ext4: mark multi-page IO complete on mapping failure
[linux-2.6-block.git] / fs / ext4 / inode.c
CommitLineData
ac27a0ec 1/*
617ba13b 2 * linux/fs/ext4/inode.c
ac27a0ec
DK
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * Goal-directed block allocation by Stephen Tweedie
16 * (sct@redhat.com), 1993, 1998
17 * Big-endian to little-endian byte-swapping/bitmaps by
18 * David S. Miller (davem@caip.rutgers.edu), 1995
19 * 64-bit file support on 64-bit platforms by Jakub Jelinek
20 * (jj@sunsite.ms.mff.cuni.cz)
21 *
617ba13b 22 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
ac27a0ec
DK
23 */
24
25#include <linux/module.h>
26#include <linux/fs.h>
27#include <linux/time.h>
dab291af 28#include <linux/jbd2.h>
ac27a0ec
DK
29#include <linux/highuid.h>
30#include <linux/pagemap.h>
31#include <linux/quotaops.h>
32#include <linux/string.h>
33#include <linux/buffer_head.h>
34#include <linux/writeback.h>
64769240 35#include <linux/pagevec.h>
ac27a0ec 36#include <linux/mpage.h>
e83c1397 37#include <linux/namei.h>
ac27a0ec
DK
38#include <linux/uio.h>
39#include <linux/bio.h>
4c0425ff 40#include <linux/workqueue.h>
744692dc 41#include <linux/kernel.h>
6db26ffc 42#include <linux/printk.h>
5a0e3ad6 43#include <linux/slab.h>
a8901d34 44#include <linux/ratelimit.h>
9bffad1e 45
3dcf5451 46#include "ext4_jbd2.h"
ac27a0ec
DK
47#include "xattr.h"
48#include "acl.h"
d2a17637 49#include "ext4_extents.h"
ac27a0ec 50
9bffad1e
TT
51#include <trace/events/ext4.h>
52
a1d6cc56
AK
53#define MPAGE_DA_EXTENT_TAIL 0x01
54
678aaf48
JK
55static inline int ext4_begin_ordered_truncate(struct inode *inode,
56 loff_t new_size)
57{
7ff9c073 58 trace_ext4_begin_ordered_truncate(inode, new_size);
8aefcd55
TT
59 /*
60 * If jinode is zero, then we never opened the file for
61 * writing, so there's no need to call
62 * jbd2_journal_begin_ordered_truncate() since there's no
63 * outstanding writes we need to flush.
64 */
65 if (!EXT4_I(inode)->jinode)
66 return 0;
67 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
68 EXT4_I(inode)->jinode,
69 new_size);
678aaf48
JK
70}
71
64769240 72static void ext4_invalidatepage(struct page *page, unsigned long offset);
cb20d518
TT
73static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
74 struct buffer_head *bh_result, int create);
75static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
76static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
77static int __ext4_journalled_writepage(struct page *page, unsigned int len);
78static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
64769240 79
ac27a0ec
DK
80/*
81 * Test whether an inode is a fast symlink.
82 */
617ba13b 83static int ext4_inode_is_fast_symlink(struct inode *inode)
ac27a0ec 84{
617ba13b 85 int ea_blocks = EXT4_I(inode)->i_file_acl ?
ac27a0ec
DK
86 (inode->i_sb->s_blocksize >> 9) : 0;
87
88 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
89}
90
ac27a0ec
DK
91/*
92 * Work out how many blocks we need to proceed with the next chunk of a
93 * truncate transaction.
94 */
95static unsigned long blocks_for_truncate(struct inode *inode)
96{
725d26d3 97 ext4_lblk_t needed;
ac27a0ec
DK
98
99 needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
100
101 /* Give ourselves just enough room to cope with inodes in which
102 * i_blocks is corrupt: we've seen disk corruptions in the past
103 * which resulted in random data in an inode which looked enough
617ba13b 104 * like a regular file for ext4 to try to delete it. Things
ac27a0ec
DK
105 * will go a bit crazy if that happens, but at least we should
106 * try not to panic the whole kernel. */
107 if (needed < 2)
108 needed = 2;
109
110 /* But we need to bound the transaction so we don't overflow the
111 * journal. */
617ba13b
MC
112 if (needed > EXT4_MAX_TRANS_DATA)
113 needed = EXT4_MAX_TRANS_DATA;
ac27a0ec 114
617ba13b 115 return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
ac27a0ec
DK
116}
117
118/*
119 * Truncate transactions can be complex and absolutely huge. So we need to
120 * be able to restart the transaction at a conventient checkpoint to make
121 * sure we don't overflow the journal.
