ext4: add ratelimiting to ext4 messages
[linux-2.6-block.git] / fs / ext4 / inode.c
CommitLineData
ac27a0ec 1/*
617ba13b 2 * linux/fs/ext4/inode.c
ac27a0ec
DK
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
ac27a0ec
DK
15 * 64-bit file support on 64-bit platforms by Jakub Jelinek
16 * (jj@sunsite.ms.mff.cuni.cz)
17 *
617ba13b 18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
ac27a0ec
DK
19 */
20
ac27a0ec
DK
21#include <linux/fs.h>
22#include <linux/time.h>
dab291af 23#include <linux/jbd2.h>
ac27a0ec
DK
24#include <linux/highuid.h>
25#include <linux/pagemap.h>
26#include <linux/quotaops.h>
27#include <linux/string.h>
28#include <linux/buffer_head.h>
29#include <linux/writeback.h>
64769240 30#include <linux/pagevec.h>
ac27a0ec 31#include <linux/mpage.h>
e83c1397 32#include <linux/namei.h>
ac27a0ec
DK
33#include <linux/uio.h>
34#include <linux/bio.h>
4c0425ff 35#include <linux/workqueue.h>
744692dc 36#include <linux/kernel.h>
6db26ffc 37#include <linux/printk.h>
5a0e3ad6 38#include <linux/slab.h>
a8901d34 39#include <linux/ratelimit.h>
a27bb332 40#include <linux/aio.h>
9bffad1e 41
3dcf5451 42#include "ext4_jbd2.h"
ac27a0ec
DK
43#include "xattr.h"
44#include "acl.h"
9f125d64 45#include "truncate.h"
ac27a0ec 46
9bffad1e
TT
47#include <trace/events/ext4.h>
48
a1d6cc56
AK
49#define MPAGE_DA_EXTENT_TAIL 0x01
50
814525f4
DW
51static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
52 struct ext4_inode_info *ei)
53{
54 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
55 __u16 csum_lo;
56 __u16 csum_hi = 0;
57 __u32 csum;
58
171a7f21 59 csum_lo = le16_to_cpu(raw->i_checksum_lo);
814525f4
DW
60 raw->i_checksum_lo = 0;
61 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
62 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
171a7f21 63 csum_hi = le16_to_cpu(raw->i_checksum_hi);
814525f4
DW
64 raw->i_checksum_hi = 0;
65 }
66
67 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
68 EXT4_INODE_SIZE(inode->i_sb));
69
171a7f21 70 raw->i_checksum_lo = cpu_to_le16(csum_lo);
814525f4
DW
71 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
72 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
171a7f21 73 raw->i_checksum_hi = cpu_to_le16(csum_hi);
814525f4
DW
74
75 return csum;
76}
77
78static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
79 struct ext4_inode_info *ei)
80{
81 __u32 provided, calculated;
82
83 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
84 cpu_to_le32(EXT4_OS_LINUX) ||
85 !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
86 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
87 return 1;
88
89 provided = le16_to_cpu(raw->i_checksum_lo);
90 calculated = ext4_inode_csum(inode, raw, ei);
91 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
92 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
93 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
94 else
95 calculated &= 0xFFFF;
96
97 return provided == calculated;
98}
99
100static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
101 struct ext4_inode_info *ei)
102{
103 __u32 csum;
104
105 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
106 cpu_to_le32(EXT4_OS_LINUX) ||
107 !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
108 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
109 return;
110
111 csum = ext4_inode_csum(inode, raw, ei);
112 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
113 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
114 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
115 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
116}
117
678aaf48
JK
118static inline int ext4_begin_ordered_truncate(struct inode *inode,
119 loff_t new_size)
120{
7ff9c073 121 trace_ext4_begin_ordered_truncate(inode, new_size);
8aefcd55
TT
122 /*
123 * If jinode is zero, then we never opened the file for
124 * writing, so there's no need to call
125 * jbd2_journal_begin_ordered_truncate() since there's no
126 * outstanding writes we need to flush.
127 */
128 if (!EXT4_I(inode)->jinode)
129 return 0;
130 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
131 EXT4_I(inode)->jinode,
132 new_size);
678aaf48
JK
133}
134
d47992f8
LC
135static void ext4_invalidatepage(struct page *page, unsigned int offset,
136 unsigned int length);
cb20d518
TT
137static int __ext4_journalled_writepage(struct page *page, unsigned int len);
138static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
fffb2739
JK
139static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
140 int pextents);
64769240 141
ac27a0ec
DK
142/*
143 * Test whether an inode is a fast symlink.
144 */
617ba13b 145static int ext4_inode_is_fast_symlink(struct inode *inode)
ac27a0ec 146{
617ba13b 147 int ea_blocks = EXT4_I(inode)->i_file_acl ?
ac27a0ec
DK
148 (inode->i_sb->s_blocksize >> 9) : 0;
149
150 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
151}
152
ac27a0ec
DK
153/*
154 * Restart the transaction associated with *handle. This does a commit,
155 * so before we call here everything must be consistently dirtied against
156 * this transaction.
157 */
fa5d1113 158int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
487caeef 159 int nblocks)
ac27a0ec 160{
487caeef
JK
161 int ret;
162
163 /*
e35fd660 164 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
487caeef
JK
165 * moment, get_block can be called only for blocks inside i_size since
166 * page cache has been already dropped and writes are blocked by
167 * i_mutex. So we can safely drop the i_data_sem here.
168 */
0390131b 169 BUG_ON(EXT4_JOURNAL(inode) == NULL);
ac27a0ec 170 jbd_debug(2, "restarting handle %p\n", handle);
487caeef 171 up_write(&EXT4_I(inode)->i_data_sem);
8e8eaabe 172 ret = ext4_journal_restart(handle, nblocks);
487caeef 173 down_write(&EXT4_I(inode)->i_data_sem);
fa5d1113 174 ext4_discard_preallocations(inode);
487caeef
JK
175
176 return ret;
ac27a0ec
DK
177}
178
179/*
180 * Called at the last iput() if i_nlink is zero.
181 */
0930fcc1 182void ext4_evict_inode(struct inode *inode)
ac27a0ec
DK
183{
184 handle_t *handle;
bc965ab3 185 int err;
ac27a0ec 186
7ff9c073 187 trace_ext4_evict_inode(inode);
2581fdc8 188
0930fcc1 189 if (inode->i_nlink) {
2d859db3
JK
190 /*
191 * When journalling data dirty buffers are tracked only in the
192 * journal. So although mm thinks everything is clean and
193 * ready for reaping the inode might still have some pages to
194 * write in the running transaction or waiting to be
195 * checkpointed. Thus calling jbd2_journal_invalidatepage()
196 * (via truncate_inode_pages()) to discard these buffers can
197 * cause data loss. Also even if we did not discard these
198 * buffers, we would have no way to find them after the inode
199 * is reaped and thus user could see stale data if he tries to
200 * read them before the transaction is checkpointed. So be
201 * careful and force everything to disk here... We use
202 * ei->i_datasync_tid to store the newest transaction
203 * containing inode's data.
204 *
205 * Note that directories do not have this problem because they
206 * don't use page cache.
207 */
208 if (ext4_should_journal_data(inode) &&
2b405bfa
TT
209 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
210 inode->i_ino != EXT4_JOURNAL_INO) {
2d859db3
JK
211 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
212 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
213
d76a3a77 214 jbd2_complete_transaction(journal, commit_tid);
2d859db3
JK
215 filemap_write_and_wait(&inode->i_data);
216 }
0930fcc1 217 truncate_inode_pages(&inode->i_data, 0);
5dc23bdd
JK
218
219 WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
0930fcc1
AV
220 goto no_delete;
221 }
222
907f4554 223 if (!is_bad_inode(inode))
871a2931 224 dquot_initialize(inode);
907f4554 225
678aaf48
JK
226 if (ext4_should_order_data(inode))
227 ext4_begin_ordered_truncate(inode, 0);
ac27a0ec
DK
228 truncate_inode_pages(&inode->i_data, 0);
229
5dc23bdd 230 WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
ac27a0ec
DK
231 if (is_bad_inode(inode))
232 goto no_delete;
233
8e8ad8a5
JK
234 /*
235 * Protect us against freezing - iput() caller didn't have to have any
236 * protection against it
237 */
238 sb_start_intwrite(inode->i_sb);
9924a92a
TT
239 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
240 ext4_blocks_for_truncate(inode)+3);
ac27a0ec 241 if (IS_ERR(handle)) {
bc965ab3 242 ext4_std_error(inode->i_sb, PTR_ERR(handle));
ac27a0ec
DK
243 /*
244 * If we're going to skip the normal cleanup, we still need to
245 * make sure that the in-core orphan linked list is properly
246 * cleaned up.
247 */
617ba13b 248 ext4_orphan_del(NULL, inode);
8e8ad8a5 249 sb_end_intwrite(inode->i_sb);
ac27a0ec
DK
250 goto no_delete;
251 }
252
253 if (IS_SYNC(inode))
0390131b 254 ext4_handle_sync(handle);
ac27a0ec 255 inode->i_size = 0;
bc965ab3
TT
256 err = ext4_mark_inode_dirty(handle, inode);
257 if (err) {
12062ddd 258 ext4_warning(inode->i_sb,
bc965ab3
TT
259 "couldn't mark inode dirty (err %d)", err);
260 goto stop_handle;
261 }
ac27a0ec 262 if (inode->i_blocks)
617ba13b 263 ext4_truncate(inode);
bc965ab3
TT
264
265 /*
266 * ext4_ext_truncate() doesn't reserve any slop when it
267 * restarts journal transactions; therefore there may not be
268 * enough credits left in the handle to remove the inode from
269 * the orphan list and set the dtime field.
270 */
0390131b 271 if (!ext4_handle_has_enough_credits(handle, 3)) {
bc965ab3
TT
272 err = ext4_journal_extend(handle, 3);
273 if (err > 0)
274 err = ext4_journal_restart(handle, 3);
275 if (err != 0) {
12062ddd 276 ext4_warning(inode->i_sb,
bc965ab3
TT
277 "couldn't extend journal (err %d)", err);
278 stop_handle:
279 ext4_journal_stop(handle);
45388219 280 ext4_orphan_del(NULL, inode);
8e8ad8a5 281 sb_end_intwrite(inode->i_sb);
bc965ab3
TT
282 goto no_delete;
283 }
284 }
285
ac27a0ec 286 /*
617ba13b 287 * Kill off the orphan record which ext4_truncate created.
ac27a0ec 288 * AKPM: I think this can be inside the above `if'.
617ba13b 289 * Note that ext4_orphan_del() has to be able to cope with the
ac27a0ec 290 * deletion of a non-existent orphan - this is because we don't
617ba13b 291 * know if ext4_truncate() actually created an orphan record.
ac27a0ec
DK
292 * (Well, we could do this if we need to, but heck - it works)
293 */
617ba13b
MC
294 ext4_orphan_del(handle, inode);
295 EXT4_I(inode)->i_dtime = get_seconds();
ac27a0ec
DK
296
297 /*
298 * One subtle ordering requirement: if anything has gone wrong
299 * (transaction abort, IO errors, whatever), then we can still
300 * do these next steps (the fs will already have been marked as
301 * having errors), but we can't free the inode if the mark_dirty
302 * fails.
303 */
617ba13b 304 if (ext4_mark_inode_dirty(handle, inode))
ac27a0ec 305 /* If that failed, just do the required in-core inode clear. */
0930fcc1 306 ext4_clear_inode(inode);
ac27a0ec 307 else
617ba13b
MC
308 ext4_free_inode(handle, inode);
309 ext4_journal_stop(handle);
8e8ad8a5 310 sb_end_intwrite(inode->i_sb);
ac27a0ec
DK
311 return;
312no_delete:
0930fcc1 313 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
ac27a0ec
DK
314}
315
a9e7f447
DM
316#ifdef CONFIG_QUOTA
317qsize_t *ext4_get_reserved_space(struct inode *inode)
60e58e0f 318{
a9e7f447 319 return &EXT4_I(inode)->i_reserved_quota;
60e58e0f 320}
a9e7f447 321#endif
9d0be502 322
12219aea
AK
323/*
324 * Calculate the number of metadata blocks need to reserve
9d0be502 325 * to allocate a block located at @lblock
12219aea 326 */
01f49d0b 327static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
12219aea 328{
12e9b892 329 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
9d0be502 330 return ext4_ext_calc_metadata_amount(inode, lblock);
12219aea 331
8bb2b247 332 return ext4_ind_calc_metadata_amount(inode, lblock);
12219aea
AK
333}
334
0637c6f4
TT
335/*
336 * Called with i_data_sem down, which is important since we can call
337 * ext4_discard_preallocations() from here.
338 */
5f634d06
AK
339void ext4_da_update_reserve_space(struct inode *inode,
340 int used, int quota_claim)
12219aea
AK
341{
342 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 343 struct ext4_inode_info *ei = EXT4_I(inode);
0637c6f4
TT
344
345 spin_lock(&ei->i_block_reservation_lock);
d8990240 346 trace_ext4_da_update_reserve_space(inode, used, quota_claim);
0637c6f4 347 if (unlikely(used > ei->i_reserved_data_blocks)) {
8de5c325 348 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
1084f252 349 "with only %d reserved data blocks",
0637c6f4
TT
350 __func__, inode->i_ino, used,
351 ei->i_reserved_data_blocks);
352 WARN_ON(1);
353 used = ei->i_reserved_data_blocks;
354 }
12219aea 355
97795d2a 356 if (unlikely(ei->i_allocated_meta_blocks > ei->i_reserved_meta_blocks)) {
01a523eb
TT
357 ext4_warning(inode->i_sb, "ino %lu, allocated %d "
358 "with only %d reserved metadata blocks "
359 "(releasing %d blocks with reserved %d data blocks)",
360 inode->i_ino, ei->i_allocated_meta_blocks,
361 ei->i_reserved_meta_blocks, used,
362 ei->i_reserved_data_blocks);
97795d2a
BF
363 WARN_ON(1);
364 ei->i_allocated_meta_blocks = ei->i_reserved_meta_blocks;
365 }
366
0637c6f4
TT
367 /* Update per-inode reservations */
368 ei->i_reserved_data_blocks -= used;
0637c6f4 369 ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
57042651 370 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
72b8ab9d 371 used + ei->i_allocated_meta_blocks);
0637c6f4 372 ei->i_allocated_meta_blocks = 0;
6bc6e63f 373
0637c6f4
TT
374 if (ei->i_reserved_data_blocks == 0) {
375 /*
376 * We can release all of the reserved metadata blocks
377 * only when we have written all of the delayed
378 * allocation blocks.
379 */
57042651 380 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
72b8ab9d 381 ei->i_reserved_meta_blocks);
ee5f4d9c 382 ei->i_reserved_meta_blocks = 0;
9d0be502 383 ei->i_da_metadata_calc_len = 0;
6bc6e63f 384 }
12219aea 385 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f 386
72b8ab9d
ES
387 /* Update quota subsystem for data blocks */
388 if (quota_claim)
7b415bf6 389 dquot_claim_block(inode, EXT4_C2B(sbi, used));
72b8ab9d 390 else {
5f634d06
AK
391 /*
392 * We did fallocate with an offset that is already delayed
393 * allocated. So on delayed allocated writeback we should
72b8ab9d 394 * not re-claim the quota for fallocated blocks.
5f634d06 395 */
7b415bf6 396 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
5f634d06 397 }
d6014301
AK
398
399 /*
400 * If we have done all the pending block allocations and if
401 * there aren't any writers on the inode, we can discard the
402 * inode's preallocations.
403 */
0637c6f4
TT
404 if ((ei->i_reserved_data_blocks == 0) &&
405 (atomic_read(&inode->i_writecount) == 0))
d6014301 406 ext4_discard_preallocations(inode);
12219aea
AK
407}
408
e29136f8 409static int __check_block_validity(struct inode *inode, const char *func,
c398eda0
TT
410 unsigned int line,
411 struct ext4_map_blocks *map)
6fd058f7 412{
24676da4
TT
413 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
414 map->m_len)) {
c398eda0
TT
415 ext4_error_inode(inode, func, line, map->m_pblk,
416 "lblock %lu mapped to illegal pblock "
417 "(length %d)", (unsigned long) map->m_lblk,
418 map->m_len);
6fd058f7
TT
419 return -EIO;
420 }
421 return 0;
422}
423
e29136f8 424#define check_block_validity(inode, map) \
c398eda0 425 __check_block_validity((inode), __func__, __LINE__, (map))
e29136f8 426
921f266b
DM
427#ifdef ES_AGGRESSIVE_TEST
428static void ext4_map_blocks_es_recheck(handle_t *handle,
429 struct inode *inode,
430 struct ext4_map_blocks *es_map,
431 struct ext4_map_blocks *map,
432 int flags)
433{
434 int retval;
435
436 map->m_flags = 0;
437 /*
438 * There is a race window that the result is not the same.
439 * e.g. xfstests #223 when dioread_nolock enables. The reason
440 * is that we lookup a block mapping in extent status tree with
441 * out taking i_data_sem. So at the time the unwritten extent
442 * could be converted.
443 */
444 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
445 down_read((&EXT4_I(inode)->i_data_sem));
446 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
447 retval = ext4_ext_map_blocks(handle, inode, map, flags &
448 EXT4_GET_BLOCKS_KEEP_SIZE);
449 } else {
450 retval = ext4_ind_map_blocks(handle, inode, map, flags &
451 EXT4_GET_BLOCKS_KEEP_SIZE);
452 }
453 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
454 up_read((&EXT4_I(inode)->i_data_sem));
455 /*
456 * Clear EXT4_MAP_FROM_CLUSTER and EXT4_MAP_BOUNDARY flag
457 * because it shouldn't be marked in es_map->m_flags.
458 */
459 map->m_flags &= ~(EXT4_MAP_FROM_CLUSTER | EXT4_MAP_BOUNDARY);
460
461 /*
462 * We don't check m_len because extent will be collpased in status
463 * tree. So the m_len might not equal.
464 */
465 if (es_map->m_lblk != map->m_lblk ||
466 es_map->m_flags != map->m_flags ||
467 es_map->m_pblk != map->m_pblk) {
bdafe42a 468 printk("ES cache assertion failed for inode: %lu "
921f266b
DM
469 "es_cached ex [%d/%d/%llu/%x] != "
470 "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
471 inode->i_ino, es_map->m_lblk, es_map->m_len,
472 es_map->m_pblk, es_map->m_flags, map->m_lblk,
473 map->m_len, map->m_pblk, map->m_flags,
474 retval, flags);
475 }
476}
477#endif /* ES_AGGRESSIVE_TEST */
478
f5ab0d1f 479/*
e35fd660 480 * The ext4_map_blocks() function tries to look up the requested blocks,
2b2d6d01 481 * and returns if the blocks are already mapped.
f5ab0d1f 482 *
f5ab0d1f
MC
483 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
484 * and store the allocated blocks in the result buffer head and mark it
485 * mapped.
486 *
e35fd660
TT
487 * If file type is extents based, it will call ext4_ext_map_blocks(),
488 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
f5ab0d1f
MC
489 * based files
490 *
491 * On success, it returns the number of blocks being mapped or allocate.
492 * if create==0 and the blocks are pre-allocated and uninitialized block,
493 * the result buffer head is unmapped. If the create ==1, it will make sure
494 * the buffer head is mapped.
495 *
496 * It returns 0 if plain look up failed (blocks have not been allocated), in
df3ab170 497 * that case, buffer head is unmapped
f5ab0d1f
MC
498 *
499 * It returns the error in case of allocation failure.
500 */
e35fd660
TT
501int ext4_map_blocks(handle_t *handle, struct inode *inode,
502 struct ext4_map_blocks *map, int flags)
0e855ac8 503{
d100eef2 504 struct extent_status es;
0e855ac8 505 int retval;
921f266b
DM
506#ifdef ES_AGGRESSIVE_TEST
507 struct ext4_map_blocks orig_map;
508
509 memcpy(&orig_map, map, sizeof(*map));
510#endif
f5ab0d1f 511
e35fd660
TT
512 map->m_flags = 0;
513 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
514 "logical block %lu\n", inode->i_ino, flags, map->m_len,
515 (unsigned long) map->m_lblk);
d100eef2
ZL
516
517 /* Lookup extent status tree firstly */
518 if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
63b99968 519 ext4_es_lru_add(inode);
d100eef2
ZL
520 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
521 map->m_pblk = ext4_es_pblock(&es) +
522 map->m_lblk - es.es_lblk;
523 map->m_flags |= ext4_es_is_written(&es) ?
524 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
525 retval = es.es_len - (map->m_lblk - es.es_lblk);
526 if (retval > map->m_len)
527 retval = map->m_len;
528 map->m_len = retval;
529 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
530 retval = 0;
531 } else {
532 BUG_ON(1);
533 }
921f266b
DM
534#ifdef ES_AGGRESSIVE_TEST
535 ext4_map_blocks_es_recheck(handle, inode, map,
536 &orig_map, flags);
537#endif
d100eef2
ZL
538 goto found;
539 }
540
4df3d265 541 /*
b920c755
TT
542 * Try to see if we can get the block without requesting a new
543 * file system block.
4df3d265 544 */
729f52c6
ZL
545 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
546 down_read((&EXT4_I(inode)->i_data_sem));
12e9b892 547 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
a4e5d88b
DM
548 retval = ext4_ext_map_blocks(handle, inode, map, flags &
549 EXT4_GET_BLOCKS_KEEP_SIZE);
0e855ac8 550 } else {
a4e5d88b
DM
551 retval = ext4_ind_map_blocks(handle, inode, map, flags &
552 EXT4_GET_BLOCKS_KEEP_SIZE);
0e855ac8 553 }
f7fec032
ZL
554 if (retval > 0) {
555 int ret;
3be78c73 556 unsigned int status;
f7fec032 557
44fb851d
ZL
558 if (unlikely(retval != map->m_len)) {
559 ext4_warning(inode->i_sb,
560 "ES len assertion failed for inode "
561 "%lu: retval %d != map->m_len %d",
562 inode->i_ino, retval, map->m_len);
563 WARN_ON(1);
921f266b 564 }
921f266b 565
f7fec032
ZL
566 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
567 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
568 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
569 ext4_find_delalloc_range(inode, map->m_lblk,
570 map->m_lblk + map->m_len - 1))
571 status |= EXTENT_STATUS_DELAYED;
572 ret = ext4_es_insert_extent(inode, map->m_lblk,
573 map->m_len, map->m_pblk, status);
574 if (ret < 0)
575 retval = ret;
576 }
729f52c6
ZL
577 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
578 up_read((&EXT4_I(inode)->i_data_sem));
f5ab0d1f 579
d100eef2 580found:
e35fd660 581 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
f7fec032 582 int ret = check_block_validity(inode, map);
6fd058f7
TT
583 if (ret != 0)
584 return ret;
585 }
586
f5ab0d1f 587 /* If it is only a block(s) look up */
c2177057 588 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
f5ab0d1f
MC
589 return retval;
590
591 /*
592 * Returns if the blocks have already allocated
593 *
594 * Note that if blocks have been preallocated
df3ab170 595 * ext4_ext_get_block() returns the create = 0
f5ab0d1f
MC
596 * with buffer head unmapped.
597 */
e35fd660 598 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
4df3d265
AK
599 return retval;
600
2a8964d6 601 /*
a25a4e1a
ZL
602 * Here we clear m_flags because after allocating an new extent,
603 * it will be set again.
2a8964d6 604 */
a25a4e1a 605 map->m_flags &= ~EXT4_MAP_FLAGS;
2a8964d6 606
4df3d265 607 /*
f5ab0d1f
MC
608 * New blocks allocate and/or writing to uninitialized extent
609 * will possibly result in updating i_data, so we take
610 * the write lock of i_data_sem, and call get_blocks()
611 * with create == 1 flag.
4df3d265
AK
612 */
613 down_write((&EXT4_I(inode)->i_data_sem));
d2a17637
MC
614
615 /*
616 * if the caller is from delayed allocation writeout path
617 * we have already reserved fs blocks for allocation
618 * let the underlying get_block() function know to
619 * avoid double accounting
620 */
c2177057 621 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
f2321097 622 ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
4df3d265
AK
623 /*
624 * We need to check for EXT4 here because migrate
625 * could have changed the inode type in between
626 */
12e9b892 627 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
e35fd660 628 retval = ext4_ext_map_blocks(handle, inode, map, flags);
0e855ac8 629 } else {
e35fd660 630 retval = ext4_ind_map_blocks(handle, inode, map, flags);
267e4db9 631
e35fd660 632 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
267e4db9
AK
633 /*
634 * We allocated new blocks which will result in
635 * i_data's format changing. Force the migrate
636 * to fail by clearing migrate flags
637 */
19f5fb7a 638 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
267e4db9 639 }
d2a17637 640
5f634d06
AK
641 /*
642 * Update reserved blocks/metadata blocks after successful
643 * block allocation which had been deferred till now. We don't
644 * support fallocate for non extent files. So we can update
645 * reserve space here.
646 */
647 if ((retval > 0) &&
1296cc85 648 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
5f634d06
AK
649 ext4_da_update_reserve_space(inode, retval, 1);
650 }
f7fec032 651 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
f2321097 652 ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
2ac3b6e0 653
f7fec032
ZL
654 if (retval > 0) {
655 int ret;
3be78c73 656 unsigned int status;
f7fec032 657
44fb851d
ZL
658 if (unlikely(retval != map->m_len)) {
659 ext4_warning(inode->i_sb,
660 "ES len assertion failed for inode "
661 "%lu: retval %d != map->m_len %d",
662 inode->i_ino, retval, map->m_len);
663 WARN_ON(1);
921f266b 664 }
921f266b 665
adb23551
ZL
666 /*
667 * If the extent has been zeroed out, we don't need to update
668 * extent status tree.
