f2fs: avoid extra ++ while returning from get_node_path
[linux-2.6-block.git] / fs / f2fs / node.c
CommitLineData
0a8165d7 1/*
e05df3b1
JK
2 * fs/f2fs/node.c
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11#include <linux/fs.h>
12#include <linux/f2fs_fs.h>
13#include <linux/mpage.h>
14#include <linux/backing-dev.h>
15#include <linux/blkdev.h>
16#include <linux/pagevec.h>
17#include <linux/swap.h>
18
19#include "f2fs.h"
20#include "node.h"
21#include "segment.h"
22
23static struct kmem_cache *nat_entry_slab;
24static struct kmem_cache *free_nid_slab;
25
26static void clear_node_page_dirty(struct page *page)
27{
28 struct address_space *mapping = page->mapping;
29 struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
30 unsigned int long flags;
31
32 if (PageDirty(page)) {
33 spin_lock_irqsave(&mapping->tree_lock, flags);
34 radix_tree_tag_clear(&mapping->page_tree,
35 page_index(page),
36 PAGECACHE_TAG_DIRTY);
37 spin_unlock_irqrestore(&mapping->tree_lock, flags);
38
39 clear_page_dirty_for_io(page);
40 dec_page_count(sbi, F2FS_DIRTY_NODES);
41 }
42 ClearPageUptodate(page);
43}
44
45static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
46{
47 pgoff_t index = current_nat_addr(sbi, nid);
48 return get_meta_page(sbi, index);
49}
50
51static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
52{
53 struct page *src_page;
54 struct page *dst_page;
55 pgoff_t src_off;
56 pgoff_t dst_off;
57 void *src_addr;
58 void *dst_addr;
59 struct f2fs_nm_info *nm_i = NM_I(sbi);
60
61 src_off = current_nat_addr(sbi, nid);
62 dst_off = next_nat_addr(sbi, src_off);
63
64 /* get current nat block page with lock */
65 src_page = get_meta_page(sbi, src_off);
66
67 /* Dirty src_page means that it is already the new target NAT page. */
68 if (PageDirty(src_page))
69 return src_page;
70
71 dst_page = grab_meta_page(sbi, dst_off);
72
73 src_addr = page_address(src_page);
74 dst_addr = page_address(dst_page);
75 memcpy(dst_addr, src_addr, PAGE_CACHE_SIZE);
76 set_page_dirty(dst_page);
77 f2fs_put_page(src_page, 1);
78
79 set_to_next_nat(nm_i, nid);
80
81 return dst_page;
82}
83
0a8165d7 84/*
e05df3b1
JK
85 * Readahead NAT pages
86 */
87static void ra_nat_pages(struct f2fs_sb_info *sbi, int nid)
88{
89 struct address_space *mapping = sbi->meta_inode->i_mapping;
90 struct f2fs_nm_info *nm_i = NM_I(sbi);
91 struct page *page;
92 pgoff_t index;
93 int i;
94
95 for (i = 0; i < FREE_NID_PAGES; i++, nid += NAT_ENTRY_PER_BLOCK) {
96 if (nid >= nm_i->max_nid)
97 nid = 0;
98 index = current_nat_addr(sbi, nid);
99
100 page = grab_cache_page(mapping, index);
101 if (!page)
102 continue;
103 if (f2fs_readpage(sbi, page, index, READ)) {
104 f2fs_put_page(page, 1);
105 continue;
106 }
369a708c 107 f2fs_put_page(page, 0);
e05df3b1
JK
108 }
109}
110
111static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
112{
113 return radix_tree_lookup(&nm_i->nat_root, n);
114}
115
116static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
117 nid_t start, unsigned int nr, struct nat_entry **ep)
118{
119 return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
120}
121
122static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
123{
124 list_del(&e->list);
125 radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
126 nm_i->nat_cnt--;
127 kmem_cache_free(nat_entry_slab, e);
128}
129
130int is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
131{
132 struct f2fs_nm_info *nm_i = NM_I(sbi);
133 struct nat_entry *e;
134 int is_cp = 1;
135
136 read_lock(&nm_i->nat_tree_lock);
137 e = __lookup_nat_cache(nm_i, nid);
138 if (e && !e->checkpointed)
139 is_cp = 0;
140 read_unlock(&nm_i->nat_tree_lock);
141 return is_cp;
142}
143
144static struct nat_entry *grab_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid)
145{
146 struct nat_entry *new;
147
148 new = kmem_cache_alloc(nat_entry_slab, GFP_ATOMIC);
149 if (!new)
150 return NULL;
151 if (radix_tree_insert(&nm_i->nat_root, nid, new)) {
152 kmem_cache_free(nat_entry_slab, new);
153 return NULL;
154 }
155 memset(new, 0, sizeof(struct nat_entry));
156 nat_set_nid(new, nid);
157 list_add_tail(&new->list, &nm_i->nat_entries);
158 nm_i->nat_cnt++;
159 return new;
160}
161
162static void cache_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid,
163 struct f2fs_nat_entry *ne)
164{
165 struct nat_entry *e;
166retry:
167 write_lock(&nm_i->nat_tree_lock);
168 e = __lookup_nat_cache(nm_i, nid);
169 if (!e) {
170 e = grab_nat_entry(nm_i, nid);
171 if (!e) {
172 write_unlock(&nm_i->nat_tree_lock);
173 goto retry;
174 }
175 nat_set_blkaddr(e, le32_to_cpu(ne->block_addr));
176 nat_set_ino(e, le32_to_cpu(ne->ino));
177 nat_set_version(e, ne->version);
178 e->checkpointed = true;
179 }
180 write_unlock(&nm_i->nat_tree_lock);
181}
182
183static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
184 block_t new_blkaddr)
185{
186 struct f2fs_nm_info *nm_i = NM_I(sbi);
187 struct nat_entry *e;
188retry:
189 write_lock(&nm_i->nat_tree_lock);
190 e = __lookup_nat_cache(nm_i, ni->nid);
191 if (!e) {
192 e = grab_nat_entry(nm_i, ni->nid);
193 if (!e) {
194 write_unlock(&nm_i->nat_tree_lock);
195 goto retry;
196 }
197 e->ni = *ni;
198 e->checkpointed = true;
199 BUG_ON(ni->blk_addr == NEW_ADDR);
200 } else if (new_blkaddr == NEW_ADDR) {
201 /*
202 * when nid is reallocated,
203 * previous nat entry can be remained in nat cache.
204 * So, reinitialize it with new information.