122 *
123 * start_transaction gets us a new handle for a truncate transaction,
124 * and extend_transaction tries to extend the existing one a bit. If
125 * extend fails, we need to propagate the failure up and restart the
126 * transaction in the top-level truncate loop. --sct
127 */
128static handle_t *start_transaction(struct inode *inode)
129{
130 handle_t *result;
131
617ba13b 132 result = ext4_journal_start(inode, blocks_for_truncate(inode));
ac27a0ec
DK
133 if (!IS_ERR(result))
134 return result;
135
617ba13b 136 ext4_std_error(inode->i_sb, PTR_ERR(result));
ac27a0ec
DK
137 return result;
138}
139
140/*
141 * Try to extend this transaction for the purposes of truncation.
142 *
143 * Returns 0 if we managed to create more room. If we can't create more
144 * room, and the transaction must be restarted we return 1.
145 */
146static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
147{
0390131b
FM
148 if (!ext4_handle_valid(handle))
149 return 0;
150 if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
ac27a0ec 151 return 0;
617ba13b 152 if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
ac27a0ec
DK
153 return 0;
154 return 1;
155}
156
157/*
158 * Restart the transaction associated with *handle. This does a commit,
159 * so before we call here everything must be consistently dirtied against
160 * this transaction.
161 */
fa5d1113 162int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
487caeef 163 int nblocks)
ac27a0ec 164{
487caeef
JK
165 int ret;
166
167 /*
e35fd660 168 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
487caeef
JK
169 * moment, get_block can be called only for blocks inside i_size since
170 * page cache has been already dropped and writes are blocked by
171 * i_mutex. So we can safely drop the i_data_sem here.
172 */
0390131b 173 BUG_ON(EXT4_JOURNAL(inode) == NULL);
ac27a0ec 174 jbd_debug(2, "restarting handle %p\n", handle);
487caeef
JK
175 up_write(&EXT4_I(inode)->i_data_sem);
176 ret = ext4_journal_restart(handle, blocks_for_truncate(inode));
177 down_write(&EXT4_I(inode)->i_data_sem);
fa5d1113 178 ext4_discard_preallocations(inode);
487caeef
JK
179
180 return ret;
ac27a0ec
DK
181}
182
183/*
184 * Called at the last iput() if i_nlink is zero.
185 */
0930fcc1 186void ext4_evict_inode(struct inode *inode)
ac27a0ec
DK
187{
188 handle_t *handle;
bc965ab3 189 int err;
ac27a0ec 190
7ff9c073 191 trace_ext4_evict_inode(inode);
0930fcc1
AV
192 if (inode->i_nlink) {
193 truncate_inode_pages(&inode->i_data, 0);
194 goto no_delete;
195 }
196
907f4554 197 if (!is_bad_inode(inode))
871a2931 198 dquot_initialize(inode);
907f4554 199
678aaf48
JK
200 if (ext4_should_order_data(inode))
201 ext4_begin_ordered_truncate(inode, 0);
ac27a0ec
DK
202 truncate_inode_pages(&inode->i_data, 0);
203
204 if (is_bad_inode(inode))
205 goto no_delete;
206
bc965ab3 207 handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
ac27a0ec 208 if (IS_ERR(handle)) {
bc965ab3 209 ext4_std_error(inode->i_sb, PTR_ERR(handle));
ac27a0ec
DK
210 /*
211 * If we're going to skip the normal cleanup, we still need to
212 * make sure that the in-core orphan linked list is properly
213 * cleaned up.
214 */
617ba13b 215 ext4_orphan_del(NULL, inode);
ac27a0ec
DK
216 goto no_delete;
217 }
218
219 if (IS_SYNC(inode))
0390131b 220 ext4_handle_sync(handle);
ac27a0ec 221 inode->i_size = 0;
bc965ab3
TT
222 err = ext4_mark_inode_dirty(handle, inode);
223 if (err) {
12062ddd 224 ext4_warning(inode->i_sb,
bc965ab3
TT
225 "couldn't mark inode dirty (err %d)", err);
226 goto stop_handle;
227 }
ac27a0ec 228 if (inode->i_blocks)
617ba13b 229 ext4_truncate(inode);
bc965ab3
TT
230
231 /*
232 * ext4_ext_truncate() doesn't reserve any slop when it
233 * restarts journal transactions; therefore there may not be
234 * enough credits left in the handle to remove the inode from
235 * the orphan list and set the dtime field.
