ext4: Fix comparison endianness problem in MMP initialization
[linux-2.6-block.git] / fs / ext4 / inode.c
CommitLineData
ac27a0ec 1/*
617ba13b 2 * linux/fs/ext4/inode.c
ac27a0ec
DK
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
ac27a0ec
DK
15 * 64-bit file support on 64-bit platforms by Jakub Jelinek
16 * (jj@sunsite.ms.mff.cuni.cz)
17 *
617ba13b 18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
ac27a0ec
DK
19 */
20
21#include <linux/module.h>
22#include <linux/fs.h>
23#include <linux/time.h>
dab291af 24#include <linux/jbd2.h>
ac27a0ec
DK
25#include <linux/highuid.h>
26#include <linux/pagemap.h>
27#include <linux/quotaops.h>
28#include <linux/string.h>
29#include <linux/buffer_head.h>
30#include <linux/writeback.h>
64769240 31#include <linux/pagevec.h>
ac27a0ec 32#include <linux/mpage.h>
e83c1397 33#include <linux/namei.h>
ac27a0ec
DK
34#include <linux/uio.h>
35#include <linux/bio.h>
4c0425ff 36#include <linux/workqueue.h>
744692dc 37#include <linux/kernel.h>
6db26ffc 38#include <linux/printk.h>
5a0e3ad6 39#include <linux/slab.h>
a8901d34 40#include <linux/ratelimit.h>
9bffad1e 41
3dcf5451 42#include "ext4_jbd2.h"
ac27a0ec
DK
43#include "xattr.h"
44#include "acl.h"
9f125d64 45#include "truncate.h"
ac27a0ec 46
9bffad1e
TT
47#include <trace/events/ext4.h>
48
a1d6cc56
AK
49#define MPAGE_DA_EXTENT_TAIL 0x01
50
678aaf48
JK
51static inline int ext4_begin_ordered_truncate(struct inode *inode,
52 loff_t new_size)
53{
7ff9c073 54 trace_ext4_begin_ordered_truncate(inode, new_size);
8aefcd55
TT
55 /*
56 * If jinode is zero, then we never opened the file for
57 * writing, so there's no need to call
58 * jbd2_journal_begin_ordered_truncate() since there's no
59 * outstanding writes we need to flush.
60 */
61 if (!EXT4_I(inode)->jinode)
62 return 0;
63 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
64 EXT4_I(inode)->jinode,
65 new_size);
678aaf48
JK
66}
67
64769240 68static void ext4_invalidatepage(struct page *page, unsigned long offset);
cb20d518
TT
69static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
70 struct buffer_head *bh_result, int create);
71static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
72static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
73static int __ext4_journalled_writepage(struct page *page, unsigned int len);
74static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
64769240 75
ac27a0ec
DK
76/*
77 * Test whether an inode is a fast symlink.
78 */
617ba13b 79static int ext4_inode_is_fast_symlink(struct inode *inode)
ac27a0ec 80{
617ba13b 81 int ea_blocks = EXT4_I(inode)->i_file_acl ?
ac27a0ec
DK
82 (inode->i_sb->s_blocksize >> 9) : 0;
83
84 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
85}
86
ac27a0ec
DK
87/*
88 * Restart the transaction associated with *handle. This does a commit,
89 * so before we call here everything must be consistently dirtied against
90 * this transaction.
91 */
fa5d1113 92int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
487caeef 93 int nblocks)
ac27a0ec 94{
487caeef
JK
95 int ret;
96
97 /*
e35fd660 98 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
487caeef
JK
99 * moment, get_block can be called only for blocks inside i_size since
100 * page cache has been already dropped and writes are blocked by
101 * i_mutex. So we can safely drop the i_data_sem here.
102 */
0390131b 103 BUG_ON(EXT4_JOURNAL(inode) == NULL);
ac27a0ec 104 jbd_debug(2, "restarting handle %p\n", handle);
487caeef 105 up_write(&EXT4_I(inode)->i_data_sem);
8e8eaabe 106 ret = ext4_journal_restart(handle, nblocks);
487caeef 107 down_write(&EXT4_I(inode)->i_data_sem);
fa5d1113 108 ext4_discard_preallocations(inode);
487caeef
JK
109
110 return ret;
ac27a0ec
DK
111}
112
113/*
114 * Called at the last iput() if i_nlink is zero.
115 */
0930fcc1 116void ext4_evict_inode(struct inode *inode)
ac27a0ec
DK
117{
118 handle_t *handle;
bc965ab3 119 int err;
ac27a0ec 120
7ff9c073 121 trace_ext4_evict_inode(inode);
2581fdc8 122
2581fdc8
JZ
123 ext4_ioend_wait(inode);
124
0930fcc1 125 if (inode->i_nlink) {
2d859db3
JK
126 /*
127 * When journalling data dirty buffers are tracked only in the
128 * journal. So although mm thinks everything is clean and
129 * ready for reaping the inode might still have some pages to
130 * write in the running transaction or waiting to be
131 * checkpointed. Thus calling jbd2_journal_invalidatepage()
132 * (via truncate_inode_pages()) to discard these buffers can
133 * cause data loss. Also even if we did not discard these
134 * buffers, we would have no way to find them after the inode
135 * is reaped and thus user could see stale data if he tries to
136 * read them before the transaction is checkpointed. So be
137 * careful and force everything to disk here... We use
138 * ei->i_datasync_tid to store the newest transaction
139 * containing inode's data.
140 *
141 * Note that directories do not have this problem because they
142 * don't use page cache.
143 */
144 if (ext4_should_journal_data(inode) &&
145 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) {
146 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
147 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
148
149 jbd2_log_start_commit(journal, commit_tid);
150 jbd2_log_wait_commit(journal, commit_tid);
151 filemap_write_and_wait(&inode->i_data);
152 }
0930fcc1
AV
153 truncate_inode_pages(&inode->i_data, 0);
154 goto no_delete;
155 }
156
907f4554 157 if (!is_bad_inode(inode))
871a2931 158 dquot_initialize(inode);
907f4554 159
678aaf48
JK
160 if (ext4_should_order_data(inode))
161 ext4_begin_ordered_truncate(inode, 0);
ac27a0ec
DK
162 truncate_inode_pages(&inode->i_data, 0);
163
164 if (is_bad_inode(inode))
165 goto no_delete;
166
9f125d64 167 handle = ext4_journal_start(inode, ext4_blocks_for_truncate(inode)+3);
ac27a0ec 168 if (IS_ERR(handle)) {
bc965ab3 169 ext4_std_error(inode->i_sb, PTR_ERR(handle));
ac27a0ec
DK
170 /*
171 * If we're going to skip the normal cleanup, we still need to
172 * make sure that the in-core orphan linked list is properly
173 * cleaned up.
174 */
617ba13b 175 ext4_orphan_del(NULL, inode);
ac27a0ec
DK
176 goto no_delete;
177 }
178
179 if (IS_SYNC(inode))
0390131b 180 ext4_handle_sync(handle);
ac27a0ec 181 inode->i_size = 0;
bc965ab3
TT
182 err = ext4_mark_inode_dirty(handle, inode);
183 if (err) {
12062ddd 184 ext4_warning(inode->i_sb,
bc965ab3
TT
185 "couldn't mark inode dirty (err %d)", err);
186 goto stop_handle;
187 }
ac27a0ec 188 if (inode->i_blocks)
617ba13b 189 ext4_truncate(inode);
bc965ab3
TT
190
191 /*
192 * ext4_ext_truncate() doesn't reserve any slop when it
193 * restarts journal transactions; therefore there may not be
194 * enough credits left in the handle to remove the inode from
195 * the orphan list and set the dtime field.
196 */
0390131b 197 if (!ext4_handle_has_enough_credits(handle, 3)) {
bc965ab3
TT
198 err = ext4_journal_extend(handle, 3);
199 if (err > 0)
200 err = ext4_journal_restart(handle, 3);
201 if (err != 0) {
12062ddd 202 ext4_warning(inode->i_sb,
bc965ab3
TT
203 "couldn't extend journal (err %d)", err);
204 stop_handle:
205 ext4_journal_stop(handle);
45388219 206 ext4_orphan_del(NULL, inode);
bc965ab3
TT
207 goto no_delete;
208 }
209 }
210
ac27a0ec 211 /*
617ba13b 212 * Kill off the orphan record which ext4_truncate created.
ac27a0ec 213 * AKPM: I think this can be inside the above `if'.
617ba13b 214 * Note that ext4_orphan_del() has to be able to cope with the
ac27a0ec 215 * deletion of a non-existent orphan - this is because we don't
617ba13b 216 * know if ext4_truncate() actually created an orphan record.
ac27a0ec
DK
217 * (Well, we could do this if we need to, but heck - it works)
218 */
617ba13b
MC
219 ext4_orphan_del(handle, inode);
220 EXT4_I(inode)->i_dtime = get_seconds();
ac27a0ec
DK
221
222 /*
223 * One subtle ordering requirement: if anything has gone wrong
224 * (transaction abort, IO errors, whatever), then we can still
225 * do these next steps (the fs will already have been marked as
226 * having errors), but we can't free the inode if the mark_dirty
227 * fails.
228 */
617ba13b 229 if (ext4_mark_inode_dirty(handle, inode))
ac27a0ec 230 /* If that failed, just do the required in-core inode clear. */
0930fcc1 231 ext4_clear_inode(inode);
ac27a0ec 232 else
617ba13b
MC
233 ext4_free_inode(handle, inode);
234 ext4_journal_stop(handle);
ac27a0ec
DK
235 return;
236no_delete:
0930fcc1 237 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
ac27a0ec
DK
238}
239
a9e7f447
DM
240#ifdef CONFIG_QUOTA
241qsize_t *ext4_get_reserved_space(struct inode *inode)
60e58e0f 242{
a9e7f447 243 return &EXT4_I(inode)->i_reserved_quota;
60e58e0f 244}
a9e7f447 245#endif
9d0be502 246
12219aea
AK
247/*
248 * Calculate the number of metadata blocks need to reserve
9d0be502 249 * to allocate a block located at @lblock
12219aea 250 */
01f49d0b 251static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
12219aea 252{
12e9b892 253 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
9d0be502 254 return ext4_ext_calc_metadata_amount(inode, lblock);
12219aea 255
8bb2b247 256 return ext4_ind_calc_metadata_amount(inode, lblock);
12219aea
AK
257}
258
0637c6f4
TT
259/*
260 * Called with i_data_sem down, which is important since we can call
261 * ext4_discard_preallocations() from here.
262 */
5f634d06
AK
263void ext4_da_update_reserve_space(struct inode *inode,
264 int used, int quota_claim)
12219aea
AK
265{
266 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 267 struct ext4_inode_info *ei = EXT4_I(inode);
0637c6f4
TT
268
269 spin_lock(&ei->i_block_reservation_lock);
d8990240 270 trace_ext4_da_update_reserve_space(inode, used, quota_claim);
0637c6f4
TT
271 if (unlikely(used > ei->i_reserved_data_blocks)) {
272 ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d "
273 "with only %d reserved data blocks\n",
274 __func__, inode->i_ino, used,
275 ei->i_reserved_data_blocks);
276 WARN_ON(1);
277 used = ei->i_reserved_data_blocks;
278 }
12219aea 279
0637c6f4
TT
280 /* Update per-inode reservations */
281 ei->i_reserved_data_blocks -= used;
0637c6f4 282 ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
57042651 283 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
72b8ab9d 284 used + ei->i_allocated_meta_blocks);
0637c6f4 285 ei->i_allocated_meta_blocks = 0;
6bc6e63f 286
0637c6f4
TT
287 if (ei->i_reserved_data_blocks == 0) {
288 /*
289 * We can release all of the reserved metadata blocks
290 * only when we have written all of the delayed
291 * allocation blocks.
292 */
57042651 293 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
72b8ab9d 294 ei->i_reserved_meta_blocks);
ee5f4d9c 295 ei->i_reserved_meta_blocks = 0;
9d0be502 296 ei->i_da_metadata_calc_len = 0;
6bc6e63f 297 }
12219aea 298 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f 299
72b8ab9d
ES
300 /* Update quota subsystem for data blocks */
301 if (quota_claim)
7b415bf6 302 dquot_claim_block(inode, EXT4_C2B(sbi, used));
72b8ab9d 303 else {
5f634d06
AK
304 /*
305 * We did fallocate with an offset that is already delayed
306 * allocated. So on delayed allocated writeback we should
72b8ab9d 307 * not re-claim the quota for fallocated blocks.
5f634d06 308 */
7b415bf6 309 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
5f634d06 310 }
d6014301
AK
311
312 /*
313 * If we have done all the pending block allocations and if
314 * there aren't any writers on the inode, we can discard the
315 * inode's preallocations.
316 */
0637c6f4
TT
317 if ((ei->i_reserved_data_blocks == 0) &&
318 (atomic_read(&inode->i_writecount) == 0))
d6014301 319 ext4_discard_preallocations(inode);
12219aea
AK
320}
321
e29136f8 322static int __check_block_validity(struct inode *inode, const char *func,
c398eda0
TT
323 unsigned int line,
324 struct ext4_map_blocks *map)
6fd058f7 325{
24676da4
TT
326 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
327 map->m_len)) {
c398eda0
TT
328 ext4_error_inode(inode, func, line, map->m_pblk,
329 "lblock %lu mapped to illegal pblock "
330 "(length %d)", (unsigned long) map->m_lblk,
331 map->m_len);
6fd058f7
TT
332 return -EIO;
333 }
334 return 0;
335}
336
e29136f8 337#define check_block_validity(inode, map) \
c398eda0 338 __check_block_validity((inode), __func__, __LINE__, (map))
e29136f8 339
55138e0b 340/*
1f94533d
TT
341 * Return the number of contiguous dirty pages in a given inode
342 * starting at page frame idx.
55138e0b
TT
343 */
344static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
345 unsigned int max_pages)
346{
347 struct address_space *mapping = inode->i_mapping;
348 pgoff_t index;
349 struct pagevec pvec;
350 pgoff_t num = 0;
351 int i, nr_pages, done = 0;
352
353 if (max_pages == 0)
354 return 0;
355 pagevec_init(&pvec, 0);
356 while (!done) {
357 index = idx;
358 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
359 PAGECACHE_TAG_DIRTY,
360 (pgoff_t)PAGEVEC_SIZE);
361 if (nr_pages == 0)
362 break;
363 for (i = 0; i < nr_pages; i++) {
364 struct page *page = pvec.pages[i];
365 struct buffer_head *bh, *head;
366
367 lock_page(page);
368 if (unlikely(page->mapping != mapping) ||
369 !PageDirty(page) ||
370 PageWriteback(page) ||
371 page->index != idx) {
372 done = 1;
373 unlock_page(page);
374 break;
375 }
1f94533d
TT
376 if (page_has_buffers(page)) {
377 bh = head = page_buffers(page);
378 do {
379 if (!buffer_delay(bh) &&
380 !buffer_unwritten(bh))
381 done = 1;
382 bh = bh->b_this_page;
383 } while (!done && (bh != head));
384 }
55138e0b
TT
385 unlock_page(page);
386 if (done)
387 break;
388 idx++;
389 num++;
659c6009
ES
390 if (num >= max_pages) {
391 done = 1;
55138e0b 392 break;
659c6009 393 }
55138e0b
TT
394 }
395 pagevec_release(&pvec);
396 }
397 return num;
398}
399
5356f261
AK
400/*
401 * Sets the BH_Da_Mapped bit on the buffer heads corresponding to the given map.
402 */
403static void set_buffers_da_mapped(struct inode *inode,
404 struct ext4_map_blocks *map)
405{
406 struct address_space *mapping = inode->i_mapping;
407 struct pagevec pvec;
408 int i, nr_pages;
409 pgoff_t index, end;
410
411 index = map->m_lblk >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
412 end = (map->m_lblk + map->m_len - 1) >>
413 (PAGE_CACHE_SHIFT - inode->i_blkbits);
414
415 pagevec_init(&pvec, 0);
416 while (index <= end) {
417 nr_pages = pagevec_lookup(&pvec, mapping, index,
418 min(end - index + 1,
419 (pgoff_t)PAGEVEC_SIZE));
420 if (nr_pages == 0)
421 break;
422 for (i = 0; i < nr_pages; i++) {
423 struct page *page = pvec.pages[i];
424 struct buffer_head *bh, *head;
425
426 if (unlikely(page->mapping != mapping) ||
427 !PageDirty(page))
428 break;
429
430 if (page_has_buffers(page)) {
431 bh = head = page_buffers(page);
432 do {
433 set_buffer_da_mapped(bh);
434 bh = bh->b_this_page;
435 } while (bh != head);
436 }
437 index++;
438 }
439 pagevec_release(&pvec);
440 }
441}
442
f5ab0d1f 443/*
e35fd660 444 * The ext4_map_blocks() function tries to look up the requested blocks,
2b2d6d01 445 * and returns if the blocks are already mapped.
f5ab0d1f 446 *
f5ab0d1f
MC
447 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
448 * and store the allocated blocks in the result buffer head and mark it
449 * mapped.
450 *
e35fd660
TT
451 * If file type is extents based, it will call ext4_ext_map_blocks(),
452 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
f5ab0d1f
MC
453 * based files
454 *
455 * On success, it returns the number of blocks being mapped or allocate.
456 * if create==0 and the blocks are pre-allocated and uninitialized block,
457 * the result buffer head is unmapped. If the create ==1, it will make sure
458 * the buffer head is mapped.
459 *
460 * It returns 0 if plain look up failed (blocks have not been allocated), in
df3ab170 461 * that case, buffer head is unmapped
f5ab0d1f
MC
462 *
463 * It returns the error in case of allocation failure.
464 */
e35fd660
TT
465int ext4_map_blocks(handle_t *handle, struct inode *inode,
466 struct ext4_map_blocks *map, int flags)
0e855ac8
AK
467{
468 int retval;
f5ab0d1f 469
e35fd660
TT
470 map->m_flags = 0;
471 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
472 "logical block %lu\n", inode->i_ino, flags, map->m_len,
473 (unsigned long) map->m_lblk);
4df3d265 474 /*
b920c755
TT
475 * Try to see if we can get the block without requesting a new
476 * file system block.
4df3d265
AK
477 */
478 down_read((&EXT4_I(inode)->i_data_sem));
12e9b892 479 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
e35fd660 480 retval = ext4_ext_map_blocks(handle, inode, map, 0);
0e855ac8 481 } else {
e35fd660 482 retval = ext4_ind_map_blocks(handle, inode, map, 0);
0e855ac8 483 }
4df3d265 484 up_read((&EXT4_I(inode)->i_data_sem));
f5ab0d1f 485
e35fd660 486 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
e29136f8 487 int ret = check_block_validity(inode, map);
6fd058f7
TT
488 if (ret != 0)
489 return ret;
490 }
491
f5ab0d1f 492 /* If it is only a block(s) look up */
c2177057 493 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
f5ab0d1f
MC
494 return retval;
495
496 /*
497 * Returns if the blocks have already allocated
498 *
499 * Note that if blocks have been preallocated
df3ab170 500 * ext4_ext_get_block() returns the create = 0
f5ab0d1f
MC
501 * with buffer head unmapped.
502 */
e35fd660 503 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
4df3d265
AK
504 return retval;
505
2a8964d6
AK
506 /*
507 * When we call get_blocks without the create flag, the
508 * BH_Unwritten flag could have gotten set if the blocks
509 * requested were part of a uninitialized extent. We need to
510 * clear this flag now that we are committed to convert all or
511 * part of the uninitialized extent to be an initialized
512 * extent. This is because we need to avoid the combination
513 * of BH_Unwritten and BH_Mapped flags being simultaneously
514 * set on the buffer_head.
515 */
e35fd660 516 map->m_flags &= ~EXT4_MAP_UNWRITTEN;
2a8964d6 517
4df3d265 518 /*
f5ab0d1f
MC
519 * New blocks allocate and/or writing to uninitialized extent
520 * will possibly result in updating i_data, so we take
521 * the write lock of i_data_sem, and call get_blocks()
522 * with create == 1 flag.
4df3d265
AK
523 */
524 down_write((&EXT4_I(inode)->i_data_sem));
d2a17637
MC
525
526 /*
527 * if the caller is from delayed allocation writeout path
528 * we have already reserved fs blocks for allocation
529 * let the underlying get_block() function know to
530 * avoid double accounting
531 */
c2177057 532 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
f2321097 533 ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
4df3d265
AK
534 /*
535 * We need to check for EXT4 here because migrate
536 * could have changed the inode type in between
537 */
12e9b892 538 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
e35fd660 539 retval = ext4_ext_map_blocks(handle, inode, map, flags);
0e855ac8 540 } else {
e35fd660 541 retval = ext4_ind_map_blocks(handle, inode, map, flags);
267e4db9 542
e35fd660 543 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
267e4db9
AK
544 /*
545 * We allocated new blocks which will result in
546 * i_data's format changing. Force the migrate
547 * to fail by clearing migrate flags
548 */
19f5fb7a 549 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
267e4db9 550 }
d2a17637 551
5f634d06
AK
552 /*
553 * Update reserved blocks/metadata blocks after successful
554 * block allocation which had been deferred till now. We don't
555 * support fallocate for non extent files. So we can update
556 * reserve space here.
557 */
558 if ((retval > 0) &&
1296cc85 559 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
5f634d06
AK
560 ext4_da_update_reserve_space(inode, retval, 1);
561 }
5356f261 562 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
f2321097 563 ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
2ac3b6e0 564
5356f261
AK
565 /* If we have successfully mapped the delayed allocated blocks,
566 * set the BH_Da_Mapped bit on them. Its important to do this
567 * under the protection of i_data_sem.
568 */
569 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
570 set_buffers_da_mapped(inode, map);
571 }
572
4df3d265 573 up_write((&EXT4_I(inode)->i_data_sem));
e35fd660 574 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
e29136f8 575 int ret = check_block_validity(inode, map);
6fd058f7
TT
576 if (ret != 0)
577 return ret;
578 }
0e855ac8
AK
579 return retval;
580}
581
f3bd1f3f
MC
582/* Maximum number of blocks we map for direct IO at once. */
583#define DIO_MAX_BLOCKS 4096
584
2ed88685
TT
585static int _ext4_get_block(struct inode *inode, sector_t iblock,
586 struct buffer_head *bh, int flags)
ac27a0ec 587{
3e4fdaf8 588 handle_t *handle = ext4_journal_current_handle();
2ed88685 589 struct ext4_map_blocks map;
7fb5409d 590 int ret = 0, started = 0;
f3bd1f3f 591 int dio_credits;
ac27a0ec 592
2ed88685
TT
593 map.m_lblk = iblock;
594 map.m_len = bh->b_size >> inode->i_blkbits;
595
596 if (flags && !handle) {
7fb5409d 597 /* Direct IO write... */
2ed88685
TT
598 if (map.m_len > DIO_MAX_BLOCKS)
599 map.m_len = DIO_MAX_BLOCKS;
600 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
f3bd1f3f 601 handle = ext4_journal_start(inode, dio_credits);
7fb5409d 602 if (IS_ERR(handle)) {
ac27a0ec 603 ret = PTR_ERR(handle);
2ed88685 604 return ret;
ac27a0ec 605 }
7fb5409d 606 started = 1;
ac27a0ec
DK
607 }
608
2ed88685 609 ret = ext4_map_blocks(handle, inode, &map, flags);
7fb5409d 610 if (ret > 0) {
2ed88685
TT
611 map_bh(bh, inode->i_sb, map.m_pblk);
612 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
613 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
7fb5409d 614 ret = 0;
ac27a0ec 615 }
7fb5409d
JK
616 if (started)
617 ext4_journal_stop(handle);
ac27a0ec
DK
618 return ret;
619}
620
2ed88685
TT
621int ext4_get_block(struct inode *inode, sector_t iblock,
622 struct buffer_head *bh, int create)
623{
624 return _ext4_get_block(inode, iblock, bh,
625 create ? EXT4_GET_BLOCKS_CREATE : 0);
626}
627
ac27a0ec
DK
628/*
629 * `handle' can be NULL if create is zero
630 */
617ba13b 631struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
725d26d3 632 ext4_lblk_t block, int create, int *errp)
ac27a0ec 633{
2ed88685
TT
634 struct ext4_map_blocks map;
635 struct buffer_head *bh;
ac27a0ec
DK
636 int fatal = 0, err;
637
638 J_ASSERT(handle != NULL || create == 0);
639
2ed88685
TT
640 map.m_lblk = block;
641 map.m_len = 1;
642 err = ext4_map_blocks(handle, inode, &map,
643 create ? EXT4_GET_BLOCKS_CREATE : 0);
ac27a0ec 644
2ed88685
TT
645 if (err < 0)
646 *errp = err;
647 if (err <= 0)
648 return NULL;
649 *errp = 0;
650
651 bh = sb_getblk(inode->i_sb, map.m_pblk);
652 if (!bh) {
653 *errp = -EIO;
654 return NULL;
ac27a0ec 655 }
2ed88685
TT
656 if (map.m_flags & EXT4_MAP_NEW) {
657 J_ASSERT(create != 0);
658 J_ASSERT(handle != NULL);
ac27a0ec 659
2ed88685
TT
660 /*
661 * Now that we do not always journal data, we should
662 * keep in mind whether this should always journal the
663 * new buffer as metadata. For now, regular file
664 * writes use ext4_get_block instead, so it's not a
665 * problem.