669 */
670 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
671 ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
672 if (ext4_es_is_written(&es))
673 goto has_zeroout;
674 }
f7fec032
ZL
675 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
676 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
677 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
678 ext4_find_delalloc_range(inode, map->m_lblk,
679 map->m_lblk + map->m_len - 1))
680 status |= EXTENT_STATUS_DELAYED;
681 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
682 map->m_pblk, status);
683 if (ret < 0)
684 retval = ret;
5356f261
AK
685 }
686
adb23551 687has_zeroout:
4df3d265 688 up_write((&EXT4_I(inode)->i_data_sem));
e35fd660 689 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
e29136f8 690 int ret = check_block_validity(inode, map);
6fd058f7
TT
691 if (ret != 0)
692 return ret;
693 }
0e855ac8
AK
694 return retval;
695}
696
f3bd1f3f
MC
697/* Maximum number of blocks we map for direct IO at once. */
698#define DIO_MAX_BLOCKS 4096
699
2ed88685
TT
700static int _ext4_get_block(struct inode *inode, sector_t iblock,
701 struct buffer_head *bh, int flags)
ac27a0ec 702{
3e4fdaf8 703 handle_t *handle = ext4_journal_current_handle();
2ed88685 704 struct ext4_map_blocks map;
7fb5409d 705 int ret = 0, started = 0;
f3bd1f3f 706 int dio_credits;
ac27a0ec 707
46c7f254
TM
708 if (ext4_has_inline_data(inode))
709 return -ERANGE;
710
2ed88685
TT
711 map.m_lblk = iblock;
712 map.m_len = bh->b_size >> inode->i_blkbits;
713
8b0f165f 714 if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
7fb5409d 715 /* Direct IO write... */
2ed88685
TT
716 if (map.m_len > DIO_MAX_BLOCKS)
717 map.m_len = DIO_MAX_BLOCKS;
718 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
9924a92a
TT
719 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
720 dio_credits);
7fb5409d 721 if (IS_ERR(handle)) {
ac27a0ec 722 ret = PTR_ERR(handle);
2ed88685 723 return ret;
ac27a0ec 724 }
7fb5409d 725 started = 1;
ac27a0ec
DK
726 }
727
2ed88685 728 ret = ext4_map_blocks(handle, inode, &map, flags);
7fb5409d 729 if (ret > 0) {
7b7a8665
CH
730 ext4_io_end_t *io_end = ext4_inode_aio(inode);
731
2ed88685
TT
732 map_bh(bh, inode->i_sb, map.m_pblk);
733 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
7b7a8665
CH
734 if (io_end && io_end->flag & EXT4_IO_END_UNWRITTEN)
735 set_buffer_defer_completion(bh);
2ed88685 736 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
7fb5409d 737 ret = 0;
ac27a0ec 738 }
7fb5409d
JK
739 if (started)
740 ext4_journal_stop(handle);
ac27a0ec
DK
741 return ret;
742}
743
2ed88685
TT
744int ext4_get_block(struct inode *inode, sector_t iblock,
745 struct buffer_head *bh, int create)
746{
747 return _ext4_get_block(inode, iblock, bh,
748 create ? EXT4_GET_BLOCKS_CREATE : 0);
749}
750
ac27a0ec
DK
751/*
752 * `handle' can be NULL if create is zero
753 */
617ba13b 754struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
725d26d3 755 ext4_lblk_t block, int create, int *errp)
ac27a0ec 756{
2ed88685
TT
757 struct ext4_map_blocks map;
758 struct buffer_head *bh;
ac27a0ec
DK
759 int fatal = 0, err;
760
761 J_ASSERT(handle != NULL || create == 0);
762
2ed88685
TT
763 map.m_lblk = block;
764 map.m_len = 1;
765 err = ext4_map_blocks(handle, inode, &map,
766 create ? EXT4_GET_BLOCKS_CREATE : 0);
ac27a0ec 767
90b0a973
CM
768 /* ensure we send some value back into *errp */
769 *errp = 0;
770
0f70b406
TT
771 if (create && err == 0)
772 err = -ENOSPC; /* should never happen */
2ed88685
TT
773 if (err < 0)
774 *errp = err;
775 if (err <= 0)
776 return NULL;
2ed88685
TT
777
778 bh = sb_getblk(inode->i_sb, map.m_pblk);
aebf0243 779 if (unlikely(!bh)) {
860d21e2 780 *errp = -ENOMEM;
2ed88685 781 return NULL;
ac27a0ec 782 }
2ed88685
TT
783 if (map.m_flags & EXT4_MAP_NEW) {
784 J_ASSERT(create != 0);
785 J_ASSERT(handle != NULL);
ac27a0ec 786
2ed88685
TT
787 /*
788 * Now that we do not always journal data, we should
789 * keep in mind whether this should always journal the
790 * new buffer as metadata. For now, regular file
791 * writes use ext4_get_block instead, so it's not a
792 * problem.
793 */
794 lock_buffer(bh);
795 BUFFER_TRACE(bh, "call get_create_access");
796 fatal = ext4_journal_get_create_access(handle, bh);
797 if (!fatal && !buffer_uptodate(bh)) {
798 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
799 set_buffer_uptodate(bh);
ac27a0ec 800 }
2ed88685
TT
801 unlock_buffer(bh);
802 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
803 err = ext4_handle_dirty_metadata(handle, inode, bh);
804 if (!fatal)
805 fatal = err;
806 } else {
807 BUFFER_TRACE(bh, "not a new buffer");
ac27a0ec 808 }
2ed88685
TT
809 if (fatal) {
810 *errp = fatal;
811 brelse(bh);
812 bh = NULL;
813 }
814 return bh;
ac27a0ec
DK
815}
816
617ba13b 817struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
725d26d3 818 ext4_lblk_t block, int create, int *err)
ac27a0ec 819{
af5bc92d 820 struct buffer_head *bh;
ac27a0ec 821
617ba13b 822 bh = ext4_getblk(handle, inode, block, create, err);
ac27a0ec
DK
823 if (!bh)
824 return bh;
825 if (buffer_uptodate(bh))
826 return bh;
65299a3b 827 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
ac27a0ec
DK
828 wait_on_buffer(bh);
829 if (buffer_uptodate(bh))
830 return bh;
831 put_bh(bh);
832 *err = -EIO;
833 return NULL;
834}
835
f19d5870
TM
836int ext4_walk_page_buffers(handle_t *handle,
837 struct buffer_head *head,
838 unsigned from,
839 unsigned to,
840 int *partial,
841 int (*fn)(handle_t *handle,
842 struct buffer_head *bh))
ac27a0ec
DK
843{
844 struct buffer_head *bh;
845 unsigned block_start, block_end;
846 unsigned blocksize = head->b_size;
847 int err, ret = 0;
848 struct buffer_head *next;
849
af5bc92d
TT
850 for (bh = head, block_start = 0;
851 ret == 0 && (bh != head || !block_start);
de9a55b8 852 block_start = block_end, bh = next) {
ac27a0ec
DK
853 next = bh->b_this_page;
854 block_end = block_start + blocksize;
855 if (block_end <= from || block_start >= to) {
856 if (partial && !buffer_uptodate(bh))
857 *partial = 1;
858 continue;
859 }
860 err = (*fn)(handle, bh);
861 if (!ret)
862 ret = err;
863 }
864 return ret;
865}
866
867/*
868 * To preserve ordering, it is essential that the hole instantiation and
869 * the data write be encapsulated in a single transaction. We cannot
617ba13b 870 * close off a transaction and start a new one between the ext4_get_block()
dab291af 871 * and the commit_write(). So doing the jbd2_journal_start at the start of
ac27a0ec
DK
872 * prepare_write() is the right place.
873 *
36ade451
JK
874 * Also, this function can nest inside ext4_writepage(). In that case, we
875 * *know* that ext4_writepage() has generated enough buffer credits to do the
876 * whole page. So we won't block on the journal in that case, which is good,
877 * because the caller may be PF_MEMALLOC.
ac27a0ec 878 *
617ba13b 879 * By accident, ext4 can be reentered when a transaction is open via
ac27a0ec
DK
880 * quota file writes. If we were to commit the transaction while thus
881 * reentered, there can be a deadlock - we would be holding a quota
882 * lock, and the commit would never complete if another thread had a
883 * transaction open and was blocking on the quota lock - a ranking
884 * violation.
885 *
dab291af 886 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
ac27a0ec
DK
887 * will _not_ run commit under these circumstances because handle->h_ref
888 * is elevated. We'll still have enough credits for the tiny quotafile
889 * write.
890 */
f19d5870
TM
891int do_journal_get_write_access(handle_t *handle,
892 struct buffer_head *bh)
ac27a0ec 893{
56d35a4c
JK
894 int dirty = buffer_dirty(bh);
895 int ret;
896
ac27a0ec
DK
897 if (!buffer_mapped(bh) || buffer_freed(bh))
898 return 0;
56d35a4c 899 /*
ebdec241 900 * __block_write_begin() could have dirtied some buffers. Clean
56d35a4c
JK
901 * the dirty bit as jbd2_journal_get_write_access() could complain
902 * otherwise about fs integrity issues. Setting of the dirty bit
ebdec241 903 * by __block_write_begin() isn't a real problem here as we clear
56d35a4c
JK
904 * the bit before releasing a page lock and thus writeback cannot
905 * ever write the buffer.
906 */
907 if (dirty)
908 clear_buffer_dirty(bh);
909 ret = ext4_journal_get_write_access(handle, bh);
910 if (!ret && dirty)
911 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
912 return ret;
ac27a0ec
DK
913}
914
8b0f165f
AP
915static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
916 struct buffer_head *bh_result, int create);
bfc1af65 917static int ext4_write_begin(struct file *file, struct address_space *mapping,
de9a55b8
TT
918 loff_t pos, unsigned len, unsigned flags,
919 struct page **pagep, void **fsdata)
ac27a0ec 920{
af5bc92d 921 struct inode *inode = mapping->host;
1938a150 922 int ret, needed_blocks;
ac27a0ec
DK
923 handle_t *handle;
924 int retries = 0;
af5bc92d 925 struct page *page;
de9a55b8 926 pgoff_t index;
af5bc92d 927 unsigned from, to;
bfc1af65 928
9bffad1e 929 trace_ext4_write_begin(inode, pos, len, flags);
1938a150
AK
930 /*
931 * Reserve one block more for addition to orphan list in case
932 * we allocate blocks but write fails for some reason
933 */
934 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
de9a55b8 935 index = pos >> PAGE_CACHE_SHIFT;
af5bc92d
TT
936 from = pos & (PAGE_CACHE_SIZE - 1);
937 to = from + len;
ac27a0ec 938
f19d5870
TM
939 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
940 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
941 flags, pagep);
942 if (ret < 0)
47564bfb
TT
943 return ret;
944 if (ret == 1)
945 return 0;
f19d5870
TM
946 }
947
47564bfb
TT
948 /*
949 * grab_cache_page_write_begin() can take a long time if the
950 * system is thrashing due to memory pressure, or if the page
951 * is being written back. So grab it first before we start
952 * the transaction handle. This also allows us to allocate
953 * the page (if needed) without using GFP_NOFS.
954 */
955retry_grab:
956 page = grab_cache_page_write_begin(mapping, index, flags);
957 if (!page)
958 return -ENOMEM;
959 unlock_page(page);
960
961retry_journal:
9924a92a 962 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
af5bc92d 963 if (IS_ERR(handle)) {
47564bfb
TT
964 page_cache_release(page);
965 return PTR_ERR(handle);
7479d2b9 966 }
ac27a0ec 967
47564bfb
TT
968 lock_page(page);
969 if (page->mapping != mapping) {
970 /* The page got truncated from under us */
971 unlock_page(page);
972 page_cache_release(page);
cf108bca 973 ext4_journal_stop(handle);
47564bfb 974 goto retry_grab;
cf108bca 975 }
7afe5aa5
DM
976 /* In case writeback began while the page was unlocked */
977 wait_for_stable_page(page);
cf108bca 978
744692dc 979 if (ext4_should_dioread_nolock(inode))
6e1db88d 980 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
744692dc 981 else
6e1db88d 982 ret = __block_write_begin(page, pos, len, ext4_get_block);
bfc1af65
NP
983
984 if (!ret && ext4_should_journal_data(inode)) {
f19d5870
TM
985 ret = ext4_walk_page_buffers(handle, page_buffers(page),
986 from, to, NULL,
987 do_journal_get_write_access);
ac27a0ec 988 }
bfc1af65
NP
989
990 if (ret) {
af5bc92d 991 unlock_page(page);
ae4d5372 992 /*
6e1db88d 993 * __block_write_begin may have instantiated a few blocks
ae4d5372
AK
994 * outside i_size. Trim these off again. Don't need
995 * i_size_read because we hold i_mutex.
1938a150
AK
996 *
997 * Add inode to orphan list in case we crash before
998 * truncate finishes
ae4d5372 999 */
ffacfa7a 1000 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1938a150
AK
1001 ext4_orphan_add(handle, inode);
1002
1003 ext4_journal_stop(handle);
1004 if (pos + len > inode->i_size) {
b9a4207d 1005 ext4_truncate_failed_write(inode);
de9a55b8 1006 /*
ffacfa7a 1007 * If truncate failed early the inode might
1938a150
AK
1008 * still be on the orphan list; we need to
1009 * make sure the inode is removed from the
1010 * orphan list in that case.
1011 */
1012 if (inode->i_nlink)
1013 ext4_orphan_del(NULL, inode);
1014 }
bfc1af65 1015
47564bfb
TT
1016 if (ret == -ENOSPC &&
1017 ext4_should_retry_alloc(inode->i_sb, &retries))
1018 goto retry_journal;
1019 page_cache_release(page);
1020 return ret;
1021 }
1022 *pagep = page;
ac27a0ec
DK
1023 return ret;
1024}
1025
bfc1af65
NP
1026/* For write_end() in data=journal mode */
1027static int write_end_fn(handle_t *handle, struct buffer_head *bh)
ac27a0ec 1028{
13fca323 1029 int ret;
ac27a0ec
DK
1030 if (!buffer_mapped(bh) || buffer_freed(bh))
1031 return 0;
1032 set_buffer_uptodate(bh);
13fca323
TT
1033 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1034 clear_buffer_meta(bh);
1035 clear_buffer_prio(bh);
1036 return ret;
ac27a0ec
DK
1037}
1038
eed4333f
ZL
1039/*
1040 * We need to pick up the new inode size which generic_commit_write gave us
1041 * `file' can be NULL - eg, when called from page_symlink().
1042 *
1043 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1044 * buffers are managed internally.
1045 */
1046static int ext4_write_end(struct file *file,
1047 struct address_space *mapping,
1048 loff_t pos, unsigned len, unsigned copied,
1049 struct page *page, void *fsdata)
f8514083 1050{
f8514083 1051 handle_t *handle = ext4_journal_current_handle();
eed4333f
ZL
1052 struct inode *inode = mapping->host;
1053 int ret = 0, ret2;
1054 int i_size_changed = 0;
1055
1056 trace_ext4_write_end(inode, pos, len, copied);
1057 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) {
1058 ret = ext4_jbd2_file_inode(handle, inode);
1059 if (ret) {
1060 unlock_page(page);
1061 page_cache_release(page);
1062 goto errout;
1063 }
1064 }
f8514083 1065
42c832de
TT
1066 if (ext4_has_inline_data(inode)) {
1067 ret = ext4_write_inline_data_end(inode, pos, len,
1068 copied, page);
1069 if (ret < 0)
1070 goto errout;
1071 copied = ret;
1072 } else
f19d5870
TM
1073 copied = block_write_end(file, mapping, pos,
1074 len, copied, page, fsdata);
f8514083
AK
1075
1076 /*
1077 * No need to use i_size_read() here, the i_size
eed4333f 1078 * cannot change under us because we hole i_mutex.
f8514083
AK
1079 *
1080 * But it's important to update i_size while still holding page lock:
1081 * page writeout could otherwise come in and zero beyond i_size.
1082 */
1083 if (pos + copied > inode->i_size) {
1084 i_size_write(inode, pos + copied);
1085 i_size_changed = 1;
1086 }
1087
eed4333f 1088 if (pos + copied > EXT4_I(inode)->i_disksize) {
f8514083
AK
1089 /* We need to mark inode dirty even if
1090 * new_i_size is less that inode->i_size
eed4333f 1091 * but greater than i_disksize. (hint delalloc)
f8514083
AK
1092 */
1093 ext4_update_i_disksize(inode, (pos + copied));
1094 i_size_changed = 1;
1095 }
1096 unlock_page(page);
1097 page_cache_release(page);
1098
1099 /*
1100 * Don't mark the inode dirty under page lock. First, it unnecessarily
1101 * makes the holding time of page lock longer. Second, it forces lock
1102 * ordering of page lock and transaction start for journaling
1103 * filesystems.
1104 */
1105 if (i_size_changed)
1106 ext4_mark_inode_dirty(handle, inode);
1107
ffacfa7a 1108 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1109 /* if we have allocated more blocks and copied
1110 * less. We will have blocks allocated outside
1111 * inode->i_size. So truncate them
1112 */
1113 ext4_orphan_add(handle, inode);
74d553aa 1114errout:
617ba13b 1115 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1116 if (!ret)
1117 ret = ret2;
bfc1af65 1118
f8514083 1119 if (pos + len > inode->i_size) {
b9a4207d 1120 ext4_truncate_failed_write(inode);
de9a55b8 1121 /*
ffacfa7a 1122 * If truncate failed early the inode might still be
f8514083
AK
1123 * on the orphan list; we need to make sure the inode
1124 * is removed from the orphan list in that case.
1125 */
1126 if (inode->i_nlink)
1127 ext4_orphan_del(NULL, inode);
1128 }
1129
bfc1af65 1130 return ret ? ret : copied;
ac27a0ec
DK
1131}
1132
bfc1af65 1133static int ext4_journalled_write_end(struct file *file,
de9a55b8
TT
1134 struct address_space *mapping,
1135 loff_t pos, unsigned len, unsigned copied,
1136 struct page *page, void *fsdata)
ac27a0ec 1137{
617ba13b 1138 handle_t *handle = ext4_journal_current_handle();
bfc1af65 1139 struct inode *inode = mapping->host;
ac27a0ec
DK
1140 int ret = 0, ret2;
1141 int partial = 0;
bfc1af65 1142 unsigned from, to;
cf17fea6 1143 loff_t new_i_size;
ac27a0ec 1144
9bffad1e 1145 trace_ext4_journalled_write_end(inode, pos, len, copied);
bfc1af65
NP
1146 from = pos & (PAGE_CACHE_SIZE - 1);
1147 to = from + len;
1148
441c8508
CW
1149 BUG_ON(!ext4_handle_valid(handle));
1150
3fdcfb66
TM
1151 if (ext4_has_inline_data(inode))
1152 copied = ext4_write_inline_data_end(inode, pos, len,
1153 copied, page);
1154 else {
1155 if (copied < len) {
1156 if (!PageUptodate(page))
1157 copied = 0;
1158 page_zero_new_buffers(page, from+copied, to);
1159 }
ac27a0ec 1160
3fdcfb66
TM
1161 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1162 to, &partial, write_end_fn);
1163 if (!partial)
1164 SetPageUptodate(page);
1165 }
cf17fea6
AK
1166 new_i_size = pos + copied;
1167 if (new_i_size > inode->i_size)
bfc1af65 1168 i_size_write(inode, pos+copied);
19f5fb7a 1169 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2d859db3 1170 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
cf17fea6
AK
1171 if (new_i_size > EXT4_I(inode)->i_disksize) {
1172 ext4_update_i_disksize(inode, new_i_size);
617ba13b 1173 ret2 = ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
1174 if (!ret)
1175 ret = ret2;
1176 }
bfc1af65 1177
cf108bca 1178 unlock_page(page);
f8514083 1179 page_cache_release(page);
ffacfa7a 1180 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1181 /* if we have allocated more blocks and copied
1182 * less. We will have blocks allocated outside
1183 * inode->i_size. So truncate them
1184 */
1185 ext4_orphan_add(handle, inode);
1186
617ba13b 1187 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1188 if (!ret)
1189 ret = ret2;
f8514083 1190 if (pos + len > inode->i_size) {
b9a4207d 1191 ext4_truncate_failed_write(inode);
de9a55b8 1192 /*
ffacfa7a 1193 * If truncate failed early the inode might still be
f8514083
AK
1194 * on the orphan list; we need to make sure the inode
1195 * is removed from the orphan list in that case.
1196 */
1197 if (inode->i_nlink)
1198 ext4_orphan_del(NULL, inode);
1199 }
bfc1af65
NP
1200
1201 return ret ? ret : copied;
ac27a0ec 1202}
d2a17637 1203
386ad67c
LC
1204/*
1205 * Reserve a metadata for a single block located at lblock
1206 */
1207static int ext4_da_reserve_metadata(struct inode *inode, ext4_lblk_t lblock)
1208{
1209 int retries = 0;
1210 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1211 struct ext4_inode_info *ei = EXT4_I(inode);
1212 unsigned int md_needed;
1213 ext4_lblk_t save_last_lblock;
1214 int save_len;
1215
1216 /*
1217 * recalculate the amount of metadata blocks to reserve
1218 * in order to allocate nrblocks
1219 * worse case is one extent per block
1220 */
1221repeat:
1222 spin_lock(&ei->i_block_reservation_lock);
1223 /*
1224 * ext4_calc_metadata_amount() has side effects, which we have
1225 * to be prepared undo if we fail to claim space.
1226 */
1227 save_len = ei->i_da_metadata_calc_len;
1228 save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1229 md_needed = EXT4_NUM_B2C(sbi,
1230 ext4_calc_metadata_amount(inode, lblock));
1231 trace_ext4_da_reserve_space(inode, md_needed);
1232
1233 /*
1234 * We do still charge estimated metadata to the sb though;
1235 * we cannot afford to run out of free blocks.
1236 */
1237 if (ext4_claim_free_clusters(sbi, md_needed, 0)) {
1238 ei->i_da_metadata_calc_len = save_len;
1239 ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1240 spin_unlock(&ei->i_block_reservation_lock);
1241 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1242 cond_resched();
1243 goto repeat;
1244 }
1245 return -ENOSPC;
1246 }
1247 ei->i_reserved_meta_blocks += md_needed;
1248 spin_unlock(&ei->i_block_reservation_lock);
1249
1250 return 0; /* success */
1251}
1252
9d0be502 1253/*
7b415bf6 1254 * Reserve a single cluster located at lblock
9d0be502 1255 */
01f49d0b 1256static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
d2a17637 1257{
030ba6bc 1258 int retries = 0;
60e58e0f 1259 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 1260 struct ext4_inode_info *ei = EXT4_I(inode);
7b415bf6 1261 unsigned int md_needed;
5dd4056d 1262 int ret;
03179fe9
TT
1263 ext4_lblk_t save_last_lblock;
1264 int save_len;
1265
1266 /*
1267 * We will charge metadata quota at writeout time; this saves
1268 * us from metadata over-estimation, though we may go over by
1269 * a small amount in the end. Here we just reserve for data.
1270 */
1271 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1272 if (ret)
1273 return ret;
d2a17637
MC
1274
1275 /*
1276 * recalculate the amount of metadata blocks to reserve
1277 * in order to allocate nrblocks
1278 * worse case is one extent per block
1279 */
030ba6bc 1280repeat:
0637c6f4 1281 spin_lock(&ei->i_block_reservation_lock);
03179fe9
TT
1282 /*
1283 * ext4_calc_metadata_amount() has side effects, which we have
1284 * to be prepared undo if we fail to claim space.
1285 */
1286 save_len = ei->i_da_metadata_calc_len;
1287 save_last_lblock = ei->i_da_metadata_calc_last_lblock;
7b415bf6
AK
1288 md_needed = EXT4_NUM_B2C(sbi,
1289 ext4_calc_metadata_amount(inode, lblock));
f8ec9d68 1290 trace_ext4_da_reserve_space(inode, md_needed);
d2a17637 1291
72b8ab9d
ES
1292 /*
1293 * We do still charge estimated metadata to the sb though;
1294 * we cannot afford to run out of free blocks.
