f2fs: fix up f2fs_get_parent issue to retrieve correct parent inode number
[linux-2.6-block.git] / fs / f2fs / node.c
CommitLineData
0a8165d7 1/*
e05df3b1
JK
2 * fs/f2fs/node.c
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11#include <linux/fs.h>
12#include <linux/f2fs_fs.h>
13#include <linux/mpage.h>
14#include <linux/backing-dev.h>
15#include <linux/blkdev.h>
16#include <linux/pagevec.h>
17#include <linux/swap.h>
18
19#include "f2fs.h"
20#include "node.h"
21#include "segment.h"
22
23static struct kmem_cache *nat_entry_slab;
24static struct kmem_cache *free_nid_slab;
25
26static void clear_node_page_dirty(struct page *page)
27{
28 struct address_space *mapping = page->mapping;
29 struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
30 unsigned int long flags;
31
32 if (PageDirty(page)) {
33 spin_lock_irqsave(&mapping->tree_lock, flags);
34 radix_tree_tag_clear(&mapping->page_tree,
35 page_index(page),
36 PAGECACHE_TAG_DIRTY);
37 spin_unlock_irqrestore(&mapping->tree_lock, flags);
38
39 clear_page_dirty_for_io(page);
40 dec_page_count(sbi, F2FS_DIRTY_NODES);
41 }
42 ClearPageUptodate(page);
43}
44
45static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
46{
47 pgoff_t index = current_nat_addr(sbi, nid);
48 return get_meta_page(sbi, index);
49}
50
51static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
52{
53 struct page *src_page;
54 struct page *dst_page;
55 pgoff_t src_off;
56 pgoff_t dst_off;
57 void *src_addr;
58 void *dst_addr;
59 struct f2fs_nm_info *nm_i = NM_I(sbi);
60
61 src_off = current_nat_addr(sbi, nid);
62 dst_off = next_nat_addr(sbi, src_off);
63
64 /* get current nat block page with lock */
65 src_page = get_meta_page(sbi, src_off);
66
67 /* Dirty src_page means that it is already the new target NAT page. */
68 if (PageDirty(src_page))
69 return src_page;
70
71 dst_page = grab_meta_page(sbi, dst_off);
72
73 src_addr = page_address(src_page);
74 dst_addr = page_address(dst_page);
75 memcpy(dst_addr, src_addr, PAGE_CACHE_SIZE);
76 set_page_dirty(dst_page);
77 f2fs_put_page(src_page, 1);
78
79 set_to_next_nat(nm_i, nid);
80
81 return dst_page;
82}
83
0a8165d7 84/*
e05df3b1
JK
85 * Readahead NAT pages
86 */
87static void ra_nat_pages(struct f2fs_sb_info *sbi, int nid)
88{
89 struct address_space *mapping = sbi->meta_inode->i_mapping;
90 struct f2fs_nm_info *nm_i = NM_I(sbi);
91 struct page *page;
92 pgoff_t index;
93 int i;
94
95 for (i = 0; i < FREE_NID_PAGES; i++, nid += NAT_ENTRY_PER_BLOCK) {
96 if (nid >= nm_i->max_nid)
97 nid = 0;
98 index = current_nat_addr(sbi, nid);
99
100 page = grab_cache_page(mapping, index);
101 if (!page)
102 continue;
103 if (f2fs_readpage(sbi, page, index, READ)) {
104 f2fs_put_page(page, 1);
105 continue;
106 }
107 page_cache_release(page);
108 }
109}
110
111static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
112{
113 return radix_tree_lookup(&nm_i->nat_root, n);
114}
115
116static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
117 nid_t start, unsigned int nr, struct nat_entry **ep)
118{
119 return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
120}
121
122static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
123{
124 list_del(&e->list);
125 radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
126 nm_i->nat_cnt--;
127 kmem_cache_free(nat_entry_slab, e);
128}
129
130int is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
131{
132 struct f2fs_nm_info *nm_i = NM_I(sbi);
133 struct nat_entry *e;
134 int is_cp = 1;
135
136 read_lock(&nm_i->nat_tree_lock);
137 e = __lookup_nat_cache(nm_i, nid);
138 if (e && !e->checkpointed)
139 is_cp = 0;
140 read_unlock(&nm_i->nat_tree_lock);
141 return is_cp;
142}
143
144static struct nat_entry *grab_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid)
145{
146 struct nat_entry *new;
147
148 new = kmem_cache_alloc(nat_entry_slab, GFP_ATOMIC);
149 if (!new)
150 return NULL;
151 if (radix_tree_insert(&nm_i->nat_root, nid, new)) {
152 kmem_cache_free(nat_entry_slab, new);
153 return NULL;
154 }
155 memset(new, 0, sizeof(struct nat_entry));
156 nat_set_nid(new, nid);
157 list_add_tail(&new->list, &nm_i->nat_entries);
158 nm_i->nat_cnt++;
159 return new;
160}
161
162static void cache_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid,
163 struct f2fs_nat_entry *ne)
164{
165 struct nat_entry *e;
166retry:
167 write_lock(&nm_i->nat_tree_lock);
168 e = __lookup_nat_cache(nm_i, nid);
169 if (!e) {
170 e = grab_nat_entry(nm_i, nid);
171 if (!e) {
172 write_unlock(&nm_i->nat_tree_lock);
173 goto retry;
174 }
175 nat_set_blkaddr(e, le32_to_cpu(ne->block_addr));
176 nat_set_ino(e, le32_to_cpu(ne->ino));
177 nat_set_version(e, ne->version);
178 e->checkpointed = true;
179 }
180 write_unlock(&nm_i->nat_tree_lock);
181}
182
183static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
184 block_t new_blkaddr)
185{
186 struct f2fs_nm_info *nm_i = NM_I(sbi);
187 struct nat_entry *e;
188retry:
189 write_lock(&nm_i->nat_tree_lock);
190 e = __lookup_nat_cache(nm_i, ni->nid);
191 if (!e) {
192 e = grab_nat_entry(nm_i, ni->nid);
193 if (!e) {
194 write_unlock(&nm_i->nat_tree_lock);
195 goto retry;
196 }
197 e->ni = *ni;
198 e->checkpointed = true;
199 BUG_ON(ni->blk_addr == NEW_ADDR);
200 } else if (new_blkaddr == NEW_ADDR) {
201 /*
202 * when nid is reallocated,
203 * previous nat entry can be remained in nat cache.
204 * So, reinitialize it with new information.
