ext4: Simplify delalloc code by removing mpage_da_writepages()
[linux-2.6-block.git] / fs / ext4 / inode.c
CommitLineData
ac27a0ec 1/*
617ba13b 2 * linux/fs/ext4/inode.c
ac27a0ec
DK
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * Goal-directed block allocation by Stephen Tweedie
16 * (sct@redhat.com), 1993, 1998
17 * Big-endian to little-endian byte-swapping/bitmaps by
18 * David S. Miller (davem@caip.rutgers.edu), 1995
19 * 64-bit file support on 64-bit platforms by Jakub Jelinek
20 * (jj@sunsite.ms.mff.cuni.cz)
21 *
617ba13b 22 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
ac27a0ec
DK
23 */
24
25#include <linux/module.h>
26#include <linux/fs.h>
27#include <linux/time.h>
dab291af 28#include <linux/jbd2.h>
ac27a0ec
DK
29#include <linux/highuid.h>
30#include <linux/pagemap.h>
31#include <linux/quotaops.h>
32#include <linux/string.h>
33#include <linux/buffer_head.h>
34#include <linux/writeback.h>
64769240 35#include <linux/pagevec.h>
ac27a0ec 36#include <linux/mpage.h>
e83c1397 37#include <linux/namei.h>
ac27a0ec
DK
38#include <linux/uio.h>
39#include <linux/bio.h>
3dcf5451 40#include "ext4_jbd2.h"
ac27a0ec
DK
41#include "xattr.h"
42#include "acl.h"
d2a17637 43#include "ext4_extents.h"
ac27a0ec 44
a1d6cc56
AK
45#define MPAGE_DA_EXTENT_TAIL 0x01
46
678aaf48
JK
47static inline int ext4_begin_ordered_truncate(struct inode *inode,
48 loff_t new_size)
49{
7f5aa215
JK
50 return jbd2_journal_begin_ordered_truncate(
51 EXT4_SB(inode->i_sb)->s_journal,
52 &EXT4_I(inode)->jinode,
53 new_size);
678aaf48
JK
54}
55
64769240
AT
56static void ext4_invalidatepage(struct page *page, unsigned long offset);
57
ac27a0ec
DK
58/*
59 * Test whether an inode is a fast symlink.
60 */
617ba13b 61static int ext4_inode_is_fast_symlink(struct inode *inode)
ac27a0ec 62{
617ba13b 63 int ea_blocks = EXT4_I(inode)->i_file_acl ?
ac27a0ec
DK
64 (inode->i_sb->s_blocksize >> 9) : 0;
65
66 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
67}
68
69/*
617ba13b 70 * The ext4 forget function must perform a revoke if we are freeing data
ac27a0ec
DK
71 * which has been journaled. Metadata (eg. indirect blocks) must be
72 * revoked in all cases.
73 *
74 * "bh" may be NULL: a metadata block may have been freed from memory
75 * but there may still be a record of it in the journal, and that record
76 * still needs to be revoked.
0390131b
FM
77 *
78 * If the handle isn't valid we're not journaling so there's nothing to do.
ac27a0ec 79 */
617ba13b
MC
80int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode,
81 struct buffer_head *bh, ext4_fsblk_t blocknr)
ac27a0ec
DK
82{
83 int err;
84
0390131b
FM
85 if (!ext4_handle_valid(handle))
86 return 0;
87
ac27a0ec
DK
88 might_sleep();
89
90 BUFFER_TRACE(bh, "enter");
91
92 jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
93 "data mode %lx\n",
94 bh, is_metadata, inode->i_mode,
95 test_opt(inode->i_sb, DATA_FLAGS));
96
97 /* Never use the revoke function if we are doing full data
98 * journaling: there is no need to, and a V1 superblock won't
99 * support it. Otherwise, only skip the revoke on un-journaled
100 * data blocks. */
101
617ba13b
MC
102 if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA ||
103 (!is_metadata && !ext4_should_journal_data(inode))) {
ac27a0ec 104 if (bh) {
dab291af 105 BUFFER_TRACE(bh, "call jbd2_journal_forget");
617ba13b 106 return ext4_journal_forget(handle, bh);
ac27a0ec
DK
107 }
108 return 0;
109 }
110
111 /*
112 * data!=journal && (is_metadata || should_journal_data(inode))
113 */
617ba13b
MC
114 BUFFER_TRACE(bh, "call ext4_journal_revoke");
115 err = ext4_journal_revoke(handle, blocknr, bh);
ac27a0ec 116 if (err)
46e665e9 117 ext4_abort(inode->i_sb, __func__,
ac27a0ec
DK
118 "error %d when attempting revoke", err);
119 BUFFER_TRACE(bh, "exit");
120 return err;
121}
122
123/*
124 * Work out how many blocks we need to proceed with the next chunk of a
125 * truncate transaction.
126 */
127static unsigned long blocks_for_truncate(struct inode *inode)
128{
725d26d3 129 ext4_lblk_t needed;
ac27a0ec
DK
130
131 needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
132
133 /* Give ourselves just enough room to cope with inodes in which
134 * i_blocks is corrupt: we've seen disk corruptions in the past
135 * which resulted in random data in an inode which looked enough
617ba13b 136 * like a regular file for ext4 to try to delete it. Things
ac27a0ec
DK
137 * will go a bit crazy if that happens, but at least we should
138 * try not to panic the whole kernel. */
139 if (needed < 2)
140 needed = 2;
141
142 /* But we need to bound the transaction so we don't overflow the
143 * journal. */
617ba13b
MC
144 if (needed > EXT4_MAX_TRANS_DATA)
145 needed = EXT4_MAX_TRANS_DATA;
ac27a0ec 146
617ba13b 147 return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
ac27a0ec
DK
148}
149
150/*
151 * Truncate transactions can be complex and absolutely huge. So we need to
152 * be able to restart the transaction at a conventient checkpoint to make
153 * sure we don't overflow the journal.
154 *
155 * start_transaction gets us a new handle for a truncate transaction,
156 * and extend_transaction tries to extend the existing one a bit. If
157 * extend fails, we need to propagate the failure up and restart the
158 * transaction in the top-level truncate loop. --sct
159 */
160static handle_t *start_transaction(struct inode *inode)
161{
162 handle_t *result;
163
617ba13b 164 result = ext4_journal_start(inode, blocks_for_truncate(inode));
ac27a0ec
DK
165 if (!IS_ERR(result))
166 return result;
167
617ba13b 168 ext4_std_error(inode->i_sb, PTR_ERR(result));
ac27a0ec
DK
169 return result;
170}
171
172/*
173 * Try to extend this transaction for the purposes of truncation.
174 *
175 * Returns 0 if we managed to create more room. If we can't create more
176 * room, and the transaction must be restarted we return 1.
177 */
178static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
179{
0390131b
FM
180 if (!ext4_handle_valid(handle))
181 return 0;
182 if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
ac27a0ec 183 return 0;
617ba13b 184 if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
ac27a0ec
DK
185 return 0;
186 return 1;
187}
188
189/*
190 * Restart the transaction associated with *handle. This does a commit,
191 * so before we call here everything must be consistently dirtied against
192 * this transaction.
193 */
617ba13b 194static int ext4_journal_test_restart(handle_t *handle, struct inode *inode)
ac27a0ec 195{
0390131b 196 BUG_ON(EXT4_JOURNAL(inode) == NULL);
ac27a0ec 197 jbd_debug(2, "restarting handle %p\n", handle);
617ba13b 198 return ext4_journal_restart(handle, blocks_for_truncate(inode));
ac27a0ec
DK
199}
200
201/*
202 * Called at the last iput() if i_nlink is zero.
203 */
af5bc92d 204void ext4_delete_inode(struct inode *inode)
ac27a0ec
DK
205{
206 handle_t *handle;
bc965ab3 207 int err;
ac27a0ec 208
678aaf48
JK
209 if (ext4_should_order_data(inode))
210 ext4_begin_ordered_truncate(inode, 0);
ac27a0ec
DK
211 truncate_inode_pages(&inode->i_data, 0);
212
213 if (is_bad_inode(inode))
214 goto no_delete;
215
bc965ab3 216 handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
ac27a0ec 217 if (IS_ERR(handle)) {
bc965ab3 218 ext4_std_error(inode->i_sb, PTR_ERR(handle));
ac27a0ec
DK
219 /*
220 * If we're going to skip the normal cleanup, we still need to
221 * make sure that the in-core orphan linked list is properly
222 * cleaned up.
223 */
617ba13b 224 ext4_orphan_del(NULL, inode);
ac27a0ec
DK
225 goto no_delete;
226 }
227
228 if (IS_SYNC(inode))
0390131b 229 ext4_handle_sync(handle);
ac27a0ec 230 inode->i_size = 0;
bc965ab3
TT
231 err = ext4_mark_inode_dirty(handle, inode);
232 if (err) {
233 ext4_warning(inode->i_sb, __func__,
234 "couldn't mark inode dirty (err %d)", err);
235 goto stop_handle;
236 }
ac27a0ec 237 if (inode->i_blocks)
617ba13b 238 ext4_truncate(inode);
bc965ab3
TT
239
240 /*
241 * ext4_ext_truncate() doesn't reserve any slop when it
242 * restarts journal transactions; therefore there may not be
243 * enough credits left in the handle to remove the inode from
244 * the orphan list and set the dtime field.
245 */
0390131b 246 if (!ext4_handle_has_enough_credits(handle, 3)) {
bc965ab3
TT
247 err = ext4_journal_extend(handle, 3);
248 if (err > 0)
249 err = ext4_journal_restart(handle, 3);
250 if (err != 0) {
251 ext4_warning(inode->i_sb, __func__,
252 "couldn't extend journal (err %d)", err);
253 stop_handle:
254 ext4_journal_stop(handle);
255 goto no_delete;
256 }
257 }
258
ac27a0ec 259 /*
617ba13b 260 * Kill off the orphan record which ext4_truncate created.
ac27a0ec 261 * AKPM: I think this can be inside the above `if'.
617ba13b 262 * Note that ext4_orphan_del() has to be able to cope with the
ac27a0ec 263 * deletion of a non-existent orphan - this is because we don't
617ba13b 264 * know if ext4_truncate() actually created an orphan record.
ac27a0ec
DK
265 * (Well, we could do this if we need to, but heck - it works)
266 */
617ba13b
MC
267 ext4_orphan_del(handle, inode);
268 EXT4_I(inode)->i_dtime = get_seconds();
ac27a0ec
DK
269
270 /*
271 * One subtle ordering requirement: if anything has gone wrong
272 * (transaction abort, IO errors, whatever), then we can still
273 * do these next steps (the fs will already have been marked as
274 * having errors), but we can't free the inode if the mark_dirty
275 * fails.
276 */
617ba13b 277 if (ext4_mark_inode_dirty(handle, inode))
ac27a0ec
DK
278 /* If that failed, just do the required in-core inode clear. */
279 clear_inode(inode);
280 else
617ba13b
MC
281 ext4_free_inode(handle, inode);
282 ext4_journal_stop(handle);
ac27a0ec
DK
283 return;
284no_delete:
285 clear_inode(inode); /* We must guarantee clearing of inode... */
286}
287
288typedef struct {
289 __le32 *p;
290 __le32 key;
291 struct buffer_head *bh;
292} Indirect;
293
294static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
295{
296 p->key = *(p->p = v);
297 p->bh = bh;
298}
299
ac27a0ec 300/**
617ba13b 301 * ext4_block_to_path - parse the block number into array of offsets
ac27a0ec
DK
302 * @inode: inode in question (we are only interested in its superblock)
303 * @i_block: block number to be parsed
304 * @offsets: array to store the offsets in
8c55e204
DK
305 * @boundary: set this non-zero if the referred-to block is likely to be
306 * followed (on disk) by an indirect block.
ac27a0ec 307 *
617ba13b 308 * To store the locations of file's data ext4 uses a data structure common
ac27a0ec
DK
309 * for UNIX filesystems - tree of pointers anchored in the inode, with
310 * data blocks at leaves and indirect blocks in intermediate nodes.
311 * This function translates the block number into path in that tree -
312 * return value is the path length and @offsets[n] is the offset of
313 * pointer to (n+1)th node in the nth one. If @block is out of range
314 * (negative or too large) warning is printed and zero returned.
315 *
316 * Note: function doesn't find node addresses, so no IO is needed. All
317 * we need to know is the capacity of indirect blocks (taken from the
318 * inode->i_sb).
319 */
320
321/*
322 * Portability note: the last comparison (check that we fit into triple
323 * indirect block) is spelled differently, because otherwise on an
324 * architecture with 32-bit longs and 8Kb pages we might get into trouble
325 * if our filesystem had 8Kb blocks. We might use long long, but that would
326 * kill us on x86. Oh, well, at least the sign propagation does not matter -
327 * i_block would have to be negative in the very beginning, so we would not
328 * get there at all.
329 */
330
617ba13b 331static int ext4_block_to_path(struct inode *inode,
725d26d3
AK
332 ext4_lblk_t i_block,
333 ext4_lblk_t offsets[4], int *boundary)
ac27a0ec 334{
617ba13b
MC
335 int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
336 int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
337 const long direct_blocks = EXT4_NDIR_BLOCKS,
ac27a0ec
DK
338 indirect_blocks = ptrs,
339 double_blocks = (1 << (ptrs_bits * 2));
340 int n = 0;
341 int final = 0;
342
343 if (i_block < 0) {
af5bc92d 344 ext4_warning(inode->i_sb, "ext4_block_to_path", "block < 0");
ac27a0ec
DK
345 } else if (i_block < direct_blocks) {
346 offsets[n++] = i_block;
347 final = direct_blocks;
af5bc92d 348 } else if ((i_block -= direct_blocks) < indirect_blocks) {
617ba13b 349 offsets[n++] = EXT4_IND_BLOCK;
ac27a0ec
DK
350 offsets[n++] = i_block;
351 final = ptrs;
352 } else if ((i_block -= indirect_blocks) < double_blocks) {
617ba13b 353 offsets[n++] = EXT4_DIND_BLOCK;
ac27a0ec
DK
354 offsets[n++] = i_block >> ptrs_bits;
355 offsets[n++] = i_block & (ptrs - 1);
356 final = ptrs;
357 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
617ba13b 358 offsets[n++] = EXT4_TIND_BLOCK;
ac27a0ec
DK
359 offsets[n++] = i_block >> (ptrs_bits * 2);
360 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
361 offsets[n++] = i_block & (ptrs - 1);
362 final = ptrs;
363 } else {
e2b46574 364 ext4_warning(inode->i_sb, "ext4_block_to_path",
06a279d6 365 "block %lu > max in inode %lu",
e2b46574 366 i_block + direct_blocks +
06a279d6 367 indirect_blocks + double_blocks, inode->i_ino);
ac27a0ec
DK
368 }
369 if (boundary)
370 *boundary = final - 1 - (i_block & (ptrs - 1));
371 return n;
372}
373
374/**
617ba13b 375 * ext4_get_branch - read the chain of indirect blocks leading to data
ac27a0ec
DK
376 * @inode: inode in question
377 * @depth: depth of the chain (1 - direct pointer, etc.)
378 * @offsets: offsets of pointers in inode/indirect blocks
379 * @chain: place to store the result
380 * @err: here we store the error value
381 *
382 * Function fills the array of triples <key, p, bh> and returns %NULL
383 * if everything went OK or the pointer to the last filled triple
384 * (incomplete one) otherwise. Upon the return chain[i].key contains
385 * the number of (i+1)-th block in the chain (as it is stored in memory,
386 * i.e. little-endian 32-bit), chain[i].p contains the address of that
387 * number (it points into struct inode for i==0 and into the bh->b_data
388 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
389 * block for i>0 and NULL for i==0. In other words, it holds the block
390 * numbers of the chain, addresses they were taken from (and where we can
391 * verify that chain did not change) and buffer_heads hosting these
392 * numbers.
393 *
394 * Function stops when it stumbles upon zero pointer (absent block)
395 * (pointer to last triple returned, *@err == 0)
396 * or when it gets an IO error reading an indirect block
397 * (ditto, *@err == -EIO)
ac27a0ec
DK
398 * or when it reads all @depth-1 indirect blocks successfully and finds
399 * the whole chain, all way to the data (returns %NULL, *err == 0).
c278bfec
AK
400 *
401 * Need to be called with
0e855ac8 402 * down_read(&EXT4_I(inode)->i_data_sem)
ac27a0ec 403 */
725d26d3
AK
404static Indirect *ext4_get_branch(struct inode *inode, int depth,
405 ext4_lblk_t *offsets,
ac27a0ec
DK
406 Indirect chain[4], int *err)
407{
408 struct super_block *sb = inode->i_sb;
409 Indirect *p = chain;
410 struct buffer_head *bh;
411
412 *err = 0;
413 /* i_data is not going away, no lock needed */
af5bc92d 414 add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
ac27a0ec
DK
415 if (!p->key)
416 goto no_block;
417 while (--depth) {
418 bh = sb_bread(sb, le32_to_cpu(p->key));
419 if (!bh)
420 goto failure;
af5bc92d 421 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
ac27a0ec
DK
422 /* Reader: end */
423 if (!p->key)
424 goto no_block;
425 }
426 return NULL;
427
ac27a0ec
DK
428failure:
429 *err = -EIO;
430no_block:
431 return p;
432}
433
434/**
617ba13b 435 * ext4_find_near - find a place for allocation with sufficient locality
ac27a0ec
DK
436 * @inode: owner
437 * @ind: descriptor of indirect block.
438 *
1cc8dcf5 439 * This function returns the preferred place for block allocation.
ac27a0ec
DK
440 * It is used when heuristic for sequential allocation fails.
441 * Rules are:
442 * + if there is a block to the left of our position - allocate near it.
443 * + if pointer will live in indirect block - allocate near that block.
444 * + if pointer will live in inode - allocate in the same
445 * cylinder group.
446 *
447 * In the latter case we colour the starting block by the callers PID to
448 * prevent it from clashing with concurrent allocations for a different inode
449 * in the same block group. The PID is used here so that functionally related
450 * files will be close-by on-disk.
451 *
452 * Caller must make sure that @ind is valid and will stay that way.
453 */
617ba13b 454static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
ac27a0ec 455{
617ba13b 456 struct ext4_inode_info *ei = EXT4_I(inode);
af5bc92d 457 __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
ac27a0ec 458 __le32 *p;
617ba13b 459 ext4_fsblk_t bg_start;
74d3487f 460 ext4_fsblk_t last_block;
617ba13b 461 ext4_grpblk_t colour;
a4912123
TT
462 ext4_group_t block_group;
463 int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));
ac27a0ec
DK
464
465 /* Try to find previous block */
466 for (p = ind->p - 1; p >= start; p--) {
467 if (*p)
468 return le32_to_cpu(*p);
469 }
470
471 /* No such thing, so let's try location of indirect block */
472 if (ind->bh)
473 return ind->bh->b_blocknr;
474
475 /*
476 * It is going to be referred to from the inode itself? OK, just put it
477 * into the same cylinder group then.
478 */
a4912123
TT
479 block_group = ei->i_block_group;
480 if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {
481 block_group &= ~(flex_size-1);
482 if (S_ISREG(inode->i_mode))
483 block_group++;
484 }
485 bg_start = ext4_group_first_block_no(inode->i_sb, block_group);
74d3487f
VC
486 last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
487
a4912123
TT
488 /*
489 * If we are doing delayed allocation, we don't need take
490 * colour into account.
491 */
492 if (test_opt(inode->i_sb, DELALLOC))
493 return bg_start;
494
74d3487f
VC
495 if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
496 colour = (current->pid % 16) *
617ba13b 497 (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
74d3487f
VC
498 else
499 colour = (current->pid % 16) * ((last_block - bg_start) / 16);
ac27a0ec
DK
500 return bg_start + colour;
501}
502
503/**
1cc8dcf5 504 * ext4_find_goal - find a preferred place for allocation.
ac27a0ec
DK
505 * @inode: owner
506 * @block: block we want
ac27a0ec 507 * @partial: pointer to the last triple within a chain
ac27a0ec 508 *
1cc8dcf5 509 * Normally this function find the preferred place for block allocation,
fb01bfda 510 * returns it.
ac27a0ec 511 */
725d26d3 512static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
fb01bfda 513 Indirect *partial)
ac27a0ec 514{
ac27a0ec 515 /*
c2ea3fde 516 * XXX need to get goal block from mballoc's data structures
ac27a0ec 517 */
ac27a0ec 518
617ba13b 519 return ext4_find_near(inode, partial);
ac27a0ec
DK
520}
521
522/**
617ba13b 523 * ext4_blks_to_allocate: Look up the block map and count the number
ac27a0ec
DK
524 * of direct blocks need to be allocated for the given branch.
525 *
526 * @branch: chain of indirect blocks
527 * @k: number of blocks need for indirect blocks
528 * @blks: number of data blocks to be mapped.
529 * @blocks_to_boundary: the offset in the indirect block
530 *
531 * return the total number of blocks to be allocate, including the
532 * direct and indirect blocks.
533 */
498e5f24 534static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
ac27a0ec
DK
535 int blocks_to_boundary)
536{
498e5f24 537 unsigned int count = 0;
ac27a0ec
DK
538
539 /*
540 * Simple case, [t,d]Indirect block(s) has not allocated yet
541 * then it's clear blocks on that path have not allocated
542 */
543 if (k > 0) {
544 /* right now we don't handle cross boundary allocation */
545 if (blks < blocks_to_boundary + 1)
546 count += blks;
547 else
548 count += blocks_to_boundary + 1;
549 return count;
550 }
551
552 count++;
553 while (count < blks && count <= blocks_to_boundary &&
554 le32_to_cpu(*(branch[0].p + count)) == 0) {
555 count++;
556 }
557 return count;
558}
559
560/**
617ba13b 561 * ext4_alloc_blocks: multiple allocate blocks needed for a branch
ac27a0ec
DK
562 * @indirect_blks: the number of blocks need to allocate for indirect
563 * blocks
564 *
565 * @new_blocks: on return it will store the new block numbers for
566 * the indirect blocks(if needed) and the first direct block,
567 * @blks: on return it will store the total number of allocated
568 * direct blocks
569 */
617ba13b 570static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
7061eba7
AK
571 ext4_lblk_t iblock, ext4_fsblk_t goal,
572 int indirect_blks, int blks,
573 ext4_fsblk_t new_blocks[4], int *err)
ac27a0ec 574{
815a1130 575 struct ext4_allocation_request ar;
ac27a0ec 576 int target, i;
7061eba7 577 unsigned long count = 0, blk_allocated = 0;
ac27a0ec 578 int index = 0;
617ba13b 579 ext4_fsblk_t current_block = 0;
ac27a0ec
DK
580 int ret = 0;
581
582 /*
583 * Here we try to allocate the requested multiple blocks at once,
584 * on a best-effort basis.
585 * To build a branch, we should allocate blocks for
586 * the indirect blocks(if not allocated yet), and at least
587 * the first direct block of this branch. That's the
588 * minimum number of blocks need to allocate(required)
589 */
7061eba7
AK
590 /* first we try to allocate the indirect blocks */
591 target = indirect_blks;
592 while (target > 0) {
ac27a0ec
DK
593 count = target;
594 /* allocating blocks for indirect blocks and direct blocks */
7061eba7
AK
595 current_block = ext4_new_meta_blocks(handle, inode,
596 goal, &count, err);
ac27a0ec
DK
597 if (*err)
598 goto failed_out;
599
600 target -= count;
601 /* allocate blocks for indirect blocks */
602 while (index < indirect_blks && count) {
603 new_blocks[index++] = current_block++;
604 count--;
605 }
7061eba7
AK
606 if (count > 0) {
607 /*
608 * save the new block number
609 * for the first direct block
610 */
611 new_blocks[index] = current_block;
612 printk(KERN_INFO "%s returned more blocks than "
613 "requested\n", __func__);
614 WARN_ON(1);
ac27a0ec 615 break;
7061eba7 616 }
ac27a0ec
DK
617 }
618
7061eba7
AK
619 target = blks - count ;
620 blk_allocated = count;
621 if (!target)
622 goto allocated;
623 /* Now allocate data blocks */
815a1130
TT
624 memset(&ar, 0, sizeof(ar));
625 ar.inode = inode;
626 ar.goal = goal;
627 ar.len = target;
628 ar.logical = iblock;
629 if (S_ISREG(inode->i_mode))
630 /* enable in-core preallocation only for regular files */
631 ar.flags = EXT4_MB_HINT_DATA;
632
633 current_block = ext4_mb_new_blocks(handle, &ar, err);
634
7061eba7
AK
635 if (*err && (target == blks)) {
636 /*
637 * if the allocation failed and we didn't allocate
638 * any blocks before
639 */
640 goto failed_out;
641 }
642 if (!*err) {
643 if (target == blks) {
644 /*
645 * save the new block number
646 * for the first direct block
647 */
648 new_blocks[index] = current_block;
649 }
815a1130 650 blk_allocated += ar.len;
7061eba7
AK
651 }
652allocated:
ac27a0ec 653 /* total number of blocks allocated for direct blocks */
7061eba7 654 ret = blk_allocated;
ac27a0ec
DK
655 *err = 0;
656 return ret;
657failed_out:
af5bc92d 658 for (i = 0; i < index; i++)
c9de560d 659 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
ac27a0ec
DK
660 return ret;
661}
662
663/**
617ba13b 664 * ext4_alloc_branch - allocate and set up a chain of blocks.
ac27a0ec
DK
665 * @inode: owner
666 * @indirect_blks: number of allocated indirect blocks
667 * @blks: number of allocated direct blocks
668 * @offsets: offsets (in the blocks) to store the pointers to next.
669 * @branch: place to store the chain in.
