f2fs: add the truncate_xattr_node function
[linux-2.6-block.git] / fs / f2fs / node.c
CommitLineData
0a8165d7 1/*
e05df3b1
JK
2 * fs/f2fs/node.c
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11#include <linux/fs.h>
12#include <linux/f2fs_fs.h>
13#include <linux/mpage.h>
14#include <linux/backing-dev.h>
15#include <linux/blkdev.h>
16#include <linux/pagevec.h>
17#include <linux/swap.h>
18
19#include "f2fs.h"
20#include "node.h"
21#include "segment.h"
51dd6249 22#include <trace/events/f2fs.h>
e05df3b1
JK
23
24static struct kmem_cache *nat_entry_slab;
25static struct kmem_cache *free_nid_slab;
26
27static void clear_node_page_dirty(struct page *page)
28{
29 struct address_space *mapping = page->mapping;
30 struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
31 unsigned int long flags;
32
33 if (PageDirty(page)) {
34 spin_lock_irqsave(&mapping->tree_lock, flags);
35 radix_tree_tag_clear(&mapping->page_tree,
36 page_index(page),
37 PAGECACHE_TAG_DIRTY);
38 spin_unlock_irqrestore(&mapping->tree_lock, flags);
39
40 clear_page_dirty_for_io(page);
41 dec_page_count(sbi, F2FS_DIRTY_NODES);
42 }
43 ClearPageUptodate(page);
44}
45
46static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
47{
48 pgoff_t index = current_nat_addr(sbi, nid);
49 return get_meta_page(sbi, index);
50}
51
52static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
53{
54 struct page *src_page;
55 struct page *dst_page;
56 pgoff_t src_off;
57 pgoff_t dst_off;
58 void *src_addr;
59 void *dst_addr;
60 struct f2fs_nm_info *nm_i = NM_I(sbi);
61
62 src_off = current_nat_addr(sbi, nid);
63 dst_off = next_nat_addr(sbi, src_off);
64
65 /* get current nat block page with lock */
66 src_page = get_meta_page(sbi, src_off);
67
68 /* Dirty src_page means that it is already the new target NAT page. */
69 if (PageDirty(src_page))
70 return src_page;
71
72 dst_page = grab_meta_page(sbi, dst_off);
73
74 src_addr = page_address(src_page);
75 dst_addr = page_address(dst_page);
76 memcpy(dst_addr, src_addr, PAGE_CACHE_SIZE);
77 set_page_dirty(dst_page);
78 f2fs_put_page(src_page, 1);
79
80 set_to_next_nat(nm_i, nid);
81
82 return dst_page;
83}
84
0a8165d7 85/*
e05df3b1
JK
86 * Readahead NAT pages
87 */
88static void ra_nat_pages(struct f2fs_sb_info *sbi, int nid)
89{
90 struct address_space *mapping = sbi->meta_inode->i_mapping;
91 struct f2fs_nm_info *nm_i = NM_I(sbi);
c718379b 92 struct blk_plug plug;
e05df3b1
JK
93 struct page *page;
94 pgoff_t index;
95 int i;
96
c718379b
JK
97 blk_start_plug(&plug);
98
e05df3b1
JK
99 for (i = 0; i < FREE_NID_PAGES; i++, nid += NAT_ENTRY_PER_BLOCK) {
100 if (nid >= nm_i->max_nid)
101 nid = 0;
102 index = current_nat_addr(sbi, nid);
103
104 page = grab_cache_page(mapping, index);
105 if (!page)
106 continue;
393ff91f 107 if (PageUptodate(page)) {
e05df3b1
JK
108 f2fs_put_page(page, 1);
109 continue;
110 }
393ff91f
JK
111 if (f2fs_readpage(sbi, page, index, READ))
112 continue;
113
369a708c 114 f2fs_put_page(page, 0);
e05df3b1 115 }
c718379b 116 blk_finish_plug(&plug);
e05df3b1
JK
117}
118
119static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
120{
121 return radix_tree_lookup(&nm_i->nat_root, n);
122}
123
124static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
125 nid_t start, unsigned int nr, struct nat_entry **ep)
126{
127 return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
128}
129
130static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
131{
132 list_del(&e->list);
133 radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
134 nm_i->nat_cnt--;
135 kmem_cache_free(nat_entry_slab, e);
136}
137
138int is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
139{
140 struct f2fs_nm_info *nm_i = NM_I(sbi);
141 struct nat_entry *e;
142 int is_cp = 1;
143
144 read_lock(&nm_i->nat_tree_lock);
145 e = __lookup_nat_cache(nm_i, nid);
146 if (e && !e->checkpointed)
147 is_cp = 0;
148 read_unlock(&nm_i->nat_tree_lock);
149 return is_cp;
150}
151
152static struct nat_entry *grab_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid)
153{
154 struct nat_entry *new;
155
156 new = kmem_cache_alloc(nat_entry_slab, GFP_ATOMIC);
157 if (!new)
158 return NULL;
159 if (radix_tree_insert(&nm_i->nat_root, nid, new)) {
160 kmem_cache_free(nat_entry_slab, new);
161 return NULL;
162 }
163 memset(new, 0, sizeof(struct nat_entry));
164 nat_set_nid(new, nid);
165 list_add_tail(&new->list, &nm_i->nat_entries);
166 nm_i->nat_cnt++;
167 return new;
168}
169
170static void cache_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid,
171 struct f2fs_nat_entry *ne)
172{
173 struct nat_entry *e;
174retry:
175 write_lock(&nm_i->nat_tree_lock);
176 e = __lookup_nat_cache(nm_i, nid);
177 if (!e) {
178 e = grab_nat_entry(nm_i, nid);
179 if (!e) {
180 write_unlock(&nm_i->nat_tree_lock);
181 goto retry;
182 }
183 nat_set_blkaddr(e, le32_to_cpu(ne->block_addr));
184 nat_set_ino(e, le32_to_cpu(ne->ino));
185 nat_set_version(e, ne->version);
186 e->checkpointed = true;
187 }
188 write_unlock(&nm_i->nat_tree_lock);
189}
190
191static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
192 block_t new_blkaddr)
193{
194 struct f2fs_nm_info *nm_i = NM_I(sbi);
195 struct nat_entry *e;
196retry:
197 write_lock(&nm_i->nat_tree_lock);
198 e = __lookup_nat_cache(nm_i, ni->nid);
199 if (!e) {
200 e = grab_nat_entry(nm_i, ni->nid);
201 if (!e) {
202 write_unlock(&nm_i->nat_tree_lock);
203 goto retry;
204 }
205 e->ni = *ni;
206 e->checkpointed = true;
207 BUG_ON(ni->blk_addr == NEW_ADDR);
208 } else if (new_blkaddr == NEW_ADDR) {
209 /*
210 * when nid is reallocated,
211 * previous nat entry can be remained in nat cache.
212 * So, reinitialize it with new information.