205 */
206 e->ni = *ni;
207 BUG_ON(ni->blk_addr != NULL_ADDR);
208 }
209
210 if (new_blkaddr == NEW_ADDR)
211 e->checkpointed = false;
212
213 /* sanity check */
214 BUG_ON(nat_get_blkaddr(e) != ni->blk_addr);
215 BUG_ON(nat_get_blkaddr(e) == NULL_ADDR &&
216 new_blkaddr == NULL_ADDR);
217 BUG_ON(nat_get_blkaddr(e) == NEW_ADDR &&
218 new_blkaddr == NEW_ADDR);
219 BUG_ON(nat_get_blkaddr(e) != NEW_ADDR &&
220 nat_get_blkaddr(e) != NULL_ADDR &&
221 new_blkaddr == NEW_ADDR);
222
223 /* increament version no as node is removed */
224 if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
225 unsigned char version = nat_get_version(e);
226 nat_set_version(e, inc_node_version(version));
227 }
228
229 /* change address */
230 nat_set_blkaddr(e, new_blkaddr);
231 __set_nat_cache_dirty(nm_i, e);
232 write_unlock(&nm_i->nat_tree_lock);
233}
234
235static int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
236{
237 struct f2fs_nm_info *nm_i = NM_I(sbi);
238
239 if (nm_i->nat_cnt < 2 * NM_WOUT_THRESHOLD)
240 return 0;
241
242 write_lock(&nm_i->nat_tree_lock);
243 while (nr_shrink && !list_empty(&nm_i->nat_entries)) {
244 struct nat_entry *ne;
245 ne = list_first_entry(&nm_i->nat_entries,
246 struct nat_entry, list);
247 __del_from_nat_cache(nm_i, ne);
248 nr_shrink--;
249 }
250 write_unlock(&nm_i->nat_tree_lock);
251 return nr_shrink;
252}
253
0a8165d7 254/*
e05df3b1
JK
255 * This function returns always success
256 */
257void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni)
258{
259 struct f2fs_nm_info *nm_i = NM_I(sbi);
260 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
261 struct f2fs_summary_block *sum = curseg->sum_blk;
262 nid_t start_nid = START_NID(nid);
263 struct f2fs_nat_block *nat_blk;
264 struct page *page = NULL;
265 struct f2fs_nat_entry ne;
266 struct nat_entry *e;
267 int i;
268
be4124f8 269 memset(&ne, 0, sizeof(struct f2fs_nat_entry));
e05df3b1
JK
270 ni->nid = nid;
271
272 /* Check nat cache */
273 read_lock(&nm_i->nat_tree_lock);
274 e = __lookup_nat_cache(nm_i, nid);
275 if (e) {
276 ni->ino = nat_get_ino(e);
277 ni->blk_addr = nat_get_blkaddr(e);
278 ni->version = nat_get_version(e);
279 }
280 read_unlock(&nm_i->nat_tree_lock);
281 if (e)
282 return;
283
284 /* Check current segment summary */
285 mutex_lock(&curseg->curseg_mutex);
286 i = lookup_journal_in_cursum(sum, NAT_JOURNAL, nid, 0);
287 if (i >= 0) {
288 ne = nat_in_journal(sum, i);
289 node_info_from_raw_nat(ni, &ne);
290 }
291 mutex_unlock(&curseg->curseg_mutex);
292 if (i >= 0)
293 goto cache;
294
295 /* Fill node_info from nat page */
296 page = get_current_nat_page(sbi, start_nid);
297 nat_blk = (struct f2fs_nat_block *)page_address(page);
298 ne = nat_blk->entries[nid - start_nid];
299 node_info_from_raw_nat(ni, &ne);
300 f2fs_put_page(page, 1);
301cache:
302 /* cache nat entry */
303 cache_nat_entry(NM_I(sbi), nid, &ne);
304}
305
0a8165d7 306/*
e05df3b1
JK
307 * The maximum depth is four.
308 * Offset[0] will have raw inode offset.
309 */
310static int get_node_path(long block, int offset[4], unsigned int noffset[4])
311{
312 const long direct_index = ADDRS_PER_INODE;
313 const long direct_blks = ADDRS_PER_BLOCK;
314 const long dptrs_per_blk = NIDS_PER_BLOCK;
315 const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
316 const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
317 int n = 0;
318 int level = 0;
319
320 noffset[0] = 0;
321
322 if (block < direct_index) {
323 offset[n++] = block;
324 level = 0;
325 goto got;
326 }
327 block -= direct_index;
328 if (block < direct_blks) {
329 offset[n++] = NODE_DIR1_BLOCK;
330 noffset[n] = 1;
331 offset[n++] = block;
332 level = 1;
333 goto got;
334 }
335 block -= direct_blks;
336 if (block < direct_blks) {
337 offset[n++] = NODE_DIR2_BLOCK;
338 noffset[n] = 2;
339 offset[n++] = block;
340 level = 1;
341 goto got;
342 }
343 block -= direct_blks;
344 if (block < indirect_blks) {
345 offset[n++] = NODE_IND1_BLOCK;
346 noffset[n] = 3;
347 offset[n++] = block / direct_blks;
348 noffset[n] = 4 + offset[n - 1];
349 offset[n++] = block % direct_blks;
350 level = 2;
351 goto got;
352 }
353 block -= indirect_blks;
354 if (block < indirect_blks) {
355 offset[n++] = NODE_IND2_BLOCK;
356 noffset[n] = 4 + dptrs_per_blk;
357 offset[n++] = block / direct_blks;
358 noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
359 offset[n++] = block % direct_blks;
360 level = 2;
361 goto got;
362 }
363 block -= indirect_blks;
364 if (block < dindirect_blks) {
365 offset[n++] = NODE_DIND_BLOCK;
366 noffset[n] = 5 + (dptrs_per_blk * 2);
367 offset[n++] = block / indirect_blks;
368 noffset[n] = 6 + (dptrs_per_blk * 2) +
369 offset[n - 1] * (dptrs_per_blk + 1);
370 offset[n++] = (block / direct_blks) % dptrs_per_blk;
371 noffset[n] = 7 + (dptrs_per_blk * 2) +
372 offset[n - 2] * (dptrs_per_blk + 1) +
373 offset[n - 1];
374 offset[n++] = block % direct_blks;
375 level = 3;
376 goto got;
377 } else {
378 BUG();
379 }
380got:
381 return level;
382}
383
384/*
385 * Caller should call f2fs_put_dnode(dn).