670 *
671 * This function allocates blocks, zeroes out all but the last one,
672 * links them into chain and (if we are synchronous) writes them to disk.
673 * In other words, it prepares a branch that can be spliced onto the
674 * inode. It stores the information about that chain in the branch[], in
617ba13b 675 * the same format as ext4_get_branch() would do. We are calling it after
ac27a0ec
DK
676 * we had read the existing part of chain and partial points to the last
677 * triple of that (one with zero ->key). Upon the exit we have the same
617ba13b 678 * picture as after the successful ext4_get_block(), except that in one
ac27a0ec
DK
679 * place chain is disconnected - *branch->p is still zero (we did not
680 * set the last link), but branch->key contains the number that should
681 * be placed into *branch->p to fill that gap.
682 *
683 * If allocation fails we free all blocks we've allocated (and forget
684 * their buffer_heads) and return the error value the from failed
617ba13b 685 * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
ac27a0ec
DK
686 * as described above and return 0.
687 */
617ba13b 688static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
7061eba7
AK
689 ext4_lblk_t iblock, int indirect_blks,
690 int *blks, ext4_fsblk_t goal,
691 ext4_lblk_t *offsets, Indirect *branch)
ac27a0ec
DK
692{
693 int blocksize = inode->i_sb->s_blocksize;
694 int i, n = 0;
695 int err = 0;
696 struct buffer_head *bh;
697 int num;
617ba13b
MC
698 ext4_fsblk_t new_blocks[4];
699 ext4_fsblk_t current_block;
ac27a0ec 700
7061eba7 701 num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
ac27a0ec
DK
702 *blks, new_blocks, &err);
703 if (err)
704 return err;
705
706 branch[0].key = cpu_to_le32(new_blocks[0]);
707 /*
708 * metadata blocks and data blocks are allocated.
709 */
710 for (n = 1; n <= indirect_blks; n++) {
711 /*
712 * Get buffer_head for parent block, zero it out
713 * and set the pointer to new one, then send
714 * parent to disk.
715 */
716 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
717 branch[n].bh = bh;
718 lock_buffer(bh);
719 BUFFER_TRACE(bh, "call get_create_access");
617ba13b 720 err = ext4_journal_get_create_access(handle, bh);
ac27a0ec
DK
721 if (err) {
722 unlock_buffer(bh);
723 brelse(bh);
724 goto failed;
725 }
726
727 memset(bh->b_data, 0, blocksize);
728 branch[n].p = (__le32 *) bh->b_data + offsets[n];
729 branch[n].key = cpu_to_le32(new_blocks[n]);
730 *branch[n].p = branch[n].key;
af5bc92d 731 if (n == indirect_blks) {
ac27a0ec
DK
732 current_block = new_blocks[n];
733 /*
734 * End of chain, update the last new metablock of
735 * the chain to point to the new allocated
736 * data blocks numbers
737 */
738 for (i=1; i < num; i++)
739 *(branch[n].p + i) = cpu_to_le32(++current_block);
740 }
741 BUFFER_TRACE(bh, "marking uptodate");
742 set_buffer_uptodate(bh);
743 unlock_buffer(bh);
744
0390131b
FM
745 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
746 err = ext4_handle_dirty_metadata(handle, inode, bh);
ac27a0ec
DK
747 if (err)
748 goto failed;
749 }
750 *blks = num;
751 return err;
752failed:
753 /* Allocation failed, free what we already allocated */
754 for (i = 1; i <= n ; i++) {
dab291af 755 BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget");
617ba13b 756 ext4_journal_forget(handle, branch[i].bh);
ac27a0ec 757 }
af5bc92d 758 for (i = 0; i < indirect_blks; i++)
c9de560d 759 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
ac27a0ec 760
c9de560d 761 ext4_free_blocks(handle, inode, new_blocks[i], num, 0);
ac27a0ec
DK
762
763 return err;
764}
765
766/**
617ba13b 767 * ext4_splice_branch - splice the allocated branch onto inode.
ac27a0ec
DK
768 * @inode: owner
769 * @block: (logical) number of block we are adding
770 * @chain: chain of indirect blocks (with a missing link - see
617ba13b 771 * ext4_alloc_branch)
ac27a0ec
DK
772 * @where: location of missing link
773 * @num: number of indirect blocks we are adding
774 * @blks: number of direct blocks we are adding
775 *
776 * This function fills the missing link and does all housekeeping needed in
777 * inode (->i_blocks, etc.). In case of success we end up with the full
778 * chain to new block and return 0.
779 */
617ba13b 780static int ext4_splice_branch(handle_t *handle, struct inode *inode,
725d26d3 781 ext4_lblk_t block, Indirect *where, int num, int blks)
ac27a0ec
DK
782{
783 int i;
784 int err = 0;
617ba13b 785 ext4_fsblk_t current_block;
ac27a0ec 786
ac27a0ec
DK
787 /*
788 * If we're splicing into a [td]indirect block (as opposed to the
789 * inode) then we need to get write access to the [td]indirect block
790 * before the splice.
791 */
792 if (where->bh) {
793 BUFFER_TRACE(where->bh, "get_write_access");
617ba13b 794 err = ext4_journal_get_write_access(handle, where->bh);
ac27a0ec
DK
795 if (err)
796 goto err_out;
797 }
798 /* That's it */
799
800 *where->p = where->key;
801
802 /*
803 * Update the host buffer_head or inode to point to more just allocated
804 * direct blocks blocks
805 */
806 if (num == 0 && blks > 1) {
807 current_block = le32_to_cpu(where->key) + 1;
808 for (i = 1; i < blks; i++)
af5bc92d 809 *(where->p + i) = cpu_to_le32(current_block++);
ac27a0ec
DK
810 }
811
ac27a0ec
DK
812 /* We are done with atomic stuff, now do the rest of housekeeping */
813
ef7f3835 814 inode->i_ctime = ext4_current_time(inode);
617ba13b 815 ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
816
817 /* had we spliced it onto indirect block? */
818 if (where->bh) {
819 /*
820 * If we spliced it onto an indirect block, we haven't
821 * altered the inode. Note however that if it is being spliced
822 * onto an indirect block at the very end of the file (the
823 * file is growing) then we *will* alter the inode to reflect
824 * the new i_size. But that is not done here - it is done in
617ba13b 825 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
ac27a0ec
DK
826 */
827 jbd_debug(5, "splicing indirect only\n");
0390131b
FM
828 BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
829 err = ext4_handle_dirty_metadata(handle, inode, where->bh);
ac27a0ec
DK
830 if (err)
831 goto err_out;
832 } else {
833 /*
834 * OK, we spliced it into the inode itself on a direct block.
835 * Inode was dirtied above.
836 */
837 jbd_debug(5, "splicing direct\n");
838 }
839 return err;
840
841err_out:
842 for (i = 1; i <= num; i++) {
dab291af 843 BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget");
617ba13b 844 ext4_journal_forget(handle, where[i].bh);
c9de560d
AT
845 ext4_free_blocks(handle, inode,
846 le32_to_cpu(where[i-1].key), 1, 0);
ac27a0ec 847 }
c9de560d 848 ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks, 0);
ac27a0ec
DK
849
850 return err;
851}
852
853/*
854 * Allocation strategy is simple: if we have to allocate something, we will
855 * have to go the whole way to leaf. So let's do it before attaching anything
856 * to tree, set linkage between the newborn blocks, write them if sync is
857 * required, recheck the path, free and repeat if check fails, otherwise
858 * set the last missing link (that will protect us from any truncate-generated
859 * removals - all blocks on the path are immune now) and possibly force the
860 * write on the parent block.
861 * That has a nice additional property: no special recovery from the failed
862 * allocations is needed - we simply release blocks and do not touch anything
863 * reachable from inode.
864 *
865 * `handle' can be NULL if create == 0.
866 *
ac27a0ec
DK
867 * return > 0, # of blocks mapped or allocated.
868 * return = 0, if plain lookup failed.
869 * return < 0, error case.
c278bfec
AK
870 *
871 *
872 * Need to be called with
0e855ac8
AK
873 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
874 * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
ac27a0ec 875 */
498e5f24
TT
876static int ext4_get_blocks_handle(handle_t *handle, struct inode *inode,
877 ext4_lblk_t iblock, unsigned int maxblocks,
878 struct buffer_head *bh_result,
879 int create, int extend_disksize)
ac27a0ec
DK
880{
881 int err = -EIO;
725d26d3 882 ext4_lblk_t offsets[4];
ac27a0ec
DK
883 Indirect chain[4];
884 Indirect *partial;
617ba13b 885 ext4_fsblk_t goal;
ac27a0ec
DK
886 int indirect_blks;
887 int blocks_to_boundary = 0;
888 int depth;
617ba13b 889 struct ext4_inode_info *ei = EXT4_I(inode);
ac27a0ec 890 int count = 0;
617ba13b 891 ext4_fsblk_t first_block = 0;
61628a3f 892 loff_t disksize;
ac27a0ec
DK
893
894
a86c6181 895 J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
ac27a0ec 896 J_ASSERT(handle != NULL || create == 0);
725d26d3
AK
897 depth = ext4_block_to_path(inode, iblock, offsets,
898 &blocks_to_boundary);
ac27a0ec
DK
899
900 if (depth == 0)
901 goto out;
902
617ba13b 903 partial = ext4_get_branch(inode, depth, offsets, chain, &err);
ac27a0ec
DK
904
905 /* Simplest case - block found, no allocation needed */
906 if (!partial) {
907 first_block = le32_to_cpu(chain[depth - 1].key);
908 clear_buffer_new(bh_result);
909 count++;
910 /*map more blocks*/
911 while (count < maxblocks && count <= blocks_to_boundary) {
617ba13b 912 ext4_fsblk_t blk;
ac27a0ec 913
ac27a0ec
DK
914 blk = le32_to_cpu(*(chain[depth-1].p + count));
915
916 if (blk == first_block + count)
917 count++;
918 else
919 break;
920 }
c278bfec 921 goto got_it;
ac27a0ec
DK
922 }
923
924 /* Next simple case - plain lookup or failed read of indirect block */
925 if (!create || err == -EIO)
926 goto cleanup;
927
ac27a0ec 928 /*
c2ea3fde 929 * Okay, we need to do block allocation.
ac27a0ec 930 */
fb01bfda 931 goal = ext4_find_goal(inode, iblock, partial);
ac27a0ec
DK
932
933 /* the number of blocks need to allocate for [d,t]indirect blocks */
934 indirect_blks = (chain + depth) - partial - 1;
935
936 /*
937 * Next look up the indirect map to count the totoal number of
938 * direct blocks to allocate for this branch.
939 */
617ba13b 940 count = ext4_blks_to_allocate(partial, indirect_blks,
ac27a0ec
DK
941 maxblocks, blocks_to_boundary);
942 /*
617ba13b 943 * Block out ext4_truncate while we alter the tree
ac27a0ec 944 */
7061eba7
AK
945 err = ext4_alloc_branch(handle, inode, iblock, indirect_blks,
946 &count, goal,
947 offsets + (partial - chain), partial);
ac27a0ec
DK
948
949 /*
617ba13b 950 * The ext4_splice_branch call will free and forget any buffers
ac27a0ec
DK
951 * on the new chain if there is a failure, but that risks using
952 * up transaction credits, especially for bitmaps where the
953 * credits cannot be returned. Can we handle this somehow? We
954 * may need to return -EAGAIN upwards in the worst case. --sct
955 */
956 if (!err)
617ba13b 957 err = ext4_splice_branch(handle, inode, iblock,
ac27a0ec
DK
958 partial, indirect_blks, count);
959 /*
0e855ac8 960 * i_disksize growing is protected by i_data_sem. Don't forget to
ac27a0ec 961 * protect it if you're about to implement concurrent
617ba13b 962 * ext4_get_block() -bzzz
ac27a0ec 963 */
61628a3f
MC
964 if (!err && extend_disksize) {
965 disksize = ((loff_t) iblock + count) << inode->i_blkbits;
966 if (disksize > i_size_read(inode))
967 disksize = i_size_read(inode);
968 if (disksize > ei->i_disksize)
969 ei->i_disksize = disksize;
970 }
ac27a0ec
DK
971 if (err)
972 goto cleanup;
973
974 set_buffer_new(bh_result);
975got_it:
976 map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
977 if (count > blocks_to_boundary)
978 set_buffer_boundary(bh_result);
979 err = count;
980 /* Clean up and exit */
981 partial = chain + depth - 1; /* the whole chain */
982cleanup:
983 while (partial > chain) {
984 BUFFER_TRACE(partial->bh, "call brelse");
985 brelse(partial->bh);
986 partial--;
987 }
988 BUFFER_TRACE(bh_result, "returned");
989out:
990 return err;
991}
992
60e58e0f
MC
993qsize_t ext4_get_reserved_space(struct inode *inode)
994{
995 unsigned long long total;
996
997 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
998 total = EXT4_I(inode)->i_reserved_data_blocks +
999 EXT4_I(inode)->i_reserved_meta_blocks;
1000 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1001
1002 return total;
1003}
12219aea
AK
1004/*
1005 * Calculate the number of metadata blocks need to reserve
1006 * to allocate @blocks for non extent file based file
1007 */
1008static int ext4_indirect_calc_metadata_amount(struct inode *inode, int blocks)
1009{
1010 int icap = EXT4_ADDR_PER_BLOCK(inode->i_sb);
1011 int ind_blks, dind_blks, tind_blks;
1012
1013 /* number of new indirect blocks needed */
1014 ind_blks = (blocks + icap - 1) / icap;
1015
1016 dind_blks = (ind_blks + icap - 1) / icap;
1017
1018 tind_blks = 1;
1019
1020 return ind_blks + dind_blks + tind_blks;
1021}
1022
1023/*
1024 * Calculate the number of metadata blocks need to reserve
1025 * to allocate given number of blocks
1026 */
1027static int ext4_calc_metadata_amount(struct inode *inode, int blocks)
1028{
cd213226
MC
1029 if (!blocks)
1030 return 0;
1031
12219aea
AK
1032 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
1033 return ext4_ext_calc_metadata_amount(inode, blocks);
1034
1035 return ext4_indirect_calc_metadata_amount(inode, blocks);
1036}
1037
1038static void ext4_da_update_reserve_space(struct inode *inode, int used)
1039{
1040 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1041 int total, mdb, mdb_free;
1042
1043 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1044 /* recalculate the number of metablocks still need to be reserved */
1045 total = EXT4_I(inode)->i_reserved_data_blocks - used;
1046 mdb = ext4_calc_metadata_amount(inode, total);
1047
1048 /* figure out how many metablocks to release */
1049 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1050 mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1051
6bc6e63f
AK
1052 if (mdb_free) {
1053 /* Account for allocated meta_blocks */
1054 mdb_free -= EXT4_I(inode)->i_allocated_meta_blocks;
1055
1056 /* update fs dirty blocks counter */
1057 percpu_counter_sub(&sbi->s_dirtyblocks_counter, mdb_free);
1058 EXT4_I(inode)->i_allocated_meta_blocks = 0;
1059 EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1060 }
12219aea
AK
1061
1062 /* update per-inode reservations */
1063 BUG_ON(used > EXT4_I(inode)->i_reserved_data_blocks);
1064 EXT4_I(inode)->i_reserved_data_blocks -= used;
12219aea 1065 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f
MC
1066
1067 /*
1068 * free those over-booking quota for metadata blocks
1069 */
1070
1071 if (mdb_free)
1072 vfs_dq_release_reservation_block(inode, mdb_free);
12219aea
AK
1073}
1074
f5ab0d1f 1075/*
2b2d6d01
TT
1076 * The ext4_get_blocks_wrap() function try to look up the requested blocks,
1077 * and returns if the blocks are already mapped.
f5ab0d1f 1078 *
f5ab0d1f
MC
1079 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
1080 * and store the allocated blocks in the result buffer head and mark it
1081 * mapped.
1082 *
1083 * If file type is extents based, it will call ext4_ext_get_blocks(),
1084 * Otherwise, call with ext4_get_blocks_handle() to handle indirect mapping
1085 * based files
1086 *
1087 * On success, it returns the number of blocks being mapped or allocate.
1088 * if create==0 and the blocks are pre-allocated and uninitialized block,
1089 * the result buffer head is unmapped. If the create ==1, it will make sure
1090 * the buffer head is mapped.
1091 *
1092 * It returns 0 if plain look up failed (blocks have not been allocated), in
1093 * that casem, buffer head is unmapped
1094 *
1095 * It returns the error in case of allocation failure.
1096 */
0e855ac8 1097int ext4_get_blocks_wrap(handle_t *handle, struct inode *inode, sector_t block,
498e5f24 1098 unsigned int max_blocks, struct buffer_head *bh,
d2a17637 1099 int create, int extend_disksize, int flag)
0e855ac8
AK
1100{
1101 int retval;
f5ab0d1f
MC
1102
1103 clear_buffer_mapped(bh);
1104
4df3d265
AK
1105 /*
1106 * Try to see if we can get the block without requesting
1107 * for new file system block.
1108 */
1109 down_read((&EXT4_I(inode)->i_data_sem));
1110 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1111 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks,
1112 bh, 0, 0);
0e855ac8 1113 } else {
4df3d265
AK
1114 retval = ext4_get_blocks_handle(handle,
1115 inode, block, max_blocks, bh, 0, 0);
0e855ac8 1116 }
4df3d265 1117 up_read((&EXT4_I(inode)->i_data_sem));
f5ab0d1f
MC
1118
1119 /* If it is only a block(s) look up */
1120 if (!create)
1121 return retval;
1122
1123 /*
1124 * Returns if the blocks have already allocated
1125 *
1126 * Note that if blocks have been preallocated
1127 * ext4_ext_get_block() returns th create = 0
1128 * with buffer head unmapped.
1129 */
1130 if (retval > 0 && buffer_mapped(bh))
4df3d265
AK
1131 return retval;
1132
1133 /*
f5ab0d1f
MC
1134 * New blocks allocate and/or writing to uninitialized extent
1135 * will possibly result in updating i_data, so we take
1136 * the write lock of i_data_sem, and call get_blocks()
1137 * with create == 1 flag.
4df3d265
AK
1138 */
1139 down_write((&EXT4_I(inode)->i_data_sem));
d2a17637
MC
1140
1141 /*
1142 * if the caller is from delayed allocation writeout path
1143 * we have already reserved fs blocks for allocation
1144 * let the underlying get_block() function know to
1145 * avoid double accounting
1146 */
1147 if (flag)
1148 EXT4_I(inode)->i_delalloc_reserved_flag = 1;
4df3d265
AK
1149 /*
1150 * We need to check for EXT4 here because migrate
1151 * could have changed the inode type in between
1152 */
0e855ac8
AK
1153 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1154 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks,
1155 bh, create, extend_disksize);
1156 } else {
1157 retval = ext4_get_blocks_handle(handle, inode, block,
1158 max_blocks, bh, create, extend_disksize);
267e4db9
AK
1159
1160 if (retval > 0 && buffer_new(bh)) {
1161 /*
1162 * We allocated new blocks which will result in
1163 * i_data's format changing. Force the migrate
1164 * to fail by clearing migrate flags
1165 */
1166 EXT4_I(inode)->i_flags = EXT4_I(inode)->i_flags &
1167 ~EXT4_EXT_MIGRATE;
1168 }
0e855ac8 1169 }
d2a17637
MC
1170
1171 if (flag) {
1172 EXT4_I(inode)->i_delalloc_reserved_flag = 0;
1173 /*
1174 * Update reserved blocks/metadata blocks
1175 * after successful block allocation
1176 * which were deferred till now
1177 */
1178 if ((retval > 0) && buffer_delay(bh))
12219aea 1179 ext4_da_update_reserve_space(inode, retval);
d2a17637
MC
1180 }
1181
4df3d265 1182 up_write((&EXT4_I(inode)->i_data_sem));
0e855ac8
AK
1183 return retval;
1184}
1185
f3bd1f3f
MC
1186/* Maximum number of blocks we map for direct IO at once. */
1187#define DIO_MAX_BLOCKS 4096
1188
6873fa0d
ES
1189int ext4_get_block(struct inode *inode, sector_t iblock,
1190 struct buffer_head *bh_result, int create)
ac27a0ec 1191{
3e4fdaf8 1192 handle_t *handle = ext4_journal_current_handle();
7fb5409d 1193 int ret = 0, started = 0;
ac27a0ec 1194 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
f3bd1f3f 1195 int dio_credits;
ac27a0ec 1196
7fb5409d
JK
1197 if (create && !handle) {
1198 /* Direct IO write... */
1199 if (max_blocks > DIO_MAX_BLOCKS)
1200 max_blocks = DIO_MAX_BLOCKS;
f3bd1f3f
MC
1201 dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
1202 handle = ext4_journal_start(inode, dio_credits);
7fb5409d 1203 if (IS_ERR(handle)) {
ac27a0ec 1204 ret = PTR_ERR(handle);
7fb5409d 1205 goto out;
ac27a0ec 1206 }
7fb5409d 1207 started = 1;
ac27a0ec
DK
1208 }
1209
7fb5409d 1210 ret = ext4_get_blocks_wrap(handle, inode, iblock,
d2a17637 1211 max_blocks, bh_result, create, 0, 0);
7fb5409d
JK
1212 if (ret > 0) {
1213 bh_result->b_size = (ret << inode->i_blkbits);
1214 ret = 0;
ac27a0ec 1215 }
7fb5409d
JK
1216 if (started)
1217 ext4_journal_stop(handle);
1218out:
ac27a0ec
DK
1219 return ret;
1220}
1221
1222/*
1223 * `handle' can be NULL if create is zero
1224 */
617ba13b 1225struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
725d26d3 1226 ext4_lblk_t block, int create, int *errp)
ac27a0ec
DK
1227{
1228 struct buffer_head dummy;
1229 int fatal = 0, err;
1230
1231 J_ASSERT(handle != NULL || create == 0);
1232
1233 dummy.b_state = 0;
1234 dummy.b_blocknr = -1000;
1235 buffer_trace_init(&dummy.b_history);
a86c6181 1236 err = ext4_get_blocks_wrap(handle, inode, block, 1,
d2a17637 1237 &dummy, create, 1, 0);
ac27a0ec 1238 /*
617ba13b 1239 * ext4_get_blocks_handle() returns number of blocks
ac27a0ec
DK
1240 * mapped. 0 in case of a HOLE.
1241 */
1242 if (err > 0) {
1243 if (err > 1)
1244 WARN_ON(1);
1245 err = 0;
1246 }
1247 *errp = err;
1248 if (!err && buffer_mapped(&dummy)) {
1249 struct buffer_head *bh;
1250 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1251 if (!bh) {
1252 *errp = -EIO;
1253 goto err;
1254 }
1255 if (buffer_new(&dummy)) {
1256 J_ASSERT(create != 0);
ac39849d 1257 J_ASSERT(handle != NULL);
ac27a0ec
DK
1258
1259 /*
1260 * Now that we do not always journal data, we should
1261 * keep in mind whether this should always journal the
1262 * new buffer as metadata. For now, regular file
617ba13b 1263 * writes use ext4_get_block instead, so it's not a
ac27a0ec
DK
1264 * problem.
1265 */
1266 lock_buffer(bh);
1267 BUFFER_TRACE(bh, "call get_create_access");
617ba13b 1268 fatal = ext4_journal_get_create_access(handle, bh);
ac27a0ec 1269 if (!fatal && !buffer_uptodate(bh)) {
af5bc92d 1270 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
ac27a0ec
DK
1271 set_buffer_uptodate(bh);
1272 }
1273 unlock_buffer(bh);
0390131b
FM
1274 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
1275 err = ext4_handle_dirty_metadata(handle, inode, bh);
ac27a0ec
DK
1276 if (!fatal)
1277 fatal = err;
1278 } else {
1279 BUFFER_TRACE(bh, "not a new buffer");
1280 }
1281 if (fatal) {
1282 *errp = fatal;
1283 brelse(bh);
1284 bh = NULL;
1285 }
1286 return bh;
1287 }
1288err:
1289 return NULL;
1290}
1291
617ba13b 1292struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
725d26d3 1293 ext4_lblk_t block, int create, int *err)
ac27a0ec 1294{
af5bc92d 1295 struct buffer_head *bh;
ac27a0ec 1296
617ba13b 1297 bh = ext4_getblk(handle, inode, block, create, err);
ac27a0ec
DK
1298 if (!bh)
1299 return bh;
1300 if (buffer_uptodate(bh))
1301 return bh;
1302 ll_rw_block(READ_META, 1, &bh);
1303 wait_on_buffer(bh);
1304 if (buffer_uptodate(bh))
1305 return bh;
1306 put_bh(bh);
1307 *err = -EIO;
1308 return NULL;
1309}
1310
af5bc92d
TT
1311static int walk_page_buffers(handle_t *handle,
1312 struct buffer_head *head,
1313 unsigned from,
1314 unsigned to,
1315 int *partial,
1316 int (*fn)(handle_t *handle,
1317 struct buffer_head *bh))
ac27a0ec
DK
1318{
1319 struct buffer_head *bh;
1320 unsigned block_start, block_end;
1321 unsigned blocksize = head->b_size;
1322 int err, ret = 0;
1323 struct buffer_head *next;
1324
af5bc92d
TT
1325 for (bh = head, block_start = 0;
1326 ret == 0 && (bh != head || !block_start);
1327 block_start = block_end, bh = next)
ac27a0ec
DK
1328 {
1329 next = bh->b_this_page;
1330 block_end = block_start + blocksize;
1331 if (block_end <= from || block_start >= to) {
1332 if (partial && !buffer_uptodate(bh))
1333 *partial = 1;
1334 continue;
1335 }
1336 err = (*fn)(handle, bh);
1337 if (!ret)
1338 ret = err;
1339 }
1340 return ret;
1341}
1342
1343/*
1344 * To preserve ordering, it is essential that the hole instantiation and
1345 * the data write be encapsulated in a single transaction. We cannot
617ba13b 1346 * close off a transaction and start a new one between the ext4_get_block()
dab291af 1347 * and the commit_write(). So doing the jbd2_journal_start at the start of
ac27a0ec
DK
1348 * prepare_write() is the right place.