236 */
0390131b 237 if (!ext4_handle_has_enough_credits(handle, 3)) {
bc965ab3
TT
238 err = ext4_journal_extend(handle, 3);
239 if (err > 0)
240 err = ext4_journal_restart(handle, 3);
241 if (err != 0) {
12062ddd 242 ext4_warning(inode->i_sb,
bc965ab3
TT
243 "couldn't extend journal (err %d)", err);
244 stop_handle:
245 ext4_journal_stop(handle);
45388219 246 ext4_orphan_del(NULL, inode);
bc965ab3
TT
247 goto no_delete;
248 }
249 }
250
ac27a0ec 251 /*
617ba13b 252 * Kill off the orphan record which ext4_truncate created.
ac27a0ec 253 * AKPM: I think this can be inside the above `if'.
617ba13b 254 * Note that ext4_orphan_del() has to be able to cope with the
ac27a0ec 255 * deletion of a non-existent orphan - this is because we don't
617ba13b 256 * know if ext4_truncate() actually created an orphan record.
ac27a0ec
DK
257 * (Well, we could do this if we need to, but heck - it works)
258 */
617ba13b
MC
259 ext4_orphan_del(handle, inode);
260 EXT4_I(inode)->i_dtime = get_seconds();
ac27a0ec
DK
261
262 /*
263 * One subtle ordering requirement: if anything has gone wrong
264 * (transaction abort, IO errors, whatever), then we can still
265 * do these next steps (the fs will already have been marked as
266 * having errors), but we can't free the inode if the mark_dirty
267 * fails.
268 */
617ba13b 269 if (ext4_mark_inode_dirty(handle, inode))
ac27a0ec 270 /* If that failed, just do the required in-core inode clear. */
0930fcc1 271 ext4_clear_inode(inode);
ac27a0ec 272 else
617ba13b
MC
273 ext4_free_inode(handle, inode);
274 ext4_journal_stop(handle);
ac27a0ec
DK
275 return;
276no_delete:
0930fcc1 277 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
ac27a0ec
DK
278}
279
280typedef struct {
281 __le32 *p;
282 __le32 key;
283 struct buffer_head *bh;
284} Indirect;
285
286static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
287{
288 p->key = *(p->p = v);
289 p->bh = bh;
290}
291
ac27a0ec 292/**
617ba13b 293 * ext4_block_to_path - parse the block number into array of offsets
ac27a0ec
DK
294 * @inode: inode in question (we are only interested in its superblock)
295 * @i_block: block number to be parsed
296 * @offsets: array to store the offsets in
8c55e204
DK
297 * @boundary: set this non-zero if the referred-to block is likely to be
298 * followed (on disk) by an indirect block.
ac27a0ec 299 *
617ba13b 300 * To store the locations of file's data ext4 uses a data structure common
ac27a0ec
DK
301 * for UNIX filesystems - tree of pointers anchored in the inode, with
302 * data blocks at leaves and indirect blocks in intermediate nodes.
303 * This function translates the block number into path in that tree -
304 * return value is the path length and @offsets[n] is the offset of
305 * pointer to (n+1)th node in the nth one. If @block is out of range
306 * (negative or too large) warning is printed and zero returned.
307 *
308 * Note: function doesn't find node addresses, so no IO is needed. All
309 * we need to know is the capacity of indirect blocks (taken from the
310 * inode->i_sb).
311 */
312
313/*
314 * Portability note: the last comparison (check that we fit into triple
315 * indirect block) is spelled differently, because otherwise on an
316 * architecture with 32-bit longs and 8Kb pages we might get into trouble
317 * if our filesystem had 8Kb blocks. We might use long long, but that would
318 * kill us on x86. Oh, well, at least the sign propagation does not matter -
319 * i_block would have to be negative in the very beginning, so we would not
320 * get there at all.