213 */
214 e->ni = *ni;
215 BUG_ON(ni->blk_addr != NULL_ADDR);
216 }
217
218 if (new_blkaddr == NEW_ADDR)
219 e->checkpointed = false;
220
221 /* sanity check */
222 BUG_ON(nat_get_blkaddr(e) != ni->blk_addr);
223 BUG_ON(nat_get_blkaddr(e) == NULL_ADDR &&
224 new_blkaddr == NULL_ADDR);
225 BUG_ON(nat_get_blkaddr(e) == NEW_ADDR &&
226 new_blkaddr == NEW_ADDR);
227 BUG_ON(nat_get_blkaddr(e) != NEW_ADDR &&
228 nat_get_blkaddr(e) != NULL_ADDR &&
229 new_blkaddr == NEW_ADDR);
230
231 /* increament version no as node is removed */
232 if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
233 unsigned char version = nat_get_version(e);
234 nat_set_version(e, inc_node_version(version));
235 }
236
237 /* change address */
238 nat_set_blkaddr(e, new_blkaddr);
239 __set_nat_cache_dirty(nm_i, e);
240 write_unlock(&nm_i->nat_tree_lock);
241}
242
243static int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
244{
245 struct f2fs_nm_info *nm_i = NM_I(sbi);
246
6cac3759 247 if (nm_i->nat_cnt <= NM_WOUT_THRESHOLD)
e05df3b1
JK
248 return 0;
249
250 write_lock(&nm_i->nat_tree_lock);
251 while (nr_shrink && !list_empty(&nm_i->nat_entries)) {
252 struct nat_entry *ne;
253 ne = list_first_entry(&nm_i->nat_entries,
254 struct nat_entry, list);
255 __del_from_nat_cache(nm_i, ne);
256 nr_shrink--;
257 }
258 write_unlock(&nm_i->nat_tree_lock);
259 return nr_shrink;
260}
261
0a8165d7 262/*
e05df3b1
JK
263 * This function returns always success
264 */
265void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni)
266{
267 struct f2fs_nm_info *nm_i = NM_I(sbi);
268 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
269 struct f2fs_summary_block *sum = curseg->sum_blk;
270 nid_t start_nid = START_NID(nid);
271 struct f2fs_nat_block *nat_blk;
272 struct page *page = NULL;
273 struct f2fs_nat_entry ne;
274 struct nat_entry *e;
275 int i;
276
be4124f8 277 memset(&ne, 0, sizeof(struct f2fs_nat_entry));
e05df3b1
JK
278 ni->nid = nid;
279
280 /* Check nat cache */
281 read_lock(&nm_i->nat_tree_lock);
282 e = __lookup_nat_cache(nm_i, nid);
283 if (e) {
284 ni->ino = nat_get_ino(e);
285 ni->blk_addr = nat_get_blkaddr(e);
286 ni->version = nat_get_version(e);
287 }
288 read_unlock(&nm_i->nat_tree_lock);
289 if (e)
290 return;
291
292 /* Check current segment summary */
293 mutex_lock(&curseg->curseg_mutex);
294 i = lookup_journal_in_cursum(sum, NAT_JOURNAL, nid, 0);
295 if (i >= 0) {
296 ne = nat_in_journal(sum, i);
297 node_info_from_raw_nat(ni, &ne);
298 }
299 mutex_unlock(&curseg->curseg_mutex);
300 if (i >= 0)
301 goto cache;
302
303 /* Fill node_info from nat page */
304 page = get_current_nat_page(sbi, start_nid);
305 nat_blk = (struct f2fs_nat_block *)page_address(page);
306 ne = nat_blk->entries[nid - start_nid];
307 node_info_from_raw_nat(ni, &ne);
308 f2fs_put_page(page, 1);
309cache:
310 /* cache nat entry */
311 cache_nat_entry(NM_I(sbi), nid, &ne);
312}
313
0a8165d7 314/*
e05df3b1
JK
315 * The maximum depth is four.
316 * Offset[0] will have raw inode offset.
317 */
de93653f
JK
318static int get_node_path(struct f2fs_inode_info *fi, long block,
319 int offset[4], unsigned int noffset[4])
e05df3b1 320{
de93653f 321 const long direct_index = ADDRS_PER_INODE(fi);
e05df3b1
JK
322 const long direct_blks = ADDRS_PER_BLOCK;
323 const long dptrs_per_blk = NIDS_PER_BLOCK;
324 const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
325 const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
326 int n = 0;
327 int level = 0;
328
329 noffset[0] = 0;
330
331 if (block < direct_index) {
25c0a6e5 332 offset[n] = block;
e05df3b1
JK
333 goto got;
334 }
335 block -= direct_index;
336 if (block < direct_blks) {
337 offset[n++] = NODE_DIR1_BLOCK;
338 noffset[n] = 1;
25c0a6e5 339 offset[n] = block;
e05df3b1
JK
340 level = 1;
341 goto got;
342 }
343 block -= direct_blks;
344 if (block < direct_blks) {
345 offset[n++] = NODE_DIR2_BLOCK;
346 noffset[n] = 2;
25c0a6e5 347 offset[n] = block;
e05df3b1
JK
348 level = 1;
349 goto got;
350 }
351 block -= direct_blks;
352 if (block < indirect_blks) {
353 offset[n++] = NODE_IND1_BLOCK;
354 noffset[n] = 3;
355 offset[n++] = block / direct_blks;
356 noffset[n] = 4 + offset[n - 1];
25c0a6e5 357 offset[n] = block % direct_blks;
e05df3b1
JK
358 level = 2;
359 goto got;
360 }
361 block -= indirect_blks;
362 if (block < indirect_blks) {
363 offset[n++] = NODE_IND2_BLOCK;
364 noffset[n] = 4 + dptrs_per_blk;
365 offset[n++] = block / direct_blks;
366 noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
25c0a6e5 367 offset[n] = block % direct_blks;
e05df3b1
JK
368 level = 2;
369 goto got;
370 }
371 block -= indirect_blks;
372 if (block < dindirect_blks) {
373 offset[n++] = NODE_DIND_BLOCK;
374 noffset[n] = 5 + (dptrs_per_blk * 2);
375 offset[n++] = block / indirect_blks;
376 noffset[n] = 6 + (dptrs_per_blk * 2) +
377 offset[n - 1] * (dptrs_per_blk + 1);
378 offset[n++] = (block / direct_blks) % dptrs_per_blk;
379 noffset[n] = 7 + (dptrs_per_blk * 2) +
380 offset[n - 2] * (dptrs_per_blk + 1) +
381 offset[n - 1];
25c0a6e5 382 offset[n] = block % direct_blks;
e05df3b1
JK
383 level = 3;
384 goto got;
385 } else {
386 BUG();
387 }
388got:
389 return level;
390}
391
392/*
393 * Caller should call f2fs_put_dnode(dn).
39936837
JK
394 * Also, it should grab and release a mutex by calling mutex_lock_op() and
395 * mutex_unlock_op() only if ro is not set RDONLY_NODE.
396 * In the case of RDONLY_NODE, we don't need to care about mutex.
e05df3b1 397 */
266e97a8 398int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
e05df3b1
JK
399{
400 struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
401 struct page *npage[4];
402 struct page *parent;
403 int offset[4];
404 unsigned int noffset[4];
405 nid_t nids[4];
406 int level, i;
407 int err = 0;
408
de93653f 409 level = get_node_path(F2FS_I(dn->inode), index, offset, noffset);
e05df3b1
JK
410
411 nids[0] = dn->inode->i_ino;
1646cfac 412 npage[0] = dn->inode_page;
e05df3b1 413
1646cfac
JK
414 if (!npage[0]) {
415 npage[0] = get_node_page(sbi, nids[0]);
416 if (IS_ERR(npage[0]))
417 return PTR_ERR(npage[0]);
418 }
e05df3b1 419 parent = npage[0];
52c2db3f
CL
420 if (level != 0)
421 nids[1] = get_nid(parent, offset[0], true);
e05df3b1
JK
422 dn->inode_page = npage[0];
423 dn->inode_page_locked = true;
424
425 /* get indirect or direct nodes */
426 for (i = 1; i <= level; i++) {
427 bool done = false;
428
266e97a8 429 if (!nids[i] && mode == ALLOC_NODE) {
e05df3b1
JK
430 /* alloc new node */
431 if (!alloc_nid(sbi, &(nids[i]))) {