386 */
387int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int ro)
388{
389 struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
390 struct page *npage[4];
391 struct page *parent;
392 int offset[4];
393 unsigned int noffset[4];
394 nid_t nids[4];
395 int level, i;
396 int err = 0;
397
398 level = get_node_path(index, offset, noffset);
399
400 nids[0] = dn->inode->i_ino;
401 npage[0] = get_node_page(sbi, nids[0]);
402 if (IS_ERR(npage[0]))
403 return PTR_ERR(npage[0]);
404
405 parent = npage[0];
406 nids[1] = get_nid(parent, offset[0], true);
407 dn->inode_page = npage[0];
408 dn->inode_page_locked = true;
409
410 /* get indirect or direct nodes */
411 for (i = 1; i <= level; i++) {
412 bool done = false;
413
414 if (!nids[i] && !ro) {
415 mutex_lock_op(sbi, NODE_NEW);
416
417 /* alloc new node */
418 if (!alloc_nid(sbi, &(nids[i]))) {
419 mutex_unlock_op(sbi, NODE_NEW);
420 err = -ENOSPC;
421 goto release_pages;
422 }
423
424 dn->nid = nids[i];
425 npage[i] = new_node_page(dn, noffset[i]);
426 if (IS_ERR(npage[i])) {
427 alloc_nid_failed(sbi, nids[i]);
428 mutex_unlock_op(sbi, NODE_NEW);
429 err = PTR_ERR(npage[i]);
430 goto release_pages;
431 }
432
433 set_nid(parent, offset[i - 1], nids[i], i == 1);
434 alloc_nid_done(sbi, nids[i]);
435 mutex_unlock_op(sbi, NODE_NEW);
436 done = true;
437 } else if (ro && i == level && level > 1) {
438 npage[i] = get_node_page_ra(parent, offset[i - 1]);
439 if (IS_ERR(npage[i])) {
440 err = PTR_ERR(npage[i]);
441 goto release_pages;
442 }
443 done = true;
444 }
445 if (i == 1) {
446 dn->inode_page_locked = false;
447 unlock_page(parent);
448 } else {
449 f2fs_put_page(parent, 1);
450 }
451
452 if (!done) {
453 npage[i] = get_node_page(sbi, nids[i]);
454 if (IS_ERR(npage[i])) {
455 err = PTR_ERR(npage[i]);
456 f2fs_put_page(npage[0], 0);
457 goto release_out;
458 }
459 }
460 if (i < level) {
461 parent = npage[i];
462 nids[i + 1] = get_nid(parent, offset[i], false);
463 }
464 }
465 dn->nid = nids[level];
466 dn->ofs_in_node = offset[level];
467 dn->node_page = npage[level];
468 dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node);
469 return 0;
470
471release_pages:
472 f2fs_put_page(parent, 1);
473 if (i > 1)
474 f2fs_put_page(npage[0], 0);
475release_out:
476 dn->inode_page = NULL;
477 dn->node_page = NULL;
478 return err;
479}
480
481static void truncate_node(struct dnode_of_data *dn)
482{
483 struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
484 struct node_info ni;
485
486 get_node_info(sbi, dn->nid, &ni);
487 BUG_ON(ni.blk_addr == NULL_ADDR);
488
489 if (ni.blk_addr != NULL_ADDR)
490 invalidate_blocks(sbi, ni.blk_addr);
491
492 /* Deallocate node address */
493 dec_valid_node_count(sbi, dn->inode, 1);
494 set_node_addr(sbi, &ni, NULL_ADDR);
495
496 if (dn->nid == dn->inode->i_ino) {
497 remove_orphan_inode(sbi, dn->nid);
498 dec_valid_inode_count(sbi);
499 } else {
500 sync_inode_page(dn);
501 }
502
503 clear_node_page_dirty(dn->node_page);
504 F2FS_SET_SB_DIRT(sbi);
505
506 f2fs_put_page(dn->node_page, 1);
507 dn->node_page = NULL;
508}
509
510static int truncate_dnode(struct dnode_of_data *dn)
511{
512 struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
513 struct page *page;
514
515 if (dn->nid == 0)
516 return 1;
517
518 /* get direct node */
519 page = get_node_page(sbi, dn->nid);
520 if (IS_ERR(page) && PTR_ERR(page) == -ENOENT)
521 return 1;
522 else if (IS_ERR(page))
523 return PTR_ERR(page);
524
525 /* Make dnode_of_data for parameter */
526 dn->node_page = page;
527 dn->ofs_in_node = 0;
528 truncate_data_blocks(dn);
529 truncate_node(dn);
530 return 1;
531}
532
533static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
534 int ofs, int depth)
535{
536 struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
537 struct dnode_of_data rdn = *dn;
538 struct page *page;
539 struct f2fs_node *rn;
540 nid_t child_nid;
541 unsigned int child_nofs;
542 int freed = 0;
543 int i, ret;
544
545 if (dn->nid == 0)
546 return NIDS_PER_BLOCK + 1;
547
548 page = get_node_page(sbi, dn->nid);
549 if (IS_ERR(page))
550 return PTR_ERR(page);
551
552 rn = (struct f2fs_node *)page_address(page);
553 if (depth < 3) {
554 for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
555 child_nid = le32_to_cpu(rn->in.nid[i]);
556 if (child_nid == 0)
557 continue;
558 rdn.nid = child_nid;
559 ret = truncate_dnode(&rdn);
560 if (ret < 0)
561 goto out_err;
562 set_nid(page, i, 0, false);
563 }
564 } else {
565 child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
566 for (i = ofs; i < NIDS_PER_BLOCK; i++) {
567 child_nid = le32_to_cpu(rn->in.nid[i]);
568 if (child_nid == 0) {
569 child_nofs += NIDS_PER_BLOCK + 1;
570 continue;
571 }
572 rdn.nid = child_nid;
573 ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
574 if (ret == (NIDS_PER_BLOCK + 1)) {
575 set_nid(page, i, 0, false);
576 child_nofs += ret;
577 } else if (ret < 0 && ret != -ENOENT) {
578 goto out_err;
579 }
580 }
581 freed = child_nofs;
582 }
583
584 if (!ofs) {
585 /* remove current indirect node */
586 dn->node_page = page;
587 truncate_node(dn);
588 freed++;
589 } else {
590 f2fs_put_page(page, 1);
591 }
592 return freed;
593
594out_err:
595 f2fs_put_page(page, 1);
596 return ret;
597}
598
599static int truncate_partial_nodes(struct dnode_of_data *dn,
600 struct f2fs_inode *ri, int *offset, int depth)
601{
602 struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
603 struct page *pages[2];
604 nid_t nid[3];
605 nid_t child_nid;
606 int err = 0;
607 int i;
608 int idx = depth - 2;
609
610 nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
611 if (!nid[0])
612 return 0;
613
614 /* get indirect nodes in the path */
615 for (i = 0; i < depth - 1; i++) {
616 /* refernece count'll be increased */
617 pages[i] = get_node_page(sbi, nid[i]);
618 if (IS_ERR(pages[i])) {
619 depth = i + 1;
620 err = PTR_ERR(pages[i]);
621 goto fail;
622 }
623 nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
624 }
625
626 /* free direct nodes linked to a partial indirect node */
627 for (i = offset[depth - 1]; i < NIDS_PER_BLOCK; i++) {
628 child_nid = get_nid(pages[idx], i, false);
629 if (!child_nid)
630 continue;
631 dn->nid = child_nid;
632 err = truncate_dnode(dn);
633 if (err < 0)
634 goto fail;
635 set_nid(pages[idx], i, 0, false);
636 }
637
638 if (offset[depth - 1] == 0) {
639 dn->node_page = pages[idx];
640 dn->nid = nid[idx];
641 truncate_node(dn);
642 } else {
643 f2fs_put_page(pages[idx], 1);
644 }
645 offset[idx]++;
646 offset[depth - 1] = 0;
647fail:
648 for (i = depth - 3; i >= 0; i--)
649 f2fs_put_page(pages[i], 1);
650 return err;
651}
652
0a8165d7 653/*
e05df3b1
JK
654 * All the block addresses of data and nodes should be nullified.
