR);
838 new_ni = old_ni;
839 new_ni.ino = dn->inode->i_ino;
840
841 if (!inc_valid_node_count(sbi, dn->inode, 1)) {
842 err = -ENOSPC;
843 goto fail;
844 }
845 set_node_addr(sbi, &new_ni, NEW_ADDR);
398b1ac5 846 set_cold_node(dn->inode, page);
e05df3b1
JK
847
848 dn->node_page = page;
849 sync_inode_page(dn);
850 set_page_dirty(page);
e05df3b1
JK
851 if (ofs == 0)
852 inc_valid_inode_count(sbi);
853
854 return page;
855
856fail:
71e9fec5 857 clear_node_page_dirty(page);
e05df3b1
JK
858 f2fs_put_page(page, 1);
859 return ERR_PTR(err);
860}
861
56ae674c
JK
862/*
863 * Caller should do after getting the following values.
864 * 0: f2fs_put_page(page, 0)
865 * LOCKED_PAGE: f2fs_put_page(page, 1)
866 * error: nothing
867 */
e05df3b1
JK
868static int read_node_page(struct page *page, int type)
869{
870 struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb);
871 struct node_info ni;
872
873 get_node_info(sbi, page->index, &ni);
874
393ff91f
JK
875 if (ni.blk_addr == NULL_ADDR) {
876 f2fs_put_page(page, 1);
e05df3b1 877 return -ENOENT;
393ff91f
JK
878 }
879
56ae674c
JK
880 if (PageUptodate(page))
881 return LOCKED_PAGE;
393ff91f 882
e05df3b1
JK
883 return f2fs_readpage(sbi, page, ni.blk_addr, type);
884}
885
0a8165d7 886/*
e05df3b1
JK
887 * Readahead a node page
888 */
889void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
890{
891 struct address_space *mapping = sbi->node_inode->i_mapping;
892 struct page *apage;
56ae674c 893 int err;
e05df3b1
JK
894
895 apage = find_get_page(mapping, nid);
393ff91f
JK
896 if (apage && PageUptodate(apage)) {
897 f2fs_put_page(apage, 0);
898 return;
899 }
e05df3b1
JK
900 f2fs_put_page(apage, 0);
901
902 apage = grab_cache_page(mapping, nid);
903 if (!apage)
904 return;
905
56ae674c
JK
906 err = read_node_page(apage, READA);
907 if (err == 0)
393ff91f 908 f2fs_put_page(apage, 0);
56ae674c
JK
909 else if (err == LOCKED_PAGE)
910 f2fs_put_page(apage, 1);
a2b52a59 911 return;
e05df3b1
JK
912}
913
914struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
915{
e05df3b1 916 struct address_space *mapping = sbi->node_inode->i_mapping;
56ae674c
JK
917 struct page *page;
918 int err;
e05df3b1
JK
919
920 page = grab_cache_page(mapping, nid);
921 if (!page)
922 return ERR_PTR(-ENOMEM);
923
924 err = read_node_page(page, READ_SYNC);
56ae674c 925 if (err < 0)
e05df3b1 926 return ERR_PTR(err);
56ae674c
JK
927 else if (err == LOCKED_PAGE)
928 goto got_it;
e05df3b1 929
393ff91f
JK
930 lock_page(page);
931 if (!PageUptodate(page)) {
932 f2fs_put_page(page, 1);
933 return ERR_PTR(-EIO);
934 }
56ae674c 935got_it:
e05df3b1
JK
936 BUG_ON(nid != nid_of_node(page));
937 mark_page_accessed(page);
938 return page;
939}
940
0a8165d7 941/*
e05df3b1
JK
942 * Return a locked page for the desired node page.
943 * And, readahead MAX_RA_NODE number of node pages.