666 */
667 lock_buffer(bh);
668 BUFFER_TRACE(bh, "call get_create_access");
669 fatal = ext4_journal_get_create_access(handle, bh);
670 if (!fatal && !buffer_uptodate(bh)) {
671 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
672 set_buffer_uptodate(bh);
ac27a0ec 673 }
2ed88685
TT
674 unlock_buffer(bh);
675 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
676 err = ext4_handle_dirty_metadata(handle, inode, bh);
677 if (!fatal)
678 fatal = err;
679 } else {
680 BUFFER_TRACE(bh, "not a new buffer");
ac27a0ec 681 }
2ed88685
TT
682 if (fatal) {
683 *errp = fatal;
684 brelse(bh);
685 bh = NULL;
686 }
687 return bh;
ac27a0ec
DK
688}
689
617ba13b 690struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
725d26d3 691 ext4_lblk_t block, int create, int *err)
ac27a0ec 692{
af5bc92d 693 struct buffer_head *bh;
ac27a0ec 694
617ba13b 695 bh = ext4_getblk(handle, inode, block, create, err);
ac27a0ec
DK
696 if (!bh)
697 return bh;
698 if (buffer_uptodate(bh))
699 return bh;
700 ll_rw_block(READ_META, 1, &bh);
701 wait_on_buffer(bh);
702 if (buffer_uptodate(bh))
703 return bh;
704 put_bh(bh);
705 *err = -EIO;
706 return NULL;
707}
708
af5bc92d
TT
709static int walk_page_buffers(handle_t *handle,
710 struct buffer_head *head,
711 unsigned from,
712 unsigned to,
713 int *partial,
714 int (*fn)(handle_t *handle,
715 struct buffer_head *bh))
ac27a0ec
DK
716{
717 struct buffer_head *bh;
718 unsigned block_start, block_end;
719 unsigned blocksize = head->b_size;
720 int err, ret = 0;
721 struct buffer_head *next;
722
af5bc92d
TT
723 for (bh = head, block_start = 0;
724 ret == 0 && (bh != head || !block_start);
de9a55b8 725 block_start = block_end, bh = next) {
ac27a0ec
DK
726 next = bh->b_this_page;
727 block_end = block_start + blocksize;
728 if (block_end <= from || block_start >= to) {
729 if (partial && !buffer_uptodate(bh))
730 *partial = 1;
731 continue;
732 }
733 err = (*fn)(handle, bh);
734 if (!ret)
735 ret = err;
736 }
737 return ret;
738}
739
740/*
741 * To preserve ordering, it is essential that the hole instantiation and
742 * the data write be encapsulated in a single transaction. We cannot
617ba13b 743 * close off a transaction and start a new one between the ext4_get_block()
dab291af 744 * and the commit_write(). So doing the jbd2_journal_start at the start of
ac27a0ec
DK
745 * prepare_write() is the right place.
746 *
617ba13b
MC
747 * Also, this function can nest inside ext4_writepage() ->
748 * block_write_full_page(). In that case, we *know* that ext4_writepage()
ac27a0ec
DK
749 * has generated enough buffer credits to do the whole page. So we won't
750 * block on the journal in that case, which is good, because the caller may
751 * be PF_MEMALLOC.
752 *
617ba13b 753 * By accident, ext4 can be reentered when a transaction is open via
ac27a0ec
DK
754 * quota file writes. If we were to commit the transaction while thus
755 * reentered, there can be a deadlock - we would be holding a quota
756 * lock, and the commit would never complete if another thread had a
757 * transaction open and was blocking on the quota lock - a ranking
758 * violation.
759 *
dab291af 760 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
ac27a0ec
DK
761 * will _not_ run commit under these circumstances because handle->h_ref
762 * is elevated. We'll still have enough credits for the tiny quotafile
763 * write.
764 */
765static int do_journal_get_write_access(handle_t *handle,
de9a55b8 766 struct buffer_head *bh)
ac27a0ec 767{
56d35a4c
JK
768 int dirty = buffer_dirty(bh);
769 int ret;
770
ac27a0ec
DK
771 if (!buffer_mapped(bh) || buffer_freed(bh))
772 return 0;
56d35a4c 773 /*
ebdec241 774 * __block_write_begin() could have dirtied some buffers. Clean
56d35a4c
JK
775 * the dirty bit as jbd2_journal_get_write_access() could complain
776 * otherwise about fs integrity issues. Setting of the dirty bit
ebdec241 777 * by __block_write_begin() isn't a real problem here as we clear
56d35a4c
JK
778 * the bit before releasing a page lock and thus writeback cannot
779 * ever write the buffer.
780 */
781 if (dirty)
782 clear_buffer_dirty(bh);
783 ret = ext4_journal_get_write_access(handle, bh);
784 if (!ret && dirty)
785 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
786 return ret;
ac27a0ec
DK
787}
788
744692dc
JZ
789static int ext4_get_block_write(struct inode *inode, sector_t iblock,
790 struct buffer_head *bh_result, int create);
bfc1af65 791static int ext4_write_begin(struct file *file, struct address_space *mapping,
de9a55b8
TT
792 loff_t pos, unsigned len, unsigned flags,
793 struct page **pagep, void **fsdata)
ac27a0ec 794{
af5bc92d 795 struct inode *inode = mapping->host;
1938a150 796 int ret, needed_blocks;
ac27a0ec
DK
797 handle_t *handle;
798 int retries = 0;
af5bc92d 799 struct page *page;
de9a55b8 800 pgoff_t index;
af5bc92d 801 unsigned from, to;
bfc1af65 802
9bffad1e 803 trace_ext4_write_begin(inode, pos, len, flags);
1938a150
AK
804 /*
805 * Reserve one block more for addition to orphan list in case
806 * we allocate blocks but write fails for some reason
807 */
808 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
de9a55b8 809 index = pos >> PAGE_CACHE_SHIFT;
af5bc92d
TT
810 from = pos & (PAGE_CACHE_SIZE - 1);
811 to = from + len;
ac27a0ec
DK
812
813retry:
af5bc92d
TT
814 handle = ext4_journal_start(inode, needed_blocks);
815 if (IS_ERR(handle)) {
816 ret = PTR_ERR(handle);
817 goto out;
7479d2b9 818 }
ac27a0ec 819
ebd3610b
JK
820 /* We cannot recurse into the filesystem as the transaction is already
821 * started */
822 flags |= AOP_FLAG_NOFS;
823
54566b2c 824 page = grab_cache_page_write_begin(mapping, index, flags);
cf108bca
JK
825 if (!page) {
826 ext4_journal_stop(handle);
827 ret = -ENOMEM;
828 goto out;
829 }
830 *pagep = page;
831
744692dc 832 if (ext4_should_dioread_nolock(inode))
6e1db88d 833 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
744692dc 834 else
6e1db88d 835 ret = __block_write_begin(page, pos, len, ext4_get_block);
bfc1af65
NP
836
837 if (!ret && ext4_should_journal_data(inode)) {
ac27a0ec
DK
838 ret = walk_page_buffers(handle, page_buffers(page),
839 from, to, NULL, do_journal_get_write_access);
840 }
bfc1af65
NP
841
842 if (ret) {
af5bc92d 843 unlock_page(page);
af5bc92d 844 page_cache_release(page);
ae4d5372 845 /*
6e1db88d 846 * __block_write_begin may have instantiated a few blocks
ae4d5372
AK
847 * outside i_size. Trim these off again. Don't need
848 * i_size_read because we hold i_mutex.
1938a150
AK
849 *
850 * Add inode to orphan list in case we crash before
851 * truncate finishes
ae4d5372 852 */
ffacfa7a 853 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1938a150
AK
854 ext4_orphan_add(handle, inode);
855
856 ext4_journal_stop(handle);
857 if (pos + len > inode->i_size) {
b9a4207d 858 ext4_truncate_failed_write(inode);
de9a55b8 859 /*
ffacfa7a 860 * If truncate failed early the inode might
1938a150
AK
861 * still be on the orphan list; we need to
862 * make sure the inode is removed from the
863 * orphan list in that case.
864 */
865 if (inode->i_nlink)
866 ext4_orphan_del(NULL, inode);
867 }
bfc1af65
NP
868 }
869
617ba13b 870 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
ac27a0ec 871 goto retry;
7479d2b9 872out:
ac27a0ec
DK
873 return ret;
874}
875
bfc1af65
NP
876/* For write_end() in data=journal mode */
877static int write_end_fn(handle_t *handle, struct buffer_head *bh)
ac27a0ec
DK
878{
879 if (!buffer_mapped(bh) || buffer_freed(bh))
880 return 0;
881 set_buffer_uptodate(bh);
0390131b 882 return ext4_handle_dirty_metadata(handle, NULL, bh);
ac27a0ec
DK
883}
884
f8514083 885static int ext4_generic_write_end(struct file *file,
de9a55b8
TT
886 struct address_space *mapping,
887 loff_t pos, unsigned len, unsigned copied,
888 struct page *page, void *fsdata)
f8514083
AK
889{
890 int i_size_changed = 0;
891 struct inode *inode = mapping->host;
892 handle_t *handle = ext4_journal_current_handle();
893
894 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
895
896 /*
897 * No need to use i_size_read() here, the i_size
898 * cannot change under us because we hold i_mutex.
899 *
900 * But it's important to update i_size while still holding page lock:
901 * page writeout could otherwise come in and zero beyond i_size.
902 */
903 if (pos + copied > inode->i_size) {
904 i_size_write(inode, pos + copied);
905 i_size_changed = 1;
906 }
907
908 if (pos + copied > EXT4_I(inode)->i_disksize) {
909 /* We need to mark inode dirty even if
910 * new_i_size is less that inode->i_size
911 * bu greater than i_disksize.(hint delalloc)
912 */
913 ext4_update_i_disksize(inode, (pos + copied));
914 i_size_changed = 1;
915 }
916 unlock_page(page);
917 page_cache_release(page);
918
919 /*
920 * Don't mark the inode dirty under page lock. First, it unnecessarily
921 * makes the holding time of page lock longer. Second, it forces lock
922 * ordering of page lock and transaction start for journaling
923 * filesystems.
924 */
925 if (i_size_changed)
926 ext4_mark_inode_dirty(handle, inode);
927
928 return copied;
929}
930
ac27a0ec
DK
931/*
932 * We need to pick up the new inode size which generic_commit_write gave us
933 * `file' can be NULL - eg, when called from page_symlink().
934 *
617ba13b 935 * ext4 never places buffers on inode->i_mapping->private_list. metadata
ac27a0ec
DK
936 * buffers are managed internally.
937 */
bfc1af65 938static int ext4_ordered_write_end(struct file *file,
de9a55b8
TT
939 struct address_space *mapping,
940 loff_t pos, unsigned len, unsigned copied,
941 struct page *page, void *fsdata)
ac27a0ec 942{
617ba13b 943 handle_t *handle = ext4_journal_current_handle();
cf108bca 944 struct inode *inode = mapping->host;
ac27a0ec
DK
945 int ret = 0, ret2;
946
9bffad1e 947 trace_ext4_ordered_write_end(inode, pos, len, copied);
678aaf48 948 ret = ext4_jbd2_file_inode(handle, inode);
ac27a0ec
DK
949
950 if (ret == 0) {
f8514083 951 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
bfc1af65 952 page, fsdata);
f8a87d89 953 copied = ret2;
ffacfa7a 954 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
955 /* if we have allocated more blocks and copied
956 * less. We will have blocks allocated outside
957 * inode->i_size. So truncate them
958 */
959 ext4_orphan_add(handle, inode);
f8a87d89
RK
960 if (ret2 < 0)
961 ret = ret2;
ac27a0ec 962 }
617ba13b 963 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
964 if (!ret)
965 ret = ret2;
bfc1af65 966
f8514083 967 if (pos + len > inode->i_size) {
b9a4207d 968 ext4_truncate_failed_write(inode);
de9a55b8 969 /*
ffacfa7a 970 * If truncate failed early the inode might still be
f8514083
AK
971 * on the orphan list; we need to make sure the inode
972 * is removed from the orphan list in that case.
973 */
974 if (inode->i_nlink)
975 ext4_orphan_del(NULL, inode);
976 }
977
978
bfc1af65 979 return ret ? ret : copied;
ac27a0ec
DK
980}
981
bfc1af65 982static int ext4_writeback_write_end(struct file *file,
de9a55b8
TT
983 struct address_space *mapping,
984 loff_t pos, unsigned len, unsigned copied,
985 struct page *page, void *fsdata)
ac27a0ec 986{
617ba13b 987 handle_t *handle = ext4_journal_current_handle();
cf108bca 988 struct inode *inode = mapping->host;
ac27a0ec 989 int ret = 0, ret2;
ac27a0ec 990
9bffad1e 991 trace_ext4_writeback_write_end(inode, pos, len, copied);
f8514083 992 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
bfc1af65 993 page, fsdata);
f8a87d89 994 copied = ret2;
ffacfa7a 995 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
996 /* if we have allocated more blocks and copied
997 * less. We will have blocks allocated outside
998 * inode->i_size. So truncate them
999 */
1000 ext4_orphan_add(handle, inode);
1001
f8a87d89
RK
1002 if (ret2 < 0)
1003 ret = ret2;
ac27a0ec 1004
617ba13b 1005 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1006 if (!ret)
1007 ret = ret2;
bfc1af65 1008
f8514083 1009 if (pos + len > inode->i_size) {
b9a4207d 1010 ext4_truncate_failed_write(inode);
de9a55b8 1011 /*
ffacfa7a 1012 * If truncate failed early the inode might still be
f8514083
AK
1013 * on the orphan list; we need to make sure the inode
1014 * is removed from the orphan list in that case.
1015 */
1016 if (inode->i_nlink)
1017 ext4_orphan_del(NULL, inode);
1018 }
1019
bfc1af65 1020 return ret ? ret : copied;
ac27a0ec
DK
1021}
1022
bfc1af65 1023static int ext4_journalled_write_end(struct file *file,
de9a55b8
TT
1024 struct address_space *mapping,
1025 loff_t pos, unsigned len, unsigned copied,
1026 struct page *page, void *fsdata)
ac27a0ec 1027{
617ba13b 1028 handle_t *handle = ext4_journal_current_handle();
bfc1af65 1029 struct inode *inode = mapping->host;
ac27a0ec
DK
1030 int ret = 0, ret2;
1031 int partial = 0;
bfc1af65 1032 unsigned from, to;
cf17fea6 1033 loff_t new_i_size;
ac27a0ec 1034
9bffad1e 1035 trace_ext4_journalled_write_end(inode, pos, len, copied);
bfc1af65
NP
1036 from = pos & (PAGE_CACHE_SIZE - 1);
1037 to = from + len;
1038
441c8508
CW
1039 BUG_ON(!ext4_handle_valid(handle));
1040
bfc1af65
NP
1041 if (copied < len) {
1042 if (!PageUptodate(page))
1043 copied = 0;
1044 page_zero_new_buffers(page, from+copied, to);
1045 }
ac27a0ec
DK
1046
1047 ret = walk_page_buffers(handle, page_buffers(page), from,
bfc1af65 1048 to, &partial, write_end_fn);
ac27a0ec
DK
1049 if (!partial)
1050 SetPageUptodate(page);
cf17fea6
AK
1051 new_i_size = pos + copied;
1052 if (new_i_size > inode->i_size)
bfc1af65 1053 i_size_write(inode, pos+copied);
19f5fb7a 1054 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2d859db3 1055 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
cf17fea6
AK
1056 if (new_i_size > EXT4_I(inode)->i_disksize) {
1057 ext4_update_i_disksize(inode, new_i_size);
617ba13b 1058 ret2 = ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
1059 if (!ret)
1060 ret = ret2;
1061 }
bfc1af65 1062
cf108bca 1063 unlock_page(page);
f8514083 1064 page_cache_release(page);
ffacfa7a 1065 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1066 /* if we have allocated more blocks and copied
1067 * less. We will have blocks allocated outside
1068 * inode->i_size. So truncate them
1069 */
1070 ext4_orphan_add(handle, inode);
1071
617ba13b 1072 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1073 if (!ret)
1074 ret = ret2;
f8514083 1075 if (pos + len > inode->i_size) {
b9a4207d 1076 ext4_truncate_failed_write(inode);
de9a55b8 1077 /*
ffacfa7a 1078 * If truncate failed early the inode might still be
f8514083
AK
1079 * on the orphan list; we need to make sure the inode
1080 * is removed from the orphan list in that case.
1081 */
1082 if (inode->i_nlink)
1083 ext4_orphan_del(NULL, inode);
1084 }
bfc1af65
NP
1085
1086 return ret ? ret : copied;
ac27a0ec 1087}
d2a17637 1088
9d0be502 1089/*
7b415bf6 1090 * Reserve a single cluster located at lblock
9d0be502 1091 */
5356f261 1092static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
d2a17637 1093{
030ba6bc 1094 int retries = 0;
60e58e0f 1095 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 1096 struct ext4_inode_info *ei = EXT4_I(inode);
7b415bf6 1097 unsigned int md_needed;
5dd4056d 1098 int ret;
d2a17637
MC
1099
1100 /*
1101 * recalculate the amount of metadata blocks to reserve
1102 * in order to allocate nrblocks
1103 * worse case is one extent per block
1104 */
030ba6bc 1105repeat:
0637c6f4 1106 spin_lock(&ei->i_block_reservation_lock);
7b415bf6
AK
1107 md_needed = EXT4_NUM_B2C(sbi,
1108 ext4_calc_metadata_amount(inode, lblock));
f8ec9d68 1109 trace_ext4_da_reserve_space(inode, md_needed);
0637c6f4 1110 spin_unlock(&ei->i_block_reservation_lock);
d2a17637 1111
60e58e0f 1112 /*
72b8ab9d
ES
1113 * We will charge metadata quota at writeout time; this saves
1114 * us from metadata over-estimation, though we may go over by
1115 * a small amount in the end. Here we just reserve for data.
60e58e0f 1116 */
7b415bf6 1117 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
5dd4056d
CH
1118 if (ret)
1119 return ret;
72b8ab9d
ES
1120 /*
1121 * We do still charge estimated metadata to the sb though;
1122 * we cannot afford to run out of free blocks.
1123 */
e7d5f315 1124 if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) {
7b415bf6 1125 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
030ba6bc
AK
1126 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1127 yield();
1128 goto repeat;
1129 }
d2a17637
MC
1130 return -ENOSPC;
1131 }
0637c6f4 1132 spin_lock(&ei->i_block_reservation_lock);
9d0be502 1133 ei->i_reserved_data_blocks++;
0637c6f4
TT
1134 ei->i_reserved_meta_blocks += md_needed;
1135 spin_unlock(&ei->i_block_reservation_lock);
39bc680a 1136
d2a17637
MC
1137 return 0; /* success */
1138}
1139
12219aea 1140static void ext4_da_release_space(struct inode *inode, int to_free)
d2a17637
MC
1141{
1142 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 1143 struct ext4_inode_info *ei = EXT4_I(inode);
d2a17637 1144
cd213226
MC
1145 if (!to_free)
1146 return; /* Nothing to release, exit */
1147
d2a17637 1148 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
cd213226 1149
5a58ec87 1150 trace_ext4_da_release_space(inode, to_free);
0637c6f4 1151 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
cd213226 1152 /*
0637c6f4
TT
1153 * if there aren't enough reserved blocks, then the
1154 * counter is messed up somewhere. Since this
1155 * function is called from invalidate page, it's
1156 * harmless to return without any action.
cd213226 1157 */
0637c6f4
TT
1158 ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: "
1159 "ino %lu, to_free %d with only %d reserved "
1160 "data blocks\n", inode->i_ino, to_free,
1161 ei->i_reserved_data_blocks);
1162 WARN_ON(1);
1163 to_free = ei->i_reserved_data_blocks;
cd213226 1164 }
0637c6f4 1165 ei->i_reserved_data_blocks -= to_free;
cd213226 1166
0637c6f4
TT
1167 if (ei->i_reserved_data_blocks == 0) {
1168 /*
1169 * We can release all of the reserved metadata blocks
1170 * only when we have written all of the delayed
1171 * allocation blocks.
7b415bf6
AK
1172 * Note that in case of bigalloc, i_reserved_meta_blocks,
1173 * i_reserved_data_blocks, etc. refer to number of clusters.
0637c6f4 1174 */
57042651 1175 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
72b8ab9d 1176 ei->i_reserved_meta_blocks);
ee5f4d9c 1177 ei->i_reserved_meta_blocks = 0;
9d0be502 1178 ei->i_da_metadata_calc_len = 0;
0637c6f4 1179 }
d2a17637 1180
72b8ab9d 1181 /* update fs dirty data blocks counter */
57042651 1182 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
d2a17637 1183
d2a17637 1184 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f 1185
7b415bf6 1186 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
d2a17637
MC
1187}
1188
1189static void ext4_da_page_release_reservation(struct page *page,
de9a55b8 1190 unsigned long offset)
d2a17637
MC
1191{
1192 int to_release = 0;
1193 struct buffer_head *head, *bh;
1194 unsigned int curr_off = 0;
7b415bf6
AK
1195 struct inode *inode = page->mapping->host;
1196 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1197 int num_clusters;
d2a17637
MC
1198
1199 head = page_buffers(page);
1200 bh = head;
1201 do {
1202 unsigned int next_off = curr_off + bh->b_size;
1203
1204 if ((offset <= curr_off) && (buffer_delay(bh))) {
1205 to_release++;
1206 clear_buffer_delay(bh);
5356f261 1207 clear_buffer_da_mapped(bh);
d2a17637
MC
1208 }
1209 curr_off = next_off;
1210 } while ((bh = bh->b_this_page) != head);
7b415bf6
AK
1211
1212 /* If we have released all the blocks belonging to a cluster, then we
1213 * need to release the reserved space for that cluster. */
1214 num_clusters = EXT4_NUM_B2C(sbi, to_release);
1215 while (num_clusters > 0) {
1216 ext4_fsblk_t lblk;
1217 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1218 ((num_clusters - 1) << sbi->s_cluster_bits);
1219 if (sbi->s_cluster_ratio == 1 ||
1220 !ext4_find_delalloc_cluster(inode, lblk, 1))
1221 ext4_da_release_space(inode, 1);
1222
1223 num_clusters--;
1224 }
d2a17637 1225}
ac27a0ec 1226
64769240
AT
1227/*
1228 * Delayed allocation stuff
1229 */
1230
64769240
AT
1231/*
1232 * mpage_da_submit_io - walks through extent of pages and try to write
a1d6cc56 1233 * them with writepage() call back
64769240
AT
1234 *
1235 * @mpd->inode: inode
1236 * @mpd->first_page: first page of the extent
1237 * @mpd->next_page: page after the last page of the extent
64769240
AT
1238 *
1239 * By the time mpage_da_submit_io() is called we expect all blocks
1240 * to be allocated. this may be wrong if allocation failed.