655 */
656int truncate_inode_blocks(struct inode *inode, pgoff_t from)
657{
658 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
659 int err = 0, cont = 1;
660 int level, offset[4], noffset[4];
661 unsigned int nofs;
662 struct f2fs_node *rn;
663 struct dnode_of_data dn;
664 struct page *page;
665
666 level = get_node_path(from, offset, noffset);
667
668 page = get_node_page(sbi, inode->i_ino);
669 if (IS_ERR(page))
670 return PTR_ERR(page);
671
672 set_new_dnode(&dn, inode, page, NULL, 0);
673 unlock_page(page);
674
675 rn = page_address(page);
676 switch (level) {
677 case 0:
678 case 1:
679 nofs = noffset[1];
680 break;
681 case 2:
682 nofs = noffset[1];
683 if (!offset[level - 1])
684 goto skip_partial;
685 err = truncate_partial_nodes(&dn, &rn->i, offset, level);
686 if (err < 0 && err != -ENOENT)
687 goto fail;
688 nofs += 1 + NIDS_PER_BLOCK;
689 break;
690 case 3:
691 nofs = 5 + 2 * NIDS_PER_BLOCK;
692 if (!offset[level - 1])
693 goto skip_partial;
694 err = truncate_partial_nodes(&dn, &rn->i, offset, level);
695 if (err < 0 && err != -ENOENT)
696 goto fail;
697 break;
698 default:
699 BUG();
700 }
701
702skip_partial:
703 while (cont) {
704 dn.nid = le32_to_cpu(rn->i.i_nid[offset[0] - NODE_DIR1_BLOCK]);
705 switch (offset[0]) {
706 case NODE_DIR1_BLOCK:
707 case NODE_DIR2_BLOCK:
708 err = truncate_dnode(&dn);
709 break;
710
711 case NODE_IND1_BLOCK:
712 case NODE_IND2_BLOCK:
713 err = truncate_nodes(&dn, nofs, offset[1], 2);
714 break;
715
716 case NODE_DIND_BLOCK:
717 err = truncate_nodes(&dn, nofs, offset[1], 3);
718 cont = 0;
719 break;
720
721 default:
722 BUG();
723 }
724 if (err < 0 && err != -ENOENT)
725 goto fail;
726 if (offset[1] == 0 &&
727 rn->i.i_nid[offset[0] - NODE_DIR1_BLOCK]) {
728 lock_page(page);
729 wait_on_page_writeback(page);
730 rn->i.i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
731 set_page_dirty(page);
732 unlock_page(page);
733 }
734 offset[1] = 0;
735 offset[0]++;
736 nofs += err;
737 }
738fail:
739 f2fs_put_page(page, 0);
740 return err > 0 ? 0 : err;
741}
742
743int remove_inode_page(struct inode *inode)
744{
745 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
746 struct page *page;
747 nid_t ino = inode->i_ino;
748 struct dnode_of_data dn;
749
750 mutex_lock_op(sbi, NODE_TRUNC);
751 page = get_node_page(sbi, ino);
752 if (IS_ERR(page)) {
753 mutex_unlock_op(sbi, NODE_TRUNC);
754 return PTR_ERR(page);
755 }
756
757 if (F2FS_I(inode)->i_xattr_nid) {
758 nid_t nid = F2FS_I(inode)->i_xattr_nid;
759 struct page *npage = get_node_page(sbi, nid);
760
761 if (IS_ERR(npage)) {
762 mutex_unlock_op(sbi, NODE_TRUNC);
763 return PTR_ERR(npage);
764 }
765
766 F2FS_I(inode)->i_xattr_nid = 0;
767 set_new_dnode(&dn, inode, page, npage, nid);
768 dn.inode_page_locked = 1;
769 truncate_node(&dn);
770 }
771 if (inode->i_blocks == 1) {
772 /* inernally call f2fs_put_page() */
773 set_new_dnode(&dn, inode, page, page, ino);
774 truncate_node(&dn);
775 } else if (inode->i_blocks == 0) {
776 struct node_info ni;
777 get_node_info(sbi, inode->i_ino, &ni);
778
779 /* called after f2fs_new_inode() is failed */
780 BUG_ON(ni.blk_addr != NULL_ADDR);
781 f2fs_put_page(page, 1);
782 } else {
783 BUG();
784 }
785 mutex_unlock_op(sbi, NODE_TRUNC);
786 return 0;
787}
788
789int new_inode_page(struct inode *inode, struct dentry *dentry)
790{
791 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
792 struct page *page;
793 struct dnode_of_data dn;
794
795 /* allocate inode page for new inode */
796 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
797 mutex_lock_op(sbi, NODE_NEW);
798 page = new_node_page(&dn, 0);
799 init_dent_inode(dentry, page);
800 mutex_unlock_op(sbi, NODE_NEW);
801 if (IS_ERR(page))
802 return PTR_ERR(page);
803 f2fs_put_page(page, 1);
804 return 0;
805}
806
807struct page *new_node_page(struct dnode_of_data *dn, unsigned int ofs)
808{
809 struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
810 struct address_space *mapping = sbi->node_inode->i_mapping;
811 struct node_info old_ni, new_ni;
812 struct page *page;
813 int err;
814
815 if (is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC))
816 return ERR_PTR(-EPERM);
817
818 page = grab_cache_page(mapping, dn->nid);
819 if (!page)
820 return ERR_PTR(-ENOMEM);
821
822 get_node_info(sbi, dn->nid, &old_ni);
823
824 SetPageUptodate(page);
825 fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
826
827 /* Reinitialize old_ni with new node page */
828 BUG_ON(old_ni.blk_addr != NULL_ADDR);
829 new_ni = old_ni;
830 new_ni.ino = dn->inode->i_ino;
831
832 if (!inc_valid_node_count(sbi, dn->inode, 1)) {
833 err = -ENOSPC;
834 goto fail;
835 }
836 set_node_addr(sbi, &new_ni, NEW_ADDR);
837
838 dn->node_page = page;
839 sync_inode_page(dn);
840 set_page_dirty(page);
841 set_cold_node(dn->inode, page);
842 if (ofs == 0)
843 inc_valid_inode_count(sbi);
844
845 return page;
846
847fail:
848 f2fs_put_page(page, 1);
849 return ERR_PTR(err);
850}
851
852static int read_node_page(struct page *page, int type)
853{
854 struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb);
855 struct node_info ni;
856
857 get_node_info(sbi, page->index, &ni);
858
859 if (ni.blk_addr == NULL_ADDR)
860 return -ENOENT;
861 return f2fs_readpage(sbi, page, ni.blk_addr, type);
862}
863
0a8165d7 864/*
e05df3b1
JK
865 * Readahead a node page
866 */
867void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
868{
869 struct address_space *mapping = sbi->node_inode->i_mapping;
870 struct page *apage;
871
872 apage = find_get_page(mapping, nid);
873 if (apage && PageUptodate(apage))
874 goto release_out;
875 f2fs_put_page(apage, 0);
876
877 apage = grab_cache_page(mapping, nid);
878 if (!apage)
879 return;
880
881 if (read_node_page(apage, READA))
882 goto unlock_out;
883
884 page_cache_release(apage);
885 return;
886
887unlock_out:
888 unlock_page(apage);
889release_out:
890 page_cache_release(apage);
891}
892
893struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
894{
895 int err;
896 struct page *page;
897 struct address_space *mapping = sbi->node_inode->i_mapping;
898
899 page = grab_cache_page(mapping, nid);
900 if (!page)
901 return ERR_PTR(-ENOMEM);
902
903 err = read_node_page(page, READ_SYNC);
904 if (err) {
905 f2fs_put_page(page, 1);
906 return ERR_PTR(err);
907 }
908
909 BUG_ON(nid != nid_of_node(page));
910 mark_page_accessed(page);
911 return page;
912}
913
0a8165d7 914/*
e05df3b1
JK
915 * Return a locked page for the desired node page.
916 * And, readahead MAX_RA_NODE number of node pages.