1295 */
e7d5f315 1296 if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) {
03179fe9
TT
1297 ei->i_da_metadata_calc_len = save_len;
1298 ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1299 spin_unlock(&ei->i_block_reservation_lock);
030ba6bc 1300 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
bb8b20ed 1301 cond_resched();
030ba6bc
AK
1302 goto repeat;
1303 }
03179fe9 1304 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
d2a17637
MC
1305 return -ENOSPC;
1306 }
9d0be502 1307 ei->i_reserved_data_blocks++;
0637c6f4
TT
1308 ei->i_reserved_meta_blocks += md_needed;
1309 spin_unlock(&ei->i_block_reservation_lock);
39bc680a 1310
d2a17637
MC
1311 return 0; /* success */
1312}
1313
12219aea 1314static void ext4_da_release_space(struct inode *inode, int to_free)
d2a17637
MC
1315{
1316 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 1317 struct ext4_inode_info *ei = EXT4_I(inode);
d2a17637 1318
cd213226
MC
1319 if (!to_free)
1320 return; /* Nothing to release, exit */
1321
d2a17637 1322 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
cd213226 1323
5a58ec87 1324 trace_ext4_da_release_space(inode, to_free);
0637c6f4 1325 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
cd213226 1326 /*
0637c6f4
TT
1327 * if there aren't enough reserved blocks, then the
1328 * counter is messed up somewhere. Since this
1329 * function is called from invalidate page, it's
1330 * harmless to return without any action.
cd213226 1331 */
8de5c325 1332 ext4_warning(inode->i_sb, "ext4_da_release_space: "
0637c6f4 1333 "ino %lu, to_free %d with only %d reserved "
1084f252 1334 "data blocks", inode->i_ino, to_free,
0637c6f4
TT
1335 ei->i_reserved_data_blocks);
1336 WARN_ON(1);
1337 to_free = ei->i_reserved_data_blocks;
cd213226 1338 }
0637c6f4 1339 ei->i_reserved_data_blocks -= to_free;
cd213226 1340
0637c6f4
TT
1341 if (ei->i_reserved_data_blocks == 0) {
1342 /*
1343 * We can release all of the reserved metadata blocks
1344 * only when we have written all of the delayed
1345 * allocation blocks.
7b415bf6
AK
1346 * Note that in case of bigalloc, i_reserved_meta_blocks,
1347 * i_reserved_data_blocks, etc. refer to number of clusters.
0637c6f4 1348 */
57042651 1349 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
72b8ab9d 1350 ei->i_reserved_meta_blocks);
ee5f4d9c 1351 ei->i_reserved_meta_blocks = 0;
9d0be502 1352 ei->i_da_metadata_calc_len = 0;
0637c6f4 1353 }
d2a17637 1354
72b8ab9d 1355 /* update fs dirty data blocks counter */
57042651 1356 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
d2a17637 1357
d2a17637 1358 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f 1359
7b415bf6 1360 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
d2a17637
MC
1361}
1362
1363static void ext4_da_page_release_reservation(struct page *page,
ca99fdd2
LC
1364 unsigned int offset,
1365 unsigned int length)
d2a17637
MC
1366{
1367 int to_release = 0;
1368 struct buffer_head *head, *bh;
1369 unsigned int curr_off = 0;
7b415bf6
AK
1370 struct inode *inode = page->mapping->host;
1371 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
ca99fdd2 1372 unsigned int stop = offset + length;
7b415bf6 1373 int num_clusters;
51865fda 1374 ext4_fsblk_t lblk;
d2a17637 1375
ca99fdd2
LC
1376 BUG_ON(stop > PAGE_CACHE_SIZE || stop < length);
1377
d2a17637
MC
1378 head = page_buffers(page);
1379 bh = head;
1380 do {
1381 unsigned int next_off = curr_off + bh->b_size;
1382
ca99fdd2
LC
1383 if (next_off > stop)
1384 break;
1385
d2a17637
MC
1386 if ((offset <= curr_off) && (buffer_delay(bh))) {
1387 to_release++;
1388 clear_buffer_delay(bh);
1389 }
1390 curr_off = next_off;
1391 } while ((bh = bh->b_this_page) != head);
7b415bf6 1392
51865fda
ZL
1393 if (to_release) {
1394 lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1395 ext4_es_remove_extent(inode, lblk, to_release);
1396 }
1397
7b415bf6
AK
1398 /* If we have released all the blocks belonging to a cluster, then we
1399 * need to release the reserved space for that cluster. */
1400 num_clusters = EXT4_NUM_B2C(sbi, to_release);
1401 while (num_clusters > 0) {
7b415bf6
AK
1402 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1403 ((num_clusters - 1) << sbi->s_cluster_bits);
1404 if (sbi->s_cluster_ratio == 1 ||
7d1b1fbc 1405 !ext4_find_delalloc_cluster(inode, lblk))
7b415bf6
AK
1406 ext4_da_release_space(inode, 1);
1407
1408 num_clusters--;
1409 }
d2a17637 1410}
ac27a0ec 1411
64769240
AT
1412/*
1413 * Delayed allocation stuff
1414 */
1415
4e7ea81d
JK
1416struct mpage_da_data {
1417 struct inode *inode;
1418 struct writeback_control *wbc;
6b523df4 1419
4e7ea81d
JK
1420 pgoff_t first_page; /* The first page to write */
1421 pgoff_t next_page; /* Current page to examine */
1422 pgoff_t last_page; /* Last page to examine */
791b7f08 1423 /*
4e7ea81d
JK
1424 * Extent to map - this can be after first_page because that can be
1425 * fully mapped. We somewhat abuse m_flags to store whether the extent
1426 * is delalloc or unwritten.
791b7f08 1427 */
4e7ea81d
JK
1428 struct ext4_map_blocks map;
1429 struct ext4_io_submit io_submit; /* IO submission data */
1430};
64769240 1431
4e7ea81d
JK
1432static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1433 bool invalidate)
c4a0c46e
AK
1434{
1435 int nr_pages, i;
1436 pgoff_t index, end;
1437 struct pagevec pvec;
1438 struct inode *inode = mpd->inode;
1439 struct address_space *mapping = inode->i_mapping;
4e7ea81d
JK
1440
1441 /* This is necessary when next_page == 0. */
1442 if (mpd->first_page >= mpd->next_page)
1443 return;
c4a0c46e 1444
c7f5938a
CW
1445 index = mpd->first_page;
1446 end = mpd->next_page - 1;
4e7ea81d
JK
1447 if (invalidate) {
1448 ext4_lblk_t start, last;
1449 start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1450 last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1451 ext4_es_remove_extent(inode, start, last - start + 1);
1452 }
51865fda 1453
66bea92c 1454 pagevec_init(&pvec, 0);
c4a0c46e
AK
1455 while (index <= end) {
1456 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1457 if (nr_pages == 0)
1458 break;
1459 for (i = 0; i < nr_pages; i++) {
1460 struct page *page = pvec.pages[i];
9b1d0998 1461 if (page->index > end)
c4a0c46e 1462 break;
c4a0c46e
AK
1463 BUG_ON(!PageLocked(page));
1464 BUG_ON(PageWriteback(page));
4e7ea81d
JK
1465 if (invalidate) {
1466 block_invalidatepage(page, 0, PAGE_CACHE_SIZE);
1467 ClearPageUptodate(page);
1468 }
c4a0c46e
AK
1469 unlock_page(page);
1470 }
9b1d0998
JK
1471 index = pvec.pages[nr_pages - 1]->index + 1;
1472 pagevec_release(&pvec);
c4a0c46e 1473 }
c4a0c46e
AK
1474}
1475
df22291f
AK
1476static void ext4_print_free_blocks(struct inode *inode)
1477{
1478 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
92b97816 1479 struct super_block *sb = inode->i_sb;
f78ee70d 1480 struct ext4_inode_info *ei = EXT4_I(inode);
92b97816
TT
1481
1482 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
5dee5437 1483 EXT4_C2B(EXT4_SB(inode->i_sb),
f78ee70d 1484 ext4_count_free_clusters(sb)));
92b97816
TT
1485 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1486 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
f78ee70d 1487 (long long) EXT4_C2B(EXT4_SB(sb),
57042651 1488 percpu_counter_sum(&sbi->s_freeclusters_counter)));
92b97816 1489 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
f78ee70d 1490 (long long) EXT4_C2B(EXT4_SB(sb),
7b415bf6 1491 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
92b97816
TT
1492 ext4_msg(sb, KERN_CRIT, "Block reservation details");
1493 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
f78ee70d 1494 ei->i_reserved_data_blocks);
92b97816 1495 ext4_msg(sb, KERN_CRIT, "i_reserved_meta_blocks=%u",
f78ee70d
LC
1496 ei->i_reserved_meta_blocks);
1497 ext4_msg(sb, KERN_CRIT, "i_allocated_meta_blocks=%u",
1498 ei->i_allocated_meta_blocks);
df22291f
AK
1499 return;
1500}
1501
c364b22c 1502static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
29fa89d0 1503{
c364b22c 1504 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
29fa89d0
AK
1505}
1506
5356f261
AK
1507/*
1508 * This function is grabs code from the very beginning of
1509 * ext4_map_blocks, but assumes that the caller is from delayed write
1510 * time. This function looks up the requested blocks and sets the
1511 * buffer delay bit under the protection of i_data_sem.
1512 */
1513static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1514 struct ext4_map_blocks *map,
1515 struct buffer_head *bh)
1516{
d100eef2 1517 struct extent_status es;
5356f261
AK
1518 int retval;
1519 sector_t invalid_block = ~((sector_t) 0xffff);
921f266b
DM
1520#ifdef ES_AGGRESSIVE_TEST
1521 struct ext4_map_blocks orig_map;
1522
1523 memcpy(&orig_map, map, sizeof(*map));
1524#endif
5356f261
AK
1525
1526 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1527 invalid_block = ~0;
1528
1529 map->m_flags = 0;
1530 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1531 "logical block %lu\n", inode->i_ino, map->m_len,
1532 (unsigned long) map->m_lblk);
d100eef2
ZL
1533
1534 /* Lookup extent status tree firstly */
1535 if (ext4_es_lookup_extent(inode, iblock, &es)) {
63b99968 1536 ext4_es_lru_add(inode);
d100eef2
ZL
1537 if (ext4_es_is_hole(&es)) {
1538 retval = 0;
1539 down_read((&EXT4_I(inode)->i_data_sem));
1540 goto add_delayed;
1541 }
1542
1543 /*
1544 * Delayed extent could be allocated by fallocate.
1545 * So we need to check it.
1546 */
1547 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1548 map_bh(bh, inode->i_sb, invalid_block);
1549 set_buffer_new(bh);
1550 set_buffer_delay(bh);
1551 return 0;
1552 }
1553
1554 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1555 retval = es.es_len - (iblock - es.es_lblk);
1556 if (retval > map->m_len)
1557 retval = map->m_len;
1558 map->m_len = retval;
1559 if (ext4_es_is_written(&es))
1560 map->m_flags |= EXT4_MAP_MAPPED;
1561 else if (ext4_es_is_unwritten(&es))
1562 map->m_flags |= EXT4_MAP_UNWRITTEN;
1563 else
1564 BUG_ON(1);
1565
921f266b
DM
1566#ifdef ES_AGGRESSIVE_TEST
1567 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1568#endif
d100eef2
ZL
1569 return retval;
1570 }
1571
5356f261
AK
1572 /*
1573 * Try to see if we can get the block without requesting a new
1574 * file system block.
1575 */
1576 down_read((&EXT4_I(inode)->i_data_sem));
9c3569b5
TM
1577 if (ext4_has_inline_data(inode)) {
1578 /*
1579 * We will soon create blocks for this page, and let
1580 * us pretend as if the blocks aren't allocated yet.
1581 * In case of clusters, we have to handle the work
1582 * of mapping from cluster so that the reserved space
1583 * is calculated properly.
1584 */
1585 if ((EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) &&
1586 ext4_find_delalloc_cluster(inode, map->m_lblk))
1587 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
1588 retval = 0;
1589 } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
d100eef2
ZL
1590 retval = ext4_ext_map_blocks(NULL, inode, map,
1591 EXT4_GET_BLOCKS_NO_PUT_HOLE);
5356f261 1592 else
d100eef2
ZL
1593 retval = ext4_ind_map_blocks(NULL, inode, map,
1594 EXT4_GET_BLOCKS_NO_PUT_HOLE);
5356f261 1595
d100eef2 1596add_delayed:
5356f261 1597 if (retval == 0) {
f7fec032 1598 int ret;
5356f261
AK
1599 /*
1600 * XXX: __block_prepare_write() unmaps passed block,
1601 * is it OK?
1602 */
386ad67c
LC
1603 /*
1604 * If the block was allocated from previously allocated cluster,
1605 * then we don't need to reserve it again. However we still need
1606 * to reserve metadata for every block we're going to write.
1607 */
5356f261 1608 if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
f7fec032
ZL
1609 ret = ext4_da_reserve_space(inode, iblock);
1610 if (ret) {
5356f261 1611 /* not enough space to reserve */
f7fec032 1612 retval = ret;
5356f261 1613 goto out_unlock;
f7fec032 1614 }
386ad67c
LC
1615 } else {
1616 ret = ext4_da_reserve_metadata(inode, iblock);
1617 if (ret) {
1618 /* not enough space to reserve */
1619 retval = ret;
1620 goto out_unlock;
1621 }
5356f261
AK
1622 }
1623
f7fec032
ZL
1624 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1625 ~0, EXTENT_STATUS_DELAYED);
1626 if (ret) {
1627 retval = ret;
51865fda 1628 goto out_unlock;
f7fec032 1629 }
51865fda 1630
5356f261
AK
1631 /* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
1632 * and it should not appear on the bh->b_state.
1633 */
1634 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
1635
1636 map_bh(bh, inode->i_sb, invalid_block);
1637 set_buffer_new(bh);
1638 set_buffer_delay(bh);
f7fec032
ZL
1639 } else if (retval > 0) {
1640 int ret;
3be78c73 1641 unsigned int status;
f7fec032 1642
44fb851d
ZL
1643 if (unlikely(retval != map->m_len)) {
1644 ext4_warning(inode->i_sb,
1645 "ES len assertion failed for inode "
1646 "%lu: retval %d != map->m_len %d",
1647 inode->i_ino, retval, map->m_len);
1648 WARN_ON(1);
921f266b 1649 }
921f266b 1650
f7fec032
ZL
1651 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1652 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1653 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1654 map->m_pblk, status);
1655 if (ret != 0)
1656 retval = ret;
5356f261
AK
1657 }
1658
1659out_unlock:
1660 up_read((&EXT4_I(inode)->i_data_sem));
1661
1662 return retval;
1663}
1664
64769240 1665/*
b920c755
TT
1666 * This is a special get_blocks_t callback which is used by
1667 * ext4_da_write_begin(). It will either return mapped block or
1668 * reserve space for a single block.
29fa89d0
AK
1669 *
1670 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1671 * We also have b_blocknr = -1 and b_bdev initialized properly
1672 *
1673 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1674 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1675 * initialized properly.
64769240 1676 */
9c3569b5
TM
1677int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1678 struct buffer_head *bh, int create)
64769240 1679{
2ed88685 1680 struct ext4_map_blocks map;
64769240
AT
1681 int ret = 0;
1682
1683 BUG_ON(create == 0);
2ed88685
TT
1684 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1685
1686 map.m_lblk = iblock;
1687 map.m_len = 1;
64769240
AT
1688
1689 /*
1690 * first, we need to know whether the block is allocated already
1691 * preallocated blocks are unmapped but should treated
1692 * the same as allocated blocks.
1693 */
5356f261
AK
1694 ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1695 if (ret <= 0)
2ed88685 1696 return ret;
64769240 1697
2ed88685
TT
1698 map_bh(bh, inode->i_sb, map.m_pblk);
1699 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1700
1701 if (buffer_unwritten(bh)) {
1702 /* A delayed write to unwritten bh should be marked
1703 * new and mapped. Mapped ensures that we don't do
1704 * get_block multiple times when we write to the same
1705 * offset and new ensures that we do proper zero out
1706 * for partial write.
1707 */
1708 set_buffer_new(bh);
c8205636 1709 set_buffer_mapped(bh);
2ed88685
TT
1710 }
1711 return 0;
64769240 1712}
61628a3f 1713
62e086be
AK
1714static int bget_one(handle_t *handle, struct buffer_head *bh)
1715{
1716 get_bh(bh);
1717 return 0;
1718}
1719
1720static int bput_one(handle_t *handle, struct buffer_head *bh)
1721{
1722 put_bh(bh);
1723 return 0;
1724}
1725
1726static int __ext4_journalled_writepage(struct page *page,
62e086be
AK
1727 unsigned int len)
1728{
1729 struct address_space *mapping = page->mapping;
1730 struct inode *inode = mapping->host;
3fdcfb66 1731 struct buffer_head *page_bufs = NULL;
62e086be 1732 handle_t *handle = NULL;
3fdcfb66
TM
1733 int ret = 0, err = 0;
1734 int inline_data = ext4_has_inline_data(inode);
1735 struct buffer_head *inode_bh = NULL;
62e086be 1736
cb20d518 1737 ClearPageChecked(page);
3fdcfb66
TM
1738
1739 if (inline_data) {
1740 BUG_ON(page->index != 0);
1741 BUG_ON(len > ext4_get_max_inline_size(inode));
1742 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1743 if (inode_bh == NULL)
1744 goto out;
1745 } else {
1746 page_bufs = page_buffers(page);
1747 if (!page_bufs) {
1748 BUG();
1749 goto out;
1750 }
1751 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1752 NULL, bget_one);
1753 }
62e086be
AK
1754 /* As soon as we unlock the page, it can go away, but we have
1755 * references to buffers so we are safe */
1756 unlock_page(page);
1757
9924a92a
TT
1758 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1759 ext4_writepage_trans_blocks(inode));
62e086be
AK
1760 if (IS_ERR(handle)) {
1761 ret = PTR_ERR(handle);
1762 goto out;
1763 }
1764
441c8508
CW
1765 BUG_ON(!ext4_handle_valid(handle));
1766
3fdcfb66
TM
1767 if (inline_data) {
1768 ret = ext4_journal_get_write_access(handle, inode_bh);
62e086be 1769
3fdcfb66
TM
1770 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
1771
1772 } else {
1773 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1774 do_journal_get_write_access);
1775
1776 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1777 write_end_fn);
1778 }
62e086be
AK
1779 if (ret == 0)
1780 ret = err;
2d859db3 1781 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
62e086be
AK
1782 err = ext4_journal_stop(handle);
1783 if (!ret)
1784 ret = err;
1785
3fdcfb66
TM
1786 if (!ext4_has_inline_data(inode))
1787 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1788 NULL, bput_one);
19f5fb7a 1789 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
62e086be 1790out:
3fdcfb66 1791 brelse(inode_bh);
62e086be
AK
1792 return ret;
1793}
1794
61628a3f 1795/*
43ce1d23
AK
1796 * Note that we don't need to start a transaction unless we're journaling data
1797 * because we should have holes filled from ext4_page_mkwrite(). We even don't
1798 * need to file the inode to the transaction's list in ordered mode because if
1799 * we are writing back data added by write(), the inode is already there and if
25985edc 1800 * we are writing back data modified via mmap(), no one guarantees in which
43ce1d23
AK
1801 * transaction the data will hit the disk. In case we are journaling data, we
1802 * cannot start transaction directly because transaction start ranks above page
1803 * lock so we have to do some magic.
1804 *
b920c755 1805 * This function can get called via...
20970ba6 1806 * - ext4_writepages after taking page lock (have journal handle)
b920c755 1807 * - journal_submit_inode_data_buffers (no journal handle)
f6463b0d 1808 * - shrink_page_list via the kswapd/direct reclaim (no journal handle)
b920c755 1809 * - grab_page_cache when doing write_begin (have journal handle)
43ce1d23
AK
1810 *
1811 * We don't do any block allocation in this function. If we have page with
1812 * multiple blocks we need to write those buffer_heads that are mapped. This
1813 * is important for mmaped based write. So if we do with blocksize 1K
1814 * truncate(f, 1024);
1815 * a = mmap(f, 0, 4096);
1816 * a[0] = 'a';
1817 * truncate(f, 4096);
1818 * we have in the page first buffer_head mapped via page_mkwrite call back
90802ed9 1819 * but other buffer_heads would be unmapped but dirty (dirty done via the
43ce1d23
AK
1820 * do_wp_page). So writepage should write the first block. If we modify
1821 * the mmap area beyond 1024 we will again get a page_fault and the
1822 * page_mkwrite callback will do the block allocation and mark the
1823 * buffer_heads mapped.
1824 *
1825 * We redirty the page if we have any buffer_heads that is either delay or
1826 * unwritten in the page.
1827 *
1828 * We can get recursively called as show below.
1829 *
1830 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1831 * ext4_writepage()
1832 *
1833 * But since we don't do any block allocation we should not deadlock.
1834 * Page also have the dirty flag cleared so we don't get recurive page_lock.
61628a3f 1835 */
43ce1d23 1836static int ext4_writepage(struct page *page,
62e086be 1837 struct writeback_control *wbc)
64769240 1838{
f8bec370 1839 int ret = 0;
61628a3f 1840 loff_t size;
498e5f24 1841 unsigned int len;
744692dc 1842 struct buffer_head *page_bufs = NULL;
61628a3f 1843 struct inode *inode = page->mapping->host;
36ade451 1844 struct ext4_io_submit io_submit;
61628a3f 1845
a9c667f8 1846 trace_ext4_writepage(page);
f0e6c985
AK
1847 size = i_size_read(inode);
1848 if (page->index == size >> PAGE_CACHE_SHIFT)
1849 len = size & ~PAGE_CACHE_MASK;
1850 else
1851 len = PAGE_CACHE_SIZE;
64769240 1852
a42afc5f 1853 page_bufs = page_buffers(page);
a42afc5f 1854 /*
fe386132
JK
1855 * We cannot do block allocation or other extent handling in this
1856 * function. If there are buffers needing that, we have to redirty
1857 * the page. But we may reach here when we do a journal commit via
1858 * journal_submit_inode_data_buffers() and in that case we must write
1859 * allocated buffers to achieve data=ordered mode guarantees.
a42afc5f 1860 */
f19d5870
TM
1861 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
1862 ext4_bh_delay_or_unwritten)) {
f8bec370 1863 redirty_page_for_writepage(wbc, page);
fe386132
JK
1864 if (current->flags & PF_MEMALLOC) {
1865 /*
1866 * For memory cleaning there's no point in writing only
1867 * some buffers. So just bail out. Warn if we came here
1868 * from direct reclaim.
1869 */
1870 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
1871 == PF_MEMALLOC);
f0e6c985
AK
1872 unlock_page(page);
1873 return 0;
1874 }
a42afc5f 1875 }
64769240 1876
cb20d518 1877 if (PageChecked(page) && ext4_should_journal_data(inode))
43ce1d23
AK
1878 /*
1879 * It's mmapped pagecache. Add buffers and journal it. There
1880 * doesn't seem much point in redirtying the page here.
1881 */
3f0ca309 1882 return __ext4_journalled_writepage(page, len);
43ce1d23 1883
97a851ed
JK
1884 ext4_io_submit_init(&io_submit, wbc);
1885 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
1886 if (!io_submit.io_end) {
1887 redirty_page_for_writepage(wbc, page);
1888 unlock_page(page);
1889 return -ENOMEM;
1890 }
36ade451
JK
1891 ret = ext4_bio_write_page(&io_submit, page, len, wbc);
1892 ext4_io_submit(&io_submit);
97a851ed
JK
1893 /* Drop io_end reference we got from init */
1894 ext4_put_io_end_defer(io_submit.io_end);
64769240
AT
1895 return ret;
1896}
1897
5f1132b2
JK
1898static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
1899{
1900 int len;
1901 loff_t size = i_size_read(mpd->inode);
1902 int err;
1903
1904 BUG_ON(page->index != mpd->first_page);
1905 if (page->index == size >> PAGE_CACHE_SHIFT)
1906 len = size & ~PAGE_CACHE_MASK;
1907 else
1908 len = PAGE_CACHE_SIZE;
1909 clear_page_dirty_for_io(page);
1910 err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc);
1911 if (!err)
1912 mpd->wbc->nr_to_write--;
1913 mpd->first_page++;
1914
1915 return err;
1916}
1917
4e7ea81d
JK
1918#define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
1919
61628a3f 1920/*
fffb2739
JK
1921 * mballoc gives us at most this number of blocks...
1922 * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
70261f56 1923 * The rest of mballoc seems to handle chunks up to full group size.
61628a3f 1924 */
fffb2739 1925#define MAX_WRITEPAGES_EXTENT_LEN 2048
525f4ed8 1926
4e7ea81d
JK
1927/*
1928 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
1929 *
1930 * @mpd - extent of blocks
1931 * @lblk - logical number of the block in the file
09930042 1932 * @bh - buffer head we want to add to the extent
4e7ea81d 1933 *
09930042
JK
1934 * The function is used to collect contig. blocks in the same state. If the
1935 * buffer doesn't require mapping for writeback and we haven't started the
1936 * extent of buffers to map yet, the function returns 'true' immediately - the
1937 * caller can write the buffer right away. Otherwise the function returns true
1938 * if the block has been added to the extent, false if the block couldn't be
1939 * added.
4e7ea81d 1940 */
09930042
JK
1941static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
1942 struct buffer_head *bh)
4e7ea81d
JK
1943{
1944 struct ext4_map_blocks *map = &mpd->map;
1945
09930042
JK
1946 /* Buffer that doesn't need mapping for writeback? */
1947 if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
1948 (!buffer_delay(bh) && !buffer_unwritten(bh))) {
1949 /* So far no extent to map => we write the buffer right away */
1950 if (map->m_len == 0)
1951 return true;
1952 return false;
1953 }
4e7ea81d
JK
1954
1955 /* First block in the extent? */
1956 if (map->m_len == 0) {
1957 map->m_lblk = lblk;
1958 map->m_len = 1;
09930042
JK
1959 map->m_flags = bh->b_state & BH_FLAGS;
1960 return true;
4e7ea81d
JK
1961 }
1962
09930042
JK
1963 /* Don't go larger than mballoc is willing to allocate */
1964 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
1965 return false;
1966
4e7ea81d
JK
1967 /* Can we merge the block to our big extent? */
1968 if (lblk == map->m_lblk + map->m_len &&
09930042 1969 (bh->b_state & BH_FLAGS) == map->m_flags) {
4e7ea81d 1970 map->m_len++;
09930042 1971 return true;
4e7ea81d 1972 }
09930042 1973 return false;
4e7ea81d
JK
1974}
1975
5f1132b2
JK
1976/*
1977 * mpage_process_page_bufs - submit page buffers for IO or add them to extent
1978 *
1979 * @mpd - extent of blocks for mapping
1980 * @head - the first buffer in the page
1981 * @bh - buffer we should start processing from
1982 * @lblk - logical number of the block in the file corresponding to @bh
1983 *
1984 * Walk through page buffers from @bh upto @head (exclusive) and either submit
1985 * the page for IO if all buffers in this page were mapped and there's no
1986 * accumulated extent of buffers to map or add buffers in the page to the
1987 * extent of buffers to map. The function returns 1 if the caller can continue
1988 * by processing the next page, 0 if it should stop adding buffers to the
1989 * extent to map because we cannot extend it anymore. It can also return value
1990 * < 0 in case of error during IO submission.