1241 *
1242 * As pages are already locked by write_cache_pages(), we can't use it
1243 */
1de3e3df
TT
1244static int mpage_da_submit_io(struct mpage_da_data *mpd,
1245 struct ext4_map_blocks *map)
64769240 1246{
791b7f08
AK
1247 struct pagevec pvec;
1248 unsigned long index, end;
1249 int ret = 0, err, nr_pages, i;
1250 struct inode *inode = mpd->inode;
1251 struct address_space *mapping = inode->i_mapping;
cb20d518 1252 loff_t size = i_size_read(inode);
3ecdb3a1
TT
1253 unsigned int len, block_start;
1254 struct buffer_head *bh, *page_bufs = NULL;
cb20d518 1255 int journal_data = ext4_should_journal_data(inode);
1de3e3df 1256 sector_t pblock = 0, cur_logical = 0;
bd2d0210 1257 struct ext4_io_submit io_submit;
64769240
AT
1258
1259 BUG_ON(mpd->next_page <= mpd->first_page);
bd2d0210 1260 memset(&io_submit, 0, sizeof(io_submit));
791b7f08
AK
1261 /*
1262 * We need to start from the first_page to the next_page - 1
1263 * to make sure we also write the mapped dirty buffer_heads.
8dc207c0 1264 * If we look at mpd->b_blocknr we would only be looking
791b7f08
AK
1265 * at the currently mapped buffer_heads.
1266 */
64769240
AT
1267 index = mpd->first_page;
1268 end = mpd->next_page - 1;
1269
791b7f08 1270 pagevec_init(&pvec, 0);
64769240 1271 while (index <= end) {
791b7f08 1272 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
64769240
AT
1273 if (nr_pages == 0)
1274 break;
1275 for (i = 0; i < nr_pages; i++) {
97498956 1276 int commit_write = 0, skip_page = 0;
64769240
AT
1277 struct page *page = pvec.pages[i];
1278
791b7f08
AK
1279 index = page->index;
1280 if (index > end)
1281 break;
cb20d518
TT
1282
1283 if (index == size >> PAGE_CACHE_SHIFT)
1284 len = size & ~PAGE_CACHE_MASK;
1285 else
1286 len = PAGE_CACHE_SIZE;
1de3e3df
TT
1287 if (map) {
1288 cur_logical = index << (PAGE_CACHE_SHIFT -
1289 inode->i_blkbits);
1290 pblock = map->m_pblk + (cur_logical -
1291 map->m_lblk);
1292 }
791b7f08
AK
1293 index++;
1294
1295 BUG_ON(!PageLocked(page));
1296 BUG_ON(PageWriteback(page));
1297
64769240 1298 /*
cb20d518
TT
1299 * If the page does not have buffers (for
1300 * whatever reason), try to create them using
a107e5a3 1301 * __block_write_begin. If this fails,
97498956 1302 * skip the page and move on.
64769240 1303 */
cb20d518 1304 if (!page_has_buffers(page)) {
a107e5a3 1305 if (__block_write_begin(page, 0, len,
cb20d518 1306 noalloc_get_block_write)) {
97498956 1307 skip_page:
cb20d518
TT
1308 unlock_page(page);
1309 continue;
1310 }
1311 commit_write = 1;
1312 }
64769240 1313
3ecdb3a1
TT
1314 bh = page_bufs = page_buffers(page);
1315 block_start = 0;
64769240 1316 do {
1de3e3df 1317 if (!bh)
97498956 1318 goto skip_page;
1de3e3df
TT
1319 if (map && (cur_logical >= map->m_lblk) &&
1320 (cur_logical <= (map->m_lblk +
1321 (map->m_len - 1)))) {
29fa89d0
AK
1322 if (buffer_delay(bh)) {
1323 clear_buffer_delay(bh);
1324 bh->b_blocknr = pblock;
29fa89d0 1325 }
5356f261
AK
1326 if (buffer_da_mapped(bh))
1327 clear_buffer_da_mapped(bh);
1de3e3df
TT
1328 if (buffer_unwritten(bh) ||
1329 buffer_mapped(bh))
1330 BUG_ON(bh->b_blocknr != pblock);
1331 if (map->m_flags & EXT4_MAP_UNINIT)
1332 set_buffer_uninit(bh);
1333 clear_buffer_unwritten(bh);
1334 }
29fa89d0 1335
97498956 1336 /* skip page if block allocation undone */
1de3e3df 1337 if (buffer_delay(bh) || buffer_unwritten(bh))
97498956 1338 skip_page = 1;
3ecdb3a1
TT
1339 bh = bh->b_this_page;
1340 block_start += bh->b_size;
64769240
AT
1341 cur_logical++;
1342 pblock++;
1de3e3df
TT
1343 } while (bh != page_bufs);
1344
97498956
TT
1345 if (skip_page)
1346 goto skip_page;
cb20d518
TT
1347
1348 if (commit_write)
1349 /* mark the buffer_heads as dirty & uptodate */
1350 block_commit_write(page, 0, len);
1351
97498956 1352 clear_page_dirty_for_io(page);
bd2d0210
TT
1353 /*
1354 * Delalloc doesn't support data journalling,
1355 * but eventually maybe we'll lift this
1356 * restriction.
1357 */
1358 if (unlikely(journal_data && PageChecked(page)))
cb20d518 1359 err = __ext4_journalled_writepage(page, len);
1449032b 1360 else if (test_opt(inode->i_sb, MBLK_IO_SUBMIT))
bd2d0210
TT
1361 err = ext4_bio_write_page(&io_submit, page,
1362 len, mpd->wbc);
9dd75f1f
TT
1363 else if (buffer_uninit(page_bufs)) {
1364 ext4_set_bh_endio(page_bufs, inode);
1365 err = block_write_full_page_endio(page,
1366 noalloc_get_block_write,
1367 mpd->wbc, ext4_end_io_buffer_write);
1368 } else
1449032b
TT
1369 err = block_write_full_page(page,
1370 noalloc_get_block_write, mpd->wbc);
cb20d518
TT
1371
1372 if (!err)
a1d6cc56 1373 mpd->pages_written++;
64769240
AT
1374 /*
1375 * In error case, we have to continue because
1376 * remaining pages are still locked
64769240
AT
1377 */
1378 if (ret == 0)
1379 ret = err;
64769240
AT
1380 }
1381 pagevec_release(&pvec);
1382 }
bd2d0210 1383 ext4_io_submit(&io_submit);
64769240 1384 return ret;
64769240
AT
1385}
1386
c7f5938a 1387static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd)
c4a0c46e
AK
1388{
1389 int nr_pages, i;
1390 pgoff_t index, end;
1391 struct pagevec pvec;
1392 struct inode *inode = mpd->inode;
1393 struct address_space *mapping = inode->i_mapping;
1394
c7f5938a
CW
1395 index = mpd->first_page;
1396 end = mpd->next_page - 1;
c4a0c46e
AK
1397 while (index <= end) {
1398 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1399 if (nr_pages == 0)
1400 break;
1401 for (i = 0; i < nr_pages; i++) {
1402 struct page *page = pvec.pages[i];
9b1d0998 1403 if (page->index > end)
c4a0c46e 1404 break;
c4a0c46e
AK
1405 BUG_ON(!PageLocked(page));
1406 BUG_ON(PageWriteback(page));
1407 block_invalidatepage(page, 0);
1408 ClearPageUptodate(page);
1409 unlock_page(page);
1410 }
9b1d0998
JK
1411 index = pvec.pages[nr_pages - 1]->index + 1;
1412 pagevec_release(&pvec);
c4a0c46e
AK
1413 }
1414 return;
1415}
1416
df22291f
AK
1417static void ext4_print_free_blocks(struct inode *inode)
1418{
1419 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1693918e 1420 printk(KERN_CRIT "Total free blocks count %lld\n",
5dee5437
TT
1421 EXT4_C2B(EXT4_SB(inode->i_sb),
1422 ext4_count_free_clusters(inode->i_sb)));
1693918e
TT
1423 printk(KERN_CRIT "Free/Dirty block details\n");
1424 printk(KERN_CRIT "free_blocks=%lld\n",
57042651
TT
1425 (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
1426 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1693918e 1427 printk(KERN_CRIT "dirty_blocks=%lld\n",
7b415bf6
AK
1428 (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
1429 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1693918e
TT
1430 printk(KERN_CRIT "Block reservation details\n");
1431 printk(KERN_CRIT "i_reserved_data_blocks=%u\n",
1432 EXT4_I(inode)->i_reserved_data_blocks);
1433 printk(KERN_CRIT "i_reserved_meta_blocks=%u\n",
1434 EXT4_I(inode)->i_reserved_meta_blocks);
df22291f
AK
1435 return;
1436}
1437
64769240 1438/*
5a87b7a5
TT
1439 * mpage_da_map_and_submit - go through given space, map them
1440 * if necessary, and then submit them for I/O
64769240 1441 *
8dc207c0 1442 * @mpd - bh describing space
64769240
AT
1443 *
1444 * The function skips space we know is already mapped to disk blocks.
1445 *
64769240 1446 */
5a87b7a5 1447static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
64769240 1448{
2ac3b6e0 1449 int err, blks, get_blocks_flags;
1de3e3df 1450 struct ext4_map_blocks map, *mapp = NULL;
2fa3cdfb
TT
1451 sector_t next = mpd->b_blocknr;
1452 unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
1453 loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
1454 handle_t *handle = NULL;
64769240
AT
1455
1456 /*
5a87b7a5
TT
1457 * If the blocks are mapped already, or we couldn't accumulate
1458 * any blocks, then proceed immediately to the submission stage.
2fa3cdfb 1459 */
5a87b7a5
TT
1460 if ((mpd->b_size == 0) ||
1461 ((mpd->b_state & (1 << BH_Mapped)) &&
1462 !(mpd->b_state & (1 << BH_Delay)) &&
1463 !(mpd->b_state & (1 << BH_Unwritten))))
1464 goto submit_io;
2fa3cdfb
TT
1465
1466 handle = ext4_journal_current_handle();
1467 BUG_ON(!handle);
1468
79ffab34 1469 /*
79e83036 1470 * Call ext4_map_blocks() to allocate any delayed allocation
2ac3b6e0
TT
1471 * blocks, or to convert an uninitialized extent to be
1472 * initialized (in the case where we have written into
1473 * one or more preallocated blocks).
1474 *
1475 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
1476 * indicate that we are on the delayed allocation path. This
1477 * affects functions in many different parts of the allocation
1478 * call path. This flag exists primarily because we don't
79e83036 1479 * want to change *many* call functions, so ext4_map_blocks()
f2321097 1480 * will set the EXT4_STATE_DELALLOC_RESERVED flag once the
2ac3b6e0
TT
1481 * inode's allocation semaphore is taken.
1482 *
1483 * If the blocks in questions were delalloc blocks, set
1484 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
1485 * variables are updated after the blocks have been allocated.
79ffab34 1486 */
2ed88685
TT
1487 map.m_lblk = next;
1488 map.m_len = max_blocks;
1296cc85 1489 get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
744692dc
JZ
1490 if (ext4_should_dioread_nolock(mpd->inode))
1491 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2ac3b6e0 1492 if (mpd->b_state & (1 << BH_Delay))
1296cc85
AK
1493 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
1494
2ed88685 1495 blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
2fa3cdfb 1496 if (blks < 0) {
e3570639
ES
1497 struct super_block *sb = mpd->inode->i_sb;
1498
2fa3cdfb 1499 err = blks;
ed5bde0b 1500 /*
5a87b7a5 1501 * If get block returns EAGAIN or ENOSPC and there
97498956
TT
1502 * appears to be free blocks we will just let
1503 * mpage_da_submit_io() unlock all of the pages.
c4a0c46e
AK
1504 */
1505 if (err == -EAGAIN)
5a87b7a5 1506 goto submit_io;
df22291f 1507
5dee5437 1508 if (err == -ENOSPC && ext4_count_free_clusters(sb)) {
df22291f 1509 mpd->retval = err;
5a87b7a5 1510 goto submit_io;
df22291f
AK
1511 }
1512
c4a0c46e 1513 /*
ed5bde0b
TT
1514 * get block failure will cause us to loop in
1515 * writepages, because a_ops->writepage won't be able
1516 * to make progress. The page will be redirtied by
1517 * writepage and writepages will again try to write
1518 * the same.
c4a0c46e 1519 */
e3570639
ES
1520 if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
1521 ext4_msg(sb, KERN_CRIT,
1522 "delayed block allocation failed for inode %lu "
1523 "at logical offset %llu with max blocks %zd "
1524 "with error %d", mpd->inode->i_ino,
1525 (unsigned long long) next,
1526 mpd->b_size >> mpd->inode->i_blkbits, err);
1527 ext4_msg(sb, KERN_CRIT,
1528 "This should not happen!! Data will be lost\n");
1529 if (err == -ENOSPC)
1530 ext4_print_free_blocks(mpd->inode);
030ba6bc 1531 }
2fa3cdfb 1532 /* invalidate all the pages */
c7f5938a 1533 ext4_da_block_invalidatepages(mpd);
e0fd9b90
CW
1534
1535 /* Mark this page range as having been completed */
1536 mpd->io_done = 1;
5a87b7a5 1537 return;
c4a0c46e 1538 }
2fa3cdfb
TT
1539 BUG_ON(blks == 0);
1540
1de3e3df 1541 mapp = &map;
2ed88685
TT
1542 if (map.m_flags & EXT4_MAP_NEW) {
1543 struct block_device *bdev = mpd->inode->i_sb->s_bdev;
1544 int i;
64769240 1545
2ed88685
TT
1546 for (i = 0; i < map.m_len; i++)
1547 unmap_underlying_metadata(bdev, map.m_pblk + i);
64769240 1548
decbd919
TT
1549 if (ext4_should_order_data(mpd->inode)) {
1550 err = ext4_jbd2_file_inode(handle, mpd->inode);
1551 if (err)
1552 /* Only if the journal is aborted */
1553 return;
1554 }
2fa3cdfb
TT
1555 }
1556
1557 /*
03f5d8bc 1558 * Update on-disk size along with block allocation.
2fa3cdfb
TT
1559 */
1560 disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
1561 if (disksize > i_size_read(mpd->inode))
1562 disksize = i_size_read(mpd->inode);
1563 if (disksize > EXT4_I(mpd->inode)->i_disksize) {
1564 ext4_update_i_disksize(mpd->inode, disksize);
5a87b7a5
TT
1565 err = ext4_mark_inode_dirty(handle, mpd->inode);
1566 if (err)
1567 ext4_error(mpd->inode->i_sb,
1568 "Failed to mark inode %lu dirty",
1569 mpd->inode->i_ino);
2fa3cdfb
TT
1570 }
1571
5a87b7a5 1572submit_io:
1de3e3df 1573 mpage_da_submit_io(mpd, mapp);
5a87b7a5 1574 mpd->io_done = 1;
64769240
AT
1575}
1576
bf068ee2
AK
1577#define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
1578 (1 << BH_Delay) | (1 << BH_Unwritten))
64769240
AT
1579
1580/*
1581 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
1582 *
1583 * @mpd->lbh - extent of blocks
1584 * @logical - logical number of the block in the file
1585 * @bh - bh of the block (used to access block's state)
1586 *
1587 * the function is used to collect contig. blocks in same state
1588 */
1589static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
8dc207c0
TT
1590 sector_t logical, size_t b_size,
1591 unsigned long b_state)
64769240 1592{
64769240 1593 sector_t next;
8dc207c0 1594 int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
64769240 1595
c445e3e0
ES
1596 /*
1597 * XXX Don't go larger than mballoc is willing to allocate
1598 * This is a stopgap solution. We eventually need to fold
1599 * mpage_da_submit_io() into this function and then call
79e83036 1600 * ext4_map_blocks() multiple times in a loop
c445e3e0
ES
1601 */
1602 if (nrblocks >= 8*1024*1024/mpd->inode->i_sb->s_blocksize)
1603 goto flush_it;
1604
525f4ed8 1605 /* check if thereserved journal credits might overflow */
12e9b892 1606 if (!(ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS))) {
525f4ed8
MC
1607 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
1608 /*
1609 * With non-extent format we are limited by the journal
1610 * credit available. Total credit needed to insert
1611 * nrblocks contiguous blocks is dependent on the
1612 * nrblocks. So limit nrblocks.
1613 */
1614 goto flush_it;
1615 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
1616 EXT4_MAX_TRANS_DATA) {
1617 /*
1618 * Adding the new buffer_head would make it cross the
1619 * allowed limit for which we have journal credit
1620 * reserved. So limit the new bh->b_size
1621 */
1622 b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
1623 mpd->inode->i_blkbits;
1624 /* we will do mpage_da_submit_io in the next loop */
1625 }
1626 }
64769240
AT
1627 /*
1628 * First block in the extent
1629 */
8dc207c0
TT
1630 if (mpd->b_size == 0) {
1631 mpd->b_blocknr = logical;
1632 mpd->b_size = b_size;
1633 mpd->b_state = b_state & BH_FLAGS;
64769240
AT
1634 return;
1635 }
1636
8dc207c0 1637 next = mpd->b_blocknr + nrblocks;
64769240
AT
1638 /*
1639 * Can we merge the block to our big extent?
1640 */
8dc207c0
TT
1641 if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
1642 mpd->b_size += b_size;
64769240
AT
1643 return;
1644 }
1645
525f4ed8 1646flush_it:
64769240
AT
1647 /*
1648 * We couldn't merge the block to our extent, so we
1649 * need to flush current extent and start new one
1650 */
5a87b7a5 1651 mpage_da_map_and_submit(mpd);
a1d6cc56 1652 return;
64769240
AT
1653}
1654
c364b22c 1655static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
29fa89d0 1656{
c364b22c 1657 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
29fa89d0
AK
1658}
1659
5356f261
AK
1660/*
1661 * This function is grabs code from the very beginning of
1662 * ext4_map_blocks, but assumes that the caller is from delayed write
1663 * time. This function looks up the requested blocks and sets the
1664 * buffer delay bit under the protection of i_data_sem.
1665 */
1666static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1667 struct ext4_map_blocks *map,
1668 struct buffer_head *bh)
1669{
1670 int retval;
1671 sector_t invalid_block = ~((sector_t) 0xffff);
1672
1673 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1674 invalid_block = ~0;
1675
1676 map->m_flags = 0;
1677 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1678 "logical block %lu\n", inode->i_ino, map->m_len,
1679 (unsigned long) map->m_lblk);
1680 /*
1681 * Try to see if we can get the block without requesting a new
1682 * file system block.
1683 */
1684 down_read((&EXT4_I(inode)->i_data_sem));
1685 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1686 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1687 else
1688 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1689
1690 if (retval == 0) {
1691 /*
1692 * XXX: __block_prepare_write() unmaps passed block,
1693 * is it OK?
1694 */
1695 /* If the block was allocated from previously allocated cluster,
1696 * then we dont need to reserve it again. */
1697 if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
1698 retval = ext4_da_reserve_space(inode, iblock);
1699 if (retval)
1700 /* not enough space to reserve */
1701 goto out_unlock;
1702 }
1703
1704 /* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
1705 * and it should not appear on the bh->b_state.
1706 */
1707 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
1708
1709 map_bh(bh, inode->i_sb, invalid_block);
1710 set_buffer_new(bh);
1711 set_buffer_delay(bh);
1712 }
1713
1714out_unlock:
1715 up_read((&EXT4_I(inode)->i_data_sem));
1716
1717 return retval;
1718}
1719
64769240 1720/*
b920c755
TT
1721 * This is a special get_blocks_t callback which is used by
1722 * ext4_da_write_begin(). It will either return mapped block or
1723 * reserve space for a single block.
29fa89d0
AK
1724 *
1725 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1726 * We also have b_blocknr = -1 and b_bdev initialized properly
1727 *
1728 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1729 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1730 * initialized properly.
64769240
AT
1731 */
1732static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2ed88685 1733 struct buffer_head *bh, int create)
64769240 1734{
2ed88685 1735 struct ext4_map_blocks map;
64769240
AT
1736 int ret = 0;
1737
1738 BUG_ON(create == 0);
2ed88685
TT
1739 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1740
1741 map.m_lblk = iblock;
1742 map.m_len = 1;
64769240
AT
1743
1744 /*
1745 * first, we need to know whether the block is allocated already
1746 * preallocated blocks are unmapped but should treated
1747 * the same as allocated blocks.
1748 */
5356f261
AK
1749 ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1750 if (ret <= 0)
2ed88685 1751 return ret;
64769240 1752
2ed88685
TT
1753 map_bh(bh, inode->i_sb, map.m_pblk);
1754 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1755
1756 if (buffer_unwritten(bh)) {
1757 /* A delayed write to unwritten bh should be marked
1758 * new and mapped. Mapped ensures that we don't do
1759 * get_block multiple times when we write to the same
1760 * offset and new ensures that we do proper zero out
1761 * for partial write.
1762 */
1763 set_buffer_new(bh);
c8205636 1764 set_buffer_mapped(bh);
2ed88685
TT
1765 }
1766 return 0;
64769240 1767}
61628a3f 1768
b920c755
TT
1769/*
1770 * This function is used as a standard get_block_t calback function
1771 * when there is no desire to allocate any blocks. It is used as a
ebdec241 1772 * callback function for block_write_begin() and block_write_full_page().
206f7ab4 1773 * These functions should only try to map a single block at a time.
b920c755
TT
1774 *
1775 * Since this function doesn't do block allocations even if the caller
1776 * requests it by passing in create=1, it is critically important that
1777 * any caller checks to make sure that any buffer heads are returned
1778 * by this function are either all already mapped or marked for
206f7ab4
CH
1779 * delayed allocation before calling block_write_full_page(). Otherwise,
1780 * b_blocknr could be left unitialized, and the page write functions will
1781 * be taken by surprise.
b920c755
TT
1782 */
1783static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
f0e6c985
AK
1784 struct buffer_head *bh_result, int create)
1785{
a2dc52b5 1786 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2ed88685 1787 return _ext4_get_block(inode, iblock, bh_result, 0);
61628a3f
MC
1788}
1789
62e086be
AK
1790static int bget_one(handle_t *handle, struct buffer_head *bh)
1791{
1792 get_bh(bh);
1793 return 0;
1794}
1795
1796static int bput_one(handle_t *handle, struct buffer_head *bh)
1797{
1798 put_bh(bh);
1799 return 0;
1800}
1801
1802static int __ext4_journalled_writepage(struct page *page,
62e086be
AK
1803 unsigned int len)
1804{
1805 struct address_space *mapping = page->mapping;
1806 struct inode *inode = mapping->host;
1807 struct buffer_head *page_bufs;
1808 handle_t *handle = NULL;
1809 int ret = 0;
1810 int err;
1811
cb20d518 1812 ClearPageChecked(page);
62e086be
AK
1813 page_bufs = page_buffers(page);
1814 BUG_ON(!page_bufs);
1815 walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
1816 /* As soon as we unlock the page, it can go away, but we have
1817 * references to buffers so we are safe */
1818 unlock_page(page);
1819
1820 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
1821 if (IS_ERR(handle)) {
1822 ret = PTR_ERR(handle);
1823 goto out;
1824 }
1825
441c8508
CW
1826 BUG_ON(!ext4_handle_valid(handle));
1827
62e086be
AK
1828 ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
1829 do_journal_get_write_access);
1830
1831 err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
1832 write_end_fn);
1833 if (ret == 0)
1834 ret = err;
2d859db3 1835 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
62e086be
AK
1836 err = ext4_journal_stop(handle);
1837 if (!ret)
1838 ret = err;
1839
1840 walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
19f5fb7a 1841 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
62e086be
AK
1842out:
1843 return ret;
1844}
1845
744692dc
JZ
1846static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
1847static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
1848
61628a3f 1849/*
43ce1d23
AK
1850 * Note that we don't need to start a transaction unless we're journaling data
1851 * because we should have holes filled from ext4_page_mkwrite(). We even don't
1852 * need to file the inode to the transaction's list in ordered mode because if
1853 * we are writing back data added by write(), the inode is already there and if
25985edc 1854 * we are writing back data modified via mmap(), no one guarantees in which
43ce1d23
AK
1855 * transaction the data will hit the disk. In case we are journaling data, we
1856 * cannot start transaction directly because transaction start ranks above page
1857 * lock so we have to do some magic.