917 */
918struct page *get_node_page_ra(struct page *parent, int start)
919{
920 struct f2fs_sb_info *sbi = F2FS_SB(parent->mapping->host->i_sb);
921 struct address_space *mapping = sbi->node_inode->i_mapping;
922 int i, end;
923 int err = 0;
924 nid_t nid;
925 struct page *page;
926
927 /* First, try getting the desired direct node. */
928 nid = get_nid(parent, start, false);
929 if (!nid)
930 return ERR_PTR(-ENOENT);
931
932 page = find_get_page(mapping, nid);
933 if (page && PageUptodate(page))
934 goto page_hit;
935 f2fs_put_page(page, 0);
936
937repeat:
938 page = grab_cache_page(mapping, nid);
939 if (!page)
940 return ERR_PTR(-ENOMEM);
941
942 err = read_node_page(page, READA);
943 if (err) {
944 f2fs_put_page(page, 1);
945 return ERR_PTR(err);
946 }
947
948 /* Then, try readahead for siblings of the desired node */
949 end = start + MAX_RA_NODE;
950 end = min(end, NIDS_PER_BLOCK);
951 for (i = start + 1; i < end; i++) {
952 nid = get_nid(parent, i, false);
953 if (!nid)
954 continue;
955 ra_node_page(sbi, nid);
956 }
957
958page_hit:
959 lock_page(page);
960 if (PageError(page)) {
961 f2fs_put_page(page, 1);
962 return ERR_PTR(-EIO);
963 }
964
965 /* Has the page been truncated? */
966 if (page->mapping != mapping) {
967 f2fs_put_page(page, 1);
968 goto repeat;
969 }
970 return page;
971}
972
973void sync_inode_page(struct dnode_of_data *dn)
974{
975 if (IS_INODE(dn->node_page) || dn->inode_page == dn->node_page) {
976 update_inode(dn->inode, dn->node_page);
977 } else if (dn->inode_page) {
978 if (!dn->inode_page_locked)
979 lock_page(dn->inode_page);
980 update_inode(dn->inode, dn->inode_page);
981 if (!dn->inode_page_locked)
982 unlock_page(dn->inode_page);
983 } else {
984 f2fs_write_inode(dn->inode, NULL);
985 }
986}
987
988int sync_node_pages(struct f2fs_sb_info *sbi, nid_t ino,
989 struct writeback_control *wbc)
990{
991 struct address_space *mapping = sbi->node_inode->i_mapping;
992 pgoff_t index, end;
993 struct pagevec pvec;
994 int step = ino ? 2 : 0;
995 int nwritten = 0, wrote = 0;
996
997 pagevec_init(&pvec, 0);
998
999next_step:
1000 index = 0;
1001 end = LONG_MAX;
1002
1003 while (index <= end) {
1004 int i, nr_pages;
1005 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
1006 PAGECACHE_TAG_DIRTY,
1007 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1008 if (nr_pages == 0)
1009 break;
1010
1011 for (i = 0; i < nr_pages; i++) {
1012 struct page *page = pvec.pages[i];
1013
1014 /*
1015 * flushing sequence with step:
1016 * 0. indirect nodes
1017 * 1. dentry dnodes
1018 * 2. file dnodes
1019 */
1020 if (step == 0 && IS_DNODE(page))
1021 continue;
1022 if (step == 1 && (!IS_DNODE(page) ||
1023 is_cold_node(page)))
1024 continue;
1025 if (step == 2 && (!IS_DNODE(page) ||
1026 !is_cold_node(page)))
1027 continue;
1028
1029 /*
1030 * If an fsync mode,
1031 * we should not skip writing node pages.
1032 */
1033 if (ino && ino_of_node(page) == ino)
1034 lock_page(page);
1035 else if (!trylock_page(page))
1036 continue;
1037
1038 if (unlikely(page->mapping != mapping)) {
1039continue_unlock:
1040 unlock_page(page);
1041 continue;
1042 }
1043 if (ino && ino_of_node(page) != ino)
1044 goto continue_unlock;
1045
1046 if (!PageDirty(page)) {
1047 /* someone wrote it for us */
1048 goto continue_unlock;
1049 }
1050
1051 if (!clear_page_dirty_for_io(page))
1052 goto continue_unlock;
1053
1054 /* called by fsync() */
1055 if (ino && IS_DNODE(page)) {
1056 int mark = !is_checkpointed_node(sbi, ino);
1057 set_fsync_mark(page, 1);
1058 if (IS_INODE(page))
1059 set_dentry_mark(page, mark);
1060 nwritten++;
1061 } else {
1062 set_fsync_mark(page, 0);
1063 set_dentry_mark(page, 0);
1064 }
1065 mapping->a_ops->writepage(page, wbc);
1066 wrote++;
1067
1068 if (--wbc->nr_to_write == 0)
1069 break;
1070 }
1071 pagevec_release(&pvec);
1072 cond_resched();
1073
1074 if (wbc->nr_to_write == 0) {
1075 step = 2;
1076 break;
1077 }
1078 }
1079
1080 if (step < 2) {
1081 step++;
1082 goto next_step;
1083 }
1084
1085 if (wrote)
1086 f2fs_submit_bio(sbi, NODE, wbc->sync_mode == WB_SYNC_ALL);
1087
1088 return nwritten;
1089}
1090
1091static int f2fs_write_node_page(struct page *page,
1092 struct writeback_control *wbc)
1093{
1094 struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb);
1095 nid_t nid;
1096 unsigned int nofs;
1097 block_t new_addr;
1098 struct node_info ni;
1099
1100 if (wbc->for_reclaim) {
1101 dec_page_count(sbi, F2FS_DIRTY_NODES);
1102 wbc->pages_skipped++;
1103 set_page_dirty(page);
1104 return AOP_WRITEPAGE_ACTIVATE;
1105 }
1106
1107 wait_on_page_writeback(page);
1108
1109 mutex_lock_op(sbi, NODE_WRITE);
1110
1111 /* get old block addr of this node page */
1112 nid = nid_of_node(page);
1113 nofs = ofs_of_node(page);
1114 BUG_ON(page->index != nid);
1115
1116 get_node_info(sbi, nid, &ni);
1117
1118 /* This page is already truncated */
1119 if (ni.blk_addr == NULL_ADDR)
1120 return 0;
1121
1122 set_page_writeback(page);
1123
1124 /* insert node offset */
1125 write_node_page(sbi, page, nid, ni.blk_addr, &new_addr);
1126 set_node_addr(sbi, &ni, new_addr);
1127 dec_page_count(sbi, F2FS_DIRTY_NODES);
1128
1129 mutex_unlock_op(sbi, NODE_WRITE);
1130 unlock_page(page);
1131 return 0;
1132}
1133
1134static int f2fs_write_node_pages(struct address_space *mapping,
1135 struct writeback_control *wbc)
1136{
1137 struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
1138 struct block_device *bdev = sbi->sb->s_bdev;
1139 long nr_to_write = wbc->nr_to_write;
1140
1141 if (wbc->for_kupdate)
1142 return 0;
1143
1144 if (get_pages(sbi, F2FS_DIRTY_NODES) == 0)
1145 return 0;
1146
1147 if (try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK)) {
1148 write_checkpoint(sbi, false, false);
1149 return 0;
1150 }
1151
1152 /* if mounting is failed, skip writing node pages */
1153 wbc->nr_to_write = bio_get_nr_vecs(bdev);
1154 sync_node_pages(sbi, 0, wbc);
1155 wbc->nr_to_write = nr_to_write -
1156 (bio_get_nr_vecs(bdev) - wbc->nr_to_write);