205 */
206 e->ni = *ni;
207 BUG_ON(ni->blk_addr != NULL_ADDR);
208 }
209
210 if (new_blkaddr == NEW_ADDR)
211 e->checkpointed = false;
212
213 /* sanity check */
214 BUG_ON(nat_get_blkaddr(e) != ni->blk_addr);
215 BUG_ON(nat_get_blkaddr(e) == NULL_ADDR &&
216 new_blkaddr == NULL_ADDR);
217 BUG_ON(nat_get_blkaddr(e) == NEW_ADDR &&
218 new_blkaddr == NEW_ADDR);
219 BUG_ON(nat_get_blkaddr(e) != NEW_ADDR &&
220 nat_get_blkaddr(e) != NULL_ADDR &&
221 new_blkaddr == NEW_ADDR);
222
223 /* increament version no as node is removed */
224 if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
225 unsigned char version = nat_get_version(e);
226 nat_set_version(e, inc_node_version(version));
227 }
228
229 /* change address */
230 nat_set_blkaddr(e, new_blkaddr);
231 __set_nat_cache_dirty(nm_i, e);
232 write_unlock(&nm_i->nat_tree_lock);
233}
234
235static int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
236{
237 struct f2fs_nm_info *nm_i = NM_I(sbi);
238
239 if (nm_i->nat_cnt < 2 * NM_WOUT_THRESHOLD)
240 return 0;
241
242 write_lock(&nm_i->nat_tree_lock);
243 while (nr_shrink && !list_empty(&nm_i->nat_entries)) {
244 struct nat_entry *ne;
245 ne = list_first_entry(&nm_i->nat_entries,
246 struct nat_entry, list);
247 __del_from_nat_cache(nm_i, ne);
248 nr_shrink--;
249 }
250 write_unlock(&nm_i->nat_tree_lock);
251 return nr_shrink;
252}
253
0a8165d7 254/*
e05df3b1
JK
255 * This function returns always success
256 */
257void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni)
258{
259 struct f2fs_nm_info *nm_i = NM_I(sbi);
260 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
261 struct f2fs_summary_block *sum = curseg->sum_blk;
262 nid_t start_nid = START_NID(nid);
263 struct f2fs_nat_block *nat_blk;
264 struct page *page = NULL;
265 struct f2fs_nat_entry ne;
266 struct nat_entry *e;
267 int i;
268
be4124f8 269 memset(&ne, 0, sizeof(struct f2fs_nat_entry));
e05df3b1
JK
270 ni->nid = nid;
271
272 /* Check nat cache */
273 read_lock(&nm_i->nat_tree_lock);
274 e = __lookup_nat_cache(nm_i, nid);
275 if (e) {
276 ni->ino = nat_get_ino(e);
277 ni->blk_addr = nat_get_blkaddr(e);
278 ni->version = nat_get_version(e);
279 }
280 read_unlock(&nm_i->nat_tree_lock);
281 if (e)
282 return;
283
284 /* Check current segment summary */
285 mutex_lock(&curseg->curseg_mutex);
286 i = lookup_journal_in_cursum(sum, NAT_JOURNAL, nid, 0);
287 if (i >= 0) {
288 ne = nat_in_journal(sum, i);
289 node_info_from_raw_nat(ni, &ne);
290 }
291 mutex_unlock(&curseg->curseg_mutex);
292 if (i >= 0)
293 goto cache;
294
295 /* Fill node_info from nat page */
296 page = get_current_nat_page(sbi, start_nid);
297 nat_blk = (struct f2fs_nat_block *)page_address(page);
298 ne = nat_blk->entries[nid - start_nid];
299 node_info_from_raw_nat(ni, &ne);
300 f2fs_put_page(page, 1);
301cache:
302 /* cache nat entry */
303 cache_nat_entry(NM_I(sbi), nid, &ne);
304}
305
0a8165d7 306/*
e05df3b1
JK
307 * The maximum depth is four.
308 * Offset[0] will have raw inode offset.
309 */
310static int get_node_path(long block, int offset[4], unsigned int noffset[4])
311{
312 const long direct_index = ADDRS_PER_INODE;
313 const long direct_blks = ADDRS_PER_BLOCK;
314 const long dptrs_per_blk = NIDS_PER_BLOCK;
315 const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
316 const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
317 int n = 0;
318 int level = 0;
319
320 noffset[0] = 0;
321
322 if (block < direct_index) {
25c0a6e5 323 offset[n] = block;
e05df3b1
JK
324 goto got;
325 }
326 block -= direct_index;
327 if (block < direct_blks) {
328 offset[n++] = NODE_DIR1_BLOCK;
329 noffset[n] = 1;
25c0a6e5 330 offset[n] = block;
e05df3b1
JK
331 level = 1;
332 goto got;
333 }
334 block -= direct_blks;
335 if (block < direct_blks) {
336 offset[n++] = NODE_DIR2_BLOCK;
337 noffset[n] = 2;
25c0a6e5 338 offset[n] = block;
e05df3b1
JK
339 level = 1;
340 goto got;
341 }
342 block -= direct_blks;
343 if (block < indirect_blks) {
344 offset[n++] = NODE_IND1_BLOCK;
345 noffset[n] = 3;
346 offset[n++] = block / direct_blks;
347 noffset[n] = 4 + offset[n - 1];
25c0a6e5 348 offset[n] = block % direct_blks;
e05df3b1
JK
349 level = 2;
350 goto got;
351 }
352 block -= indirect_blks;
353 if (block < indirect_blks) {
354 offset[n++] = NODE_IND2_BLOCK;
355 noffset[n] = 4 + dptrs_per_blk;
356 offset[n++] = block / direct_blks;
357 noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
25c0a6e5 358 offset[n] = block % direct_blks;
e05df3b1
JK
359 level = 2;
360 goto got;
361 }
362 block -= indirect_blks;
363 if (block < dindirect_blks) {
364 offset[n++] = NODE_DIND_BLOCK;
365 noffset[n] = 5 + (dptrs_per_blk * 2);
366 offset[n++] = block / indirect_blks;
367 noffset[n] = 6 + (dptrs_per_blk * 2) +
368 offset[n - 1] * (dptrs_per_blk + 1);
369 offset[n++] = (block / direct_blks) % dptrs_per_blk;
370 noffset[n] = 7 + (dptrs_per_blk * 2) +
371 offset[n - 2] * (dptrs_per_blk + 1) +
372 offset[n - 1];
25c0a6e5 373 offset[n] = block % direct_blks;
e05df3b1
JK
374 level = 3;
375 goto got;
376 } else {
377 BUG();
378 }
379got:
380 return level;
381}
382
383/*
384 * Caller should call f2fs_put_dnode(dn).