1349 *
617ba13b
MC
1350 * Also, this function can nest inside ext4_writepage() ->
1351 * block_write_full_page(). In that case, we *know* that ext4_writepage()
ac27a0ec
DK
1352 * has generated enough buffer credits to do the whole page. So we won't
1353 * block on the journal in that case, which is good, because the caller may
1354 * be PF_MEMALLOC.
1355 *
617ba13b 1356 * By accident, ext4 can be reentered when a transaction is open via
ac27a0ec
DK
1357 * quota file writes. If we were to commit the transaction while thus
1358 * reentered, there can be a deadlock - we would be holding a quota
1359 * lock, and the commit would never complete if another thread had a
1360 * transaction open and was blocking on the quota lock - a ranking
1361 * violation.
1362 *
dab291af 1363 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
ac27a0ec
DK
1364 * will _not_ run commit under these circumstances because handle->h_ref
1365 * is elevated. We'll still have enough credits for the tiny quotafile
1366 * write.
1367 */
1368static int do_journal_get_write_access(handle_t *handle,
1369 struct buffer_head *bh)
1370{
1371 if (!buffer_mapped(bh) || buffer_freed(bh))
1372 return 0;
617ba13b 1373 return ext4_journal_get_write_access(handle, bh);
ac27a0ec
DK
1374}
1375
bfc1af65
NP
1376static int ext4_write_begin(struct file *file, struct address_space *mapping,
1377 loff_t pos, unsigned len, unsigned flags,
1378 struct page **pagep, void **fsdata)
ac27a0ec 1379{
af5bc92d 1380 struct inode *inode = mapping->host;
7479d2b9 1381 int ret, needed_blocks = ext4_writepage_trans_blocks(inode);
ac27a0ec
DK
1382 handle_t *handle;
1383 int retries = 0;
af5bc92d 1384 struct page *page;
bfc1af65 1385 pgoff_t index;
af5bc92d 1386 unsigned from, to;
bfc1af65 1387
ba80b101
TT
1388 trace_mark(ext4_write_begin,
1389 "dev %s ino %lu pos %llu len %u flags %u",
1390 inode->i_sb->s_id, inode->i_ino,
1391 (unsigned long long) pos, len, flags);
bfc1af65 1392 index = pos >> PAGE_CACHE_SHIFT;
af5bc92d
TT
1393 from = pos & (PAGE_CACHE_SIZE - 1);
1394 to = from + len;
ac27a0ec
DK
1395
1396retry:
af5bc92d
TT
1397 handle = ext4_journal_start(inode, needed_blocks);
1398 if (IS_ERR(handle)) {
1399 ret = PTR_ERR(handle);
1400 goto out;
7479d2b9 1401 }
ac27a0ec 1402
ebd3610b
JK
1403 /* We cannot recurse into the filesystem as the transaction is already
1404 * started */
1405 flags |= AOP_FLAG_NOFS;
1406
54566b2c 1407 page = grab_cache_page_write_begin(mapping, index, flags);
cf108bca
JK
1408 if (!page) {
1409 ext4_journal_stop(handle);
1410 ret = -ENOMEM;
1411 goto out;
1412 }
1413 *pagep = page;
1414
bfc1af65 1415 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
ebd3610b 1416 ext4_get_block);
bfc1af65
NP
1417
1418 if (!ret && ext4_should_journal_data(inode)) {
ac27a0ec
DK
1419 ret = walk_page_buffers(handle, page_buffers(page),
1420 from, to, NULL, do_journal_get_write_access);
1421 }
bfc1af65
NP
1422
1423 if (ret) {
af5bc92d 1424 unlock_page(page);
cf108bca 1425 ext4_journal_stop(handle);
af5bc92d 1426 page_cache_release(page);
ae4d5372
AK
1427 /*
1428 * block_write_begin may have instantiated a few blocks
1429 * outside i_size. Trim these off again. Don't need
1430 * i_size_read because we hold i_mutex.
1431 */
1432 if (pos + len > inode->i_size)
1433 vmtruncate(inode, inode->i_size);
bfc1af65
NP
1434 }
1435
617ba13b 1436 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
ac27a0ec 1437 goto retry;
7479d2b9 1438out:
ac27a0ec
DK
1439 return ret;
1440}
1441
bfc1af65
NP
1442/* For write_end() in data=journal mode */
1443static int write_end_fn(handle_t *handle, struct buffer_head *bh)
ac27a0ec
DK
1444{
1445 if (!buffer_mapped(bh) || buffer_freed(bh))
1446 return 0;
1447 set_buffer_uptodate(bh);
0390131b 1448 return ext4_handle_dirty_metadata(handle, NULL, bh);
ac27a0ec
DK
1449}
1450
1451/*
1452 * We need to pick up the new inode size which generic_commit_write gave us
1453 * `file' can be NULL - eg, when called from page_symlink().
1454 *
617ba13b 1455 * ext4 never places buffers on inode->i_mapping->private_list. metadata
ac27a0ec
DK
1456 * buffers are managed internally.
1457 */
bfc1af65
NP
1458static int ext4_ordered_write_end(struct file *file,
1459 struct address_space *mapping,
1460 loff_t pos, unsigned len, unsigned copied,
1461 struct page *page, void *fsdata)
ac27a0ec 1462{
617ba13b 1463 handle_t *handle = ext4_journal_current_handle();
cf108bca 1464 struct inode *inode = mapping->host;
ac27a0ec
DK
1465 int ret = 0, ret2;
1466
ba80b101
TT
1467 trace_mark(ext4_ordered_write_end,
1468 "dev %s ino %lu pos %llu len %u copied %u",
1469 inode->i_sb->s_id, inode->i_ino,
1470 (unsigned long long) pos, len, copied);
678aaf48 1471 ret = ext4_jbd2_file_inode(handle, inode);
ac27a0ec
DK
1472
1473 if (ret == 0) {
ac27a0ec
DK
1474 loff_t new_i_size;
1475
bfc1af65 1476 new_i_size = pos + copied;
cf17fea6
AK
1477 if (new_i_size > EXT4_I(inode)->i_disksize) {
1478 ext4_update_i_disksize(inode, new_i_size);
1479 /* We need to mark inode dirty even if
1480 * new_i_size is less that inode->i_size
1481 * bu greater than i_disksize.(hint delalloc)
1482 */
1483 ext4_mark_inode_dirty(handle, inode);
1484 }
1485
cf108bca 1486 ret2 = generic_write_end(file, mapping, pos, len, copied,
bfc1af65 1487 page, fsdata);
f8a87d89
RK
1488 copied = ret2;
1489 if (ret2 < 0)
1490 ret = ret2;
ac27a0ec 1491 }
617ba13b 1492 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1493 if (!ret)
1494 ret = ret2;
bfc1af65
NP
1495
1496 return ret ? ret : copied;
ac27a0ec
DK
1497}
1498
bfc1af65
NP
1499static int ext4_writeback_write_end(struct file *file,
1500 struct address_space *mapping,
1501 loff_t pos, unsigned len, unsigned copied,
1502 struct page *page, void *fsdata)
ac27a0ec 1503{
617ba13b 1504 handle_t *handle = ext4_journal_current_handle();
cf108bca 1505 struct inode *inode = mapping->host;
ac27a0ec
DK
1506 int ret = 0, ret2;
1507 loff_t new_i_size;
1508
ba80b101
TT
1509 trace_mark(ext4_writeback_write_end,
1510 "dev %s ino %lu pos %llu len %u copied %u",
1511 inode->i_sb->s_id, inode->i_ino,
1512 (unsigned long long) pos, len, copied);
bfc1af65 1513 new_i_size = pos + copied;
cf17fea6
AK
1514 if (new_i_size > EXT4_I(inode)->i_disksize) {
1515 ext4_update_i_disksize(inode, new_i_size);
1516 /* We need to mark inode dirty even if
1517 * new_i_size is less that inode->i_size
1518 * bu greater than i_disksize.(hint delalloc)
1519 */
1520 ext4_mark_inode_dirty(handle, inode);
1521 }
ac27a0ec 1522
cf108bca 1523 ret2 = generic_write_end(file, mapping, pos, len, copied,
bfc1af65 1524 page, fsdata);
f8a87d89
RK
1525 copied = ret2;
1526 if (ret2 < 0)
1527 ret = ret2;
ac27a0ec 1528
617ba13b 1529 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1530 if (!ret)
1531 ret = ret2;
bfc1af65
NP
1532
1533 return ret ? ret : copied;
ac27a0ec
DK
1534}
1535
bfc1af65
NP
1536static int ext4_journalled_write_end(struct file *file,
1537 struct address_space *mapping,
1538 loff_t pos, unsigned len, unsigned copied,
1539 struct page *page, void *fsdata)
ac27a0ec 1540{
617ba13b 1541 handle_t *handle = ext4_journal_current_handle();
bfc1af65 1542 struct inode *inode = mapping->host;
ac27a0ec
DK
1543 int ret = 0, ret2;
1544 int partial = 0;
bfc1af65 1545 unsigned from, to;
cf17fea6 1546 loff_t new_i_size;
ac27a0ec 1547
ba80b101
TT
1548 trace_mark(ext4_journalled_write_end,
1549 "dev %s ino %lu pos %llu len %u copied %u",
1550 inode->i_sb->s_id, inode->i_ino,
1551 (unsigned long long) pos, len, copied);
bfc1af65
NP
1552 from = pos & (PAGE_CACHE_SIZE - 1);
1553 to = from + len;
1554
1555 if (copied < len) {
1556 if (!PageUptodate(page))
1557 copied = 0;
1558 page_zero_new_buffers(page, from+copied, to);
1559 }
ac27a0ec
DK
1560
1561 ret = walk_page_buffers(handle, page_buffers(page), from,
bfc1af65 1562 to, &partial, write_end_fn);
ac27a0ec
DK
1563 if (!partial)
1564 SetPageUptodate(page);
cf17fea6
AK
1565 new_i_size = pos + copied;
1566 if (new_i_size > inode->i_size)
bfc1af65 1567 i_size_write(inode, pos+copied);
617ba13b 1568 EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
cf17fea6
AK
1569 if (new_i_size > EXT4_I(inode)->i_disksize) {
1570 ext4_update_i_disksize(inode, new_i_size);
617ba13b 1571 ret2 = ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
1572 if (!ret)
1573 ret = ret2;
1574 }
bfc1af65 1575
cf108bca 1576 unlock_page(page);
617ba13b 1577 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1578 if (!ret)
1579 ret = ret2;
bfc1af65
NP
1580 page_cache_release(page);
1581
1582 return ret ? ret : copied;
ac27a0ec 1583}
d2a17637
MC
1584
1585static int ext4_da_reserve_space(struct inode *inode, int nrblocks)
1586{
030ba6bc 1587 int retries = 0;
60e58e0f
MC
1588 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1589 unsigned long md_needed, mdblocks, total = 0;
d2a17637
MC
1590
1591 /*
1592 * recalculate the amount of metadata blocks to reserve
1593 * in order to allocate nrblocks
1594 * worse case is one extent per block
1595 */
030ba6bc 1596repeat:
d2a17637
MC
1597 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1598 total = EXT4_I(inode)->i_reserved_data_blocks + nrblocks;
1599 mdblocks = ext4_calc_metadata_amount(inode, total);
1600 BUG_ON(mdblocks < EXT4_I(inode)->i_reserved_meta_blocks);
1601
1602 md_needed = mdblocks - EXT4_I(inode)->i_reserved_meta_blocks;
1603 total = md_needed + nrblocks;
1604
60e58e0f
MC
1605 /*
1606 * Make quota reservation here to prevent quota overflow
1607 * later. Real quota accounting is done at pages writeout
1608 * time.
1609 */
1610 if (vfs_dq_reserve_block(inode, total)) {
1611 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1612 return -EDQUOT;
1613 }
1614
a30d542a 1615 if (ext4_claim_free_blocks(sbi, total)) {
d2a17637 1616 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
030ba6bc
AK
1617 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1618 yield();
1619 goto repeat;
1620 }
60e58e0f 1621 vfs_dq_release_reservation_block(inode, total);
d2a17637
MC
1622 return -ENOSPC;
1623 }
d2a17637
MC
1624 EXT4_I(inode)->i_reserved_data_blocks += nrblocks;
1625 EXT4_I(inode)->i_reserved_meta_blocks = mdblocks;
1626
1627 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1628 return 0; /* success */
1629}
1630
12219aea 1631static void ext4_da_release_space(struct inode *inode, int to_free)
d2a17637
MC
1632{
1633 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1634 int total, mdb, mdb_free, release;
1635
cd213226
MC
1636 if (!to_free)
1637 return; /* Nothing to release, exit */
1638
d2a17637 1639 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
cd213226
MC
1640
1641 if (!EXT4_I(inode)->i_reserved_data_blocks) {
1642 /*
1643 * if there is no reserved blocks, but we try to free some
1644 * then the counter is messed up somewhere.
1645 * but since this function is called from invalidate
1646 * page, it's harmless to return without any action
1647 */
1648 printk(KERN_INFO "ext4 delalloc try to release %d reserved "
1649 "blocks for inode %lu, but there is no reserved "
1650 "data blocks\n", to_free, inode->i_ino);
1651 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1652 return;
1653 }
1654
d2a17637 1655 /* recalculate the number of metablocks still need to be reserved */
12219aea 1656 total = EXT4_I(inode)->i_reserved_data_blocks - to_free;
d2a17637
MC
1657 mdb = ext4_calc_metadata_amount(inode, total);
1658
1659 /* figure out how many metablocks to release */
1660 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1661 mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1662
d2a17637
MC
1663 release = to_free + mdb_free;
1664
6bc6e63f
AK
1665 /* update fs dirty blocks counter for truncate case */
1666 percpu_counter_sub(&sbi->s_dirtyblocks_counter, release);
d2a17637
MC
1667
1668 /* update per-inode reservations */
12219aea
AK
1669 BUG_ON(to_free > EXT4_I(inode)->i_reserved_data_blocks);
1670 EXT4_I(inode)->i_reserved_data_blocks -= to_free;
d2a17637
MC
1671
1672 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1673 EXT4_I(inode)->i_reserved_meta_blocks = mdb;
d2a17637 1674 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f
MC
1675
1676 vfs_dq_release_reservation_block(inode, release);
d2a17637
MC
1677}
1678
1679static void ext4_da_page_release_reservation(struct page *page,
1680 unsigned long offset)
1681{
1682 int to_release = 0;
1683 struct buffer_head *head, *bh;
1684 unsigned int curr_off = 0;
1685
1686 head = page_buffers(page);
1687 bh = head;
1688 do {
1689 unsigned int next_off = curr_off + bh->b_size;
1690
1691 if ((offset <= curr_off) && (buffer_delay(bh))) {
1692 to_release++;
1693 clear_buffer_delay(bh);
1694 }
1695 curr_off = next_off;
1696 } while ((bh = bh->b_this_page) != head);
12219aea 1697 ext4_da_release_space(page->mapping->host, to_release);
d2a17637 1698}
ac27a0ec 1699
64769240
AT
1700/*
1701 * Delayed allocation stuff
1702 */
1703
1704struct mpage_da_data {
1705 struct inode *inode;
8dc207c0
TT
1706 sector_t b_blocknr; /* start block number of extent */
1707 size_t b_size; /* size of extent */
1708 unsigned long b_state; /* state of the extent */
64769240 1709 unsigned long first_page, next_page; /* extent of pages */
64769240 1710 struct writeback_control *wbc;
a1d6cc56 1711 int io_done;
498e5f24 1712 int pages_written;
df22291f 1713 int retval;
64769240
AT
1714};
1715
1716/*
1717 * mpage_da_submit_io - walks through extent of pages and try to write
a1d6cc56 1718 * them with writepage() call back
64769240
AT
1719 *
1720 * @mpd->inode: inode
1721 * @mpd->first_page: first page of the extent
1722 * @mpd->next_page: page after the last page of the extent
64769240
AT
1723 *
1724 * By the time mpage_da_submit_io() is called we expect all blocks
1725 * to be allocated. this may be wrong if allocation failed.
1726 *
1727 * As pages are already locked by write_cache_pages(), we can't use it
1728 */
1729static int mpage_da_submit_io(struct mpage_da_data *mpd)
1730{
22208ded 1731 long pages_skipped;
791b7f08
AK
1732 struct pagevec pvec;
1733 unsigned long index, end;
1734 int ret = 0, err, nr_pages, i;
1735 struct inode *inode = mpd->inode;
1736 struct address_space *mapping = inode->i_mapping;
64769240
AT
1737
1738 BUG_ON(mpd->next_page <= mpd->first_page);
791b7f08
AK
1739 /*
1740 * We need to start from the first_page to the next_page - 1
1741 * to make sure we also write the mapped dirty buffer_heads.
8dc207c0 1742 * If we look at mpd->b_blocknr we would only be looking
791b7f08
AK
1743 * at the currently mapped buffer_heads.
1744 */
64769240
AT
1745 index = mpd->first_page;
1746 end = mpd->next_page - 1;
1747
791b7f08 1748 pagevec_init(&pvec, 0);
64769240 1749 while (index <= end) {
791b7f08 1750 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
64769240
AT
1751 if (nr_pages == 0)
1752 break;
1753 for (i = 0; i < nr_pages; i++) {
1754 struct page *page = pvec.pages[i];
1755
791b7f08
AK
1756 index = page->index;
1757 if (index > end)
1758 break;
1759 index++;
1760
1761 BUG_ON(!PageLocked(page));
1762 BUG_ON(PageWriteback(page));
1763
22208ded 1764 pages_skipped = mpd->wbc->pages_skipped;
a1d6cc56 1765 err = mapping->a_ops->writepage(page, mpd->wbc);
22208ded
AK
1766 if (!err && (pages_skipped == mpd->wbc->pages_skipped))
1767 /*
1768 * have successfully written the page
1769 * without skipping the same
1770 */
a1d6cc56 1771 mpd->pages_written++;
64769240
AT
1772 /*
1773 * In error case, we have to continue because
1774 * remaining pages are still locked
1775 * XXX: unlock and re-dirty them?
1776 */
1777 if (ret == 0)
1778 ret = err;
1779 }
1780 pagevec_release(&pvec);
1781 }
64769240
AT
1782 return ret;
1783}
1784
1785/*
1786 * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
1787 *
1788 * @mpd->inode - inode to walk through
1789 * @exbh->b_blocknr - first block on a disk
1790 * @exbh->b_size - amount of space in bytes
1791 * @logical - first logical block to start assignment with
1792 *
1793 * the function goes through all passed space and put actual disk
1794 * block numbers into buffer heads, dropping BH_Delay
1795 */
1796static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd, sector_t logical,
1797 struct buffer_head *exbh)
1798{
1799 struct inode *inode = mpd->inode;
1800 struct address_space *mapping = inode->i_mapping;
1801 int blocks = exbh->b_size >> inode->i_blkbits;
1802 sector_t pblock = exbh->b_blocknr, cur_logical;
1803 struct buffer_head *head, *bh;
a1d6cc56 1804 pgoff_t index, end;
64769240
AT
1805 struct pagevec pvec;
1806 int nr_pages, i;
1807
1808 index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1809 end = (logical + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1810 cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1811
1812 pagevec_init(&pvec, 0);
1813
1814 while (index <= end) {
1815 /* XXX: optimize tail */
1816 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1817 if (nr_pages == 0)
1818 break;
1819 for (i = 0; i < nr_pages; i++) {
1820 struct page *page = pvec.pages[i];
1821
1822 index = page->index;
1823 if (index > end)
1824 break;
1825 index++;
1826
1827 BUG_ON(!PageLocked(page));
1828 BUG_ON(PageWriteback(page));
1829 BUG_ON(!page_has_buffers(page));
1830
1831 bh = page_buffers(page);
1832 head = bh;
1833
1834 /* skip blocks out of the range */
1835 do {
1836 if (cur_logical >= logical)
1837 break;
1838 cur_logical++;
1839 } while ((bh = bh->b_this_page) != head);
1840
1841 do {
1842 if (cur_logical >= logical + blocks)
1843 break;
64769240
AT
1844 if (buffer_delay(bh)) {
1845 bh->b_blocknr = pblock;
1846 clear_buffer_delay(bh);
bf068ee2
AK
1847 bh->b_bdev = inode->i_sb->s_bdev;
1848 } else if (buffer_unwritten(bh)) {
1849 bh->b_blocknr = pblock;
1850 clear_buffer_unwritten(bh);
1851 set_buffer_mapped(bh);
1852 set_buffer_new(bh);
1853 bh->b_bdev = inode->i_sb->s_bdev;
61628a3f 1854 } else if (buffer_mapped(bh))
64769240 1855 BUG_ON(bh->b_blocknr != pblock);
64769240
AT
1856
1857 cur_logical++;
1858 pblock++;
1859 } while ((bh = bh->b_this_page) != head);
1860 }
1861 pagevec_release(&pvec);
1862 }
1863}
1864
1865
1866/*
1867 * __unmap_underlying_blocks - just a helper function to unmap
1868 * set of blocks described by @bh
1869 */
1870static inline void __unmap_underlying_blocks(struct inode *inode,
1871 struct buffer_head *bh)
1872{
1873 struct block_device *bdev = inode->i_sb->s_bdev;
1874 int blocks, i;
1875
1876 blocks = bh->b_size >> inode->i_blkbits;
1877 for (i = 0; i < blocks; i++)
1878 unmap_underlying_metadata(bdev, bh->b_blocknr + i);
1879}
1880
c4a0c46e
AK
1881static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd,
1882 sector_t logical, long blk_cnt)
1883{
1884 int nr_pages, i;
1885 pgoff_t index, end;
1886 struct pagevec pvec;
1887 struct inode *inode = mpd->inode;
1888 struct address_space *mapping = inode->i_mapping;
1889
1890 index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1891 end = (logical + blk_cnt - 1) >>
1892 (PAGE_CACHE_SHIFT - inode->i_blkbits);
1893 while (index <= end) {
1894 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1895 if (nr_pages == 0)
1896 break;
1897 for (i = 0; i < nr_pages; i++) {
1898 struct page *page = pvec.pages[i];
1899 index = page->index;
1900 if (index > end)
1901 break;
1902 index++;
1903
1904 BUG_ON(!PageLocked(page));
1905 BUG_ON(PageWriteback(page));
1906 block_invalidatepage(page, 0);
1907 ClearPageUptodate(page);
1908 unlock_page(page);
1909 }
1910 }
1911 return;
1912}
1913
df22291f
AK
1914static void ext4_print_free_blocks(struct inode *inode)
1915{
1916 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1917 printk(KERN_EMERG "Total free blocks count %lld\n",
1918 ext4_count_free_blocks(inode->i_sb));
1919 printk(KERN_EMERG "Free/Dirty block details\n");
1920 printk(KERN_EMERG "free_blocks=%lld\n",
8f72fbdf 1921 (long long)percpu_counter_sum(&sbi->s_freeblocks_counter));
df22291f 1922 printk(KERN_EMERG "dirty_blocks=%lld\n",
8f72fbdf 1923 (long long)percpu_counter_sum(&sbi->s_dirtyblocks_counter));
df22291f 1924 printk(KERN_EMERG "Block reservation details\n");
498e5f24 1925 printk(KERN_EMERG "i_reserved_data_blocks=%u\n",
df22291f 1926 EXT4_I(inode)->i_reserved_data_blocks);
498e5f24 1927 printk(KERN_EMERG "i_reserved_meta_blocks=%u\n",
df22291f
AK
1928 EXT4_I(inode)->i_reserved_meta_blocks);
1929 return;
1930}
1931
ed5bde0b
TT
1932#define EXT4_DELALLOC_RSVED 1
1933static int ext4_da_get_block_write(struct inode *inode, sector_t iblock,
1934 struct buffer_head *bh_result, int create)
1935{
1936 int ret;
1937 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
1938 loff_t disksize = EXT4_I(inode)->i_disksize;
1939 handle_t *handle = NULL;
1940
1941 handle = ext4_journal_current_handle();
1942 BUG_ON(!handle);
1943 ret = ext4_get_blocks_wrap(handle, inode, iblock, max_blocks,
1944 bh_result, create, 0, EXT4_DELALLOC_RSVED);
1945 if (ret <= 0)
1946 return ret;
1947
1948 bh_result->b_size = (ret << inode->i_blkbits);
1949
1950 if (ext4_should_order_data(inode)) {
1951 int retval;
1952 retval = ext4_jbd2_file_inode(handle, inode);
1953 if (retval)
1954 /*
1955 * Failed to add inode for ordered mode. Don't
1956 * update file size
1957 */
1958 return retval;
1959 }
1960
1961 /*
1962 * Update on-disk size along with block allocation we don't
1963 * use 'extend_disksize' as size may change within already
1964 * allocated block -bzzz
1965 */
1966 disksize = ((loff_t) iblock + ret) << inode->i_blkbits;
1967 if (disksize > i_size_read(inode))
1968 disksize = i_size_read(inode);
1969 if (disksize > EXT4_I(inode)->i_disksize) {
1970 ext4_update_i_disksize(inode, disksize);
1971 ret = ext4_mark_inode_dirty(handle, inode);
1972 return ret;
1973 }
1974 return 0;
1975}
1976
64769240
AT
1977/*
1978 * mpage_da_map_blocks - go through given space
1979 *
8dc207c0 1980 * @mpd - bh describing space
64769240
AT
1981 *
1982 * The function skips space we know is already mapped to disk blocks.