1991 */
1992static int mpage_process_page_bufs(struct mpage_da_data *mpd,
1993 struct buffer_head *head,
1994 struct buffer_head *bh,
1995 ext4_lblk_t lblk)
4e7ea81d
JK
1996{
1997 struct inode *inode = mpd->inode;
5f1132b2 1998 int err;
4e7ea81d
JK
1999 ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1)
2000 >> inode->i_blkbits;
2001
2002 do {
2003 BUG_ON(buffer_locked(bh));
2004
09930042 2005 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
4e7ea81d
JK
2006 /* Found extent to map? */
2007 if (mpd->map.m_len)
5f1132b2 2008 return 0;
09930042 2009 /* Everything mapped so far and we hit EOF */
5f1132b2 2010 break;
4e7ea81d 2011 }
4e7ea81d 2012 } while (lblk++, (bh = bh->b_this_page) != head);
5f1132b2
JK
2013 /* So far everything mapped? Submit the page for IO. */
2014 if (mpd->map.m_len == 0) {
2015 err = mpage_submit_page(mpd, head->b_page);
2016 if (err < 0)
2017 return err;
2018 }
2019 return lblk < blocks;
4e7ea81d
JK
2020}
2021
2022/*
2023 * mpage_map_buffers - update buffers corresponding to changed extent and
2024 * submit fully mapped pages for IO
2025 *
2026 * @mpd - description of extent to map, on return next extent to map
2027 *
2028 * Scan buffers corresponding to changed extent (we expect corresponding pages
2029 * to be already locked) and update buffer state according to new extent state.
2030 * We map delalloc buffers to their physical location, clear unwritten bits,
2031 * and mark buffers as uninit when we perform writes to uninitialized extents
2032 * and do extent conversion after IO is finished. If the last page is not fully
2033 * mapped, we update @map to the next extent in the last page that needs
2034 * mapping. Otherwise we submit the page for IO.
2035 */
2036static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2037{
2038 struct pagevec pvec;
2039 int nr_pages, i;
2040 struct inode *inode = mpd->inode;
2041 struct buffer_head *head, *bh;
2042 int bpp_bits = PAGE_CACHE_SHIFT - inode->i_blkbits;
4e7ea81d
JK
2043 pgoff_t start, end;
2044 ext4_lblk_t lblk;
2045 sector_t pblock;
2046 int err;
2047
2048 start = mpd->map.m_lblk >> bpp_bits;
2049 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2050 lblk = start << bpp_bits;
2051 pblock = mpd->map.m_pblk;
2052
2053 pagevec_init(&pvec, 0);
2054 while (start <= end) {
2055 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start,
2056 PAGEVEC_SIZE);
2057 if (nr_pages == 0)
2058 break;
2059 for (i = 0; i < nr_pages; i++) {
2060 struct page *page = pvec.pages[i];
2061
2062 if (page->index > end)
2063 break;
70261f56 2064 /* Up to 'end' pages must be contiguous */
4e7ea81d
JK
2065 BUG_ON(page->index != start);
2066 bh = head = page_buffers(page);
2067 do {
2068 if (lblk < mpd->map.m_lblk)
2069 continue;
2070 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2071 /*
2072 * Buffer after end of mapped extent.
2073 * Find next buffer in the page to map.
2074 */
2075 mpd->map.m_len = 0;
2076 mpd->map.m_flags = 0;
5f1132b2
JK
2077 /*
2078 * FIXME: If dioread_nolock supports
2079 * blocksize < pagesize, we need to make
2080 * sure we add size mapped so far to
2081 * io_end->size as the following call
2082 * can submit the page for IO.
2083 */
2084 err = mpage_process_page_bufs(mpd, head,
2085 bh, lblk);
4e7ea81d 2086 pagevec_release(&pvec);
5f1132b2
JK
2087 if (err > 0)
2088 err = 0;
2089 return err;
4e7ea81d
JK
2090 }
2091 if (buffer_delay(bh)) {
2092 clear_buffer_delay(bh);
2093 bh->b_blocknr = pblock++;
2094 }
4e7ea81d 2095 clear_buffer_unwritten(bh);
5f1132b2 2096 } while (lblk++, (bh = bh->b_this_page) != head);
4e7ea81d
JK
2097
2098 /*
2099 * FIXME: This is going to break if dioread_nolock
2100 * supports blocksize < pagesize as we will try to
2101 * convert potentially unmapped parts of inode.
2102 */
2103 mpd->io_submit.io_end->size += PAGE_CACHE_SIZE;
2104 /* Page fully mapped - let IO run! */
2105 err = mpage_submit_page(mpd, page);
2106 if (err < 0) {
2107 pagevec_release(&pvec);
2108 return err;
2109 }
2110 start++;
2111 }
2112 pagevec_release(&pvec);
2113 }
2114 /* Extent fully mapped and matches with page boundary. We are done. */
2115 mpd->map.m_len = 0;
2116 mpd->map.m_flags = 0;
2117 return 0;
2118}
2119
2120static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2121{
2122 struct inode *inode = mpd->inode;
2123 struct ext4_map_blocks *map = &mpd->map;
2124 int get_blocks_flags;
2125 int err;
2126
2127 trace_ext4_da_write_pages_extent(inode, map);
2128 /*
2129 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2130 * to convert an uninitialized extent to be initialized (in the case
2131 * where we have written into one or more preallocated blocks). It is
2132 * possible that we're going to need more metadata blocks than
2133 * previously reserved. However we must not fail because we're in
2134 * writeback and there is nothing we can do about it so it might result
2135 * in data loss. So use reserved blocks to allocate metadata if
2136 * possible.
2137 *
2138 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if the blocks
2139 * in question are delalloc blocks. This affects functions in many
2140 * different parts of the allocation call path. This flag exists
2141 * primarily because we don't want to change *many* call functions, so
2142 * ext4_map_blocks() will set the EXT4_STATE_DELALLOC_RESERVED flag
2143 * once the inode's allocation semaphore is taken.
2144 */
2145 get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2146 EXT4_GET_BLOCKS_METADATA_NOFAIL;
2147 if (ext4_should_dioread_nolock(inode))
2148 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2149 if (map->m_flags & (1 << BH_Delay))
2150 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2151
2152 err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2153 if (err < 0)
2154 return err;
6b523df4
JK
2155 if (map->m_flags & EXT4_MAP_UNINIT) {
2156 if (!mpd->io_submit.io_end->handle &&
2157 ext4_handle_valid(handle)) {
2158 mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2159 handle->h_rsv_handle = NULL;
2160 }
3613d228 2161 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
6b523df4 2162 }
4e7ea81d
JK
2163
2164 BUG_ON(map->m_len == 0);
2165 if (map->m_flags & EXT4_MAP_NEW) {
2166 struct block_device *bdev = inode->i_sb->s_bdev;
2167 int i;
2168
2169 for (i = 0; i < map->m_len; i++)
2170 unmap_underlying_metadata(bdev, map->m_pblk + i);
2171 }
2172 return 0;
2173}
2174
2175/*
2176 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2177 * mpd->len and submit pages underlying it for IO
2178 *
2179 * @handle - handle for journal operations
2180 * @mpd - extent to map
7534e854
JK
2181 * @give_up_on_write - we set this to true iff there is a fatal error and there
2182 * is no hope of writing the data. The caller should discard
2183 * dirty pages to avoid infinite loops.
4e7ea81d
JK
2184 *
2185 * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2186 * delayed, blocks are allocated, if it is unwritten, we may need to convert
2187 * them to initialized or split the described range from larger unwritten
2188 * extent. Note that we need not map all the described range since allocation
2189 * can return less blocks or the range is covered by more unwritten extents. We
2190 * cannot map more because we are limited by reserved transaction credits. On
2191 * the other hand we always make sure that the last touched page is fully
2192 * mapped so that it can be written out (and thus forward progress is
2193 * guaranteed). After mapping we submit all mapped pages for IO.
2194 */
2195static int mpage_map_and_submit_extent(handle_t *handle,
cb530541
TT
2196 struct mpage_da_data *mpd,
2197 bool *give_up_on_write)
4e7ea81d
JK
2198{
2199 struct inode *inode = mpd->inode;
2200 struct ext4_map_blocks *map = &mpd->map;
2201 int err;
2202 loff_t disksize;
2203
2204 mpd->io_submit.io_end->offset =
2205 ((loff_t)map->m_lblk) << inode->i_blkbits;
27d7c4ed 2206 do {
4e7ea81d
JK
2207 err = mpage_map_one_extent(handle, mpd);
2208 if (err < 0) {
2209 struct super_block *sb = inode->i_sb;
2210
cb530541
TT
2211 if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2212 goto invalidate_dirty_pages;
4e7ea81d 2213 /*
cb530541
TT
2214 * Let the uper layers retry transient errors.
2215 * In the case of ENOSPC, if ext4_count_free_blocks()
2216 * is non-zero, a commit should free up blocks.
4e7ea81d 2217 */
cb530541
TT
2218 if ((err == -ENOMEM) ||
2219 (err == -ENOSPC && ext4_count_free_clusters(sb)))
2220 return err;
2221 ext4_msg(sb, KERN_CRIT,
2222 "Delayed block allocation failed for "
2223 "inode %lu at logical offset %llu with"
2224 " max blocks %u with error %d",
2225 inode->i_ino,
2226 (unsigned long long)map->m_lblk,
2227 (unsigned)map->m_len, -err);
2228 ext4_msg(sb, KERN_CRIT,
2229 "This should not happen!! Data will "
2230 "be lost\n");
2231 if (err == -ENOSPC)
2232 ext4_print_free_blocks(inode);
2233 invalidate_dirty_pages:
2234 *give_up_on_write = true;
4e7ea81d
JK
2235 return err;
2236 }
2237 /*
2238 * Update buffer state, submit mapped pages, and get us new
2239 * extent to map
2240 */
2241 err = mpage_map_and_submit_buffers(mpd);
2242 if (err < 0)
2243 return err;
27d7c4ed 2244 } while (map->m_len);
4e7ea81d
JK
2245
2246 /* Update on-disk size after IO is submitted */
2247 disksize = ((loff_t)mpd->first_page) << PAGE_CACHE_SHIFT;
4e7ea81d
JK
2248 if (disksize > EXT4_I(inode)->i_disksize) {
2249 int err2;
2250
90e775b7 2251 ext4_wb_update_i_disksize(inode, disksize);
4e7ea81d
JK
2252 err2 = ext4_mark_inode_dirty(handle, inode);
2253 if (err2)
2254 ext4_error(inode->i_sb,
2255 "Failed to mark inode %lu dirty",
2256 inode->i_ino);
2257 if (!err)
2258 err = err2;
2259 }
2260 return err;
2261}
2262
fffb2739
JK
2263/*
2264 * Calculate the total number of credits to reserve for one writepages
20970ba6 2265 * iteration. This is called from ext4_writepages(). We map an extent of
70261f56 2266 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
fffb2739
JK
2267 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2268 * bpp - 1 blocks in bpp different extents.
2269 */
525f4ed8
MC
2270static int ext4_da_writepages_trans_blocks(struct inode *inode)
2271{
fffb2739 2272 int bpp = ext4_journal_blocks_per_page(inode);
525f4ed8 2273
fffb2739
JK
2274 return ext4_meta_trans_blocks(inode,
2275 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
525f4ed8 2276}
61628a3f 2277
8e48dcfb 2278/*
4e7ea81d
JK
2279 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2280 * and underlying extent to map
2281 *
2282 * @mpd - where to look for pages
2283 *
2284 * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2285 * IO immediately. When we find a page which isn't mapped we start accumulating
2286 * extent of buffers underlying these pages that needs mapping (formed by
2287 * either delayed or unwritten buffers). We also lock the pages containing
2288 * these buffers. The extent found is returned in @mpd structure (starting at
2289 * mpd->lblk with length mpd->len blocks).
2290 *
2291 * Note that this function can attach bios to one io_end structure which are
2292 * neither logically nor physically contiguous. Although it may seem as an
2293 * unnecessary complication, it is actually inevitable in blocksize < pagesize
2294 * case as we need to track IO to all buffers underlying a page in one io_end.
8e48dcfb 2295 */
4e7ea81d 2296static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
8e48dcfb 2297{
4e7ea81d
JK
2298 struct address_space *mapping = mpd->inode->i_mapping;
2299 struct pagevec pvec;
2300 unsigned int nr_pages;
aeac589a 2301 long left = mpd->wbc->nr_to_write;
4e7ea81d
JK
2302 pgoff_t index = mpd->first_page;
2303 pgoff_t end = mpd->last_page;
2304 int tag;
2305 int i, err = 0;
2306 int blkbits = mpd->inode->i_blkbits;
2307 ext4_lblk_t lblk;
2308 struct buffer_head *head;
8e48dcfb 2309
4e7ea81d 2310 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
5b41d924
ES
2311 tag = PAGECACHE_TAG_TOWRITE;
2312 else
2313 tag = PAGECACHE_TAG_DIRTY;
2314
4e7ea81d
JK
2315 pagevec_init(&pvec, 0);
2316 mpd->map.m_len = 0;
2317 mpd->next_page = index;
4f01b02c 2318 while (index <= end) {
5b41d924 2319 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
8e48dcfb
TT
2320 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2321 if (nr_pages == 0)
4e7ea81d 2322 goto out;
8e48dcfb
TT
2323
2324 for (i = 0; i < nr_pages; i++) {
2325 struct page *page = pvec.pages[i];
2326
2327 /*
2328 * At this point, the page may be truncated or
2329 * invalidated (changing page->mapping to NULL), or
2330 * even swizzled back from swapper_space to tmpfs file
2331 * mapping. However, page->index will not change
2332 * because we have a reference on the page.
2333 */
4f01b02c
TT
2334 if (page->index > end)
2335 goto out;
8e48dcfb 2336
aeac589a
ML
2337 /*
2338 * Accumulated enough dirty pages? This doesn't apply
2339 * to WB_SYNC_ALL mode. For integrity sync we have to
2340 * keep going because someone may be concurrently
2341 * dirtying pages, and we might have synced a lot of
2342 * newly appeared dirty pages, but have not synced all
2343 * of the old dirty pages.
2344 */
2345 if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2346 goto out;
2347
4e7ea81d
JK
2348 /* If we can't merge this page, we are done. */
2349 if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2350 goto out;
78aaced3 2351
8e48dcfb 2352 lock_page(page);
8e48dcfb 2353 /*
4e7ea81d
JK
2354 * If the page is no longer dirty, or its mapping no
2355 * longer corresponds to inode we are writing (which
2356 * means it has been truncated or invalidated), or the
2357 * page is already under writeback and we are not doing
2358 * a data integrity writeback, skip the page
8e48dcfb 2359 */
4f01b02c
TT
2360 if (!PageDirty(page) ||
2361 (PageWriteback(page) &&
4e7ea81d 2362 (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
4f01b02c 2363 unlikely(page->mapping != mapping)) {
8e48dcfb
TT
2364 unlock_page(page);
2365 continue;
2366 }
2367
7cb1a535 2368 wait_on_page_writeback(page);
8e48dcfb 2369 BUG_ON(PageWriteback(page));
8e48dcfb 2370
4e7ea81d 2371 if (mpd->map.m_len == 0)
8eb9e5ce 2372 mpd->first_page = page->index;
8eb9e5ce 2373 mpd->next_page = page->index + 1;
f8bec370 2374 /* Add all dirty buffers to mpd */
4e7ea81d
JK
2375 lblk = ((ext4_lblk_t)page->index) <<
2376 (PAGE_CACHE_SHIFT - blkbits);
f8bec370 2377 head = page_buffers(page);
5f1132b2
JK
2378 err = mpage_process_page_bufs(mpd, head, head, lblk);
2379 if (err <= 0)
4e7ea81d 2380 goto out;
5f1132b2 2381 err = 0;
aeac589a 2382 left--;
8e48dcfb
TT
2383 }
2384 pagevec_release(&pvec);
2385 cond_resched();
2386 }
4f01b02c 2387 return 0;
8eb9e5ce
TT
2388out:
2389 pagevec_release(&pvec);
4e7ea81d 2390 return err;
8e48dcfb
TT
2391}
2392
20970ba6
TT
2393static int __writepage(struct page *page, struct writeback_control *wbc,
2394 void *data)
2395{
2396 struct address_space *mapping = data;
2397 int ret = ext4_writepage(page, wbc);
2398 mapping_set_error(mapping, ret);
2399 return ret;
2400}
2401
2402static int ext4_writepages(struct address_space *mapping,
2403 struct writeback_control *wbc)
64769240 2404{
4e7ea81d
JK
2405 pgoff_t writeback_index = 0;
2406 long nr_to_write = wbc->nr_to_write;
22208ded 2407 int range_whole = 0;
4e7ea81d 2408 int cycled = 1;
61628a3f 2409 handle_t *handle = NULL;
df22291f 2410 struct mpage_da_data mpd;
5e745b04 2411 struct inode *inode = mapping->host;
6b523df4 2412 int needed_blocks, rsv_blocks = 0, ret = 0;
5e745b04 2413 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
4e7ea81d 2414 bool done;
1bce63d1 2415 struct blk_plug plug;
cb530541 2416 bool give_up_on_write = false;
61628a3f 2417
20970ba6 2418 trace_ext4_writepages(inode, wbc);
ba80b101 2419
61628a3f
MC
2420 /*
2421 * No pages to write? This is mainly a kludge to avoid starting
2422 * a transaction for special inodes like journal inode on last iput()
2423 * because that could violate lock ordering on umount
2424 */
a1d6cc56 2425 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
61628a3f 2426 return 0;
2a21e37e 2427
20970ba6
TT
2428 if (ext4_should_journal_data(inode)) {
2429 struct blk_plug plug;
2430 int ret;
2431
2432 blk_start_plug(&plug);
2433 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2434 blk_finish_plug(&plug);
2435 return ret;
2436 }
2437
2a21e37e
TT
2438 /*
2439 * If the filesystem has aborted, it is read-only, so return
2440 * right away instead of dumping stack traces later on that
2441 * will obscure the real source of the problem. We test
4ab2f15b 2442 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2a21e37e 2443 * the latter could be true if the filesystem is mounted
20970ba6 2444 * read-only, and in that case, ext4_writepages should
2a21e37e
TT
2445 * *never* be called, so if that ever happens, we would want
2446 * the stack trace.
2447 */
4ab2f15b 2448 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2a21e37e
TT
2449 return -EROFS;
2450
6b523df4
JK
2451 if (ext4_should_dioread_nolock(inode)) {
2452 /*
70261f56 2453 * We may need to convert up to one extent per block in
6b523df4
JK
2454 * the page and we may dirty the inode.
2455 */
2456 rsv_blocks = 1 + (PAGE_CACHE_SIZE >> inode->i_blkbits);
2457 }
2458
4e7ea81d
JK
2459 /*
2460 * If we have inline data and arrive here, it means that
2461 * we will soon create the block for the 1st page, so
2462 * we'd better clear the inline data here.
2463 */
2464 if (ext4_has_inline_data(inode)) {
2465 /* Just inode will be modified... */
2466 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2467 if (IS_ERR(handle)) {
2468 ret = PTR_ERR(handle);
2469 goto out_writepages;
2470 }
2471 BUG_ON(ext4_test_inode_state(inode,
2472 EXT4_STATE_MAY_INLINE_DATA));
2473 ext4_destroy_inline_data(handle, inode);
2474 ext4_journal_stop(handle);
2475 }
2476
22208ded
AK
2477 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2478 range_whole = 1;
61628a3f 2479
2acf2c26 2480 if (wbc->range_cyclic) {
4e7ea81d
JK
2481 writeback_index = mapping->writeback_index;
2482 if (writeback_index)
2acf2c26 2483 cycled = 0;
4e7ea81d
JK
2484 mpd.first_page = writeback_index;
2485 mpd.last_page = -1;
5b41d924 2486 } else {
4e7ea81d
JK
2487 mpd.first_page = wbc->range_start >> PAGE_CACHE_SHIFT;
2488 mpd.last_page = wbc->range_end >> PAGE_CACHE_SHIFT;
5b41d924 2489 }
a1d6cc56 2490
4e7ea81d
JK
2491 mpd.inode = inode;
2492 mpd.wbc = wbc;
2493 ext4_io_submit_init(&mpd.io_submit, wbc);
2acf2c26 2494retry:
6e6938b6 2495 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
4e7ea81d
JK
2496 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2497 done = false;
1bce63d1 2498 blk_start_plug(&plug);
4e7ea81d
JK
2499 while (!done && mpd.first_page <= mpd.last_page) {
2500 /* For each extent of pages we use new io_end */
2501 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2502 if (!mpd.io_submit.io_end) {
2503 ret = -ENOMEM;
2504 break;
2505 }
a1d6cc56
AK
2506
2507 /*
4e7ea81d
JK
2508 * We have two constraints: We find one extent to map and we
2509 * must always write out whole page (makes a difference when
2510 * blocksize < pagesize) so that we don't block on IO when we
2511 * try to write out the rest of the page. Journalled mode is
2512 * not supported by delalloc.
a1d6cc56
AK
2513 */
2514 BUG_ON(ext4_should_journal_data(inode));
525f4ed8 2515 needed_blocks = ext4_da_writepages_trans_blocks(inode);
a1d6cc56 2516
4e7ea81d 2517 /* start a new transaction */
6b523df4
JK
2518 handle = ext4_journal_start_with_reserve(inode,
2519 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
61628a3f
MC
2520 if (IS_ERR(handle)) {
2521 ret = PTR_ERR(handle);
1693918e 2522 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
fbe845dd 2523 "%ld pages, ino %lu; err %d", __func__,
a1d6cc56 2524 wbc->nr_to_write, inode->i_ino, ret);
4e7ea81d
JK
2525 /* Release allocated io_end */
2526 ext4_put_io_end(mpd.io_submit.io_end);
2527 break;
61628a3f 2528 }
f63e6005 2529
4e7ea81d
JK
2530 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2531 ret = mpage_prepare_extent_to_map(&mpd);
2532 if (!ret) {
2533 if (mpd.map.m_len)
cb530541
TT
2534 ret = mpage_map_and_submit_extent(handle, &mpd,
2535 &give_up_on_write);
4e7ea81d
JK
2536 else {
2537 /*
2538 * We scanned the whole range (or exhausted
2539 * nr_to_write), submitted what was mapped and
2540 * didn't find anything needing mapping. We are
2541 * done.
2542 */
2543 done = true;
2544 }
f63e6005 2545 }
61628a3f 2546 ext4_journal_stop(handle);
4e7ea81d
JK
2547 /* Submit prepared bio */
2548 ext4_io_submit(&mpd.io_submit);
2549 /* Unlock pages we didn't use */
cb530541 2550 mpage_release_unused_pages(&mpd, give_up_on_write);
4e7ea81d
JK
2551 /* Drop our io_end reference we got from init */
2552 ext4_put_io_end(mpd.io_submit.io_end);
2553
2554 if (ret == -ENOSPC && sbi->s_journal) {
2555 /*
2556 * Commit the transaction which would
22208ded
AK
2557 * free blocks released in the transaction
2558 * and try again
2559 */
df22291f 2560 jbd2_journal_force_commit_nested(sbi->s_journal);
22208ded 2561 ret = 0;
4e7ea81d
JK
2562 continue;
2563 }
2564 /* Fatal error - ENOMEM, EIO... */
2565 if (ret)
61628a3f 2566 break;
a1d6cc56 2567 }
1bce63d1 2568 blk_finish_plug(&plug);
9c12a831 2569 if (!ret && !cycled && wbc->nr_to_write > 0) {
2acf2c26 2570 cycled = 1;
4e7ea81d
JK
2571 mpd.last_page = writeback_index - 1;
2572 mpd.first_page = 0;
2acf2c26
AK
2573 goto retry;
2574 }
22208ded
AK
2575
2576 /* Update index */
22208ded
AK
2577 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2578 /*
4e7ea81d 2579 * Set the writeback_index so that range_cyclic
22208ded
AK
2580 * mode will write it back later
2581 */
4e7ea81d 2582 mapping->writeback_index = mpd.first_page;
a1d6cc56 2583
61628a3f 2584out_writepages:
20970ba6
TT
2585 trace_ext4_writepages_result(inode, wbc, ret,
2586 nr_to_write - wbc->nr_to_write);
61628a3f 2587 return ret;
64769240
AT
2588}
2589
79f0be8d
AK
2590static int ext4_nonda_switch(struct super_block *sb)
2591{
5c1ff336 2592 s64 free_clusters, dirty_clusters;
79f0be8d
AK
2593 struct ext4_sb_info *sbi = EXT4_SB(sb);
2594
2595 /*
2596 * switch to non delalloc mode if we are running low
2597 * on free block. The free block accounting via percpu
179f7ebf 2598 * counters can get slightly wrong with percpu_counter_batch getting
79f0be8d
AK
2599 * accumulated on each CPU without updating global counters
2600 * Delalloc need an accurate free block accounting. So switch
2601 * to non delalloc when we are near to error range.