1858 *
b920c755
TT
1859 * This function can get called via...
1860 * - ext4_da_writepages after taking page lock (have journal handle)
1861 * - journal_submit_inode_data_buffers (no journal handle)
1862 * - shrink_page_list via pdflush (no journal handle)
1863 * - grab_page_cache when doing write_begin (have journal handle)
43ce1d23
AK
1864 *
1865 * We don't do any block allocation in this function. If we have page with
1866 * multiple blocks we need to write those buffer_heads that are mapped. This
1867 * is important for mmaped based write. So if we do with blocksize 1K
1868 * truncate(f, 1024);
1869 * a = mmap(f, 0, 4096);
1870 * a[0] = 'a';
1871 * truncate(f, 4096);
1872 * we have in the page first buffer_head mapped via page_mkwrite call back
1873 * but other bufer_heads would be unmapped but dirty(dirty done via the
1874 * do_wp_page). So writepage should write the first block. If we modify
1875 * the mmap area beyond 1024 we will again get a page_fault and the
1876 * page_mkwrite callback will do the block allocation and mark the
1877 * buffer_heads mapped.
1878 *
1879 * We redirty the page if we have any buffer_heads that is either delay or
1880 * unwritten in the page.
1881 *
1882 * We can get recursively called as show below.
1883 *
1884 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1885 * ext4_writepage()
1886 *
1887 * But since we don't do any block allocation we should not deadlock.
1888 * Page also have the dirty flag cleared so we don't get recurive page_lock.
61628a3f 1889 */
43ce1d23 1890static int ext4_writepage(struct page *page,
62e086be 1891 struct writeback_control *wbc)
64769240 1892{
a42afc5f 1893 int ret = 0, commit_write = 0;
61628a3f 1894 loff_t size;
498e5f24 1895 unsigned int len;
744692dc 1896 struct buffer_head *page_bufs = NULL;
61628a3f
MC
1897 struct inode *inode = page->mapping->host;
1898
a9c667f8 1899 trace_ext4_writepage(page);
f0e6c985
AK
1900 size = i_size_read(inode);
1901 if (page->index == size >> PAGE_CACHE_SHIFT)
1902 len = size & ~PAGE_CACHE_MASK;
1903 else
1904 len = PAGE_CACHE_SIZE;
64769240 1905
a42afc5f
TT
1906 /*
1907 * If the page does not have buffers (for whatever reason),
a107e5a3 1908 * try to create them using __block_write_begin. If this
a42afc5f
TT
1909 * fails, redirty the page and move on.
1910 */
b1142e8f 1911 if (!page_has_buffers(page)) {
a107e5a3 1912 if (__block_write_begin(page, 0, len,
a42afc5f
TT
1913 noalloc_get_block_write)) {
1914 redirty_page:
f0e6c985
AK
1915 redirty_page_for_writepage(wbc, page);
1916 unlock_page(page);
1917 return 0;
1918 }
a42afc5f
TT
1919 commit_write = 1;
1920 }
1921 page_bufs = page_buffers(page);
1922 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
1923 ext4_bh_delay_or_unwritten)) {
f0e6c985 1924 /*
b1142e8f
TT
1925 * We don't want to do block allocation, so redirty
1926 * the page and return. We may reach here when we do
1927 * a journal commit via journal_submit_inode_data_buffers.
1928 * We can also reach here via shrink_page_list
f0e6c985 1929 */
a42afc5f
TT
1930 goto redirty_page;
1931 }
1932 if (commit_write)
ed9b3e33 1933 /* now mark the buffer_heads as dirty and uptodate */
b767e78a 1934 block_commit_write(page, 0, len);
64769240 1935
cb20d518 1936 if (PageChecked(page) && ext4_should_journal_data(inode))
43ce1d23
AK
1937 /*
1938 * It's mmapped pagecache. Add buffers and journal it. There
1939 * doesn't seem much point in redirtying the page here.
1940 */
3f0ca309 1941 return __ext4_journalled_writepage(page, len);
43ce1d23 1942
a42afc5f 1943 if (buffer_uninit(page_bufs)) {
744692dc
JZ
1944 ext4_set_bh_endio(page_bufs, inode);
1945 ret = block_write_full_page_endio(page, noalloc_get_block_write,
1946 wbc, ext4_end_io_buffer_write);
1947 } else
b920c755
TT
1948 ret = block_write_full_page(page, noalloc_get_block_write,
1949 wbc);
64769240 1950
64769240
AT
1951 return ret;
1952}
1953
61628a3f 1954/*
525f4ed8 1955 * This is called via ext4_da_writepages() to
25985edc 1956 * calculate the total number of credits to reserve to fit
525f4ed8
MC
1957 * a single extent allocation into a single transaction,
1958 * ext4_da_writpeages() will loop calling this before
1959 * the block allocation.
61628a3f 1960 */
525f4ed8
MC
1961
1962static int ext4_da_writepages_trans_blocks(struct inode *inode)
1963{
1964 int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
1965
1966 /*
1967 * With non-extent format the journal credit needed to
1968 * insert nrblocks contiguous block is dependent on
1969 * number of contiguous block. So we will limit
1970 * number of contiguous block to a sane value
1971 */
12e9b892 1972 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
525f4ed8
MC
1973 (max_blocks > EXT4_MAX_TRANS_DATA))
1974 max_blocks = EXT4_MAX_TRANS_DATA;
1975
1976 return ext4_chunk_trans_blocks(inode, max_blocks);
1977}
61628a3f 1978
8e48dcfb
TT
1979/*
1980 * write_cache_pages_da - walk the list of dirty pages of the given
8eb9e5ce 1981 * address space and accumulate pages that need writing, and call
168fc022
TT
1982 * mpage_da_map_and_submit to map a single contiguous memory region
1983 * and then write them.
8e48dcfb
TT
1984 */
1985static int write_cache_pages_da(struct address_space *mapping,
1986 struct writeback_control *wbc,
72f84e65
ES
1987 struct mpage_da_data *mpd,
1988 pgoff_t *done_index)
8e48dcfb 1989{
4f01b02c 1990 struct buffer_head *bh, *head;
168fc022 1991 struct inode *inode = mapping->host;
4f01b02c
TT
1992 struct pagevec pvec;
1993 unsigned int nr_pages;
1994 sector_t logical;
1995 pgoff_t index, end;
1996 long nr_to_write = wbc->nr_to_write;
1997 int i, tag, ret = 0;
8e48dcfb 1998
168fc022
TT
1999 memset(mpd, 0, sizeof(struct mpage_da_data));
2000 mpd->wbc = wbc;
2001 mpd->inode = inode;
8e48dcfb
TT
2002 pagevec_init(&pvec, 0);
2003 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2004 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2005
6e6938b6 2006 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
5b41d924
ES
2007 tag = PAGECACHE_TAG_TOWRITE;
2008 else
2009 tag = PAGECACHE_TAG_DIRTY;
2010
72f84e65 2011 *done_index = index;
4f01b02c 2012 while (index <= end) {
5b41d924 2013 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
8e48dcfb
TT
2014 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2015 if (nr_pages == 0)
4f01b02c 2016 return 0;
8e48dcfb
TT
2017
2018 for (i = 0; i < nr_pages; i++) {
2019 struct page *page = pvec.pages[i];
2020
2021 /*
2022 * At this point, the page may be truncated or
2023 * invalidated (changing page->mapping to NULL), or
2024 * even swizzled back from swapper_space to tmpfs file
2025 * mapping. However, page->index will not change
2026 * because we have a reference on the page.
2027 */
4f01b02c
TT
2028 if (page->index > end)
2029 goto out;
8e48dcfb 2030
72f84e65
ES
2031 *done_index = page->index + 1;
2032
78aaced3
TT
2033 /*
2034 * If we can't merge this page, and we have
2035 * accumulated an contiguous region, write it
2036 */
2037 if ((mpd->next_page != page->index) &&
2038 (mpd->next_page != mpd->first_page)) {
2039 mpage_da_map_and_submit(mpd);
2040 goto ret_extent_tail;
2041 }
2042
8e48dcfb
TT
2043 lock_page(page);
2044
2045 /*
4f01b02c
TT
2046 * If the page is no longer dirty, or its
2047 * mapping no longer corresponds to inode we
2048 * are writing (which means it has been
2049 * truncated or invalidated), or the page is
2050 * already under writeback and we are not
2051 * doing a data integrity writeback, skip the page
8e48dcfb 2052 */
4f01b02c
TT
2053 if (!PageDirty(page) ||
2054 (PageWriteback(page) &&
2055 (wbc->sync_mode == WB_SYNC_NONE)) ||
2056 unlikely(page->mapping != mapping)) {
8e48dcfb
TT
2057 unlock_page(page);
2058 continue;
2059 }
2060
7cb1a535 2061 wait_on_page_writeback(page);
8e48dcfb 2062 BUG_ON(PageWriteback(page));
8e48dcfb 2063
168fc022 2064 if (mpd->next_page != page->index)
8eb9e5ce 2065 mpd->first_page = page->index;
8eb9e5ce
TT
2066 mpd->next_page = page->index + 1;
2067 logical = (sector_t) page->index <<
2068 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2069
2070 if (!page_has_buffers(page)) {
4f01b02c
TT
2071 mpage_add_bh_to_extent(mpd, logical,
2072 PAGE_CACHE_SIZE,
8eb9e5ce 2073 (1 << BH_Dirty) | (1 << BH_Uptodate));
4f01b02c
TT
2074 if (mpd->io_done)
2075 goto ret_extent_tail;
8eb9e5ce
TT
2076 } else {
2077 /*
4f01b02c
TT
2078 * Page with regular buffer heads,
2079 * just add all dirty ones
8eb9e5ce
TT
2080 */
2081 head = page_buffers(page);
2082 bh = head;
2083 do {
2084 BUG_ON(buffer_locked(bh));
2085 /*
2086 * We need to try to allocate
2087 * unmapped blocks in the same page.
2088 * Otherwise we won't make progress
2089 * with the page in ext4_writepage
2090 */
2091 if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2092 mpage_add_bh_to_extent(mpd, logical,
2093 bh->b_size,
2094 bh->b_state);
4f01b02c
TT
2095 if (mpd->io_done)
2096 goto ret_extent_tail;
8eb9e5ce
TT
2097 } else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2098 /*
4f01b02c
TT
2099 * mapped dirty buffer. We need
2100 * to update the b_state
2101 * because we look at b_state
2102 * in mpage_da_map_blocks. We
2103 * don't update b_size because
2104 * if we find an unmapped
2105 * buffer_head later we need to
2106 * use the b_state flag of that
2107 * buffer_head.
8eb9e5ce
TT
2108 */
2109 if (mpd->b_size == 0)
2110 mpd->b_state = bh->b_state & BH_FLAGS;
2111 }
2112 logical++;
2113 } while ((bh = bh->b_this_page) != head);
8e48dcfb
TT
2114 }
2115
2116 if (nr_to_write > 0) {
2117 nr_to_write--;
2118 if (nr_to_write == 0 &&
4f01b02c 2119 wbc->sync_mode == WB_SYNC_NONE)
8e48dcfb
TT
2120 /*
2121 * We stop writing back only if we are
2122 * not doing integrity sync. In case of
2123 * integrity sync we have to keep going
2124 * because someone may be concurrently
2125 * dirtying pages, and we might have
2126 * synced a lot of newly appeared dirty
2127 * pages, but have not synced all of the
2128 * old dirty pages.
2129 */
4f01b02c 2130 goto out;
8e48dcfb
TT
2131 }
2132 }
2133 pagevec_release(&pvec);
2134 cond_resched();
2135 }
4f01b02c
TT
2136 return 0;
2137ret_extent_tail:
2138 ret = MPAGE_DA_EXTENT_TAIL;
8eb9e5ce
TT
2139out:
2140 pagevec_release(&pvec);
2141 cond_resched();
8e48dcfb
TT
2142 return ret;
2143}
2144
2145
64769240 2146static int ext4_da_writepages(struct address_space *mapping,
a1d6cc56 2147 struct writeback_control *wbc)
64769240 2148{
22208ded
AK
2149 pgoff_t index;
2150 int range_whole = 0;
61628a3f 2151 handle_t *handle = NULL;
df22291f 2152 struct mpage_da_data mpd;
5e745b04 2153 struct inode *inode = mapping->host;
498e5f24 2154 int pages_written = 0;
55138e0b 2155 unsigned int max_pages;
2acf2c26 2156 int range_cyclic, cycled = 1, io_done = 0;
55138e0b
TT
2157 int needed_blocks, ret = 0;
2158 long desired_nr_to_write, nr_to_writebump = 0;
de89de6e 2159 loff_t range_start = wbc->range_start;
5e745b04 2160 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
72f84e65 2161 pgoff_t done_index = 0;
5b41d924 2162 pgoff_t end;
61628a3f 2163
9bffad1e 2164 trace_ext4_da_writepages(inode, wbc);
ba80b101 2165
61628a3f
MC
2166 /*
2167 * No pages to write? This is mainly a kludge to avoid starting
2168 * a transaction for special inodes like journal inode on last iput()
2169 * because that could violate lock ordering on umount
2170 */
a1d6cc56 2171 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
61628a3f 2172 return 0;
2a21e37e
TT
2173
2174 /*
2175 * If the filesystem has aborted, it is read-only, so return
2176 * right away instead of dumping stack traces later on that
2177 * will obscure the real source of the problem. We test
4ab2f15b 2178 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2a21e37e
TT
2179 * the latter could be true if the filesystem is mounted
2180 * read-only, and in that case, ext4_da_writepages should
2181 * *never* be called, so if that ever happens, we would want
2182 * the stack trace.
2183 */
4ab2f15b 2184 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2a21e37e
TT
2185 return -EROFS;
2186
22208ded
AK
2187 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2188 range_whole = 1;
61628a3f 2189
2acf2c26
AK
2190 range_cyclic = wbc->range_cyclic;
2191 if (wbc->range_cyclic) {
22208ded 2192 index = mapping->writeback_index;
2acf2c26
AK
2193 if (index)
2194 cycled = 0;
2195 wbc->range_start = index << PAGE_CACHE_SHIFT;
2196 wbc->range_end = LLONG_MAX;
2197 wbc->range_cyclic = 0;
5b41d924
ES
2198 end = -1;
2199 } else {
22208ded 2200 index = wbc->range_start >> PAGE_CACHE_SHIFT;
5b41d924
ES
2201 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2202 }
a1d6cc56 2203
55138e0b
TT
2204 /*
2205 * This works around two forms of stupidity. The first is in
2206 * the writeback code, which caps the maximum number of pages
2207 * written to be 1024 pages. This is wrong on multiple
2208 * levels; different architectues have a different page size,
2209 * which changes the maximum amount of data which gets
2210 * written. Secondly, 4 megabytes is way too small. XFS
2211 * forces this value to be 16 megabytes by multiplying
2212 * nr_to_write parameter by four, and then relies on its
2213 * allocator to allocate larger extents to make them
2214 * contiguous. Unfortunately this brings us to the second
2215 * stupidity, which is that ext4's mballoc code only allocates
2216 * at most 2048 blocks. So we force contiguous writes up to
2217 * the number of dirty blocks in the inode, or
2218 * sbi->max_writeback_mb_bump whichever is smaller.
2219 */
2220 max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
b443e733
ES
2221 if (!range_cyclic && range_whole) {
2222 if (wbc->nr_to_write == LONG_MAX)
2223 desired_nr_to_write = wbc->nr_to_write;
2224 else
2225 desired_nr_to_write = wbc->nr_to_write * 8;
2226 } else
55138e0b
TT
2227 desired_nr_to_write = ext4_num_dirty_pages(inode, index,
2228 max_pages);
2229 if (desired_nr_to_write > max_pages)
2230 desired_nr_to_write = max_pages;
2231
2232 if (wbc->nr_to_write < desired_nr_to_write) {
2233 nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
2234 wbc->nr_to_write = desired_nr_to_write;
2235 }
2236
2acf2c26 2237retry:
6e6938b6 2238 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
5b41d924
ES
2239 tag_pages_for_writeback(mapping, index, end);
2240
22208ded 2241 while (!ret && wbc->nr_to_write > 0) {
a1d6cc56
AK
2242
2243 /*
2244 * we insert one extent at a time. So we need
2245 * credit needed for single extent allocation.
2246 * journalled mode is currently not supported
2247 * by delalloc
2248 */
2249 BUG_ON(ext4_should_journal_data(inode));
525f4ed8 2250 needed_blocks = ext4_da_writepages_trans_blocks(inode);
a1d6cc56 2251
61628a3f
MC
2252 /* start a new transaction*/
2253 handle = ext4_journal_start(inode, needed_blocks);
2254 if (IS_ERR(handle)) {
2255 ret = PTR_ERR(handle);
1693918e 2256 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
fbe845dd 2257 "%ld pages, ino %lu; err %d", __func__,
a1d6cc56 2258 wbc->nr_to_write, inode->i_ino, ret);
61628a3f
MC
2259 goto out_writepages;
2260 }
f63e6005
TT
2261
2262 /*
8eb9e5ce 2263 * Now call write_cache_pages_da() to find the next
f63e6005 2264 * contiguous region of logical blocks that need
8eb9e5ce 2265 * blocks to be allocated by ext4 and submit them.
f63e6005 2266 */
72f84e65 2267 ret = write_cache_pages_da(mapping, wbc, &mpd, &done_index);
f63e6005 2268 /*
af901ca1 2269 * If we have a contiguous extent of pages and we
f63e6005
TT
2270 * haven't done the I/O yet, map the blocks and submit
2271 * them for I/O.
2272 */
2273 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
5a87b7a5 2274 mpage_da_map_and_submit(&mpd);
f63e6005
TT
2275 ret = MPAGE_DA_EXTENT_TAIL;
2276 }
b3a3ca8c 2277 trace_ext4_da_write_pages(inode, &mpd);
f63e6005 2278 wbc->nr_to_write -= mpd.pages_written;
df22291f 2279
61628a3f 2280 ext4_journal_stop(handle);
df22291f 2281
8f64b32e 2282 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
22208ded
AK
2283 /* commit the transaction which would
2284 * free blocks released in the transaction
2285 * and try again
2286 */
df22291f 2287 jbd2_journal_force_commit_nested(sbi->s_journal);
22208ded
AK
2288 ret = 0;
2289 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
a1d6cc56
AK
2290 /*
2291 * got one extent now try with
2292 * rest of the pages
2293 */
22208ded 2294 pages_written += mpd.pages_written;
a1d6cc56 2295 ret = 0;
2acf2c26 2296 io_done = 1;
22208ded 2297 } else if (wbc->nr_to_write)
61628a3f
MC
2298 /*
2299 * There is no more writeout needed
2300 * or we requested for a noblocking writeout
2301 * and we found the device congested
2302 */
61628a3f 2303 break;
a1d6cc56 2304 }
2acf2c26
AK
2305 if (!io_done && !cycled) {
2306 cycled = 1;
2307 index = 0;
2308 wbc->range_start = index << PAGE_CACHE_SHIFT;
2309 wbc->range_end = mapping->writeback_index - 1;
2310 goto retry;
2311 }
22208ded
AK
2312
2313 /* Update index */
2acf2c26 2314 wbc->range_cyclic = range_cyclic;
22208ded
AK
2315 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2316 /*
2317 * set the writeback_index so that range_cyclic
2318 * mode will write it back later
2319 */
72f84e65 2320 mapping->writeback_index = done_index;
a1d6cc56 2321
61628a3f 2322out_writepages:
2faf2e19 2323 wbc->nr_to_write -= nr_to_writebump;
de89de6e 2324 wbc->range_start = range_start;
9bffad1e 2325 trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
61628a3f 2326 return ret;
64769240
AT
2327}
2328
79f0be8d
AK
2329#define FALL_BACK_TO_NONDELALLOC 1
2330static int ext4_nonda_switch(struct super_block *sb)
2331{
2332 s64 free_blocks, dirty_blocks;
2333 struct ext4_sb_info *sbi = EXT4_SB(sb);
2334
2335 /*
2336 * switch to non delalloc mode if we are running low
2337 * on free block. The free block accounting via percpu
179f7ebf 2338 * counters can get slightly wrong with percpu_counter_batch getting
79f0be8d
AK
2339 * accumulated on each CPU without updating global counters
2340 * Delalloc need an accurate free block accounting. So switch
2341 * to non delalloc when we are near to error range.
2342 */
57042651
TT
2343 free_blocks = EXT4_C2B(sbi,
2344 percpu_counter_read_positive(&sbi->s_freeclusters_counter));
2345 dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
79f0be8d 2346 if (2 * free_blocks < 3 * dirty_blocks ||
df55c99d 2347 free_blocks < (dirty_blocks + EXT4_FREECLUSTERS_WATERMARK)) {
79f0be8d 2348 /*
c8afb446
ES
2349 * free block count is less than 150% of dirty blocks
2350 * or free blocks is less than watermark
79f0be8d
AK
2351 */
2352 return 1;
2353 }
c8afb446
ES
2354 /*
2355 * Even if we don't switch but are nearing capacity,
2356 * start pushing delalloc when 1/2 of free blocks are dirty.
2357 */
2358 if (free_blocks < 2 * dirty_blocks)
2359 writeback_inodes_sb_if_idle(sb);
2360
79f0be8d
AK
2361 return 0;
2362}
2363
64769240 2364static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
de9a55b8
TT
2365 loff_t pos, unsigned len, unsigned flags,
2366 struct page **pagep, void **fsdata)
64769240 2367{
72b8ab9d 2368 int ret, retries = 0;
64769240
AT
2369 struct page *page;
2370 pgoff_t index;
64769240
AT
2371 struct inode *inode = mapping->host;
2372 handle_t *handle;
02fac129 2373 loff_t page_len;
64769240
AT
2374
2375 index = pos >> PAGE_CACHE_SHIFT;
79f0be8d
AK
2376
2377 if (ext4_nonda_switch(inode->i_sb)) {
2378 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2379 return ext4_write_begin(file, mapping, pos,
2380 len, flags, pagep, fsdata);
2381 }
2382 *fsdata = (void *)0;
9bffad1e 2383 trace_ext4_da_write_begin(inode, pos, len, flags);
d2a17637 2384retry:
64769240
AT
2385 /*
2386 * With delayed allocation, we don't log the i_disksize update
2387 * if there is delayed block allocation. But we still need
2388 * to journalling the i_disksize update if writes to the end
2389 * of file which has an already mapped buffer.