1983 *
64769240 1984 */
ed5bde0b 1985static int mpage_da_map_blocks(struct mpage_da_data *mpd)
64769240 1986{
a1d6cc56 1987 int err = 0;
030ba6bc 1988 struct buffer_head new;
df22291f 1989 sector_t next;
64769240
AT
1990
1991 /*
1992 * We consider only non-mapped and non-allocated blocks
1993 */
8dc207c0
TT
1994 if ((mpd->b_state & (1 << BH_Mapped)) &&
1995 !(mpd->b_state & (1 << BH_Delay)))
c4a0c46e 1996 return 0;
8dc207c0 1997 new.b_state = mpd->b_state;
a1d6cc56 1998 new.b_blocknr = 0;
8dc207c0
TT
1999 new.b_size = mpd->b_size;
2000 next = mpd->b_blocknr;
a1d6cc56
AK
2001 /*
2002 * If we didn't accumulate anything
2003 * to write simply return
2004 */
2005 if (!new.b_size)
c4a0c46e 2006 return 0;
c4a0c46e 2007
ed5bde0b
TT
2008 err = ext4_da_get_block_write(mpd->inode, next, &new, 1);
2009 if (err) {
2010 /*
2011 * If get block returns with error we simply
2012 * return. Later writepage will redirty the page and
2013 * writepages will find the dirty page again
c4a0c46e
AK
2014 */
2015 if (err == -EAGAIN)
2016 return 0;
df22291f
AK
2017
2018 if (err == -ENOSPC &&
ed5bde0b 2019 ext4_count_free_blocks(mpd->inode->i_sb)) {
df22291f
AK
2020 mpd->retval = err;
2021 return 0;
2022 }
2023
c4a0c46e 2024 /*
ed5bde0b
TT
2025 * get block failure will cause us to loop in
2026 * writepages, because a_ops->writepage won't be able
2027 * to make progress. The page will be redirtied by
2028 * writepage and writepages will again try to write
2029 * the same.
c4a0c46e
AK
2030 */
2031 printk(KERN_EMERG "%s block allocation failed for inode %lu "
2032 "at logical offset %llu with max blocks "
2033 "%zd with error %d\n",
2034 __func__, mpd->inode->i_ino,
2035 (unsigned long long)next,
8dc207c0 2036 mpd->b_size >> mpd->inode->i_blkbits, err);
c4a0c46e
AK
2037 printk(KERN_EMERG "This should not happen.!! "
2038 "Data will be lost\n");
030ba6bc 2039 if (err == -ENOSPC) {
df22291f 2040 ext4_print_free_blocks(mpd->inode);
030ba6bc 2041 }
c4a0c46e
AK
2042 /* invlaidate all the pages */
2043 ext4_da_block_invalidatepages(mpd, next,
8dc207c0 2044 mpd->b_size >> mpd->inode->i_blkbits);
c4a0c46e
AK
2045 return err;
2046 }
a1d6cc56 2047 BUG_ON(new.b_size == 0);
64769240 2048
a1d6cc56
AK
2049 if (buffer_new(&new))
2050 __unmap_underlying_blocks(mpd->inode, &new);
64769240 2051
a1d6cc56
AK
2052 /*
2053 * If blocks are delayed marked, we need to
2054 * put actual blocknr and drop delayed bit
2055 */
8dc207c0
TT
2056 if ((mpd->b_state & (1 << BH_Delay)) ||
2057 (mpd->b_state & (1 << BH_Unwritten)))
a1d6cc56 2058 mpage_put_bnr_to_bhs(mpd, next, &new);
64769240 2059
c4a0c46e 2060 return 0;
64769240
AT
2061}
2062
bf068ee2
AK
2063#define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
2064 (1 << BH_Delay) | (1 << BH_Unwritten))
64769240
AT
2065
2066/*
2067 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
2068 *
2069 * @mpd->lbh - extent of blocks
2070 * @logical - logical number of the block in the file
2071 * @bh - bh of the block (used to access block's state)
2072 *
2073 * the function is used to collect contig. blocks in same state
2074 */
2075static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
8dc207c0
TT
2076 sector_t logical, size_t b_size,
2077 unsigned long b_state)
64769240 2078{
64769240 2079 sector_t next;
8dc207c0 2080 int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
64769240 2081
525f4ed8
MC
2082 /* check if thereserved journal credits might overflow */
2083 if (!(EXT4_I(mpd->inode)->i_flags & EXT4_EXTENTS_FL)) {
2084 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
2085 /*
2086 * With non-extent format we are limited by the journal
2087 * credit available. Total credit needed to insert
2088 * nrblocks contiguous blocks is dependent on the
2089 * nrblocks. So limit nrblocks.
2090 */
2091 goto flush_it;
2092 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
2093 EXT4_MAX_TRANS_DATA) {
2094 /*
2095 * Adding the new buffer_head would make it cross the
2096 * allowed limit for which we have journal credit
2097 * reserved. So limit the new bh->b_size
2098 */
2099 b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
2100 mpd->inode->i_blkbits;
2101 /* we will do mpage_da_submit_io in the next loop */
2102 }
2103 }
64769240
AT
2104 /*
2105 * First block in the extent
2106 */
8dc207c0
TT
2107 if (mpd->b_size == 0) {
2108 mpd->b_blocknr = logical;
2109 mpd->b_size = b_size;
2110 mpd->b_state = b_state & BH_FLAGS;
64769240
AT
2111 return;
2112 }
2113
8dc207c0 2114 next = mpd->b_blocknr + nrblocks;
64769240
AT
2115 /*
2116 * Can we merge the block to our big extent?
2117 */
8dc207c0
TT
2118 if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
2119 mpd->b_size += b_size;
64769240
AT
2120 return;
2121 }
2122
525f4ed8 2123flush_it:
64769240
AT
2124 /*
2125 * We couldn't merge the block to our extent, so we
2126 * need to flush current extent and start new one
2127 */
c4a0c46e
AK
2128 if (mpage_da_map_blocks(mpd) == 0)
2129 mpage_da_submit_io(mpd);
a1d6cc56
AK
2130 mpd->io_done = 1;
2131 return;
64769240
AT
2132}
2133
2134/*
2135 * __mpage_da_writepage - finds extent of pages and blocks
2136 *
2137 * @page: page to consider
2138 * @wbc: not used, we just follow rules
2139 * @data: context
2140 *
2141 * The function finds extents of pages and scan them for all blocks.
2142 */
2143static int __mpage_da_writepage(struct page *page,
2144 struct writeback_control *wbc, void *data)
2145{
2146 struct mpage_da_data *mpd = data;
2147 struct inode *inode = mpd->inode;
8dc207c0 2148 struct buffer_head *bh, *head;
64769240
AT
2149 sector_t logical;
2150
a1d6cc56
AK
2151 if (mpd->io_done) {
2152 /*
2153 * Rest of the page in the page_vec
2154 * redirty then and skip then. We will
2155 * try to to write them again after
2156 * starting a new transaction
2157 */
2158 redirty_page_for_writepage(wbc, page);
2159 unlock_page(page);
2160 return MPAGE_DA_EXTENT_TAIL;
2161 }
64769240
AT
2162 /*
2163 * Can we merge this page to current extent?
2164 */
2165 if (mpd->next_page != page->index) {
2166 /*
2167 * Nope, we can't. So, we map non-allocated blocks
a1d6cc56 2168 * and start IO on them using writepage()
64769240
AT
2169 */
2170 if (mpd->next_page != mpd->first_page) {
c4a0c46e
AK
2171 if (mpage_da_map_blocks(mpd) == 0)
2172 mpage_da_submit_io(mpd);
a1d6cc56
AK
2173 /*
2174 * skip rest of the page in the page_vec
2175 */
2176 mpd->io_done = 1;
2177 redirty_page_for_writepage(wbc, page);
2178 unlock_page(page);
2179 return MPAGE_DA_EXTENT_TAIL;
64769240
AT
2180 }
2181
2182 /*
2183 * Start next extent of pages ...
2184 */
2185 mpd->first_page = page->index;
2186
2187 /*
2188 * ... and blocks
2189 */
8dc207c0
TT
2190 mpd->b_size = 0;
2191 mpd->b_state = 0;
2192 mpd->b_blocknr = 0;
64769240
AT
2193 }
2194
2195 mpd->next_page = page->index + 1;
2196 logical = (sector_t) page->index <<
2197 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2198
2199 if (!page_has_buffers(page)) {
8dc207c0
TT
2200 mpage_add_bh_to_extent(mpd, logical, PAGE_CACHE_SIZE,
2201 (1 << BH_Dirty) | (1 << BH_Uptodate));
a1d6cc56
AK
2202 if (mpd->io_done)
2203 return MPAGE_DA_EXTENT_TAIL;
64769240
AT
2204 } else {
2205 /*
2206 * Page with regular buffer heads, just add all dirty ones
2207 */
2208 head = page_buffers(page);
2209 bh = head;
2210 do {
2211 BUG_ON(buffer_locked(bh));
791b7f08
AK
2212 /*
2213 * We need to try to allocate
2214 * unmapped blocks in the same page.
2215 * Otherwise we won't make progress
2216 * with the page in ext4_da_writepage
2217 */
a1d6cc56 2218 if (buffer_dirty(bh) &&
8dc207c0
TT
2219 (!buffer_mapped(bh) || buffer_delay(bh))) {
2220 mpage_add_bh_to_extent(mpd, logical,
2221 bh->b_size,
2222 bh->b_state);
a1d6cc56
AK
2223 if (mpd->io_done)
2224 return MPAGE_DA_EXTENT_TAIL;
791b7f08
AK
2225 } else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2226 /*
2227 * mapped dirty buffer. We need to update
2228 * the b_state because we look at
2229 * b_state in mpage_da_map_blocks. We don't
2230 * update b_size because if we find an
2231 * unmapped buffer_head later we need to
2232 * use the b_state flag of that buffer_head.
2233 */
8dc207c0
TT
2234 if (mpd->b_size == 0)
2235 mpd->b_state = bh->b_state & BH_FLAGS;
a1d6cc56 2236 }
64769240
AT
2237 logical++;
2238 } while ((bh = bh->b_this_page) != head);
2239 }
2240
2241 return 0;
2242}
2243
64769240
AT
2244/*
2245 * this is a special callback for ->write_begin() only
2246 * it's intention is to return mapped block or reserve space
2247 */
2248static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2249 struct buffer_head *bh_result, int create)
2250{
2251 int ret = 0;
2252
2253 BUG_ON(create == 0);
2254 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2255
2256 /*
2257 * first, we need to know whether the block is allocated already
2258 * preallocated blocks are unmapped but should treated
2259 * the same as allocated blocks.
2260 */
d2a17637
MC
2261 ret = ext4_get_blocks_wrap(NULL, inode, iblock, 1, bh_result, 0, 0, 0);
2262 if ((ret == 0) && !buffer_delay(bh_result)) {
2263 /* the block isn't (pre)allocated yet, let's reserve space */
64769240
AT
2264 /*
2265 * XXX: __block_prepare_write() unmaps passed block,
2266 * is it OK?
2267 */
d2a17637
MC
2268 ret = ext4_da_reserve_space(inode, 1);
2269 if (ret)
2270 /* not enough space to reserve */
2271 return ret;
2272
64769240
AT
2273 map_bh(bh_result, inode->i_sb, 0);
2274 set_buffer_new(bh_result);
2275 set_buffer_delay(bh_result);
2276 } else if (ret > 0) {
2277 bh_result->b_size = (ret << inode->i_blkbits);
2278 ret = 0;
2279 }
2280
2281 return ret;
2282}
61628a3f
MC
2283
2284static int ext4_bh_unmapped_or_delay(handle_t *handle, struct buffer_head *bh)
2285{
f0e6c985
AK
2286 /*
2287 * unmapped buffer is possible for holes.
2288 * delay buffer is possible with delayed allocation
2289 */
2290 return ((!buffer_mapped(bh) || buffer_delay(bh)) && buffer_dirty(bh));
2291}
2292
2293static int ext4_normal_get_block_write(struct inode *inode, sector_t iblock,
2294 struct buffer_head *bh_result, int create)
2295{
2296 int ret = 0;
2297 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2298
2299 /*
2300 * we don't want to do block allocation in writepage
2301 * so call get_block_wrap with create = 0
2302 */
2303 ret = ext4_get_blocks_wrap(NULL, inode, iblock, max_blocks,
2304 bh_result, 0, 0, 0);
2305 if (ret > 0) {
2306 bh_result->b_size = (ret << inode->i_blkbits);
2307 ret = 0;
2308 }
2309 return ret;
61628a3f
MC
2310}
2311
61628a3f 2312/*
f0e6c985
AK
2313 * get called vi ext4_da_writepages after taking page lock (have journal handle)
2314 * get called via journal_submit_inode_data_buffers (no journal handle)
2315 * get called via shrink_page_list via pdflush (no journal handle)
2316 * or grab_page_cache when doing write_begin (have journal handle)
61628a3f 2317 */
64769240
AT
2318static int ext4_da_writepage(struct page *page,
2319 struct writeback_control *wbc)
2320{
64769240 2321 int ret = 0;
61628a3f 2322 loff_t size;
498e5f24 2323 unsigned int len;
61628a3f
MC
2324 struct buffer_head *page_bufs;
2325 struct inode *inode = page->mapping->host;
2326
ba80b101
TT
2327 trace_mark(ext4_da_writepage,
2328 "dev %s ino %lu page_index %lu",
2329 inode->i_sb->s_id, inode->i_ino, page->index);
f0e6c985
AK
2330 size = i_size_read(inode);
2331 if (page->index == size >> PAGE_CACHE_SHIFT)
2332 len = size & ~PAGE_CACHE_MASK;
2333 else
2334 len = PAGE_CACHE_SIZE;
64769240 2335
f0e6c985 2336 if (page_has_buffers(page)) {
61628a3f 2337 page_bufs = page_buffers(page);
f0e6c985
AK
2338 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2339 ext4_bh_unmapped_or_delay)) {
61628a3f 2340 /*
f0e6c985
AK
2341 * We don't want to do block allocation
2342 * So redirty the page and return
cd1aac32
AK
2343 * We may reach here when we do a journal commit
2344 * via journal_submit_inode_data_buffers.
2345 * If we don't have mapping block we just ignore
f0e6c985
AK
2346 * them. We can also reach here via shrink_page_list
2347 */
2348 redirty_page_for_writepage(wbc, page);
2349 unlock_page(page);
2350 return 0;
2351 }
2352 } else {
2353 /*
2354 * The test for page_has_buffers() is subtle:
2355 * We know the page is dirty but it lost buffers. That means
2356 * that at some moment in time after write_begin()/write_end()
2357 * has been called all buffers have been clean and thus they
2358 * must have been written at least once. So they are all
2359 * mapped and we can happily proceed with mapping them
2360 * and writing the page.
2361 *
2362 * Try to initialize the buffer_heads and check whether
2363 * all are mapped and non delay. We don't want to
2364 * do block allocation here.
2365 */
2366 ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
2367 ext4_normal_get_block_write);
2368 if (!ret) {
2369 page_bufs = page_buffers(page);
2370 /* check whether all are mapped and non delay */
2371 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2372 ext4_bh_unmapped_or_delay)) {
2373 redirty_page_for_writepage(wbc, page);
2374 unlock_page(page);
2375 return 0;
2376 }
2377 } else {
2378 /*
2379 * We can't do block allocation here
2380 * so just redity the page and unlock
2381 * and return
61628a3f 2382 */
61628a3f
MC
2383 redirty_page_for_writepage(wbc, page);
2384 unlock_page(page);
2385 return 0;
2386 }
ed9b3e33
AK
2387 /* now mark the buffer_heads as dirty and uptodate */
2388 block_commit_write(page, 0, PAGE_CACHE_SIZE);
64769240
AT
2389 }
2390
2391 if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
f0e6c985 2392 ret = nobh_writepage(page, ext4_normal_get_block_write, wbc);
64769240 2393 else
f0e6c985
AK
2394 ret = block_write_full_page(page,
2395 ext4_normal_get_block_write,
2396 wbc);
64769240 2397
64769240
AT
2398 return ret;
2399}
2400
61628a3f 2401/*
525f4ed8
MC
2402 * This is called via ext4_da_writepages() to
2403 * calulate the total number of credits to reserve to fit
2404 * a single extent allocation into a single transaction,
2405 * ext4_da_writpeages() will loop calling this before
2406 * the block allocation.
61628a3f 2407 */
525f4ed8
MC
2408
2409static int ext4_da_writepages_trans_blocks(struct inode *inode)
2410{
2411 int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2412
2413 /*
2414 * With non-extent format the journal credit needed to
2415 * insert nrblocks contiguous block is dependent on
2416 * number of contiguous block. So we will limit
2417 * number of contiguous block to a sane value
2418 */
2419 if (!(inode->i_flags & EXT4_EXTENTS_FL) &&
2420 (max_blocks > EXT4_MAX_TRANS_DATA))
2421 max_blocks = EXT4_MAX_TRANS_DATA;
2422
2423 return ext4_chunk_trans_blocks(inode, max_blocks);
2424}
61628a3f 2425
64769240 2426static int ext4_da_writepages(struct address_space *mapping,
a1d6cc56 2427 struct writeback_control *wbc)
64769240 2428{
22208ded
AK
2429 pgoff_t index;
2430 int range_whole = 0;
61628a3f 2431 handle_t *handle = NULL;
df22291f 2432 struct mpage_da_data mpd;
5e745b04 2433 struct inode *inode = mapping->host;
22208ded 2434 int no_nrwrite_index_update;
498e5f24
TT
2435 int pages_written = 0;
2436 long pages_skipped;
2acf2c26 2437 int range_cyclic, cycled = 1, io_done = 0;
5e745b04 2438 int needed_blocks, ret = 0, nr_to_writebump = 0;
5e745b04 2439 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
61628a3f 2440
ba80b101
TT
2441 trace_mark(ext4_da_writepages,
2442 "dev %s ino %lu nr_t_write %ld "
2443 "pages_skipped %ld range_start %llu "
2444 "range_end %llu nonblocking %d "
2445 "for_kupdate %d for_reclaim %d "
2446 "for_writepages %d range_cyclic %d",
2447 inode->i_sb->s_id, inode->i_ino,
2448 wbc->nr_to_write, wbc->pages_skipped,
2449 (unsigned long long) wbc->range_start,
2450 (unsigned long long) wbc->range_end,
2451 wbc->nonblocking, wbc->for_kupdate,
2452 wbc->for_reclaim, wbc->for_writepages,
2453 wbc->range_cyclic);
2454
61628a3f
MC
2455 /*
2456 * No pages to write? This is mainly a kludge to avoid starting
2457 * a transaction for special inodes like journal inode on last iput()
2458 * because that could violate lock ordering on umount
2459 */
a1d6cc56 2460 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
61628a3f 2461 return 0;
2a21e37e
TT
2462
2463 /*
2464 * If the filesystem has aborted, it is read-only, so return
2465 * right away instead of dumping stack traces later on that
2466 * will obscure the real source of the problem. We test
2467 * EXT4_MOUNT_ABORT instead of sb->s_flag's MS_RDONLY because
2468 * the latter could be true if the filesystem is mounted
2469 * read-only, and in that case, ext4_da_writepages should
2470 * *never* be called, so if that ever happens, we would want
2471 * the stack trace.
2472 */
2473 if (unlikely(sbi->s_mount_opt & EXT4_MOUNT_ABORT))
2474 return -EROFS;
2475
5e745b04
AK
2476 /*
2477 * Make sure nr_to_write is >= sbi->s_mb_stream_request
2478 * This make sure small files blocks are allocated in
2479 * single attempt. This ensure that small files
2480 * get less fragmented.
2481 */
2482 if (wbc->nr_to_write < sbi->s_mb_stream_request) {
2483 nr_to_writebump = sbi->s_mb_stream_request - wbc->nr_to_write;
2484 wbc->nr_to_write = sbi->s_mb_stream_request;
2485 }
22208ded
AK
2486 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2487 range_whole = 1;
61628a3f 2488
2acf2c26
AK
2489 range_cyclic = wbc->range_cyclic;
2490 if (wbc->range_cyclic) {
22208ded 2491 index = mapping->writeback_index;
2acf2c26
AK
2492 if (index)
2493 cycled = 0;
2494 wbc->range_start = index << PAGE_CACHE_SHIFT;
2495 wbc->range_end = LLONG_MAX;
2496 wbc->range_cyclic = 0;
2497 } else
22208ded 2498 index = wbc->range_start >> PAGE_CACHE_SHIFT;
a1d6cc56 2499
df22291f
AK
2500 mpd.wbc = wbc;
2501 mpd.inode = mapping->host;
2502
22208ded
AK
2503 /*
2504 * we don't want write_cache_pages to update
2505 * nr_to_write and writeback_index
2506 */
2507 no_nrwrite_index_update = wbc->no_nrwrite_index_update;
2508 wbc->no_nrwrite_index_update = 1;
2509 pages_skipped = wbc->pages_skipped;
2510
2acf2c26 2511retry:
22208ded 2512 while (!ret && wbc->nr_to_write > 0) {
a1d6cc56
AK
2513
2514 /*
2515 * we insert one extent at a time. So we need
2516 * credit needed for single extent allocation.
2517 * journalled mode is currently not supported
2518 * by delalloc
2519 */
2520 BUG_ON(ext4_should_journal_data(inode));
525f4ed8 2521 needed_blocks = ext4_da_writepages_trans_blocks(inode);
a1d6cc56 2522
61628a3f
MC
2523 /* start a new transaction*/
2524 handle = ext4_journal_start(inode, needed_blocks);
2525 if (IS_ERR(handle)) {
2526 ret = PTR_ERR(handle);
2a21e37e 2527 printk(KERN_CRIT "%s: jbd2_start: "
a1d6cc56
AK
2528 "%ld pages, ino %lu; err %d\n", __func__,
2529 wbc->nr_to_write, inode->i_ino, ret);
2530 dump_stack();
61628a3f
MC
2531 goto out_writepages;
2532 }
f63e6005
TT
2533
2534 /*
2535 * Now call __mpage_da_writepage to find the next
2536 * contiguous region of logical blocks that need
2537 * blocks to be allocated by ext4. We don't actually
2538 * submit the blocks for I/O here, even though
2539 * write_cache_pages thinks it will, and will set the
2540 * pages as clean for write before calling
2541 * __mpage_da_writepage().
2542 */
2543 mpd.b_size = 0;
2544 mpd.b_state = 0;
2545 mpd.b_blocknr = 0;
2546 mpd.first_page = 0;
2547 mpd.next_page = 0;
2548 mpd.io_done = 0;
2549 mpd.pages_written = 0;
2550 mpd.retval = 0;
2551 ret = write_cache_pages(mapping, wbc, __mpage_da_writepage,
2552 &mpd);
2553 /*
2554 * If we have a contigous extent of pages and we
2555 * haven't done the I/O yet, map the blocks and submit
2556 * them for I/O.
2557 */
2558 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2559 if (mpage_da_map_blocks(&mpd) == 0)
2560 mpage_da_submit_io(&mpd);
2561 mpd.io_done = 1;
2562 ret = MPAGE_DA_EXTENT_TAIL;
2563 }
2564 wbc->nr_to_write -= mpd.pages_written;
df22291f 2565
61628a3f 2566 ext4_journal_stop(handle);
df22291f 2567
8f64b32e 2568 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
22208ded
AK
2569 /* commit the transaction which would
2570 * free blocks released in the transaction
2571 * and try again
2572 */
df22291f 2573 jbd2_journal_force_commit_nested(sbi->s_journal);
22208ded
AK
2574 wbc->pages_skipped = pages_skipped;
2575 ret = 0;
2576 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
a1d6cc56
AK
2577 /*
2578 * got one extent now try with
2579 * rest of the pages
2580 */
22208ded
AK
2581 pages_written += mpd.pages_written;
2582 wbc->pages_skipped = pages_skipped;
a1d6cc56 2583 ret = 0;
2acf2c26 2584 io_done = 1;
22208ded 2585 } else if (wbc->nr_to_write)
61628a3f
MC
2586 /*
2587 * There is no more writeout needed
2588 * or we requested for a noblocking writeout
2589 * and we found the device congested
2590 */
61628a3f 2591 break;
a1d6cc56 2592 }
2acf2c26
AK
2593 if (!io_done && !cycled) {
2594 cycled = 1;
2595 index = 0;
2596 wbc->range_start = index << PAGE_CACHE_SHIFT;
2597 wbc->range_end = mapping->writeback_index - 1;
2598 goto retry;
2599 }
22208ded
AK
2600 if (pages_skipped != wbc->pages_skipped)
2601 printk(KERN_EMERG "This should not happen leaving %s "
2602 "with nr_to_write = %ld ret = %d\n",
2603 __func__, wbc->nr_to_write, ret);
2604
2605 /* Update index */
2606 index += pages_written;
2acf2c26 2607 wbc->range_cyclic = range_cyclic;
22208ded
AK
2608 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2609 /*
2610 * set the writeback_index so that range_cyclic
2611 * mode will write it back later
2612 */
2613 mapping->writeback_index = index;
a1d6cc56 2614
61628a3f 2615out_writepages:
22208ded
AK
2616 if (!no_nrwrite_index_update)
2617 wbc->no_nrwrite_index_update = 0;
2618 wbc->nr_to_write -= nr_to_writebump;
ba80b101
TT
2619 trace_mark(ext4_da_writepage_result,
2620 "dev %s ino %lu ret %d pages_written %d "
2621 "pages_skipped %ld congestion %d "
2622 "more_io %d no_nrwrite_index_update %d",
2623 inode->i_sb->s_id, inode->i_ino, ret,
2624 pages_written, wbc->pages_skipped,
2625 wbc->encountered_congestion, wbc->more_io,
2626 wbc->no_nrwrite_index_update);
61628a3f 2627 return ret;
64769240
AT
2628}
2629
79f0be8d
AK
2630#define FALL_BACK_TO_NONDELALLOC 1
2631static int ext4_nonda_switch(struct super_block *sb)
2632{
2633 s64 free_blocks, dirty_blocks;
2634 struct ext4_sb_info *sbi = EXT4_SB(sb);
2635
2636 /*
2637 * switch to non delalloc mode if we are running low
2638 * on free block. The free block accounting via percpu
179f7ebf 2639 * counters can get slightly wrong with percpu_counter_batch getting
79f0be8d
AK
2640 * accumulated on each CPU without updating global counters
2641 * Delalloc need an accurate free block accounting. So switch
2642 * to non delalloc when we are near to error range.