2602 */
5c1ff336
EW
2603 free_clusters =
2604 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2605 dirty_clusters =
2606 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
00d4e736
TT
2607 /*
2608 * Start pushing delalloc when 1/2 of free blocks are dirty.
2609 */
5c1ff336 2610 if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
10ee27a0 2611 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
00d4e736 2612
5c1ff336
EW
2613 if (2 * free_clusters < 3 * dirty_clusters ||
2614 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
79f0be8d 2615 /*
c8afb446
ES
2616 * free block count is less than 150% of dirty blocks
2617 * or free blocks is less than watermark
79f0be8d
AK
2618 */
2619 return 1;
2620 }
2621 return 0;
2622}
2623
64769240 2624static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
de9a55b8
TT
2625 loff_t pos, unsigned len, unsigned flags,
2626 struct page **pagep, void **fsdata)
64769240 2627{
72b8ab9d 2628 int ret, retries = 0;
64769240
AT
2629 struct page *page;
2630 pgoff_t index;
64769240
AT
2631 struct inode *inode = mapping->host;
2632 handle_t *handle;
2633
2634 index = pos >> PAGE_CACHE_SHIFT;
79f0be8d
AK
2635
2636 if (ext4_nonda_switch(inode->i_sb)) {
2637 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2638 return ext4_write_begin(file, mapping, pos,
2639 len, flags, pagep, fsdata);
2640 }
2641 *fsdata = (void *)0;
9bffad1e 2642 trace_ext4_da_write_begin(inode, pos, len, flags);
9c3569b5
TM
2643
2644 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2645 ret = ext4_da_write_inline_data_begin(mapping, inode,
2646 pos, len, flags,
2647 pagep, fsdata);
2648 if (ret < 0)
47564bfb
TT
2649 return ret;
2650 if (ret == 1)
2651 return 0;
9c3569b5
TM
2652 }
2653
47564bfb
TT
2654 /*
2655 * grab_cache_page_write_begin() can take a long time if the
2656 * system is thrashing due to memory pressure, or if the page
2657 * is being written back. So grab it first before we start
2658 * the transaction handle. This also allows us to allocate
2659 * the page (if needed) without using GFP_NOFS.
2660 */
2661retry_grab:
2662 page = grab_cache_page_write_begin(mapping, index, flags);
2663 if (!page)
2664 return -ENOMEM;
2665 unlock_page(page);
2666
64769240
AT
2667 /*
2668 * With delayed allocation, we don't log the i_disksize update
2669 * if there is delayed block allocation. But we still need
2670 * to journalling the i_disksize update if writes to the end
2671 * of file which has an already mapped buffer.
2672 */
47564bfb 2673retry_journal:
9924a92a 2674 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 1);
64769240 2675 if (IS_ERR(handle)) {
47564bfb
TT
2676 page_cache_release(page);
2677 return PTR_ERR(handle);
64769240
AT
2678 }
2679
47564bfb
TT
2680 lock_page(page);
2681 if (page->mapping != mapping) {
2682 /* The page got truncated from under us */
2683 unlock_page(page);
2684 page_cache_release(page);
d5a0d4f7 2685 ext4_journal_stop(handle);
47564bfb 2686 goto retry_grab;
d5a0d4f7 2687 }
47564bfb 2688 /* In case writeback began while the page was unlocked */
7afe5aa5 2689 wait_for_stable_page(page);
64769240 2690
6e1db88d 2691 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
64769240
AT
2692 if (ret < 0) {
2693 unlock_page(page);
2694 ext4_journal_stop(handle);
ae4d5372
AK
2695 /*
2696 * block_write_begin may have instantiated a few blocks
2697 * outside i_size. Trim these off again. Don't need
2698 * i_size_read because we hold i_mutex.
2699 */
2700 if (pos + len > inode->i_size)
b9a4207d 2701 ext4_truncate_failed_write(inode);
47564bfb
TT
2702
2703 if (ret == -ENOSPC &&
2704 ext4_should_retry_alloc(inode->i_sb, &retries))
2705 goto retry_journal;
2706
2707 page_cache_release(page);
2708 return ret;
64769240
AT
2709 }
2710
47564bfb 2711 *pagep = page;
64769240
AT
2712 return ret;
2713}
2714
632eaeab
MC
2715/*
2716 * Check if we should update i_disksize
2717 * when write to the end of file but not require block allocation
2718 */
2719static int ext4_da_should_update_i_disksize(struct page *page,
de9a55b8 2720 unsigned long offset)
632eaeab
MC
2721{
2722 struct buffer_head *bh;
2723 struct inode *inode = page->mapping->host;
2724 unsigned int idx;
2725 int i;
2726
2727 bh = page_buffers(page);
2728 idx = offset >> inode->i_blkbits;
2729
af5bc92d 2730 for (i = 0; i < idx; i++)
632eaeab
MC
2731 bh = bh->b_this_page;
2732
29fa89d0 2733 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
632eaeab
MC
2734 return 0;
2735 return 1;
2736}
2737
64769240 2738static int ext4_da_write_end(struct file *file,
de9a55b8
TT
2739 struct address_space *mapping,
2740 loff_t pos, unsigned len, unsigned copied,
2741 struct page *page, void *fsdata)
64769240
AT
2742{
2743 struct inode *inode = mapping->host;
2744 int ret = 0, ret2;
2745 handle_t *handle = ext4_journal_current_handle();
2746 loff_t new_i_size;
632eaeab 2747 unsigned long start, end;
79f0be8d
AK
2748 int write_mode = (int)(unsigned long)fsdata;
2749
74d553aa
TT
2750 if (write_mode == FALL_BACK_TO_NONDELALLOC)
2751 return ext4_write_end(file, mapping, pos,
2752 len, copied, page, fsdata);
632eaeab 2753
9bffad1e 2754 trace_ext4_da_write_end(inode, pos, len, copied);
632eaeab 2755 start = pos & (PAGE_CACHE_SIZE - 1);
af5bc92d 2756 end = start + copied - 1;
64769240
AT
2757
2758 /*
2759 * generic_write_end() will run mark_inode_dirty() if i_size
2760 * changes. So let's piggyback the i_disksize mark_inode_dirty
2761 * into that.
2762 */
64769240 2763 new_i_size = pos + copied;
ea51d132 2764 if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
9c3569b5
TM
2765 if (ext4_has_inline_data(inode) ||
2766 ext4_da_should_update_i_disksize(page, end)) {
632eaeab 2767 down_write(&EXT4_I(inode)->i_data_sem);
f3b59291 2768 if (new_i_size > EXT4_I(inode)->i_disksize)
632eaeab 2769 EXT4_I(inode)->i_disksize = new_i_size;
632eaeab 2770 up_write(&EXT4_I(inode)->i_data_sem);
cf17fea6
AK
2771 /* We need to mark inode dirty even if
2772 * new_i_size is less that inode->i_size
2773 * bu greater than i_disksize.(hint delalloc)
2774 */
2775 ext4_mark_inode_dirty(handle, inode);
64769240 2776 }
632eaeab 2777 }
9c3569b5
TM
2778
2779 if (write_mode != CONVERT_INLINE_DATA &&
2780 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2781 ext4_has_inline_data(inode))
2782 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
2783 page);
2784 else
2785 ret2 = generic_write_end(file, mapping, pos, len, copied,
64769240 2786 page, fsdata);
9c3569b5 2787
64769240
AT
2788 copied = ret2;
2789 if (ret2 < 0)
2790 ret = ret2;
2791 ret2 = ext4_journal_stop(handle);
2792 if (!ret)
2793 ret = ret2;
2794
2795 return ret ? ret : copied;
2796}
2797
d47992f8
LC
2798static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
2799 unsigned int length)
64769240 2800{
64769240
AT
2801 /*
2802 * Drop reserved blocks
2803 */
2804 BUG_ON(!PageLocked(page));
2805 if (!page_has_buffers(page))
2806 goto out;
2807
ca99fdd2 2808 ext4_da_page_release_reservation(page, offset, length);
64769240
AT
2809
2810out:
d47992f8 2811 ext4_invalidatepage(page, offset, length);
64769240
AT
2812
2813 return;
2814}
2815
ccd2506b
TT
2816/*
2817 * Force all delayed allocation blocks to be allocated for a given inode.
2818 */
2819int ext4_alloc_da_blocks(struct inode *inode)
2820{
fb40ba0d
TT
2821 trace_ext4_alloc_da_blocks(inode);
2822
ccd2506b
TT
2823 if (!EXT4_I(inode)->i_reserved_data_blocks &&
2824 !EXT4_I(inode)->i_reserved_meta_blocks)
2825 return 0;
2826
2827 /*
2828 * We do something simple for now. The filemap_flush() will
2829 * also start triggering a write of the data blocks, which is
2830 * not strictly speaking necessary (and for users of
2831 * laptop_mode, not even desirable). However, to do otherwise
2832 * would require replicating code paths in:
de9a55b8 2833 *
20970ba6 2834 * ext4_writepages() ->
ccd2506b
TT
2835 * write_cache_pages() ---> (via passed in callback function)
2836 * __mpage_da_writepage() -->
2837 * mpage_add_bh_to_extent()
2838 * mpage_da_map_blocks()
2839 *
2840 * The problem is that write_cache_pages(), located in
2841 * mm/page-writeback.c, marks pages clean in preparation for
2842 * doing I/O, which is not desirable if we're not planning on
2843 * doing I/O at all.
2844 *
2845 * We could call write_cache_pages(), and then redirty all of
380cf090 2846 * the pages by calling redirty_page_for_writepage() but that
ccd2506b
TT
2847 * would be ugly in the extreme. So instead we would need to
2848 * replicate parts of the code in the above functions,
25985edc 2849 * simplifying them because we wouldn't actually intend to
ccd2506b
TT
2850 * write out the pages, but rather only collect contiguous
2851 * logical block extents, call the multi-block allocator, and
2852 * then update the buffer heads with the block allocations.
de9a55b8 2853 *
ccd2506b
TT
2854 * For now, though, we'll cheat by calling filemap_flush(),
2855 * which will map the blocks, and start the I/O, but not
2856 * actually wait for the I/O to complete.
2857 */
2858 return filemap_flush(inode->i_mapping);
2859}
64769240 2860
ac27a0ec
DK
2861/*
2862 * bmap() is special. It gets used by applications such as lilo and by
2863 * the swapper to find the on-disk block of a specific piece of data.
2864 *
2865 * Naturally, this is dangerous if the block concerned is still in the
617ba13b 2866 * journal. If somebody makes a swapfile on an ext4 data-journaling
ac27a0ec
DK
2867 * filesystem and enables swap, then they may get a nasty shock when the
2868 * data getting swapped to that swapfile suddenly gets overwritten by
2869 * the original zero's written out previously to the journal and
2870 * awaiting writeback in the kernel's buffer cache.
2871 *
2872 * So, if we see any bmap calls here on a modified, data-journaled file,
2873 * take extra steps to flush any blocks which might be in the cache.
2874 */
617ba13b 2875static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
ac27a0ec
DK
2876{
2877 struct inode *inode = mapping->host;
2878 journal_t *journal;
2879 int err;
2880
46c7f254
TM
2881 /*
2882 * We can get here for an inline file via the FIBMAP ioctl
2883 */
2884 if (ext4_has_inline_data(inode))
2885 return 0;
2886
64769240
AT
2887 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2888 test_opt(inode->i_sb, DELALLOC)) {
2889 /*
2890 * With delalloc we want to sync the file
2891 * so that we can make sure we allocate
2892 * blocks for file
2893 */
2894 filemap_write_and_wait(mapping);
2895 }
2896
19f5fb7a
TT
2897 if (EXT4_JOURNAL(inode) &&
2898 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
ac27a0ec
DK
2899 /*
2900 * This is a REALLY heavyweight approach, but the use of
2901 * bmap on dirty files is expected to be extremely rare:
2902 * only if we run lilo or swapon on a freshly made file
2903 * do we expect this to happen.
2904 *
2905 * (bmap requires CAP_SYS_RAWIO so this does not
2906 * represent an unprivileged user DOS attack --- we'd be
2907 * in trouble if mortal users could trigger this path at
2908 * will.)
2909 *
617ba13b 2910 * NB. EXT4_STATE_JDATA is not set on files other than
ac27a0ec
DK
2911 * regular files. If somebody wants to bmap a directory
2912 * or symlink and gets confused because the buffer
2913 * hasn't yet been flushed to disk, they deserve
2914 * everything they get.
2915 */
2916
19f5fb7a 2917 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
617ba13b 2918 journal = EXT4_JOURNAL(inode);
dab291af
MC
2919 jbd2_journal_lock_updates(journal);
2920 err = jbd2_journal_flush(journal);
2921 jbd2_journal_unlock_updates(journal);
ac27a0ec
DK
2922
2923 if (err)
2924 return 0;
2925 }
2926
af5bc92d 2927 return generic_block_bmap(mapping, block, ext4_get_block);
ac27a0ec
DK
2928}
2929
617ba13b 2930static int ext4_readpage(struct file *file, struct page *page)
ac27a0ec 2931{
46c7f254
TM
2932 int ret = -EAGAIN;
2933 struct inode *inode = page->mapping->host;
2934
0562e0ba 2935 trace_ext4_readpage(page);
46c7f254
TM
2936
2937 if (ext4_has_inline_data(inode))
2938 ret = ext4_readpage_inline(inode, page);
2939
2940 if (ret == -EAGAIN)
2941 return mpage_readpage(page, ext4_get_block);
2942
2943 return ret;
ac27a0ec
DK
2944}
2945
2946static int
617ba13b 2947ext4_readpages(struct file *file, struct address_space *mapping,
ac27a0ec
DK
2948 struct list_head *pages, unsigned nr_pages)
2949{
46c7f254
TM
2950 struct inode *inode = mapping->host;
2951
2952 /* If the file has inline data, no need to do readpages. */
2953 if (ext4_has_inline_data(inode))
2954 return 0;
2955
617ba13b 2956 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
ac27a0ec
DK
2957}
2958
d47992f8
LC
2959static void ext4_invalidatepage(struct page *page, unsigned int offset,
2960 unsigned int length)
ac27a0ec 2961{
ca99fdd2 2962 trace_ext4_invalidatepage(page, offset, length);
0562e0ba 2963
4520fb3c
JK
2964 /* No journalling happens on data buffers when this function is used */
2965 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
2966
ca99fdd2 2967 block_invalidatepage(page, offset, length);
4520fb3c
JK
2968}
2969
53e87268 2970static int __ext4_journalled_invalidatepage(struct page *page,
ca99fdd2
LC
2971 unsigned int offset,
2972 unsigned int length)
4520fb3c
JK
2973{
2974 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2975
ca99fdd2 2976 trace_ext4_journalled_invalidatepage(page, offset, length);
4520fb3c 2977
ac27a0ec
DK
2978 /*
2979 * If it's a full truncate we just forget about the pending dirtying
2980 */
ca99fdd2 2981 if (offset == 0 && length == PAGE_CACHE_SIZE)
ac27a0ec
DK
2982 ClearPageChecked(page);
2983
ca99fdd2 2984 return jbd2_journal_invalidatepage(journal, page, offset, length);
53e87268
JK
2985}
2986
2987/* Wrapper for aops... */
2988static void ext4_journalled_invalidatepage(struct page *page,
d47992f8
LC
2989 unsigned int offset,
2990 unsigned int length)
53e87268 2991{
ca99fdd2 2992 WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
ac27a0ec
DK
2993}
2994
617ba13b 2995static int ext4_releasepage(struct page *page, gfp_t wait)
ac27a0ec 2996{
617ba13b 2997 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
ac27a0ec 2998
0562e0ba
JZ
2999 trace_ext4_releasepage(page);
3000
e1c36595
JK
3001 /* Page has dirty journalled data -> cannot release */
3002 if (PageChecked(page))
ac27a0ec 3003 return 0;
0390131b
FM
3004 if (journal)
3005 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3006 else
3007 return try_to_free_buffers(page);
ac27a0ec
DK
3008}
3009
2ed88685
TT
3010/*
3011 * ext4_get_block used when preparing for a DIO write or buffer write.
3012 * We allocate an uinitialized extent if blocks haven't been allocated.
3013 * The extent will be converted to initialized after the IO is complete.
3014 */
f19d5870 3015int ext4_get_block_write(struct inode *inode, sector_t iblock,
4c0425ff
MC
3016 struct buffer_head *bh_result, int create)
3017{
c7064ef1 3018 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
8d5d02e6 3019 inode->i_ino, create);
2ed88685
TT
3020 return _ext4_get_block(inode, iblock, bh_result,
3021 EXT4_GET_BLOCKS_IO_CREATE_EXT);
4c0425ff
MC
3022}
3023
729f52c6 3024static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
8b0f165f 3025 struct buffer_head *bh_result, int create)
729f52c6 3026{
8b0f165f
AP
3027 ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
3028 inode->i_ino, create);
3029 return _ext4_get_block(inode, iblock, bh_result,
3030 EXT4_GET_BLOCKS_NO_LOCK);
729f52c6
ZL
3031}
3032
4c0425ff 3033static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
7b7a8665 3034 ssize_t size, void *private)
4c0425ff
MC
3035{
3036 ext4_io_end_t *io_end = iocb->private;
4c0425ff 3037
97a851ed 3038 /* if not async direct IO just return */
7b7a8665 3039 if (!io_end)
97a851ed 3040 return;
4b70df18 3041
88635ca2 3042 ext_debug("ext4_end_io_dio(): io_end 0x%p "
ace36ad4 3043 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
8d5d02e6
MC
3044 iocb->private, io_end->inode->i_ino, iocb, offset,
3045 size);
8d5d02e6 3046
b5a7e970 3047 iocb->private = NULL;
4c0425ff
MC
3048 io_end->offset = offset;
3049 io_end->size = size;
7b7a8665 3050 ext4_put_io_end(io_end);
4c0425ff 3051}
c7064ef1 3052
4c0425ff
MC
3053/*
3054 * For ext4 extent files, ext4 will do direct-io write to holes,
3055 * preallocated extents, and those write extend the file, no need to
3056 * fall back to buffered IO.
3057 *
b595076a 3058 * For holes, we fallocate those blocks, mark them as uninitialized
69c499d1 3059 * If those blocks were preallocated, we mark sure they are split, but
b595076a 3060 * still keep the range to write as uninitialized.
4c0425ff 3061 *
69c499d1 3062 * The unwritten extents will be converted to written when DIO is completed.
8d5d02e6 3063 * For async direct IO, since the IO may still pending when return, we
25985edc 3064 * set up an end_io call back function, which will do the conversion
8d5d02e6 3065 * when async direct IO completed.
4c0425ff
MC
3066 *
3067 * If the O_DIRECT write will extend the file then add this inode to the
3068 * orphan list. So recovery will truncate it back to the original size
3069 * if the machine crashes during the write.
3070 *
3071 */
3072static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
3073 const struct iovec *iov, loff_t offset,
3074 unsigned long nr_segs)
3075{
3076 struct file *file = iocb->ki_filp;
3077 struct inode *inode = file->f_mapping->host;
3078 ssize_t ret;
3079 size_t count = iov_length(iov, nr_segs);
69c499d1
TT
3080 int overwrite = 0;
3081 get_block_t *get_block_func = NULL;
3082 int dio_flags = 0;
4c0425ff 3083 loff_t final_size = offset + count;
97a851ed 3084 ext4_io_end_t *io_end = NULL;
729f52c6 3085
69c499d1
TT
3086 /* Use the old path for reads and writes beyond i_size. */
3087 if (rw != WRITE || final_size > inode->i_size)
3088 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
4bd809db 3089
69c499d1 3090 BUG_ON(iocb->private == NULL);
4bd809db 3091
e8340395
JK
3092 /*
3093 * Make all waiters for direct IO properly wait also for extent
3094 * conversion. This also disallows race between truncate() and
3095 * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3096 */
3097 if (rw == WRITE)
3098 atomic_inc(&inode->i_dio_count);
3099
69c499d1
TT
3100 /* If we do a overwrite dio, i_mutex locking can be released */
3101 overwrite = *((int *)iocb->private);
4bd809db 3102
69c499d1 3103 if (overwrite) {
69c499d1
TT
3104 down_read(&EXT4_I(inode)->i_data_sem);
3105 mutex_unlock(&inode->i_mutex);
3106 }
8d5d02e6 3107
69c499d1
TT
3108 /*
3109 * We could direct write to holes and fallocate.
3110 *
3111 * Allocated blocks to fill the hole are marked as
3112 * uninitialized to prevent parallel buffered read to expose
3113 * the stale data before DIO complete the data IO.
3114 *
3115 * As to previously fallocated extents, ext4 get_block will
3116 * just simply mark the buffer mapped but still keep the
3117 * extents uninitialized.
3118 *
3119 * For non AIO case, we will convert those unwritten extents
3120 * to written after return back from blockdev_direct_IO.
3121 *
3122 * For async DIO, the conversion needs to be deferred when the
3123 * IO is completed. The ext4 end_io callback function will be
3124 * called to take care of the conversion work. Here for async
3125 * case, we allocate an io_end structure to hook to the iocb.
3126 */
3127 iocb->private = NULL;
3128 ext4_inode_aio_set(inode, NULL);
3129 if (!is_sync_kiocb(iocb)) {
97a851ed 3130 io_end = ext4_init_io_end(inode, GFP_NOFS);
69c499d1
TT
3131 if (!io_end) {
3132 ret = -ENOMEM;
3133 goto retake_lock;
8b0f165f 3134 }
97a851ed
JK
3135 /*
3136 * Grab reference for DIO. Will be dropped in ext4_end_io_dio()
3137 */
3138 iocb->private = ext4_get_io_end(io_end);
8d5d02e6 3139 /*
69c499d1
TT
3140 * we save the io structure for current async direct
3141 * IO, so that later ext4_map_blocks() could flag the
3142 * io structure whether there is a unwritten extents
3143 * needs to be converted when IO is completed.
8d5d02e6 3144 */
69c499d1
TT
3145 ext4_inode_aio_set(inode, io_end);
3146 }
4bd809db 3147
69c499d1
TT
3148 if (overwrite) {
3149 get_block_func = ext4_get_block_write_nolock;
3150 } else {
3151 get_block_func = ext4_get_block_write;
3152 dio_flags = DIO_LOCKING;
3153 }
3154 ret = __blockdev_direct_IO(rw, iocb, inode,
3155 inode->i_sb->s_bdev, iov,
3156 offset, nr_segs,
3157 get_block_func,
3158 ext4_end_io_dio,
3159 NULL,
3160 dio_flags);
3161
69c499d1 3162 /*
97a851ed
JK
3163 * Put our reference to io_end. This can free the io_end structure e.g.
3164 * in sync IO case or in case of error. It can even perform extent
3165 * conversion if all bios we submitted finished before we got here.
3166 * Note that in that case iocb->private can be already set to NULL
3167 * here.
69c499d1 3168 */
97a851ed
JK
3169 if (io_end) {
3170 ext4_inode_aio_set(inode, NULL);
3171 ext4_put_io_end(io_end);
3172 /*
3173 * When no IO was submitted ext4_end_io_dio() was not
3174 * called so we have to put iocb's reference.
3175 */
3176 if (ret <= 0 && ret != -EIOCBQUEUED && iocb->private) {
3177 WARN_ON(iocb->private != io_end);
3178 WARN_ON(io_end->flag & EXT4_IO_END_UNWRITTEN);
97a851ed
JK
3179 ext4_put_io_end(io_end);
3180 iocb->private = NULL;
3181 }
3182 }
3183 if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
69c499d1
TT
3184 EXT4_STATE_DIO_UNWRITTEN)) {
3185 int err;
3186 /*
3187 * for non AIO case, since the IO is already
3188 * completed, we could do the conversion right here
3189 */
6b523df4 3190 err = ext4_convert_unwritten_extents(NULL, inode,
69c499d1
TT
3191 offset, ret);
3192 if (err < 0)
3193 ret = err;
3194 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3195 }
4bd809db 3196
69c499d1 3197retake_lock:
e8340395
JK
3198 if (rw == WRITE)
3199 inode_dio_done(inode);
69c499d1
TT
3200 /* take i_mutex locking again if we do a ovewrite dio */
3201 if (overwrite) {
69c499d1
TT
3202 up_read(&EXT4_I(inode)->i_data_sem);
3203 mutex_lock(&inode->i_mutex);
4c0425ff 3204 }
8d5d02e6 3205
69c499d1 3206 return ret;
4c0425ff
MC
3207}
3208
3209static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3210 const struct iovec *iov, loff_t offset,
3211 unsigned long nr_segs)
3212{
3213 struct file *file = iocb->ki_filp;
3214 struct inode *inode = file->f_mapping->host;
0562e0ba 3215 ssize_t ret;
4c0425ff 3216
84ebd795
TT
3217 /*
3218 * If we are doing data journalling we don't support O_DIRECT
3219 */
3220 if (ext4_should_journal_data(inode))
3221 return 0;
3222
46c7f254
TM
3223 /* Let buffer I/O handle the inline data case. */
3224 if (ext4_has_inline_data(inode))
3225 return 0;
3226
0562e0ba 3227 trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
12e9b892 3228 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
0562e0ba
JZ
3229 ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3230 else
3231 ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3232 trace_ext4_direct_IO_exit(inode, offset,
3233 iov_length(iov, nr_segs), rw, ret);
3234 return ret;
4c0425ff
MC
3235}
3236
ac27a0ec 3237/*
617ba13b 3238 * Pages can be marked dirty completely asynchronously from ext4's journalling
ac27a0ec
DK
3239 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3240 * much here because ->set_page_dirty is called under VFS locks. The page is
3241 * not necessarily locked.