944 */
945struct page *get_node_page_ra(struct page *parent, int start)
946{
947 struct f2fs_sb_info *sbi = F2FS_SB(parent->mapping->host->i_sb);
948 struct address_space *mapping = sbi->node_inode->i_mapping;
c718379b 949 struct blk_plug plug;
e05df3b1 950 struct page *page;
56ae674c
JK
951 int err, i, end;
952 nid_t nid;
e05df3b1
JK
953
954 /* First, try getting the desired direct node. */
955 nid = get_nid(parent, start, false);
956 if (!nid)
957 return ERR_PTR(-ENOENT);
958
e05df3b1
JK
959 page = grab_cache_page(mapping, nid);
960 if (!page)
961 return ERR_PTR(-ENOMEM);
962
66d36a29 963 err = read_node_page(page, READ_SYNC);
56ae674c 964 if (err < 0)
e05df3b1 965 return ERR_PTR(err);
56ae674c
JK
966 else if (err == LOCKED_PAGE)
967 goto page_hit;
e05df3b1 968
c718379b
JK
969 blk_start_plug(&plug);
970
e05df3b1
JK
971 /* Then, try readahead for siblings of the desired node */
972 end = start + MAX_RA_NODE;
973 end = min(end, NIDS_PER_BLOCK);
974 for (i = start + 1; i < end; i++) {
975 nid = get_nid(parent, i, false);
976 if (!nid)
977 continue;
978 ra_node_page(sbi, nid);
979 }
980
c718379b
JK
981 blk_finish_plug(&plug);
982
e05df3b1 983 lock_page(page);
e0f56cb4
NJ
984
985page_hit:
56ae674c 986 if (!PageUptodate(page)) {
e05df3b1
JK
987 f2fs_put_page(page, 1);
988 return ERR_PTR(-EIO);
989 }
393ff91f 990 mark_page_accessed(page);
e05df3b1
JK
991 return page;
992}
993
994void sync_inode_page(struct dnode_of_data *dn)
995{
996 if (IS_INODE(dn->node_page) || dn->inode_page == dn->node_page) {
997 update_inode(dn->inode, dn->node_page);
998 } else if (dn->inode_page) {
999 if (!dn->inode_page_locked)
1000 lock_page(dn->inode_page);
1001 update_inode(dn->inode, dn->inode_page);
1002 if (!dn->inode_page_locked)
1003 unlock_page(dn->inode_page);
1004 } else {
39936837 1005 update_inode_page(dn->inode);
e05df3b1
JK
1006 }
1007}
1008
1009int sync_node_pages(struct f2fs_sb_info *sbi, nid_t ino,
1010 struct writeback_control *wbc)
1011{
1012 struct address_space *mapping = sbi->node_inode->i_mapping;
1013 pgoff_t index, end;
1014 struct pagevec pvec;
1015 int step = ino ? 2 : 0;
1016 int nwritten = 0, wrote = 0;
1017
1018 pagevec_init(&pvec, 0);
1019
1020next_step:
1021 index = 0;
1022 end = LONG_MAX;
1023
1024 while (index <= end) {
1025 int i, nr_pages;
1026 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
1027 PAGECACHE_TAG_DIRTY,
1028 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1029 if (nr_pages == 0)
1030 break;
1031
1032 for (i = 0; i < nr_pages; i++) {
1033 struct page *page = pvec.pages[i];
1034
1035 /*
1036 * flushing sequence with step:
1037 * 0. indirect nodes
1038 * 1. dentry dnodes
1039 * 2. file dnodes
1040 */
1041 if (step == 0 && IS_DNODE(page))
1042 continue;
1043 if (step == 1 && (!IS_DNODE(page) ||
1044 is_cold_node(page)))
1045 continue;
1046 if (step == 2 && (!IS_DNODE(page) ||
1047 !is_cold_node(page)))
1048 continue;
1049
1050 /*
1051 * If an fsync mode,
1052 * we should not skip writing node pages.
1053 */
1054 if (ino && ino_of_node(page) == ino)
1055 lock_page(page);
1056 else if (!trylock_page(page))
1057 continue;
1058
1059 if (unlikely(page->mapping != mapping)) {
1060continue_unlock:
1061 unlock_page(page);
1062 continue;
1063 }
1064 if (ino && ino_of_node(page) != ino)
1065 goto continue_unlock;
1066
1067 if (!PageDirty(page)) {
1068 /* someone wrote it for us */
1069 goto continue_unlock;
1070 }
1071
1072 if (!clear_page_dirty_for_io(page))
1073 goto continue_unlock;
1074
1075 /* called by fsync() */