2643 */
2644 free_blocks = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
2645 dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
2646 if (2 * free_blocks < 3 * dirty_blocks ||
2647 free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
2648 /*
2649 * free block count is less that 150% of dirty blocks
2650 * or free blocks is less that watermark
2651 */
2652 return 1;
2653 }
2654 return 0;
2655}
2656
64769240
AT
2657static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2658 loff_t pos, unsigned len, unsigned flags,
2659 struct page **pagep, void **fsdata)
2660{
d2a17637 2661 int ret, retries = 0;
64769240
AT
2662 struct page *page;
2663 pgoff_t index;
2664 unsigned from, to;
2665 struct inode *inode = mapping->host;
2666 handle_t *handle;
2667
2668 index = pos >> PAGE_CACHE_SHIFT;
2669 from = pos & (PAGE_CACHE_SIZE - 1);
2670 to = from + len;
79f0be8d
AK
2671
2672 if (ext4_nonda_switch(inode->i_sb)) {
2673 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2674 return ext4_write_begin(file, mapping, pos,
2675 len, flags, pagep, fsdata);
2676 }
2677 *fsdata = (void *)0;
ba80b101
TT
2678
2679 trace_mark(ext4_da_write_begin,
2680 "dev %s ino %lu pos %llu len %u flags %u",
2681 inode->i_sb->s_id, inode->i_ino,
2682 (unsigned long long) pos, len, flags);
d2a17637 2683retry:
64769240
AT
2684 /*
2685 * With delayed allocation, we don't log the i_disksize update
2686 * if there is delayed block allocation. But we still need
2687 * to journalling the i_disksize update if writes to the end
2688 * of file which has an already mapped buffer.
2689 */
2690 handle = ext4_journal_start(inode, 1);
2691 if (IS_ERR(handle)) {
2692 ret = PTR_ERR(handle);
2693 goto out;
2694 }
ebd3610b
JK
2695 /* We cannot recurse into the filesystem as the transaction is already
2696 * started */
2697 flags |= AOP_FLAG_NOFS;
64769240 2698
54566b2c 2699 page = grab_cache_page_write_begin(mapping, index, flags);
d5a0d4f7
ES
2700 if (!page) {
2701 ext4_journal_stop(handle);
2702 ret = -ENOMEM;
2703 goto out;
2704 }
64769240
AT
2705 *pagep = page;
2706
2707 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
2708 ext4_da_get_block_prep);
2709 if (ret < 0) {
2710 unlock_page(page);
2711 ext4_journal_stop(handle);
2712 page_cache_release(page);
ae4d5372
AK
2713 /*
2714 * block_write_begin may have instantiated a few blocks
2715 * outside i_size. Trim these off again. Don't need
2716 * i_size_read because we hold i_mutex.
2717 */
2718 if (pos + len > inode->i_size)
2719 vmtruncate(inode, inode->i_size);
64769240
AT
2720 }
2721
d2a17637
MC
2722 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
2723 goto retry;
64769240
AT
2724out:
2725 return ret;
2726}
2727
632eaeab
MC
2728/*
2729 * Check if we should update i_disksize
2730 * when write to the end of file but not require block allocation
2731 */
2732static int ext4_da_should_update_i_disksize(struct page *page,
2733 unsigned long offset)
2734{
2735 struct buffer_head *bh;
2736 struct inode *inode = page->mapping->host;
2737 unsigned int idx;
2738 int i;
2739
2740 bh = page_buffers(page);
2741 idx = offset >> inode->i_blkbits;
2742
af5bc92d 2743 for (i = 0; i < idx; i++)
632eaeab
MC
2744 bh = bh->b_this_page;
2745
2746 if (!buffer_mapped(bh) || (buffer_delay(bh)))
2747 return 0;
2748 return 1;
2749}
2750
64769240
AT
2751static int ext4_da_write_end(struct file *file,
2752 struct address_space *mapping,
2753 loff_t pos, unsigned len, unsigned copied,
2754 struct page *page, void *fsdata)
2755{
2756 struct inode *inode = mapping->host;
2757 int ret = 0, ret2;
2758 handle_t *handle = ext4_journal_current_handle();
2759 loff_t new_i_size;
632eaeab 2760 unsigned long start, end;
79f0be8d
AK
2761 int write_mode = (int)(unsigned long)fsdata;
2762
2763 if (write_mode == FALL_BACK_TO_NONDELALLOC) {
2764 if (ext4_should_order_data(inode)) {
2765 return ext4_ordered_write_end(file, mapping, pos,
2766 len, copied, page, fsdata);
2767 } else if (ext4_should_writeback_data(inode)) {
2768 return ext4_writeback_write_end(file, mapping, pos,
2769 len, copied, page, fsdata);
2770 } else {
2771 BUG();
2772 }
2773 }
632eaeab 2774
ba80b101
TT
2775 trace_mark(ext4_da_write_end,
2776 "dev %s ino %lu pos %llu len %u copied %u",
2777 inode->i_sb->s_id, inode->i_ino,
2778 (unsigned long long) pos, len, copied);
632eaeab 2779 start = pos & (PAGE_CACHE_SIZE - 1);
af5bc92d 2780 end = start + copied - 1;
64769240
AT
2781
2782 /*
2783 * generic_write_end() will run mark_inode_dirty() if i_size
2784 * changes. So let's piggyback the i_disksize mark_inode_dirty
2785 * into that.
2786 */
2787
2788 new_i_size = pos + copied;
632eaeab
MC
2789 if (new_i_size > EXT4_I(inode)->i_disksize) {
2790 if (ext4_da_should_update_i_disksize(page, end)) {
2791 down_write(&EXT4_I(inode)->i_data_sem);
2792 if (new_i_size > EXT4_I(inode)->i_disksize) {
2793 /*
2794 * Updating i_disksize when extending file
2795 * without needing block allocation
2796 */
2797 if (ext4_should_order_data(inode))
2798 ret = ext4_jbd2_file_inode(handle,
2799 inode);
64769240 2800
632eaeab
MC
2801 EXT4_I(inode)->i_disksize = new_i_size;
2802 }
2803 up_write(&EXT4_I(inode)->i_data_sem);
cf17fea6
AK
2804 /* We need to mark inode dirty even if
2805 * new_i_size is less that inode->i_size
2806 * bu greater than i_disksize.(hint delalloc)
2807 */
2808 ext4_mark_inode_dirty(handle, inode);
64769240 2809 }
632eaeab 2810 }
64769240
AT
2811 ret2 = generic_write_end(file, mapping, pos, len, copied,
2812 page, fsdata);
2813 copied = ret2;
2814 if (ret2 < 0)
2815 ret = ret2;
2816 ret2 = ext4_journal_stop(handle);
2817 if (!ret)
2818 ret = ret2;
2819
2820 return ret ? ret : copied;
2821}
2822
2823static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
2824{
64769240
AT
2825 /*
2826 * Drop reserved blocks
2827 */
2828 BUG_ON(!PageLocked(page));
2829 if (!page_has_buffers(page))
2830 goto out;
2831
d2a17637 2832 ext4_da_page_release_reservation(page, offset);
64769240
AT
2833
2834out:
2835 ext4_invalidatepage(page, offset);
2836
2837 return;
2838}
2839
2840
ac27a0ec
DK
2841/*
2842 * bmap() is special. It gets used by applications such as lilo and by
2843 * the swapper to find the on-disk block of a specific piece of data.
2844 *
2845 * Naturally, this is dangerous if the block concerned is still in the
617ba13b 2846 * journal. If somebody makes a swapfile on an ext4 data-journaling
ac27a0ec
DK
2847 * filesystem and enables swap, then they may get a nasty shock when the
2848 * data getting swapped to that swapfile suddenly gets overwritten by
2849 * the original zero's written out previously to the journal and
2850 * awaiting writeback in the kernel's buffer cache.
2851 *
2852 * So, if we see any bmap calls here on a modified, data-journaled file,
2853 * take extra steps to flush any blocks which might be in the cache.
2854 */
617ba13b 2855static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
ac27a0ec
DK
2856{
2857 struct inode *inode = mapping->host;
2858 journal_t *journal;
2859 int err;
2860
64769240
AT
2861 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2862 test_opt(inode->i_sb, DELALLOC)) {
2863 /*
2864 * With delalloc we want to sync the file
2865 * so that we can make sure we allocate
2866 * blocks for file
2867 */
2868 filemap_write_and_wait(mapping);
2869 }
2870
0390131b 2871 if (EXT4_JOURNAL(inode) && EXT4_I(inode)->i_state & EXT4_STATE_JDATA) {
ac27a0ec
DK
2872 /*
2873 * This is a REALLY heavyweight approach, but the use of
2874 * bmap on dirty files is expected to be extremely rare:
2875 * only if we run lilo or swapon on a freshly made file
2876 * do we expect this to happen.
2877 *
2878 * (bmap requires CAP_SYS_RAWIO so this does not
2879 * represent an unprivileged user DOS attack --- we'd be
2880 * in trouble if mortal users could trigger this path at
2881 * will.)
2882 *
617ba13b 2883 * NB. EXT4_STATE_JDATA is not set on files other than
ac27a0ec
DK
2884 * regular files. If somebody wants to bmap a directory
2885 * or symlink and gets confused because the buffer
2886 * hasn't yet been flushed to disk, they deserve
2887 * everything they get.
2888 */
2889
617ba13b
MC
2890 EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA;
2891 journal = EXT4_JOURNAL(inode);
dab291af
MC
2892 jbd2_journal_lock_updates(journal);
2893 err = jbd2_journal_flush(journal);
2894 jbd2_journal_unlock_updates(journal);
ac27a0ec
DK
2895
2896 if (err)
2897 return 0;
2898 }
2899
af5bc92d 2900 return generic_block_bmap(mapping, block, ext4_get_block);
ac27a0ec
DK
2901}
2902
2903static int bget_one(handle_t *handle, struct buffer_head *bh)
2904{
2905 get_bh(bh);
2906 return 0;
2907}
2908
2909static int bput_one(handle_t *handle, struct buffer_head *bh)
2910{
2911 put_bh(bh);
2912 return 0;
2913}
2914
ac27a0ec 2915/*
678aaf48
JK
2916 * Note that we don't need to start a transaction unless we're journaling data
2917 * because we should have holes filled from ext4_page_mkwrite(). We even don't
2918 * need to file the inode to the transaction's list in ordered mode because if
2919 * we are writing back data added by write(), the inode is already there and if
2920 * we are writing back data modified via mmap(), noone guarantees in which
2921 * transaction the data will hit the disk. In case we are journaling data, we
2922 * cannot start transaction directly because transaction start ranks above page
2923 * lock so we have to do some magic.
ac27a0ec 2924 *
678aaf48 2925 * In all journaling modes block_write_full_page() will start the I/O.
ac27a0ec
DK
2926 *
2927 * Problem:
2928 *
617ba13b
MC
2929 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2930 * ext4_writepage()
ac27a0ec
DK
2931 *
2932 * Similar for:
2933 *
617ba13b 2934 * ext4_file_write() -> generic_file_write() -> __alloc_pages() -> ...
ac27a0ec 2935 *
617ba13b 2936 * Same applies to ext4_get_block(). We will deadlock on various things like
0e855ac8 2937 * lock_journal and i_data_sem
ac27a0ec
DK
2938 *
2939 * Setting PF_MEMALLOC here doesn't work - too many internal memory
2940 * allocations fail.
2941 *
2942 * 16May01: If we're reentered then journal_current_handle() will be
2943 * non-zero. We simply *return*.
2944 *
2945 * 1 July 2001: @@@ FIXME:
2946 * In journalled data mode, a data buffer may be metadata against the
2947 * current transaction. But the same file is part of a shared mapping
2948 * and someone does a writepage() on it.
2949 *
2950 * We will move the buffer onto the async_data list, but *after* it has
2951 * been dirtied. So there's a small window where we have dirty data on
2952 * BJ_Metadata.
2953 *
2954 * Note that this only applies to the last partial page in the file. The
2955 * bit which block_write_full_page() uses prepare/commit for. (That's
2956 * broken code anyway: it's wrong for msync()).
2957 *
2958 * It's a rare case: affects the final partial page, for journalled data
2959 * where the file is subject to bith write() and writepage() in the same
2960 * transction. To fix it we'll need a custom block_write_full_page().
2961 * We'll probably need that anyway for journalling writepage() output.
2962 *
2963 * We don't honour synchronous mounts for writepage(). That would be
2964 * disastrous. Any write() or metadata operation will sync the fs for
2965 * us.
2966 *
ac27a0ec 2967 */
678aaf48 2968static int __ext4_normal_writepage(struct page *page,
cf108bca
JK
2969 struct writeback_control *wbc)
2970{
2971 struct inode *inode = page->mapping->host;
2972
2973 if (test_opt(inode->i_sb, NOBH))
f0e6c985
AK
2974 return nobh_writepage(page,
2975 ext4_normal_get_block_write, wbc);
cf108bca 2976 else
f0e6c985
AK
2977 return block_write_full_page(page,
2978 ext4_normal_get_block_write,
2979 wbc);
cf108bca
JK
2980}
2981
678aaf48 2982static int ext4_normal_writepage(struct page *page,
ac27a0ec
DK
2983 struct writeback_control *wbc)
2984{
2985 struct inode *inode = page->mapping->host;
cf108bca
JK
2986 loff_t size = i_size_read(inode);
2987 loff_t len;
2988
ba80b101
TT
2989 trace_mark(ext4_normal_writepage,
2990 "dev %s ino %lu page_index %lu",
2991 inode->i_sb->s_id, inode->i_ino, page->index);
cf108bca 2992 J_ASSERT(PageLocked(page));
cf108bca
JK
2993 if (page->index == size >> PAGE_CACHE_SHIFT)
2994 len = size & ~PAGE_CACHE_MASK;
2995 else
2996 len = PAGE_CACHE_SIZE;
f0e6c985
AK
2997
2998 if (page_has_buffers(page)) {
2999 /* if page has buffers it should all be mapped
3000 * and allocated. If there are not buffers attached
3001 * to the page we know the page is dirty but it lost
3002 * buffers. That means that at some moment in time
3003 * after write_begin() / write_end() has been called
3004 * all buffers have been clean and thus they must have been
3005 * written at least once. So they are all mapped and we can
3006 * happily proceed with mapping them and writing the page.
3007 */
3008 BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
3009 ext4_bh_unmapped_or_delay));
3010 }
cf108bca
JK
3011
3012 if (!ext4_journal_current_handle())
678aaf48 3013 return __ext4_normal_writepage(page, wbc);
cf108bca
JK
3014
3015 redirty_page_for_writepage(wbc, page);
3016 unlock_page(page);
3017 return 0;
3018}
3019
3020static int __ext4_journalled_writepage(struct page *page,
3021 struct writeback_control *wbc)
3022{
3023 struct address_space *mapping = page->mapping;
3024 struct inode *inode = mapping->host;
3025 struct buffer_head *page_bufs;
ac27a0ec
DK
3026 handle_t *handle = NULL;
3027 int ret = 0;
3028 int err;
3029
f0e6c985
AK
3030 ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
3031 ext4_normal_get_block_write);
cf108bca
JK
3032 if (ret != 0)
3033 goto out_unlock;
3034
3035 page_bufs = page_buffers(page);
3036 walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE, NULL,
3037 bget_one);
3038 /* As soon as we unlock the page, it can go away, but we have
3039 * references to buffers so we are safe */
3040 unlock_page(page);
ac27a0ec 3041
617ba13b 3042 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
ac27a0ec
DK
3043 if (IS_ERR(handle)) {
3044 ret = PTR_ERR(handle);
cf108bca 3045 goto out;
ac27a0ec
DK
3046 }
3047
cf108bca
JK
3048 ret = walk_page_buffers(handle, page_bufs, 0,
3049 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
ac27a0ec 3050
cf108bca
JK
3051 err = walk_page_buffers(handle, page_bufs, 0,
3052 PAGE_CACHE_SIZE, NULL, write_end_fn);
3053 if (ret == 0)
3054 ret = err;
617ba13b 3055 err = ext4_journal_stop(handle);
ac27a0ec
DK
3056 if (!ret)
3057 ret = err;
ac27a0ec 3058
cf108bca
JK
3059 walk_page_buffers(handle, page_bufs, 0,
3060 PAGE_CACHE_SIZE, NULL, bput_one);
3061 EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
3062 goto out;
3063
3064out_unlock:
ac27a0ec 3065 unlock_page(page);
cf108bca 3066out:
ac27a0ec
DK
3067 return ret;
3068}
3069
617ba13b 3070static int ext4_journalled_writepage(struct page *page,
ac27a0ec
DK
3071 struct writeback_control *wbc)
3072{
3073 struct inode *inode = page->mapping->host;
cf108bca
JK
3074 loff_t size = i_size_read(inode);
3075 loff_t len;
ac27a0ec 3076
ba80b101
TT
3077 trace_mark(ext4_journalled_writepage,
3078 "dev %s ino %lu page_index %lu",
3079 inode->i_sb->s_id, inode->i_ino, page->index);
cf108bca 3080 J_ASSERT(PageLocked(page));
cf108bca
JK
3081 if (page->index == size >> PAGE_CACHE_SHIFT)
3082 len = size & ~PAGE_CACHE_MASK;
3083 else
3084 len = PAGE_CACHE_SIZE;
f0e6c985
AK
3085
3086 if (page_has_buffers(page)) {
3087 /* if page has buffers it should all be mapped
3088 * and allocated. If there are not buffers attached
3089 * to the page we know the page is dirty but it lost
3090 * buffers. That means that at some moment in time
3091 * after write_begin() / write_end() has been called
3092 * all buffers have been clean and thus they must have been
3093 * written at least once. So they are all mapped and we can
3094 * happily proceed with mapping them and writing the page.
3095 */
3096 BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
3097 ext4_bh_unmapped_or_delay));
3098 }
ac27a0ec 3099
cf108bca 3100 if (ext4_journal_current_handle())
ac27a0ec 3101 goto no_write;
ac27a0ec 3102
cf108bca 3103 if (PageChecked(page)) {
ac27a0ec
DK
3104 /*
3105 * It's mmapped pagecache. Add buffers and journal it. There
3106 * doesn't seem much point in redirtying the page here.
3107 */
3108 ClearPageChecked(page);
cf108bca 3109 return __ext4_journalled_writepage(page, wbc);
ac27a0ec
DK
3110 } else {
3111 /*
3112 * It may be a page full of checkpoint-mode buffers. We don't
3113 * really know unless we go poke around in the buffer_heads.
3114 * But block_write_full_page will do the right thing.
3115 */
f0e6c985
AK
3116 return block_write_full_page(page,
3117 ext4_normal_get_block_write,
3118 wbc);
ac27a0ec 3119 }
ac27a0ec
DK
3120no_write:
3121 redirty_page_for_writepage(wbc, page);
ac27a0ec 3122 unlock_page(page);
cf108bca 3123 return 0;
ac27a0ec
DK
3124}
3125
617ba13b 3126static int ext4_readpage(struct file *file, struct page *page)
ac27a0ec 3127{
617ba13b 3128 return mpage_readpage(page, ext4_get_block);
ac27a0ec
DK
3129}
3130
3131static int
617ba13b 3132ext4_readpages(struct file *file, struct address_space *mapping,
ac27a0ec
DK
3133 struct list_head *pages, unsigned nr_pages)
3134{
617ba13b 3135 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
ac27a0ec
DK
3136}
3137
617ba13b 3138static void ext4_invalidatepage(struct page *page, unsigned long offset)
ac27a0ec 3139{
617ba13b 3140 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
ac27a0ec
DK
3141
3142 /*
3143 * If it's a full truncate we just forget about the pending dirtying
3144 */
3145 if (offset == 0)
3146 ClearPageChecked(page);
3147
0390131b
FM
3148 if (journal)
3149 jbd2_journal_invalidatepage(journal, page, offset);
3150 else
3151 block_invalidatepage(page, offset);
ac27a0ec
DK
3152}
3153
617ba13b 3154static int ext4_releasepage(struct page *page, gfp_t wait)
ac27a0ec 3155{
617ba13b 3156 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
ac27a0ec
DK
3157
3158 WARN_ON(PageChecked(page));
3159 if (!page_has_buffers(page))
3160 return 0;
0390131b
FM
3161 if (journal)
3162 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3163 else
3164 return try_to_free_buffers(page);
ac27a0ec
DK
3165}
3166
3167/*
3168 * If the O_DIRECT write will extend the file then add this inode to the
3169 * orphan list. So recovery will truncate it back to the original size
3170 * if the machine crashes during the write.
3171 *
3172 * If the O_DIRECT write is intantiating holes inside i_size and the machine
7fb5409d
JK
3173 * crashes then stale disk data _may_ be exposed inside the file. But current
3174 * VFS code falls back into buffered path in that case so we are safe.
ac27a0ec 3175 */
617ba13b 3176static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
ac27a0ec
DK
3177 const struct iovec *iov, loff_t offset,
3178 unsigned long nr_segs)
3179{
3180 struct file *file = iocb->ki_filp;
3181 struct inode *inode = file->f_mapping->host;
617ba13b 3182 struct ext4_inode_info *ei = EXT4_I(inode);
7fb5409d 3183 handle_t *handle;
ac27a0ec
DK
3184 ssize_t ret;
3185 int orphan = 0;
3186 size_t count = iov_length(iov, nr_segs);
3187
3188 if (rw == WRITE) {
3189 loff_t final_size = offset + count;
3190
ac27a0ec 3191 if (final_size > inode->i_size) {
7fb5409d
JK
3192 /* Credits for sb + inode write */
3193 handle = ext4_journal_start(inode, 2);
3194 if (IS_ERR(handle)) {
3195 ret = PTR_ERR(handle);
3196 goto out;
3197 }
617ba13b 3198 ret = ext4_orphan_add(handle, inode);
7fb5409d
JK
3199 if (ret) {
3200 ext4_journal_stop(handle);
3201 goto out;
3202 }
ac27a0ec
DK
3203 orphan = 1;
3204 ei->i_disksize = inode->i_size;
7fb5409d 3205 ext4_journal_stop(handle);
ac27a0ec
DK
3206 }
3207 }
3208
3209 ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
3210 offset, nr_segs,
617ba13b 3211 ext4_get_block, NULL);
ac27a0ec 3212
7fb5409d 3213 if (orphan) {
ac27a0ec
DK
3214 int err;
3215
7fb5409d
JK
3216 /* Credits for sb + inode write */
3217 handle = ext4_journal_start(inode, 2);
3218 if (IS_ERR(handle)) {
3219 /* This is really bad luck. We've written the data
3220 * but cannot extend i_size. Bail out and pretend
3221 * the write failed... */
3222 ret = PTR_ERR(handle);
3223 goto out;
3224 }
3225 if (inode->i_nlink)
617ba13b 3226 ext4_orphan_del(handle, inode);
7fb5409d 3227 if (ret > 0) {
ac27a0ec
DK
3228 loff_t end = offset + ret;
3229 if (end > inode->i_size) {
3230 ei->i_disksize = end;
3231 i_size_write(inode, end);
3232 /*
3233 * We're going to return a positive `ret'
3234 * here due to non-zero-length I/O, so there's
3235 * no way of reporting error returns from
617ba13b 3236 * ext4_mark_inode_dirty() to userspace. So
ac27a0ec
DK
3237 * ignore it.
3238 */
617ba13b 3239 ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
3240 }
3241 }
617ba13b 3242 err = ext4_journal_stop(handle);
ac27a0ec
DK
3243 if (ret == 0)
3244 ret = err;
3245 }
3246out:
3247 return ret;
3248}
3249
3250/*
617ba13b 3251 * Pages can be marked dirty completely asynchronously from ext4's journalling
ac27a0ec
DK
3252 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3253 * much here because ->set_page_dirty is called under VFS locks. The page is
3254 * not necessarily locked.
3255 *
3256 * We cannot just dirty the page and leave attached buffers clean, because the
3257 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3258 * or jbddirty because all the journalling code will explode.
3259 *
3260 * So what we do is to mark the page "pending dirty" and next time writepage
3261 * is called, propagate that into the buffers appropriately.