3242 *
3243 * We cannot just dirty the page and leave attached buffers clean, because the
3244 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3245 * or jbddirty because all the journalling code will explode.
3246 *
3247 * So what we do is to mark the page "pending dirty" and next time writepage
3248 * is called, propagate that into the buffers appropriately.
3249 */
617ba13b 3250static int ext4_journalled_set_page_dirty(struct page *page)
ac27a0ec
DK
3251{
3252 SetPageChecked(page);
3253 return __set_page_dirty_nobuffers(page);
3254}
3255
74d553aa 3256static const struct address_space_operations ext4_aops = {
8ab22b9a
HH
3257 .readpage = ext4_readpage,
3258 .readpages = ext4_readpages,
43ce1d23 3259 .writepage = ext4_writepage,
20970ba6 3260 .writepages = ext4_writepages,
8ab22b9a 3261 .write_begin = ext4_write_begin,
74d553aa 3262 .write_end = ext4_write_end,
8ab22b9a
HH
3263 .bmap = ext4_bmap,
3264 .invalidatepage = ext4_invalidatepage,
3265 .releasepage = ext4_releasepage,
3266 .direct_IO = ext4_direct_IO,
3267 .migratepage = buffer_migrate_page,
3268 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3269 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
3270};
3271
617ba13b 3272static const struct address_space_operations ext4_journalled_aops = {
8ab22b9a
HH
3273 .readpage = ext4_readpage,
3274 .readpages = ext4_readpages,
43ce1d23 3275 .writepage = ext4_writepage,
20970ba6 3276 .writepages = ext4_writepages,
8ab22b9a
HH
3277 .write_begin = ext4_write_begin,
3278 .write_end = ext4_journalled_write_end,
3279 .set_page_dirty = ext4_journalled_set_page_dirty,
3280 .bmap = ext4_bmap,
4520fb3c 3281 .invalidatepage = ext4_journalled_invalidatepage,
8ab22b9a 3282 .releasepage = ext4_releasepage,
84ebd795 3283 .direct_IO = ext4_direct_IO,
8ab22b9a 3284 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3285 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
3286};
3287
64769240 3288static const struct address_space_operations ext4_da_aops = {
8ab22b9a
HH
3289 .readpage = ext4_readpage,
3290 .readpages = ext4_readpages,
43ce1d23 3291 .writepage = ext4_writepage,
20970ba6 3292 .writepages = ext4_writepages,
8ab22b9a
HH
3293 .write_begin = ext4_da_write_begin,
3294 .write_end = ext4_da_write_end,
3295 .bmap = ext4_bmap,
3296 .invalidatepage = ext4_da_invalidatepage,
3297 .releasepage = ext4_releasepage,
3298 .direct_IO = ext4_direct_IO,
3299 .migratepage = buffer_migrate_page,
3300 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3301 .error_remove_page = generic_error_remove_page,
64769240
AT
3302};
3303
617ba13b 3304void ext4_set_aops(struct inode *inode)
ac27a0ec 3305{
3d2b1582
LC
3306 switch (ext4_inode_journal_mode(inode)) {
3307 case EXT4_INODE_ORDERED_DATA_MODE:
74d553aa 3308 ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3d2b1582
LC
3309 break;
3310 case EXT4_INODE_WRITEBACK_DATA_MODE:
74d553aa 3311 ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3d2b1582
LC
3312 break;
3313 case EXT4_INODE_JOURNAL_DATA_MODE:
617ba13b 3314 inode->i_mapping->a_ops = &ext4_journalled_aops;
74d553aa 3315 return;
3d2b1582
LC
3316 default:
3317 BUG();
3318 }
74d553aa
TT
3319 if (test_opt(inode->i_sb, DELALLOC))
3320 inode->i_mapping->a_ops = &ext4_da_aops;
3321 else
3322 inode->i_mapping->a_ops = &ext4_aops;
ac27a0ec
DK
3323}
3324
d863dc36
LC
3325/*
3326 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3327 * up to the end of the block which corresponds to `from'.
3328 * This required during truncate. We need to physically zero the tail end
3329 * of that block so it doesn't yield old data if the file is later grown.
3330 */
3331int ext4_block_truncate_page(handle_t *handle,
3332 struct address_space *mapping, loff_t from)
3333{
3334 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3335 unsigned length;
3336 unsigned blocksize;
3337 struct inode *inode = mapping->host;
3338
3339 blocksize = inode->i_sb->s_blocksize;
3340 length = blocksize - (offset & (blocksize - 1));
3341
3342 return ext4_block_zero_page_range(handle, mapping, from, length);
3343}
3344
3345/*
3346 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3347 * starting from file offset 'from'. The range to be zero'd must
3348 * be contained with in one block. If the specified range exceeds
3349 * the end of the block it will be shortened to end of the block
3350 * that cooresponds to 'from'
3351 */
3352int ext4_block_zero_page_range(handle_t *handle,
3353 struct address_space *mapping, loff_t from, loff_t length)
3354{
3355 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3356 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3357 unsigned blocksize, max, pos;
3358 ext4_lblk_t iblock;
3359 struct inode *inode = mapping->host;
3360 struct buffer_head *bh;
3361 struct page *page;
3362 int err = 0;
3363
3364 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3365 mapping_gfp_mask(mapping) & ~__GFP_FS);
3366 if (!page)
3367 return -ENOMEM;
3368
3369 blocksize = inode->i_sb->s_blocksize;
3370 max = blocksize - (offset & (blocksize - 1));
3371
3372 /*
3373 * correct length if it does not fall between
3374 * 'from' and the end of the block
3375 */
3376 if (length > max || length < 0)
3377 length = max;
3378
3379 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3380
3381 if (!page_has_buffers(page))
3382 create_empty_buffers(page, blocksize, 0);
3383
3384 /* Find the buffer that contains "offset" */
3385 bh = page_buffers(page);
3386 pos = blocksize;
3387 while (offset >= pos) {
3388 bh = bh->b_this_page;
3389 iblock++;
3390 pos += blocksize;
3391 }
d863dc36
LC
3392 if (buffer_freed(bh)) {
3393 BUFFER_TRACE(bh, "freed: skip");
3394 goto unlock;
3395 }
d863dc36
LC
3396 if (!buffer_mapped(bh)) {
3397 BUFFER_TRACE(bh, "unmapped");
3398 ext4_get_block(inode, iblock, bh, 0);
3399 /* unmapped? It's a hole - nothing to do */
3400 if (!buffer_mapped(bh)) {
3401 BUFFER_TRACE(bh, "still unmapped");
3402 goto unlock;
3403 }
3404 }
3405
3406 /* Ok, it's mapped. Make sure it's up-to-date */
3407 if (PageUptodate(page))
3408 set_buffer_uptodate(bh);
3409
3410 if (!buffer_uptodate(bh)) {
3411 err = -EIO;
3412 ll_rw_block(READ, 1, &bh);
3413 wait_on_buffer(bh);
3414 /* Uhhuh. Read error. Complain and punt. */
3415 if (!buffer_uptodate(bh))
3416 goto unlock;
3417 }
d863dc36
LC
3418 if (ext4_should_journal_data(inode)) {
3419 BUFFER_TRACE(bh, "get write access");
3420 err = ext4_journal_get_write_access(handle, bh);
3421 if (err)
3422 goto unlock;
3423 }
d863dc36 3424 zero_user(page, offset, length);
d863dc36
LC
3425 BUFFER_TRACE(bh, "zeroed end of block");
3426
d863dc36
LC
3427 if (ext4_should_journal_data(inode)) {
3428 err = ext4_handle_dirty_metadata(handle, inode, bh);
0713ed0c 3429 } else {
353eefd3 3430 err = 0;
d863dc36 3431 mark_buffer_dirty(bh);
0713ed0c
LC
3432 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE))
3433 err = ext4_jbd2_file_inode(handle, inode);
3434 }
d863dc36
LC
3435
3436unlock:
3437 unlock_page(page);
3438 page_cache_release(page);
3439 return err;
3440}
3441
a87dd18c
LC
3442int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3443 loff_t lstart, loff_t length)
3444{
3445 struct super_block *sb = inode->i_sb;
3446 struct address_space *mapping = inode->i_mapping;
e1be3a92 3447 unsigned partial_start, partial_end;
a87dd18c
LC
3448 ext4_fsblk_t start, end;
3449 loff_t byte_end = (lstart + length - 1);
3450 int err = 0;
3451
e1be3a92
LC
3452 partial_start = lstart & (sb->s_blocksize - 1);
3453 partial_end = byte_end & (sb->s_blocksize - 1);
3454
a87dd18c
LC
3455 start = lstart >> sb->s_blocksize_bits;
3456 end = byte_end >> sb->s_blocksize_bits;
3457
3458 /* Handle partial zero within the single block */
e1be3a92
LC
3459 if (start == end &&
3460 (partial_start || (partial_end != sb->s_blocksize - 1))) {
a87dd18c
LC
3461 err = ext4_block_zero_page_range(handle, mapping,
3462 lstart, length);
3463 return err;
3464 }
3465 /* Handle partial zero out on the start of the range */
e1be3a92 3466 if (partial_start) {
a87dd18c
LC
3467 err = ext4_block_zero_page_range(handle, mapping,
3468 lstart, sb->s_blocksize);
3469 if (err)
3470 return err;
3471 }
3472 /* Handle partial zero out on the end of the range */
e1be3a92 3473 if (partial_end != sb->s_blocksize - 1)
a87dd18c 3474 err = ext4_block_zero_page_range(handle, mapping,
e1be3a92
LC
3475 byte_end - partial_end,
3476 partial_end + 1);
a87dd18c
LC
3477 return err;
3478}
3479
91ef4caf
DG
3480int ext4_can_truncate(struct inode *inode)
3481{
91ef4caf
DG
3482 if (S_ISREG(inode->i_mode))
3483 return 1;
3484 if (S_ISDIR(inode->i_mode))
3485 return 1;
3486 if (S_ISLNK(inode->i_mode))
3487 return !ext4_inode_is_fast_symlink(inode);
3488 return 0;
3489}
3490
a4bb6b64
AH
3491/*
3492 * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3493 * associated with the given offset and length
3494 *
3495 * @inode: File inode
3496 * @offset: The offset where the hole will begin
3497 * @len: The length of the hole
3498 *
4907cb7b 3499 * Returns: 0 on success or negative on failure
a4bb6b64
AH
3500 */
3501
aeb2817a 3502int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
a4bb6b64 3503{
26a4c0c6
TT
3504 struct super_block *sb = inode->i_sb;
3505 ext4_lblk_t first_block, stop_block;
3506 struct address_space *mapping = inode->i_mapping;
a87dd18c 3507 loff_t first_block_offset, last_block_offset;
26a4c0c6
TT
3508 handle_t *handle;
3509 unsigned int credits;
3510 int ret = 0;
3511
a4bb6b64 3512 if (!S_ISREG(inode->i_mode))
73355192 3513 return -EOPNOTSUPP;
a4bb6b64 3514
26a4c0c6 3515 if (EXT4_SB(sb)->s_cluster_ratio > 1) {
bab08ab9 3516 /* TODO: Add support for bigalloc file systems */
73355192 3517 return -EOPNOTSUPP;
bab08ab9
TT
3518 }
3519
aaddea81
ZL
3520 trace_ext4_punch_hole(inode, offset, length);
3521
26a4c0c6
TT
3522 /*
3523 * Write out all dirty pages to avoid race conditions
3524 * Then release them.
3525 */
3526 if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3527 ret = filemap_write_and_wait_range(mapping, offset,
3528 offset + length - 1);
3529 if (ret)
3530 return ret;
3531 }
3532
3533 mutex_lock(&inode->i_mutex);
3534 /* It's not possible punch hole on append only file */
3535 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
3536 ret = -EPERM;
3537 goto out_mutex;
3538 }
3539 if (IS_SWAPFILE(inode)) {
3540 ret = -ETXTBSY;
3541 goto out_mutex;
3542 }
3543
3544 /* No need to punch hole beyond i_size */
3545 if (offset >= inode->i_size)
3546 goto out_mutex;
3547
3548 /*
3549 * If the hole extends beyond i_size, set the hole
3550 * to end after the page that contains i_size
3551 */
3552 if (offset + length > inode->i_size) {
3553 length = inode->i_size +
3554 PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
3555 offset;
3556 }
3557
a361293f
JK
3558 if (offset & (sb->s_blocksize - 1) ||
3559 (offset + length) & (sb->s_blocksize - 1)) {
3560 /*
3561 * Attach jinode to inode for jbd2 if we do any zeroing of
3562 * partial block
3563 */
3564 ret = ext4_inode_attach_jinode(inode);
3565 if (ret < 0)
3566 goto out_mutex;
3567
3568 }
3569
a87dd18c
LC
3570 first_block_offset = round_up(offset, sb->s_blocksize);
3571 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
26a4c0c6 3572
a87dd18c
LC
3573 /* Now release the pages and zero block aligned part of pages*/
3574 if (last_block_offset > first_block_offset)
3575 truncate_pagecache_range(inode, first_block_offset,
3576 last_block_offset);
26a4c0c6
TT
3577
3578 /* Wait all existing dio workers, newcomers will block on i_mutex */
3579 ext4_inode_block_unlocked_dio(inode);
26a4c0c6
TT
3580 inode_dio_wait(inode);
3581
3582 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3583 credits = ext4_writepage_trans_blocks(inode);
3584 else
3585 credits = ext4_blocks_for_truncate(inode);
3586 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3587 if (IS_ERR(handle)) {
3588 ret = PTR_ERR(handle);
3589 ext4_std_error(sb, ret);
3590 goto out_dio;
3591 }
3592
a87dd18c
LC
3593 ret = ext4_zero_partial_blocks(handle, inode, offset,
3594 length);
3595 if (ret)
3596 goto out_stop;
26a4c0c6
TT
3597
3598 first_block = (offset + sb->s_blocksize - 1) >>
3599 EXT4_BLOCK_SIZE_BITS(sb);
3600 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
3601
3602 /* If there are no blocks to remove, return now */
3603 if (first_block >= stop_block)
3604 goto out_stop;
3605
3606 down_write(&EXT4_I(inode)->i_data_sem);
3607 ext4_discard_preallocations(inode);
3608
3609 ret = ext4_es_remove_extent(inode, first_block,
3610 stop_block - first_block);
3611 if (ret) {
3612 up_write(&EXT4_I(inode)->i_data_sem);
3613 goto out_stop;
3614 }
3615
3616 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3617 ret = ext4_ext_remove_space(inode, first_block,
3618 stop_block - 1);
3619 else
3620 ret = ext4_free_hole_blocks(handle, inode, first_block,
3621 stop_block);
3622
3623 ext4_discard_preallocations(inode);
819c4920 3624 up_write(&EXT4_I(inode)->i_data_sem);
26a4c0c6
TT
3625 if (IS_SYNC(inode))
3626 ext4_handle_sync(handle);
26a4c0c6
TT
3627 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3628 ext4_mark_inode_dirty(handle, inode);
3629out_stop:
3630 ext4_journal_stop(handle);
3631out_dio:
3632 ext4_inode_resume_unlocked_dio(inode);
3633out_mutex:
3634 mutex_unlock(&inode->i_mutex);
3635 return ret;
a4bb6b64
AH
3636}
3637
a361293f
JK
3638int ext4_inode_attach_jinode(struct inode *inode)
3639{
3640 struct ext4_inode_info *ei = EXT4_I(inode);
3641 struct jbd2_inode *jinode;
3642
3643 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
3644 return 0;
3645
3646 jinode = jbd2_alloc_inode(GFP_KERNEL);
3647 spin_lock(&inode->i_lock);
3648 if (!ei->jinode) {
3649 if (!jinode) {
3650 spin_unlock(&inode->i_lock);
3651 return -ENOMEM;
3652 }
3653 ei->jinode = jinode;
3654 jbd2_journal_init_jbd_inode(ei->jinode, inode);
3655 jinode = NULL;
3656 }
3657 spin_unlock(&inode->i_lock);
3658 if (unlikely(jinode != NULL))
3659 jbd2_free_inode(jinode);
3660 return 0;
3661}
3662
ac27a0ec 3663/*
617ba13b 3664 * ext4_truncate()
ac27a0ec 3665 *
617ba13b
MC
3666 * We block out ext4_get_block() block instantiations across the entire
3667 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
ac27a0ec
DK
3668 * simultaneously on behalf of the same inode.
3669 *
42b2aa86 3670 * As we work through the truncate and commit bits of it to the journal there
ac27a0ec
DK
3671 * is one core, guiding principle: the file's tree must always be consistent on
3672 * disk. We must be able to restart the truncate after a crash.
3673 *
3674 * The file's tree may be transiently inconsistent in memory (although it
3675 * probably isn't), but whenever we close off and commit a journal transaction,
3676 * the contents of (the filesystem + the journal) must be consistent and
3677 * restartable. It's pretty simple, really: bottom up, right to left (although
3678 * left-to-right works OK too).
3679 *
3680 * Note that at recovery time, journal replay occurs *before* the restart of
3681 * truncate against the orphan inode list.
3682 *
3683 * The committed inode has the new, desired i_size (which is the same as
617ba13b 3684 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
ac27a0ec 3685 * that this inode's truncate did not complete and it will again call
617ba13b
MC
3686 * ext4_truncate() to have another go. So there will be instantiated blocks
3687 * to the right of the truncation point in a crashed ext4 filesystem. But
ac27a0ec 3688 * that's fine - as long as they are linked from the inode, the post-crash
617ba13b 3689 * ext4_truncate() run will find them and release them.
ac27a0ec 3690 */
617ba13b 3691void ext4_truncate(struct inode *inode)
ac27a0ec 3692{
819c4920
TT
3693 struct ext4_inode_info *ei = EXT4_I(inode);
3694 unsigned int credits;
3695 handle_t *handle;
3696 struct address_space *mapping = inode->i_mapping;
819c4920 3697
19b5ef61
TT
3698 /*
3699 * There is a possibility that we're either freeing the inode
3700 * or it completely new indode. In those cases we might not
3701 * have i_mutex locked because it's not necessary.
3702 */
3703 if (!(inode->i_state & (I_NEW|I_FREEING)))
3704 WARN_ON(!mutex_is_locked(&inode->i_mutex));
0562e0ba
JZ
3705 trace_ext4_truncate_enter(inode);
3706
91ef4caf 3707 if (!ext4_can_truncate(inode))
ac27a0ec
DK
3708 return;
3709
12e9b892 3710 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
c8d46e41 3711
5534fb5b 3712 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
19f5fb7a 3713 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
7d8f9f7d 3714
aef1c851
TM
3715 if (ext4_has_inline_data(inode)) {
3716 int has_inline = 1;
3717
3718 ext4_inline_data_truncate(inode, &has_inline);
3719 if (has_inline)
3720 return;
3721 }
3722
a361293f
JK
3723 /* If we zero-out tail of the page, we have to create jinode for jbd2 */
3724 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
3725 if (ext4_inode_attach_jinode(inode) < 0)
3726 return;
3727 }
3728
819c4920
TT
3729 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3730 credits = ext4_writepage_trans_blocks(inode);
3731 else
3732 credits = ext4_blocks_for_truncate(inode);
3733
3734 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3735 if (IS_ERR(handle)) {
3736 ext4_std_error(inode->i_sb, PTR_ERR(handle));
3737 return;
3738 }
3739
eb3544c6
LC
3740 if (inode->i_size & (inode->i_sb->s_blocksize - 1))
3741 ext4_block_truncate_page(handle, mapping, inode->i_size);
819c4920
TT
3742
3743 /*
3744 * We add the inode to the orphan list, so that if this
3745 * truncate spans multiple transactions, and we crash, we will
3746 * resume the truncate when the filesystem recovers. It also
3747 * marks the inode dirty, to catch the new size.
3748 *
3749 * Implication: the file must always be in a sane, consistent
3750 * truncatable state while each transaction commits.
3751 */
3752 if (ext4_orphan_add(handle, inode))
3753 goto out_stop;
3754
3755 down_write(&EXT4_I(inode)->i_data_sem);
3756
3757 ext4_discard_preallocations(inode);
3758
ff9893dc 3759 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
819c4920 3760 ext4_ext_truncate(handle, inode);
ff9893dc 3761 else
819c4920
TT
3762 ext4_ind_truncate(handle, inode);
3763
3764 up_write(&ei->i_data_sem);
3765
3766 if (IS_SYNC(inode))
3767 ext4_handle_sync(handle);
3768
3769out_stop:
3770 /*
3771 * If this was a simple ftruncate() and the file will remain alive,
3772 * then we need to clear up the orphan record which we created above.
3773 * However, if this was a real unlink then we were called by
3774 * ext4_delete_inode(), and we allow that function to clean up the
3775 * orphan info for us.
3776 */
3777 if (inode->i_nlink)
3778 ext4_orphan_del(handle, inode);
3779
3780 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3781 ext4_mark_inode_dirty(handle, inode);
3782 ext4_journal_stop(handle);
ac27a0ec 3783
0562e0ba 3784 trace_ext4_truncate_exit(inode);
ac27a0ec
DK
3785}
3786
ac27a0ec 3787/*
617ba13b 3788 * ext4_get_inode_loc returns with an extra refcount against the inode's
ac27a0ec
DK
3789 * underlying buffer_head on success. If 'in_mem' is true, we have all
3790 * data in memory that is needed to recreate the on-disk version of this
3791 * inode.
3792 */
617ba13b
MC
3793static int __ext4_get_inode_loc(struct inode *inode,
3794 struct ext4_iloc *iloc, int in_mem)
ac27a0ec 3795{
240799cd
TT
3796 struct ext4_group_desc *gdp;
3797 struct buffer_head *bh;
3798 struct super_block *sb = inode->i_sb;
3799 ext4_fsblk_t block;
3800 int inodes_per_block, inode_offset;
3801
3a06d778 3802 iloc->bh = NULL;
240799cd
TT
3803 if (!ext4_valid_inum(sb, inode->i_ino))
3804 return -EIO;
ac27a0ec 3805
240799cd
TT
3806 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3807 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3808 if (!gdp)
ac27a0ec
DK
3809 return -EIO;
3810
240799cd
TT
3811 /*
3812 * Figure out the offset within the block group inode table
3813 */
00d09882 3814 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
240799cd
TT
3815 inode_offset = ((inode->i_ino - 1) %
3816 EXT4_INODES_PER_GROUP(sb));
3817 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3818 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3819
3820 bh = sb_getblk(sb, block);
aebf0243 3821 if (unlikely(!bh))
860d21e2 3822 return -ENOMEM;
ac27a0ec
DK
3823 if (!buffer_uptodate(bh)) {
3824 lock_buffer(bh);
9c83a923
HK
3825
3826 /*
3827 * If the buffer has the write error flag, we have failed
3828 * to write out another inode in the same block. In this
3829 * case, we don't have to read the block because we may
3830 * read the old inode data successfully.
3831 */
3832 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3833 set_buffer_uptodate(bh);
3834
ac27a0ec
DK
3835 if (buffer_uptodate(bh)) {
3836 /* someone brought it uptodate while we waited */
3837 unlock_buffer(bh);
3838 goto has_buffer;
3839 }
3840
3841 /*
3842 * If we have all information of the inode in memory and this
3843 * is the only valid inode in the block, we need not read the
3844 * block.
3845 */
3846 if (in_mem) {
3847 struct buffer_head *bitmap_bh;
240799cd 3848 int i, start;
ac27a0ec 3849
240799cd 3850 start = inode_offset & ~(inodes_per_block - 1);
ac27a0ec 3851
240799cd
TT
3852 /* Is the inode bitmap in cache? */
3853 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
aebf0243 3854 if (unlikely(!bitmap_bh))
ac27a0ec
DK
3855 goto make_io;
3856
3857 /*
3858 * If the inode bitmap isn't in cache then the
3859 * optimisation may end up performing two reads instead
3860 * of one, so skip it.
3861 */
3862 if (!buffer_uptodate(bitmap_bh)) {
3863 brelse(bitmap_bh);
3864 goto make_io;
3865 }
240799cd 3866 for (i = start; i < start + inodes_per_block; i++) {
ac27a0ec
DK
3867 if (i == inode_offset)
3868 continue;
617ba13b 3869 if (ext4_test_bit(i, bitmap_bh->b_data))
ac27a0ec
DK
3870 break;
3871 }
3872 brelse(bitmap_bh);
240799cd 3873 if (i == start + inodes_per_block) {
ac27a0ec
DK
3874 /* all other inodes are free, so skip I/O */
3875 memset(bh->b_data, 0, bh->b_size);
3876 set_buffer_uptodate(bh);
3877 unlock_buffer(bh);
3878 goto has_buffer;
3879 }
3880 }
3881
3882make_io:
240799cd
TT
3883 /*
3884 * If we need to do any I/O, try to pre-readahead extra
3885 * blocks from the inode table.