2390 */
2391 handle = ext4_journal_start(inode, 1);
2392 if (IS_ERR(handle)) {
2393 ret = PTR_ERR(handle);
2394 goto out;
2395 }
ebd3610b
JK
2396 /* We cannot recurse into the filesystem as the transaction is already
2397 * started */
2398 flags |= AOP_FLAG_NOFS;
64769240 2399
54566b2c 2400 page = grab_cache_page_write_begin(mapping, index, flags);
d5a0d4f7
ES
2401 if (!page) {
2402 ext4_journal_stop(handle);
2403 ret = -ENOMEM;
2404 goto out;
2405 }
64769240
AT
2406 *pagep = page;
2407
6e1db88d 2408 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
64769240
AT
2409 if (ret < 0) {
2410 unlock_page(page);
2411 ext4_journal_stop(handle);
2412 page_cache_release(page);
ae4d5372
AK
2413 /*
2414 * block_write_begin may have instantiated a few blocks
2415 * outside i_size. Trim these off again. Don't need
2416 * i_size_read because we hold i_mutex.
2417 */
2418 if (pos + len > inode->i_size)
b9a4207d 2419 ext4_truncate_failed_write(inode);
02fac129
AH
2420 } else {
2421 page_len = pos & (PAGE_CACHE_SIZE - 1);
2422 if (page_len > 0) {
2423 ret = ext4_discard_partial_page_buffers_no_lock(handle,
2424 inode, page, pos - page_len, page_len,
2425 EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED);
2426 }
64769240
AT
2427 }
2428
d2a17637
MC
2429 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
2430 goto retry;
64769240
AT
2431out:
2432 return ret;
2433}
2434
632eaeab
MC
2435/*
2436 * Check if we should update i_disksize
2437 * when write to the end of file but not require block allocation
2438 */
2439static int ext4_da_should_update_i_disksize(struct page *page,
de9a55b8 2440 unsigned long offset)
632eaeab
MC
2441{
2442 struct buffer_head *bh;
2443 struct inode *inode = page->mapping->host;
2444 unsigned int idx;
2445 int i;
2446
2447 bh = page_buffers(page);
2448 idx = offset >> inode->i_blkbits;
2449
af5bc92d 2450 for (i = 0; i < idx; i++)
632eaeab
MC
2451 bh = bh->b_this_page;
2452
29fa89d0 2453 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
632eaeab
MC
2454 return 0;
2455 return 1;
2456}
2457
64769240 2458static int ext4_da_write_end(struct file *file,
de9a55b8
TT
2459 struct address_space *mapping,
2460 loff_t pos, unsigned len, unsigned copied,
2461 struct page *page, void *fsdata)
64769240
AT
2462{
2463 struct inode *inode = mapping->host;
2464 int ret = 0, ret2;
2465 handle_t *handle = ext4_journal_current_handle();
2466 loff_t new_i_size;
632eaeab 2467 unsigned long start, end;
79f0be8d 2468 int write_mode = (int)(unsigned long)fsdata;
02fac129 2469 loff_t page_len;
79f0be8d
AK
2470
2471 if (write_mode == FALL_BACK_TO_NONDELALLOC) {
2472 if (ext4_should_order_data(inode)) {
2473 return ext4_ordered_write_end(file, mapping, pos,
2474 len, copied, page, fsdata);
2475 } else if (ext4_should_writeback_data(inode)) {
2476 return ext4_writeback_write_end(file, mapping, pos,
2477 len, copied, page, fsdata);
2478 } else {
2479 BUG();
2480 }
2481 }
632eaeab 2482
9bffad1e 2483 trace_ext4_da_write_end(inode, pos, len, copied);
632eaeab 2484 start = pos & (PAGE_CACHE_SIZE - 1);
af5bc92d 2485 end = start + copied - 1;
64769240
AT
2486
2487 /*
2488 * generic_write_end() will run mark_inode_dirty() if i_size
2489 * changes. So let's piggyback the i_disksize mark_inode_dirty
2490 * into that.
2491 */
2492
2493 new_i_size = pos + copied;
632eaeab
MC
2494 if (new_i_size > EXT4_I(inode)->i_disksize) {
2495 if (ext4_da_should_update_i_disksize(page, end)) {
2496 down_write(&EXT4_I(inode)->i_data_sem);
2497 if (new_i_size > EXT4_I(inode)->i_disksize) {
2498 /*
2499 * Updating i_disksize when extending file
2500 * without needing block allocation
2501 */
2502 if (ext4_should_order_data(inode))
2503 ret = ext4_jbd2_file_inode(handle,
2504 inode);
64769240 2505
632eaeab
MC
2506 EXT4_I(inode)->i_disksize = new_i_size;
2507 }
2508 up_write(&EXT4_I(inode)->i_data_sem);
cf17fea6
AK
2509 /* We need to mark inode dirty even if
2510 * new_i_size is less that inode->i_size
2511 * bu greater than i_disksize.(hint delalloc)
2512 */
2513 ext4_mark_inode_dirty(handle, inode);
64769240 2514 }
632eaeab 2515 }
64769240
AT
2516 ret2 = generic_write_end(file, mapping, pos, len, copied,
2517 page, fsdata);
02fac129
AH
2518
2519 page_len = PAGE_CACHE_SIZE -
2520 ((pos + copied - 1) & (PAGE_CACHE_SIZE - 1));
2521
2522 if (page_len > 0) {
2523 ret = ext4_discard_partial_page_buffers_no_lock(handle,
2524 inode, page, pos + copied - 1, page_len,
2525 EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED);
2526 }
2527
64769240
AT
2528 copied = ret2;
2529 if (ret2 < 0)
2530 ret = ret2;
2531 ret2 = ext4_journal_stop(handle);
2532 if (!ret)
2533 ret = ret2;
2534
2535 return ret ? ret : copied;
2536}
2537
2538static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
2539{
64769240
AT
2540 /*
2541 * Drop reserved blocks
2542 */
2543 BUG_ON(!PageLocked(page));
2544 if (!page_has_buffers(page))
2545 goto out;
2546
d2a17637 2547 ext4_da_page_release_reservation(page, offset);
64769240
AT
2548
2549out:
2550 ext4_invalidatepage(page, offset);
2551
2552 return;
2553}
2554
ccd2506b
TT
2555/*
2556 * Force all delayed allocation blocks to be allocated for a given inode.
2557 */
2558int ext4_alloc_da_blocks(struct inode *inode)
2559{
fb40ba0d
TT
2560 trace_ext4_alloc_da_blocks(inode);
2561
ccd2506b
TT
2562 if (!EXT4_I(inode)->i_reserved_data_blocks &&
2563 !EXT4_I(inode)->i_reserved_meta_blocks)
2564 return 0;
2565
2566 /*
2567 * We do something simple for now. The filemap_flush() will
2568 * also start triggering a write of the data blocks, which is
2569 * not strictly speaking necessary (and for users of
2570 * laptop_mode, not even desirable). However, to do otherwise
2571 * would require replicating code paths in:
de9a55b8 2572 *
ccd2506b
TT
2573 * ext4_da_writepages() ->
2574 * write_cache_pages() ---> (via passed in callback function)
2575 * __mpage_da_writepage() -->
2576 * mpage_add_bh_to_extent()
2577 * mpage_da_map_blocks()
2578 *
2579 * The problem is that write_cache_pages(), located in
2580 * mm/page-writeback.c, marks pages clean in preparation for
2581 * doing I/O, which is not desirable if we're not planning on
2582 * doing I/O at all.
2583 *
2584 * We could call write_cache_pages(), and then redirty all of
380cf090 2585 * the pages by calling redirty_page_for_writepage() but that
ccd2506b
TT
2586 * would be ugly in the extreme. So instead we would need to
2587 * replicate parts of the code in the above functions,
25985edc 2588 * simplifying them because we wouldn't actually intend to
ccd2506b
TT
2589 * write out the pages, but rather only collect contiguous
2590 * logical block extents, call the multi-block allocator, and
2591 * then update the buffer heads with the block allocations.
de9a55b8 2592 *
ccd2506b
TT
2593 * For now, though, we'll cheat by calling filemap_flush(),
2594 * which will map the blocks, and start the I/O, but not
2595 * actually wait for the I/O to complete.
2596 */
2597 return filemap_flush(inode->i_mapping);
2598}
64769240 2599
ac27a0ec
DK
2600/*
2601 * bmap() is special. It gets used by applications such as lilo and by
2602 * the swapper to find the on-disk block of a specific piece of data.
2603 *
2604 * Naturally, this is dangerous if the block concerned is still in the
617ba13b 2605 * journal. If somebody makes a swapfile on an ext4 data-journaling
ac27a0ec
DK
2606 * filesystem and enables swap, then they may get a nasty shock when the
2607 * data getting swapped to that swapfile suddenly gets overwritten by
2608 * the original zero's written out previously to the journal and
2609 * awaiting writeback in the kernel's buffer cache.
2610 *
2611 * So, if we see any bmap calls here on a modified, data-journaled file,
2612 * take extra steps to flush any blocks which might be in the cache.
2613 */
617ba13b 2614static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
ac27a0ec
DK
2615{
2616 struct inode *inode = mapping->host;
2617 journal_t *journal;
2618 int err;
2619
64769240
AT
2620 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2621 test_opt(inode->i_sb, DELALLOC)) {
2622 /*
2623 * With delalloc we want to sync the file
2624 * so that we can make sure we allocate
2625 * blocks for file
2626 */
2627 filemap_write_and_wait(mapping);
2628 }
2629
19f5fb7a
TT
2630 if (EXT4_JOURNAL(inode) &&
2631 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
ac27a0ec
DK
2632 /*
2633 * This is a REALLY heavyweight approach, but the use of
2634 * bmap on dirty files is expected to be extremely rare:
2635 * only if we run lilo or swapon on a freshly made file
2636 * do we expect this to happen.
2637 *
2638 * (bmap requires CAP_SYS_RAWIO so this does not
2639 * represent an unprivileged user DOS attack --- we'd be
2640 * in trouble if mortal users could trigger this path at
2641 * will.)
2642 *
617ba13b 2643 * NB. EXT4_STATE_JDATA is not set on files other than
ac27a0ec
DK
2644 * regular files. If somebody wants to bmap a directory
2645 * or symlink and gets confused because the buffer
2646 * hasn't yet been flushed to disk, they deserve
2647 * everything they get.
2648 */
2649
19f5fb7a 2650 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
617ba13b 2651 journal = EXT4_JOURNAL(inode);
dab291af
MC
2652 jbd2_journal_lock_updates(journal);
2653 err = jbd2_journal_flush(journal);
2654 jbd2_journal_unlock_updates(journal);
ac27a0ec
DK
2655
2656 if (err)
2657 return 0;
2658 }
2659
af5bc92d 2660 return generic_block_bmap(mapping, block, ext4_get_block);
ac27a0ec
DK
2661}
2662
617ba13b 2663static int ext4_readpage(struct file *file, struct page *page)
ac27a0ec 2664{
0562e0ba 2665 trace_ext4_readpage(page);
617ba13b 2666 return mpage_readpage(page, ext4_get_block);
ac27a0ec
DK
2667}
2668
2669static int
617ba13b 2670ext4_readpages(struct file *file, struct address_space *mapping,
ac27a0ec
DK
2671 struct list_head *pages, unsigned nr_pages)
2672{
617ba13b 2673 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
ac27a0ec
DK
2674}
2675
744692dc
JZ
2676static void ext4_invalidatepage_free_endio(struct page *page, unsigned long offset)
2677{
2678 struct buffer_head *head, *bh;
2679 unsigned int curr_off = 0;
2680
2681 if (!page_has_buffers(page))
2682 return;
2683 head = bh = page_buffers(page);
2684 do {
2685 if (offset <= curr_off && test_clear_buffer_uninit(bh)
2686 && bh->b_private) {
2687 ext4_free_io_end(bh->b_private);
2688 bh->b_private = NULL;
2689 bh->b_end_io = NULL;
2690 }
2691 curr_off = curr_off + bh->b_size;
2692 bh = bh->b_this_page;
2693 } while (bh != head);
2694}
2695
617ba13b 2696static void ext4_invalidatepage(struct page *page, unsigned long offset)
ac27a0ec 2697{
617ba13b 2698 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
ac27a0ec 2699
0562e0ba
JZ
2700 trace_ext4_invalidatepage(page, offset);
2701
744692dc
JZ
2702 /*
2703 * free any io_end structure allocated for buffers to be discarded
2704 */
2705 if (ext4_should_dioread_nolock(page->mapping->host))
2706 ext4_invalidatepage_free_endio(page, offset);
ac27a0ec
DK
2707 /*
2708 * If it's a full truncate we just forget about the pending dirtying
2709 */
2710 if (offset == 0)
2711 ClearPageChecked(page);
2712
0390131b
FM
2713 if (journal)
2714 jbd2_journal_invalidatepage(journal, page, offset);
2715 else
2716 block_invalidatepage(page, offset);
ac27a0ec
DK
2717}
2718
617ba13b 2719static int ext4_releasepage(struct page *page, gfp_t wait)
ac27a0ec 2720{
617ba13b 2721 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
ac27a0ec 2722
0562e0ba
JZ
2723 trace_ext4_releasepage(page);
2724
ac27a0ec
DK
2725 WARN_ON(PageChecked(page));
2726 if (!page_has_buffers(page))
2727 return 0;
0390131b
FM
2728 if (journal)
2729 return jbd2_journal_try_to_free_buffers(journal, page, wait);
2730 else
2731 return try_to_free_buffers(page);
ac27a0ec
DK
2732}
2733
2ed88685
TT
2734/*
2735 * ext4_get_block used when preparing for a DIO write or buffer write.
2736 * We allocate an uinitialized extent if blocks haven't been allocated.
2737 * The extent will be converted to initialized after the IO is complete.
2738 */
c7064ef1 2739static int ext4_get_block_write(struct inode *inode, sector_t iblock,
4c0425ff
MC
2740 struct buffer_head *bh_result, int create)
2741{
c7064ef1 2742 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
8d5d02e6 2743 inode->i_ino, create);
2ed88685
TT
2744 return _ext4_get_block(inode, iblock, bh_result,
2745 EXT4_GET_BLOCKS_IO_CREATE_EXT);
4c0425ff
MC
2746}
2747
4c0425ff 2748static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
552ef802
CH
2749 ssize_t size, void *private, int ret,
2750 bool is_async)
4c0425ff 2751{
72c5052d 2752 struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
4c0425ff
MC
2753 ext4_io_end_t *io_end = iocb->private;
2754 struct workqueue_struct *wq;
744692dc
JZ
2755 unsigned long flags;
2756 struct ext4_inode_info *ei;
4c0425ff 2757
4b70df18
M
2758 /* if not async direct IO or dio with 0 bytes write, just return */
2759 if (!io_end || !size)
552ef802 2760 goto out;
4b70df18 2761
8d5d02e6
MC
2762 ext_debug("ext4_end_io_dio(): io_end 0x%p"
2763 "for inode %lu, iocb 0x%p, offset %llu, size %llu\n",
2764 iocb->private, io_end->inode->i_ino, iocb, offset,
2765 size);
8d5d02e6
MC
2766
2767 /* if not aio dio with unwritten extents, just free io and return */
bd2d0210 2768 if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
8d5d02e6
MC
2769 ext4_free_io_end(io_end);
2770 iocb->private = NULL;
5b3ff237
JZ
2771out:
2772 if (is_async)
2773 aio_complete(iocb, ret, 0);
72c5052d 2774 inode_dio_done(inode);
5b3ff237 2775 return;
8d5d02e6
MC
2776 }
2777
4c0425ff
MC
2778 io_end->offset = offset;
2779 io_end->size = size;
5b3ff237
JZ
2780 if (is_async) {
2781 io_end->iocb = iocb;
2782 io_end->result = ret;
2783 }
4c0425ff
MC
2784 wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq;
2785
8d5d02e6 2786 /* Add the io_end to per-inode completed aio dio list*/
744692dc
JZ
2787 ei = EXT4_I(io_end->inode);
2788 spin_lock_irqsave(&ei->i_completed_io_lock, flags);
2789 list_add_tail(&io_end->list, &ei->i_completed_io_list);
2790 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
c999af2b
ES
2791
2792 /* queue the work to convert unwritten extents to written */
2793 queue_work(wq, &io_end->work);
4c0425ff 2794 iocb->private = NULL;
72c5052d
CH
2795
2796 /* XXX: probably should move into the real I/O completion handler */
2797 inode_dio_done(inode);
4c0425ff 2798}
c7064ef1 2799
744692dc
JZ
2800static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate)
2801{
2802 ext4_io_end_t *io_end = bh->b_private;
2803 struct workqueue_struct *wq;
2804 struct inode *inode;
2805 unsigned long flags;
2806
2807 if (!test_clear_buffer_uninit(bh) || !io_end)
2808 goto out;
2809
2810 if (!(io_end->inode->i_sb->s_flags & MS_ACTIVE)) {
2811 printk("sb umounted, discard end_io request for inode %lu\n",
2812 io_end->inode->i_ino);
2813 ext4_free_io_end(io_end);
2814 goto out;
2815 }
2816
32c80b32
TM
2817 /*
2818 * It may be over-defensive here to check EXT4_IO_END_UNWRITTEN now,
2819 * but being more careful is always safe for the future change.
2820 */
744692dc 2821 inode = io_end->inode;
32c80b32
TM
2822 if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
2823 io_end->flag |= EXT4_IO_END_UNWRITTEN;
2824 atomic_inc(&EXT4_I(inode)->i_aiodio_unwritten);
2825 }
744692dc
JZ
2826
2827 /* Add the io_end to per-inode completed io list*/
2828 spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
2829 list_add_tail(&io_end->list, &EXT4_I(inode)->i_completed_io_list);
2830 spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);
2831
2832 wq = EXT4_SB(inode->i_sb)->dio_unwritten_wq;
2833 /* queue the work to convert unwritten extents to written */
2834 queue_work(wq, &io_end->work);
2835out:
2836 bh->b_private = NULL;
2837 bh->b_end_io = NULL;
2838 clear_buffer_uninit(bh);
2839 end_buffer_async_write(bh, uptodate);
2840}
2841
2842static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode)
2843{
2844 ext4_io_end_t *io_end;
2845 struct page *page = bh->b_page;
2846 loff_t offset = (sector_t)page->index << PAGE_CACHE_SHIFT;
2847 size_t size = bh->b_size;
2848
2849retry:
2850 io_end = ext4_init_io_end(inode, GFP_ATOMIC);
2851 if (!io_end) {
6db26ffc 2852 pr_warn_ratelimited("%s: allocation fail\n", __func__);
744692dc
JZ
2853 schedule();
2854 goto retry;
2855 }
2856 io_end->offset = offset;
2857 io_end->size = size;
2858 /*
2859 * We need to hold a reference to the page to make sure it
2860 * doesn't get evicted before ext4_end_io_work() has a chance
2861 * to convert the extent from written to unwritten.
2862 */
2863 io_end->page = page;
2864 get_page(io_end->page);
2865
2866 bh->b_private = io_end;
2867 bh->b_end_io = ext4_end_io_buffer_write;
2868 return 0;
2869}
2870
4c0425ff
MC
2871/*
2872 * For ext4 extent files, ext4 will do direct-io write to holes,
2873 * preallocated extents, and those write extend the file, no need to
2874 * fall back to buffered IO.
2875 *
b595076a 2876 * For holes, we fallocate those blocks, mark them as uninitialized
4c0425ff 2877 * If those blocks were preallocated, we mark sure they are splited, but
b595076a 2878 * still keep the range to write as uninitialized.
4c0425ff 2879 *
8d5d02e6
MC
2880 * The unwrritten extents will be converted to written when DIO is completed.
2881 * For async direct IO, since the IO may still pending when return, we
25985edc 2882 * set up an end_io call back function, which will do the conversion
8d5d02e6 2883 * when async direct IO completed.
4c0425ff
MC
2884 *
2885 * If the O_DIRECT write will extend the file then add this inode to the
2886 * orphan list. So recovery will truncate it back to the original size
2887 * if the machine crashes during the write.
2888 *
2889 */
2890static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
2891 const struct iovec *iov, loff_t offset,
2892 unsigned long nr_segs)
2893{
2894 struct file *file = iocb->ki_filp;
2895 struct inode *inode = file->f_mapping->host;
2896 ssize_t ret;
2897 size_t count = iov_length(iov, nr_segs);
2898
2899 loff_t final_size = offset + count;
2900 if (rw == WRITE && final_size <= inode->i_size) {
2901 /*
8d5d02e6
MC
2902 * We could direct write to holes and fallocate.
2903 *
2904 * Allocated blocks to fill the hole are marked as uninitialized
25985edc 2905 * to prevent parallel buffered read to expose the stale data
4c0425ff 2906 * before DIO complete the data IO.
8d5d02e6
MC
2907 *
2908 * As to previously fallocated extents, ext4 get_block
4c0425ff
MC
2909 * will just simply mark the buffer mapped but still
2910 * keep the extents uninitialized.
2911 *
8d5d02e6
MC
2912 * for non AIO case, we will convert those unwritten extents
2913 * to written after return back from blockdev_direct_IO.
2914 *
2915 * for async DIO, the conversion needs to be defered when
2916 * the IO is completed. The ext4 end_io callback function
2917 * will be called to take care of the conversion work.
2918 * Here for async case, we allocate an io_end structure to
2919 * hook to the iocb.
4c0425ff 2920 */
8d5d02e6
MC
2921 iocb->private = NULL;
2922 EXT4_I(inode)->cur_aio_dio = NULL;
2923 if (!is_sync_kiocb(iocb)) {
744692dc 2924 iocb->private = ext4_init_io_end(inode, GFP_NOFS);
8d5d02e6
MC
2925 if (!iocb->private)
2926 return -ENOMEM;
2927 /*
2928 * we save the io structure for current async
79e83036 2929 * direct IO, so that later ext4_map_blocks()
8d5d02e6
MC
2930 * could flag the io structure whether there
2931 * is a unwritten extents needs to be converted
2932 * when IO is completed.
2933 */
2934 EXT4_I(inode)->cur_aio_dio = iocb->private;
2935 }
2936
aacfc19c 2937 ret = __blockdev_direct_IO(rw, iocb, inode,
4c0425ff
MC
2938 inode->i_sb->s_bdev, iov,
2939 offset, nr_segs,
c7064ef1 2940 ext4_get_block_write,
aacfc19c
CH
2941 ext4_end_io_dio,
2942 NULL,
2943 DIO_LOCKING | DIO_SKIP_HOLES);
8d5d02e6
MC
2944 if (iocb->private)
2945 EXT4_I(inode)->cur_aio_dio = NULL;
2946 /*
2947 * The io_end structure takes a reference to the inode,
2948 * that structure needs to be destroyed and the
2949 * reference to the inode need to be dropped, when IO is
2950 * complete, even with 0 byte write, or failed.
2951 *
2952 * In the successful AIO DIO case, the io_end structure will be
2953 * desctroyed and the reference to the inode will be dropped
2954 * after the end_io call back function is called.
2955 *
2956 * In the case there is 0 byte write, or error case, since
2957 * VFS direct IO won't invoke the end_io call back function,
2958 * we need to free the end_io structure here.