385 */
266e97a8 386int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
e05df3b1
JK
387{
388 struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
389 struct page *npage[4];
390 struct page *parent;
391 int offset[4];
392 unsigned int noffset[4];
393 nid_t nids[4];
394 int level, i;
395 int err = 0;
396
397 level = get_node_path(index, offset, noffset);
398
399 nids[0] = dn->inode->i_ino;
400 npage[0] = get_node_page(sbi, nids[0]);
401 if (IS_ERR(npage[0]))
402 return PTR_ERR(npage[0]);
403
404 parent = npage[0];
52c2db3f
CL
405 if (level != 0)
406 nids[1] = get_nid(parent, offset[0], true);
e05df3b1
JK
407 dn->inode_page = npage[0];
408 dn->inode_page_locked = true;
409
410 /* get indirect or direct nodes */
411 for (i = 1; i <= level; i++) {
412 bool done = false;
413
266e97a8 414 if (!nids[i] && mode == ALLOC_NODE) {
e05df3b1
JK
415 mutex_lock_op(sbi, NODE_NEW);
416
417 /* alloc new node */
418 if (!alloc_nid(sbi, &(nids[i]))) {
419 mutex_unlock_op(sbi, NODE_NEW);
420 err = -ENOSPC;
421 goto release_pages;
422 }
423
424 dn->nid = nids[i];
425 npage[i] = new_node_page(dn, noffset[i]);
426 if (IS_ERR(npage[i])) {
427 alloc_nid_failed(sbi, nids[i]);
428 mutex_unlock_op(sbi, NODE_NEW);
429 err = PTR_ERR(npage[i]);
430 goto release_pages;
431 }
432
433 set_nid(parent, offset[i - 1], nids[i], i == 1);
434 alloc_nid_done(sbi, nids[i]);
435 mutex_unlock_op(sbi, NODE_NEW);
436 done = true;
266e97a8 437 } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
e05df3b1
JK
438 npage[i] = get_node_page_ra(parent, offset[i - 1]);
439 if (IS_ERR(npage[i])) {
440 err = PTR_ERR(npage[i]);
441 goto release_pages;
442 }
443 done = true;
444 }
445 if (i == 1) {
446 dn->inode_page_locked = false;
447 unlock_page(parent);
448 } else {
449 f2fs_put_page(parent, 1);
450 }
451
452 if (!done) {
453 npage[i] = get_node_page(sbi, nids[i]);
454 if (IS_ERR(npage[i])) {
455 err = PTR_ERR(npage[i]);
456 f2fs_put_page(npage[0], 0);
457 goto release_out;
458 }
459 }
460 if (i < level) {
461 parent = npage[i];
462 nids[i + 1] = get_nid(parent, offset[i], false);
463 }
464 }
465 dn->nid = nids[level];
466 dn->ofs_in_node = offset[level];
467 dn->node_page = npage[level];
468 dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node);
469 return 0;
470
471release_pages:
472 f2fs_put_page(parent, 1);
473 if (i > 1)
474 f2fs_put_page(npage[0], 0);
475release_out:
476 dn->inode_page = NULL;
477 dn->node_page = NULL;
478 return err;
479}
480
481static void truncate_node(struct dnode_of_data *dn)
482{
483 struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
484 struct node_info ni;
485
486 get_node_info(sbi, dn->nid, &ni);
71e9fec5
JK
487 if (dn->inode->i_blocks == 0) {
488 BUG_ON(ni.blk_addr != NULL_ADDR);
489 goto invalidate;
490 }
e05df3b1
JK
491 BUG_ON(ni.blk_addr == NULL_ADDR);
492
e05df3b1 493 /* Deallocate node address */
71e9fec5 494 invalidate_blocks(sbi, ni.blk_addr);
e05df3b1
JK
495 dec_valid_node_count(sbi, dn->inode, 1);
496 set_node_addr(sbi, &ni, NULL_ADDR);
497
498 if (dn->nid == dn->inode->i_ino) {
499 remove_orphan_inode(sbi, dn->nid);
500 dec_valid_inode_count(sbi);
501 } else {
502 sync_inode_page(dn);
503 }
71e9fec5 504invalidate:
e05df3b1
JK
505 clear_node_page_dirty(dn->node_page);
506 F2FS_SET_SB_DIRT(sbi);
507
508 f2fs_put_page(dn->node_page, 1);
509 dn->node_page = NULL;
510}
511
512static int truncate_dnode(struct dnode_of_data *dn)
513{
514 struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
515 struct page *page;
516
517 if (dn->nid == 0)
518 return 1;
519
520 /* get direct node */
521 page = get_node_page(sbi, dn->nid);
522 if (IS_ERR(page) && PTR_ERR(page) == -ENOENT)
523 return 1;
524 else if (IS_ERR(page))
525 return PTR_ERR(page);
526
527 /* Make dnode_of_data for parameter */
528 dn->node_page = page;
529 dn->ofs_in_node = 0;
530 truncate_data_blocks(dn);
531 truncate_node(dn);
532 return 1;
533}
534
535static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
536 int ofs, int depth)
537{
538 struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
539 struct dnode_of_data rdn = *dn;
540 struct page *page;
541 struct f2fs_node *rn;
542 nid_t child_nid;
543 unsigned int child_nofs;
544 int freed = 0;
545 int i, ret;
546
547 if (dn->nid == 0)
548 return NIDS_PER_BLOCK + 1;
549
550 page = get_node_page(sbi, dn->nid);
551 if (IS_ERR(page))
552 return PTR_ERR(page);
553
554 rn = (struct f2fs_node *)page_address(page);
555 if (depth < 3) {
556 for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
557 child_nid = le32_to_cpu(rn->in.nid[i]);
558 if (child_nid == 0)
559 continue;
560 rdn.nid = child_nid;
561 ret = truncate_dnode(&rdn);
562 if (ret < 0)
563 goto out_err;
564 set_nid(page, i, 0, false);
565 }
566 } else {
567 child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
568 for (i = ofs; i < NIDS_PER_BLOCK; i++) {
569 child_nid = le32_to_cpu(rn->in.nid[i]);
570 if (child_nid == 0) {
571 child_nofs += NIDS_PER_BLOCK + 1;
572 continue;
573 }
574 rdn.nid = child_nid;
575 ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
576 if (ret == (NIDS_PER_BLOCK + 1)) {
577 set_nid(page, i, 0, false);
578 child_nofs += ret;
579 } else if (ret < 0 && ret != -ENOENT) {
580 goto out_err;
581 }
582 }
583 freed = child_nofs;
584 }
585
586 if (!ofs) {
587 /* remove current indirect node */
588 dn->node_page = page;
589 truncate_node(dn);
590 freed++;
591 } else {
592 f2fs_put_page(page, 1);
593 }
594 return freed;
595
596out_err:
597 f2fs_put_page(page, 1);
598 return ret;
599}
600
601static int truncate_partial_nodes(struct dnode_of_data *dn,
602 struct f2fs_inode *ri, int *offset, int depth)
603{
604 struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
605 struct page *pages[2];
606 nid_t nid[3];
607 nid_t child_nid;
608 int err = 0;
609 int i;
610 int idx = depth - 2;
611
612 nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
613 if (!nid[0])
614 return 0;
615
616 /* get indirect nodes in the path */
617 for (i = 0; i < depth - 1; i++) {
618 /* refernece count'll be increased */
619 pages[i] = get_node_page(sbi, nid[i]);
620 if (IS_ERR(pages[i])) {
621 depth = i + 1;
622 err = PTR_ERR(pages[i]);
623 goto fail;
624 }
625 nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
626 }
627
628 /* free direct nodes linked to a partial indirect node */
629 for (i = offset[depth - 1]; i < NIDS_PER_BLOCK; i++) {
630 child_nid = get_nid(pages[idx], i, false);
631 if (!child_nid)
632 continue;
633 dn->nid = child_nid;
634 err = truncate_dnode(dn);
635 if (err < 0)
636 goto fail;
637 set_nid(pages[idx], i, 0, false);
638 }
639
640 if (offset[depth - 1] == 0) {
641 dn->node_page = pages[idx];
642 dn->nid = nid[idx];
643 truncate_node(dn);
644 } else {
645 f2fs_put_page(pages[idx], 1);
646 }
647 offset[idx]++;
648 offset[depth - 1] = 0;
649fail:
650 for (i = depth - 3; i >= 0; i--)
651 f2fs_put_page(pages[i], 1);
652 return err;
653}
654
0a8165d7 655/*
e05df3b1
JK
656 * All the block addresses of data and nodes should be nullified.