1157 return 0;
1158}
1159
1160static int f2fs_set_node_page_dirty(struct page *page)
1161{
1162 struct address_space *mapping = page->mapping;
1163 struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
1164
1165 SetPageUptodate(page);
1166 if (!PageDirty(page)) {
1167 __set_page_dirty_nobuffers(page);
1168 inc_page_count(sbi, F2FS_DIRTY_NODES);
1169 SetPagePrivate(page);
1170 return 1;
1171 }
1172 return 0;
1173}
1174
1175static void f2fs_invalidate_node_page(struct page *page, unsigned long offset)
1176{
1177 struct inode *inode = page->mapping->host;
1178 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
1179 if (PageDirty(page))
1180 dec_page_count(sbi, F2FS_DIRTY_NODES);
1181 ClearPagePrivate(page);
1182}
1183
1184static int f2fs_release_node_page(struct page *page, gfp_t wait)
1185{
1186 ClearPagePrivate(page);
1187 return 0;
1188}
1189
0a8165d7 1190/*
e05df3b1
JK
1191 * Structure of the f2fs node operations
1192 */
1193const struct address_space_operations f2fs_node_aops = {
1194 .writepage = f2fs_write_node_page,
1195 .writepages = f2fs_write_node_pages,
1196 .set_page_dirty = f2fs_set_node_page_dirty,
1197 .invalidatepage = f2fs_invalidate_node_page,
1198 .releasepage = f2fs_release_node_page,
1199};
1200
1201static struct free_nid *__lookup_free_nid_list(nid_t n, struct list_head *head)
1202{
1203 struct list_head *this;
1204 struct free_nid *i = NULL;
1205 list_for_each(this, head) {
1206 i = list_entry(this, struct free_nid, list);
1207 if (i->nid == n)
1208 break;
1209 i = NULL;
1210 }
1211 return i;
1212}
1213
1214static void __del_from_free_nid_list(struct free_nid *i)
1215{
1216 list_del(&i->list);
1217 kmem_cache_free(free_nid_slab, i);
1218}
1219
1220static int add_free_nid(struct f2fs_nm_info *nm_i, nid_t nid)
1221{
1222 struct free_nid *i;
1223
1224 if (nm_i->fcnt > 2 * MAX_FREE_NIDS)
1225 return 0;
1226retry:
1227 i = kmem_cache_alloc(free_nid_slab, GFP_NOFS);
1228 if (!i) {
1229 cond_resched();
1230 goto retry;
1231 }
1232 i->nid = nid;
1233 i->state = NID_NEW;
1234
1235 spin_lock(&nm_i->free_nid_list_lock);
1236 if (__lookup_free_nid_list(nid, &nm_i->free_nid_list)) {
1237 spin_unlock(&nm_i->free_nid_list_lock);
1238 kmem_cache_free(free_nid_slab, i);
1239 return 0;
1240 }
1241 list_add_tail(&i->list, &nm_i->free_nid_list);
1242 nm_i->fcnt++;
1243 spin_unlock(&nm_i->free_nid_list_lock);
1244 return 1;
1245}
1246
1247static void remove_free_nid(struct f2fs_nm_info *nm_i, nid_t nid)
1248{
1249 struct free_nid *i;
1250 spin_lock(&nm_i->free_nid_list_lock);
1251 i = __lookup_free_nid_list(nid, &nm_i->free_nid_list);
1252 if (i && i->state == NID_NEW) {
1253 __del_from_free_nid_list(i);
1254 nm_i->fcnt--;
1255 }
1256 spin_unlock(&nm_i->free_nid_list_lock);
1257}
1258
1259static int scan_nat_page(struct f2fs_nm_info *nm_i,
1260 struct page *nat_page, nid_t start_nid)
1261{
1262 struct f2fs_nat_block *nat_blk = page_address(nat_page);
1263 block_t blk_addr;
1264 int fcnt = 0;
1265 int i;
1266
1267 /* 0 nid should not be used */
1268 if (start_nid == 0)
1269 ++start_nid;
1270
1271 i = start_nid % NAT_ENTRY_PER_BLOCK;
1272
1273 for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
1274 blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
1275 BUG_ON(blk_addr == NEW_ADDR);
1276 if (blk_addr == NULL_ADDR)
1277 fcnt += add_free_nid(nm_i, start_nid);
1278 }
1279 return fcnt;
1280}
1281
1282static void build_free_nids(struct f2fs_sb_info *sbi)
1283{
1284 struct free_nid *fnid, *next_fnid;
1285 struct f2fs_nm_info *nm_i = NM_I(sbi);
1286 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1287 struct f2fs_summary_block *sum = curseg->sum_blk;
1288 nid_t nid = 0;
1289 bool is_cycled = false;
1290 int fcnt = 0;
1291 int i;
1292
1293 nid = nm_i->next_scan_nid;
1294 nm_i->init_scan_nid = nid;
1295
1296 ra_nat_pages(sbi, nid);
1297
1298 while (1) {
1299 struct page *page = get_current_nat_page(sbi, nid);
1300
1301 fcnt += scan_nat_page(nm_i, page, nid);
1302 f2fs_put_page(page, 1);
1303
1304 nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
1305
1306 if (nid >= nm_i->max_nid) {
1307 nid = 0;
1308 is_cycled = true;
1309 }
1310 if (fcnt > MAX_FREE_NIDS)
1311 break;
1312 if (is_cycled && nm_i->init_scan_nid <= nid)
1313 break;
1314 }
1315
1316 nm_i->next_scan_nid = nid;
1317
1318 /* find free nids from current sum_pages */
1319 mutex_lock(&curseg->curseg_mutex);
1320 for (i = 0; i < nats_in_cursum(sum); i++) {
1321 block_t addr = le32_to_cpu(nat_in_journal(sum, i).block_addr);
1322 nid = le32_to_cpu(nid_in_journal(sum, i));
1323 if (addr == NULL_ADDR)
1324 add_free_nid(nm_i, nid);
1325 else
1326 remove_free_nid(nm_i, nid);
1327 }
1328 mutex_unlock(&curseg->curseg_mutex);
1329
1330 /* remove the free nids from current allocated nids */
1331 list_for_each_entry_safe(fnid, next_fnid, &nm_i->free_nid_list, list) {
1332 struct nat_entry *ne;
1333
1334 read_lock(&nm_i->nat_tree_lock);
1335 ne = __lookup_nat_cache(nm_i, fnid->nid);
1336 if (ne && nat_get_blkaddr(ne) != NULL_ADDR)
1337 remove_free_nid(nm_i, fnid->nid);
1338 read_unlock(&nm_i->nat_tree_lock);
1339 }
1340}
1341
1342/*
1343 * If this function returns success, caller can obtain a new nid
1344 * from second parameter of this function.
1345 * The returned nid could be used ino as well as nid when inode is created.
1346 */
1347bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
1348{
1349 struct f2fs_nm_info *nm_i = NM_I(sbi);
1350 struct free_nid *i = NULL;
1351 struct list_head *this;
1352retry:
1353 mutex_lock(&nm_i->build_lock);
1354 if (!nm_i->fcnt) {
1355 /* scan NAT in order to build free nid list */
1356 build_free_nids(sbi);
1357 if (!nm_i->fcnt) {
1358 mutex_unlock(&nm_i->build_lock);
1359 return false;
1360 }
1361 }
1362 mutex_unlock(&nm_i->build_lock);
1363
1364 /*
1365 * We check fcnt again since previous check is racy as
1366 * we didn't hold free_nid_list_lock. So other thread
1367 * could consume all of free nids.