1076 if (ino && IS_DNODE(page)) {
1077 int mark = !is_checkpointed_node(sbi, ino);
1078 set_fsync_mark(page, 1);
1079 if (IS_INODE(page))
1080 set_dentry_mark(page, mark);
1081 nwritten++;
1082 } else {
1083 set_fsync_mark(page, 0);
1084 set_dentry_mark(page, 0);
1085 }
1086 mapping->a_ops->writepage(page, wbc);
1087 wrote++;
1088
1089 if (--wbc->nr_to_write == 0)
1090 break;
1091 }
1092 pagevec_release(&pvec);
1093 cond_resched();
1094
1095 if (wbc->nr_to_write == 0) {
1096 step = 2;
1097 break;
1098 }
1099 }
1100
1101 if (step < 2) {
1102 step++;
1103 goto next_step;
1104 }
1105
1106 if (wrote)
1107 f2fs_submit_bio(sbi, NODE, wbc->sync_mode == WB_SYNC_ALL);
1108
1109 return nwritten;
1110}
1111
1112static int f2fs_write_node_page(struct page *page,
1113 struct writeback_control *wbc)
1114{
1115 struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb);
1116 nid_t nid;
e05df3b1
JK
1117 block_t new_addr;
1118 struct node_info ni;
1119
e05df3b1
JK
1120 wait_on_page_writeback(page);
1121
e05df3b1
JK
1122 /* get old block addr of this node page */
1123 nid = nid_of_node(page);
e05df3b1
JK
1124 BUG_ON(page->index != nid);
1125
1126 get_node_info(sbi, nid, &ni);
1127
1128 /* This page is already truncated */
39936837
JK
1129 if (ni.blk_addr == NULL_ADDR) {
1130 dec_page_count(sbi, F2FS_DIRTY_NODES);
1131 unlock_page(page);
1132 return 0;
1133 }
e05df3b1 1134
08d8058b
JK
1135 if (wbc->for_reclaim) {
1136 dec_page_count(sbi, F2FS_DIRTY_NODES);
1137 wbc->pages_skipped++;
1138 set_page_dirty(page);
08d8058b
JK
1139 return AOP_WRITEPAGE_ACTIVATE;
1140 }
1141
39936837 1142 mutex_lock(&sbi->node_write);
e05df3b1 1143 set_page_writeback(page);
e05df3b1
JK
1144 write_node_page(sbi, page, nid, ni.blk_addr, &new_addr);
1145 set_node_addr(sbi, &ni, new_addr);
1146 dec_page_count(sbi, F2FS_DIRTY_NODES);
39936837 1147 mutex_unlock(&sbi->node_write);
e05df3b1
JK
1148 unlock_page(page);
1149 return 0;
1150}
1151
a7fdffbd
JK
1152/*
1153 * It is very important to gather dirty pages and write at once, so that we can
1154 * submit a big bio without interfering other data writes.
1155 * Be default, 512 pages (2MB), a segment size, is quite reasonable.
1156 */
1157#define COLLECT_DIRTY_NODES 512
e05df3b1
JK
1158static int f2fs_write_node_pages(struct address_space *mapping,
1159 struct writeback_control *wbc)
1160{
1161 struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
1162 struct block_device *bdev = sbi->sb->s_bdev;
1163 long nr_to_write = wbc->nr_to_write;
1164
a7fdffbd 1165 /* First check balancing cached NAT entries */
e05df3b1 1166 if (try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK)) {
b7473754 1167 f2fs_sync_fs(sbi->sb, true);
e05df3b1
JK
1168 return 0;
1169 }
1170
a7fdffbd
JK
1171 /* collect a number of dirty node pages and write together */
1172 if (get_pages(sbi, F2FS_DIRTY_NODES) < COLLECT_DIRTY_NODES)
1173 return 0;
1174
e05df3b1
JK
1175 /* if mounting is failed, skip writing node pages */
1176 wbc->nr_to_write = bio_get_nr_vecs(bdev);
1177 sync_node_pages(sbi, 0, wbc);
1178 wbc->nr_to_write = nr_to_write -
1179 (bio_get_nr_vecs(bdev) - wbc->nr_to_write);
1180 return 0;
1181}
1182
1183static int f2fs_set_node_page_dirty(struct page *page)
1184{
1185 struct address_space *mapping = page->mapping;
1186 struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
1187
1188 SetPageUptodate(page);
1189 if (!PageDirty(page)) {
1190 __set_page_dirty_nobuffers(page);
1191 inc_page_count(sbi, F2FS_DIRTY_NODES);
1192 SetPagePrivate(page);
1193 return 1;
1194 }