657 */
658int truncate_inode_blocks(struct inode *inode, pgoff_t from)
659{
660 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
661 int err = 0, cont = 1;
662 int level, offset[4], noffset[4];
7dd690c8 663 unsigned int nofs = 0;
e05df3b1
JK
664 struct f2fs_node *rn;
665 struct dnode_of_data dn;
666 struct page *page;
667
668 level = get_node_path(from, offset, noffset);
669
670 page = get_node_page(sbi, inode->i_ino);
671 if (IS_ERR(page))
672 return PTR_ERR(page);
673
674 set_new_dnode(&dn, inode, page, NULL, 0);
675 unlock_page(page);
676
677 rn = page_address(page);
678 switch (level) {
679 case 0:
680 case 1:
681 nofs = noffset[1];
682 break;
683 case 2:
684 nofs = noffset[1];
685 if (!offset[level - 1])
686 goto skip_partial;
687 err = truncate_partial_nodes(&dn, &rn->i, offset, level);
688 if (err < 0 && err != -ENOENT)
689 goto fail;
690 nofs += 1 + NIDS_PER_BLOCK;
691 break;
692 case 3:
693 nofs = 5 + 2 * NIDS_PER_BLOCK;
694 if (!offset[level - 1])
695 goto skip_partial;
696 err = truncate_partial_nodes(&dn, &rn->i, offset, level);
697 if (err < 0 && err != -ENOENT)
698 goto fail;
699 break;
700 default:
701 BUG();
702 }
703
704skip_partial:
705 while (cont) {
706 dn.nid = le32_to_cpu(rn->i.i_nid[offset[0] - NODE_DIR1_BLOCK]);
707 switch (offset[0]) {
708 case NODE_DIR1_BLOCK:
709 case NODE_DIR2_BLOCK:
710 err = truncate_dnode(&dn);
711 break;
712
713 case NODE_IND1_BLOCK:
714 case NODE_IND2_BLOCK:
715 err = truncate_nodes(&dn, nofs, offset[1], 2);
716 break;
717
718 case NODE_DIND_BLOCK:
719 err = truncate_nodes(&dn, nofs, offset[1], 3);
720 cont = 0;
721 break;
722
723 default:
724 BUG();
725 }
726 if (err < 0 && err != -ENOENT)
727 goto fail;
728 if (offset[1] == 0 &&
729 rn->i.i_nid[offset[0] - NODE_DIR1_BLOCK]) {
730 lock_page(page);
731 wait_on_page_writeback(page);
732 rn->i.i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
733 set_page_dirty(page);
734 unlock_page(page);
735 }
736 offset[1] = 0;
737 offset[0]++;
738 nofs += err;
739 }
740fail:
741 f2fs_put_page(page, 0);
742 return err > 0 ? 0 : err;
743}
744
745int remove_inode_page(struct inode *inode)
746{
747 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
748 struct page *page;
749 nid_t ino = inode->i_ino;
750 struct dnode_of_data dn;
751
752 mutex_lock_op(sbi, NODE_TRUNC);
753 page = get_node_page(sbi, ino);
754 if (IS_ERR(page)) {
755 mutex_unlock_op(sbi, NODE_TRUNC);
756 return PTR_ERR(page);
757 }
758
759 if (F2FS_I(inode)->i_xattr_nid) {
760 nid_t nid = F2FS_I(inode)->i_xattr_nid;
761 struct page *npage = get_node_page(sbi, nid);
762
763 if (IS_ERR(npage)) {
764 mutex_unlock_op(sbi, NODE_TRUNC);
765 return PTR_ERR(npage);
766 }
767
768 F2FS_I(inode)->i_xattr_nid = 0;
769 set_new_dnode(&dn, inode, page, npage, nid);
770 dn.inode_page_locked = 1;
771 truncate_node(&dn);
772 }
e05df3b1 773
71e9fec5
JK
774 /* 0 is possible, after f2fs_new_inode() is failed */
775 BUG_ON(inode->i_blocks != 0 && inode->i_blocks != 1);
776 set_new_dnode(&dn, inode, page, page, ino);
777 truncate_node(&dn);
778
e05df3b1
JK
779 mutex_unlock_op(sbi, NODE_TRUNC);
780 return 0;
781}
782
c004363d 783int new_inode_page(struct inode *inode, const struct qstr *name)
e05df3b1
JK
784{
785 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
786 struct page *page;
787 struct dnode_of_data dn;
788
789 /* allocate inode page for new inode */
790 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
791 mutex_lock_op(sbi, NODE_NEW);
792 page = new_node_page(&dn, 0);
c004363d 793 init_dent_inode(name, page);
e05df3b1
JK
794 mutex_unlock_op(sbi, NODE_NEW);
795 if (IS_ERR(page))
796 return PTR_ERR(page);
797 f2fs_put_page(page, 1);
798 return 0;
799}
800
801struct page *new_node_page(struct dnode_of_data *dn, unsigned int ofs)
802{
803 struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
804 struct address_space *mapping = sbi->node_inode->i_mapping;
805 struct node_info old_ni, new_ni;
806 struct page *page;
807 int err;
808
809 if (is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC))
810 return ERR_PTR(-EPERM);
811
812 page = grab_cache_page(mapping, dn->nid);
813 if (!page)
814 return ERR_PTR(-ENOMEM);
815
816 get_node_info(sbi, dn->nid, &old_ni);
817
818 SetPageUptodate(page);
819 fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
820
821 /* Reinitialize old_ni with new node page */
822 BUG_ON(old_ni.blk_addr != NULL_ADDR);
823 new_ni = old_ni;
824 new_ni.ino = dn->inode->i_ino;
825
826 if (!inc_valid_node_count(sbi, dn->inode, 1)) {
827 err = -ENOSPC;
828 goto fail;
829 }
830 set_node_addr(sbi, &new_ni, NEW_ADDR);
398b1ac5 831 set_cold_node(dn->inode, page);
e05df3b1
JK
832
833 dn->node_page = page;
834 sync_inode_page(dn);
835 set_page_dirty(page);
e05df3b1
JK
836 if (ofs == 0)
837 inc_valid_inode_count(sbi);
838
839 return page;
840
841fail:
71e9fec5 842 clear_node_page_dirty(page);
e05df3b1
JK
843 f2fs_put_page(page, 1);
844 return ERR_PTR(err);
845}
846
847static int read_node_page(struct page *page, int type)
848{
849 struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb);
850 struct node_info ni;
851
852 get_node_info(sbi, page->index, &ni);
853
854 if (ni.blk_addr == NULL_ADDR)
855 return -ENOENT;
856 return f2fs_readpage(sbi, page, ni.blk_addr, type);
857}
858
0a8165d7 859/*
e05df3b1
JK
860 * Readahead a node page
861 */
862void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
863{
864 struct address_space *mapping = sbi->node_inode->i_mapping;
865 struct page *apage;
866
867 apage = find_get_page(mapping, nid);
868 if (apage && PageUptodate(apage))
869 goto release_out;
870 f2fs_put_page(apage, 0);
871
872 apage = grab_cache_page(mapping, nid);
873 if (!apage)
874 return;
875
876 if (read_node_page(apage, READA))
a2b52a59 877 unlock_page(apage);
e05df3b1 878
e05df3b1 879release_out:
369a708c 880 f2fs_put_page(apage, 0);
a2b52a59 881 return;
e05df3b1
JK
882}
883
884struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
885{
886 int err;
887 struct page *page;
888 struct address_space *mapping = sbi->node_inode->i_mapping;
889
890 page = grab_cache_page(mapping, nid);
891 if (!page)
892 return ERR_PTR(-ENOMEM);
893
894 err = read_node_page(page, READ_SYNC);
895 if (err) {
896 f2fs_put_page(page, 1);
897 return ERR_PTR(err);
898 }
899
900 BUG_ON(nid != nid_of_node(page));
901 mark_page_accessed(page);
902 return page;
903}
904
0a8165d7 905/*
e05df3b1
JK
906 * Return a locked page for the desired node page.
907 * And, readahead MAX_RA_NODE number of node pages.