3886 */
3887 if (EXT4_SB(sb)->s_inode_readahead_blks) {
3888 ext4_fsblk_t b, end, table;
3889 unsigned num;
0d606e2c 3890 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
240799cd
TT
3891
3892 table = ext4_inode_table(sb, gdp);
b713a5ec 3893 /* s_inode_readahead_blks is always a power of 2 */
0d606e2c 3894 b = block & ~((ext4_fsblk_t) ra_blks - 1);
240799cd
TT
3895 if (table > b)
3896 b = table;
0d606e2c 3897 end = b + ra_blks;
240799cd 3898 num = EXT4_INODES_PER_GROUP(sb);
feb0ab32 3899 if (ext4_has_group_desc_csum(sb))
560671a0 3900 num -= ext4_itable_unused_count(sb, gdp);
240799cd
TT
3901 table += num / inodes_per_block;
3902 if (end > table)
3903 end = table;
3904 while (b <= end)
3905 sb_breadahead(sb, b++);
3906 }
3907
ac27a0ec
DK
3908 /*
3909 * There are other valid inodes in the buffer, this inode
3910 * has in-inode xattrs, or we don't have this inode in memory.
3911 * Read the block from disk.
3912 */
0562e0ba 3913 trace_ext4_load_inode(inode);
ac27a0ec
DK
3914 get_bh(bh);
3915 bh->b_end_io = end_buffer_read_sync;
65299a3b 3916 submit_bh(READ | REQ_META | REQ_PRIO, bh);
ac27a0ec
DK
3917 wait_on_buffer(bh);
3918 if (!buffer_uptodate(bh)) {
c398eda0
TT
3919 EXT4_ERROR_INODE_BLOCK(inode, block,
3920 "unable to read itable block");
ac27a0ec
DK
3921 brelse(bh);
3922 return -EIO;
3923 }
3924 }
3925has_buffer:
3926 iloc->bh = bh;
3927 return 0;
3928}
3929
617ba13b 3930int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
3931{
3932 /* We have all inode data except xattrs in memory here. */
617ba13b 3933 return __ext4_get_inode_loc(inode, iloc,
19f5fb7a 3934 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
ac27a0ec
DK
3935}
3936
617ba13b 3937void ext4_set_inode_flags(struct inode *inode)
ac27a0ec 3938{
617ba13b 3939 unsigned int flags = EXT4_I(inode)->i_flags;
ac27a0ec
DK
3940
3941 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
617ba13b 3942 if (flags & EXT4_SYNC_FL)
ac27a0ec 3943 inode->i_flags |= S_SYNC;
617ba13b 3944 if (flags & EXT4_APPEND_FL)
ac27a0ec 3945 inode->i_flags |= S_APPEND;
617ba13b 3946 if (flags & EXT4_IMMUTABLE_FL)
ac27a0ec 3947 inode->i_flags |= S_IMMUTABLE;
617ba13b 3948 if (flags & EXT4_NOATIME_FL)
ac27a0ec 3949 inode->i_flags |= S_NOATIME;
617ba13b 3950 if (flags & EXT4_DIRSYNC_FL)
ac27a0ec
DK
3951 inode->i_flags |= S_DIRSYNC;
3952}
3953
ff9ddf7e
JK
3954/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3955void ext4_get_inode_flags(struct ext4_inode_info *ei)
3956{
84a8dce2
DM
3957 unsigned int vfs_fl;
3958 unsigned long old_fl, new_fl;
3959
3960 do {
3961 vfs_fl = ei->vfs_inode.i_flags;
3962 old_fl = ei->i_flags;
3963 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3964 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
3965 EXT4_DIRSYNC_FL);
3966 if (vfs_fl & S_SYNC)
3967 new_fl |= EXT4_SYNC_FL;
3968 if (vfs_fl & S_APPEND)
3969 new_fl |= EXT4_APPEND_FL;
3970 if (vfs_fl & S_IMMUTABLE)
3971 new_fl |= EXT4_IMMUTABLE_FL;
3972 if (vfs_fl & S_NOATIME)
3973 new_fl |= EXT4_NOATIME_FL;
3974 if (vfs_fl & S_DIRSYNC)
3975 new_fl |= EXT4_DIRSYNC_FL;
3976 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
ff9ddf7e 3977}
de9a55b8 3978
0fc1b451 3979static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
de9a55b8 3980 struct ext4_inode_info *ei)
0fc1b451
AK
3981{
3982 blkcnt_t i_blocks ;
8180a562
AK
3983 struct inode *inode = &(ei->vfs_inode);
3984 struct super_block *sb = inode->i_sb;
0fc1b451
AK
3985
3986 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3987 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3988 /* we are using combined 48 bit field */
3989 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3990 le32_to_cpu(raw_inode->i_blocks_lo);
07a03824 3991 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
8180a562
AK
3992 /* i_blocks represent file system block size */
3993 return i_blocks << (inode->i_blkbits - 9);
3994 } else {
3995 return i_blocks;
3996 }
0fc1b451
AK
3997 } else {
3998 return le32_to_cpu(raw_inode->i_blocks_lo);
3999 }
4000}
ff9ddf7e 4001
152a7b0a
TM
4002static inline void ext4_iget_extra_inode(struct inode *inode,
4003 struct ext4_inode *raw_inode,
4004 struct ext4_inode_info *ei)
4005{
4006 __le32 *magic = (void *)raw_inode +
4007 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
67cf5b09 4008 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
152a7b0a 4009 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
67cf5b09 4010 ext4_find_inline_data_nolock(inode);
f19d5870
TM
4011 } else
4012 EXT4_I(inode)->i_inline_off = 0;
152a7b0a
TM
4013}
4014
1d1fe1ee 4015struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
ac27a0ec 4016{
617ba13b
MC
4017 struct ext4_iloc iloc;
4018 struct ext4_inode *raw_inode;
1d1fe1ee 4019 struct ext4_inode_info *ei;
1d1fe1ee 4020 struct inode *inode;
b436b9be 4021 journal_t *journal = EXT4_SB(sb)->s_journal;
1d1fe1ee 4022 long ret;
ac27a0ec 4023 int block;
08cefc7a
EB
4024 uid_t i_uid;
4025 gid_t i_gid;
ac27a0ec 4026
1d1fe1ee
DH
4027 inode = iget_locked(sb, ino);
4028 if (!inode)
4029 return ERR_PTR(-ENOMEM);
4030 if (!(inode->i_state & I_NEW))
4031 return inode;
4032
4033 ei = EXT4_I(inode);
7dc57615 4034 iloc.bh = NULL;
ac27a0ec 4035
1d1fe1ee
DH
4036 ret = __ext4_get_inode_loc(inode, &iloc, 0);
4037 if (ret < 0)
ac27a0ec 4038 goto bad_inode;
617ba13b 4039 raw_inode = ext4_raw_inode(&iloc);
814525f4
DW
4040
4041 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4042 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4043 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4044 EXT4_INODE_SIZE(inode->i_sb)) {
4045 EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
4046 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
4047 EXT4_INODE_SIZE(inode->i_sb));
4048 ret = -EIO;
4049 goto bad_inode;
4050 }
4051 } else
4052 ei->i_extra_isize = 0;
4053
4054 /* Precompute checksum seed for inode metadata */
4055 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4056 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
4057 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4058 __u32 csum;
4059 __le32 inum = cpu_to_le32(inode->i_ino);
4060 __le32 gen = raw_inode->i_generation;
4061 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4062 sizeof(inum));
4063 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4064 sizeof(gen));
4065 }
4066
4067 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4068 EXT4_ERROR_INODE(inode, "checksum invalid");
4069 ret = -EIO;
4070 goto bad_inode;
4071 }
4072
ac27a0ec 4073 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
08cefc7a
EB
4074 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4075 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
af5bc92d 4076 if (!(test_opt(inode->i_sb, NO_UID32))) {
08cefc7a
EB
4077 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4078 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
ac27a0ec 4079 }
08cefc7a
EB
4080 i_uid_write(inode, i_uid);
4081 i_gid_write(inode, i_gid);
bfe86848 4082 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
ac27a0ec 4083
353eb83c 4084 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
67cf5b09 4085 ei->i_inline_off = 0;
ac27a0ec
DK
4086 ei->i_dir_start_lookup = 0;
4087 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4088 /* We now have enough fields to check if the inode was active or not.
4089 * This is needed because nfsd might try to access dead inodes
4090 * the test is that same one that e2fsck uses
4091 * NeilBrown 1999oct15
4092 */
4093 if (inode->i_nlink == 0) {
393d1d1d
DTB
4094 if ((inode->i_mode == 0 ||
4095 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4096 ino != EXT4_BOOT_LOADER_INO) {
ac27a0ec 4097 /* this inode is deleted */
1d1fe1ee 4098 ret = -ESTALE;
ac27a0ec
DK
4099 goto bad_inode;
4100 }
4101 /* The only unlinked inodes we let through here have
4102 * valid i_mode and are being read by the orphan
4103 * recovery code: that's fine, we're about to complete
393d1d1d
DTB
4104 * the process of deleting those.
4105 * OR it is the EXT4_BOOT_LOADER_INO which is
4106 * not initialized on a new filesystem. */
ac27a0ec 4107 }
ac27a0ec 4108 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
0fc1b451 4109 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
7973c0c1 4110 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
a9e81742 4111 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
a1ddeb7e
BP
4112 ei->i_file_acl |=
4113 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
a48380f7 4114 inode->i_size = ext4_isize(raw_inode);
ac27a0ec 4115 ei->i_disksize = inode->i_size;
a9e7f447
DM
4116#ifdef CONFIG_QUOTA
4117 ei->i_reserved_quota = 0;
4118#endif
ac27a0ec
DK
4119 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4120 ei->i_block_group = iloc.block_group;
a4912123 4121 ei->i_last_alloc_group = ~0;
ac27a0ec
DK
4122 /*
4123 * NOTE! The in-memory inode i_data array is in little-endian order
4124 * even on big-endian machines: we do NOT byteswap the block numbers!
4125 */
617ba13b 4126 for (block = 0; block < EXT4_N_BLOCKS; block++)
ac27a0ec
DK
4127 ei->i_data[block] = raw_inode->i_block[block];
4128 INIT_LIST_HEAD(&ei->i_orphan);
4129
b436b9be
JK
4130 /*
4131 * Set transaction id's of transactions that have to be committed
4132 * to finish f[data]sync. We set them to currently running transaction
4133 * as we cannot be sure that the inode or some of its metadata isn't
4134 * part of the transaction - the inode could have been reclaimed and
4135 * now it is reread from disk.
4136 */
4137 if (journal) {
4138 transaction_t *transaction;
4139 tid_t tid;
4140
a931da6a 4141 read_lock(&journal->j_state_lock);
b436b9be
JK
4142 if (journal->j_running_transaction)
4143 transaction = journal->j_running_transaction;
4144 else
4145 transaction = journal->j_committing_transaction;
4146 if (transaction)
4147 tid = transaction->t_tid;
4148 else
4149 tid = journal->j_commit_sequence;
a931da6a 4150 read_unlock(&journal->j_state_lock);
b436b9be
JK
4151 ei->i_sync_tid = tid;
4152 ei->i_datasync_tid = tid;
4153 }
4154
0040d987 4155 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
ac27a0ec
DK
4156 if (ei->i_extra_isize == 0) {
4157 /* The extra space is currently unused. Use it. */
617ba13b
MC
4158 ei->i_extra_isize = sizeof(struct ext4_inode) -
4159 EXT4_GOOD_OLD_INODE_SIZE;
ac27a0ec 4160 } else {
152a7b0a 4161 ext4_iget_extra_inode(inode, raw_inode, ei);
ac27a0ec 4162 }
814525f4 4163 }
ac27a0ec 4164
ef7f3835
KS
4165 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4166 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4167 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4168 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4169
25ec56b5
JNC
4170 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4171 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4172 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4173 inode->i_version |=
4174 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4175 }
4176
c4b5a614 4177 ret = 0;
485c26ec 4178 if (ei->i_file_acl &&
1032988c 4179 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
24676da4
TT
4180 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4181 ei->i_file_acl);
485c26ec
TT
4182 ret = -EIO;
4183 goto bad_inode;
f19d5870
TM
4184 } else if (!ext4_has_inline_data(inode)) {
4185 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4186 if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4187 (S_ISLNK(inode->i_mode) &&
4188 !ext4_inode_is_fast_symlink(inode))))
4189 /* Validate extent which is part of inode */
4190 ret = ext4_ext_check_inode(inode);
4191 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4192 (S_ISLNK(inode->i_mode) &&
4193 !ext4_inode_is_fast_symlink(inode))) {
4194 /* Validate block references which are part of inode */
4195 ret = ext4_ind_check_inode(inode);
4196 }
fe2c8191 4197 }
567f3e9a 4198 if (ret)
de9a55b8 4199 goto bad_inode;
7a262f7c 4200
ac27a0ec 4201 if (S_ISREG(inode->i_mode)) {
617ba13b
MC
4202 inode->i_op = &ext4_file_inode_operations;
4203 inode->i_fop = &ext4_file_operations;
4204 ext4_set_aops(inode);
ac27a0ec 4205 } else if (S_ISDIR(inode->i_mode)) {
617ba13b
MC
4206 inode->i_op = &ext4_dir_inode_operations;
4207 inode->i_fop = &ext4_dir_operations;
ac27a0ec 4208 } else if (S_ISLNK(inode->i_mode)) {
e83c1397 4209 if (ext4_inode_is_fast_symlink(inode)) {
617ba13b 4210 inode->i_op = &ext4_fast_symlink_inode_operations;
e83c1397
DG
4211 nd_terminate_link(ei->i_data, inode->i_size,
4212 sizeof(ei->i_data) - 1);
4213 } else {
617ba13b
MC
4214 inode->i_op = &ext4_symlink_inode_operations;
4215 ext4_set_aops(inode);
ac27a0ec 4216 }
563bdd61
TT
4217 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4218 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
617ba13b 4219 inode->i_op = &ext4_special_inode_operations;
ac27a0ec
DK
4220 if (raw_inode->i_block[0])
4221 init_special_inode(inode, inode->i_mode,
4222 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4223 else
4224 init_special_inode(inode, inode->i_mode,
4225 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
393d1d1d
DTB
4226 } else if (ino == EXT4_BOOT_LOADER_INO) {
4227 make_bad_inode(inode);
563bdd61 4228 } else {
563bdd61 4229 ret = -EIO;
24676da4 4230 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
563bdd61 4231 goto bad_inode;
ac27a0ec 4232 }
af5bc92d 4233 brelse(iloc.bh);
617ba13b 4234 ext4_set_inode_flags(inode);
1d1fe1ee
DH
4235 unlock_new_inode(inode);
4236 return inode;
ac27a0ec
DK
4237
4238bad_inode:
567f3e9a 4239 brelse(iloc.bh);
1d1fe1ee
DH
4240 iget_failed(inode);
4241 return ERR_PTR(ret);
ac27a0ec
DK
4242}
4243
0fc1b451
AK
4244static int ext4_inode_blocks_set(handle_t *handle,
4245 struct ext4_inode *raw_inode,
4246 struct ext4_inode_info *ei)
4247{
4248 struct inode *inode = &(ei->vfs_inode);
4249 u64 i_blocks = inode->i_blocks;
4250 struct super_block *sb = inode->i_sb;
0fc1b451
AK
4251
4252 if (i_blocks <= ~0U) {
4253 /*
4907cb7b 4254 * i_blocks can be represented in a 32 bit variable
0fc1b451
AK
4255 * as multiple of 512 bytes
4256 */
8180a562 4257 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 4258 raw_inode->i_blocks_high = 0;
84a8dce2 4259 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
f287a1a5
TT
4260 return 0;
4261 }
4262 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4263 return -EFBIG;
4264
4265 if (i_blocks <= 0xffffffffffffULL) {
0fc1b451
AK
4266 /*
4267 * i_blocks can be represented in a 48 bit variable
4268 * as multiple of 512 bytes
4269 */
8180a562 4270 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 4271 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
84a8dce2 4272 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
0fc1b451 4273 } else {
84a8dce2 4274 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
8180a562
AK
4275 /* i_block is stored in file system block size */
4276 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4277 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4278 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
0fc1b451 4279 }
f287a1a5 4280 return 0;
0fc1b451
AK
4281}
4282
ac27a0ec
DK
4283/*
4284 * Post the struct inode info into an on-disk inode location in the
4285 * buffer-cache. This gobbles the caller's reference to the
4286 * buffer_head in the inode location struct.
4287 *
4288 * The caller must have write access to iloc->bh.
4289 */
617ba13b 4290static int ext4_do_update_inode(handle_t *handle,
ac27a0ec 4291 struct inode *inode,
830156c7 4292 struct ext4_iloc *iloc)
ac27a0ec 4293{
617ba13b
MC
4294 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4295 struct ext4_inode_info *ei = EXT4_I(inode);
ac27a0ec
DK
4296 struct buffer_head *bh = iloc->bh;
4297 int err = 0, rc, block;
b71fc079 4298 int need_datasync = 0;
08cefc7a
EB
4299 uid_t i_uid;
4300 gid_t i_gid;
ac27a0ec
DK
4301
4302 /* For fields not not tracking in the in-memory inode,
4303 * initialise them to zero for new inodes. */
19f5fb7a 4304 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
617ba13b 4305 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
ac27a0ec 4306
ff9ddf7e 4307 ext4_get_inode_flags(ei);
ac27a0ec 4308 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
08cefc7a
EB
4309 i_uid = i_uid_read(inode);
4310 i_gid = i_gid_read(inode);
af5bc92d 4311 if (!(test_opt(inode->i_sb, NO_UID32))) {
08cefc7a
EB
4312 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4313 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
ac27a0ec
DK
4314/*
4315 * Fix up interoperability with old kernels. Otherwise, old inodes get
4316 * re-used with the upper 16 bits of the uid/gid intact
4317 */
af5bc92d 4318 if (!ei->i_dtime) {
ac27a0ec 4319 raw_inode->i_uid_high =
08cefc7a 4320 cpu_to_le16(high_16_bits(i_uid));
ac27a0ec 4321 raw_inode->i_gid_high =
08cefc7a 4322 cpu_to_le16(high_16_bits(i_gid));
ac27a0ec
DK
4323 } else {
4324 raw_inode->i_uid_high = 0;
4325 raw_inode->i_gid_high = 0;
4326 }
4327 } else {
08cefc7a
EB
4328 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4329 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
ac27a0ec
DK
4330 raw_inode->i_uid_high = 0;
4331 raw_inode->i_gid_high = 0;
4332 }
4333 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
ef7f3835
KS
4334
4335 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4336 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4337 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4338 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4339
0fc1b451
AK
4340 if (ext4_inode_blocks_set(handle, raw_inode, ei))
4341 goto out_brelse;
ac27a0ec 4342 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
353eb83c 4343 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
9b8f1f01
MC
4344 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4345 cpu_to_le32(EXT4_OS_HURD))
a1ddeb7e
BP
4346 raw_inode->i_file_acl_high =
4347 cpu_to_le16(ei->i_file_acl >> 32);
7973c0c1 4348 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
b71fc079
JK
4349 if (ei->i_disksize != ext4_isize(raw_inode)) {
4350 ext4_isize_set(raw_inode, ei->i_disksize);
4351 need_datasync = 1;
4352 }
a48380f7
AK
4353 if (ei->i_disksize > 0x7fffffffULL) {
4354 struct super_block *sb = inode->i_sb;
4355 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4356 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4357 EXT4_SB(sb)->s_es->s_rev_level ==
4358 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4359 /* If this is the first large file
4360 * created, add a flag to the superblock.
4361 */
4362 err = ext4_journal_get_write_access(handle,
4363 EXT4_SB(sb)->s_sbh);
4364 if (err)
4365 goto out_brelse;
4366 ext4_update_dynamic_rev(sb);
4367 EXT4_SET_RO_COMPAT_FEATURE(sb,
617ba13b 4368 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
0390131b 4369 ext4_handle_sync(handle);
b50924c2 4370 err = ext4_handle_dirty_super(handle, sb);
ac27a0ec
DK
4371 }
4372 }
4373 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4374 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4375 if (old_valid_dev(inode->i_rdev)) {
4376 raw_inode->i_block[0] =
4377 cpu_to_le32(old_encode_dev(inode->i_rdev));
4378 raw_inode->i_block[1] = 0;
4379 } else {
4380 raw_inode->i_block[0] = 0;
4381 raw_inode->i_block[1] =
4382 cpu_to_le32(new_encode_dev(inode->i_rdev));
4383 raw_inode->i_block[2] = 0;
4384 }
f19d5870 4385 } else if (!ext4_has_inline_data(inode)) {
de9a55b8
TT
4386 for (block = 0; block < EXT4_N_BLOCKS; block++)
4387 raw_inode->i_block[block] = ei->i_data[block];
f19d5870 4388 }
ac27a0ec 4389
25ec56b5
JNC
4390 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4391 if (ei->i_extra_isize) {
4392 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4393 raw_inode->i_version_hi =
4394 cpu_to_le32(inode->i_version >> 32);
ac27a0ec 4395 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
25ec56b5
JNC
4396 }
4397
814525f4
DW
4398 ext4_inode_csum_set(inode, raw_inode, ei);
4399
830156c7 4400 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
73b50c1c 4401 rc = ext4_handle_dirty_metadata(handle, NULL, bh);
830156c7
FM
4402 if (!err)
4403 err = rc;
19f5fb7a 4404 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
ac27a0ec 4405
b71fc079 4406 ext4_update_inode_fsync_trans(handle, inode, need_datasync);
ac27a0ec 4407out_brelse:
af5bc92d 4408 brelse(bh);
617ba13b 4409 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4410 return err;
4411}
4412
4413/*
617ba13b 4414 * ext4_write_inode()
ac27a0ec
DK
4415 *
4416 * We are called from a few places:
4417 *
4418 * - Within generic_file_write() for O_SYNC files.
4419 * Here, there will be no transaction running. We wait for any running
4907cb7b 4420 * transaction to commit.
ac27a0ec
DK
4421 *
4422 * - Within sys_sync(), kupdate and such.
4423 * We wait on commit, if tol to.
4424 *
4425 * - Within prune_icache() (PF_MEMALLOC == true)
4426 * Here we simply return. We can't afford to block kswapd on the
4427 * journal commit.
4428 *
4429 * In all cases it is actually safe for us to return without doing anything,
4430 * because the inode has been copied into a raw inode buffer in
617ba13b 4431 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
ac27a0ec
DK
4432 * knfsd.
4433 *
4434 * Note that we are absolutely dependent upon all inode dirtiers doing the
4435 * right thing: they *must* call mark_inode_dirty() after dirtying info in
4436 * which we are interested.
4437 *
4438 * It would be a bug for them to not do this. The code:
4439 *
4440 * mark_inode_dirty(inode)
4441 * stuff();
4442 * inode->i_size = expr;
4443 *
4444 * is in error because a kswapd-driven write_inode() could occur while
4445 * `stuff()' is running, and the new i_size will be lost. Plus the inode
4446 * will no longer be on the superblock's dirty inode list.
4447 */
a9185b41 4448int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
ac27a0ec 4449{
91ac6f43
FM
4450 int err;
4451
ac27a0ec
DK
4452 if (current->flags & PF_MEMALLOC)
4453 return 0;
4454
91ac6f43
FM
4455 if (EXT4_SB(inode->i_sb)->s_journal) {
4456 if (ext4_journal_current_handle()) {
4457 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4458 dump_stack();
4459 return -EIO;
4460 }
ac27a0ec 4461
a9185b41 4462 if (wbc->sync_mode != WB_SYNC_ALL)
91ac6f43
FM
4463 return 0;
4464
4465 err = ext4_force_commit(inode->i_sb);
4466 } else {
4467 struct ext4_iloc iloc;
ac27a0ec 4468
8b472d73 4469 err = __ext4_get_inode_loc(inode, &iloc, 0);
91ac6f43
FM
4470 if (err)
4471 return err;
a9185b41 4472 if (wbc->sync_mode == WB_SYNC_ALL)
830156c7
FM
4473 sync_dirty_buffer(iloc.bh);
4474 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
c398eda0
TT
4475 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4476 "IO error syncing inode");
830156c7
FM
4477 err = -EIO;
4478 }
fd2dd9fb 4479 brelse(iloc.bh);
91ac6f43
FM
4480 }
4481 return err;
ac27a0ec
DK
4482}
4483
53e87268
JK
4484/*
4485 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4486 * buffers that are attached to a page stradding i_size and are undergoing
4487 * commit. In that case we have to wait for commit to finish and try again.
4488 */
4489static void ext4_wait_for_tail_page_commit(struct inode *inode)
4490{
4491 struct page *page;
4492 unsigned offset;
4493 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4494 tid_t commit_tid = 0;
4495 int ret;
4496
4497 offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
4498 /*
4499 * All buffers in the last page remain valid? Then there's nothing to
4500 * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
4501 * blocksize case
4502 */
4503 if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
4504 return;
4505 while (1) {
4506 page = find_lock_page(inode->i_mapping,
4507 inode->i_size >> PAGE_CACHE_SHIFT);
4508 if (!page)
4509 return;
ca99fdd2
LC
4510 ret = __ext4_journalled_invalidatepage(page, offset,
4511 PAGE_CACHE_SIZE - offset);
53e87268
JK
4512 unlock_page(page);
4513 page_cache_release(page);
4514 if (ret != -EBUSY)
4515 return;
4516 commit_tid = 0;
4517 read_lock(&journal->j_state_lock);
4518 if (journal->j_committing_transaction)
4519 commit_tid = journal->j_committing_transaction->t_tid;
4520 read_unlock(&journal->j_state_lock);
4521 if (commit_tid)
4522 jbd2_log_wait_commit(journal, commit_tid);
4523 }
4524}
4525
ac27a0ec 4526/*
617ba13b 4527 * ext4_setattr()
ac27a0ec
DK
4528 *
4529 * Called from notify_change.