1195 return 0;
1196}
1197
1198static void f2fs_invalidate_node_page(struct page *page, unsigned long offset)
1199{
1200 struct inode *inode = page->mapping->host;
1201 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
1202 if (PageDirty(page))
1203 dec_page_count(sbi, F2FS_DIRTY_NODES);
1204 ClearPagePrivate(page);
1205}
1206
1207static int f2fs_release_node_page(struct page *page, gfp_t wait)
1208{
1209 ClearPagePrivate(page);
c3850aa1 1210 return 1;
e05df3b1
JK
1211}
1212
0a8165d7 1213/*
e05df3b1
JK
1214 * Structure of the f2fs node operations
1215 */
1216const struct address_space_operations f2fs_node_aops = {
1217 .writepage = f2fs_write_node_page,
1218 .writepages = f2fs_write_node_pages,
1219 .set_page_dirty = f2fs_set_node_page_dirty,
1220 .invalidatepage = f2fs_invalidate_node_page,
1221 .releasepage = f2fs_release_node_page,
1222};
1223
1224static struct free_nid *__lookup_free_nid_list(nid_t n, struct list_head *head)
1225{
1226 struct list_head *this;
3aa770a9 1227 struct free_nid *i;
e05df3b1
JK
1228 list_for_each(this, head) {
1229 i = list_entry(this, struct free_nid, list);
1230 if (i->nid == n)
3aa770a9 1231 return i;
e05df3b1 1232 }
3aa770a9 1233 return NULL;
e05df3b1
JK
1234}
1235
1236static void __del_from_free_nid_list(struct free_nid *i)
1237{
1238 list_del(&i->list);
1239 kmem_cache_free(free_nid_slab, i);
1240}
1241
1242static int add_free_nid(struct f2fs_nm_info *nm_i, nid_t nid)
1243{
1244 struct free_nid *i;
1245
1246 if (nm_i->fcnt > 2 * MAX_FREE_NIDS)
1247 return 0;
9198aceb
JK
1248
1249 /* 0 nid should not be used */
1250 if (nid == 0)
1251 return 0;
e05df3b1
JK
1252retry:
1253 i = kmem_cache_alloc(free_nid_slab, GFP_NOFS);
1254 if (!i) {
1255 cond_resched();
1256 goto retry;
1257 }
1258 i->nid = nid;
1259 i->state = NID_NEW;
1260
1261 spin_lock(&nm_i->free_nid_list_lock);
1262 if (__lookup_free_nid_list(nid, &nm_i->free_nid_list)) {
1263 spin_unlock(&nm_i->free_nid_list_lock);
1264 kmem_cache_free(free_nid_slab, i);
1265 return 0;
1266 }
1267 list_add_tail(&i->list, &nm_i->free_nid_list);
1268 nm_i->fcnt++;
1269 spin_unlock(&nm_i->free_nid_list_lock);
1270 return 1;
1271}
1272
1273static void remove_free_nid(struct f2fs_nm_info *nm_i, nid_t nid)
1274{
1275 struct free_nid *i;
1276 spin_lock(&nm_i->free_nid_list_lock);
1277 i = __lookup_free_nid_list(nid, &nm_i->free_nid_list);
1278 if (i && i->state == NID_NEW) {
1279 __del_from_free_nid_list(i);
1280 nm_i->fcnt--;
1281 }
1282 spin_unlock(&nm_i->free_nid_list_lock);
1283}
1284
1285static int scan_nat_page(struct f2fs_nm_info *nm_i,
1286 struct page *nat_page, nid_t start_nid)
1287{
1288 struct f2fs_nat_block *nat_blk = page_address(nat_page);
1289 block_t blk_addr;
1290 int fcnt = 0;
1291 int i;
1292
e05df3b1
JK
1293 i = start_nid % NAT_ENTRY_PER_BLOCK;
1294
1295 for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
04431c44
JK
1296 if (start_nid >= nm_i->max_nid)
1297 break;
e05df3b1
JK
1298 blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
1299 BUG_ON(blk_addr == NEW_ADDR);
1300 if (blk_addr == NULL_ADDR)
1301 fcnt += add_free_nid(nm_i, start_nid);
1302 }
1303 return fcnt;
1304}
1305
1306static void build_free_nids(struct f2fs_sb_info *sbi)
1307{
1308 struct free_nid *fnid, *next_fnid;
1309 struct f2fs_nm_info *nm_i = NM_I(sbi);
1310 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1311 struct f2fs_summary_block *sum = curseg->sum_blk;
55008d84
JK
1312 int fcnt = 0, i = 0;
1313 nid_t nid = nm_i->next_scan_nid;
e05df3b1 1314
55008d84
JK