2959 */
2960 if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
2961 ext4_free_io_end(iocb->private);
2962 iocb->private = NULL;
19f5fb7a
TT
2963 } else if (ret > 0 && ext4_test_inode_state(inode,
2964 EXT4_STATE_DIO_UNWRITTEN)) {
109f5565 2965 int err;
8d5d02e6
MC
2966 /*
2967 * for non AIO case, since the IO is already
25985edc 2968 * completed, we could do the conversion right here
8d5d02e6 2969 */
109f5565
M
2970 err = ext4_convert_unwritten_extents(inode,
2971 offset, ret);
2972 if (err < 0)
2973 ret = err;
19f5fb7a 2974 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
109f5565 2975 }
4c0425ff
MC
2976 return ret;
2977 }
8d5d02e6
MC
2978
2979 /* for write the the end of file case, we fall back to old way */
4c0425ff
MC
2980 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
2981}
2982
2983static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
2984 const struct iovec *iov, loff_t offset,
2985 unsigned long nr_segs)
2986{
2987 struct file *file = iocb->ki_filp;
2988 struct inode *inode = file->f_mapping->host;
0562e0ba 2989 ssize_t ret;
4c0425ff 2990
84ebd795
TT
2991 /*
2992 * If we are doing data journalling we don't support O_DIRECT
2993 */
2994 if (ext4_should_journal_data(inode))
2995 return 0;
2996
0562e0ba 2997 trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
12e9b892 2998 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
0562e0ba
JZ
2999 ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3000 else
3001 ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3002 trace_ext4_direct_IO_exit(inode, offset,
3003 iov_length(iov, nr_segs), rw, ret);
3004 return ret;
4c0425ff
MC
3005}
3006
ac27a0ec 3007/*
617ba13b 3008 * Pages can be marked dirty completely asynchronously from ext4's journalling
ac27a0ec
DK
3009 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3010 * much here because ->set_page_dirty is called under VFS locks. The page is
3011 * not necessarily locked.
3012 *
3013 * We cannot just dirty the page and leave attached buffers clean, because the
3014 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3015 * or jbddirty because all the journalling code will explode.
3016 *
3017 * So what we do is to mark the page "pending dirty" and next time writepage
3018 * is called, propagate that into the buffers appropriately.
3019 */
617ba13b 3020static int ext4_journalled_set_page_dirty(struct page *page)
ac27a0ec
DK
3021{
3022 SetPageChecked(page);
3023 return __set_page_dirty_nobuffers(page);
3024}
3025
617ba13b 3026static const struct address_space_operations ext4_ordered_aops = {
8ab22b9a
HH
3027 .readpage = ext4_readpage,
3028 .readpages = ext4_readpages,
43ce1d23 3029 .writepage = ext4_writepage,
8ab22b9a
HH
3030 .write_begin = ext4_write_begin,
3031 .write_end = ext4_ordered_write_end,
3032 .bmap = ext4_bmap,
3033 .invalidatepage = ext4_invalidatepage,
3034 .releasepage = ext4_releasepage,
3035 .direct_IO = ext4_direct_IO,
3036 .migratepage = buffer_migrate_page,
3037 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3038 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
3039};
3040
617ba13b 3041static const struct address_space_operations ext4_writeback_aops = {
8ab22b9a
HH
3042 .readpage = ext4_readpage,
3043 .readpages = ext4_readpages,
43ce1d23 3044 .writepage = ext4_writepage,
8ab22b9a
HH
3045 .write_begin = ext4_write_begin,
3046 .write_end = ext4_writeback_write_end,
3047 .bmap = ext4_bmap,
3048 .invalidatepage = ext4_invalidatepage,
3049 .releasepage = ext4_releasepage,
3050 .direct_IO = ext4_direct_IO,
3051 .migratepage = buffer_migrate_page,
3052 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3053 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
3054};
3055
617ba13b 3056static const struct address_space_operations ext4_journalled_aops = {
8ab22b9a
HH
3057 .readpage = ext4_readpage,
3058 .readpages = ext4_readpages,
43ce1d23 3059 .writepage = ext4_writepage,
8ab22b9a
HH
3060 .write_begin = ext4_write_begin,
3061 .write_end = ext4_journalled_write_end,
3062 .set_page_dirty = ext4_journalled_set_page_dirty,
3063 .bmap = ext4_bmap,
3064 .invalidatepage = ext4_invalidatepage,
3065 .releasepage = ext4_releasepage,
84ebd795 3066 .direct_IO = ext4_direct_IO,
8ab22b9a 3067 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3068 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
3069};
3070
64769240 3071static const struct address_space_operations ext4_da_aops = {
8ab22b9a
HH
3072 .readpage = ext4_readpage,
3073 .readpages = ext4_readpages,
43ce1d23 3074 .writepage = ext4_writepage,
8ab22b9a 3075 .writepages = ext4_da_writepages,
8ab22b9a
HH
3076 .write_begin = ext4_da_write_begin,
3077 .write_end = ext4_da_write_end,
3078 .bmap = ext4_bmap,
3079 .invalidatepage = ext4_da_invalidatepage,
3080 .releasepage = ext4_releasepage,
3081 .direct_IO = ext4_direct_IO,
3082 .migratepage = buffer_migrate_page,
3083 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3084 .error_remove_page = generic_error_remove_page,
64769240
AT
3085};
3086
617ba13b 3087void ext4_set_aops(struct inode *inode)
ac27a0ec 3088{
cd1aac32
AK
3089 if (ext4_should_order_data(inode) &&
3090 test_opt(inode->i_sb, DELALLOC))
3091 inode->i_mapping->a_ops = &ext4_da_aops;
3092 else if (ext4_should_order_data(inode))
617ba13b 3093 inode->i_mapping->a_ops = &ext4_ordered_aops;
64769240
AT
3094 else if (ext4_should_writeback_data(inode) &&
3095 test_opt(inode->i_sb, DELALLOC))
3096 inode->i_mapping->a_ops = &ext4_da_aops;
617ba13b
MC
3097 else if (ext4_should_writeback_data(inode))
3098 inode->i_mapping->a_ops = &ext4_writeback_aops;
ac27a0ec 3099 else
617ba13b 3100 inode->i_mapping->a_ops = &ext4_journalled_aops;
ac27a0ec
DK
3101}
3102
4e96b2db
AH
3103
3104/*
3105 * ext4_discard_partial_page_buffers()
3106 * Wrapper function for ext4_discard_partial_page_buffers_no_lock.
3107 * This function finds and locks the page containing the offset
3108 * "from" and passes it to ext4_discard_partial_page_buffers_no_lock.
3109 * Calling functions that already have the page locked should call
3110 * ext4_discard_partial_page_buffers_no_lock directly.
3111 */
3112int ext4_discard_partial_page_buffers(handle_t *handle,
3113 struct address_space *mapping, loff_t from,
3114 loff_t length, int flags)
3115{
3116 struct inode *inode = mapping->host;
3117 struct page *page;
3118 int err = 0;
3119
3120 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3121 mapping_gfp_mask(mapping) & ~__GFP_FS);
3122 if (!page)
3123 return -EINVAL;
3124
3125 err = ext4_discard_partial_page_buffers_no_lock(handle, inode, page,
3126 from, length, flags);
3127
3128 unlock_page(page);
3129 page_cache_release(page);
3130 return err;
3131}
3132
3133/*
3134 * ext4_discard_partial_page_buffers_no_lock()
3135 * Zeros a page range of length 'length' starting from offset 'from'.
3136 * Buffer heads that correspond to the block aligned regions of the
3137 * zeroed range will be unmapped. Unblock aligned regions
3138 * will have the corresponding buffer head mapped if needed so that
3139 * that region of the page can be updated with the partial zero out.
3140 *
3141 * This function assumes that the page has already been locked. The
3142 * The range to be discarded must be contained with in the given page.
3143 * If the specified range exceeds the end of the page it will be shortened
3144 * to the end of the page that corresponds to 'from'. This function is
3145 * appropriate for updating a page and it buffer heads to be unmapped and
3146 * zeroed for blocks that have been either released, or are going to be
3147 * released.
3148 *
3149 * handle: The journal handle
3150 * inode: The files inode
3151 * page: A locked page that contains the offset "from"
3152 * from: The starting byte offset (from the begining of the file)
3153 * to begin discarding
3154 * len: The length of bytes to discard
3155 * flags: Optional flags that may be used:
3156 *
3157 * EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED
3158 * Only zero the regions of the page whose buffer heads
3159 * have already been unmapped. This flag is appropriate
3160 * for updateing the contents of a page whose blocks may
3161 * have already been released, and we only want to zero
3162 * out the regions that correspond to those released blocks.
3163 *
3164 * Returns zero on sucess or negative on failure.
3165 */
3166int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
3167 struct inode *inode, struct page *page, loff_t from,
3168 loff_t length, int flags)
3169{
3170 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3171 unsigned int offset = from & (PAGE_CACHE_SIZE-1);
3172 unsigned int blocksize, max, pos;
3173 unsigned int end_of_block, range_to_discard;
3174 ext4_lblk_t iblock;
3175 struct buffer_head *bh;
3176 int err = 0;
3177
3178 blocksize = inode->i_sb->s_blocksize;
3179 max = PAGE_CACHE_SIZE - offset;
3180
3181 if (index != page->index)
3182 return -EINVAL;
3183
3184 /*
3185 * correct length if it does not fall between
3186 * 'from' and the end of the page
3187 */
3188 if (length > max || length < 0)
3189 length = max;
3190
3191 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3192
3193 if (!page_has_buffers(page)) {
3194 /*
3195 * If the range to be discarded covers a partial block
3196 * we need to get the page buffers. This is because
3197 * partial blocks cannot be released and the page needs
3198 * to be updated with the contents of the block before
3199 * we write the zeros on top of it.
3200 */
3201 if (!(from & (blocksize - 1)) ||
3202 !((from + length) & (blocksize - 1))) {
3203 create_empty_buffers(page, blocksize, 0);
3204 } else {
3205 /*
3206 * If there are no partial blocks,
3207 * there is nothing to update,
3208 * so we can return now
3209 */
3210 return 0;
3211 }
3212 }
3213
3214 /* Find the buffer that contains "offset" */
3215 bh = page_buffers(page);
3216 pos = blocksize;
3217 while (offset >= pos) {
3218 bh = bh->b_this_page;
3219 iblock++;
3220 pos += blocksize;
3221 }
3222
3223 pos = offset;
3224 while (pos < offset + length) {
3225 err = 0;
3226
3227 /* The length of space left to zero and unmap */
3228 range_to_discard = offset + length - pos;
3229
3230 /* The length of space until the end of the block */
3231 end_of_block = blocksize - (pos & (blocksize-1));
3232
3233 /*
3234 * Do not unmap or zero past end of block
3235 * for this buffer head
3236 */
3237 if (range_to_discard > end_of_block)
3238 range_to_discard = end_of_block;
3239
3240
3241 /*
3242 * Skip this buffer head if we are only zeroing unampped
3243 * regions of the page
3244 */
3245 if (flags & EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED &&
3246 buffer_mapped(bh))
3247 goto next;
3248
3249 /* If the range is block aligned, unmap */
3250 if (range_to_discard == blocksize) {
3251 clear_buffer_dirty(bh);
3252 bh->b_bdev = NULL;
3253 clear_buffer_mapped(bh);
3254 clear_buffer_req(bh);
3255 clear_buffer_new(bh);
3256 clear_buffer_delay(bh);
3257 clear_buffer_unwritten(bh);
3258 clear_buffer_uptodate(bh);
3259 zero_user(page, pos, range_to_discard);
3260 BUFFER_TRACE(bh, "Buffer discarded");
3261 goto next;
3262 }
3263
3264 /*
3265 * If this block is not completely contained in the range
3266 * to be discarded, then it is not going to be released. Because
3267 * we need to keep this block, we need to make sure this part
3268 * of the page is uptodate before we modify it by writeing
3269 * partial zeros on it.
3270 */
3271 if (!buffer_mapped(bh)) {
3272 /*
3273 * Buffer head must be mapped before we can read
3274 * from the block
3275 */
3276 BUFFER_TRACE(bh, "unmapped");
3277 ext4_get_block(inode, iblock, bh, 0);
3278 /* unmapped? It's a hole - nothing to do */
3279 if (!buffer_mapped(bh)) {
3280 BUFFER_TRACE(bh, "still unmapped");
3281 goto next;
3282 }
3283 }
3284
3285 /* Ok, it's mapped. Make sure it's up-to-date */
3286 if (PageUptodate(page))
3287 set_buffer_uptodate(bh);
3288
3289 if (!buffer_uptodate(bh)) {
3290 err = -EIO;
3291 ll_rw_block(READ, 1, &bh);
3292 wait_on_buffer(bh);
3293 /* Uhhuh. Read error. Complain and punt.*/
3294 if (!buffer_uptodate(bh))
3295 goto next;
3296 }
3297
3298 if (ext4_should_journal_data(inode)) {
3299 BUFFER_TRACE(bh, "get write access");
3300 err = ext4_journal_get_write_access(handle, bh);
3301 if (err)
3302 goto next;
3303 }
3304
3305 zero_user(page, pos, range_to_discard);
3306
3307 err = 0;
3308 if (ext4_should_journal_data(inode)) {
3309 err = ext4_handle_dirty_metadata(handle, inode, bh);
decbd919 3310 } else
4e96b2db 3311 mark_buffer_dirty(bh);
4e96b2db
AH
3312
3313 BUFFER_TRACE(bh, "Partial buffer zeroed");
3314next:
3315 bh = bh->b_this_page;
3316 iblock++;
3317 pos += range_to_discard;
3318 }
3319
3320 return err;
3321}
3322
ac27a0ec 3323/*
617ba13b 3324 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
ac27a0ec
DK
3325 * up to the end of the block which corresponds to `from'.
3326 * This required during truncate. We need to physically zero the tail end
3327 * of that block so it doesn't yield old data if the file is later grown.
3328 */
cf108bca 3329int ext4_block_truncate_page(handle_t *handle,
ac27a0ec 3330 struct address_space *mapping, loff_t from)
30848851
AH
3331{
3332 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3333 unsigned length;
3334 unsigned blocksize;
3335 struct inode *inode = mapping->host;
3336
3337 blocksize = inode->i_sb->s_blocksize;
3338 length = blocksize - (offset & (blocksize - 1));
3339
3340 return ext4_block_zero_page_range(handle, mapping, from, length);
3341}
3342
3343/*
3344 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3345 * starting from file offset 'from'. The range to be zero'd must
3346 * be contained with in one block. If the specified range exceeds
3347 * the end of the block it will be shortened to end of the block
3348 * that cooresponds to 'from'
3349 */
3350int ext4_block_zero_page_range(handle_t *handle,
3351 struct address_space *mapping, loff_t from, loff_t length)
ac27a0ec 3352{
617ba13b 3353 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
ac27a0ec 3354 unsigned offset = from & (PAGE_CACHE_SIZE-1);
30848851 3355 unsigned blocksize, max, pos;
725d26d3 3356 ext4_lblk_t iblock;
ac27a0ec
DK
3357 struct inode *inode = mapping->host;
3358 struct buffer_head *bh;
cf108bca 3359 struct page *page;
ac27a0ec 3360 int err = 0;
ac27a0ec 3361
f4a01017
TT
3362 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3363 mapping_gfp_mask(mapping) & ~__GFP_FS);
cf108bca
JK
3364 if (!page)
3365 return -EINVAL;
3366
ac27a0ec 3367 blocksize = inode->i_sb->s_blocksize;
30848851
AH
3368 max = blocksize - (offset & (blocksize - 1));
3369
3370 /*
3371 * correct length if it does not fall between
3372 * 'from' and the end of the block
3373 */
3374 if (length > max || length < 0)
3375 length = max;
3376
ac27a0ec
DK
3377 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3378
ac27a0ec
DK
3379 if (!page_has_buffers(page))
3380 create_empty_buffers(page, blocksize, 0);
3381
3382 /* Find the buffer that contains "offset" */
3383 bh = page_buffers(page);
3384 pos = blocksize;
3385 while (offset >= pos) {
3386 bh = bh->b_this_page;
3387 iblock++;
3388 pos += blocksize;
3389 }
3390
3391 err = 0;
3392 if (buffer_freed(bh)) {
3393 BUFFER_TRACE(bh, "freed: skip");
3394 goto unlock;
3395 }
3396
3397 if (!buffer_mapped(bh)) {
3398 BUFFER_TRACE(bh, "unmapped");
617ba13b 3399 ext4_get_block(inode, iblock, bh, 0);
ac27a0ec
DK
3400 /* unmapped? It's a hole - nothing to do */
3401 if (!buffer_mapped(bh)) {
3402 BUFFER_TRACE(bh, "still unmapped");
3403 goto unlock;
3404 }
3405 }
3406
3407 /* Ok, it's mapped. Make sure it's up-to-date */
3408 if (PageUptodate(page))
3409 set_buffer_uptodate(bh);
3410
3411 if (!buffer_uptodate(bh)) {
3412 err = -EIO;
3413 ll_rw_block(READ, 1, &bh);
3414 wait_on_buffer(bh);
3415 /* Uhhuh. Read error. Complain and punt. */
3416 if (!buffer_uptodate(bh))
3417 goto unlock;
3418 }
3419
617ba13b 3420 if (ext4_should_journal_data(inode)) {
ac27a0ec 3421 BUFFER_TRACE(bh, "get write access");
617ba13b 3422 err = ext4_journal_get_write_access(handle, bh);
ac27a0ec
DK
3423 if (err)
3424 goto unlock;
3425 }
3426
eebd2aa3 3427 zero_user(page, offset, length);
ac27a0ec
DK
3428
3429 BUFFER_TRACE(bh, "zeroed end of block");
3430
3431 err = 0;
617ba13b 3432 if (ext4_should_journal_data(inode)) {
0390131b 3433 err = ext4_handle_dirty_metadata(handle, inode, bh);
decbd919 3434 } else
ac27a0ec 3435 mark_buffer_dirty(bh);
ac27a0ec
DK
3436
3437unlock:
3438 unlock_page(page);
3439 page_cache_release(page);
3440 return err;
3441}
3442
91ef4caf
DG
3443int ext4_can_truncate(struct inode *inode)
3444{
91ef4caf
DG
3445 if (S_ISREG(inode->i_mode))
3446 return 1;
3447 if (S_ISDIR(inode->i_mode))
3448 return 1;
3449 if (S_ISLNK(inode->i_mode))
3450 return !ext4_inode_is_fast_symlink(inode);
3451 return 0;
3452}
3453
a4bb6b64
AH
3454/*
3455 * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3456 * associated with the given offset and length
3457 *
3458 * @inode: File inode
3459 * @offset: The offset where the hole will begin
3460 * @len: The length of the hole
3461 *
3462 * Returns: 0 on sucess or negative on failure
3463 */
3464
3465int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
3466{
3467 struct inode *inode = file->f_path.dentry->d_inode;
3468 if (!S_ISREG(inode->i_mode))
3469 return -ENOTSUPP;
3470
3471 if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
3472 /* TODO: Add support for non extent hole punching */
3473 return -ENOTSUPP;
3474 }
3475
bab08ab9
TT
3476 if (EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) {
3477 /* TODO: Add support for bigalloc file systems */
3478 return -ENOTSUPP;
3479 }
3480
a4bb6b64
AH
3481 return ext4_ext_punch_hole(file, offset, length);
3482}
3483
ac27a0ec 3484/*
617ba13b 3485 * ext4_truncate()
ac27a0ec 3486 *
617ba13b
MC
3487 * We block out ext4_get_block() block instantiations across the entire
3488 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
ac27a0ec
DK
3489 * simultaneously on behalf of the same inode.
3490 *
3491 * As we work through the truncate and commmit bits of it to the journal there
3492 * is one core, guiding principle: the file's tree must always be consistent on
3493 * disk. We must be able to restart the truncate after a crash.
3494 *
3495 * The file's tree may be transiently inconsistent in memory (although it
3496 * probably isn't), but whenever we close off and commit a journal transaction,
3497 * the contents of (the filesystem + the journal) must be consistent and
3498 * restartable. It's pretty simple, really: bottom up, right to left (although
3499 * left-to-right works OK too).
3500 *
3501 * Note that at recovery time, journal replay occurs *before* the restart of
3502 * truncate against the orphan inode list.
3503 *
3504 * The committed inode has the new, desired i_size (which is the same as
617ba13b 3505 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
ac27a0ec 3506 * that this inode's truncate did not complete and it will again call
617ba13b
MC
3507 * ext4_truncate() to have another go. So there will be instantiated blocks
3508 * to the right of the truncation point in a crashed ext4 filesystem. But
ac27a0ec 3509 * that's fine - as long as they are linked from the inode, the post-crash
617ba13b 3510 * ext4_truncate() run will find them and release them.
ac27a0ec 3511 */
617ba13b 3512void ext4_truncate(struct inode *inode)
ac27a0ec 3513{
0562e0ba
JZ
3514 trace_ext4_truncate_enter(inode);
3515
91ef4caf 3516 if (!ext4_can_truncate(inode))
ac27a0ec
DK
3517 return;
3518
12e9b892 3519 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
c8d46e41 3520
5534fb5b 3521 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
19f5fb7a 3522 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
7d8f9f7d 3523
ff9893dc 3524 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
cf108bca 3525 ext4_ext_truncate(inode);
ff9893dc
AG
3526 else
3527 ext4_ind_truncate(inode);
ac27a0ec 3528
0562e0ba 3529 trace_ext4_truncate_exit(inode);
ac27a0ec
DK
3530}
3531
ac27a0ec 3532/*
617ba13b 3533 * ext4_get_inode_loc returns with an extra refcount against the inode's
ac27a0ec
DK
3534 * underlying buffer_head on success. If 'in_mem' is true, we have all
3535 * data in memory that is needed to recreate the on-disk version of this
3536 * inode.
3537 */
617ba13b
MC
3538static int __ext4_get_inode_loc(struct inode *inode,
3539 struct ext4_iloc *iloc, int in_mem)
ac27a0ec 3540{
240799cd
TT
3541 struct ext4_group_desc *gdp;
3542 struct buffer_head *bh;
3543 struct super_block *sb = inode->i_sb;
3544 ext4_fsblk_t block;
3545 int inodes_per_block, inode_offset;
3546
3a06d778 3547 iloc->bh = NULL;
240799cd
TT
3548 if (!ext4_valid_inum(sb, inode->i_ino))
3549 return -EIO;
ac27a0ec 3550
240799cd
TT
3551 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3552 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3553 if (!gdp)
ac27a0ec
DK
3554 return -EIO;
3555
240799cd
TT
3556 /*
3557 * Figure out the offset within the block group inode table
3558 */
00d09882 3559 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
240799cd
TT
3560 inode_offset = ((inode->i_ino - 1) %
3561 EXT4_INODES_PER_GROUP(sb));
3562 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3563 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3564
3565 bh = sb_getblk(sb, block);
ac27a0ec 3566 if (!bh) {
c398eda0
TT
3567 EXT4_ERROR_INODE_BLOCK(inode, block,
3568 "unable to read itable block");
ac27a0ec
DK
3569 return -EIO;
3570 }
3571 if (!buffer_uptodate(bh)) {
3572 lock_buffer(bh);
9c83a923
HK
3573
3574 /*
3575 * If the buffer has the write error flag, we have failed
3576 * to write out another inode in the same block. In this
3577 * case, we don't have to read the block because we may
3578 * read the old inode data successfully.
3579 */
3580 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3581 set_buffer_uptodate(bh);
3582
ac27a0ec
DK
3583 if (buffer_uptodate(bh)) {
3584 /* someone brought it uptodate while we waited */
3585 unlock_buffer(bh);
3586 goto has_buffer;
3587 }
3588
3589 /*
3590 * If we have all information of the inode in memory and this
3591 * is the only valid inode in the block, we need not read the
3592 * block.