3262 */
617ba13b 3263static int ext4_journalled_set_page_dirty(struct page *page)
ac27a0ec
DK
3264{
3265 SetPageChecked(page);
3266 return __set_page_dirty_nobuffers(page);
3267}
3268
617ba13b 3269static const struct address_space_operations ext4_ordered_aops = {
8ab22b9a
HH
3270 .readpage = ext4_readpage,
3271 .readpages = ext4_readpages,
3272 .writepage = ext4_normal_writepage,
3273 .sync_page = block_sync_page,
3274 .write_begin = ext4_write_begin,
3275 .write_end = ext4_ordered_write_end,
3276 .bmap = ext4_bmap,
3277 .invalidatepage = ext4_invalidatepage,
3278 .releasepage = ext4_releasepage,
3279 .direct_IO = ext4_direct_IO,
3280 .migratepage = buffer_migrate_page,
3281 .is_partially_uptodate = block_is_partially_uptodate,
ac27a0ec
DK
3282};
3283
617ba13b 3284static const struct address_space_operations ext4_writeback_aops = {
8ab22b9a
HH
3285 .readpage = ext4_readpage,
3286 .readpages = ext4_readpages,
3287 .writepage = ext4_normal_writepage,
3288 .sync_page = block_sync_page,
3289 .write_begin = ext4_write_begin,
3290 .write_end = ext4_writeback_write_end,
3291 .bmap = ext4_bmap,
3292 .invalidatepage = ext4_invalidatepage,
3293 .releasepage = ext4_releasepage,
3294 .direct_IO = ext4_direct_IO,
3295 .migratepage = buffer_migrate_page,
3296 .is_partially_uptodate = block_is_partially_uptodate,
ac27a0ec
DK
3297};
3298
617ba13b 3299static const struct address_space_operations ext4_journalled_aops = {
8ab22b9a
HH
3300 .readpage = ext4_readpage,
3301 .readpages = ext4_readpages,
3302 .writepage = ext4_journalled_writepage,
3303 .sync_page = block_sync_page,
3304 .write_begin = ext4_write_begin,
3305 .write_end = ext4_journalled_write_end,
3306 .set_page_dirty = ext4_journalled_set_page_dirty,
3307 .bmap = ext4_bmap,
3308 .invalidatepage = ext4_invalidatepage,
3309 .releasepage = ext4_releasepage,
3310 .is_partially_uptodate = block_is_partially_uptodate,
ac27a0ec
DK
3311};
3312
64769240 3313static const struct address_space_operations ext4_da_aops = {
8ab22b9a
HH
3314 .readpage = ext4_readpage,
3315 .readpages = ext4_readpages,
3316 .writepage = ext4_da_writepage,
3317 .writepages = ext4_da_writepages,
3318 .sync_page = block_sync_page,
3319 .write_begin = ext4_da_write_begin,
3320 .write_end = ext4_da_write_end,
3321 .bmap = ext4_bmap,
3322 .invalidatepage = ext4_da_invalidatepage,
3323 .releasepage = ext4_releasepage,
3324 .direct_IO = ext4_direct_IO,
3325 .migratepage = buffer_migrate_page,
3326 .is_partially_uptodate = block_is_partially_uptodate,
64769240
AT
3327};
3328
617ba13b 3329void ext4_set_aops(struct inode *inode)
ac27a0ec 3330{
cd1aac32
AK
3331 if (ext4_should_order_data(inode) &&
3332 test_opt(inode->i_sb, DELALLOC))
3333 inode->i_mapping->a_ops = &ext4_da_aops;
3334 else if (ext4_should_order_data(inode))
617ba13b 3335 inode->i_mapping->a_ops = &ext4_ordered_aops;
64769240
AT
3336 else if (ext4_should_writeback_data(inode) &&
3337 test_opt(inode->i_sb, DELALLOC))
3338 inode->i_mapping->a_ops = &ext4_da_aops;
617ba13b
MC
3339 else if (ext4_should_writeback_data(inode))
3340 inode->i_mapping->a_ops = &ext4_writeback_aops;
ac27a0ec 3341 else
617ba13b 3342 inode->i_mapping->a_ops = &ext4_journalled_aops;
ac27a0ec
DK
3343}
3344
3345/*
617ba13b 3346 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
ac27a0ec
DK
3347 * up to the end of the block which corresponds to `from'.
3348 * This required during truncate. We need to physically zero the tail end
3349 * of that block so it doesn't yield old data if the file is later grown.
3350 */
cf108bca 3351int ext4_block_truncate_page(handle_t *handle,
ac27a0ec
DK
3352 struct address_space *mapping, loff_t from)
3353{
617ba13b 3354 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
ac27a0ec 3355 unsigned offset = from & (PAGE_CACHE_SIZE-1);
725d26d3
AK
3356 unsigned blocksize, length, pos;
3357 ext4_lblk_t iblock;
ac27a0ec
DK
3358 struct inode *inode = mapping->host;
3359 struct buffer_head *bh;
cf108bca 3360 struct page *page;
ac27a0ec 3361 int err = 0;
ac27a0ec 3362
cf108bca
JK
3363 page = grab_cache_page(mapping, from >> PAGE_CACHE_SHIFT);
3364 if (!page)
3365 return -EINVAL;
3366
ac27a0ec
DK
3367 blocksize = inode->i_sb->s_blocksize;
3368 length = blocksize - (offset & (blocksize - 1));
3369 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3370
3371 /*
3372 * For "nobh" option, we can only work if we don't need to
3373 * read-in the page - otherwise we create buffers to do the IO.
3374 */
3375 if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
617ba13b 3376 ext4_should_writeback_data(inode) && PageUptodate(page)) {
eebd2aa3 3377 zero_user(page, offset, length);
ac27a0ec
DK
3378 set_page_dirty(page);
3379 goto unlock;
3380 }
3381
3382 if (!page_has_buffers(page))
3383 create_empty_buffers(page, blocksize, 0);
3384
3385 /* Find the buffer that contains "offset" */
3386 bh = page_buffers(page);
3387 pos = blocksize;
3388 while (offset >= pos) {
3389 bh = bh->b_this_page;
3390 iblock++;
3391 pos += blocksize;
3392 }
3393
3394 err = 0;
3395 if (buffer_freed(bh)) {
3396 BUFFER_TRACE(bh, "freed: skip");
3397 goto unlock;
3398 }
3399
3400 if (!buffer_mapped(bh)) {
3401 BUFFER_TRACE(bh, "unmapped");
617ba13b 3402 ext4_get_block(inode, iblock, bh, 0);
ac27a0ec
DK
3403 /* unmapped? It's a hole - nothing to do */
3404 if (!buffer_mapped(bh)) {
3405 BUFFER_TRACE(bh, "still unmapped");
3406 goto unlock;
3407 }
3408 }
3409
3410 /* Ok, it's mapped. Make sure it's up-to-date */
3411 if (PageUptodate(page))
3412 set_buffer_uptodate(bh);
3413
3414 if (!buffer_uptodate(bh)) {
3415 err = -EIO;
3416 ll_rw_block(READ, 1, &bh);
3417 wait_on_buffer(bh);
3418 /* Uhhuh. Read error. Complain and punt. */
3419 if (!buffer_uptodate(bh))
3420 goto unlock;
3421 }
3422
617ba13b 3423 if (ext4_should_journal_data(inode)) {
ac27a0ec 3424 BUFFER_TRACE(bh, "get write access");
617ba13b 3425 err = ext4_journal_get_write_access(handle, bh);
ac27a0ec
DK
3426 if (err)
3427 goto unlock;
3428 }
3429
eebd2aa3 3430 zero_user(page, offset, length);
ac27a0ec
DK
3431
3432 BUFFER_TRACE(bh, "zeroed end of block");
3433
3434 err = 0;
617ba13b 3435 if (ext4_should_journal_data(inode)) {
0390131b 3436 err = ext4_handle_dirty_metadata(handle, inode, bh);
ac27a0ec 3437 } else {
617ba13b 3438 if (ext4_should_order_data(inode))
678aaf48 3439 err = ext4_jbd2_file_inode(handle, inode);
ac27a0ec
DK
3440 mark_buffer_dirty(bh);
3441 }
3442
3443unlock:
3444 unlock_page(page);
3445 page_cache_release(page);
3446 return err;
3447}
3448
3449/*
3450 * Probably it should be a library function... search for first non-zero word
3451 * or memcmp with zero_page, whatever is better for particular architecture.
3452 * Linus?
3453 */
3454static inline int all_zeroes(__le32 *p, __le32 *q)
3455{
3456 while (p < q)
3457 if (*p++)
3458 return 0;
3459 return 1;
3460}
3461
3462/**
617ba13b 3463 * ext4_find_shared - find the indirect blocks for partial truncation.
ac27a0ec
DK
3464 * @inode: inode in question
3465 * @depth: depth of the affected branch
617ba13b 3466 * @offsets: offsets of pointers in that branch (see ext4_block_to_path)
ac27a0ec
DK
3467 * @chain: place to store the pointers to partial indirect blocks
3468 * @top: place to the (detached) top of branch
3469 *
617ba13b 3470 * This is a helper function used by ext4_truncate().
ac27a0ec
DK
3471 *
3472 * When we do truncate() we may have to clean the ends of several
3473 * indirect blocks but leave the blocks themselves alive. Block is
3474 * partially truncated if some data below the new i_size is refered
3475 * from it (and it is on the path to the first completely truncated
3476 * data block, indeed). We have to free the top of that path along
3477 * with everything to the right of the path. Since no allocation
617ba13b 3478 * past the truncation point is possible until ext4_truncate()
ac27a0ec
DK
3479 * finishes, we may safely do the latter, but top of branch may
3480 * require special attention - pageout below the truncation point
3481 * might try to populate it.
3482 *
3483 * We atomically detach the top of branch from the tree, store the
3484 * block number of its root in *@top, pointers to buffer_heads of
3485 * partially truncated blocks - in @chain[].bh and pointers to
3486 * their last elements that should not be removed - in
3487 * @chain[].p. Return value is the pointer to last filled element
3488 * of @chain.
3489 *
3490 * The work left to caller to do the actual freeing of subtrees:
3491 * a) free the subtree starting from *@top
3492 * b) free the subtrees whose roots are stored in
3493 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
3494 * c) free the subtrees growing from the inode past the @chain[0].
3495 * (no partially truncated stuff there). */
3496
617ba13b 3497static Indirect *ext4_find_shared(struct inode *inode, int depth,
725d26d3 3498 ext4_lblk_t offsets[4], Indirect chain[4], __le32 *top)
ac27a0ec
DK
3499{
3500 Indirect *partial, *p;
3501 int k, err;
3502
3503 *top = 0;
3504 /* Make k index the deepest non-null offest + 1 */
3505 for (k = depth; k > 1 && !offsets[k-1]; k--)
3506 ;
617ba13b 3507 partial = ext4_get_branch(inode, k, offsets, chain, &err);
ac27a0ec
DK
3508 /* Writer: pointers */
3509 if (!partial)
3510 partial = chain + k-1;
3511 /*
3512 * If the branch acquired continuation since we've looked at it -
3513 * fine, it should all survive and (new) top doesn't belong to us.
3514 */
3515 if (!partial->key && *partial->p)
3516 /* Writer: end */
3517 goto no_top;
af5bc92d 3518 for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
ac27a0ec
DK
3519 ;
3520 /*
3521 * OK, we've found the last block that must survive. The rest of our
3522 * branch should be detached before unlocking. However, if that rest
3523 * of branch is all ours and does not grow immediately from the inode
3524 * it's easier to cheat and just decrement partial->p.
3525 */
3526 if (p == chain + k - 1 && p > chain) {
3527 p->p--;
3528 } else {
3529 *top = *p->p;
617ba13b 3530 /* Nope, don't do this in ext4. Must leave the tree intact */
ac27a0ec
DK
3531#if 0
3532 *p->p = 0;
3533#endif
3534 }
3535 /* Writer: end */
3536
af5bc92d 3537 while (partial > p) {
ac27a0ec
DK
3538 brelse(partial->bh);
3539 partial--;
3540 }
3541no_top:
3542 return partial;
3543}
3544
3545/*
3546 * Zero a number of block pointers in either an inode or an indirect block.
3547 * If we restart the transaction we must again get write access to the
3548 * indirect block for further modification.
3549 *
3550 * We release `count' blocks on disk, but (last - first) may be greater
3551 * than `count' because there can be holes in there.
3552 */
617ba13b
MC
3553static void ext4_clear_blocks(handle_t *handle, struct inode *inode,
3554 struct buffer_head *bh, ext4_fsblk_t block_to_free,
ac27a0ec
DK
3555 unsigned long count, __le32 *first, __le32 *last)
3556{
3557 __le32 *p;
3558 if (try_to_extend_transaction(handle, inode)) {
3559 if (bh) {
0390131b
FM
3560 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
3561 ext4_handle_dirty_metadata(handle, inode, bh);
ac27a0ec 3562 }
617ba13b
MC
3563 ext4_mark_inode_dirty(handle, inode);
3564 ext4_journal_test_restart(handle, inode);
ac27a0ec
DK
3565 if (bh) {
3566 BUFFER_TRACE(bh, "retaking write access");
617ba13b 3567 ext4_journal_get_write_access(handle, bh);
ac27a0ec
DK
3568 }
3569 }
3570
3571 /*
3572 * Any buffers which are on the journal will be in memory. We find
dab291af 3573 * them on the hash table so jbd2_journal_revoke() will run jbd2_journal_forget()
ac27a0ec 3574 * on them. We've already detached each block from the file, so
dab291af 3575 * bforget() in jbd2_journal_forget() should be safe.
ac27a0ec 3576 *
dab291af 3577 * AKPM: turn on bforget in jbd2_journal_forget()!!!
ac27a0ec
DK
3578 */
3579 for (p = first; p < last; p++) {
3580 u32 nr = le32_to_cpu(*p);
3581 if (nr) {
1d03ec98 3582 struct buffer_head *tbh;
ac27a0ec
DK
3583
3584 *p = 0;
1d03ec98
AK
3585 tbh = sb_find_get_block(inode->i_sb, nr);
3586 ext4_forget(handle, 0, inode, tbh, nr);
ac27a0ec
DK
3587 }
3588 }
3589
c9de560d 3590 ext4_free_blocks(handle, inode, block_to_free, count, 0);
ac27a0ec
DK
3591}
3592
3593/**
617ba13b 3594 * ext4_free_data - free a list of data blocks
ac27a0ec
DK
3595 * @handle: handle for this transaction
3596 * @inode: inode we are dealing with
3597 * @this_bh: indirect buffer_head which contains *@first and *@last
3598 * @first: array of block numbers
3599 * @last: points immediately past the end of array
3600 *
3601 * We are freeing all blocks refered from that array (numbers are stored as
3602 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
3603 *
3604 * We accumulate contiguous runs of blocks to free. Conveniently, if these
3605 * blocks are contiguous then releasing them at one time will only affect one
3606 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
3607 * actually use a lot of journal space.
3608 *
3609 * @this_bh will be %NULL if @first and @last point into the inode's direct
3610 * block pointers.
3611 */
617ba13b 3612static void ext4_free_data(handle_t *handle, struct inode *inode,
ac27a0ec
DK
3613 struct buffer_head *this_bh,
3614 __le32 *first, __le32 *last)
3615{
617ba13b 3616 ext4_fsblk_t block_to_free = 0; /* Starting block # of a run */
ac27a0ec
DK
3617 unsigned long count = 0; /* Number of blocks in the run */
3618 __le32 *block_to_free_p = NULL; /* Pointer into inode/ind
3619 corresponding to
3620 block_to_free */
617ba13b 3621 ext4_fsblk_t nr; /* Current block # */
ac27a0ec
DK
3622 __le32 *p; /* Pointer into inode/ind
3623 for current block */
3624 int err;
3625
3626 if (this_bh) { /* For indirect block */
3627 BUFFER_TRACE(this_bh, "get_write_access");
617ba13b 3628 err = ext4_journal_get_write_access(handle, this_bh);
ac27a0ec
DK
3629 /* Important: if we can't update the indirect pointers
3630 * to the blocks, we can't free them. */
3631 if (err)
3632 return;
3633 }
3634
3635 for (p = first; p < last; p++) {
3636 nr = le32_to_cpu(*p);
3637 if (nr) {
3638 /* accumulate blocks to free if they're contiguous */
3639 if (count == 0) {
3640 block_to_free = nr;
3641 block_to_free_p = p;
3642 count = 1;
3643 } else if (nr == block_to_free + count) {
3644 count++;
3645 } else {
617ba13b 3646 ext4_clear_blocks(handle, inode, this_bh,
ac27a0ec
DK
3647 block_to_free,
3648 count, block_to_free_p, p);
3649 block_to_free = nr;
3650 block_to_free_p = p;
3651 count = 1;
3652 }
3653 }
3654 }
3655
3656 if (count > 0)
617ba13b 3657 ext4_clear_blocks(handle, inode, this_bh, block_to_free,
ac27a0ec
DK
3658 count, block_to_free_p, p);
3659
3660 if (this_bh) {
0390131b 3661 BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
71dc8fbc
DG
3662
3663 /*
3664 * The buffer head should have an attached journal head at this
3665 * point. However, if the data is corrupted and an indirect
3666 * block pointed to itself, it would have been detached when
3667 * the block was cleared. Check for this instead of OOPSing.
3668 */
e7f07968 3669 if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
0390131b 3670 ext4_handle_dirty_metadata(handle, inode, this_bh);
71dc8fbc
DG
3671 else
3672 ext4_error(inode->i_sb, __func__,
3673 "circular indirect block detected, "
3674 "inode=%lu, block=%llu",
3675 inode->i_ino,
3676 (unsigned long long) this_bh->b_blocknr);
ac27a0ec
DK
3677 }
3678}
3679
3680/**
617ba13b 3681 * ext4_free_branches - free an array of branches
ac27a0ec
DK
3682 * @handle: JBD handle for this transaction
3683 * @inode: inode we are dealing with
3684 * @parent_bh: the buffer_head which contains *@first and *@last
3685 * @first: array of block numbers
3686 * @last: pointer immediately past the end of array
3687 * @depth: depth of the branches to free
3688 *
3689 * We are freeing all blocks refered from these branches (numbers are
3690 * stored as little-endian 32-bit) and updating @inode->i_blocks
3691 * appropriately.
3692 */
617ba13b 3693static void ext4_free_branches(handle_t *handle, struct inode *inode,
ac27a0ec
DK
3694 struct buffer_head *parent_bh,
3695 __le32 *first, __le32 *last, int depth)
3696{
617ba13b 3697 ext4_fsblk_t nr;
ac27a0ec
DK
3698 __le32 *p;
3699
0390131b 3700 if (ext4_handle_is_aborted(handle))
ac27a0ec
DK
3701 return;
3702
3703 if (depth--) {
3704 struct buffer_head *bh;
617ba13b 3705 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
ac27a0ec
DK
3706 p = last;
3707 while (--p >= first) {
3708 nr = le32_to_cpu(*p);
3709 if (!nr)
3710 continue; /* A hole */
3711
3712 /* Go read the buffer for the next level down */
3713 bh = sb_bread(inode->i_sb, nr);
3714
3715 /*
3716 * A read failure? Report error and clear slot
3717 * (should be rare).
3718 */
3719 if (!bh) {
617ba13b 3720 ext4_error(inode->i_sb, "ext4_free_branches",
2ae02107 3721 "Read failure, inode=%lu, block=%llu",
ac27a0ec
DK
3722 inode->i_ino, nr);
3723 continue;
3724 }
3725
3726 /* This zaps the entire block. Bottom up. */
3727 BUFFER_TRACE(bh, "free child branches");
617ba13b 3728 ext4_free_branches(handle, inode, bh,
af5bc92d
TT
3729 (__le32 *) bh->b_data,
3730 (__le32 *) bh->b_data + addr_per_block,
3731 depth);
ac27a0ec
DK
3732
3733 /*
3734 * We've probably journalled the indirect block several
3735 * times during the truncate. But it's no longer
3736 * needed and we now drop it from the transaction via
dab291af 3737 * jbd2_journal_revoke().
ac27a0ec
DK
3738 *
3739 * That's easy if it's exclusively part of this
3740 * transaction. But if it's part of the committing
dab291af 3741 * transaction then jbd2_journal_forget() will simply
ac27a0ec 3742 * brelse() it. That means that if the underlying
617ba13b 3743 * block is reallocated in ext4_get_block(),
ac27a0ec
DK
3744 * unmap_underlying_metadata() will find this block
3745 * and will try to get rid of it. damn, damn.
3746 *
3747 * If this block has already been committed to the
3748 * journal, a revoke record will be written. And
3749 * revoke records must be emitted *before* clearing
3750 * this block's bit in the bitmaps.
3751 */
617ba13b 3752 ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
ac27a0ec
DK
3753
3754 /*
3755 * Everything below this this pointer has been
3756 * released. Now let this top-of-subtree go.
3757 *
3758 * We want the freeing of this indirect block to be
3759 * atomic in the journal with the updating of the
3760 * bitmap block which owns it. So make some room in
3761 * the journal.
3762 *
3763 * We zero the parent pointer *after* freeing its
3764 * pointee in the bitmaps, so if extend_transaction()
3765 * for some reason fails to put the bitmap changes and
3766 * the release into the same transaction, recovery
3767 * will merely complain about releasing a free block,
3768 * rather than leaking blocks.
3769 */
0390131b 3770 if (ext4_handle_is_aborted(handle))
ac27a0ec
DK
3771 return;
3772 if (try_to_extend_transaction(handle, inode)) {
617ba13b
MC
3773 ext4_mark_inode_dirty(handle, inode);
3774 ext4_journal_test_restart(handle, inode);
ac27a0ec
DK
3775 }
3776
c9de560d 3777 ext4_free_blocks(handle, inode, nr, 1, 1);
ac27a0ec
DK
3778
3779 if (parent_bh) {
3780 /*
3781 * The block which we have just freed is
3782 * pointed to by an indirect block: journal it
3783 */
3784 BUFFER_TRACE(parent_bh, "get_write_access");
617ba13b 3785 if (!ext4_journal_get_write_access(handle,
ac27a0ec
DK
3786 parent_bh)){
3787 *p = 0;
3788 BUFFER_TRACE(parent_bh,
0390131b
FM
3789 "call ext4_handle_dirty_metadata");
3790 ext4_handle_dirty_metadata(handle,
3791 inode,
3792 parent_bh);
ac27a0ec
DK
3793 }
3794 }
3795 }
3796 } else {
3797 /* We have reached the bottom of the tree. */
3798 BUFFER_TRACE(parent_bh, "free data blocks");
617ba13b 3799 ext4_free_data(handle, inode, parent_bh, first, last);
ac27a0ec
DK
3800 }
3801}
3802
91ef4caf
DG
3803int ext4_can_truncate(struct inode *inode)
3804{
3805 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3806 return 0;
3807 if (S_ISREG(inode->i_mode))
3808 return 1;
3809 if (S_ISDIR(inode->i_mode))
3810 return 1;
3811 if (S_ISLNK(inode->i_mode))
3812 return !ext4_inode_is_fast_symlink(inode);
3813 return 0;
3814}
3815
ac27a0ec 3816/*
617ba13b 3817 * ext4_truncate()
ac27a0ec 3818 *
617ba13b
MC
3819 * We block out ext4_get_block() block instantiations across the entire
3820 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
ac27a0ec
DK
3821 * simultaneously on behalf of the same inode.
3822 *
3823 * As we work through the truncate and commmit bits of it to the journal there
3824 * is one core, guiding principle: the file's tree must always be consistent on
3825 * disk. We must be able to restart the truncate after a crash.
3826 *
3827 * The file's tree may be transiently inconsistent in memory (although it
3828 * probably isn't), but whenever we close off and commit a journal transaction,
3829 * the contents of (the filesystem + the journal) must be consistent and
3830 * restartable. It's pretty simple, really: bottom up, right to left (although
3831 * left-to-right works OK too).
3832 *
3833 * Note that at recovery time, journal replay occurs *before* the restart of
3834 * truncate against the orphan inode list.
3835 *
3836 * The committed inode has the new, desired i_size (which is the same as
617ba13b 3837 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
ac27a0ec 3838 * that this inode's truncate did not complete and it will again call
617ba13b
MC
3839 * ext4_truncate() to have another go. So there will be instantiated blocks
3840 * to the right of the truncation point in a crashed ext4 filesystem. But
ac27a0ec 3841 * that's fine - as long as they are linked from the inode, the post-crash
617ba13b 3842 * ext4_truncate() run will find them and release them.
ac27a0ec 3843 */
617ba13b 3844void ext4_truncate(struct inode *inode)
ac27a0ec
DK
3845{
3846 handle_t *handle;
617ba13b 3847 struct ext4_inode_info *ei = EXT4_I(inode);
ac27a0ec 3848 __le32 *i_data = ei->i_data;
617ba13b 3849 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
ac27a0ec 3850 struct address_space *mapping = inode->i_mapping;
725d26d3 3851 ext4_lblk_t offsets[4];
ac27a0ec
DK
3852 Indirect chain[4];
3853 Indirect *partial;
3854 __le32 nr = 0;
3855 int n;
725d26d3 3856 ext4_lblk_t last_block;
ac27a0ec 3857 unsigned blocksize = inode->i_sb->s_blocksize;
ac27a0ec 3858
91ef4caf 3859 if (!ext4_can_truncate(inode))
ac27a0ec
DK
3860 return;
3861
1d03ec98 3862 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
cf108bca 3863 ext4_ext_truncate(inode);
1d03ec98
AK
3864 return;
3865 }
a86c6181 3866
ac27a0ec 3867 handle = start_transaction(inode);
cf108bca 3868 if (IS_ERR(handle))
ac27a0ec 3869 return; /* AKPM: return what? */
ac27a0ec
DK
3870
3871 last_block = (inode->i_size + blocksize-1)
617ba13b 3872 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
ac27a0ec 3873
cf108bca
JK
3874 if (inode->i_size & (blocksize - 1))
3875 if (ext4_block_truncate_page(handle, mapping, inode->i_size))
3876 goto out_stop;
ac27a0ec 3877
617ba13b 3878 n = ext4_block_to_path(inode, last_block, offsets, NULL);
ac27a0ec
DK
3879 if (n == 0)
3880 goto out_stop; /* error */
3881
3882 /*
3883 * OK. This truncate is going to happen. We add the inode to the
3884 * orphan list, so that if this truncate spans multiple transactions,
3885 * and we crash, we will resume the truncate when the filesystem
3886 * recovers. It also marks the inode dirty, to catch the new size.