908 */
909struct page *get_node_page_ra(struct page *parent, int start)
910{
911 struct f2fs_sb_info *sbi = F2FS_SB(parent->mapping->host->i_sb);
912 struct address_space *mapping = sbi->node_inode->i_mapping;
913 int i, end;
914 int err = 0;
915 nid_t nid;
916 struct page *page;
917
918 /* First, try getting the desired direct node. */
919 nid = get_nid(parent, start, false);
920 if (!nid)
921 return ERR_PTR(-ENOENT);
922
e05df3b1
JK
923repeat:
924 page = grab_cache_page(mapping, nid);
925 if (!page)
926 return ERR_PTR(-ENOMEM);
e0f56cb4
NJ
927 else if (PageUptodate(page))
928 goto page_hit;
e05df3b1 929
66d36a29 930 err = read_node_page(page, READ_SYNC);
e0f56cb4 931 unlock_page(page);
e05df3b1 932 if (err) {
e0f56cb4 933 f2fs_put_page(page, 0);
e05df3b1
JK
934 return ERR_PTR(err);
935 }
936
937 /* Then, try readahead for siblings of the desired node */
938 end = start + MAX_RA_NODE;
939 end = min(end, NIDS_PER_BLOCK);
940 for (i = start + 1; i < end; i++) {
941 nid = get_nid(parent, i, false);
942 if (!nid)
943 continue;
944 ra_node_page(sbi, nid);
945 }
946
e05df3b1 947 lock_page(page);
e0f56cb4
NJ
948
949page_hit:
e05df3b1
JK
950 if (PageError(page)) {
951 f2fs_put_page(page, 1);
952 return ERR_PTR(-EIO);
953 }
954
955 /* Has the page been truncated? */
956 if (page->mapping != mapping) {
957 f2fs_put_page(page, 1);
958 goto repeat;
959 }
960 return page;
961}
962
963void sync_inode_page(struct dnode_of_data *dn)
964{
965 if (IS_INODE(dn->node_page) || dn->inode_page == dn->node_page) {
966 update_inode(dn->inode, dn->node_page);
967 } else if (dn->inode_page) {
968 if (!dn->inode_page_locked)
969 lock_page(dn->inode_page);
970 update_inode(dn->inode, dn->inode_page);
971 if (!dn->inode_page_locked)
972 unlock_page(dn->inode_page);
973 } else {
974 f2fs_write_inode(dn->inode, NULL);
975 }
976}
977
978int sync_node_pages(struct f2fs_sb_info *sbi, nid_t ino,
979 struct writeback_control *wbc)
980{
981 struct address_space *mapping = sbi->node_inode->i_mapping;
982 pgoff_t index, end;
983 struct pagevec pvec;
984 int step = ino ? 2 : 0;
985 int nwritten = 0, wrote = 0;
986
987 pagevec_init(&pvec, 0);
988
989next_step:
990 index = 0;
991 end = LONG_MAX;
992
993 while (index <= end) {
994 int i, nr_pages;
995 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
996 PAGECACHE_TAG_DIRTY,
997 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
998 if (nr_pages == 0)
999 break;
1000
1001 for (i = 0; i < nr_pages; i++) {
1002 struct page *page = pvec.pages[i];
1003
1004 /*
1005 * flushing sequence with step:
1006 * 0. indirect nodes
1007 * 1. dentry dnodes
1008 * 2. file dnodes
1009 */
1010 if (step == 0 && IS_DNODE(page))
1011 continue;
1012 if (step == 1 && (!IS_DNODE(page) ||
1013 is_cold_node(page)))
1014 continue;
1015 if (step == 2 && (!IS_DNODE(page) ||
1016 !is_cold_node(page)))
1017 continue;
1018
1019 /*
1020 * If an fsync mode,
1021 * we should not skip writing node pages.
1022 */
1023 if (ino && ino_of_node(page) == ino)
1024 lock_page(page);
1025 else if (!trylock_page(page))
1026 continue;
1027
1028 if (unlikely(page->mapping != mapping)) {
1029continue_unlock:
1030 unlock_page(page);
1031 continue;
1032 }
1033 if (ino && ino_of_node(page) != ino)
1034 goto continue_unlock;
1035
1036 if (!PageDirty(page)) {
1037 /* someone wrote it for us */
1038 goto continue_unlock;
1039 }
1040
1041 if (!clear_page_dirty_for_io(page))
1042 goto continue_unlock;
1043
1044 /* called by fsync() */
1045 if (ino && IS_DNODE(page)) {
1046 int mark = !is_checkpointed_node(sbi, ino);
1047 set_fsync_mark(page, 1);
1048 if (IS_INODE(page))
1049 set_dentry_mark(page, mark);
1050 nwritten++;
1051 } else {
1052 set_fsync_mark(page, 0);
1053 set_dentry_mark(page, 0);
1054 }
1055 mapping->a_ops->writepage(page, wbc);
1056 wrote++;
1057
1058 if (--wbc->nr_to_write == 0)
1059 break;
1060 }
1061 pagevec_release(&pvec);
1062 cond_resched();
1063
1064 if (wbc->nr_to_write == 0) {
1065 step = 2;
1066 break;
1067 }
1068 }
1069
1070 if (step < 2) {
1071 step++;
1072 goto next_step;
1073 }
1074
1075 if (wrote)
1076 f2fs_submit_bio(sbi, NODE, wbc->sync_mode == WB_SYNC_ALL);
1077
1078 return nwritten;
1079}
1080
1081static int f2fs_write_node_page(struct page *page,
1082 struct writeback_control *wbc)
1083{
1084 struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb);
1085 nid_t nid;
e05df3b1
JK
1086 block_t new_addr;
1087 struct node_info ni;
1088
1089 if (wbc->for_reclaim) {
1090 dec_page_count(sbi, F2FS_DIRTY_NODES);
1091 wbc->pages_skipped++;
1092 set_page_dirty(page);
1093 return AOP_WRITEPAGE_ACTIVATE;
1094 }
1095
1096 wait_on_page_writeback(page);
1097
1098 mutex_lock_op(sbi, NODE_WRITE);
1099
1100 /* get old block addr of this node page */
1101 nid = nid_of_node(page);
e05df3b1
JK
1102 BUG_ON(page->index != nid);
1103
1104 get_node_info(sbi, nid, &ni);
1105
1106 /* This page is already truncated */
1107 if (ni.blk_addr == NULL_ADDR)
12faafe4 1108 goto out;
e05df3b1
JK
1109
1110 set_page_writeback(page);
1111
1112 /* insert node offset */
1113 write_node_page(sbi, page, nid, ni.blk_addr, &new_addr);
1114 set_node_addr(sbi, &ni, new_addr);
12faafe4 1115out:
e05df3b1 1116 dec_page_count(sbi, F2FS_DIRTY_NODES);
e05df3b1
JK
1117 mutex_unlock_op(sbi, NODE_WRITE);
1118 unlock_page(page);
1119 return 0;
1120}
1121
a7fdffbd
JK
1122/*
1123 * It is very important to gather dirty pages and write at once, so that we can
1124 * submit a big bio without interfering other data writes.
1125 * Be default, 512 pages (2MB), a segment size, is quite reasonable.