e05df3b1
JK
432 err = -ENOSPC;
433 goto release_pages;
434 }
435
436 dn->nid = nids[i];
8ae8f162 437 npage[i] = new_node_page(dn, noffset[i], NULL);
e05df3b1
JK
438 if (IS_ERR(npage[i])) {
439 alloc_nid_failed(sbi, nids[i]);
e05df3b1
JK
440 err = PTR_ERR(npage[i]);
441 goto release_pages;
442 }
443
444 set_nid(parent, offset[i - 1], nids[i], i == 1);
445 alloc_nid_done(sbi, nids[i]);
e05df3b1 446 done = true;
266e97a8 447 } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
e05df3b1
JK
448 npage[i] = get_node_page_ra(parent, offset[i - 1]);
449 if (IS_ERR(npage[i])) {
450 err = PTR_ERR(npage[i]);
451 goto release_pages;
452 }
453 done = true;
454 }
455 if (i == 1) {
456 dn->inode_page_locked = false;
457 unlock_page(parent);
458 } else {
459 f2fs_put_page(parent, 1);
460 }
461
462 if (!done) {
463 npage[i] = get_node_page(sbi, nids[i]);
464 if (IS_ERR(npage[i])) {
465 err = PTR_ERR(npage[i]);
466 f2fs_put_page(npage[0], 0);
467 goto release_out;
468 }
469 }
470 if (i < level) {
471 parent = npage[i];
472 nids[i + 1] = get_nid(parent, offset[i], false);
473 }
474 }
475 dn->nid = nids[level];
476 dn->ofs_in_node = offset[level];
477 dn->node_page = npage[level];
478 dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node);
479 return 0;
480
481release_pages:
482 f2fs_put_page(parent, 1);
483 if (i > 1)
484 f2fs_put_page(npage[0], 0);
485release_out:
486 dn->inode_page = NULL;
487 dn->node_page = NULL;
488 return err;
489}
490
491static void truncate_node(struct dnode_of_data *dn)
492{
493 struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
494 struct node_info ni;
495
496 get_node_info(sbi, dn->nid, &ni);
71e9fec5
JK
497 if (dn->inode->i_blocks == 0) {
498 BUG_ON(ni.blk_addr != NULL_ADDR);
499 goto invalidate;
500 }
e05df3b1
JK
501 BUG_ON(ni.blk_addr == NULL_ADDR);
502
e05df3b1 503 /* Deallocate node address */
71e9fec5 504 invalidate_blocks(sbi, ni.blk_addr);
e05df3b1
JK
505 dec_valid_node_count(sbi, dn->inode, 1);
506 set_node_addr(sbi, &ni, NULL_ADDR);
507
508 if (dn->nid == dn->inode->i_ino) {
509 remove_orphan_inode(sbi, dn->nid);
510 dec_valid_inode_count(sbi);
511 } else {
512 sync_inode_page(dn);
513 }
71e9fec5 514invalidate:
e05df3b1
JK
515 clear_node_page_dirty(dn->node_page);
516 F2FS_SET_SB_DIRT(sbi);
517
518 f2fs_put_page(dn->node_page, 1);
519 dn->node_page = NULL;
51dd6249 520 trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
e05df3b1
JK
521}
522
523static int truncate_dnode(struct dnode_of_data *dn)
524{
525 struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
526 struct page *page;
527
528 if (dn->nid == 0)
529 return 1;
530
531 /* get direct node */
532 page = get_node_page(sbi, dn->nid);
533 if (IS_ERR(page) && PTR_ERR(page) == -ENOENT)
534 return 1;
535 else if (IS_ERR(page))
536 return PTR_ERR(page);
537
538 /* Make dnode_of_data for parameter */
539 dn->node_page = page;
540 dn->ofs_in_node = 0;
541 truncate_data_blocks(dn);
542 truncate_node(dn);
543 return 1;
544}
545
546static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
547 int ofs, int depth)
548{
549 struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
550 struct dnode_of_data rdn = *dn;
551 struct page *page;
552 struct f2fs_node *rn;
553 nid_t child_nid;
554 unsigned int child_nofs;
555 int freed = 0;
556 int i, ret;
557
558 if (dn->nid == 0)
559 return NIDS_PER_BLOCK + 1;
560
51dd6249
NJ
561 trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
562
e05df3b1 563 page = get_node_page(sbi, dn->nid);
51dd6249
NJ
564 if (IS_ERR(page)) {
565 trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
e05df3b1 566 return PTR_ERR(page);
51dd6249 567 }
e05df3b1 568
45590710 569 rn = F2FS_NODE(page);
e05df3b1
JK
570 if (depth < 3) {
571 for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
572 child_nid = le32_to_cpu(rn->in.nid[i]);
573 if (child_nid == 0)
574 continue;
575 rdn.nid = child_nid;
576 ret = truncate_dnode(&rdn);
577 if (ret < 0)
578 goto out_err;
579 set_nid(page, i, 0, false);
580 }
581 } else {
582 child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
583 for (i = ofs; i < NIDS_PER_BLOCK; i++) {
584 child_nid = le32_to_cpu(rn->in.nid[i]);
585 if (child_nid == 0) {
586 child_nofs += NIDS_PER_BLOCK + 1;
587 continue;
588 }
589 rdn.nid = child_nid;
590 ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
591 if (ret == (NIDS_PER_BLOCK + 1)) {
592 set_nid(page, i, 0, false);
593 child_nofs += ret;
594 } else if (ret < 0 && ret != -ENOENT) {
595 goto out_err;
596 }
597 }
598 freed = child_nofs;
599 }
600
601 if (!ofs) {
602 /* remove current indirect node */
603 dn->node_page = page;
604 truncate_node(dn);
605 freed++;
606 } else {
607 f2fs_put_page(page, 1);
608 }
51dd6249 609 trace_f2fs_truncate_nodes_exit(dn->inode, freed);
e05df3b1
JK
610 return freed;
611
612out_err:
613 f2fs_put_page(page, 1);
51dd6249 614 trace_f2fs_truncate_nodes_exit(dn->inode, ret);
e05df3b1
JK
615 return ret;
616}
617
618static int truncate_partial_nodes(struct dnode_of_data *dn,
619 struct f2fs_inode *ri, int *offset, int depth)
620{
621 struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
622 struct page *pages[2];
623 nid_t nid[3];
624 nid_t child_nid;
625 int err = 0;
626 int i;
627 int idx = depth - 2;
628
629 nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
630 if (!nid[0])
631 return 0;
632
633 /* get indirect nodes in the path */
634 for (i = 0; i < depth - 1; i++) {
635 /* refernece count'll be increased */
636 pages[i] = get_node_page(sbi, nid[i]);
637 if (IS_ERR(pages[i])) {
638 depth = i + 1;
639 err = PTR_ERR(pages[i]);
640 goto fail;
641 }
642 nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
643 }
644
645 /* free direct nodes linked to a partial indirect node */
646 for (i = offset[depth - 1]; i < NIDS_PER_BLOCK; i++) {
647 child_nid = get_nid(pages[idx], i, false);
648 if (!child_nid)
649 continue;
650 dn->nid = child_nid;
651 err = truncate_dnode(dn);
652 if (err < 0)
653 goto fail;
654 set_nid(pages[idx], i, 0, false);
655 }
656
657 if (offset[depth - 1] == 0) {
658 dn->node_page = pages[idx];
659 dn->nid = nid[idx];
660 truncate_node(dn);
661 } else {
662 f2fs_put_page(pages[idx], 1);
663 }
664 offset[idx]++;
665 offset[depth - 1] = 0;
666fail:
667 for (i = depth - 3; i >= 0; i--)
668 f2fs_put_page(pages[i], 1);
51dd6249
NJ
669
670 trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
671
e05df3b1
JK
672 return err;
673}
674
0a8165d7 675/*
e05df3b1
JK
676 * All the block addresses of data and nodes should be nullified.