3887 *
3888 * Implication: the file must always be in a sane, consistent
3889 * truncatable state while each transaction commits.
3890 */
617ba13b 3891 if (ext4_orphan_add(handle, inode))
ac27a0ec
DK
3892 goto out_stop;
3893
632eaeab
MC
3894 /*
3895 * From here we block out all ext4_get_block() callers who want to
3896 * modify the block allocation tree.
3897 */
3898 down_write(&ei->i_data_sem);
b4df2030 3899
c2ea3fde 3900 ext4_discard_preallocations(inode);
b4df2030 3901
ac27a0ec
DK
3902 /*
3903 * The orphan list entry will now protect us from any crash which
3904 * occurs before the truncate completes, so it is now safe to propagate
3905 * the new, shorter inode size (held for now in i_size) into the
3906 * on-disk inode. We do this via i_disksize, which is the value which
617ba13b 3907 * ext4 *really* writes onto the disk inode.
ac27a0ec
DK
3908 */
3909 ei->i_disksize = inode->i_size;
3910
ac27a0ec 3911 if (n == 1) { /* direct blocks */
617ba13b
MC
3912 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
3913 i_data + EXT4_NDIR_BLOCKS);
ac27a0ec
DK
3914 goto do_indirects;
3915 }
3916
617ba13b 3917 partial = ext4_find_shared(inode, n, offsets, chain, &nr);
ac27a0ec
DK
3918 /* Kill the top of shared branch (not detached) */
3919 if (nr) {
3920 if (partial == chain) {
3921 /* Shared branch grows from the inode */
617ba13b 3922 ext4_free_branches(handle, inode, NULL,
ac27a0ec
DK
3923 &nr, &nr+1, (chain+n-1) - partial);
3924 *partial->p = 0;
3925 /*
3926 * We mark the inode dirty prior to restart,
3927 * and prior to stop. No need for it here.
3928 */
3929 } else {
3930 /* Shared branch grows from an indirect block */
3931 BUFFER_TRACE(partial->bh, "get_write_access");
617ba13b 3932 ext4_free_branches(handle, inode, partial->bh,
ac27a0ec
DK
3933 partial->p,
3934 partial->p+1, (chain+n-1) - partial);
3935 }
3936 }
3937 /* Clear the ends of indirect blocks on the shared branch */
3938 while (partial > chain) {
617ba13b 3939 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
ac27a0ec
DK
3940 (__le32*)partial->bh->b_data+addr_per_block,
3941 (chain+n-1) - partial);
3942 BUFFER_TRACE(partial->bh, "call brelse");
3943 brelse (partial->bh);
3944 partial--;
3945 }
3946do_indirects:
3947 /* Kill the remaining (whole) subtrees */
3948 switch (offsets[0]) {
3949 default:
617ba13b 3950 nr = i_data[EXT4_IND_BLOCK];
ac27a0ec 3951 if (nr) {
617ba13b
MC
3952 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
3953 i_data[EXT4_IND_BLOCK] = 0;
ac27a0ec 3954 }
617ba13b
MC
3955 case EXT4_IND_BLOCK:
3956 nr = i_data[EXT4_DIND_BLOCK];
ac27a0ec 3957 if (nr) {
617ba13b
MC
3958 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
3959 i_data[EXT4_DIND_BLOCK] = 0;
ac27a0ec 3960 }
617ba13b
MC
3961 case EXT4_DIND_BLOCK:
3962 nr = i_data[EXT4_TIND_BLOCK];
ac27a0ec 3963 if (nr) {
617ba13b
MC
3964 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
3965 i_data[EXT4_TIND_BLOCK] = 0;
ac27a0ec 3966 }
617ba13b 3967 case EXT4_TIND_BLOCK:
ac27a0ec
DK
3968 ;
3969 }
3970
0e855ac8 3971 up_write(&ei->i_data_sem);
ef7f3835 3972 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
617ba13b 3973 ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
3974
3975 /*
3976 * In a multi-transaction truncate, we only make the final transaction
3977 * synchronous
3978 */
3979 if (IS_SYNC(inode))
0390131b 3980 ext4_handle_sync(handle);
ac27a0ec
DK
3981out_stop:
3982 /*
3983 * If this was a simple ftruncate(), and the file will remain alive
3984 * then we need to clear up the orphan record which we created above.
3985 * However, if this was a real unlink then we were called by
617ba13b 3986 * ext4_delete_inode(), and we allow that function to clean up the
ac27a0ec
DK
3987 * orphan info for us.
3988 */
3989 if (inode->i_nlink)
617ba13b 3990 ext4_orphan_del(handle, inode);
ac27a0ec 3991
617ba13b 3992 ext4_journal_stop(handle);
ac27a0ec
DK
3993}
3994
ac27a0ec 3995/*
617ba13b 3996 * ext4_get_inode_loc returns with an extra refcount against the inode's
ac27a0ec
DK
3997 * underlying buffer_head on success. If 'in_mem' is true, we have all
3998 * data in memory that is needed to recreate the on-disk version of this
3999 * inode.
4000 */
617ba13b
MC
4001static int __ext4_get_inode_loc(struct inode *inode,
4002 struct ext4_iloc *iloc, int in_mem)
ac27a0ec 4003{
240799cd
TT
4004 struct ext4_group_desc *gdp;
4005 struct buffer_head *bh;
4006 struct super_block *sb = inode->i_sb;
4007 ext4_fsblk_t block;
4008 int inodes_per_block, inode_offset;
4009
3a06d778 4010 iloc->bh = NULL;
240799cd
TT
4011 if (!ext4_valid_inum(sb, inode->i_ino))
4012 return -EIO;
ac27a0ec 4013
240799cd
TT
4014 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4015 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4016 if (!gdp)
ac27a0ec
DK
4017 return -EIO;
4018
240799cd
TT
4019 /*
4020 * Figure out the offset within the block group inode table
4021 */
4022 inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb));
4023 inode_offset = ((inode->i_ino - 1) %
4024 EXT4_INODES_PER_GROUP(sb));
4025 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4026 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4027
4028 bh = sb_getblk(sb, block);
ac27a0ec 4029 if (!bh) {
240799cd
TT
4030 ext4_error(sb, "ext4_get_inode_loc", "unable to read "
4031 "inode block - inode=%lu, block=%llu",
4032 inode->i_ino, block);
ac27a0ec
DK
4033 return -EIO;
4034 }
4035 if (!buffer_uptodate(bh)) {
4036 lock_buffer(bh);
9c83a923
HK
4037
4038 /*
4039 * If the buffer has the write error flag, we have failed
4040 * to write out another inode in the same block. In this
4041 * case, we don't have to read the block because we may
4042 * read the old inode data successfully.
4043 */
4044 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4045 set_buffer_uptodate(bh);
4046
ac27a0ec
DK
4047 if (buffer_uptodate(bh)) {
4048 /* someone brought it uptodate while we waited */
4049 unlock_buffer(bh);
4050 goto has_buffer;
4051 }
4052
4053 /*
4054 * If we have all information of the inode in memory and this
4055 * is the only valid inode in the block, we need not read the
4056 * block.
4057 */
4058 if (in_mem) {
4059 struct buffer_head *bitmap_bh;
240799cd 4060 int i, start;
ac27a0ec 4061
240799cd 4062 start = inode_offset & ~(inodes_per_block - 1);
ac27a0ec 4063
240799cd
TT
4064 /* Is the inode bitmap in cache? */
4065 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
ac27a0ec
DK
4066 if (!bitmap_bh)
4067 goto make_io;
4068
4069 /*
4070 * If the inode bitmap isn't in cache then the
4071 * optimisation may end up performing two reads instead
4072 * of one, so skip it.
4073 */
4074 if (!buffer_uptodate(bitmap_bh)) {
4075 brelse(bitmap_bh);
4076 goto make_io;
4077 }
240799cd 4078 for (i = start; i < start + inodes_per_block; i++) {
ac27a0ec
DK
4079 if (i == inode_offset)
4080 continue;
617ba13b 4081 if (ext4_test_bit(i, bitmap_bh->b_data))
ac27a0ec
DK
4082 break;
4083 }
4084 brelse(bitmap_bh);
240799cd 4085 if (i == start + inodes_per_block) {
ac27a0ec
DK
4086 /* all other inodes are free, so skip I/O */
4087 memset(bh->b_data, 0, bh->b_size);
4088 set_buffer_uptodate(bh);
4089 unlock_buffer(bh);
4090 goto has_buffer;
4091 }
4092 }
4093
4094make_io:
240799cd
TT
4095 /*
4096 * If we need to do any I/O, try to pre-readahead extra
4097 * blocks from the inode table.
4098 */
4099 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4100 ext4_fsblk_t b, end, table;
4101 unsigned num;
4102
4103 table = ext4_inode_table(sb, gdp);
4104 /* Make sure s_inode_readahead_blks is a power of 2 */
4105 while (EXT4_SB(sb)->s_inode_readahead_blks &
4106 (EXT4_SB(sb)->s_inode_readahead_blks-1))
4107 EXT4_SB(sb)->s_inode_readahead_blks =
4108 (EXT4_SB(sb)->s_inode_readahead_blks &
4109 (EXT4_SB(sb)->s_inode_readahead_blks-1));
4110 b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
4111 if (table > b)
4112 b = table;
4113 end = b + EXT4_SB(sb)->s_inode_readahead_blks;
4114 num = EXT4_INODES_PER_GROUP(sb);
4115 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4116 EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
560671a0 4117 num -= ext4_itable_unused_count(sb, gdp);
240799cd
TT
4118 table += num / inodes_per_block;
4119 if (end > table)
4120 end = table;
4121 while (b <= end)
4122 sb_breadahead(sb, b++);
4123 }
4124
ac27a0ec
DK
4125 /*
4126 * There are other valid inodes in the buffer, this inode
4127 * has in-inode xattrs, or we don't have this inode in memory.
4128 * Read the block from disk.
4129 */
4130 get_bh(bh);
4131 bh->b_end_io = end_buffer_read_sync;
4132 submit_bh(READ_META, bh);
4133 wait_on_buffer(bh);
4134 if (!buffer_uptodate(bh)) {
240799cd
TT
4135 ext4_error(sb, __func__,
4136 "unable to read inode block - inode=%lu, "
4137 "block=%llu", inode->i_ino, block);
ac27a0ec
DK
4138 brelse(bh);
4139 return -EIO;
4140 }
4141 }
4142has_buffer:
4143 iloc->bh = bh;
4144 return 0;
4145}
4146
617ba13b 4147int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
4148{
4149 /* We have all inode data except xattrs in memory here. */
617ba13b
MC
4150 return __ext4_get_inode_loc(inode, iloc,
4151 !(EXT4_I(inode)->i_state & EXT4_STATE_XATTR));
ac27a0ec
DK
4152}
4153
617ba13b 4154void ext4_set_inode_flags(struct inode *inode)
ac27a0ec 4155{
617ba13b 4156 unsigned int flags = EXT4_I(inode)->i_flags;
ac27a0ec
DK
4157
4158 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
617ba13b 4159 if (flags & EXT4_SYNC_FL)
ac27a0ec 4160 inode->i_flags |= S_SYNC;
617ba13b 4161 if (flags & EXT4_APPEND_FL)
ac27a0ec 4162 inode->i_flags |= S_APPEND;
617ba13b 4163 if (flags & EXT4_IMMUTABLE_FL)
ac27a0ec 4164 inode->i_flags |= S_IMMUTABLE;
617ba13b 4165 if (flags & EXT4_NOATIME_FL)
ac27a0ec 4166 inode->i_flags |= S_NOATIME;
617ba13b 4167 if (flags & EXT4_DIRSYNC_FL)
ac27a0ec
DK
4168 inode->i_flags |= S_DIRSYNC;
4169}
4170
ff9ddf7e
JK
4171/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4172void ext4_get_inode_flags(struct ext4_inode_info *ei)
4173{
4174 unsigned int flags = ei->vfs_inode.i_flags;
4175
4176 ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4177 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
4178 if (flags & S_SYNC)
4179 ei->i_flags |= EXT4_SYNC_FL;
4180 if (flags & S_APPEND)
4181 ei->i_flags |= EXT4_APPEND_FL;
4182 if (flags & S_IMMUTABLE)
4183 ei->i_flags |= EXT4_IMMUTABLE_FL;
4184 if (flags & S_NOATIME)
4185 ei->i_flags |= EXT4_NOATIME_FL;
4186 if (flags & S_DIRSYNC)
4187 ei->i_flags |= EXT4_DIRSYNC_FL;
4188}
0fc1b451
AK
4189static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4190 struct ext4_inode_info *ei)
4191{
4192 blkcnt_t i_blocks ;
8180a562
AK
4193 struct inode *inode = &(ei->vfs_inode);
4194 struct super_block *sb = inode->i_sb;
0fc1b451
AK
4195
4196 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4197 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
4198 /* we are using combined 48 bit field */
4199 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4200 le32_to_cpu(raw_inode->i_blocks_lo);
8180a562
AK
4201 if (ei->i_flags & EXT4_HUGE_FILE_FL) {
4202 /* i_blocks represent file system block size */
4203 return i_blocks << (inode->i_blkbits - 9);
4204 } else {
4205 return i_blocks;
4206 }
0fc1b451
AK
4207 } else {
4208 return le32_to_cpu(raw_inode->i_blocks_lo);
4209 }
4210}
ff9ddf7e 4211
1d1fe1ee 4212struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
ac27a0ec 4213{
617ba13b
MC
4214 struct ext4_iloc iloc;
4215 struct ext4_inode *raw_inode;
1d1fe1ee 4216 struct ext4_inode_info *ei;
ac27a0ec 4217 struct buffer_head *bh;
1d1fe1ee
DH
4218 struct inode *inode;
4219 long ret;
ac27a0ec
DK
4220 int block;
4221
1d1fe1ee
DH
4222 inode = iget_locked(sb, ino);
4223 if (!inode)
4224 return ERR_PTR(-ENOMEM);
4225 if (!(inode->i_state & I_NEW))
4226 return inode;
4227
4228 ei = EXT4_I(inode);
03010a33 4229#ifdef CONFIG_EXT4_FS_POSIX_ACL
617ba13b
MC
4230 ei->i_acl = EXT4_ACL_NOT_CACHED;
4231 ei->i_default_acl = EXT4_ACL_NOT_CACHED;
ac27a0ec 4232#endif
ac27a0ec 4233
1d1fe1ee
DH
4234 ret = __ext4_get_inode_loc(inode, &iloc, 0);
4235 if (ret < 0)
ac27a0ec
DK
4236 goto bad_inode;
4237 bh = iloc.bh;
617ba13b 4238 raw_inode = ext4_raw_inode(&iloc);
ac27a0ec
DK
4239 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4240 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4241 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
af5bc92d 4242 if (!(test_opt(inode->i_sb, NO_UID32))) {
ac27a0ec
DK
4243 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4244 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4245 }
4246 inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
ac27a0ec
DK
4247
4248 ei->i_state = 0;
4249 ei->i_dir_start_lookup = 0;
4250 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4251 /* We now have enough fields to check if the inode was active or not.
4252 * This is needed because nfsd might try to access dead inodes
4253 * the test is that same one that e2fsck uses
4254 * NeilBrown 1999oct15
4255 */
4256 if (inode->i_nlink == 0) {
4257 if (inode->i_mode == 0 ||
617ba13b 4258 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
ac27a0ec 4259 /* this inode is deleted */
af5bc92d 4260 brelse(bh);
1d1fe1ee 4261 ret = -ESTALE;
ac27a0ec
DK
4262 goto bad_inode;
4263 }
4264 /* The only unlinked inodes we let through here have
4265 * valid i_mode and are being read by the orphan
4266 * recovery code: that's fine, we're about to complete
4267 * the process of deleting those. */
4268 }
ac27a0ec 4269 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
0fc1b451 4270 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
7973c0c1 4271 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
9b8f1f01 4272 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
a48380f7 4273 cpu_to_le32(EXT4_OS_HURD)) {
a1ddeb7e
BP
4274 ei->i_file_acl |=
4275 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
ac27a0ec 4276 }
a48380f7 4277 inode->i_size = ext4_isize(raw_inode);
ac27a0ec
DK
4278 ei->i_disksize = inode->i_size;
4279 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4280 ei->i_block_group = iloc.block_group;
a4912123 4281 ei->i_last_alloc_group = ~0;
ac27a0ec
DK
4282 /*
4283 * NOTE! The in-memory inode i_data array is in little-endian order
4284 * even on big-endian machines: we do NOT byteswap the block numbers!
4285 */
617ba13b 4286 for (block = 0; block < EXT4_N_BLOCKS; block++)
ac27a0ec
DK
4287 ei->i_data[block] = raw_inode->i_block[block];
4288 INIT_LIST_HEAD(&ei->i_orphan);
4289
0040d987 4290 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
ac27a0ec 4291 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
617ba13b 4292 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
e5d2861f 4293 EXT4_INODE_SIZE(inode->i_sb)) {
af5bc92d 4294 brelse(bh);
1d1fe1ee 4295 ret = -EIO;
ac27a0ec 4296 goto bad_inode;
e5d2861f 4297 }
ac27a0ec
DK
4298 if (ei->i_extra_isize == 0) {
4299 /* The extra space is currently unused. Use it. */
617ba13b
MC
4300 ei->i_extra_isize = sizeof(struct ext4_inode) -
4301 EXT4_GOOD_OLD_INODE_SIZE;
ac27a0ec
DK
4302 } else {
4303 __le32 *magic = (void *)raw_inode +
617ba13b 4304 EXT4_GOOD_OLD_INODE_SIZE +
ac27a0ec 4305 ei->i_extra_isize;
617ba13b
MC
4306 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
4307 ei->i_state |= EXT4_STATE_XATTR;
ac27a0ec
DK
4308 }
4309 } else
4310 ei->i_extra_isize = 0;
4311
ef7f3835
KS
4312 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4313 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4314 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4315 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4316
25ec56b5
JNC
4317 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4318 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4319 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4320 inode->i_version |=
4321 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4322 }
4323
7a262f7c
AK
4324 if (ei->i_flags & EXT4_EXTENTS_FL) {
4325 /* Validate extent which is part of inode */
4326 ret = ext4_ext_check_inode(inode);
4327 if (ret) {
4328 brelse(bh);
4329 goto bad_inode;
4330 }
4331
4332 }
4333
ac27a0ec 4334 if (S_ISREG(inode->i_mode)) {
617ba13b
MC
4335 inode->i_op = &ext4_file_inode_operations;
4336 inode->i_fop = &ext4_file_operations;
4337 ext4_set_aops(inode);
ac27a0ec 4338 } else if (S_ISDIR(inode->i_mode)) {
617ba13b
MC
4339 inode->i_op = &ext4_dir_inode_operations;
4340 inode->i_fop = &ext4_dir_operations;
ac27a0ec 4341 } else if (S_ISLNK(inode->i_mode)) {
e83c1397 4342 if (ext4_inode_is_fast_symlink(inode)) {
617ba13b 4343 inode->i_op = &ext4_fast_symlink_inode_operations;
e83c1397
DG
4344 nd_terminate_link(ei->i_data, inode->i_size,
4345 sizeof(ei->i_data) - 1);
4346 } else {
617ba13b
MC
4347 inode->i_op = &ext4_symlink_inode_operations;
4348 ext4_set_aops(inode);
ac27a0ec
DK
4349 }
4350 } else {
617ba13b 4351 inode->i_op = &ext4_special_inode_operations;
ac27a0ec
DK
4352 if (raw_inode->i_block[0])
4353 init_special_inode(inode, inode->i_mode,
4354 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4355 else
4356 init_special_inode(inode, inode->i_mode,
4357 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4358 }
af5bc92d 4359 brelse(iloc.bh);
617ba13b 4360 ext4_set_inode_flags(inode);
1d1fe1ee
DH
4361 unlock_new_inode(inode);
4362 return inode;
ac27a0ec
DK
4363
4364bad_inode:
1d1fe1ee
DH
4365 iget_failed(inode);
4366 return ERR_PTR(ret);
ac27a0ec
DK
4367}
4368
0fc1b451
AK
4369static int ext4_inode_blocks_set(handle_t *handle,
4370 struct ext4_inode *raw_inode,
4371 struct ext4_inode_info *ei)
4372{
4373 struct inode *inode = &(ei->vfs_inode);
4374 u64 i_blocks = inode->i_blocks;
4375 struct super_block *sb = inode->i_sb;
0fc1b451
AK
4376
4377 if (i_blocks <= ~0U) {
4378 /*
4379 * i_blocks can be represnted in a 32 bit variable
4380 * as multiple of 512 bytes
4381 */
8180a562 4382 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 4383 raw_inode->i_blocks_high = 0;
8180a562 4384 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
f287a1a5
TT
4385 return 0;
4386 }
4387 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4388 return -EFBIG;
4389
4390 if (i_blocks <= 0xffffffffffffULL) {
0fc1b451
AK
4391 /*
4392 * i_blocks can be represented in a 48 bit variable
4393 * as multiple of 512 bytes
4394 */
8180a562 4395 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 4396 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
8180a562 4397 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
0fc1b451 4398 } else {
8180a562
AK
4399 ei->i_flags |= EXT4_HUGE_FILE_FL;
4400 /* i_block is stored in file system block size */
4401 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4402 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4403 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
0fc1b451 4404 }
f287a1a5 4405 return 0;
0fc1b451
AK
4406}
4407
ac27a0ec
DK
4408/*
4409 * Post the struct inode info into an on-disk inode location in the
4410 * buffer-cache. This gobbles the caller's reference to the
4411 * buffer_head in the inode location struct.
4412 *
4413 * The caller must have write access to iloc->bh.
4414 */
617ba13b 4415static int ext4_do_update_inode(handle_t *handle,
ac27a0ec 4416 struct inode *inode,
617ba13b 4417 struct ext4_iloc *iloc)
ac27a0ec 4418{
617ba13b
MC
4419 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4420 struct ext4_inode_info *ei = EXT4_I(inode);
ac27a0ec
DK
4421 struct buffer_head *bh = iloc->bh;
4422 int err = 0, rc, block;
4423
4424 /* For fields not not tracking in the in-memory inode,
4425 * initialise them to zero for new inodes. */
617ba13b
MC
4426 if (ei->i_state & EXT4_STATE_NEW)
4427 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
ac27a0ec 4428
ff9ddf7e 4429 ext4_get_inode_flags(ei);
ac27a0ec 4430 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
af5bc92d 4431 if (!(test_opt(inode->i_sb, NO_UID32))) {
ac27a0ec
DK
4432 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
4433 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
4434/*
4435 * Fix up interoperability with old kernels. Otherwise, old inodes get
4436 * re-used with the upper 16 bits of the uid/gid intact
4437 */
af5bc92d 4438 if (!ei->i_dtime) {
ac27a0ec
DK
4439 raw_inode->i_uid_high =
4440 cpu_to_le16(high_16_bits(inode->i_uid));
4441 raw_inode->i_gid_high =
4442 cpu_to_le16(high_16_bits(inode->i_gid));
4443 } else {
4444 raw_inode->i_uid_high = 0;
4445 raw_inode->i_gid_high = 0;
4446 }
4447 } else {
4448 raw_inode->i_uid_low =
4449 cpu_to_le16(fs_high2lowuid(inode->i_uid));
4450 raw_inode->i_gid_low =
4451 cpu_to_le16(fs_high2lowgid(inode->i_gid));
4452 raw_inode->i_uid_high = 0;
4453 raw_inode->i_gid_high = 0;
4454 }
4455 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
ef7f3835
KS
4456
4457 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4458 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4459 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4460 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4461
0fc1b451
AK
4462 if (ext4_inode_blocks_set(handle, raw_inode, ei))
4463 goto out_brelse;
ac27a0ec 4464 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
267e4db9
AK
4465 /* clear the migrate flag in the raw_inode */
4466 raw_inode->i_flags = cpu_to_le32(ei->i_flags & ~EXT4_EXT_MIGRATE);
9b8f1f01
MC
4467 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4468 cpu_to_le32(EXT4_OS_HURD))
a1ddeb7e
BP
4469 raw_inode->i_file_acl_high =
4470 cpu_to_le16(ei->i_file_acl >> 32);
7973c0c1 4471 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
a48380f7
AK
4472 ext4_isize_set(raw_inode, ei->i_disksize);
4473 if (ei->i_disksize > 0x7fffffffULL) {
4474 struct super_block *sb = inode->i_sb;
4475 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4476 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4477 EXT4_SB(sb)->s_es->s_rev_level ==
4478 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4479 /* If this is the first large file
4480 * created, add a flag to the superblock.
4481 */
4482 err = ext4_journal_get_write_access(handle,
4483 EXT4_SB(sb)->s_sbh);
4484 if (err)
4485 goto out_brelse;
4486 ext4_update_dynamic_rev(sb);
4487 EXT4_SET_RO_COMPAT_FEATURE(sb,
617ba13b 4488 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
a48380f7 4489 sb->s_dirt = 1;
0390131b
FM
4490 ext4_handle_sync(handle);
4491 err = ext4_handle_dirty_metadata(handle, inode,
a48380f7 4492 EXT4_SB(sb)->s_sbh);
ac27a0ec
DK
4493 }
4494 }
4495 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4496 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4497 if (old_valid_dev(inode->i_rdev)) {
4498 raw_inode->i_block[0] =
4499 cpu_to_le32(old_encode_dev(inode->i_rdev));
4500 raw_inode->i_block[1] = 0;
4501 } else {
4502 raw_inode->i_block[0] = 0;
4503 raw_inode->i_block[1] =
4504 cpu_to_le32(new_encode_dev(inode->i_rdev));
4505 raw_inode->i_block[2] = 0;
4506 }
617ba13b 4507 } else for (block = 0; block < EXT4_N_BLOCKS; block++)
ac27a0ec
DK
4508 raw_inode->i_block[block] = ei->i_data[block];
4509
25ec56b5
JNC
4510 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4511 if (ei->i_extra_isize) {
4512 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4513 raw_inode->i_version_hi =
4514 cpu_to_le32(inode->i_version >> 32);
ac27a0ec 4515 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
25ec56b5
JNC
4516 }
4517
0390131b
FM
4518 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4519 rc = ext4_handle_dirty_metadata(handle, inode, bh);
ac27a0ec
DK
4520 if (!err)
4521 err = rc;
617ba13b 4522 ei->i_state &= ~EXT4_STATE_NEW;
ac27a0ec
DK
4523
4524out_brelse:
af5bc92d 4525 brelse(bh);
617ba13b 4526 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4527 return err;
4528}
4529
4530/*
617ba13b 4531 * ext4_write_inode()
ac27a0ec
DK
4532 *
4533 * We are called from a few places:
4534 *
4535 * - Within generic_file_write() for O_SYNC files.