3593 */
3594 if (in_mem) {
3595 struct buffer_head *bitmap_bh;
240799cd 3596 int i, start;
ac27a0ec 3597
240799cd 3598 start = inode_offset & ~(inodes_per_block - 1);
ac27a0ec 3599
240799cd
TT
3600 /* Is the inode bitmap in cache? */
3601 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
ac27a0ec
DK
3602 if (!bitmap_bh)
3603 goto make_io;
3604
3605 /*
3606 * If the inode bitmap isn't in cache then the
3607 * optimisation may end up performing two reads instead
3608 * of one, so skip it.
3609 */
3610 if (!buffer_uptodate(bitmap_bh)) {
3611 brelse(bitmap_bh);
3612 goto make_io;
3613 }
240799cd 3614 for (i = start; i < start + inodes_per_block; i++) {
ac27a0ec
DK
3615 if (i == inode_offset)
3616 continue;
617ba13b 3617 if (ext4_test_bit(i, bitmap_bh->b_data))
ac27a0ec
DK
3618 break;
3619 }
3620 brelse(bitmap_bh);
240799cd 3621 if (i == start + inodes_per_block) {
ac27a0ec
DK
3622 /* all other inodes are free, so skip I/O */
3623 memset(bh->b_data, 0, bh->b_size);
3624 set_buffer_uptodate(bh);
3625 unlock_buffer(bh);
3626 goto has_buffer;
3627 }
3628 }
3629
3630make_io:
240799cd
TT
3631 /*
3632 * If we need to do any I/O, try to pre-readahead extra
3633 * blocks from the inode table.
3634 */
3635 if (EXT4_SB(sb)->s_inode_readahead_blks) {
3636 ext4_fsblk_t b, end, table;
3637 unsigned num;
3638
3639 table = ext4_inode_table(sb, gdp);
b713a5ec 3640 /* s_inode_readahead_blks is always a power of 2 */
240799cd
TT
3641 b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
3642 if (table > b)
3643 b = table;
3644 end = b + EXT4_SB(sb)->s_inode_readahead_blks;
3645 num = EXT4_INODES_PER_GROUP(sb);
3646 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3647 EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
560671a0 3648 num -= ext4_itable_unused_count(sb, gdp);
240799cd
TT
3649 table += num / inodes_per_block;
3650 if (end > table)
3651 end = table;
3652 while (b <= end)
3653 sb_breadahead(sb, b++);
3654 }
3655
ac27a0ec
DK
3656 /*
3657 * There are other valid inodes in the buffer, this inode
3658 * has in-inode xattrs, or we don't have this inode in memory.
3659 * Read the block from disk.
3660 */
0562e0ba 3661 trace_ext4_load_inode(inode);
ac27a0ec
DK
3662 get_bh(bh);
3663 bh->b_end_io = end_buffer_read_sync;
3664 submit_bh(READ_META, bh);
3665 wait_on_buffer(bh);
3666 if (!buffer_uptodate(bh)) {
c398eda0
TT
3667 EXT4_ERROR_INODE_BLOCK(inode, block,
3668 "unable to read itable block");
ac27a0ec
DK
3669 brelse(bh);
3670 return -EIO;
3671 }
3672 }
3673has_buffer:
3674 iloc->bh = bh;
3675 return 0;
3676}
3677
617ba13b 3678int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
3679{
3680 /* We have all inode data except xattrs in memory here. */
617ba13b 3681 return __ext4_get_inode_loc(inode, iloc,
19f5fb7a 3682 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
ac27a0ec
DK
3683}
3684
617ba13b 3685void ext4_set_inode_flags(struct inode *inode)
ac27a0ec 3686{
617ba13b 3687 unsigned int flags = EXT4_I(inode)->i_flags;
ac27a0ec
DK
3688
3689 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
617ba13b 3690 if (flags & EXT4_SYNC_FL)
ac27a0ec 3691 inode->i_flags |= S_SYNC;
617ba13b 3692 if (flags & EXT4_APPEND_FL)
ac27a0ec 3693 inode->i_flags |= S_APPEND;
617ba13b 3694 if (flags & EXT4_IMMUTABLE_FL)
ac27a0ec 3695 inode->i_flags |= S_IMMUTABLE;
617ba13b 3696 if (flags & EXT4_NOATIME_FL)
ac27a0ec 3697 inode->i_flags |= S_NOATIME;
617ba13b 3698 if (flags & EXT4_DIRSYNC_FL)
ac27a0ec
DK
3699 inode->i_flags |= S_DIRSYNC;
3700}
3701
ff9ddf7e
JK
3702/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3703void ext4_get_inode_flags(struct ext4_inode_info *ei)
3704{
84a8dce2
DM
3705 unsigned int vfs_fl;
3706 unsigned long old_fl, new_fl;
3707
3708 do {
3709 vfs_fl = ei->vfs_inode.i_flags;
3710 old_fl = ei->i_flags;
3711 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3712 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
3713 EXT4_DIRSYNC_FL);
3714 if (vfs_fl & S_SYNC)
3715 new_fl |= EXT4_SYNC_FL;
3716 if (vfs_fl & S_APPEND)
3717 new_fl |= EXT4_APPEND_FL;
3718 if (vfs_fl & S_IMMUTABLE)
3719 new_fl |= EXT4_IMMUTABLE_FL;
3720 if (vfs_fl & S_NOATIME)
3721 new_fl |= EXT4_NOATIME_FL;
3722 if (vfs_fl & S_DIRSYNC)
3723 new_fl |= EXT4_DIRSYNC_FL;
3724 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
ff9ddf7e 3725}
de9a55b8 3726
0fc1b451 3727static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
de9a55b8 3728 struct ext4_inode_info *ei)
0fc1b451
AK
3729{
3730 blkcnt_t i_blocks ;
8180a562
AK
3731 struct inode *inode = &(ei->vfs_inode);
3732 struct super_block *sb = inode->i_sb;
0fc1b451
AK
3733
3734 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3735 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3736 /* we are using combined 48 bit field */
3737 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3738 le32_to_cpu(raw_inode->i_blocks_lo);
07a03824 3739 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
8180a562
AK
3740 /* i_blocks represent file system block size */
3741 return i_blocks << (inode->i_blkbits - 9);
3742 } else {
3743 return i_blocks;
3744 }
0fc1b451
AK
3745 } else {
3746 return le32_to_cpu(raw_inode->i_blocks_lo);
3747 }
3748}
ff9ddf7e 3749
1d1fe1ee 3750struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
ac27a0ec 3751{
617ba13b
MC
3752 struct ext4_iloc iloc;
3753 struct ext4_inode *raw_inode;
1d1fe1ee 3754 struct ext4_inode_info *ei;
1d1fe1ee 3755 struct inode *inode;
b436b9be 3756 journal_t *journal = EXT4_SB(sb)->s_journal;
1d1fe1ee 3757 long ret;
ac27a0ec
DK
3758 int block;
3759
1d1fe1ee
DH
3760 inode = iget_locked(sb, ino);
3761 if (!inode)
3762 return ERR_PTR(-ENOMEM);
3763 if (!(inode->i_state & I_NEW))
3764 return inode;
3765
3766 ei = EXT4_I(inode);
7dc57615 3767 iloc.bh = NULL;
ac27a0ec 3768
1d1fe1ee
DH
3769 ret = __ext4_get_inode_loc(inode, &iloc, 0);
3770 if (ret < 0)
ac27a0ec 3771 goto bad_inode;
617ba13b 3772 raw_inode = ext4_raw_inode(&iloc);
ac27a0ec
DK
3773 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
3774 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
3775 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
af5bc92d 3776 if (!(test_opt(inode->i_sb, NO_UID32))) {
ac27a0ec
DK
3777 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
3778 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
3779 }
3780 inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
ac27a0ec 3781
353eb83c 3782 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
ac27a0ec
DK
3783 ei->i_dir_start_lookup = 0;
3784 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
3785 /* We now have enough fields to check if the inode was active or not.
3786 * This is needed because nfsd might try to access dead inodes
3787 * the test is that same one that e2fsck uses
3788 * NeilBrown 1999oct15
3789 */
3790 if (inode->i_nlink == 0) {
3791 if (inode->i_mode == 0 ||
617ba13b 3792 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
ac27a0ec 3793 /* this inode is deleted */
1d1fe1ee 3794 ret = -ESTALE;
ac27a0ec
DK
3795 goto bad_inode;
3796 }
3797 /* The only unlinked inodes we let through here have
3798 * valid i_mode and are being read by the orphan
3799 * recovery code: that's fine, we're about to complete
3800 * the process of deleting those. */
3801 }
ac27a0ec 3802 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
0fc1b451 3803 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
7973c0c1 3804 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
a9e81742 3805 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
a1ddeb7e
BP
3806 ei->i_file_acl |=
3807 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
a48380f7 3808 inode->i_size = ext4_isize(raw_inode);
ac27a0ec 3809 ei->i_disksize = inode->i_size;
a9e7f447
DM
3810#ifdef CONFIG_QUOTA
3811 ei->i_reserved_quota = 0;
3812#endif
ac27a0ec
DK
3813 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
3814 ei->i_block_group = iloc.block_group;
a4912123 3815 ei->i_last_alloc_group = ~0;
ac27a0ec
DK
3816 /*
3817 * NOTE! The in-memory inode i_data array is in little-endian order
3818 * even on big-endian machines: we do NOT byteswap the block numbers!
3819 */
617ba13b 3820 for (block = 0; block < EXT4_N_BLOCKS; block++)
ac27a0ec
DK
3821 ei->i_data[block] = raw_inode->i_block[block];
3822 INIT_LIST_HEAD(&ei->i_orphan);
3823
b436b9be
JK
3824 /*
3825 * Set transaction id's of transactions that have to be committed
3826 * to finish f[data]sync. We set them to currently running transaction
3827 * as we cannot be sure that the inode or some of its metadata isn't
3828 * part of the transaction - the inode could have been reclaimed and
3829 * now it is reread from disk.
3830 */
3831 if (journal) {
3832 transaction_t *transaction;
3833 tid_t tid;
3834
a931da6a 3835 read_lock(&journal->j_state_lock);
b436b9be
JK
3836 if (journal->j_running_transaction)
3837 transaction = journal->j_running_transaction;
3838 else
3839 transaction = journal->j_committing_transaction;
3840 if (transaction)
3841 tid = transaction->t_tid;
3842 else
3843 tid = journal->j_commit_sequence;
a931da6a 3844 read_unlock(&journal->j_state_lock);
b436b9be
JK
3845 ei->i_sync_tid = tid;
3846 ei->i_datasync_tid = tid;
3847 }
3848
0040d987 3849 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
ac27a0ec 3850 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
617ba13b 3851 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
e5d2861f 3852 EXT4_INODE_SIZE(inode->i_sb)) {
1d1fe1ee 3853 ret = -EIO;
ac27a0ec 3854 goto bad_inode;
e5d2861f 3855 }
ac27a0ec
DK
3856 if (ei->i_extra_isize == 0) {
3857 /* The extra space is currently unused. Use it. */
617ba13b
MC
3858 ei->i_extra_isize = sizeof(struct ext4_inode) -
3859 EXT4_GOOD_OLD_INODE_SIZE;
ac27a0ec
DK
3860 } else {
3861 __le32 *magic = (void *)raw_inode +
617ba13b 3862 EXT4_GOOD_OLD_INODE_SIZE +
ac27a0ec 3863 ei->i_extra_isize;
617ba13b 3864 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
19f5fb7a 3865 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
ac27a0ec
DK
3866 }
3867 } else
3868 ei->i_extra_isize = 0;
3869
ef7f3835
KS
3870 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
3871 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
3872 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
3873 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
3874
25ec56b5
JNC
3875 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
3876 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3877 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
3878 inode->i_version |=
3879 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
3880 }
3881
c4b5a614 3882 ret = 0;
485c26ec 3883 if (ei->i_file_acl &&
1032988c 3884 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
24676da4
TT
3885 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
3886 ei->i_file_acl);
485c26ec
TT
3887 ret = -EIO;
3888 goto bad_inode;
07a03824 3889 } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
c4b5a614
TT
3890 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
3891 (S_ISLNK(inode->i_mode) &&
3892 !ext4_inode_is_fast_symlink(inode)))
3893 /* Validate extent which is part of inode */
3894 ret = ext4_ext_check_inode(inode);
de9a55b8 3895 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
fe2c8191
TN
3896 (S_ISLNK(inode->i_mode) &&
3897 !ext4_inode_is_fast_symlink(inode))) {
de9a55b8 3898 /* Validate block references which are part of inode */
1f7d1e77 3899 ret = ext4_ind_check_inode(inode);
fe2c8191 3900 }
567f3e9a 3901 if (ret)
de9a55b8 3902 goto bad_inode;
7a262f7c 3903
ac27a0ec 3904 if (S_ISREG(inode->i_mode)) {
617ba13b
MC
3905 inode->i_op = &ext4_file_inode_operations;
3906 inode->i_fop = &ext4_file_operations;
3907 ext4_set_aops(inode);
ac27a0ec 3908 } else if (S_ISDIR(inode->i_mode)) {
617ba13b
MC
3909 inode->i_op = &ext4_dir_inode_operations;
3910 inode->i_fop = &ext4_dir_operations;
ac27a0ec 3911 } else if (S_ISLNK(inode->i_mode)) {
e83c1397 3912 if (ext4_inode_is_fast_symlink(inode)) {
617ba13b 3913 inode->i_op = &ext4_fast_symlink_inode_operations;
e83c1397
DG
3914 nd_terminate_link(ei->i_data, inode->i_size,
3915 sizeof(ei->i_data) - 1);
3916 } else {
617ba13b
MC
3917 inode->i_op = &ext4_symlink_inode_operations;
3918 ext4_set_aops(inode);
ac27a0ec 3919 }
563bdd61
TT
3920 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
3921 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
617ba13b 3922 inode->i_op = &ext4_special_inode_operations;
ac27a0ec
DK
3923 if (raw_inode->i_block[0])
3924 init_special_inode(inode, inode->i_mode,
3925 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
3926 else
3927 init_special_inode(inode, inode->i_mode,
3928 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
563bdd61 3929 } else {
563bdd61 3930 ret = -EIO;
24676da4 3931 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
563bdd61 3932 goto bad_inode;
ac27a0ec 3933 }
af5bc92d 3934 brelse(iloc.bh);
617ba13b 3935 ext4_set_inode_flags(inode);
1d1fe1ee
DH
3936 unlock_new_inode(inode);
3937 return inode;
ac27a0ec
DK
3938
3939bad_inode:
567f3e9a 3940 brelse(iloc.bh);
1d1fe1ee
DH
3941 iget_failed(inode);
3942 return ERR_PTR(ret);
ac27a0ec
DK
3943}
3944
0fc1b451
AK
3945static int ext4_inode_blocks_set(handle_t *handle,
3946 struct ext4_inode *raw_inode,
3947 struct ext4_inode_info *ei)
3948{
3949 struct inode *inode = &(ei->vfs_inode);
3950 u64 i_blocks = inode->i_blocks;
3951 struct super_block *sb = inode->i_sb;
0fc1b451
AK
3952
3953 if (i_blocks <= ~0U) {
3954 /*
3955 * i_blocks can be represnted in a 32 bit variable
3956 * as multiple of 512 bytes
3957 */
8180a562 3958 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 3959 raw_inode->i_blocks_high = 0;
84a8dce2 3960 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
f287a1a5
TT
3961 return 0;
3962 }
3963 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
3964 return -EFBIG;
3965
3966 if (i_blocks <= 0xffffffffffffULL) {
0fc1b451
AK
3967 /*
3968 * i_blocks can be represented in a 48 bit variable
3969 * as multiple of 512 bytes
3970 */
8180a562 3971 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 3972 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
84a8dce2 3973 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
0fc1b451 3974 } else {
84a8dce2 3975 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
8180a562
AK
3976 /* i_block is stored in file system block size */
3977 i_blocks = i_blocks >> (inode->i_blkbits - 9);
3978 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
3979 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
0fc1b451 3980 }
f287a1a5 3981 return 0;
0fc1b451
AK
3982}
3983
ac27a0ec
DK
3984/*
3985 * Post the struct inode info into an on-disk inode location in the
3986 * buffer-cache. This gobbles the caller's reference to the
3987 * buffer_head in the inode location struct.
3988 *
3989 * The caller must have write access to iloc->bh.
3990 */
617ba13b 3991static int ext4_do_update_inode(handle_t *handle,
ac27a0ec 3992 struct inode *inode,
830156c7 3993 struct ext4_iloc *iloc)
ac27a0ec 3994{
617ba13b
MC
3995 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
3996 struct ext4_inode_info *ei = EXT4_I(inode);
ac27a0ec
DK
3997 struct buffer_head *bh = iloc->bh;
3998 int err = 0, rc, block;
3999
4000 /* For fields not not tracking in the in-memory inode,
4001 * initialise them to zero for new inodes. */
19f5fb7a 4002 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
617ba13b 4003 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
ac27a0ec 4004
ff9ddf7e 4005 ext4_get_inode_flags(ei);
ac27a0ec 4006 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
af5bc92d 4007 if (!(test_opt(inode->i_sb, NO_UID32))) {
ac27a0ec
DK
4008 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
4009 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
4010/*
4011 * Fix up interoperability with old kernels. Otherwise, old inodes get
4012 * re-used with the upper 16 bits of the uid/gid intact
4013 */
af5bc92d 4014 if (!ei->i_dtime) {
ac27a0ec
DK
4015 raw_inode->i_uid_high =
4016 cpu_to_le16(high_16_bits(inode->i_uid));
4017 raw_inode->i_gid_high =
4018 cpu_to_le16(high_16_bits(inode->i_gid));
4019 } else {
4020 raw_inode->i_uid_high = 0;
4021 raw_inode->i_gid_high = 0;
4022 }
4023 } else {
4024 raw_inode->i_uid_low =
4025 cpu_to_le16(fs_high2lowuid(inode->i_uid));
4026 raw_inode->i_gid_low =
4027 cpu_to_le16(fs_high2lowgid(inode->i_gid));
4028 raw_inode->i_uid_high = 0;
4029 raw_inode->i_gid_high = 0;
4030 }
4031 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
ef7f3835
KS
4032
4033 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4034 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4035 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4036 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4037
0fc1b451
AK
4038 if (ext4_inode_blocks_set(handle, raw_inode, ei))
4039 goto out_brelse;
ac27a0ec 4040 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
353eb83c 4041 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
9b8f1f01
MC
4042 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4043 cpu_to_le32(EXT4_OS_HURD))
a1ddeb7e
BP
4044 raw_inode->i_file_acl_high =
4045 cpu_to_le16(ei->i_file_acl >> 32);
7973c0c1 4046 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
a48380f7
AK
4047 ext4_isize_set(raw_inode, ei->i_disksize);
4048 if (ei->i_disksize > 0x7fffffffULL) {
4049 struct super_block *sb = inode->i_sb;
4050 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4051 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4052 EXT4_SB(sb)->s_es->s_rev_level ==
4053 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4054 /* If this is the first large file
4055 * created, add a flag to the superblock.
4056 */
4057 err = ext4_journal_get_write_access(handle,
4058 EXT4_SB(sb)->s_sbh);
4059 if (err)
4060 goto out_brelse;
4061 ext4_update_dynamic_rev(sb);
4062 EXT4_SET_RO_COMPAT_FEATURE(sb,
617ba13b 4063 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
a48380f7 4064 sb->s_dirt = 1;
0390131b 4065 ext4_handle_sync(handle);
73b50c1c 4066 err = ext4_handle_dirty_metadata(handle, NULL,
a48380f7 4067 EXT4_SB(sb)->s_sbh);
ac27a0ec
DK
4068 }
4069 }
4070 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4071 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4072 if (old_valid_dev(inode->i_rdev)) {
4073 raw_inode->i_block[0] =
4074 cpu_to_le32(old_encode_dev(inode->i_rdev));
4075 raw_inode->i_block[1] = 0;
4076 } else {
4077 raw_inode->i_block[0] = 0;
4078 raw_inode->i_block[1] =
4079 cpu_to_le32(new_encode_dev(inode->i_rdev));
4080 raw_inode->i_block[2] = 0;
4081 }
de9a55b8
TT
4082 } else
4083 for (block = 0; block < EXT4_N_BLOCKS; block++)
4084 raw_inode->i_block[block] = ei->i_data[block];
ac27a0ec 4085
25ec56b5
JNC
4086 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4087 if (ei->i_extra_isize) {
4088 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4089 raw_inode->i_version_hi =
4090 cpu_to_le32(inode->i_version >> 32);
ac27a0ec 4091 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
25ec56b5
JNC
4092 }
4093
830156c7 4094 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
73b50c1c 4095 rc = ext4_handle_dirty_metadata(handle, NULL, bh);
830156c7
FM
4096 if (!err)
4097 err = rc;
19f5fb7a 4098 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
ac27a0ec 4099
b436b9be 4100 ext4_update_inode_fsync_trans(handle, inode, 0);
ac27a0ec 4101out_brelse:
af5bc92d 4102 brelse(bh);
617ba13b 4103 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4104 return err;
4105}
4106
4107/*
617ba13b 4108 * ext4_write_inode()
ac27a0ec
DK
4109 *
4110 * We are called from a few places:
4111 *
4112 * - Within generic_file_write() for O_SYNC files.
4113 * Here, there will be no transaction running. We wait for any running
4114 * trasnaction to commit.
4115 *
4116 * - Within sys_sync(), kupdate and such.
4117 * We wait on commit, if tol to.
4118 *
4119 * - Within prune_icache() (PF_MEMALLOC == true)
4120 * Here we simply return. We can't afford to block kswapd on the
4121 * journal commit.
4122 *
4123 * In all cases it is actually safe for us to return without doing anything,
4124 * because the inode has been copied into a raw inode buffer in
617ba13b 4125 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
ac27a0ec
DK
4126 * knfsd.
4127 *
4128 * Note that we are absolutely dependent upon all inode dirtiers doing the
4129 * right thing: they *must* call mark_inode_dirty() after dirtying info in
4130 * which we are interested.
4131 *
4132 * It would be a bug for them to not do this. The code:
4133 *
4134 * mark_inode_dirty(inode)
4135 * stuff();
4136 * inode->i_size = expr;
4137 *
4138 * is in error because a kswapd-driven write_inode() could occur while
4139 * `stuff()' is running, and the new i_size will be lost. Plus the inode
4140 * will no longer be on the superblock's dirty inode list.
4141 */
a9185b41 4142int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
ac27a0ec 4143{
91ac6f43
FM
4144 int err;
4145
ac27a0ec
DK
4146 if (current->flags & PF_MEMALLOC)
4147 return 0;
4148
91ac6f43
FM
4149 if (EXT4_SB(inode->i_sb)->s_journal) {
4150 if (ext4_journal_current_handle()) {
4151 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4152 dump_stack();
4153 return -EIO;
4154 }
ac27a0ec 4155
a9185b41 4156 if (wbc->sync_mode != WB_SYNC_ALL)
91ac6f43
FM
4157 return 0;
4158
4159 err = ext4_force_commit(inode->i_sb);
4160 } else {
4161 struct ext4_iloc iloc;
ac27a0ec 4162
8b472d73 4163 err = __ext4_get_inode_loc(inode, &iloc, 0);
91ac6f43
FM
4164 if (err)
4165 return err;
a9185b41 4166 if (wbc->sync_mode == WB_SYNC_ALL)
830156c7
FM
4167 sync_dirty_buffer(iloc.bh);
4168 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
c398eda0
TT
4169 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4170 "IO error syncing inode");
830156c7
FM
4171 err = -EIO;
4172 }
fd2dd9fb 4173 brelse(iloc.bh);
91ac6f43
FM
4174 }
4175 return err;
ac27a0ec
DK
4176}
4177
4178/*
617ba13b 4179 * ext4_setattr()
ac27a0ec
DK
4180 *
4181 * Called from notify_change.