1315 /* Enough entries */
1316 if (nm_i->fcnt > NAT_ENTRY_PER_BLOCK)
1317 return;
e05df3b1 1318
55008d84 1319 /* readahead nat pages to be scanned */
e05df3b1
JK
1320 ra_nat_pages(sbi, nid);
1321
1322 while (1) {
1323 struct page *page = get_current_nat_page(sbi, nid);
1324
1325 fcnt += scan_nat_page(nm_i, page, nid);
1326 f2fs_put_page(page, 1);
1327
1328 nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
55008d84 1329 if (nid >= nm_i->max_nid)
e05df3b1 1330 nid = 0;
55008d84
JK
1331
1332 if (i++ == FREE_NID_PAGES)
e05df3b1
JK
1333 break;
1334 }
1335
55008d84
JK
1336 /* go to the next free nat pages to find free nids abundantly */
1337 nm_i->next_scan_nid = nid;
e05df3b1
JK
1338
1339 /* find free nids from current sum_pages */
1340 mutex_lock(&curseg->curseg_mutex);
1341 for (i = 0; i < nats_in_cursum(sum); i++) {
1342 block_t addr = le32_to_cpu(nat_in_journal(sum, i).block_addr);
1343 nid = le32_to_cpu(nid_in_journal(sum, i));
1344 if (addr == NULL_ADDR)
1345 add_free_nid(nm_i, nid);
1346 else
1347 remove_free_nid(nm_i, nid);
1348 }
1349 mutex_unlock(&curseg->curseg_mutex);
1350
1351 /* remove the free nids from current allocated nids */
1352 list_for_each_entry_safe(fnid, next_fnid, &nm_i->free_nid_list, list) {
1353 struct nat_entry *ne;
1354
1355 read_lock(&nm_i->nat_tree_lock);
1356 ne = __lookup_nat_cache(nm_i, fnid->nid);
1357 if (ne && nat_get_blkaddr(ne) != NULL_ADDR)
1358 remove_free_nid(nm_i, fnid->nid);
1359 read_unlock(&nm_i->nat_tree_lock);
1360 }
1361}
1362
1363/*
1364 * If this function returns success, caller can obtain a new nid
1365 * from second parameter of this function.
1366 * The returned nid could be used ino as well as nid when inode is created.
1367 */
1368bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
1369{
1370 struct f2fs_nm_info *nm_i = NM_I(sbi);
1371 struct free_nid *i = NULL;
1372 struct list_head *this;
1373retry:
55008d84
JK
1374 if (sbi->total_valid_node_count + 1 >= nm_i->max_nid)
1375 return false;
e05df3b1 1376
e05df3b1 1377 spin_lock(&nm_i->free_nid_list_lock);
e05df3b1 1378
55008d84
JK
1379 /* We should not use stale free nids created by build_free_nids */
1380 if (nm_i->fcnt && !sbi->on_build_free_nids) {
1381 BUG_ON(list_empty(&nm_i->free_nid_list));
1382 list_for_each(this, &nm_i->free_nid_list) {
1383 i = list_entry(this, struct free_nid, list);
1384 if (i->state == NID_NEW)
1385 break;
1386 }
e05df3b1 1387
55008d84
JK
1388 BUG_ON(i->state != NID_NEW);
1389 *nid = i->nid;
1390 i->state = NID_ALLOC;
1391 nm_i->fcnt--;
1392 spin_unlock(&nm_i->free_nid_list_lock);
1393 return true;
1394 }
e05df3b1 1395 spin_unlock(&nm_i->free_nid_list_lock);
55008d84
JK
1396
1397 /* Let's scan nat pages and its caches to get free nids */
1398 mutex_lock(&nm_i->build_lock);
1399 sbi->on_build_free_nids = 1;
1400 build_free_nids(sbi);
1401 sbi->on_build_free_nids = 0;
1402 mutex_unlock(&nm_i->build_lock);
1403 goto retry;
e05df3b1
JK
1404}
1405
0a8165d7 1406/*
e05df3b1
JK
1407 * alloc_nid() should be called prior to this function.
1408 */
1409void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
1410{
1411 struct f2fs_nm_info *nm_i = NM_I(sbi);
1412 struct free_nid *i;
1413
1414 spin_lock(&nm_i->free_nid_list_lock);
1415 i = __lookup_free_nid_list(nid, &nm_i->free_nid_list);
49952fa1
JK
1416 BUG_ON(!i || i->state != NID_ALLOC);
1417 __del_from_free_nid_list(i);
e05df3b1
JK
1418 spin_unlock(&nm_i->free_nid_list_lock);
1419}
1420
0a8165d7 1421/*
e05df3b1
JK
1422 * alloc_nid() should be called prior to this function.