4536 * Here, there will be no transaction running. We wait for any running
4537 * trasnaction to commit.
4538 *
4539 * - Within sys_sync(), kupdate and such.
4540 * We wait on commit, if tol to.
4541 *
4542 * - Within prune_icache() (PF_MEMALLOC == true)
4543 * Here we simply return. We can't afford to block kswapd on the
4544 * journal commit.
4545 *
4546 * In all cases it is actually safe for us to return without doing anything,
4547 * because the inode has been copied into a raw inode buffer in
617ba13b 4548 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
ac27a0ec
DK
4549 * knfsd.
4550 *
4551 * Note that we are absolutely dependent upon all inode dirtiers doing the
4552 * right thing: they *must* call mark_inode_dirty() after dirtying info in
4553 * which we are interested.
4554 *
4555 * It would be a bug for them to not do this. The code:
4556 *
4557 * mark_inode_dirty(inode)
4558 * stuff();
4559 * inode->i_size = expr;
4560 *
4561 * is in error because a kswapd-driven write_inode() could occur while
4562 * `stuff()' is running, and the new i_size will be lost. Plus the inode
4563 * will no longer be on the superblock's dirty inode list.
4564 */
617ba13b 4565int ext4_write_inode(struct inode *inode, int wait)
ac27a0ec
DK
4566{
4567 if (current->flags & PF_MEMALLOC)
4568 return 0;
4569
617ba13b 4570 if (ext4_journal_current_handle()) {
b38bd33a 4571 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
ac27a0ec
DK
4572 dump_stack();
4573 return -EIO;
4574 }
4575
4576 if (!wait)
4577 return 0;
4578
617ba13b 4579 return ext4_force_commit(inode->i_sb);
ac27a0ec
DK
4580}
4581
0390131b
FM
4582int __ext4_write_dirty_metadata(struct inode *inode, struct buffer_head *bh)
4583{
4584 int err = 0;
4585
4586 mark_buffer_dirty(bh);
4587 if (inode && inode_needs_sync(inode)) {
4588 sync_dirty_buffer(bh);
4589 if (buffer_req(bh) && !buffer_uptodate(bh)) {
4590 ext4_error(inode->i_sb, __func__,
4591 "IO error syncing inode, "
4592 "inode=%lu, block=%llu",
4593 inode->i_ino,
4594 (unsigned long long)bh->b_blocknr);
4595 err = -EIO;
4596 }
4597 }
4598 return err;
4599}
4600
ac27a0ec 4601/*
617ba13b 4602 * ext4_setattr()
ac27a0ec
DK
4603 *
4604 * Called from notify_change.
4605 *
4606 * We want to trap VFS attempts to truncate the file as soon as
4607 * possible. In particular, we want to make sure that when the VFS
4608 * shrinks i_size, we put the inode on the orphan list and modify
4609 * i_disksize immediately, so that during the subsequent flushing of
4610 * dirty pages and freeing of disk blocks, we can guarantee that any
4611 * commit will leave the blocks being flushed in an unused state on
4612 * disk. (On recovery, the inode will get truncated and the blocks will
4613 * be freed, so we have a strong guarantee that no future commit will
4614 * leave these blocks visible to the user.)
4615 *
678aaf48
JK
4616 * Another thing we have to assure is that if we are in ordered mode
4617 * and inode is still attached to the committing transaction, we must
4618 * we start writeout of all the dirty pages which are being truncated.
4619 * This way we are sure that all the data written in the previous
4620 * transaction are already on disk (truncate waits for pages under
4621 * writeback).
4622 *
4623 * Called with inode->i_mutex down.
ac27a0ec 4624 */
617ba13b 4625int ext4_setattr(struct dentry *dentry, struct iattr *attr)
ac27a0ec
DK
4626{
4627 struct inode *inode = dentry->d_inode;
4628 int error, rc = 0;
4629 const unsigned int ia_valid = attr->ia_valid;
4630
4631 error = inode_change_ok(inode, attr);
4632 if (error)
4633 return error;
4634
4635 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
4636 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
4637 handle_t *handle;
4638
4639 /* (user+group)*(old+new) structure, inode write (sb,
4640 * inode block, ? - but truncate inode update has it) */
617ba13b
MC
4641 handle = ext4_journal_start(inode, 2*(EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)+
4642 EXT4_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
ac27a0ec
DK
4643 if (IS_ERR(handle)) {
4644 error = PTR_ERR(handle);
4645 goto err_out;
4646 }
a269eb18 4647 error = vfs_dq_transfer(inode, attr) ? -EDQUOT : 0;
ac27a0ec 4648 if (error) {
617ba13b 4649 ext4_journal_stop(handle);
ac27a0ec
DK
4650 return error;
4651 }
4652 /* Update corresponding info in inode so that everything is in
4653 * one transaction */
4654 if (attr->ia_valid & ATTR_UID)
4655 inode->i_uid = attr->ia_uid;
4656 if (attr->ia_valid & ATTR_GID)
4657 inode->i_gid = attr->ia_gid;
617ba13b
MC
4658 error = ext4_mark_inode_dirty(handle, inode);
4659 ext4_journal_stop(handle);
ac27a0ec
DK
4660 }
4661
e2b46574
ES
4662 if (attr->ia_valid & ATTR_SIZE) {
4663 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
4664 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4665
4666 if (attr->ia_size > sbi->s_bitmap_maxbytes) {
4667 error = -EFBIG;
4668 goto err_out;
4669 }
4670 }
4671 }
4672
ac27a0ec
DK
4673 if (S_ISREG(inode->i_mode) &&
4674 attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
4675 handle_t *handle;
4676
617ba13b 4677 handle = ext4_journal_start(inode, 3);
ac27a0ec
DK
4678 if (IS_ERR(handle)) {
4679 error = PTR_ERR(handle);
4680 goto err_out;
4681 }
4682
617ba13b
MC
4683 error = ext4_orphan_add(handle, inode);
4684 EXT4_I(inode)->i_disksize = attr->ia_size;
4685 rc = ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
4686 if (!error)
4687 error = rc;
617ba13b 4688 ext4_journal_stop(handle);
678aaf48
JK
4689
4690 if (ext4_should_order_data(inode)) {
4691 error = ext4_begin_ordered_truncate(inode,
4692 attr->ia_size);
4693 if (error) {
4694 /* Do as much error cleanup as possible */
4695 handle = ext4_journal_start(inode, 3);
4696 if (IS_ERR(handle)) {
4697 ext4_orphan_del(NULL, inode);
4698 goto err_out;
4699 }
4700 ext4_orphan_del(handle, inode);
4701 ext4_journal_stop(handle);
4702 goto err_out;
4703 }
4704 }
ac27a0ec
DK
4705 }
4706
4707 rc = inode_setattr(inode, attr);
4708
617ba13b 4709 /* If inode_setattr's call to ext4_truncate failed to get a
ac27a0ec
DK
4710 * transaction handle at all, we need to clean up the in-core
4711 * orphan list manually. */
4712 if (inode->i_nlink)
617ba13b 4713 ext4_orphan_del(NULL, inode);
ac27a0ec
DK
4714
4715 if (!rc && (ia_valid & ATTR_MODE))
617ba13b 4716 rc = ext4_acl_chmod(inode);
ac27a0ec
DK
4717
4718err_out:
617ba13b 4719 ext4_std_error(inode->i_sb, error);
ac27a0ec
DK
4720 if (!error)
4721 error = rc;
4722 return error;
4723}
4724
3e3398a0
MC
4725int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4726 struct kstat *stat)
4727{
4728 struct inode *inode;
4729 unsigned long delalloc_blocks;
4730
4731 inode = dentry->d_inode;
4732 generic_fillattr(inode, stat);
4733
4734 /*
4735 * We can't update i_blocks if the block allocation is delayed
4736 * otherwise in the case of system crash before the real block
4737 * allocation is done, we will have i_blocks inconsistent with
4738 * on-disk file blocks.
4739 * We always keep i_blocks updated together with real
4740 * allocation. But to not confuse with user, stat
4741 * will return the blocks that include the delayed allocation
4742 * blocks for this file.
4743 */
4744 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
4745 delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
4746 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
4747
4748 stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
4749 return 0;
4750}
ac27a0ec 4751
a02908f1
MC
4752static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
4753 int chunk)
4754{
4755 int indirects;
4756
4757 /* if nrblocks are contiguous */
4758 if (chunk) {
4759 /*
4760 * With N contiguous data blocks, it need at most
4761 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
4762 * 2 dindirect blocks
4763 * 1 tindirect block
4764 */
4765 indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
4766 return indirects + 3;
4767 }
4768 /*
4769 * if nrblocks are not contiguous, worse case, each block touch
4770 * a indirect block, and each indirect block touch a double indirect
4771 * block, plus a triple indirect block
4772 */
4773 indirects = nrblocks * 2 + 1;
4774 return indirects;
4775}
4776
4777static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4778{
4779 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL))
ac51d837
TT
4780 return ext4_indirect_trans_blocks(inode, nrblocks, chunk);
4781 return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
a02908f1 4782}
ac51d837 4783
ac27a0ec 4784/*
a02908f1
MC
4785 * Account for index blocks, block groups bitmaps and block group
4786 * descriptor blocks if modify datablocks and index blocks
4787 * worse case, the indexs blocks spread over different block groups
ac27a0ec 4788 *
a02908f1
MC
4789 * If datablocks are discontiguous, they are possible to spread over
4790 * different block groups too. If they are contiugous, with flexbg,
4791 * they could still across block group boundary.
ac27a0ec 4792 *
a02908f1
MC
4793 * Also account for superblock, inode, quota and xattr blocks
4794 */
4795int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4796{
4797 int groups, gdpblocks;
4798 int idxblocks;
4799 int ret = 0;
4800
4801 /*
4802 * How many index blocks need to touch to modify nrblocks?
4803 * The "Chunk" flag indicating whether the nrblocks is
4804 * physically contiguous on disk
4805 *
4806 * For Direct IO and fallocate, they calls get_block to allocate
4807 * one single extent at a time, so they could set the "Chunk" flag
4808 */
4809 idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4810
4811 ret = idxblocks;
4812
4813 /*
4814 * Now let's see how many group bitmaps and group descriptors need
4815 * to account
4816 */
4817 groups = idxblocks;
4818 if (chunk)
4819 groups += 1;
4820 else
4821 groups += nrblocks;
4822
4823 gdpblocks = groups;
4824 if (groups > EXT4_SB(inode->i_sb)->s_groups_count)
4825 groups = EXT4_SB(inode->i_sb)->s_groups_count;
4826 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4827 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4828
4829 /* bitmaps and block group descriptor blocks */
4830 ret += groups + gdpblocks;
4831
4832 /* Blocks for super block, inode, quota and xattr blocks */
4833 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4834
4835 return ret;
4836}
4837
4838/*
4839 * Calulate the total number of credits to reserve to fit
f3bd1f3f
MC
4840 * the modification of a single pages into a single transaction,
4841 * which may include multiple chunks of block allocations.
ac27a0ec 4842 *
525f4ed8 4843 * This could be called via ext4_write_begin()
ac27a0ec 4844 *
525f4ed8 4845 * We need to consider the worse case, when
a02908f1 4846 * one new block per extent.
ac27a0ec 4847 */
a86c6181 4848int ext4_writepage_trans_blocks(struct inode *inode)
ac27a0ec 4849{
617ba13b 4850 int bpp = ext4_journal_blocks_per_page(inode);
ac27a0ec
DK
4851 int ret;
4852
a02908f1 4853 ret = ext4_meta_trans_blocks(inode, bpp, 0);
a86c6181 4854
a02908f1 4855 /* Account for data blocks for journalled mode */
617ba13b 4856 if (ext4_should_journal_data(inode))
a02908f1 4857 ret += bpp;
ac27a0ec
DK
4858 return ret;
4859}
f3bd1f3f
MC
4860
4861/*
4862 * Calculate the journal credits for a chunk of data modification.
4863 *
4864 * This is called from DIO, fallocate or whoever calling
4865 * ext4_get_blocks_wrap() to map/allocate a chunk of contigous disk blocks.
4866 *
4867 * journal buffers for data blocks are not included here, as DIO
4868 * and fallocate do no need to journal data buffers.
4869 */
4870int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4871{
4872 return ext4_meta_trans_blocks(inode, nrblocks, 1);
4873}
4874
ac27a0ec 4875/*
617ba13b 4876 * The caller must have previously called ext4_reserve_inode_write().
ac27a0ec
DK
4877 * Give this, we know that the caller already has write access to iloc->bh.
4878 */
617ba13b
MC
4879int ext4_mark_iloc_dirty(handle_t *handle,
4880 struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
4881{
4882 int err = 0;
4883
25ec56b5
JNC
4884 if (test_opt(inode->i_sb, I_VERSION))
4885 inode_inc_iversion(inode);
4886
ac27a0ec
DK
4887 /* the do_update_inode consumes one bh->b_count */
4888 get_bh(iloc->bh);
4889
dab291af 4890 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
617ba13b 4891 err = ext4_do_update_inode(handle, inode, iloc);
ac27a0ec
DK
4892 put_bh(iloc->bh);
4893 return err;
4894}
4895
4896/*
4897 * On success, We end up with an outstanding reference count against
4898 * iloc->bh. This _must_ be cleaned up later.
4899 */
4900
4901int
617ba13b
MC
4902ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4903 struct ext4_iloc *iloc)
ac27a0ec 4904{
0390131b
FM
4905 int err;
4906
4907 err = ext4_get_inode_loc(inode, iloc);
4908 if (!err) {
4909 BUFFER_TRACE(iloc->bh, "get_write_access");
4910 err = ext4_journal_get_write_access(handle, iloc->bh);
4911 if (err) {
4912 brelse(iloc->bh);
4913 iloc->bh = NULL;
ac27a0ec
DK
4914 }
4915 }
617ba13b 4916 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4917 return err;
4918}
4919
6dd4ee7c
KS
4920/*
4921 * Expand an inode by new_extra_isize bytes.
4922 * Returns 0 on success or negative error number on failure.
4923 */
1d03ec98
AK
4924static int ext4_expand_extra_isize(struct inode *inode,
4925 unsigned int new_extra_isize,
4926 struct ext4_iloc iloc,
4927 handle_t *handle)
6dd4ee7c
KS
4928{
4929 struct ext4_inode *raw_inode;
4930 struct ext4_xattr_ibody_header *header;
4931 struct ext4_xattr_entry *entry;
4932
4933 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4934 return 0;
4935
4936 raw_inode = ext4_raw_inode(&iloc);
4937
4938 header = IHDR(inode, raw_inode);
4939 entry = IFIRST(header);
4940
4941 /* No extended attributes present */
4942 if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) ||
4943 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4944 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4945 new_extra_isize);
4946 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4947 return 0;
4948 }
4949
4950 /* try to expand with EAs present */
4951 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4952 raw_inode, handle);
4953}
4954
ac27a0ec
DK
4955/*
4956 * What we do here is to mark the in-core inode as clean with respect to inode
4957 * dirtiness (it may still be data-dirty).
4958 * This means that the in-core inode may be reaped by prune_icache
4959 * without having to perform any I/O. This is a very good thing,
4960 * because *any* task may call prune_icache - even ones which
4961 * have a transaction open against a different journal.
4962 *
4963 * Is this cheating? Not really. Sure, we haven't written the
4964 * inode out, but prune_icache isn't a user-visible syncing function.
4965 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4966 * we start and wait on commits.
4967 *
4968 * Is this efficient/effective? Well, we're being nice to the system
4969 * by cleaning up our inodes proactively so they can be reaped
4970 * without I/O. But we are potentially leaving up to five seconds'
4971 * worth of inodes floating about which prune_icache wants us to
4972 * write out. One way to fix that would be to get prune_icache()
4973 * to do a write_super() to free up some memory. It has the desired
4974 * effect.
4975 */
617ba13b 4976int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
ac27a0ec 4977{
617ba13b 4978 struct ext4_iloc iloc;
6dd4ee7c
KS
4979 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4980 static unsigned int mnt_count;
4981 int err, ret;
ac27a0ec
DK
4982
4983 might_sleep();
617ba13b 4984 err = ext4_reserve_inode_write(handle, inode, &iloc);
0390131b
FM
4985 if (ext4_handle_valid(handle) &&
4986 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
6dd4ee7c
KS
4987 !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) {
4988 /*
4989 * We need extra buffer credits since we may write into EA block
4990 * with this same handle. If journal_extend fails, then it will
4991 * only result in a minor loss of functionality for that inode.
4992 * If this is felt to be critical, then e2fsck should be run to
4993 * force a large enough s_min_extra_isize.
4994 */
4995 if ((jbd2_journal_extend(handle,
4996 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4997 ret = ext4_expand_extra_isize(inode,
4998 sbi->s_want_extra_isize,
4999 iloc, handle);
5000 if (ret) {
5001 EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND;
c1bddad9
AK
5002 if (mnt_count !=
5003 le16_to_cpu(sbi->s_es->s_mnt_count)) {
46e665e9 5004 ext4_warning(inode->i_sb, __func__,
6dd4ee7c
KS
5005 "Unable to expand inode %lu. Delete"
5006 " some EAs or run e2fsck.",
5007 inode->i_ino);
c1bddad9
AK
5008 mnt_count =
5009 le16_to_cpu(sbi->s_es->s_mnt_count);
6dd4ee7c
KS
5010 }
5011 }
5012 }
5013 }
ac27a0ec 5014 if (!err)
617ba13b 5015 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
ac27a0ec
DK
5016 return err;
5017}
5018
5019/*
617ba13b 5020 * ext4_dirty_inode() is called from __mark_inode_dirty()
ac27a0ec
DK
5021 *
5022 * We're really interested in the case where a file is being extended.
5023 * i_size has been changed by generic_commit_write() and we thus need
5024 * to include the updated inode in the current transaction.
5025 *
a269eb18 5026 * Also, vfs_dq_alloc_block() will always dirty the inode when blocks
ac27a0ec
DK
5027 * are allocated to the file.
5028 *
5029 * If the inode is marked synchronous, we don't honour that here - doing
5030 * so would cause a commit on atime updates, which we don't bother doing.
5031 * We handle synchronous inodes at the highest possible level.
5032 */
617ba13b 5033void ext4_dirty_inode(struct inode *inode)
ac27a0ec 5034{
617ba13b 5035 handle_t *current_handle = ext4_journal_current_handle();
ac27a0ec
DK
5036 handle_t *handle;
5037
0390131b
FM
5038 if (!ext4_handle_valid(current_handle)) {
5039 ext4_mark_inode_dirty(current_handle, inode);
5040 return;
5041 }
5042
617ba13b 5043 handle = ext4_journal_start(inode, 2);
ac27a0ec
DK
5044 if (IS_ERR(handle))
5045 goto out;
5046 if (current_handle &&
5047 current_handle->h_transaction != handle->h_transaction) {
5048 /* This task has a transaction open against a different fs */
5049 printk(KERN_EMERG "%s: transactions do not match!\n",
46e665e9 5050 __func__);
ac27a0ec
DK
5051 } else {
5052 jbd_debug(5, "marking dirty. outer handle=%p\n",
5053 current_handle);
617ba13b 5054 ext4_mark_inode_dirty(handle, inode);
ac27a0ec 5055 }
617ba13b 5056 ext4_journal_stop(handle);
ac27a0ec
DK
5057out:
5058 return;
5059}
5060
5061#if 0
5062/*
5063 * Bind an inode's backing buffer_head into this transaction, to prevent
5064 * it from being flushed to disk early. Unlike
617ba13b 5065 * ext4_reserve_inode_write, this leaves behind no bh reference and
ac27a0ec
DK
5066 * returns no iloc structure, so the caller needs to repeat the iloc
5067 * lookup to mark the inode dirty later.
5068 */
617ba13b 5069static int ext4_pin_inode(handle_t *handle, struct inode *inode)
ac27a0ec 5070{
617ba13b 5071 struct ext4_iloc iloc;
ac27a0ec
DK
5072
5073 int err = 0;
5074 if (handle) {
617ba13b 5075 err = ext4_get_inode_loc(inode, &iloc);
ac27a0ec
DK
5076 if (!err) {
5077 BUFFER_TRACE(iloc.bh, "get_write_access");
dab291af 5078 err = jbd2_journal_get_write_access(handle, iloc.bh);
ac27a0ec 5079 if (!err)
0390131b
FM
5080 err = ext4_handle_dirty_metadata(handle,
5081 inode,
5082 iloc.bh);
ac27a0ec
DK
5083 brelse(iloc.bh);
5084 }
5085 }
617ba13b 5086 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5087 return err;
5088}
5089#endif
5090
617ba13b 5091int ext4_change_inode_journal_flag(struct inode *inode, int val)
ac27a0ec
DK
5092{
5093 journal_t *journal;
5094 handle_t *handle;
5095 int err;
5096
5097 /*
5098 * We have to be very careful here: changing a data block's
5099 * journaling status dynamically is dangerous. If we write a
5100 * data block to the journal, change the status and then delete
5101 * that block, we risk forgetting to revoke the old log record
5102 * from the journal and so a subsequent replay can corrupt data.
5103 * So, first we make sure that the journal is empty and that
5104 * nobody is changing anything.
5105 */
5106
617ba13b 5107 journal = EXT4_JOURNAL(inode);
0390131b
FM
5108 if (!journal)
5109 return 0;
d699594d 5110 if (is_journal_aborted(journal))
ac27a0ec
DK
5111 return -EROFS;
5112
dab291af
MC
5113 jbd2_journal_lock_updates(journal);
5114 jbd2_journal_flush(journal);
ac27a0ec
DK
5115
5116 /*
5117 * OK, there are no updates running now, and all cached data is
5118 * synced to disk. We are now in a completely consistent state
5119 * which doesn't have anything in the journal, and we know that
5120 * no filesystem updates are running, so it is safe to modify
5121 * the inode's in-core data-journaling state flag now.
5122 */
5123
5124 if (val)
617ba13b 5125 EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
ac27a0ec 5126 else
617ba13b
MC
5127 EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
5128 ext4_set_aops(inode);
ac27a0ec 5129
dab291af 5130 jbd2_journal_unlock_updates(journal);
ac27a0ec
DK
5131
5132 /* Finally we can mark the inode as dirty. */
5133
617ba13b 5134 handle = ext4_journal_start(inode, 1);
ac27a0ec
DK
5135 if (IS_ERR(handle))
5136 return PTR_ERR(handle);
5137
617ba13b 5138 err = ext4_mark_inode_dirty(handle, inode);
0390131b 5139 ext4_handle_sync(handle);
617ba13b
MC
5140 ext4_journal_stop(handle);
5141 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5142
5143 return err;
5144}
2e9ee850
AK
5145
5146static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5147{
5148 return !buffer_mapped(bh);
5149}
5150
5151int ext4_page_mkwrite(struct vm_area_struct *vma, struct page *page)
5152{
5153 loff_t size;
5154 unsigned long len;
5155 int ret = -EINVAL;
79f0be8d 5156 void *fsdata;
2e9ee850
AK
5157 struct file *file = vma->vm_file;
5158 struct inode *inode = file->f_path.dentry->d_inode;
5159 struct address_space *mapping = inode->i_mapping;
5160
5161 /*
5162 * Get i_alloc_sem to stop truncates messing with the inode. We cannot
5163 * get i_mutex because we are already holding mmap_sem.
5164 */
5165 down_read(&inode->i_alloc_sem);
5166 size = i_size_read(inode);
5167 if (page->mapping != mapping || size <= page_offset(page)
5168 || !PageUptodate(page)) {
5169 /* page got truncated from under us? */
5170 goto out_unlock;
5171 }
5172 ret = 0;
5173 if (PageMappedToDisk(page))
5174 goto out_unlock;
5175
5176 if (page->index == size >> PAGE_CACHE_SHIFT)
5177 len = size & ~PAGE_CACHE_MASK;
5178 else
5179 len = PAGE_CACHE_SIZE;
5180
5181 if (page_has_buffers(page)) {
5182 /* return if we have all the buffers mapped */
5183 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
5184 ext4_bh_unmapped))
5185 goto out_unlock;
5186 }
5187 /*
5188 * OK, we need to fill the hole... Do write_begin write_end
5189 * to do block allocation/reservation.We are not holding
5190 * inode.i__mutex here. That allow * parallel write_begin,
5191 * write_end call. lock_page prevent this from happening
5192 * on the same page though
5193 */
5194 ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
79f0be8d 5195 len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
2e9ee850
AK
5196 if (ret < 0)
5197 goto out_unlock;
5198 ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
79f0be8d 5199 len, len, page, fsdata);
2e9ee850
AK
5200 if (ret < 0)
5201 goto out_unlock;
5202 ret = 0;
5203out_unlock:
5204 up_read(&inode->i_alloc_sem);
5205 return ret;
5206}