1126 */
1127#define COLLECT_DIRTY_NODES 512
e05df3b1
JK
1128static int f2fs_write_node_pages(struct address_space *mapping,
1129 struct writeback_control *wbc)
1130{
1131 struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
1132 struct block_device *bdev = sbi->sb->s_bdev;
1133 long nr_to_write = wbc->nr_to_write;
1134
a7fdffbd 1135 /* First check balancing cached NAT entries */
e05df3b1 1136 if (try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK)) {
43727527 1137 write_checkpoint(sbi, false);
e05df3b1
JK
1138 return 0;
1139 }
1140
a7fdffbd
JK
1141 /* collect a number of dirty node pages and write together */
1142 if (get_pages(sbi, F2FS_DIRTY_NODES) < COLLECT_DIRTY_NODES)
1143 return 0;
1144
e05df3b1
JK
1145 /* if mounting is failed, skip writing node pages */
1146 wbc->nr_to_write = bio_get_nr_vecs(bdev);
1147 sync_node_pages(sbi, 0, wbc);
1148 wbc->nr_to_write = nr_to_write -
1149 (bio_get_nr_vecs(bdev) - wbc->nr_to_write);
1150 return 0;
1151}
1152
1153static int f2fs_set_node_page_dirty(struct page *page)
1154{
1155 struct address_space *mapping = page->mapping;
1156 struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
1157
1158 SetPageUptodate(page);
1159 if (!PageDirty(page)) {
1160 __set_page_dirty_nobuffers(page);
1161 inc_page_count(sbi, F2FS_DIRTY_NODES);
1162 SetPagePrivate(page);
1163 return 1;
1164 }
1165 return 0;
1166}
1167
1168static void f2fs_invalidate_node_page(struct page *page, unsigned long offset)
1169{
1170 struct inode *inode = page->mapping->host;
1171 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
1172 if (PageDirty(page))
1173 dec_page_count(sbi, F2FS_DIRTY_NODES);
1174 ClearPagePrivate(page);
1175}
1176
1177static int f2fs_release_node_page(struct page *page, gfp_t wait)
1178{
1179 ClearPagePrivate(page);
1180 return 0;
1181}
1182
0a8165d7 1183/*
e05df3b1
JK
1184 * Structure of the f2fs node operations
1185 */
1186const struct address_space_operations f2fs_node_aops = {
1187 .writepage = f2fs_write_node_page,
1188 .writepages = f2fs_write_node_pages,
1189 .set_page_dirty = f2fs_set_node_page_dirty,
1190 .invalidatepage = f2fs_invalidate_node_page,
1191 .releasepage = f2fs_release_node_page,
1192};
1193
1194static struct free_nid *__lookup_free_nid_list(nid_t n, struct list_head *head)
1195{
1196 struct list_head *this;
3aa770a9 1197 struct free_nid *i;
e05df3b1
JK
1198 list_for_each(this, head) {
1199 i = list_entry(this, struct free_nid, list);
1200 if (i->nid == n)
3aa770a9 1201 return i;
e05df3b1 1202 }
3aa770a9 1203 return NULL;
e05df3b1
JK
1204}
1205
1206static void __del_from_free_nid_list(struct free_nid *i)
1207{
1208 list_del(&i->list);
1209 kmem_cache_free(free_nid_slab, i);
1210}
1211
1212static int add_free_nid(struct f2fs_nm_info *nm_i, nid_t nid)
1213{
1214 struct free_nid *i;
1215
1216 if (nm_i->fcnt > 2 * MAX_FREE_NIDS)
1217 return 0;
1218retry:
1219 i = kmem_cache_alloc(free_nid_slab, GFP_NOFS);
1220 if (!i) {
1221 cond_resched();
1222 goto retry;
1223 }
1224 i->nid = nid;
1225 i->state = NID_NEW;
1226
1227 spin_lock(&nm_i->free_nid_list_lock);
1228 if (__lookup_free_nid_list(nid, &nm_i->free_nid_list)) {
1229 spin_unlock(&nm_i->free_nid_list_lock);
1230 kmem_cache_free(free_nid_slab, i);
1231 return 0;
1232 }
1233 list_add_tail(&i->list, &nm_i->free_nid_list);
1234 nm_i->fcnt++;
1235 spin_unlock(&nm_i->free_nid_list_lock);
1236 return 1;
1237}
1238
1239static void remove_free_nid(struct f2fs_nm_info *nm_i, nid_t nid)
1240{
1241 struct free_nid *i;
1242 spin_lock(&nm_i->free_nid_list_lock);
1243 i = __lookup_free_nid_list(nid, &nm_i->free_nid_list);
1244 if (i && i->state == NID_NEW) {
1245 __del_from_free_nid_list(i);
1246 nm_i->fcnt--;
1247 }
1248 spin_unlock(&nm_i->free_nid_list_lock);
1249}
1250
1251static int scan_nat_page(struct f2fs_nm_info *nm_i,
1252 struct page *nat_page, nid_t start_nid)
1253{
1254 struct f2fs_nat_block *nat_blk = page_address(nat_page);
1255 block_t blk_addr;
1256 int fcnt = 0;
1257 int i;
1258
1259 /* 0 nid should not be used */
1260 if (start_nid == 0)
1261 ++start_nid;
1262
1263 i = start_nid % NAT_ENTRY_PER_BLOCK;
1264
1265 for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
1266 blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
1267 BUG_ON(blk_addr == NEW_ADDR);
1268 if (blk_addr == NULL_ADDR)
1269 fcnt += add_free_nid(nm_i, start_nid);
1270 }
1271 return fcnt;
1272}
1273
1274static void build_free_nids(struct f2fs_sb_info *sbi)
1275{
1276 struct free_nid *fnid, *next_fnid;
1277 struct f2fs_nm_info *nm_i = NM_I(sbi);
1278 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1279 struct f2fs_summary_block *sum = curseg->sum_blk;
1280 nid_t nid = 0;
1281 bool is_cycled = false;
1282 int fcnt = 0;
1283 int i;
1284
1285 nid = nm_i->next_scan_nid;
1286 nm_i->init_scan_nid = nid;
1287
1288 ra_nat_pages(sbi, nid);
1289
1290 while (1) {
1291 struct page *page = get_current_nat_page(sbi, nid);
1292
1293 fcnt += scan_nat_page(nm_i, page, nid);
1294 f2fs_put_page(page, 1);
1295
1296 nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
1297
1298 if (nid >= nm_i->max_nid) {
1299 nid = 0;
1300 is_cycled = true;
1301 }
1302 if (fcnt > MAX_FREE_NIDS)
1303 break;
1304 if (is_cycled && nm_i->init_scan_nid <= nid)
1305 break;
1306 }
1307
1308 nm_i->next_scan_nid = nid;
1309
1310 /* find free nids from current sum_pages */
1311 mutex_lock(&curseg->curseg_mutex);
1312 for (i = 0; i < nats_in_cursum(sum); i++) {
1313 block_t addr = le32_to_cpu(nat_in_journal(sum, i).block_addr);
1314 nid = le32_to_cpu(nid_in_journal(sum, i));
1315 if (addr == NULL_ADDR)
1316 add_free_nid(nm_i, nid);
1317 else
1318 remove_free_nid(nm_i, nid);
1319 }
1320 mutex_unlock(&curseg->curseg_mutex);
1321
1322 /* remove the free nids from current allocated nids */
1323 list_for_each_entry_safe(fnid, next_fnid, &nm_i->free_nid_list, list) {
1324 struct nat_entry *ne;
1325
1326 read_lock(&nm_i->nat_tree_lock);
1327 ne = __lookup_nat_cache(nm_i, fnid->nid);
1328 if (ne && nat_get_blkaddr(ne) != NULL_ADDR)
1329 remove_free_nid(nm_i, fnid->nid);
1330 read_unlock(&nm_i->nat_tree_lock);
1331 }
1332}
1333
1334/*
1335 * If this function returns success, caller can obtain a new nid
1336 * from second parameter of this function.
1337 * The returned nid could be used ino as well as nid when inode is created.
1338 */
1339bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
1340{
1341 struct f2fs_nm_info *nm_i = NM_I(sbi);
1342 struct free_nid *i = NULL;
1343 struct list_head *this;
1344retry:
1345 mutex_lock(&nm_i->build_lock);
1346 if (!nm_i->fcnt) {
1347 /* scan NAT in order to build free nid list */
1348 build_free_nids(sbi);
1349 if (!nm_i->fcnt) {
1350 mutex_unlock(&nm_i->build_lock);
1351 return false;
1352 }
1353 }
1354 mutex_unlock(&nm_i->build_lock);
1355
1356 /*
1357 * We check fcnt again since previous check is racy as
1358 * we didn't hold free_nid_list_lock. So other thread
1359 * could consume all of free nids.