1368 */
1369 spin_lock(&nm_i->free_nid_list_lock);
1370 if (!nm_i->fcnt) {
1371 spin_unlock(&nm_i->free_nid_list_lock);
1372 goto retry;
1373 }
1374
1375 BUG_ON(list_empty(&nm_i->free_nid_list));
1376 list_for_each(this, &nm_i->free_nid_list) {
1377 i = list_entry(this, struct free_nid, list);
1378 if (i->state == NID_NEW)
1379 break;
1380 }
1381
1382 BUG_ON(i->state != NID_NEW);
1383 *nid = i->nid;
1384 i->state = NID_ALLOC;
1385 nm_i->fcnt--;
1386 spin_unlock(&nm_i->free_nid_list_lock);
1387 return true;
1388}
1389
0a8165d7 1390/*
e05df3b1
JK
1391 * alloc_nid() should be called prior to this function.
1392 */
1393void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
1394{
1395 struct f2fs_nm_info *nm_i = NM_I(sbi);
1396 struct free_nid *i;
1397
1398 spin_lock(&nm_i->free_nid_list_lock);
1399 i = __lookup_free_nid_list(nid, &nm_i->free_nid_list);
1400 if (i) {
1401 BUG_ON(i->state != NID_ALLOC);
1402 __del_from_free_nid_list(i);
1403 }
1404 spin_unlock(&nm_i->free_nid_list_lock);
1405}
1406
0a8165d7 1407/*
e05df3b1
JK
1408 * alloc_nid() should be called prior to this function.
1409 */
1410void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
1411{
1412 alloc_nid_done(sbi, nid);
1413 add_free_nid(NM_I(sbi), nid);
1414}
1415
1416void recover_node_page(struct f2fs_sb_info *sbi, struct page *page,
1417 struct f2fs_summary *sum, struct node_info *ni,
1418 block_t new_blkaddr)
1419{
1420 rewrite_node_page(sbi, page, sum, ni->blk_addr, new_blkaddr);
1421 set_node_addr(sbi, ni, new_blkaddr);
1422 clear_node_page_dirty(page);
1423}
1424
1425int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
1426{
1427 struct address_space *mapping = sbi->node_inode->i_mapping;
1428 struct f2fs_node *src, *dst;
1429 nid_t ino = ino_of_node(page);
1430 struct node_info old_ni, new_ni;
1431 struct page *ipage;
1432
1433 ipage = grab_cache_page(mapping, ino);
1434 if (!ipage)
1435 return -ENOMEM;
1436
1437 /* Should not use this inode from free nid list */
1438 remove_free_nid(NM_I(sbi), ino);
1439
1440 get_node_info(sbi, ino, &old_ni);
1441 SetPageUptodate(ipage);
1442 fill_node_footer(ipage, ino, ino, 0, true);
1443
1444 src = (struct f2fs_node *)page_address(page);
1445 dst = (struct f2fs_node *)page_address(ipage);
1446
1447 memcpy(dst, src, (unsigned long)&src->i.i_ext - (unsigned long)&src->i);
1448 dst->i.i_size = 0;
25ca923b
JK
1449 dst->i.i_blocks = cpu_to_le64(1);
1450 dst->i.i_links = cpu_to_le32(1);
e05df3b1
JK
1451 dst->i.i_xattr_nid = 0;
1452
1453 new_ni = old_ni;
1454 new_ni.ino = ino;
1455
1456 set_node_addr(sbi, &new_ni, NEW_ADDR);
1457 inc_valid_inode_count(sbi);
1458
1459 f2fs_put_page(ipage, 1);
1460 return 0;
1461}
1462
1463int restore_node_summary(struct f2fs_sb_info *sbi,
1464 unsigned int segno, struct f2fs_summary_block *sum)
1465{
1466 struct f2fs_node *rn;
1467 struct f2fs_summary *sum_entry;
1468 struct page *page;
1469 block_t addr;
1470 int i, last_offset;
1471
1472 /* alloc temporal page for read node */
1473 page = alloc_page(GFP_NOFS | __GFP_ZERO);
1474 if (IS_ERR(page))
1475 return PTR_ERR(page);
1476 lock_page(page);
1477
1478 /* scan the node segment */
1479 last_offset = sbi->blocks_per_seg;
1480 addr = START_BLOCK(sbi, segno);
1481 sum_entry = &sum->entries[0];
1482
1483 for (i = 0; i < last_offset; i++, sum_entry++) {
1484 if (f2fs_readpage(sbi, page, addr, READ_SYNC))
1485 goto out;
1486
1487 rn = (struct f2fs_node *)page_address(page);
1488 sum_entry->nid = rn->footer.nid;
1489 sum_entry->version = 0;
1490 sum_entry->ofs_in_node = 0;
1491 addr++;
1492
1493 /*
1494 * In order to read next node page,
1495 * we must clear PageUptodate flag.
1496 */
1497 ClearPageUptodate(page);
1498 }
1499out:
1500 unlock_page(page);
1501 __free_pages(page, 0);
1502 return 0;
1503}
1504
1505static bool flush_nats_in_journal(struct f2fs_sb_info *sbi)
1506{
1507 struct f2fs_nm_info *nm_i = NM_I(sbi);
1508 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1509 struct f2fs_summary_block *sum = curseg->sum_blk;
1510 int i;
1511
1512 mutex_lock(&curseg->curseg_mutex);
1513
1514 if (nats_in_cursum(sum) < NAT_JOURNAL_ENTRIES) {
1515 mutex_unlock(&curseg->curseg_mutex);
1516 return false;
1517 }
1518
1519 for (i = 0; i < nats_in_cursum(sum); i++) {
1520 struct nat_entry *ne;
1521 struct f2fs_nat_entry raw_ne;
1522 nid_t nid = le32_to_cpu(nid_in_journal(sum, i));
1523
1524 raw_ne = nat_in_journal(sum, i);
1525retry:
1526 write_lock(&nm_i->nat_tree_lock);
1527 ne = __lookup_nat_cache(nm_i, nid);
1528 if (ne) {
1529 __set_nat_cache_dirty(nm_i, ne);
1530 write_unlock(&nm_i->nat_tree_lock);
1531 continue;
1532 }
1533 ne = grab_nat_entry(nm_i, nid);
1534 if (!ne) {
1535 write_unlock(&nm_i->nat_tree_lock);
1536 goto retry;
1537 }
1538 nat_set_blkaddr(ne, le32_to_cpu(raw_ne.block_addr));
1539 nat_set_ino(ne, le32_to_cpu(raw_ne.ino));
1540 nat_set_version(ne, raw_ne.version);
1541 __set_nat_cache_dirty(nm_i, ne);
1542 write_unlock(&nm_i->nat_tree_lock);
1543 }
1544 update_nats_in_cursum(sum, -i);
1545 mutex_unlock(&curseg->curseg_mutex);
1546 return true;
1547}
1548
0a8165d7 1549/*
e05df3b1
JK
1550 * This function is called during the checkpointing process.