321 */
322
617ba13b 323static int ext4_block_to_path(struct inode *inode,
de9a55b8
TT
324 ext4_lblk_t i_block,
325 ext4_lblk_t offsets[4], int *boundary)
ac27a0ec 326{
617ba13b
MC
327 int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
328 int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
329 const long direct_blocks = EXT4_NDIR_BLOCKS,
ac27a0ec
DK
330 indirect_blocks = ptrs,
331 double_blocks = (1 << (ptrs_bits * 2));
332 int n = 0;
333 int final = 0;
334
c333e073 335 if (i_block < direct_blocks) {
ac27a0ec
DK
336 offsets[n++] = i_block;
337 final = direct_blocks;
af5bc92d 338 } else if ((i_block -= direct_blocks) < indirect_blocks) {
617ba13b 339 offsets[n++] = EXT4_IND_BLOCK;
ac27a0ec
DK
340 offsets[n++] = i_block;
341 final = ptrs;
342 } else if ((i_block -= indirect_blocks) < double_blocks) {
617ba13b 343 offsets[n++] = EXT4_DIND_BLOCK;
ac27a0ec
DK
344 offsets[n++] = i_block >> ptrs_bits;
345 offsets[n++] = i_block & (ptrs - 1);
346 final = ptrs;
347 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
617ba13b 348 offsets[n++] = EXT4_TIND_BLOCK;
ac27a0ec
DK
349 offsets[n++] = i_block >> (ptrs_bits * 2);
350 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
351 offsets[n++] = i_block & (ptrs - 1);
352 final = ptrs;
353 } else {
12062ddd 354 ext4_warning(inode->i_sb, "block %lu > max in inode %lu",
de9a55b8
TT
355 i_block + direct_blocks +
356 indirect_blocks + double_blocks, inode->i_ino);
ac27a0ec
DK
357 }
358 if (boundary)
359 *boundary = final - 1 - (i_block & (ptrs - 1));
360 return n;
361}
362
c398eda0
TT
363static int __ext4_check_blockref(const char *function, unsigned int line,
364 struct inode *inode,
6fd058f7
TT
365 __le32 *p, unsigned int max)
366{
1c13d5c0 367 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
f73953c0 368 __le32 *bref = p;
6fd058f7
TT
369 unsigned int blk;
370
fe2c8191 371 while (bref < p+max) {
6fd058f7 372 blk = le32_to_cpu(*bref++);
de9a55b8
TT
373 if (blk &&
374 unlikely(!ext4_data_block_valid(EXT4_SB(inode->i_sb),
6fd058f7 375 blk, 1))) {
1c13d5c0 376 es->s_last_error_block = cpu_to_le64(blk);
c398eda0
TT
377 ext4_error_inode(inode, function, line, blk,
378 "invalid block");
de9a55b8
TT
379 return -EIO;
380 }
381 }
382 return 0;
fe2c8191
TN
383}
384
385
386#define ext4_check_indirect_blockref(inode, bh) \
c398eda0
TT
387 __ext4_check_blockref(__func__, __LINE__, inode, \
388 (__le32 *)(bh)->b_data, \
fe2c8191
TN
389 EXT4_ADDR_PER_BLOCK((inode)->i_sb))
390
391#define ext4_check_inode_blockref(inode) \
c398eda0
TT
392 __ext4_check_blockref(__func__, __LINE__, inode, \
393 EXT4_I(inode)->i_data, \
fe2c8191
TN
394 EXT4_NDIR_BLOCKS)
395
ac27a0ec 396/**
617ba13b 397 * ext4_get_branch - read the chain of indirect blocks leading to data
ac27a0ec
DK
398 * @inode: inode in question
399 * @depth: depth of the chain (1 - direct pointer, etc.)
400 * @offsets: offsets of pointers in inode/indirect blocks
401 * @chain: place to store the result
402 * @err: here we store the error value
403 *
404 * Function fills the array of triples <key, p, bh> and returns %NULL
405 * if everything went OK or the pointer to the last filled triple
406 * (incomplete one) otherwise. Upon the return chain[i].key contains
407 * the number of (i+1)-th block in the chain (as it is stored in memory,
408 * i.e. little-endian 32-bit), chain[i].p contains the address of that
409 * number (it points into struct inode for i==0 and into the bh->b_data
410 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
411 * block for i>0 and NULL for i==0. In other words, it holds the block
412 * numbers of the chain, addresses they were taken from (and where we can
413 * verify that chain did not change) and buffer_heads hosting these
414 * numbers.