1360 */
1361 spin_lock(&nm_i->free_nid_list_lock);
1362 if (!nm_i->fcnt) {
1363 spin_unlock(&nm_i->free_nid_list_lock);
1364 goto retry;
1365 }
1366
1367 BUG_ON(list_empty(&nm_i->free_nid_list));
1368 list_for_each(this, &nm_i->free_nid_list) {
1369 i = list_entry(this, struct free_nid, list);
1370 if (i->state == NID_NEW)
1371 break;
1372 }
1373
1374 BUG_ON(i->state != NID_NEW);
1375 *nid = i->nid;
1376 i->state = NID_ALLOC;
1377 nm_i->fcnt--;
1378 spin_unlock(&nm_i->free_nid_list_lock);
1379 return true;
1380}
1381
0a8165d7 1382/*
e05df3b1
JK
1383 * alloc_nid() should be called prior to this function.
1384 */
1385void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
1386{
1387 struct f2fs_nm_info *nm_i = NM_I(sbi);
1388 struct free_nid *i;
1389
1390 spin_lock(&nm_i->free_nid_list_lock);
1391 i = __lookup_free_nid_list(nid, &nm_i->free_nid_list);
1392 if (i) {
1393 BUG_ON(i->state != NID_ALLOC);
1394 __del_from_free_nid_list(i);
1395 }
1396 spin_unlock(&nm_i->free_nid_list_lock);
1397}
1398
0a8165d7 1399/*
e05df3b1
JK
1400 * alloc_nid() should be called prior to this function.
1401 */
1402void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
1403{
1404 alloc_nid_done(sbi, nid);
1405 add_free_nid(NM_I(sbi), nid);
1406}
1407
1408void recover_node_page(struct f2fs_sb_info *sbi, struct page *page,
1409 struct f2fs_summary *sum, struct node_info *ni,
1410 block_t new_blkaddr)
1411{
1412 rewrite_node_page(sbi, page, sum, ni->blk_addr, new_blkaddr);
1413 set_node_addr(sbi, ni, new_blkaddr);
1414 clear_node_page_dirty(page);
1415}
1416
1417int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
1418{
1419 struct address_space *mapping = sbi->node_inode->i_mapping;
1420 struct f2fs_node *src, *dst;
1421 nid_t ino = ino_of_node(page);
1422 struct node_info old_ni, new_ni;
1423 struct page *ipage;
1424
1425 ipage = grab_cache_page(mapping, ino);
1426 if (!ipage)
1427 return -ENOMEM;
1428
1429 /* Should not use this inode from free nid list */
1430 remove_free_nid(NM_I(sbi), ino);
1431
1432 get_node_info(sbi, ino, &old_ni);
1433 SetPageUptodate(ipage);
1434 fill_node_footer(ipage, ino, ino, 0, true);
1435
1436 src = (struct f2fs_node *)page_address(page);
1437 dst = (struct f2fs_node *)page_address(ipage);
1438
1439 memcpy(dst, src, (unsigned long)&src->i.i_ext - (unsigned long)&src->i);
1440 dst->i.i_size = 0;
25ca923b
JK
1441 dst->i.i_blocks = cpu_to_le64(1);
1442 dst->i.i_links = cpu_to_le32(1);
e05df3b1
JK
1443 dst->i.i_xattr_nid = 0;
1444
1445 new_ni = old_ni;
1446 new_ni.ino = ino;
1447
1448 set_node_addr(sbi, &new_ni, NEW_ADDR);
1449 inc_valid_inode_count(sbi);
1450
1451 f2fs_put_page(ipage, 1);
1452 return 0;
1453}
1454
1455int restore_node_summary(struct f2fs_sb_info *sbi,
1456 unsigned int segno, struct f2fs_summary_block *sum)
1457{
1458 struct f2fs_node *rn;
1459 struct f2fs_summary *sum_entry;
1460 struct page *page;
1461 block_t addr;
1462 int i, last_offset;
1463
1464 /* alloc temporal page for read node */
1465 page = alloc_page(GFP_NOFS | __GFP_ZERO);
1466 if (IS_ERR(page))
1467 return PTR_ERR(page);
1468 lock_page(page);
1469
1470 /* scan the node segment */
1471 last_offset = sbi->blocks_per_seg;
1472 addr = START_BLOCK(sbi, segno);
1473 sum_entry = &sum->entries[0];
1474
1475 for (i = 0; i < last_offset; i++, sum_entry++) {
1476 if (f2fs_readpage(sbi, page, addr, READ_SYNC))
1477 goto out;
1478
1479 rn = (struct f2fs_node *)page_address(page);
1480 sum_entry->nid = rn->footer.nid;
1481 sum_entry->version = 0;
1482 sum_entry->ofs_in_node = 0;
1483 addr++;
1484
1485 /*
1486 * In order to read next node page,
1487 * we must clear PageUptodate flag.
1488 */
1489 ClearPageUptodate(page);
1490 }
1491out:
1492 unlock_page(page);
1493 __free_pages(page, 0);
1494 return 0;
1495}
1496
1497static bool flush_nats_in_journal(struct f2fs_sb_info *sbi)
1498{
1499 struct f2fs_nm_info *nm_i = NM_I(sbi);
1500 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1501 struct f2fs_summary_block *sum = curseg->sum_blk;
1502 int i;
1503
1504 mutex_lock(&curseg->curseg_mutex);
1505
1506 if (nats_in_cursum(sum) < NAT_JOURNAL_ENTRIES) {
1507 mutex_unlock(&curseg->curseg_mutex);
1508 return false;
1509 }
1510
1511 for (i = 0; i < nats_in_cursum(sum); i++) {
1512 struct nat_entry *ne;
1513 struct f2fs_nat_entry raw_ne;
1514 nid_t nid = le32_to_cpu(nid_in_journal(sum, i));
1515
1516 raw_ne = nat_in_journal(sum, i);
1517retry:
1518 write_lock(&nm_i->nat_tree_lock);
1519 ne = __lookup_nat_cache(nm_i, nid);
1520 if (ne) {
1521 __set_nat_cache_dirty(nm_i, ne);
1522 write_unlock(&nm_i->nat_tree_lock);
1523 continue;
1524 }
1525 ne = grab_nat_entry(nm_i, nid);
1526 if (!ne) {
1527 write_unlock(&nm_i->nat_tree_lock);
1528 goto retry;
1529 }
1530 nat_set_blkaddr(ne, le32_to_cpu(raw_ne.block_addr));
1531 nat_set_ino(ne, le32_to_cpu(raw_ne.ino));
1532 nat_set_version(ne, raw_ne.version);
1533 __set_nat_cache_dirty(nm_i, ne);
1534 write_unlock(&nm_i->nat_tree_lock);
1535 }
1536 update_nats_in_cursum(sum, -i);
1537 mutex_unlock(&curseg->curseg_mutex);
1538 return true;
1539}
1540
0a8165d7 1541/*
e05df3b1
JK
1542 * This function is called during the checkpointing process.