1423 */
1424void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
1425{
49952fa1
JK
1426 struct f2fs_nm_info *nm_i = NM_I(sbi);
1427 struct free_nid *i;
1428
1429 spin_lock(&nm_i->free_nid_list_lock);
1430 i = __lookup_free_nid_list(nid, &nm_i->free_nid_list);
1431 BUG_ON(!i || i->state != NID_ALLOC);
1432 i->state = NID_NEW;
1433 nm_i->fcnt++;
1434 spin_unlock(&nm_i->free_nid_list_lock);
e05df3b1
JK
1435}
1436
1437void recover_node_page(struct f2fs_sb_info *sbi, struct page *page,
1438 struct f2fs_summary *sum, struct node_info *ni,
1439 block_t new_blkaddr)
1440{
1441 rewrite_node_page(sbi, page, sum, ni->blk_addr, new_blkaddr);
1442 set_node_addr(sbi, ni, new_blkaddr);
1443 clear_node_page_dirty(page);
1444}
1445
1446int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
1447{
1448 struct address_space *mapping = sbi->node_inode->i_mapping;
1449 struct f2fs_node *src, *dst;
1450 nid_t ino = ino_of_node(page);
1451 struct node_info old_ni, new_ni;
1452 struct page *ipage;
1453
1454 ipage = grab_cache_page(mapping, ino);
1455 if (!ipage)
1456 return -ENOMEM;
1457
1458 /* Should not use this inode from free nid list */
1459 remove_free_nid(NM_I(sbi), ino);
1460
1461 get_node_info(sbi, ino, &old_ni);
1462 SetPageUptodate(ipage);
1463 fill_node_footer(ipage, ino, ino, 0, true);
1464
1465 src = (struct f2fs_node *)page_address(page);
1466 dst = (struct f2fs_node *)page_address(ipage);
1467
1468 memcpy(dst, src, (unsigned long)&src->i.i_ext - (unsigned long)&src->i);
1469 dst->i.i_size = 0;
25ca923b
JK
1470 dst->i.i_blocks = cpu_to_le64(1);
1471 dst->i.i_links = cpu_to_le32(1);
e05df3b1
JK
1472 dst->i.i_xattr_nid = 0;
1473
1474 new_ni = old_ni;
1475 new_ni.ino = ino;
1476
1477 set_node_addr(sbi, &new_ni, NEW_ADDR);
1478 inc_valid_inode_count(sbi);
1479
1480 f2fs_put_page(ipage, 1);
1481 return 0;
1482}
1483
1484int restore_node_summary(struct f2fs_sb_info *sbi,
1485 unsigned int segno, struct f2fs_summary_block *sum)
1486{
1487 struct f2fs_node *rn;
1488 struct f2fs_summary *sum_entry;
1489 struct page *page;
1490 block_t addr;
1491 int i, last_offset;
1492
1493 /* alloc temporal page for read node */
1494 page = alloc_page(GFP_NOFS | __GFP_ZERO);
1495 if (IS_ERR(page))
1496 return PTR_ERR(page);
1497 lock_page(page);
1498
1499 /* scan the node segment */
1500 last_offset = sbi->blocks_per_seg;
1501 addr = START_BLOCK(sbi, segno);
1502 sum_entry = &sum->entries[0];
1503
1504 for (i = 0; i < last_offset; i++, sum_entry++) {
393ff91f
JK
1505 /*
1506 * In order to read next node page,
1507 * we must clear PageUptodate flag.
1508 */
1509 ClearPageUptodate(page);
1510
e05df3b1
JK
1511 if (f2fs_readpage(sbi, page, addr, READ_SYNC))
1512 goto out;
1513
393ff91f 1514 lock_page(page);
e05df3b1
JK
1515 rn = (struct f2fs_node *)page_address(page);
1516 sum_entry->nid = rn->footer.nid;
1517 sum_entry->version = 0;
1518 sum_entry->ofs_in_node = 0;
1519 addr++;
e05df3b1 1520 }
e05df3b1 1521 unlock_page(page);
393ff91f 1522out:
e05df3b1
JK
1523 __free_pages(page, 0);
1524 return 0;
1525}
1526
1527static bool flush_nats_in_journal(struct f2fs_sb_info *sbi)
1528{
1529 struct f2fs_nm_info *nm_i = NM_I(sbi);
1530 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1531 struct f2fs_summary_block *sum = curseg->sum_blk;
1532 int i;
1533
1534 mutex_lock(&curseg->curseg_mutex);
1535
1536 if (nats_in_cursum(sum) < NAT_JOURNAL_ENTRIES) {
1537 mutex_unlock(&curseg->curseg_mutex);
1538 return false;
1539 }
1540
1541 for (i = 0; i < nats_in_cursum(sum); i++) {
1542 struct nat_entry *ne;
1543 struct f2fs_nat_entry raw_ne;
1544 nid_t nid = le32_to_cpu(nid_in_journal(sum, i));
1545
1546 raw_ne = nat_in_journal(sum, i);
1547retry:
1548 write_lock(&nm_i->nat_tree_lock);
1549 ne = __lookup_nat_cache(nm_i, nid);
1550 if (ne) {
1551 __set_nat_cache_dirty(nm_i, ne);
1552 write_unlock(&nm_i->nat_tree_lock);
1553 continue;
1554 }
1555 ne = grab_nat_entry(nm_i, nid);
1556 if (!ne) {
1557 write_unlock(&nm_i->nat_tree_lock);
1558 goto retry;
1559 }
1560 nat_set_blkaddr(ne, le32_to_cpu(raw_ne.block_addr));
1561 nat_set_ino(ne, le32_to_cpu(raw_ne.ino));
1562 nat_set_version(ne, raw_ne.version);
1563 __set_nat_cache_dirty(nm_i, ne);
1564 write_unlock(&nm_i->nat_tree_lock);
1565 }
1566 update_nats_in_cursum(sum, -i);
1567 mutex_unlock(&curseg->curseg_mutex);
1568 return true;
1569}
1570
0a8165d7 1571/*
e05df3b1
JK
1572 * This function is called during the checkpointing process.