677 */
678int truncate_inode_blocks(struct inode *inode, pgoff_t from)
679{
680 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
afcb7ca0 681 struct address_space *node_mapping = sbi->node_inode->i_mapping;
e05df3b1
JK
682 int err = 0, cont = 1;
683 int level, offset[4], noffset[4];
7dd690c8 684 unsigned int nofs = 0;
e05df3b1
JK
685 struct f2fs_node *rn;
686 struct dnode_of_data dn;
687 struct page *page;
688
51dd6249
NJ
689 trace_f2fs_truncate_inode_blocks_enter(inode, from);
690
de93653f 691 level = get_node_path(F2FS_I(inode), from, offset, noffset);
afcb7ca0 692restart:
e05df3b1 693 page = get_node_page(sbi, inode->i_ino);
51dd6249
NJ
694 if (IS_ERR(page)) {
695 trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
e05df3b1 696 return PTR_ERR(page);
51dd6249 697 }
e05df3b1
JK
698
699 set_new_dnode(&dn, inode, page, NULL, 0);
700 unlock_page(page);
701
45590710 702 rn = F2FS_NODE(page);
e05df3b1
JK
703 switch (level) {
704 case 0:
705 case 1:
706 nofs = noffset[1];
707 break;
708 case 2:
709 nofs = noffset[1];
710 if (!offset[level - 1])
711 goto skip_partial;
712 err = truncate_partial_nodes(&dn, &rn->i, offset, level);
713 if (err < 0 && err != -ENOENT)
714 goto fail;
715 nofs += 1 + NIDS_PER_BLOCK;
716 break;
717 case 3:
718 nofs = 5 + 2 * NIDS_PER_BLOCK;
719 if (!offset[level - 1])
720 goto skip_partial;
721 err = truncate_partial_nodes(&dn, &rn->i, offset, level);
722 if (err < 0 && err != -ENOENT)
723 goto fail;
724 break;
725 default:
726 BUG();
727 }
728
729skip_partial:
730 while (cont) {
731 dn.nid = le32_to_cpu(rn->i.i_nid[offset[0] - NODE_DIR1_BLOCK]);
732 switch (offset[0]) {
733 case NODE_DIR1_BLOCK:
734 case NODE_DIR2_BLOCK:
735 err = truncate_dnode(&dn);
736 break;
737
738 case NODE_IND1_BLOCK:
739 case NODE_IND2_BLOCK:
740 err = truncate_nodes(&dn, nofs, offset[1], 2);
741 break;
742
743 case NODE_DIND_BLOCK:
744 err = truncate_nodes(&dn, nofs, offset[1], 3);
745 cont = 0;
746 break;
747
748 default:
749 BUG();
750 }
751 if (err < 0 && err != -ENOENT)
752 goto fail;
753 if (offset[1] == 0 &&
754 rn->i.i_nid[offset[0] - NODE_DIR1_BLOCK]) {
755 lock_page(page);
afcb7ca0
JK
756 if (page->mapping != node_mapping) {
757 f2fs_put_page(page, 1);
758 goto restart;
759 }
e05df3b1
JK
760 wait_on_page_writeback(page);
761 rn->i.i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
762 set_page_dirty(page);
763 unlock_page(page);
764 }
765 offset[1] = 0;
766 offset[0]++;
767 nofs += err;
768 }
769fail:
770 f2fs_put_page(page, 0);
51dd6249 771 trace_f2fs_truncate_inode_blocks_exit(inode, err);
e05df3b1
JK
772 return err > 0 ? 0 : err;
773}
774
4f16fb0f
JK
775int truncate_xattr_node(struct inode *inode, struct page *page)
776{
777 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
778 nid_t nid = F2FS_I(inode)->i_xattr_nid;
779 struct dnode_of_data dn;
780 struct page *npage;
781
782 if (!nid)
783 return 0;
784
785 npage = get_node_page(sbi, nid);
786 if (IS_ERR(npage))
787 return PTR_ERR(npage);
788
789 F2FS_I(inode)->i_xattr_nid = 0;
790 set_new_dnode(&dn, inode, page, npage, nid);
791
792 if (page)
793 dn.inode_page_locked = 1;
794 truncate_node(&dn);
795 return 0;
796}
797
39936837
JK
798/*
799 * Caller should grab and release a mutex by calling mutex_lock_op() and
800 * mutex_unlock_op().
801 */
e05df3b1
JK
802int remove_inode_page(struct inode *inode)
803{
804 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
805 struct page *page;
806 nid_t ino = inode->i_ino;
807 struct dnode_of_data dn;
4f16fb0f 808 int err;
e05df3b1 809
e05df3b1 810 page = get_node_page(sbi, ino);
39936837 811 if (IS_ERR(page))
e05df3b1 812 return PTR_ERR(page);
e05df3b1 813
4f16fb0f
JK
814 err = truncate_xattr_node(inode, page);
815 if (err) {
816 f2fs_put_page(page, 1);
817 return err;
e05df3b1 818 }
e05df3b1 819
71e9fec5
JK
820 /* 0 is possible, after f2fs_new_inode() is failed */
821 BUG_ON(inode->i_blocks != 0 && inode->i_blocks != 1);
822 set_new_dnode(&dn, inode, page, page, ino);
823 truncate_node(&dn);
e05df3b1
JK
824 return 0;
825}
826
44a83ff6 827struct page *new_inode_page(struct inode *inode, const struct qstr *name)
e05df3b1 828{
e05df3b1
JK
829 struct dnode_of_data dn;
830
831 /* allocate inode page for new inode */
832 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
44a83ff6
JK
833
834 /* caller should f2fs_put_page(page, 1); */
8ae8f162 835 return new_node_page(&dn, 0, NULL);
e05df3b1
JK
836}
837
8ae8f162
JK
838struct page *new_node_page(struct dnode_of_data *dn,
839 unsigned int ofs, struct page *ipage)
e05df3b1
JK
840{
841 struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
842 struct address_space *mapping = sbi->node_inode->i_mapping;
843 struct node_info old_ni, new_ni;
844 struct page *page;
845 int err;
846
847 if (is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC))
848 return ERR_PTR(-EPERM);
849
850 page = grab_cache_page(mapping, dn->nid);
851 if (!page)
852 return ERR_PTR(-ENOMEM);
853
9c02740c
JK
854 if (!inc_valid_node_count(sbi, dn->inode, 1)) {
855 err = -ENOSPC;
856 goto fail;
857 }
e05df3b1 858
9c02740c 859 get_node_info(sbi, dn->nid, &old_ni);
e05df3b1
JK
860
861 /* Reinitialize old_ni with new node page */
862 BUG_ON(old_ni.blk_addr != NULL_ADDR);
863 new_ni = old_ni;
864 new_ni.ino = dn->inode->i_ino;
e05df3b1 865 set_node_addr(sbi, &new_ni, NEW_ADDR);
9c02740c
JK
866
867 fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
398b1ac5 868 set_cold_node(dn->inode, page);
9c02740c
JK
869 SetPageUptodate(page);
870 set_page_dirty(page);
e05df3b1 871
479bd73a
JK
872 if (ofs == XATTR_NODE_OFFSET)
873 F2FS_I(dn->inode)->i_xattr_nid = dn->nid;
874
e05df3b1 875 dn->node_page = page;
8ae8f162
JK
876 if (ipage)
877 update_inode(dn->inode, ipage);
878 else
879 sync_inode_page(dn);
e05df3b1
JK
880 if (ofs == 0)
881 inc_valid_inode_count(sbi);
882
883 return page;
884
885fail:
71e9fec5 886 clear_node_page_dirty(page);
e05df3b1
JK
887 f2fs_put_page(page, 1);
888 return ERR_PTR(err);
889}
890
56ae674c
JK
891/*
892 * Caller should do after getting the following values.
893 * 0: f2fs_put_page(page, 0)
894 * LOCKED_PAGE: f2fs_put_page(page, 1)
895 * error: nothing
896 */
e05df3b1
JK
897static int read_node_page(struct page *page, int type)
898{
899 struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb);
900 struct node_info ni;
901
902 get_node_info(sbi, page->index, &ni);
903
393ff91f
JK
904 if (ni.blk_addr == NULL_ADDR) {
905 f2fs_put_page(page, 1);
e05df3b1 906 return -ENOENT;
393ff91f
JK
907 }
908
56ae674c
JK
909 if (PageUptodate(page))
910 return LOCKED_PAGE;
393ff91f 911
e05df3b1
JK
912 return f2fs_readpage(sbi, page, ni.blk_addr, type);
913}
914
0a8165d7 915/*
e05df3b1
JK
916 * Readahead a node page
917 */
918void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
919{
920 struct address_space *mapping = sbi->node_inode->i_mapping;
921 struct page *apage;
56ae674c 922 int err;
e05df3b1
JK
923
924 apage = find_get_page(mapping, nid);
393ff91f
JK
925 if (apage && PageUptodate(apage)) {
926 f2fs_put_page(apage, 0);
927 return;
928 }
e05df3b1
JK
929 f2fs_put_page(apage, 0);
930
931 apage = grab_cache_page(mapping, nid);
932 if (!apage)
933 return;
934
56ae674c
JK
935 err = read_node_page(apage, READA);
936 if (err == 0)
393ff91f 937 f2fs_put_page(apage, 0);
56ae674c
JK
938 else if (err == LOCKED_PAGE)
939 f2fs_put_page(apage, 1);
e05df3b1
JK
940}
941
942struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
943{
e05df3b1 944 struct address_space *mapping = sbi->node_inode->i_mapping;
56ae674c
JK
945 struct page *page;
946 int err;
afcb7ca0 947repeat:
e05df3b1
JK
948 page = grab_cache_page(mapping, nid);
949 if (!page)
950 return ERR_PTR(-ENOMEM);
951
952 err = read_node_page(page, READ_SYNC);
56ae674c 953 if (err < 0)
e05df3b1 954 return ERR_PTR(err);
56ae674c
JK
955 else if (err == LOCKED_PAGE)
956 goto got_it;
e05df3b1 957
393ff91f
JK
958 lock_page(page);
959 if (!PageUptodate(page)) {
960 f2fs_put_page(page, 1);
961 return ERR_PTR(-EIO);
962 }
afcb7ca0
JK
963 if (page->mapping != mapping) {
964 f2fs_put_page(page, 1);
965 goto repeat;
966 }
56ae674c 967got_it:
e05df3b1
JK
968 BUG_ON(nid != nid_of_node(page));
969 mark_page_accessed(page);
970 return page;
971}
972
0a8165d7 973/*
e05df3b1
JK
974 * Return a locked page for the desired node page.