4182 *
4183 * We want to trap VFS attempts to truncate the file as soon as
4184 * possible. In particular, we want to make sure that when the VFS
4185 * shrinks i_size, we put the inode on the orphan list and modify
4186 * i_disksize immediately, so that during the subsequent flushing of
4187 * dirty pages and freeing of disk blocks, we can guarantee that any
4188 * commit will leave the blocks being flushed in an unused state on
4189 * disk. (On recovery, the inode will get truncated and the blocks will
4190 * be freed, so we have a strong guarantee that no future commit will
4191 * leave these blocks visible to the user.)
4192 *
678aaf48
JK
4193 * Another thing we have to assure is that if we are in ordered mode
4194 * and inode is still attached to the committing transaction, we must
4195 * we start writeout of all the dirty pages which are being truncated.
4196 * This way we are sure that all the data written in the previous
4197 * transaction are already on disk (truncate waits for pages under
4198 * writeback).
4199 *
4200 * Called with inode->i_mutex down.
ac27a0ec 4201 */
617ba13b 4202int ext4_setattr(struct dentry *dentry, struct iattr *attr)
ac27a0ec
DK
4203{
4204 struct inode *inode = dentry->d_inode;
4205 int error, rc = 0;
3d287de3 4206 int orphan = 0;
ac27a0ec
DK
4207 const unsigned int ia_valid = attr->ia_valid;
4208
4209 error = inode_change_ok(inode, attr);
4210 if (error)
4211 return error;
4212
12755627 4213 if (is_quota_modification(inode, attr))
871a2931 4214 dquot_initialize(inode);
ac27a0ec
DK
4215 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
4216 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
4217 handle_t *handle;
4218
4219 /* (user+group)*(old+new) structure, inode write (sb,
4220 * inode block, ? - but truncate inode update has it) */
5aca07eb 4221 handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
194074ac 4222 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3);
ac27a0ec
DK
4223 if (IS_ERR(handle)) {
4224 error = PTR_ERR(handle);
4225 goto err_out;
4226 }
b43fa828 4227 error = dquot_transfer(inode, attr);
ac27a0ec 4228 if (error) {
617ba13b 4229 ext4_journal_stop(handle);
ac27a0ec
DK
4230 return error;
4231 }
4232 /* Update corresponding info in inode so that everything is in
4233 * one transaction */
4234 if (attr->ia_valid & ATTR_UID)
4235 inode->i_uid = attr->ia_uid;
4236 if (attr->ia_valid & ATTR_GID)
4237 inode->i_gid = attr->ia_gid;
617ba13b
MC
4238 error = ext4_mark_inode_dirty(handle, inode);
4239 ext4_journal_stop(handle);
ac27a0ec
DK
4240 }
4241
e2b46574 4242 if (attr->ia_valid & ATTR_SIZE) {
562c72aa
CH
4243 inode_dio_wait(inode);
4244
12e9b892 4245 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
e2b46574
ES
4246 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4247
0c095c7f
TT
4248 if (attr->ia_size > sbi->s_bitmap_maxbytes)
4249 return -EFBIG;
e2b46574
ES
4250 }
4251 }
4252
ac27a0ec 4253 if (S_ISREG(inode->i_mode) &&
c8d46e41 4254 attr->ia_valid & ATTR_SIZE &&
072bd7ea 4255 (attr->ia_size < inode->i_size)) {
ac27a0ec
DK
4256 handle_t *handle;
4257
617ba13b 4258 handle = ext4_journal_start(inode, 3);
ac27a0ec
DK
4259 if (IS_ERR(handle)) {
4260 error = PTR_ERR(handle);
4261 goto err_out;
4262 }
3d287de3
DM
4263 if (ext4_handle_valid(handle)) {
4264 error = ext4_orphan_add(handle, inode);
4265 orphan = 1;
4266 }
617ba13b
MC
4267 EXT4_I(inode)->i_disksize = attr->ia_size;
4268 rc = ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
4269 if (!error)
4270 error = rc;
617ba13b 4271 ext4_journal_stop(handle);
678aaf48
JK
4272
4273 if (ext4_should_order_data(inode)) {
4274 error = ext4_begin_ordered_truncate(inode,
4275 attr->ia_size);
4276 if (error) {
4277 /* Do as much error cleanup as possible */
4278 handle = ext4_journal_start(inode, 3);
4279 if (IS_ERR(handle)) {
4280 ext4_orphan_del(NULL, inode);
4281 goto err_out;
4282 }
4283 ext4_orphan_del(handle, inode);
3d287de3 4284 orphan = 0;
678aaf48
JK
4285 ext4_journal_stop(handle);
4286 goto err_out;
4287 }
4288 }
ac27a0ec
DK
4289 }
4290
072bd7ea
TT
4291 if (attr->ia_valid & ATTR_SIZE) {
4292 if (attr->ia_size != i_size_read(inode)) {
4293 truncate_setsize(inode, attr->ia_size);
4294 ext4_truncate(inode);
4295 } else if (ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS))
4296 ext4_truncate(inode);
4297 }
ac27a0ec 4298
1025774c
CH
4299 if (!rc) {
4300 setattr_copy(inode, attr);
4301 mark_inode_dirty(inode);
4302 }
4303
4304 /*
4305 * If the call to ext4_truncate failed to get a transaction handle at
4306 * all, we need to clean up the in-core orphan list manually.
4307 */
3d287de3 4308 if (orphan && inode->i_nlink)
617ba13b 4309 ext4_orphan_del(NULL, inode);
ac27a0ec
DK
4310
4311 if (!rc && (ia_valid & ATTR_MODE))
617ba13b 4312 rc = ext4_acl_chmod(inode);
ac27a0ec
DK
4313
4314err_out:
617ba13b 4315 ext4_std_error(inode->i_sb, error);
ac27a0ec
DK
4316 if (!error)
4317 error = rc;
4318 return error;
4319}
4320
3e3398a0
MC
4321int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4322 struct kstat *stat)
4323{
4324 struct inode *inode;
4325 unsigned long delalloc_blocks;
4326
4327 inode = dentry->d_inode;
4328 generic_fillattr(inode, stat);
4329
4330 /*
4331 * We can't update i_blocks if the block allocation is delayed
4332 * otherwise in the case of system crash before the real block
4333 * allocation is done, we will have i_blocks inconsistent with
4334 * on-disk file blocks.
4335 * We always keep i_blocks updated together with real
4336 * allocation. But to not confuse with user, stat
4337 * will return the blocks that include the delayed allocation
4338 * blocks for this file.
4339 */
3e3398a0 4340 delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
3e3398a0
MC
4341
4342 stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
4343 return 0;
4344}
ac27a0ec 4345
a02908f1
MC
4346static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4347{
12e9b892 4348 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
8bb2b247 4349 return ext4_ind_trans_blocks(inode, nrblocks, chunk);
ac51d837 4350 return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
a02908f1 4351}
ac51d837 4352
ac27a0ec 4353/*
a02908f1
MC
4354 * Account for index blocks, block groups bitmaps and block group
4355 * descriptor blocks if modify datablocks and index blocks
4356 * worse case, the indexs blocks spread over different block groups
ac27a0ec 4357 *
a02908f1 4358 * If datablocks are discontiguous, they are possible to spread over
af901ca1 4359 * different block groups too. If they are contiuguous, with flexbg,
a02908f1 4360 * they could still across block group boundary.
ac27a0ec 4361 *
a02908f1
MC
4362 * Also account for superblock, inode, quota and xattr blocks
4363 */
1f109d5a 4364static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
a02908f1 4365{
8df9675f
TT
4366 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4367 int gdpblocks;
a02908f1
MC
4368 int idxblocks;
4369 int ret = 0;
4370
4371 /*
4372 * How many index blocks need to touch to modify nrblocks?
4373 * The "Chunk" flag indicating whether the nrblocks is
4374 * physically contiguous on disk
4375 *
4376 * For Direct IO and fallocate, they calls get_block to allocate
4377 * one single extent at a time, so they could set the "Chunk" flag
4378 */
4379 idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4380
4381 ret = idxblocks;
4382
4383 /*
4384 * Now let's see how many group bitmaps and group descriptors need
4385 * to account
4386 */
4387 groups = idxblocks;
4388 if (chunk)
4389 groups += 1;
4390 else
4391 groups += nrblocks;
4392
4393 gdpblocks = groups;
8df9675f
TT
4394 if (groups > ngroups)
4395 groups = ngroups;
a02908f1
MC
4396 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4397 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4398
4399 /* bitmaps and block group descriptor blocks */
4400 ret += groups + gdpblocks;
4401
4402 /* Blocks for super block, inode, quota and xattr blocks */
4403 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4404
4405 return ret;
4406}
4407
4408/*
25985edc 4409 * Calculate the total number of credits to reserve to fit
f3bd1f3f
MC
4410 * the modification of a single pages into a single transaction,
4411 * which may include multiple chunks of block allocations.
ac27a0ec 4412 *
525f4ed8 4413 * This could be called via ext4_write_begin()
ac27a0ec 4414 *
525f4ed8 4415 * We need to consider the worse case, when
a02908f1 4416 * one new block per extent.
ac27a0ec 4417 */
a86c6181 4418int ext4_writepage_trans_blocks(struct inode *inode)
ac27a0ec 4419{
617ba13b 4420 int bpp = ext4_journal_blocks_per_page(inode);
ac27a0ec
DK
4421 int ret;
4422
a02908f1 4423 ret = ext4_meta_trans_blocks(inode, bpp, 0);
a86c6181 4424
a02908f1 4425 /* Account for data blocks for journalled mode */
617ba13b 4426 if (ext4_should_journal_data(inode))
a02908f1 4427 ret += bpp;
ac27a0ec
DK
4428 return ret;
4429}
f3bd1f3f
MC
4430
4431/*
4432 * Calculate the journal credits for a chunk of data modification.
4433 *
4434 * This is called from DIO, fallocate or whoever calling
79e83036 4435 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
f3bd1f3f
MC
4436 *
4437 * journal buffers for data blocks are not included here, as DIO
4438 * and fallocate do no need to journal data buffers.
4439 */
4440int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4441{
4442 return ext4_meta_trans_blocks(inode, nrblocks, 1);
4443}
4444
ac27a0ec 4445/*
617ba13b 4446 * The caller must have previously called ext4_reserve_inode_write().
ac27a0ec
DK
4447 * Give this, we know that the caller already has write access to iloc->bh.
4448 */
617ba13b 4449int ext4_mark_iloc_dirty(handle_t *handle,
de9a55b8 4450 struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
4451{
4452 int err = 0;
4453
25ec56b5
JNC
4454 if (test_opt(inode->i_sb, I_VERSION))
4455 inode_inc_iversion(inode);
4456
ac27a0ec
DK
4457 /* the do_update_inode consumes one bh->b_count */
4458 get_bh(iloc->bh);
4459
dab291af 4460 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
830156c7 4461 err = ext4_do_update_inode(handle, inode, iloc);
ac27a0ec
DK
4462 put_bh(iloc->bh);
4463 return err;
4464}
4465
4466/*
4467 * On success, We end up with an outstanding reference count against
4468 * iloc->bh. This _must_ be cleaned up later.
4469 */
4470
4471int
617ba13b
MC
4472ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4473 struct ext4_iloc *iloc)
ac27a0ec 4474{
0390131b
FM
4475 int err;
4476
4477 err = ext4_get_inode_loc(inode, iloc);
4478 if (!err) {
4479 BUFFER_TRACE(iloc->bh, "get_write_access");
4480 err = ext4_journal_get_write_access(handle, iloc->bh);
4481 if (err) {
4482 brelse(iloc->bh);
4483 iloc->bh = NULL;
ac27a0ec
DK
4484 }
4485 }
617ba13b 4486 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4487 return err;
4488}
4489
6dd4ee7c
KS
4490/*
4491 * Expand an inode by new_extra_isize bytes.
4492 * Returns 0 on success or negative error number on failure.
4493 */
1d03ec98
AK
4494static int ext4_expand_extra_isize(struct inode *inode,
4495 unsigned int new_extra_isize,
4496 struct ext4_iloc iloc,
4497 handle_t *handle)
6dd4ee7c
KS
4498{
4499 struct ext4_inode *raw_inode;
4500 struct ext4_xattr_ibody_header *header;
6dd4ee7c
KS
4501
4502 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4503 return 0;
4504
4505 raw_inode = ext4_raw_inode(&iloc);
4506
4507 header = IHDR(inode, raw_inode);
6dd4ee7c
KS
4508
4509 /* No extended attributes present */
19f5fb7a
TT
4510 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4511 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
6dd4ee7c
KS
4512 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4513 new_extra_isize);
4514 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4515 return 0;
4516 }
4517
4518 /* try to expand with EAs present */
4519 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4520 raw_inode, handle);
4521}
4522
ac27a0ec
DK
4523/*
4524 * What we do here is to mark the in-core inode as clean with respect to inode
4525 * dirtiness (it may still be data-dirty).
4526 * This means that the in-core inode may be reaped by prune_icache
4527 * without having to perform any I/O. This is a very good thing,
4528 * because *any* task may call prune_icache - even ones which
4529 * have a transaction open against a different journal.
4530 *
4531 * Is this cheating? Not really. Sure, we haven't written the
4532 * inode out, but prune_icache isn't a user-visible syncing function.
4533 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4534 * we start and wait on commits.
4535 *
4536 * Is this efficient/effective? Well, we're being nice to the system
4537 * by cleaning up our inodes proactively so they can be reaped
4538 * without I/O. But we are potentially leaving up to five seconds'
4539 * worth of inodes floating about which prune_icache wants us to
4540 * write out. One way to fix that would be to get prune_icache()
4541 * to do a write_super() to free up some memory. It has the desired
4542 * effect.
4543 */
617ba13b 4544int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
ac27a0ec 4545{
617ba13b 4546 struct ext4_iloc iloc;
6dd4ee7c
KS
4547 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4548 static unsigned int mnt_count;
4549 int err, ret;
ac27a0ec
DK
4550
4551 might_sleep();
7ff9c073 4552 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
617ba13b 4553 err = ext4_reserve_inode_write(handle, inode, &iloc);
0390131b
FM
4554 if (ext4_handle_valid(handle) &&
4555 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
19f5fb7a 4556 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
6dd4ee7c
KS
4557 /*
4558 * We need extra buffer credits since we may write into EA block
4559 * with this same handle. If journal_extend fails, then it will
4560 * only result in a minor loss of functionality for that inode.
4561 * If this is felt to be critical, then e2fsck should be run to
4562 * force a large enough s_min_extra_isize.
4563 */
4564 if ((jbd2_journal_extend(handle,
4565 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4566 ret = ext4_expand_extra_isize(inode,
4567 sbi->s_want_extra_isize,
4568 iloc, handle);
4569 if (ret) {
19f5fb7a
TT
4570 ext4_set_inode_state(inode,
4571 EXT4_STATE_NO_EXPAND);
c1bddad9
AK
4572 if (mnt_count !=
4573 le16_to_cpu(sbi->s_es->s_mnt_count)) {
12062ddd 4574 ext4_warning(inode->i_sb,
6dd4ee7c
KS
4575 "Unable to expand inode %lu. Delete"
4576 " some EAs or run e2fsck.",
4577 inode->i_ino);
c1bddad9
AK
4578 mnt_count =
4579 le16_to_cpu(sbi->s_es->s_mnt_count);
6dd4ee7c
KS
4580 }
4581 }
4582 }
4583 }
ac27a0ec 4584 if (!err)
617ba13b 4585 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
ac27a0ec
DK
4586 return err;
4587}
4588
4589/*
617ba13b 4590 * ext4_dirty_inode() is called from __mark_inode_dirty()
ac27a0ec
DK
4591 *
4592 * We're really interested in the case where a file is being extended.
4593 * i_size has been changed by generic_commit_write() and we thus need
4594 * to include the updated inode in the current transaction.
4595 *
5dd4056d 4596 * Also, dquot_alloc_block() will always dirty the inode when blocks
ac27a0ec
DK
4597 * are allocated to the file.
4598 *
4599 * If the inode is marked synchronous, we don't honour that here - doing
4600 * so would cause a commit on atime updates, which we don't bother doing.
4601 * We handle synchronous inodes at the highest possible level.
4602 */
aa385729 4603void ext4_dirty_inode(struct inode *inode, int flags)
ac27a0ec 4604{
ac27a0ec
DK
4605 handle_t *handle;
4606
617ba13b 4607 handle = ext4_journal_start(inode, 2);
ac27a0ec
DK
4608 if (IS_ERR(handle))
4609 goto out;
f3dc272f 4610
f3dc272f
CW
4611 ext4_mark_inode_dirty(handle, inode);
4612
617ba13b 4613 ext4_journal_stop(handle);
ac27a0ec
DK
4614out:
4615 return;
4616}
4617
4618#if 0
4619/*
4620 * Bind an inode's backing buffer_head into this transaction, to prevent
4621 * it from being flushed to disk early. Unlike
617ba13b 4622 * ext4_reserve_inode_write, this leaves behind no bh reference and
ac27a0ec
DK
4623 * returns no iloc structure, so the caller needs to repeat the iloc
4624 * lookup to mark the inode dirty later.
4625 */
617ba13b 4626static int ext4_pin_inode(handle_t *handle, struct inode *inode)
ac27a0ec 4627{
617ba13b 4628 struct ext4_iloc iloc;
ac27a0ec
DK
4629
4630 int err = 0;
4631 if (handle) {
617ba13b 4632 err = ext4_get_inode_loc(inode, &iloc);
ac27a0ec
DK
4633 if (!err) {
4634 BUFFER_TRACE(iloc.bh, "get_write_access");
dab291af 4635 err = jbd2_journal_get_write_access(handle, iloc.bh);
ac27a0ec 4636 if (!err)
0390131b 4637 err = ext4_handle_dirty_metadata(handle,
73b50c1c 4638 NULL,
0390131b 4639 iloc.bh);
ac27a0ec
DK
4640 brelse(iloc.bh);
4641 }
4642 }
617ba13b 4643 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4644 return err;
4645}
4646#endif
4647
617ba13b 4648int ext4_change_inode_journal_flag(struct inode *inode, int val)
ac27a0ec
DK
4649{
4650 journal_t *journal;
4651 handle_t *handle;
4652 int err;
4653
4654 /*
4655 * We have to be very careful here: changing a data block's
4656 * journaling status dynamically is dangerous. If we write a
4657 * data block to the journal, change the status and then delete
4658 * that block, we risk forgetting to revoke the old log record
4659 * from the journal and so a subsequent replay can corrupt data.
4660 * So, first we make sure that the journal is empty and that
4661 * nobody is changing anything.
4662 */
4663
617ba13b 4664 journal = EXT4_JOURNAL(inode);
0390131b
FM
4665 if (!journal)
4666 return 0;
d699594d 4667 if (is_journal_aborted(journal))
ac27a0ec
DK
4668 return -EROFS;
4669
dab291af
MC
4670 jbd2_journal_lock_updates(journal);
4671 jbd2_journal_flush(journal);
ac27a0ec
DK
4672
4673 /*
4674 * OK, there are no updates running now, and all cached data is
4675 * synced to disk. We are now in a completely consistent state
4676 * which doesn't have anything in the journal, and we know that
4677 * no filesystem updates are running, so it is safe to modify
4678 * the inode's in-core data-journaling state flag now.
4679 */
4680
4681 if (val)
12e9b892 4682 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
ac27a0ec 4683 else
12e9b892 4684 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
617ba13b 4685 ext4_set_aops(inode);
ac27a0ec 4686
dab291af 4687 jbd2_journal_unlock_updates(journal);
ac27a0ec
DK
4688
4689 /* Finally we can mark the inode as dirty. */
4690
617ba13b 4691 handle = ext4_journal_start(inode, 1);
ac27a0ec
DK
4692 if (IS_ERR(handle))
4693 return PTR_ERR(handle);
4694
617ba13b 4695 err = ext4_mark_inode_dirty(handle, inode);
0390131b 4696 ext4_handle_sync(handle);
617ba13b
MC
4697 ext4_journal_stop(handle);
4698 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4699
4700 return err;
4701}
2e9ee850
AK
4702
4703static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
4704{
4705 return !buffer_mapped(bh);
4706}
4707
c2ec175c 4708int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2e9ee850 4709{
c2ec175c 4710 struct page *page = vmf->page;
2e9ee850
AK
4711 loff_t size;
4712 unsigned long len;
9ea7df53 4713 int ret;
2e9ee850
AK
4714 struct file *file = vma->vm_file;
4715 struct inode *inode = file->f_path.dentry->d_inode;
4716 struct address_space *mapping = inode->i_mapping;
9ea7df53
JK
4717 handle_t *handle;
4718 get_block_t *get_block;
4719 int retries = 0;
2e9ee850
AK
4720
4721 /*
9ea7df53
JK
4722 * This check is racy but catches the common case. We rely on
4723 * __block_page_mkwrite() to do a reliable check.
2e9ee850 4724 */
9ea7df53
JK
4725 vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
4726 /* Delalloc case is easy... */
4727 if (test_opt(inode->i_sb, DELALLOC) &&
4728 !ext4_should_journal_data(inode) &&
4729 !ext4_nonda_switch(inode->i_sb)) {
4730 do {
4731 ret = __block_page_mkwrite(vma, vmf,
4732 ext4_da_get_block_prep);
4733 } while (ret == -ENOSPC &&
4734 ext4_should_retry_alloc(inode->i_sb, &retries));
4735 goto out_ret;
2e9ee850 4736 }
0e499890
DW
4737
4738 lock_page(page);
9ea7df53
JK
4739 size = i_size_read(inode);
4740 /* Page got truncated from under us? */
4741 if (page->mapping != mapping || page_offset(page) > size) {
4742 unlock_page(page);
4743 ret = VM_FAULT_NOPAGE;
4744 goto out;
0e499890 4745 }
2e9ee850
AK
4746
4747 if (page->index == size >> PAGE_CACHE_SHIFT)
4748 len = size & ~PAGE_CACHE_MASK;
4749 else
4750 len = PAGE_CACHE_SIZE;
a827eaff 4751 /*
9ea7df53
JK
4752 * Return if we have all the buffers mapped. This avoids the need to do
4753 * journal_start/journal_stop which can block and take a long time
a827eaff 4754 */
2e9ee850 4755 if (page_has_buffers(page)) {
2e9ee850 4756 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
a827eaff 4757 ext4_bh_unmapped)) {
9ea7df53
JK
4758 /* Wait so that we don't change page under IO */
4759 wait_on_page_writeback(page);
4760 ret = VM_FAULT_LOCKED;
4761 goto out;
a827eaff 4762 }
2e9ee850 4763 }
a827eaff 4764 unlock_page(page);
9ea7df53
JK
4765 /* OK, we need to fill the hole... */
4766 if (ext4_should_dioread_nolock(inode))
4767 get_block = ext4_get_block_write;
4768 else
4769 get_block = ext4_get_block;
4770retry_alloc:
4771 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
4772 if (IS_ERR(handle)) {
c2ec175c 4773 ret = VM_FAULT_SIGBUS;
9ea7df53
JK
4774 goto out;
4775 }
4776 ret = __block_page_mkwrite(vma, vmf, get_block);
4777 if (!ret && ext4_should_journal_data(inode)) {
4778 if (walk_page_buffers(handle, page_buffers(page), 0,
4779 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
4780 unlock_page(page);
4781 ret = VM_FAULT_SIGBUS;
4782 goto out;
4783 }
4784 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
4785 }
4786 ext4_journal_stop(handle);
4787 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
4788 goto retry_alloc;
4789out_ret:
4790 ret = block_page_mkwrite_return(ret);
4791out:
2e9ee850
AK
4792 return ret;
4793}