1573 */
1574void flush_nat_entries(struct f2fs_sb_info *sbi)
1575{
1576 struct f2fs_nm_info *nm_i = NM_I(sbi);
1577 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1578 struct f2fs_summary_block *sum = curseg->sum_blk;
1579 struct list_head *cur, *n;
1580 struct page *page = NULL;
1581 struct f2fs_nat_block *nat_blk = NULL;
1582 nid_t start_nid = 0, end_nid = 0;
1583 bool flushed;
1584
1585 flushed = flush_nats_in_journal(sbi);
1586
1587 if (!flushed)
1588 mutex_lock(&curseg->curseg_mutex);
1589
1590 /* 1) flush dirty nat caches */
1591 list_for_each_safe(cur, n, &nm_i->dirty_nat_entries) {
1592 struct nat_entry *ne;
1593 nid_t nid;
1594 struct f2fs_nat_entry raw_ne;
1595 int offset = -1;
2b50638d 1596 block_t new_blkaddr;
e05df3b1
JK
1597
1598 ne = list_entry(cur, struct nat_entry, list);
1599 nid = nat_get_nid(ne);
1600
1601 if (nat_get_blkaddr(ne) == NEW_ADDR)
1602 continue;
1603 if (flushed)
1604 goto to_nat_page;
1605
1606 /* if there is room for nat enries in curseg->sumpage */
1607 offset = lookup_journal_in_cursum(sum, NAT_JOURNAL, nid, 1);
1608 if (offset >= 0) {
1609 raw_ne = nat_in_journal(sum, offset);
e05df3b1
JK
1610 goto flush_now;
1611 }
1612to_nat_page:
1613 if (!page || (start_nid > nid || nid > end_nid)) {
1614 if (page) {
1615 f2fs_put_page(page, 1);
1616 page = NULL;
1617 }
1618 start_nid = START_NID(nid);
1619 end_nid = start_nid + NAT_ENTRY_PER_BLOCK - 1;
1620
1621 /*
1622 * get nat block with dirty flag, increased reference
1623 * count, mapped and lock
1624 */
1625 page = get_next_nat_page(sbi, start_nid);
1626 nat_blk = page_address(page);
1627 }
1628
1629 BUG_ON(!nat_blk);
1630 raw_ne = nat_blk->entries[nid - start_nid];
e05df3b1
JK
1631flush_now:
1632 new_blkaddr = nat_get_blkaddr(ne);
1633
1634 raw_ne.ino = cpu_to_le32(nat_get_ino(ne));
1635 raw_ne.block_addr = cpu_to_le32(new_blkaddr);
1636 raw_ne.version = nat_get_version(ne);
1637
1638 if (offset < 0) {
1639 nat_blk->entries[nid - start_nid] = raw_ne;
1640 } else {
1641 nat_in_journal(sum, offset) = raw_ne;
1642 nid_in_journal(sum, offset) = cpu_to_le32(nid);
1643 }
1644
fa372417
JK
1645 if (nat_get_blkaddr(ne) == NULL_ADDR &&
1646 !add_free_nid(NM_I(sbi), nid)) {
e05df3b1
JK
1647 write_lock(&nm_i->nat_tree_lock);
1648 __del_from_nat_cache(nm_i, ne);
1649 write_unlock(&nm_i->nat_tree_lock);
e05df3b1
JK
1650 } else {
1651 write_lock(&nm_i->nat_tree_lock);
1652 __clear_nat_cache_dirty(nm_i, ne);
1653 ne->checkpointed = true;
1654 write_unlock(&nm_i->nat_tree_lock);
1655 }
1656 }
1657 if (!flushed)
1658 mutex_unlock(&curseg->curseg_mutex);
1659 f2fs_put_page(page, 1);
1660
1661 /* 2) shrink nat caches if necessary */
1662 try_to_free_nats(sbi, nm_i->nat_cnt - NM_WOUT_THRESHOLD);
1663}
1664
1665static int init_node_manager(struct f2fs_sb_info *sbi)
1666{
1667 struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
1668 struct f2fs_nm_info *nm_i = NM_I(sbi);
1669 unsigned char *version_bitmap;
1670 unsigned int nat_segs, nat_blocks;
1671
1672 nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
1673