975 * And, readahead MAX_RA_NODE number of node pages.
976 */
977struct page *get_node_page_ra(struct page *parent, int start)
978{
979 struct f2fs_sb_info *sbi = F2FS_SB(parent->mapping->host->i_sb);
980 struct address_space *mapping = sbi->node_inode->i_mapping;
c718379b 981 struct blk_plug plug;
e05df3b1 982 struct page *page;
56ae674c
JK
983 int err, i, end;
984 nid_t nid;
e05df3b1
JK
985
986 /* First, try getting the desired direct node. */
987 nid = get_nid(parent, start, false);
988 if (!nid)
989 return ERR_PTR(-ENOENT);
afcb7ca0 990repeat:
e05df3b1
JK
991 page = grab_cache_page(mapping, nid);
992 if (!page)
993 return ERR_PTR(-ENOMEM);
994
66d36a29 995 err = read_node_page(page, READ_SYNC);
56ae674c 996 if (err < 0)
e05df3b1 997 return ERR_PTR(err);
56ae674c
JK
998 else if (err == LOCKED_PAGE)
999 goto page_hit;
e05df3b1 1000
c718379b
JK
1001 blk_start_plug(&plug);
1002
e05df3b1
JK
1003 /* Then, try readahead for siblings of the desired node */
1004 end = start + MAX_RA_NODE;
1005 end = min(end, NIDS_PER_BLOCK);
1006 for (i = start + 1; i < end; i++) {
1007 nid = get_nid(parent, i, false);
1008 if (!nid)
1009 continue;
1010 ra_node_page(sbi, nid);
1011 }
1012
c718379b
JK
1013 blk_finish_plug(&plug);
1014
e05df3b1 1015 lock_page(page);
afcb7ca0
JK
1016 if (page->mapping != mapping) {
1017 f2fs_put_page(page, 1);
1018 goto repeat;
1019 }
e0f56cb4 1020page_hit:
56ae674c 1021 if (!PageUptodate(page)) {
e05df3b1
JK
1022 f2fs_put_page(page, 1);
1023 return ERR_PTR(-EIO);
1024 }
393ff91f 1025 mark_page_accessed(page);
e05df3b1
JK
1026 return page;
1027}
1028
1029void sync_inode_page(struct dnode_of_data *dn)
1030{
1031 if (IS_INODE(dn->node_page) || dn->inode_page == dn->node_page) {
1032 update_inode(dn->inode, dn->node_page);
1033 } else if (dn->inode_page) {
1034 if (!dn->inode_page_locked)
1035 lock_page(dn->inode_page);
1036 update_inode(dn->inode, dn->inode_page);
1037 if (!dn->inode_page_locked)
1038 unlock_page(dn->inode_page);
1039 } else {
39936837 1040 update_inode_page(dn->inode);
e05df3b1
JK
1041 }
1042}
1043
1044int sync_node_pages(struct f2fs_sb_info *sbi, nid_t ino,
1045 struct writeback_control *wbc)
1046{
1047 struct address_space *mapping = sbi->node_inode->i_mapping;
1048 pgoff_t index, end;
1049 struct pagevec pvec;
1050 int step = ino ? 2 : 0;
1051 int nwritten = 0, wrote = 0;
1052
1053 pagevec_init(&pvec, 0);
1054
1055next_step:
1056 index = 0;
1057 end = LONG_MAX;
1058
1059 while (index <= end) {
1060 int i, nr_pages;
1061 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
1062 PAGECACHE_TAG_DIRTY,
1063 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1064 if (nr_pages == 0)
1065 break;
1066
1067 for (i = 0; i < nr_pages; i++) {
1068 struct page *page = pvec.pages[i];
1069
1070 /*
1071 * flushing sequence with step:
1072 * 0. indirect nodes
1073 * 1. dentry dnodes
1074 * 2. file dnodes
1075 */
1076 if (step == 0 && IS_DNODE(page))
1077 continue;
1078 if (step == 1 && (!IS_DNODE(page) ||
1079 is_cold_node(page)))
1080 continue;
1081 if (step == 2 && (!IS_DNODE(page) ||
1082 !is_cold_node(page)))
1083 continue;
1084
1085 /*
1086 * If an fsync mode,
1087 * we should not skip writing node pages.
1088 */
1089 if (ino && ino_of_node(page) == ino)
1090 lock_page(page);
1091 else if (!trylock_page(page))
1092 continue;
1093
1094 if (unlikely(page->mapping != mapping)) {
1095continue_unlock:
1096 unlock_page(page);
1097 continue;
1098 }
1099 if (ino && ino_of_node(page) != ino)
1100 goto continue_unlock;
1101
1102 if (!PageDirty(page)) {
1103 /* someone wrote it for us */
1104 goto continue_unlock;
1105 }
1106
1107 if (!clear_page_dirty_for_io(page))
1108 goto continue_unlock;
1109
1110 /* called by fsync() */
1111 if (ino && IS_DNODE(page)) {
1112 int mark = !is_checkpointed_node(sbi, ino);
1113 set_fsync_mark(page, 1);
1114 if (IS_INODE(page))
1115 set_dentry_mark(page, mark);
1116 nwritten++;
1117 } else {
1118 set_fsync_mark(page, 0);
1119 set_dentry_mark(page, 0);
1120 }
1121 mapping->a_ops->writepage(page, wbc);
1122 wrote++;
1123
1124 if (--wbc->nr_to_write == 0)
1125 break;
1126 }
1127 pagevec_release(&pvec);
1128 cond_resched();
1129
1130 if (wbc->nr_to_write == 0) {
1131 step = 2;
1132 break;
1133 }
1134 }
1135
1136 if (step < 2) {
1137 step++;
1138 goto next_step;
1139 }
1140
1141 if (wrote)
1142 f2fs_submit_bio(sbi, NODE, wbc->sync_mode == WB_SYNC_ALL);
1143
1144 return nwritten;
1145}
1146
1147static int f2fs_write_node_page(struct page *page,
1148 struct writeback_control *wbc)
1149{
1150 struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb);
1151 nid_t nid;
e05df3b1
JK
1152 block_t new_addr;
1153 struct node_info ni;
1154
e05df3b1
JK
1155 wait_on_page_writeback(page);
1156
e05df3b1
JK
1157 /* get old block addr of this node page */
1158 nid = nid_of_node(page);
e05df3b1
JK
1159 BUG_ON(page->index != nid);
1160
1161 get_node_info(sbi, nid, &ni);
1162
1163 /* This page is already truncated */
39936837
JK
1164 if (ni.blk_addr == NULL_ADDR) {
1165 dec_page_count(sbi, F2FS_DIRTY_NODES);
1166 unlock_page(page);
1167 return 0;
1168 }
e05df3b1 1169
08d8058b
JK
1170 if (wbc->for_reclaim) {
1171 dec_page_count(sbi, F2FS_DIRTY_NODES);
1172 wbc->pages_skipped++;
1173 set_page_dirty(page);
08d8058b
JK
1174 return AOP_WRITEPAGE_ACTIVATE;
1175 }
1176
39936837 1177 mutex_lock(&sbi->node_write);
e05df3b1 1178 set_page_writeback(page);
e05df3b1
JK
1179 write_node_page(sbi, page, nid, ni.blk_addr, &new_addr);
1180 set_node_addr(sbi, &ni, new_addr);
1181 dec_page_count(sbi, F2FS_DIRTY_NODES);
39936837 1182 mutex_unlock(&sbi->node_write);
e05df3b1
JK
1183 unlock_page(page);
1184 return 0;
1185}
1186
a7fdffbd
JK
1187/*
1188 * It is very important to gather dirty pages and write at once, so that we can
1189 * submit a big bio without interfering other data writes.
1190 * Be default, 512 pages (2MB), a segment size, is quite reasonable.