415 *
416 * Function stops when it stumbles upon zero pointer (absent block)
417 * (pointer to last triple returned, *@err == 0)
418 * or when it gets an IO error reading an indirect block
419 * (ditto, *@err == -EIO)
ac27a0ec
DK
420 * or when it reads all @depth-1 indirect blocks successfully and finds
421 * the whole chain, all way to the data (returns %NULL, *err == 0).
c278bfec
AK
422 *
423 * Need to be called with
0e855ac8 424 * down_read(&EXT4_I(inode)->i_data_sem)
ac27a0ec 425 */
725d26d3
AK
426static Indirect *ext4_get_branch(struct inode *inode, int depth,
427 ext4_lblk_t *offsets,
ac27a0ec
DK
428 Indirect chain[4], int *err)
429{
430 struct super_block *sb = inode->i_sb;
431 Indirect *p = chain;
432 struct buffer_head *bh;
433
434 *err = 0;
435 /* i_data is not going away, no lock needed */
af5bc92d 436 add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
ac27a0ec
DK
437 if (!p->key)
438 goto no_block;
439 while (--depth) {
fe2c8191
TN
440 bh = sb_getblk(sb, le32_to_cpu(p->key));
441 if (unlikely(!bh))
ac27a0ec 442 goto failure;
de9a55b8 443
fe2c8191
TN
444 if (!bh_uptodate_or_lock(bh)) {
445 if (bh_submit_read(bh) < 0) {
446 put_bh(bh);
447 goto failure;
448 }
449 /* validate block references */
450 if (ext4_check_indirect_blockref(inode, bh)) {
451 put_bh(bh);
452 goto failure;
453 }
454 }
de9a55b8 455
af5bc92d 456 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
ac27a0ec
DK
457 /* Reader: end */
458 if (!p->key)
459 goto no_block;
460 }
461 return NULL;
462
ac27a0ec
DK
463failure:
464 *err = -EIO;
465no_block:
466 return p;
467}
468
469/**
617ba13b 470 * ext4_find_near - find a place for allocation with sufficient locality
ac27a0ec
DK
471 * @inode: owner
472 * @ind: descriptor of indirect block.
473 *
1cc8dcf5 474 * This function returns the preferred place for block allocation.
ac27a0ec
DK
475 * It is used when heuristic for sequential allocation fails.
476 * Rules are:
477 * + if there is a block to the left of our position - allocate near it.
478 * + if pointer will live in indirect block - allocate near that block.
479 * + if pointer will live in inode - allocate in the same
480 * cylinder group.
481 *
482 * In the latter case we colour the starting block by the callers PID to
483 * prevent it from clashing with concurrent allocations for a different inode
484 * in the same block group. The PID is used here so that functionally related
485 * files will be close-by on-disk.
486 *
487 * Caller must make sure that @ind is valid and will stay that way.
488 */
617ba13b 489static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
ac27a0ec 490{
617ba13b 491 struct ext4_inode_info *ei = EXT4_I(inode);
af5bc92d 492 __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
ac27a0ec 493 __le32 *p;
617ba13b 494 ext4_fsblk_t bg_start;
74d3487f 495 ext4_fsblk_t last_block;
617ba13b 496 ext4_grpblk_t colour;
a4912123
TT
497 ext4_group_t block_group;
498 int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));
ac27a0ec
DK
499
500 /* Try to find previous block */
501 for (p = ind->p - 1; p >= start; p--) {
502 if (*p)
503 return le32_to_cpu(*p);
504 }
505
506 /* No such thing, so let's try location of indirect block */
507 if (ind->bh)
508 return ind->bh->b_blocknr;
509
510 /*
511 * It is going to be referred to from the inode itself? OK, just put it
512 * into the same cylinder group then.
513 */
a4912123
TT
514 block_group = ei->i_block_group;
515 if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {
516 block_group &= ~(flex_size-1);
517 if (S_ISREG(inode->i_mode))
518 block_group++;
519 }
520 bg_start = ext4_group_first_block_no(inode->i_sb, block_group);
74d3487f
VC
521 last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
522
a4912123
TT
523 /*
524 * If we are doing delayed allocation, we don't need take
525 * colour into account.