1674 /* segment_count_nat includes pair segment so divide to 2. */
1675 nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
1676 nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
1677 nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nat_blocks;
1678 nm_i->fcnt = 0;
1679 nm_i->nat_cnt = 0;
1680
1681 INIT_LIST_HEAD(&nm_i->free_nid_list);
1682 INIT_RADIX_TREE(&nm_i->nat_root, GFP_ATOMIC);
1683 INIT_LIST_HEAD(&nm_i->nat_entries);
1684 INIT_LIST_HEAD(&nm_i->dirty_nat_entries);
1685
1686 mutex_init(&nm_i->build_lock);
1687 spin_lock_init(&nm_i->free_nid_list_lock);
1688 rwlock_init(&nm_i->nat_tree_lock);
1689
e05df3b1 1690 nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
79b5793b 1691 nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
e05df3b1
JK
1692 version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
1693 if (!version_bitmap)
1694 return -EFAULT;
1695
79b5793b
AG
1696 nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
1697 GFP_KERNEL);
1698 if (!nm_i->nat_bitmap)
1699 return -ENOMEM;
e05df3b1
JK
1700 return 0;
1701}
1702
1703int build_node_manager(struct f2fs_sb_info *sbi)
1704{
1705 int err;
1706
1707 sbi->nm_info = kzalloc(sizeof(struct f2fs_nm_info), GFP_KERNEL);
1708 if (!sbi->nm_info)
1709 return -ENOMEM;
1710
1711 err = init_node_manager(sbi);
1712 if (err)
1713 return err;
1714
1715 build_free_nids(sbi);
1716 return 0;
1717}
1718
1719void destroy_node_manager(struct f2fs_sb_info *sbi)
1720{
1721 struct f2fs_nm_info *nm_i = NM_I(sbi);
1722 struct free_nid *i, *next_i;
1723 struct nat_entry *natvec[NATVEC_SIZE];
1724 nid_t nid = 0;
1725 unsigned int found;
1726
1727 if (!nm_i)
1728 return;
1729
1730 /* destroy free nid list */
1731 spin_lock(&nm_i->free_nid_list_lock);
1732 list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
1733 BUG_ON(i->state == NID_ALLOC);
1734 __del_from_free_nid_list(i);
1735 nm_i->fcnt--;
1736 }
1737 BUG_ON(nm_i->fcnt);
1738 spin_unlock(&nm_i->free_nid_list_lock);
1739
1740 /* destroy nat cache */
1741 write_lock(&nm_i->nat_tree_lock);
1742 while ((found = __gang_lookup_nat_cache(nm_i,
1743 nid, NATVEC_SIZE, natvec))) {
1744 unsigned idx;
1745 for (idx = 0; idx < found; idx++) {
1746 struct nat_entry *e = natvec[idx];
1747 nid = nat_get_nid(e) + 1;
1748 __del_from_nat_cache(nm_i, e);
1749 }
1750 }
1751 BUG_ON(nm_i->nat_cnt);
1752 write_unlock(&nm_i->nat_tree_lock);
1753
1754 kfree(nm_i->nat_bitmap);
1755 sbi->nm_info = NULL;
1756 kfree(nm_i);
1757}
1758
6e6093a8 1759int __init create_node_manager_caches(void)
e05df3b1
JK
1760{
1761 nat_entry_slab = f2fs_kmem_cache_create("nat_entry",
1762 sizeof(struct nat_entry), NULL);
1763 if (!nat_entry_slab)
1764 return -ENOMEM;
1765
1766 free_nid_slab = f2fs_kmem_cache_create("free_nid",
1767 sizeof(struct free_nid), NULL);
1768 if (!free_nid_slab) {
1769 kmem_cache_destroy(nat_entry_slab);
1770 return -ENOMEM;
1771 }
1772 return 0;
1773}
1774
1775void destroy_node_manager_caches(void)
1776{
1777 kmem_cache_destroy(free_nid_slab);
1778 kmem_cache_destroy(nat_entry_slab);
1779}