1191 */
1192#define COLLECT_DIRTY_NODES 512
e05df3b1
JK
1193static int f2fs_write_node_pages(struct address_space *mapping,
1194 struct writeback_control *wbc)
1195{
1196 struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
e05df3b1
JK
1197 long nr_to_write = wbc->nr_to_write;
1198
a7fdffbd 1199 /* First check balancing cached NAT entries */
e05df3b1 1200 if (try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK)) {
b7473754 1201 f2fs_sync_fs(sbi->sb, true);
e05df3b1
JK
1202 return 0;
1203 }
1204
a7fdffbd
JK
1205 /* collect a number of dirty node pages and write together */
1206 if (get_pages(sbi, F2FS_DIRTY_NODES) < COLLECT_DIRTY_NODES)
1207 return 0;
1208
e05df3b1 1209 /* if mounting is failed, skip writing node pages */
ac5d156c 1210 wbc->nr_to_write = max_hw_blocks(sbi);
e05df3b1 1211 sync_node_pages(sbi, 0, wbc);
ac5d156c 1212 wbc->nr_to_write = nr_to_write - (max_hw_blocks(sbi) - wbc->nr_to_write);
e05df3b1
JK
1213 return 0;
1214}
1215
1216static int f2fs_set_node_page_dirty(struct page *page)
1217{
1218 struct address_space *mapping = page->mapping;
1219 struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
1220
1221 SetPageUptodate(page);
1222 if (!PageDirty(page)) {
1223 __set_page_dirty_nobuffers(page);
1224 inc_page_count(sbi, F2FS_DIRTY_NODES);
1225 SetPagePrivate(page);
1226 return 1;
1227 }
1228 return 0;
1229}
1230
d47992f8
LC
1231static void f2fs_invalidate_node_page(struct page *page, unsigned int offset,
1232 unsigned int length)
e05df3b1
JK
1233{
1234 struct inode *inode = page->mapping->host;
1235 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
1236 if (PageDirty(page))
1237 dec_page_count(sbi, F2FS_DIRTY_NODES);
1238 ClearPagePrivate(page);
1239}
1240
1241static int f2fs_release_node_page(struct page *page, gfp_t wait)
1242{
1243 ClearPagePrivate(page);
c3850aa1 1244 return 1;
e05df3b1
JK
1245}
1246
0a8165d7 1247/*
e05df3b1
JK
1248 * Structure of the f2fs node operations
1249 */
1250const struct address_space_operations f2fs_node_aops = {
1251 .writepage = f2fs_write_node_page,
1252 .writepages = f2fs_write_node_pages,
1253 .set_page_dirty = f2fs_set_node_page_dirty,
1254 .invalidatepage = f2fs_invalidate_node_page,
1255 .releasepage = f2fs_release_node_page,
1256};
1257
1258static struct free_nid *__lookup_free_nid_list(nid_t n, struct list_head *head)
1259{
1260 struct list_head *this;
3aa770a9 1261 struct free_nid *i;
e05df3b1
JK
1262 list_for_each(this, head) {
1263 i = list_entry(this, struct free_nid, list);
1264 if (i->nid == n)
3aa770a9 1265 return i;
e05df3b1 1266 }
3aa770a9 1267 return NULL;
e05df3b1
JK
1268}
1269
1270static void __del_from_free_nid_list(struct free_nid *i)
1271{
1272 list_del(&i->list);
1273 kmem_cache_free(free_nid_slab, i);
1274}
1275
59bbd474 1276static int add_free_nid(struct f2fs_nm_info *nm_i, nid_t nid, bool build)
e05df3b1
JK
1277{
1278 struct free_nid *i;
59bbd474
JK
1279 struct nat_entry *ne;
1280 bool allocated = false;
e05df3b1
JK
1281
1282 if (nm_i->fcnt > 2 * MAX_FREE_NIDS)
23d38844 1283 return -1;
9198aceb
JK
1284
1285 /* 0 nid should not be used */
1286 if (nid == 0)
1287 return 0;
59bbd474
JK
1288
1289 if (!build)
1290 goto retry;
1291
1292 /* do not add allocated nids */
1293 read_lock(&nm_i->nat_tree_lock);
1294 ne = __lookup_nat_cache(nm_i, nid);
1295 if (ne && nat_get_blkaddr(ne) != NULL_ADDR)
1296 allocated = true;
1297 read_unlock(&nm_i->nat_tree_lock);
1298 if (allocated)
1299 return 0;
e05df3b1
JK
1300retry:
1301 i = kmem_cache_alloc(free_nid_slab, GFP_NOFS);
1302 if (!i) {
1303 cond_resched();
1304 goto retry;
1305 }
1306 i->nid = nid;
1307 i->state = NID_NEW;
1308
1309 spin_lock(&nm_i->free_nid_list_lock);
1310 if (__lookup_free_nid_list(nid, &nm_i->free_nid_list)) {
1311 spin_unlock(&nm_i->free_nid_list_lock);
1312 kmem_cache_free(free_nid_slab, i);
1313 return 0;
1314 }
1315 list_add_tail(&i->list, &nm_i->free_nid_list);
1316 nm_i->fcnt++;
1317 spin_unlock(&nm_i->free_nid_list_lock);
1318 return 1;
1319}
1320
1321static void remove_free_nid(struct f2fs_nm_info *nm_i, nid_t nid)
1322{
1323 struct free_nid *i;
1324 spin_lock(&nm_i->free_nid_list_lock);
1325 i = __lookup_free_nid_list(nid, &nm_i->free_nid_list);
1326 if (i && i->state == NID_NEW) {
1327 __del_from_free_nid_list(i);
1328 nm_i->fcnt--;
1329 }
1330 spin_unlock(&nm_i->free_nid_list_lock);
1331}
1332
8760952d 1333static void scan_nat_page(struct f2fs_nm_info *nm_i,
e05df3b1
JK
1334 struct page *nat_page, nid_t start_nid)
1335{
1336 struct f2fs_nat_block *nat_blk = page_address(nat_page);
1337 block_t blk_addr;
e05df3b1
JK
1338 int i;
1339
e05df3b1
JK
1340 i = start_nid % NAT_ENTRY_PER_BLOCK;
1341
1342 for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
23d38844 1343
04431c44
JK
1344 if (start_nid >= nm_i->max_nid)
1345 break;
23d38844
HL
1346
1347 blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
e05df3b1 1348 BUG_ON(blk_addr == NEW_ADDR);
23d38844 1349 if (blk_addr == NULL_ADDR) {
59bbd474 1350 if (add_free_nid(nm_i, start_nid, true) < 0)
23d38844
HL
1351 break;
1352 }
e05df3b1 1353 }
e05df3b1
JK
1354}
1355
1356static void build_free_nids(struct f2fs_sb_info *sbi)
1357{
e05df3b1
JK
1358 struct f2fs_nm_info *nm_i = NM_I(sbi);
1359 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1360 struct f2fs_summary_block *sum = curseg->sum_blk;
8760952d 1361 int i = 0;
55008d84 1362 nid_t nid = nm_i->next_scan_nid;
e05df3b1 1363
55008d84
JK
1364 /* Enough entries */
1365 if (nm_i->fcnt > NAT_ENTRY_PER_BLOCK)
1366 return;
e05df3b1 1367
55008d84 1368 /* readahead nat pages to be scanned */
e05df3b1
JK
1369 ra_nat_pages(sbi, nid);
1370
1371 while (1) {
1372 struct page *page = get_current_nat_page(sbi, nid);
1373
8760952d 1374 scan_nat_page(nm_i, page, nid);
e05df3b1
JK
1375 f2fs_put_page(page, 1);
1376
1377 nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
55008d84 1378 if (nid >= nm_i->max_nid)
e05df3b1 1379 nid = 0;
55008d84
JK
1380
1381 if (i++ == FREE_NID_PAGES)
e05df3b1
JK
1382 break;
1383 }
1384
55008d84
JK
1385 /* go to the next free nat pages to find free nids abundantly */
1386 nm_i->next_scan_nid = nid;
e05df3b1
JK
1387
1388 /* find free nids from current sum_pages */
1389 mutex_lock(&curseg->curseg_mutex);
1390 for (i = 0; i < nats_in_cursum(sum); i++) {
1391 block_t addr = le32_to_cpu(nat_in_journal(sum, i).block_addr);
1392 nid = le32_to_cpu(nid_in_journal(sum, i));
1393 if (addr == NULL_ADDR)
59bbd474 1394 add_free_nid(nm_i, nid, true);
e05df3b1
JK
1395 else
1396 remove_free_nid(nm_i, nid);
1397 }
1398 mutex_unlock(&curseg->curseg_mutex);
e05df3b1
JK
1399}
1400
1401/*
1402 * If this function returns success, caller can obtain a new nid
1403 * from second parameter of this function.
1404 * The returned nid could be used ino as well as nid when inode is created.