526 */
527 if (test_opt(inode->i_sb, DELALLOC))
528 return bg_start;
529
74d3487f
VC
530 if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
531 colour = (current->pid % 16) *
617ba13b 532 (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
74d3487f
VC
533 else
534 colour = (current->pid % 16) * ((last_block - bg_start) / 16);
ac27a0ec
DK
535 return bg_start + colour;
536}
537
538/**
1cc8dcf5 539 * ext4_find_goal - find a preferred place for allocation.
ac27a0ec
DK
540 * @inode: owner
541 * @block: block we want
ac27a0ec 542 * @partial: pointer to the last triple within a chain
ac27a0ec 543 *
1cc8dcf5 544 * Normally this function find the preferred place for block allocation,
fb01bfda 545 * returns it.
fb0a387d
ES
546 * Because this is only used for non-extent files, we limit the block nr
547 * to 32 bits.
ac27a0ec 548 */
725d26d3 549static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
de9a55b8 550 Indirect *partial)
ac27a0ec 551{
fb0a387d
ES
552 ext4_fsblk_t goal;
553
ac27a0ec 554 /*
c2ea3fde 555 * XXX need to get goal block from mballoc's data structures
ac27a0ec 556 */
ac27a0ec 557
fb0a387d
ES
558 goal = ext4_find_near(inode, partial);
559 goal = goal & EXT4_MAX_BLOCK_FILE_PHYS;
560 return goal;
ac27a0ec
DK
561}
562
563/**
225db7d3 564 * ext4_blks_to_allocate - Look up the block map and count the number
ac27a0ec
DK
565 * of direct blocks need to be allocated for the given branch.
566 *
567 * @branch: chain of indirect blocks
568 * @k: number of blocks need for indirect blocks
569 * @blks: number of data blocks to be mapped.
570 * @blocks_to_boundary: the offset in the indirect block
571 *
572 * return the total number of blocks to be allocate, including the
573 * direct and indirect blocks.
574 */
498e5f24 575static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
de9a55b8 576 int blocks_to_boundary)
ac27a0ec 577{
498e5f24 578 unsigned int count = 0;
ac27a0ec
DK
579
580 /*
581 * Simple case, [t,d]Indirect block(s) has not allocated yet
582 * then it's clear blocks on that path have not allocated
583 */
584 if (k > 0) {
585 /* right now we don't handle cross boundary allocation */
586 if (blks < blocks_to_boundary + 1)
587 count += blks;
588 else
589 count += blocks_to_boundary + 1;
590 return count;
591 }
592
593 count++;
594 while (count < blks && count <= blocks_to_boundary &&
595 le32_to_cpu(*(branch[0].p + count)) == 0) {
596 count++;
597 }
598 return count;
599}
600
601/**
617ba13b 602 * ext4_alloc_blocks: multiple allocate blocks needed for a branch
225db7d3
TT
603 * @handle: handle for this transaction
604 * @inode: inode which needs allocated blocks
605 * @iblock: the logical block to start allocated at
606 * @goal: preferred physical block of allocation
ac27a0ec
DK
607 * @indirect_blks: the number of blocks need to allocate for indirect
608 * blocks
225db7d3 609 * @blks: number of desired blocks
ac27a0ec
DK
610 * @new_blocks: on return it will store the new block numbers for
611 * the indirect blocks(if needed) and the first direct block,
225db7d3
TT
612 * @err: on return it will store the error code
613 *
614 * This function will return the number of blocks allocated as
615 * requested by the passed-in parameters.
ac27a0ec 616 */
617ba13b 617static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
de9a55b8
TT
618 ext4_lblk_t iblock, ext4_fsblk_t goal,
619 int indirect_blks, int blks,
620 ext4_fsblk_t new_blocks[4], int *err)
ac27a0ec 621{
815a1130 622 struct ext4_allocation_request ar;
ac27a0ec 623 int target, i;
7061eba7 624 unsigned long count = 0, blk_allocated = 0;
ac27a0ec 625 int index = 0;
617ba13b 626 ext4_fsblk_t current_block = 0;
ac27a0ec
DK
627 int ret = 0;
628
629 /*
630 * Here we try to allocate the requested multiple blocks at once,
631 * on a best-effort basis.