1543 */
1544void flush_nat_entries(struct f2fs_sb_info *sbi)
1545{
1546 struct f2fs_nm_info *nm_i = NM_I(sbi);
1547 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1548 struct f2fs_summary_block *sum = curseg->sum_blk;
1549 struct list_head *cur, *n;
1550 struct page *page = NULL;
1551 struct f2fs_nat_block *nat_blk = NULL;
1552 nid_t start_nid = 0, end_nid = 0;
1553 bool flushed;
1554
1555 flushed = flush_nats_in_journal(sbi);
1556
1557 if (!flushed)
1558 mutex_lock(&curseg->curseg_mutex);
1559
1560 /* 1) flush dirty nat caches */
1561 list_for_each_safe(cur, n, &nm_i->dirty_nat_entries) {
1562 struct nat_entry *ne;
1563 nid_t nid;
1564 struct f2fs_nat_entry raw_ne;
1565 int offset = -1;
2b50638d 1566 block_t new_blkaddr;
e05df3b1
JK
1567
1568 ne = list_entry(cur, struct nat_entry, list);
1569 nid = nat_get_nid(ne);
1570
1571 if (nat_get_blkaddr(ne) == NEW_ADDR)
1572 continue;
1573 if (flushed)
1574 goto to_nat_page;
1575
1576 /* if there is room for nat enries in curseg->sumpage */
1577 offset = lookup_journal_in_cursum(sum, NAT_JOURNAL, nid, 1);
1578 if (offset >= 0) {
1579 raw_ne = nat_in_journal(sum, offset);
e05df3b1
JK
1580 goto flush_now;
1581 }
1582to_nat_page:
1583 if (!page || (start_nid > nid || nid > end_nid)) {
1584 if (page) {
1585 f2fs_put_page(page, 1);
1586 page = NULL;
1587 }
1588 start_nid = START_NID(nid);
1589 end_nid = start_nid + NAT_ENTRY_PER_BLOCK - 1;
1590
1591 /*
1592 * get nat block with dirty flag, increased reference
1593 * count, mapped and lock
1594 */
1595 page = get_next_nat_page(sbi, start_nid);
1596 nat_blk = page_address(page);
1597 }
1598
1599 BUG_ON(!nat_blk);
1600 raw_ne = nat_blk->entries[nid - start_nid];
e05df3b1
JK
1601flush_now:
1602 new_blkaddr = nat_get_blkaddr(ne);
1603
1604 raw_ne.ino = cpu_to_le32(nat_get_ino(ne));
1605 raw_ne.block_addr = cpu_to_le32(new_blkaddr);
1606 raw_ne.version = nat_get_version(ne);
1607
1608 if (offset < 0) {
1609 nat_blk->entries[nid - start_nid] = raw_ne;
1610 } else {
1611 nat_in_journal(sum, offset) = raw_ne;
1612 nid_in_journal(sum, offset) = cpu_to_le32(nid);
1613 }
1614
1615 if (nat_get_blkaddr(ne) == NULL_ADDR) {
1616 write_lock(&nm_i->nat_tree_lock);
1617 __del_from_nat_cache(nm_i, ne);
1618 write_unlock(&nm_i->nat_tree_lock);
1619
1620 /* We can reuse this freed nid at this point */
1621 add_free_nid(NM_I(sbi), nid);
1622 } else {
1623 write_lock(&nm_i->nat_tree_lock);
1624 __clear_nat_cache_dirty(nm_i, ne);
1625 ne->checkpointed = true;
1626 write_unlock(&nm_i->nat_tree_lock);
1627 }
1628 }
1629 if (!flushed)
1630 mutex_unlock(&curseg->curseg_mutex);
1631 f2fs_put_page(page, 1);
1632
1633 /* 2) shrink nat caches if necessary */
1634 try_to_free_nats(sbi, nm_i->nat_cnt - NM_WOUT_THRESHOLD);
1635}
1636
1637static int init_node_manager(struct f2fs_sb_info *sbi)
1638{
1639 struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
1640 struct f2fs_nm_info *nm_i = NM_I(sbi);
1641 unsigned char *version_bitmap;
1642 unsigned int nat_segs, nat_blocks;
1643
1644 nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
1645
1646 /* segment_count_nat includes pair segment so divide to 2. */
1647 nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
1648 nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
1649 nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nat_blocks;
1650 nm_i->fcnt = 0;
1651 nm_i->nat_cnt = 0;
1652
1653 INIT_LIST_HEAD(&nm_i->free_nid_list);
1654 INIT_RADIX_TREE(&nm_i->nat_root, GFP_ATOMIC);
1655 INIT_LIST_HEAD(&nm_i->nat_entries);
1656 INIT_LIST_HEAD(&nm_i->dirty_nat_entries);
1657
1658 mutex_init(&nm_i->build_lock);
1659 spin_lock_init(&nm_i->free_nid_list_lock);
1660 rwlock_init(&nm_i->nat_tree_lock);
1661
1662 nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
1663 nm_i->init_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
1664 nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
1665
1666 nm_i->nat_bitmap = kzalloc(nm_i->bitmap_size, GFP_KERNEL);
1667 if (!nm_i->nat_bitmap)
1668 return -ENOMEM;
1669 version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
1670 if (!version_bitmap)
1671 return -EFAULT;
1672
1673 /* copy version bitmap */
1674 memcpy(nm_i->nat_bitmap, version_bitmap, nm_i->bitmap_size);
1675 return 0;
1676}
1677
1678int build_node_manager(struct f2fs_sb_info *sbi)
1679{
1680 int err;
1681
1682 sbi->nm_info = kzalloc(sizeof(struct f2fs_nm_info), GFP_KERNEL);
1683 if (!sbi->nm_info)
1684 return -ENOMEM;
1685
1686 err = init_node_manager(sbi);
1687 if (err)
1688 return err;
1689
1690 build_free_nids(sbi);
1691 return 0;
1692}
1693
1694void destroy_node_manager(struct f2fs_sb_info *sbi)
1695{
1696 struct f2fs_nm_info *nm_i = NM_I(sbi);
1697 struct free_nid *i, *next_i;
1698 struct nat_entry *natvec[NATVEC_SIZE];
1699 nid_t nid = 0;
1700 unsigned int found;
1701
1702 if (!nm_i)
1703 return;
1704
1705 /* destroy free nid list */
1706 spin_lock(&nm_i->free_nid_list_lock);
1707 list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
1708 BUG_ON(i->state == NID_ALLOC);
1709 __del_from_free_nid_list(i);
1710 nm_i->fcnt--;
1711 }
1712 BUG_ON(nm_i->fcnt);
1713 spin_unlock(&nm_i->free_nid_list_lock);
1714
1715 /* destroy nat cache */
1716 write_lock(&nm_i->nat_tree_lock);
1717 while ((found = __gang_lookup_nat_cache(nm_i,
1718 nid, NATVEC_SIZE, natvec))) {
1719 unsigned idx;
1720 for (idx = 0; idx < found; idx++) {
1721 struct nat_entry *e = natvec[idx];
1722 nid = nat_get_nid(e) + 1;
1723 __del_from_nat_cache(nm_i, e);
1724 }
1725 }
1726 BUG_ON(nm_i->nat_cnt);
1727 write_unlock(&nm_i->nat_tree_lock);
1728
1729 kfree(nm_i->nat_bitmap);
1730 sbi->nm_info = NULL;
1731 kfree(nm_i);
1732}
1733
6e6093a8 1734int __init create_node_manager_caches(void)
e05df3b1
JK
1735{
1736 nat_entry_slab = f2fs_kmem_cache_create("nat_entry",
1737 sizeof(struct nat_entry), NULL);
1738 if (!nat_entry_slab)
1739 return -ENOMEM;
1740
1741 free_nid_slab = f2fs_kmem_cache_create("free_nid",
1742 sizeof(struct free_nid), NULL);
1743 if (!free_nid_slab) {
1744 kmem_cache_destroy(nat_entry_slab);
1745 return -ENOMEM;
1746 }
1747 return 0;
1748}
1749
1750void destroy_node_manager_caches(void)
1751{
1752 kmem_cache_destroy(free_nid_slab);
1753 kmem_cache_destroy(nat_entry_slab);
1754}