1405 */
1406bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
1407{
1408 struct f2fs_nm_info *nm_i = NM_I(sbi);
1409 struct free_nid *i = NULL;
1410 struct list_head *this;
1411retry:
55008d84
JK
1412 if (sbi->total_valid_node_count + 1 >= nm_i->max_nid)
1413 return false;
e05df3b1 1414
e05df3b1 1415 spin_lock(&nm_i->free_nid_list_lock);
e05df3b1 1416
55008d84
JK
1417 /* We should not use stale free nids created by build_free_nids */
1418 if (nm_i->fcnt && !sbi->on_build_free_nids) {
1419 BUG_ON(list_empty(&nm_i->free_nid_list));
1420 list_for_each(this, &nm_i->free_nid_list) {
1421 i = list_entry(this, struct free_nid, list);
1422 if (i->state == NID_NEW)
1423 break;
1424 }
e05df3b1 1425
55008d84
JK
1426 BUG_ON(i->state != NID_NEW);
1427 *nid = i->nid;
1428 i->state = NID_ALLOC;
1429 nm_i->fcnt--;
1430 spin_unlock(&nm_i->free_nid_list_lock);
1431 return true;
1432 }
e05df3b1 1433 spin_unlock(&nm_i->free_nid_list_lock);
55008d84
JK
1434
1435 /* Let's scan nat pages and its caches to get free nids */
1436 mutex_lock(&nm_i->build_lock);
1437 sbi->on_build_free_nids = 1;
1438 build_free_nids(sbi);
1439 sbi->on_build_free_nids = 0;
1440 mutex_unlock(&nm_i->build_lock);
1441 goto retry;
e05df3b1
JK
1442}
1443
0a8165d7 1444/*
e05df3b1
JK
1445 * alloc_nid() should be called prior to this function.
1446 */
1447void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
1448{
1449 struct f2fs_nm_info *nm_i = NM_I(sbi);
1450 struct free_nid *i;
1451
1452 spin_lock(&nm_i->free_nid_list_lock);
1453 i = __lookup_free_nid_list(nid, &nm_i->free_nid_list);
49952fa1
JK
1454 BUG_ON(!i || i->state != NID_ALLOC);
1455 __del_from_free_nid_list(i);
e05df3b1
JK
1456 spin_unlock(&nm_i->free_nid_list_lock);
1457}
1458
0a8165d7 1459/*
e05df3b1
JK
1460 * alloc_nid() should be called prior to this function.
1461 */
1462void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
1463{
49952fa1
JK
1464 struct f2fs_nm_info *nm_i = NM_I(sbi);
1465 struct free_nid *i;
1466
1467 spin_lock(&nm_i->free_nid_list_lock);
1468 i = __lookup_free_nid_list(nid, &nm_i->free_nid_list);
1469 BUG_ON(!i || i->state != NID_ALLOC);
95630cba
HL
1470 if (nm_i->fcnt > 2 * MAX_FREE_NIDS) {
1471 __del_from_free_nid_list(i);
1472 } else {
1473 i->state = NID_NEW;
1474 nm_i->fcnt++;
1475 }
49952fa1 1476 spin_unlock(&nm_i->free_nid_list_lock);
e05df3b1
JK
1477}
1478
1479void recover_node_page(struct f2fs_sb_info *sbi, struct page *page,
1480 struct f2fs_summary *sum, struct node_info *ni,
1481 block_t new_blkaddr)
1482{
1483 rewrite_node_page(sbi, page, sum, ni->blk_addr, new_blkaddr);
1484 set_node_addr(sbi, ni, new_blkaddr);
1485 clear_node_page_dirty(page);
1486}
1487
1488int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
1489{
1490 struct address_space *mapping = sbi->node_inode->i_mapping;
1491 struct f2fs_node *src, *dst;
1492 nid_t ino = ino_of_node(page);
1493 struct node_info old_ni, new_ni;
1494 struct page *ipage;
1495
1496 ipage = grab_cache_page(mapping, ino);
1497 if (!ipage)
1498 return -ENOMEM;
1499
1500 /* Should not use this inode from free nid list */
1501 remove_free_nid(NM_I(sbi), ino);
1502
1503 get_node_info(sbi, ino, &old_ni);
1504 SetPageUptodate(ipage);
1505 fill_node_footer(ipage, ino, ino, 0, true);
1506
45590710
GZ
1507 src = F2FS_NODE(page);
1508 dst = F2FS_NODE(ipage);
e05df3b1
JK
1509
1510 memcpy(dst, src, (unsigned long)&src->i.i_ext - (unsigned long)&src->i);
1511 dst->i.i_size = 0;
25ca923b
JK
1512 dst->i.i_blocks = cpu_to_le64(1);
1513 dst->i.i_links = cpu_to_le32(1);
e05df3b1
JK
1514 dst->i.i_xattr_nid = 0;
1515
1516 new_ni = old_ni;
1517 new_ni.ino = ino;
1518
65e5cd0a
JK
1519 if (!inc_valid_node_count(sbi, NULL, 1))
1520 WARN_ON(1);
e05df3b1
JK
1521 set_node_addr(sbi, &new_ni, NEW_ADDR);
1522 inc_valid_inode_count(sbi);
e05df3b1
JK
1523 f2fs_put_page(ipage, 1);
1524 return 0;
1525}
1526
1527int restore_node_summary(struct f2fs_sb_info *sbi,
1528 unsigned int segno, struct f2fs_summary_block *sum)
1529{
1530 struct f2fs_node *rn;
1531 struct f2fs_summary *sum_entry;
1532 struct page *page;
1533 block_t addr;
1534 int i, last_offset;
1535
1536 /* alloc temporal page for read node */
1537 page = alloc_page(GFP_NOFS | __GFP_ZERO);
e27dae4d
DC
1538 if (!page)
1539 return -ENOMEM;
e05df3b1
JK
1540 lock_page(page);
1541
1542 /* scan the node segment */
1543 last_offset = sbi->blocks_per_seg;
1544 addr = START_BLOCK(sbi, segno);
1545 sum_entry = &sum->entries[0];
1546
1547 for (i = 0; i < last_offset; i++, sum_entry++) {
393ff91f
JK
1548 /*
1549 * In order to read next node page,
1550 * we must clear PageUptodate flag.
1551 */
1552 ClearPageUptodate(page);
1553
e05df3b1
JK
1554 if (f2fs_readpage(sbi, page, addr, READ_SYNC))
1555 goto out;
1556
393ff91f 1557 lock_page(page);
45590710 1558 rn = F2FS_NODE(page);
e05df3b1
JK
1559 sum_entry->nid = rn->footer.nid;
1560 sum_entry->version = 0;
1561 sum_entry->ofs_in_node = 0;
1562 addr++;
e05df3b1 1563 }
e05df3b1 1564 unlock_page(page);
393ff91f 1565out:
e05df3b1
JK
1566 __free_pages(page, 0);
1567 return 0;
1568}
1569
1570static bool flush_nats_in_journal(struct f2fs_sb_info *sbi)
1571{
1572 struct f2fs_nm_info *nm_i = NM_I(sbi);
1573 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1574 struct f2fs_summary_block *sum = curseg->sum_blk;
1575 int i;
1576
1577 mutex_lock(&curseg->curseg_mutex);
1578
1579 if (nats_in_cursum(sum) < NAT_JOURNAL_ENTRIES) {
1580 mutex_unlock(&curseg->curseg_mutex);
1581 return false;
1582 }
1583
1584 for (i = 0; i < nats_in_cursum(sum); i++) {
1585 struct nat_entry *ne;
1586 struct f2fs_nat_entry raw_ne;
1587 nid_t nid = le32_to_cpu(nid_in_journal(sum, i));
1588
1589 raw_ne = nat_in_journal(sum, i);
1590retry:
1591 write_lock(&nm_i->nat_tree_lock);
1592 ne = __lookup_nat_cache(nm_i, nid);
1593 if (ne) {
1594 __set_nat_cache_dirty(nm_i, ne);
1595 write_unlock(&nm_i->nat_tree_lock);
1596 continue;
1597 }
1598 ne = grab_nat_entry(nm_i, nid);
1599 if (!ne) {
1600 write_unlock(&nm_i->nat_tree_lock);
1601 goto retry;
1602 }
1603 nat_set_blkaddr(ne, le32_to_cpu(raw_ne.block_addr));
1604 nat_set_ino(ne, le32_to_cpu(raw_ne.ino));
1605 nat_set_version(ne, raw_ne.version);
1606 __set_nat_cache_dirty(nm_i, ne);
1607 write_unlock(&nm_i->nat_tree_lock);
1608 }
1609 update_nats_in_cursum(sum, -i);
1610 mutex_unlock(&curseg->curseg_mutex);
1611 return true;
1612}
1613
0a8165d7 1614/*
e05df3b1
JK
1615 * This function is called during the checkpointing process.