1551 */
1552void flush_nat_entries(struct f2fs_sb_info *sbi)
1553{
1554 struct f2fs_nm_info *nm_i = NM_I(sbi);
1555 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1556 struct f2fs_summary_block *sum = curseg->sum_blk;
1557 struct list_head *cur, *n;
1558 struct page *page = NULL;
1559 struct f2fs_nat_block *nat_blk = NULL;
1560 nid_t start_nid = 0, end_nid = 0;
1561 bool flushed;
1562
1563 flushed = flush_nats_in_journal(sbi);
1564
1565 if (!flushed)
1566 mutex_lock(&curseg->curseg_mutex);
1567
1568 /* 1) flush dirty nat caches */
1569 list_for_each_safe(cur, n, &nm_i->dirty_nat_entries) {
1570 struct nat_entry *ne;
1571 nid_t nid;
1572 struct f2fs_nat_entry raw_ne;
1573 int offset = -1;
1574 block_t old_blkaddr, new_blkaddr;
1575
1576 ne = list_entry(cur, struct nat_entry, list);
1577 nid = nat_get_nid(ne);
1578
1579 if (nat_get_blkaddr(ne) == NEW_ADDR)
1580 continue;
1581 if (flushed)
1582 goto to_nat_page;
1583
1584 /* if there is room for nat enries in curseg->sumpage */
1585 offset = lookup_journal_in_cursum(sum, NAT_JOURNAL, nid, 1);
1586 if (offset >= 0) {
1587 raw_ne = nat_in_journal(sum, offset);
1588 old_blkaddr = le32_to_cpu(raw_ne.block_addr);
1589 goto flush_now;
1590 }
1591to_nat_page:
1592 if (!page || (start_nid > nid || nid > end_nid)) {
1593 if (page) {
1594 f2fs_put_page(page, 1);
1595 page = NULL;
1596 }
1597 start_nid = START_NID(nid);
1598 end_nid = start_nid + NAT_ENTRY_PER_BLOCK - 1;
1599
1600 /*
1601 * get nat block with dirty flag, increased reference
1602 * count, mapped and lock
1603 */
1604 page = get_next_nat_page(sbi, start_nid);
1605 nat_blk = page_address(page);
1606 }
1607
1608 BUG_ON(!nat_blk);
1609 raw_ne = nat_blk->entries[nid - start_nid];
1610 old_blkaddr = le32_to_cpu(raw_ne.block_addr);
1611flush_now:
1612 new_blkaddr = nat_get_blkaddr(ne);
1613
1614 raw_ne.ino = cpu_to_le32(nat_get_ino(ne));
1615 raw_ne.block_addr = cpu_to_le32(new_blkaddr);
1616 raw_ne.version = nat_get_version(ne);
1617
1618 if (offset < 0) {
1619 nat_blk->entries[nid - start_nid] = raw_ne;
1620 } else {
1621 nat_in_journal(sum, offset) = raw_ne;
1622 nid_in_journal(sum, offset) = cpu_to_le32(nid);
1623 }
1624
1625 if (nat_get_blkaddr(ne) == NULL_ADDR) {
1626 write_lock(&nm_i->nat_tree_lock);
1627 __del_from_nat_cache(nm_i, ne);
1628 write_unlock(&nm_i->nat_tree_lock);
1629
1630 /* We can reuse this freed nid at this point */
1631 add_free_nid(NM_I(sbi), nid);
1632 } else {
1633 write_lock(&nm_i->nat_tree_lock);
1634 __clear_nat_cache_dirty(nm_i, ne);
1635 ne->checkpointed = true;
1636 write_unlock(&nm_i->nat_tree_lock);
1637 }
1638 }
1639 if (!flushed)
1640 mutex_unlock(&curseg->curseg_mutex);
1641 f2fs_put_page(page, 1);
1642
1643 /* 2) shrink nat caches if necessary */
1644 try_to_free_nats(sbi, nm_i->nat_cnt - NM_WOUT_THRESHOLD);
1645}
1646
1647static int init_node_manager(struct f2fs_sb_info *sbi)
1648{
1649 struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
1650 struct f2fs_nm_info *nm_i = NM_I(sbi);
1651 unsigned char *version_bitmap;
1652 unsigned int nat_segs, nat_blocks;
1653
1654 nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
1655
1656 /* segment_count_nat includes pair segment so divide to 2. */
1657 nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
1658 nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
1659 nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nat_blocks;
1660 nm_i->fcnt = 0;
1661 nm_i->nat_cnt = 0;
1662
1663 INIT_LIST_HEAD(&nm_i->free_nid_list);
1664 INIT_RADIX_TREE(&nm_i->nat_root, GFP_ATOMIC);
1665 INIT_LIST_HEAD(&nm_i->nat_entries);
1666 INIT_LIST_HEAD(&nm_i->dirty_nat_entries);
1667
1668 mutex_init(&nm_i->build_lock);
1669 spin_lock_init(&nm_i->free_nid_list_lock);
1670 rwlock_init(&nm_i->nat_tree_lock);
1671
1672 nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
1673 nm_i->init_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
1674 nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
1675
1676 nm_i->nat_bitmap = kzalloc(nm_i->bitmap_size, GFP_KERNEL);
1677 if (!nm_i->nat_bitmap)
1678 return -ENOMEM;
1679 version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
1680 if (!version_bitmap)
1681 return -EFAULT;
1682
1683 /* copy version bitmap */
1684 memcpy(nm_i->nat_bitmap, version_bitmap, nm_i->bitmap_size);
1685 return 0;
1686}
1687
1688int build_node_manager(struct f2fs_sb_info *sbi)
1689{
1690 int err;
1691
1692 sbi->nm_info = kzalloc(sizeof(struct f2fs_nm_info), GFP_KERNEL);
1693 if (!sbi->nm_info)
1694 return -ENOMEM;
1695
1696 err = init_node_manager(sbi);
1697 if (err)
1698 return err;
1699
1700 build_free_nids(sbi);
1701 return 0;
1702}
1703
1704void destroy_node_manager(struct f2fs_sb_info *sbi)
1705{
1706 struct f2fs_nm_info *nm_i = NM_I(sbi);
1707 struct free_nid *i, *next_i;
1708 struct nat_entry *natvec[NATVEC_SIZE];
1709 nid_t nid = 0;
1710 unsigned int found;
1711
1712 if (!nm_i)
1713 return;
1714
1715 /* destroy free nid list */
1716 spin_lock(&nm_i->free_nid_list_lock);
1717 list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
1718 BUG_ON(i->state == NID_ALLOC);
1719 __del_from_free_nid_list(i);
1720 nm_i->fcnt--;
1721 }
1722 BUG_ON(nm_i->fcnt);
1723 spin_unlock(&nm_i->free_nid_list_lock);
1724
1725 /* destroy nat cache */
1726 write_lock(&nm_i->nat_tree_lock);
1727 while ((found = __gang_lookup_nat_cache(nm_i,
1728 nid, NATVEC_SIZE, natvec))) {
1729 unsigned idx;
1730 for (idx = 0; idx < found; idx++) {
1731 struct nat_entry *e = natvec[idx];
1732 nid = nat_get_nid(e) + 1;
1733 __del_from_nat_cache(nm_i, e);
1734 }
1735 }
1736 BUG_ON(nm_i->nat_cnt);
1737 write_unlock(&nm_i->nat_tree_lock);
1738
1739 kfree(nm_i->nat_bitmap);
1740 sbi->nm_info = NULL;
1741 kfree(nm_i);
1742}
1743
1744int create_node_manager_caches(void)
1745{
1746 nat_entry_slab = f2fs_kmem_cache_create("nat_entry",
1747 sizeof(struct nat_entry), NULL);
1748 if (!nat_entry_slab)
1749 return -ENOMEM;
1750
1751 free_nid_slab = f2fs_kmem_cache_create("free_nid",
1752 sizeof(struct free_nid), NULL);
1753 if (!free_nid_slab) {
1754 kmem_cache_destroy(nat_entry_slab);
1755 return -ENOMEM;
1756 }
1757 return 0;
1758}
1759
1760void destroy_node_manager_caches(void)
1761{
1762 kmem_cache_destroy(free_nid_slab);
1763 kmem_cache_destroy(nat_entry_slab);
1764}