4530 *
4531 * We want to trap VFS attempts to truncate the file as soon as
4532 * possible. In particular, we want to make sure that when the VFS
4533 * shrinks i_size, we put the inode on the orphan list and modify
4534 * i_disksize immediately, so that during the subsequent flushing of
4535 * dirty pages and freeing of disk blocks, we can guarantee that any
4536 * commit will leave the blocks being flushed in an unused state on
4537 * disk. (On recovery, the inode will get truncated and the blocks will
4538 * be freed, so we have a strong guarantee that no future commit will
4539 * leave these blocks visible to the user.)
4540 *
678aaf48
JK
4541 * Another thing we have to assure is that if we are in ordered mode
4542 * and inode is still attached to the committing transaction, we must
4543 * we start writeout of all the dirty pages which are being truncated.
4544 * This way we are sure that all the data written in the previous
4545 * transaction are already on disk (truncate waits for pages under
4546 * writeback).
4547 *
4548 * Called with inode->i_mutex down.
ac27a0ec 4549 */
617ba13b 4550int ext4_setattr(struct dentry *dentry, struct iattr *attr)
ac27a0ec
DK
4551{
4552 struct inode *inode = dentry->d_inode;
4553 int error, rc = 0;
3d287de3 4554 int orphan = 0;
ac27a0ec
DK
4555 const unsigned int ia_valid = attr->ia_valid;
4556
4557 error = inode_change_ok(inode, attr);
4558 if (error)
4559 return error;
4560
12755627 4561 if (is_quota_modification(inode, attr))
871a2931 4562 dquot_initialize(inode);
08cefc7a
EB
4563 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4564 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
ac27a0ec
DK
4565 handle_t *handle;
4566
4567 /* (user+group)*(old+new) structure, inode write (sb,
4568 * inode block, ? - but truncate inode update has it) */
9924a92a
TT
4569 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4570 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
4571 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
ac27a0ec
DK
4572 if (IS_ERR(handle)) {
4573 error = PTR_ERR(handle);
4574 goto err_out;
4575 }
b43fa828 4576 error = dquot_transfer(inode, attr);
ac27a0ec 4577 if (error) {
617ba13b 4578 ext4_journal_stop(handle);
ac27a0ec
DK
4579 return error;
4580 }
4581 /* Update corresponding info in inode so that everything is in
4582 * one transaction */
4583 if (attr->ia_valid & ATTR_UID)
4584 inode->i_uid = attr->ia_uid;
4585 if (attr->ia_valid & ATTR_GID)
4586 inode->i_gid = attr->ia_gid;
617ba13b
MC
4587 error = ext4_mark_inode_dirty(handle, inode);
4588 ext4_journal_stop(handle);
ac27a0ec
DK
4589 }
4590
5208386c
JK
4591 if (attr->ia_valid & ATTR_SIZE && attr->ia_size != inode->i_size) {
4592 handle_t *handle;
562c72aa 4593
12e9b892 4594 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
e2b46574
ES
4595 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4596
0c095c7f
TT
4597 if (attr->ia_size > sbi->s_bitmap_maxbytes)
4598 return -EFBIG;
e2b46574 4599 }
5208386c
JK
4600 if (S_ISREG(inode->i_mode) &&
4601 (attr->ia_size < inode->i_size)) {
4602 if (ext4_should_order_data(inode)) {
4603 error = ext4_begin_ordered_truncate(inode,
678aaf48 4604 attr->ia_size);
5208386c 4605 if (error)
678aaf48 4606 goto err_out;
5208386c
JK
4607 }
4608 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
4609 if (IS_ERR(handle)) {
4610 error = PTR_ERR(handle);
4611 goto err_out;
4612 }
4613 if (ext4_handle_valid(handle)) {
4614 error = ext4_orphan_add(handle, inode);
4615 orphan = 1;
4616 }
90e775b7 4617 down_write(&EXT4_I(inode)->i_data_sem);
5208386c
JK
4618 EXT4_I(inode)->i_disksize = attr->ia_size;
4619 rc = ext4_mark_inode_dirty(handle, inode);
4620 if (!error)
4621 error = rc;
90e775b7
JK
4622 /*
4623 * We have to update i_size under i_data_sem together
4624 * with i_disksize to avoid races with writeback code
4625 * running ext4_wb_update_i_disksize().
4626 */
4627 if (!error)
4628 i_size_write(inode, attr->ia_size);
4629 up_write(&EXT4_I(inode)->i_data_sem);
5208386c
JK
4630 ext4_journal_stop(handle);
4631 if (error) {
4632 ext4_orphan_del(NULL, inode);
678aaf48
JK
4633 goto err_out;
4634 }
90e775b7
JK
4635 } else
4636 i_size_write(inode, attr->ia_size);
53e87268 4637
5208386c
JK
4638 /*
4639 * Blocks are going to be removed from the inode. Wait
4640 * for dio in flight. Temporarily disable
4641 * dioread_nolock to prevent livelock.
4642 */
4643 if (orphan) {
4644 if (!ext4_should_journal_data(inode)) {
4645 ext4_inode_block_unlocked_dio(inode);
4646 inode_dio_wait(inode);
4647 ext4_inode_resume_unlocked_dio(inode);
4648 } else
4649 ext4_wait_for_tail_page_commit(inode);
1c9114f9 4650 }
5208386c
JK
4651 /*
4652 * Truncate pagecache after we've waited for commit
4653 * in data=journal mode to make pages freeable.
4654 */
7caef267 4655 truncate_pagecache(inode, inode->i_size);
072bd7ea 4656 }
5208386c
JK
4657 /*
4658 * We want to call ext4_truncate() even if attr->ia_size ==
4659 * inode->i_size for cases like truncation of fallocated space
4660 */
4661 if (attr->ia_valid & ATTR_SIZE)
4662 ext4_truncate(inode);
ac27a0ec 4663
1025774c
CH
4664 if (!rc) {
4665 setattr_copy(inode, attr);
4666 mark_inode_dirty(inode);
4667 }
4668
4669 /*
4670 * If the call to ext4_truncate failed to get a transaction handle at
4671 * all, we need to clean up the in-core orphan list manually.
4672 */
3d287de3 4673 if (orphan && inode->i_nlink)
617ba13b 4674 ext4_orphan_del(NULL, inode);
ac27a0ec
DK
4675
4676 if (!rc && (ia_valid & ATTR_MODE))
617ba13b 4677 rc = ext4_acl_chmod(inode);
ac27a0ec
DK
4678
4679err_out:
617ba13b 4680 ext4_std_error(inode->i_sb, error);
ac27a0ec
DK
4681 if (!error)
4682 error = rc;
4683 return error;
4684}
4685
3e3398a0
MC
4686int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4687 struct kstat *stat)
4688{
4689 struct inode *inode;
8af8eecc 4690 unsigned long long delalloc_blocks;
3e3398a0
MC
4691
4692 inode = dentry->d_inode;
4693 generic_fillattr(inode, stat);
4694
4695 /*
4696 * We can't update i_blocks if the block allocation is delayed
4697 * otherwise in the case of system crash before the real block
4698 * allocation is done, we will have i_blocks inconsistent with
4699 * on-disk file blocks.
4700 * We always keep i_blocks updated together with real
4701 * allocation. But to not confuse with user, stat
4702 * will return the blocks that include the delayed allocation
4703 * blocks for this file.
4704 */
96607551
TM
4705 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
4706 EXT4_I(inode)->i_reserved_data_blocks);
3e3398a0 4707
8af8eecc 4708 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits-9);
3e3398a0
MC
4709 return 0;
4710}
ac27a0ec 4711
fffb2739
JK
4712static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
4713 int pextents)
a02908f1 4714{
12e9b892 4715 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
fffb2739
JK
4716 return ext4_ind_trans_blocks(inode, lblocks);
4717 return ext4_ext_index_trans_blocks(inode, pextents);
a02908f1 4718}
ac51d837 4719
ac27a0ec 4720/*
a02908f1
MC
4721 * Account for index blocks, block groups bitmaps and block group
4722 * descriptor blocks if modify datablocks and index blocks
4723 * worse case, the indexs blocks spread over different block groups
ac27a0ec 4724 *
a02908f1 4725 * If datablocks are discontiguous, they are possible to spread over
4907cb7b 4726 * different block groups too. If they are contiguous, with flexbg,
a02908f1 4727 * they could still across block group boundary.
ac27a0ec 4728 *
a02908f1
MC
4729 * Also account for superblock, inode, quota and xattr blocks
4730 */
fffb2739
JK
4731static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
4732 int pextents)
a02908f1 4733{
8df9675f
TT
4734 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4735 int gdpblocks;
a02908f1
MC
4736 int idxblocks;
4737 int ret = 0;
4738
4739 /*
fffb2739
JK
4740 * How many index blocks need to touch to map @lblocks logical blocks
4741 * to @pextents physical extents?
a02908f1 4742 */
fffb2739 4743 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
a02908f1
MC
4744
4745 ret = idxblocks;
4746
4747 /*
4748 * Now let's see how many group bitmaps and group descriptors need
4749 * to account
4750 */
fffb2739 4751 groups = idxblocks + pextents;
a02908f1 4752 gdpblocks = groups;
8df9675f
TT
4753 if (groups > ngroups)
4754 groups = ngroups;
a02908f1
MC
4755 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4756 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4757
4758 /* bitmaps and block group descriptor blocks */
4759 ret += groups + gdpblocks;
4760
4761 /* Blocks for super block, inode, quota and xattr blocks */
4762 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4763
4764 return ret;
4765}
4766
4767/*
25985edc 4768 * Calculate the total number of credits to reserve to fit
f3bd1f3f
MC
4769 * the modification of a single pages into a single transaction,
4770 * which may include multiple chunks of block allocations.
ac27a0ec 4771 *
525f4ed8 4772 * This could be called via ext4_write_begin()
ac27a0ec 4773 *
525f4ed8 4774 * We need to consider the worse case, when
a02908f1 4775 * one new block per extent.
ac27a0ec 4776 */
a86c6181 4777int ext4_writepage_trans_blocks(struct inode *inode)
ac27a0ec 4778{
617ba13b 4779 int bpp = ext4_journal_blocks_per_page(inode);
ac27a0ec
DK
4780 int ret;
4781
fffb2739 4782 ret = ext4_meta_trans_blocks(inode, bpp, bpp);
a86c6181 4783
a02908f1 4784 /* Account for data blocks for journalled mode */
617ba13b 4785 if (ext4_should_journal_data(inode))
a02908f1 4786 ret += bpp;
ac27a0ec
DK
4787 return ret;
4788}
f3bd1f3f
MC
4789
4790/*
4791 * Calculate the journal credits for a chunk of data modification.
4792 *
4793 * This is called from DIO, fallocate or whoever calling
79e83036 4794 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
f3bd1f3f
MC
4795 *
4796 * journal buffers for data blocks are not included here, as DIO
4797 * and fallocate do no need to journal data buffers.
4798 */
4799int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4800{
4801 return ext4_meta_trans_blocks(inode, nrblocks, 1);
4802}
4803
ac27a0ec 4804/*
617ba13b 4805 * The caller must have previously called ext4_reserve_inode_write().
ac27a0ec
DK
4806 * Give this, we know that the caller already has write access to iloc->bh.
4807 */
617ba13b 4808int ext4_mark_iloc_dirty(handle_t *handle,
de9a55b8 4809 struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
4810{
4811 int err = 0;
4812
c64db50e 4813 if (IS_I_VERSION(inode))
25ec56b5
JNC
4814 inode_inc_iversion(inode);
4815
ac27a0ec
DK
4816 /* the do_update_inode consumes one bh->b_count */
4817 get_bh(iloc->bh);
4818
dab291af 4819 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
830156c7 4820 err = ext4_do_update_inode(handle, inode, iloc);
ac27a0ec
DK
4821 put_bh(iloc->bh);
4822 return err;
4823}
4824
4825/*
4826 * On success, We end up with an outstanding reference count against
4827 * iloc->bh. This _must_ be cleaned up later.
4828 */
4829
4830int
617ba13b
MC
4831ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4832 struct ext4_iloc *iloc)
ac27a0ec 4833{
0390131b
FM
4834 int err;
4835
4836 err = ext4_get_inode_loc(inode, iloc);
4837 if (!err) {
4838 BUFFER_TRACE(iloc->bh, "get_write_access");
4839 err = ext4_journal_get_write_access(handle, iloc->bh);
4840 if (err) {
4841 brelse(iloc->bh);
4842 iloc->bh = NULL;
ac27a0ec
DK
4843 }
4844 }
617ba13b 4845 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4846 return err;
4847}
4848
6dd4ee7c
KS
4849/*
4850 * Expand an inode by new_extra_isize bytes.
4851 * Returns 0 on success or negative error number on failure.
4852 */
1d03ec98
AK
4853static int ext4_expand_extra_isize(struct inode *inode,
4854 unsigned int new_extra_isize,
4855 struct ext4_iloc iloc,
4856 handle_t *handle)
6dd4ee7c
KS
4857{
4858 struct ext4_inode *raw_inode;
4859 struct ext4_xattr_ibody_header *header;
6dd4ee7c
KS
4860
4861 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4862 return 0;
4863
4864 raw_inode = ext4_raw_inode(&iloc);
4865
4866 header = IHDR(inode, raw_inode);
6dd4ee7c
KS
4867
4868 /* No extended attributes present */
19f5fb7a
TT
4869 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4870 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
6dd4ee7c
KS
4871 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4872 new_extra_isize);
4873 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4874 return 0;
4875 }
4876
4877 /* try to expand with EAs present */
4878 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4879 raw_inode, handle);
4880}
4881
ac27a0ec
DK
4882/*
4883 * What we do here is to mark the in-core inode as clean with respect to inode
4884 * dirtiness (it may still be data-dirty).
4885 * This means that the in-core inode may be reaped by prune_icache
4886 * without having to perform any I/O. This is a very good thing,
4887 * because *any* task may call prune_icache - even ones which
4888 * have a transaction open against a different journal.
4889 *
4890 * Is this cheating? Not really. Sure, we haven't written the
4891 * inode out, but prune_icache isn't a user-visible syncing function.
4892 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4893 * we start and wait on commits.
ac27a0ec 4894 */
617ba13b 4895int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
ac27a0ec 4896{
617ba13b 4897 struct ext4_iloc iloc;
6dd4ee7c
KS
4898 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4899 static unsigned int mnt_count;
4900 int err, ret;
ac27a0ec
DK
4901
4902 might_sleep();
7ff9c073 4903 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
617ba13b 4904 err = ext4_reserve_inode_write(handle, inode, &iloc);
0390131b
FM
4905 if (ext4_handle_valid(handle) &&
4906 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
19f5fb7a 4907 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
6dd4ee7c
KS
4908 /*
4909 * We need extra buffer credits since we may write into EA block
4910 * with this same handle. If journal_extend fails, then it will
4911 * only result in a minor loss of functionality for that inode.
4912 * If this is felt to be critical, then e2fsck should be run to
4913 * force a large enough s_min_extra_isize.
4914 */
4915 if ((jbd2_journal_extend(handle,
4916 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4917 ret = ext4_expand_extra_isize(inode,
4918 sbi->s_want_extra_isize,
4919 iloc, handle);
4920 if (ret) {
19f5fb7a
TT
4921 ext4_set_inode_state(inode,
4922 EXT4_STATE_NO_EXPAND);
c1bddad9
AK
4923 if (mnt_count !=
4924 le16_to_cpu(sbi->s_es->s_mnt_count)) {
12062ddd 4925 ext4_warning(inode->i_sb,
6dd4ee7c
KS
4926 "Unable to expand inode %lu. Delete"
4927 " some EAs or run e2fsck.",
4928 inode->i_ino);
c1bddad9
AK
4929 mnt_count =
4930 le16_to_cpu(sbi->s_es->s_mnt_count);
6dd4ee7c
KS
4931 }
4932 }
4933 }
4934 }
ac27a0ec 4935 if (!err)
617ba13b 4936 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
ac27a0ec
DK
4937 return err;
4938}
4939
4940/*
617ba13b 4941 * ext4_dirty_inode() is called from __mark_inode_dirty()
ac27a0ec
DK
4942 *
4943 * We're really interested in the case where a file is being extended.
4944 * i_size has been changed by generic_commit_write() and we thus need
4945 * to include the updated inode in the current transaction.
4946 *
5dd4056d 4947 * Also, dquot_alloc_block() will always dirty the inode when blocks
ac27a0ec
DK
4948 * are allocated to the file.
4949 *
4950 * If the inode is marked synchronous, we don't honour that here - doing
4951 * so would cause a commit on atime updates, which we don't bother doing.
4952 * We handle synchronous inodes at the highest possible level.
4953 */
aa385729 4954void ext4_dirty_inode(struct inode *inode, int flags)
ac27a0ec 4955{
ac27a0ec
DK
4956 handle_t *handle;
4957
9924a92a 4958 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
ac27a0ec
DK
4959 if (IS_ERR(handle))
4960 goto out;
f3dc272f 4961
f3dc272f
CW
4962 ext4_mark_inode_dirty(handle, inode);
4963
617ba13b 4964 ext4_journal_stop(handle);
ac27a0ec
DK
4965out:
4966 return;
4967}
4968
4969#if 0
4970/*
4971 * Bind an inode's backing buffer_head into this transaction, to prevent
4972 * it from being flushed to disk early. Unlike
617ba13b 4973 * ext4_reserve_inode_write, this leaves behind no bh reference and
ac27a0ec
DK
4974 * returns no iloc structure, so the caller needs to repeat the iloc
4975 * lookup to mark the inode dirty later.
4976 */
617ba13b 4977static int ext4_pin_inode(handle_t *handle, struct inode *inode)
ac27a0ec 4978{
617ba13b 4979 struct ext4_iloc iloc;
ac27a0ec
DK
4980
4981 int err = 0;
4982 if (handle) {
617ba13b 4983 err = ext4_get_inode_loc(inode, &iloc);
ac27a0ec
DK
4984 if (!err) {
4985 BUFFER_TRACE(iloc.bh, "get_write_access");
dab291af 4986 err = jbd2_journal_get_write_access(handle, iloc.bh);
ac27a0ec 4987 if (!err)
0390131b 4988 err = ext4_handle_dirty_metadata(handle,
73b50c1c 4989 NULL,
0390131b 4990 iloc.bh);
ac27a0ec
DK
4991 brelse(iloc.bh);
4992 }
4993 }
617ba13b 4994 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4995 return err;
4996}
4997#endif
4998
617ba13b 4999int ext4_change_inode_journal_flag(struct inode *inode, int val)
ac27a0ec
DK
5000{
5001 journal_t *journal;
5002 handle_t *handle;
5003 int err;
5004
5005 /*
5006 * We have to be very careful here: changing a data block's
5007 * journaling status dynamically is dangerous. If we write a
5008 * data block to the journal, change the status and then delete
5009 * that block, we risk forgetting to revoke the old log record
5010 * from the journal and so a subsequent replay can corrupt data.
5011 * So, first we make sure that the journal is empty and that
5012 * nobody is changing anything.
5013 */
5014
617ba13b 5015 journal = EXT4_JOURNAL(inode);
0390131b
FM
5016 if (!journal)
5017 return 0;
d699594d 5018 if (is_journal_aborted(journal))
ac27a0ec 5019 return -EROFS;
2aff57b0
YY
5020 /* We have to allocate physical blocks for delalloc blocks
5021 * before flushing journal. otherwise delalloc blocks can not
5022 * be allocated any more. even more truncate on delalloc blocks
5023 * could trigger BUG by flushing delalloc blocks in journal.
5024 * There is no delalloc block in non-journal data mode.
5025 */
5026 if (val && test_opt(inode->i_sb, DELALLOC)) {
5027 err = ext4_alloc_da_blocks(inode);
5028 if (err < 0)
5029 return err;
5030 }
ac27a0ec 5031
17335dcc
DM
5032 /* Wait for all existing dio workers */
5033 ext4_inode_block_unlocked_dio(inode);
5034 inode_dio_wait(inode);
5035
dab291af 5036 jbd2_journal_lock_updates(journal);
ac27a0ec
DK
5037
5038 /*
5039 * OK, there are no updates running now, and all cached data is
5040 * synced to disk. We are now in a completely consistent state
5041 * which doesn't have anything in the journal, and we know that
5042 * no filesystem updates are running, so it is safe to modify
5043 * the inode's in-core data-journaling state flag now.
5044 */
5045
5046 if (val)
12e9b892 5047 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5872ddaa
YY
5048 else {
5049 jbd2_journal_flush(journal);
12e9b892 5050 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5872ddaa 5051 }
617ba13b 5052 ext4_set_aops(inode);
ac27a0ec 5053
dab291af 5054 jbd2_journal_unlock_updates(journal);
17335dcc 5055 ext4_inode_resume_unlocked_dio(inode);
ac27a0ec
DK
5056
5057 /* Finally we can mark the inode as dirty. */
5058
9924a92a 5059 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
ac27a0ec
DK
5060 if (IS_ERR(handle))
5061 return PTR_ERR(handle);
5062
617ba13b 5063 err = ext4_mark_inode_dirty(handle, inode);
0390131b 5064 ext4_handle_sync(handle);
617ba13b
MC
5065 ext4_journal_stop(handle);
5066 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5067
5068 return err;
5069}
2e9ee850
AK
5070
5071static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5072{
5073 return !buffer_mapped(bh);
5074}
5075
c2ec175c 5076int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2e9ee850 5077{
c2ec175c 5078 struct page *page = vmf->page;
2e9ee850
AK
5079 loff_t size;
5080 unsigned long len;
9ea7df53 5081 int ret;
2e9ee850 5082 struct file *file = vma->vm_file;
496ad9aa 5083 struct inode *inode = file_inode(file);
2e9ee850 5084 struct address_space *mapping = inode->i_mapping;
9ea7df53
JK
5085 handle_t *handle;
5086 get_block_t *get_block;
5087 int retries = 0;
2e9ee850 5088
8e8ad8a5 5089 sb_start_pagefault(inode->i_sb);
041bbb6d 5090 file_update_time(vma->vm_file);
9ea7df53
JK
5091 /* Delalloc case is easy... */
5092 if (test_opt(inode->i_sb, DELALLOC) &&
5093 !ext4_should_journal_data(inode) &&
5094 !ext4_nonda_switch(inode->i_sb)) {
5095 do {
5096 ret = __block_page_mkwrite(vma, vmf,
5097 ext4_da_get_block_prep);
5098 } while (ret == -ENOSPC &&
5099 ext4_should_retry_alloc(inode->i_sb, &retries));
5100 goto out_ret;
2e9ee850 5101 }
0e499890
DW
5102
5103 lock_page(page);
9ea7df53
JK
5104 size = i_size_read(inode);
5105 /* Page got truncated from under us? */
5106 if (page->mapping != mapping || page_offset(page) > size) {
5107 unlock_page(page);
5108 ret = VM_FAULT_NOPAGE;
5109 goto out;
0e499890 5110 }
2e9ee850
AK
5111
5112 if (page->index == size >> PAGE_CACHE_SHIFT)
5113 len = size & ~PAGE_CACHE_MASK;
5114 else
5115 len = PAGE_CACHE_SIZE;
a827eaff 5116 /*
9ea7df53
JK
5117 * Return if we have all the buffers mapped. This avoids the need to do
5118 * journal_start/journal_stop which can block and take a long time
a827eaff 5119 */
2e9ee850 5120 if (page_has_buffers(page)) {
f19d5870
TM
5121 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5122 0, len, NULL,
5123 ext4_bh_unmapped)) {
9ea7df53 5124 /* Wait so that we don't change page under IO */
1d1d1a76 5125 wait_for_stable_page(page);
9ea7df53
JK
5126 ret = VM_FAULT_LOCKED;
5127 goto out;
a827eaff 5128 }
2e9ee850 5129 }
a827eaff 5130 unlock_page(page);
9ea7df53
JK
5131 /* OK, we need to fill the hole... */
5132 if (ext4_should_dioread_nolock(inode))
5133 get_block = ext4_get_block_write;
5134 else
5135 get_block = ext4_get_block;
5136retry_alloc:
9924a92a
TT
5137 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5138 ext4_writepage_trans_blocks(inode));
9ea7df53 5139 if (IS_ERR(handle)) {
c2ec175c 5140 ret = VM_FAULT_SIGBUS;
9ea7df53
JK
5141 goto out;
5142 }
5143 ret = __block_page_mkwrite(vma, vmf, get_block);
5144 if (!ret && ext4_should_journal_data(inode)) {
f19d5870 5145 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
9ea7df53
JK
5146 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
5147 unlock_page(page);
5148 ret = VM_FAULT_SIGBUS;
fcbb5515 5149 ext4_journal_stop(handle);
9ea7df53
JK
5150 goto out;
5151 }
5152 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5153 }
5154 ext4_journal_stop(handle);
5155 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5156 goto retry_alloc;
5157out_ret:
5158 ret = block_page_mkwrite_return(ret);
5159out:
8e8ad8a5 5160 sb_end_pagefault(inode->i_sb);
2e9ee850
AK
5161 return ret;
5162}