1616 */
1617void flush_nat_entries(struct f2fs_sb_info *sbi)
1618{
1619 struct f2fs_nm_info *nm_i = NM_I(sbi);
1620 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1621 struct f2fs_summary_block *sum = curseg->sum_blk;
1622 struct list_head *cur, *n;
1623 struct page *page = NULL;
1624 struct f2fs_nat_block *nat_blk = NULL;
1625 nid_t start_nid = 0, end_nid = 0;
1626 bool flushed;
1627
1628 flushed = flush_nats_in_journal(sbi);
1629
1630 if (!flushed)
1631 mutex_lock(&curseg->curseg_mutex);
1632
1633 /* 1) flush dirty nat caches */
1634 list_for_each_safe(cur, n, &nm_i->dirty_nat_entries) {
1635 struct nat_entry *ne;
1636 nid_t nid;
1637 struct f2fs_nat_entry raw_ne;
1638 int offset = -1;
2b50638d 1639 block_t new_blkaddr;
e05df3b1
JK
1640
1641 ne = list_entry(cur, struct nat_entry, list);
1642 nid = nat_get_nid(ne);
1643
1644 if (nat_get_blkaddr(ne) == NEW_ADDR)
1645 continue;
1646 if (flushed)
1647 goto to_nat_page;
1648
1649 /* if there is room for nat enries in curseg->sumpage */
1650 offset = lookup_journal_in_cursum(sum, NAT_JOURNAL, nid, 1);
1651 if (offset >= 0) {
1652 raw_ne = nat_in_journal(sum, offset);
e05df3b1
JK
1653 goto flush_now;
1654 }
1655to_nat_page:
1656 if (!page || (start_nid > nid || nid > end_nid)) {
1657 if (page) {
1658 f2fs_put_page(page, 1);
1659 page = NULL;
1660 }
1661 start_nid = START_NID(nid);
1662 end_nid = start_nid + NAT_ENTRY_PER_BLOCK - 1;
1663
1664 /*
1665 * get nat block with dirty flag, increased reference
1666 * count, mapped and lock
1667 */
1668 page = get_next_nat_page(sbi, start_nid);
1669 nat_blk = page_address(page);
1670 }
1671
1672 BUG_ON(!nat_blk);
1673 raw_ne = nat_blk->entries[nid - start_nid];
e05df3b1
JK
1674flush_now:
1675 new_blkaddr = nat_get_blkaddr(ne);
1676
1677 raw_ne.ino = cpu_to_le32(nat_get_ino(ne));
1678 raw_ne.block_addr = cpu_to_le32(new_blkaddr);
1679 raw_ne.version = nat_get_version(ne);
1680
1681 if (offset < 0) {
1682 nat_blk->entries[nid - start_nid] = raw_ne;
1683 } else {
1684 nat_in_journal(sum, offset) = raw_ne;
1685 nid_in_journal(sum, offset) = cpu_to_le32(nid);
1686 }
1687
fa372417 1688 if (nat_get_blkaddr(ne) == NULL_ADDR &&
59bbd474 1689 add_free_nid(NM_I(sbi), nid, false) <= 0) {
e05df3b1
JK
1690 write_lock(&nm_i->nat_tree_lock);
1691 __del_from_nat_cache(nm_i, ne);
1692 write_unlock(&nm_i->nat_tree_lock);
e05df3b1
JK
1693 } else {
1694 write_lock(&nm_i->nat_tree_lock);
1695 __clear_nat_cache_dirty(nm_i, ne);
1696 ne->checkpointed = true;
1697 write_unlock(&nm_i->nat_tree_lock);
1698 }
1699 }
1700 if (!flushed)
1701 mutex_unlock(&curseg->curseg_mutex);
1702 f2fs_put_page(page, 1);
1703
1704 /* 2) shrink nat caches if necessary */
1705 try_to_free_nats(sbi, nm_i->nat_cnt - NM_WOUT_THRESHOLD);
1706}
1707
1708static int init_node_manager(struct f2fs_sb_info *sbi)
1709{
1710 struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
1711 struct f2fs_nm_info *nm_i = NM_I(sbi);
1712 unsigned char *version_bitmap;
1713 unsigned int nat_segs, nat_blocks;
1714
1715 nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
1716
1717 /* segment_count_nat includes pair segment so divide to 2. */
1718 nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
1719 nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
1720 nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nat_blocks;
1721 nm_i->fcnt = 0;
1722 nm_i->nat_cnt = 0;
1723
1724 INIT_LIST_HEAD(&nm_i->free_nid_list);
1725 INIT_RADIX_TREE(&nm_i->nat_root, GFP_ATOMIC);
1726 INIT_LIST_HEAD(&nm_i->nat_entries);
1727 INIT_LIST_HEAD(&nm_i->dirty_nat_entries);
1728
1729 mutex_init(&nm_i->build_lock);
1730 spin_lock_init(&nm_i->free_nid_list_lock);
1731 rwlock_init(&nm_i->nat_tree_lock);
1732
e05df3b1 1733 nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
79b5793b 1734 nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
e05df3b1
JK
1735 version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
1736 if (!version_bitmap)
1737 return -EFAULT;
1738
79b5793b
AG
1739 nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
1740 GFP_KERNEL);
1741 if (!nm_i->nat_bitmap)
1742 return -ENOMEM;
e05df3b1
JK
1743 return 0;
1744}
1745
1746int build_node_manager(struct f2fs_sb_info *sbi)
1747{
1748 int err;
1749
1750 sbi->nm_info = kzalloc(sizeof(struct f2fs_nm_info), GFP_KERNEL);
1751 if (!sbi->nm_info)
1752 return -ENOMEM;
1753
1754 err = init_node_manager(sbi);
1755 if (err)
1756 return err;
1757
1758 build_free_nids(sbi);
1759 return 0;
1760}
1761
1762void destroy_node_manager(struct f2fs_sb_info *sbi)
1763{
1764 struct f2fs_nm_info *nm_i = NM_I(sbi);
1765 struct free_nid *i, *next_i;
1766 struct nat_entry *natvec[NATVEC_SIZE];
1767 nid_t nid = 0;
1768 unsigned int found;
1769
1770 if (!nm_i)
1771 return;
1772
1773 /* destroy free nid list */
1774 spin_lock(&nm_i->free_nid_list_lock);
1775 list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
1776 BUG_ON(i->state == NID_ALLOC);
1777 __del_from_free_nid_list(i);
1778 nm_i->fcnt--;
1779 }
1780 BUG_ON(nm_i->fcnt);
1781 spin_unlock(&nm_i->free_nid_list_lock);
1782
1783 /* destroy nat cache */
1784 write_lock(&nm_i->nat_tree_lock);
1785 while ((found = __gang_lookup_nat_cache(nm_i,
1786 nid, NATVEC_SIZE, natvec))) {
1787 unsigned idx;
1788 for (idx = 0; idx < found; idx++) {
1789 struct nat_entry *e = natvec[idx];
1790 nid = nat_get_nid(e) + 1;
1791 __del_from_nat_cache(nm_i, e);
1792 }
1793 }
1794 BUG_ON(nm_i->nat_cnt);
1795 write_unlock(&nm_i->nat_tree_lock);
1796
1797 kfree(nm_i->nat_bitmap);
1798 sbi->nm_info = NULL;
1799 kfree(nm_i);
1800}
1801
6e6093a8 1802int __init create_node_manager_caches(void)
e05df3b1
JK
1803{
1804 nat_entry_slab = f2fs_kmem_cache_create("nat_entry",
1805 sizeof(struct nat_entry), NULL);
1806 if (!nat_entry_slab)
1807 return -ENOMEM;
1808
1809 free_nid_slab = f2fs_kmem_cache_create("free_nid",
1810 sizeof(struct free_nid), NULL);
1811 if (!free_nid_slab) {
1812 kmem_cache_destroy(nat_entry_slab);
1813 return -ENOMEM;
1814 }
1815 return 0;
1816}
1817
1818void destroy_node_manager_caches(void)
1819{
1820 kmem_cache_destroy(free_nid_slab);
1821 kmem_cache_destroy(nat_entry_slab);
1822}