632 * To build a branch, we should allocate blocks for
633 * the indirect blocks(if not allocated yet), and at least
634 * the first direct block of this branch. That's the
635 * minimum number of blocks need to allocate(required)
636 */
7061eba7
AK
637 /* first we try to allocate the indirect blocks */
638 target = indirect_blks;
639 while (target > 0) {
ac27a0ec
DK
640 count = target;
641 /* allocating blocks for indirect blocks and direct blocks */
7061eba7
AK
642 current_block = ext4_new_meta_blocks(handle, inode,
643 goal, &count, err);
ac27a0ec
DK
644 if (*err)
645 goto failed_out;
646
273df556
FM
647 if (unlikely(current_block + count > EXT4_MAX_BLOCK_FILE_PHYS)) {
648 EXT4_ERROR_INODE(inode,
649 "current_block %llu + count %lu > %d!",
650 current_block, count,
651 EXT4_MAX_BLOCK_FILE_PHYS);
652 *err = -EIO;
653 goto failed_out;
654 }
fb0a387d 655
ac27a0ec
DK
656 target -= count;
657 /* allocate blocks for indirect blocks */
658 while (index < indirect_blks && count) {
659 new_blocks[index++] = current_block++;
660 count--;
661 }
7061eba7
AK
662 if (count > 0) {
663 /*
664 * save the new block number
665 * for the first direct block
666 */
667 new_blocks[index] = current_block;
668 printk(KERN_INFO "%s returned more blocks than "
669 "requested\n", __func__);
670 WARN_ON(1);
ac27a0ec 671 break;
7061eba7 672 }
ac27a0ec
DK
673 }
674
7061eba7
AK
675 target = blks - count ;
676 blk_allocated = count;
677 if (!target)
678 goto allocated;
679 /* Now allocate data blocks */
815a1130
TT
680 memset(&ar, 0, sizeof(ar));
681 ar.inode = inode;
682 ar.goal = goal;
683 ar.len = target;
684 ar.logical = iblock;
685 if (S_ISREG(inode->i_mode))
686 /* enable in-core preallocation only for regular files */
687 ar.flags = EXT4_MB_HINT_DATA;
688
689 current_block = ext4_mb_new_blocks(handle, &ar, err);
273df556
FM
690 if (unlikely(current_block + ar.len > EXT4_MAX_BLOCK_FILE_PHYS)) {
691 EXT4_ERROR_INODE(inode,
692 "current_block %llu + ar.len %d > %d!",
693 current_block, ar.len,
694 EXT4_MAX_BLOCK_FILE_PHYS);
695 *err = -EIO;
696 goto failed_out;
697 }
815a1130 698
7061eba7
AK
699 if (*err && (target == blks)) {
700 /*
701 * if the allocation failed and we didn't allocate
702 * any blocks before
703 */
704 goto failed_out;
705 }
706 if (!*err) {
707 if (target == blks) {
de9a55b8
TT
708 /*
709 * save the new block number
710 * for the first direct block
711 */
7061eba7
AK
712 new_blocks[index] = current_block;
713 }
815a1130 714 blk_allocated += ar.len;
7061eba7
AK
715 }
716allocated:
ac27a0ec 717 /* total number of blocks allocated for direct blocks */
7061eba7 718 ret = blk_allocated;
ac27a0ec
DK
719 *err = 0;
720 return ret;
721failed_out:
af5bc92d 722 for (i = 0; i < index; i++)
7dc57615 723 ext4_free_blocks(handle, inode, NULL, new_blocks[i], 1, 0);
ac27a0ec
DK
724 return ret;
725}
726
727/**
617ba13b 728 * ext4_alloc_branch - allocate and set up a chain of blocks.
225db7d3 729 * @handle: handle for this transaction
ac27a0ec
DK
730 * @inode: owner
731 * @indirect_blks: number of allocated indirect blocks
732 * @blks: number of allocated direct blocks
225db7d3 733 * @goal: preferred place for allocation
ac27a0ec
DK
734 * @offsets: offsets (in the blocks) to store the pointers to next.
735 * @branch: place to store the chain in.
736 *
737 * This function allocates blocks, zeroes out all but the last one,
738 * links them into chain and (if we are synchronous) writes them to disk.
739 * In other words, it prepares a branch that can be spliced onto the
740 * inode. It stores the information about that chain in the branch[], in
617ba13b 741 * the same format as ext4_get_branch() would do. We are calling it after
ac27a0ec
DK
742 * we had read the existing part of chain and partial points to the last
743 * triple of that (one with zero ->key). Upon the exit we have the same
617ba13b 744 * picture as after the successful ext4_get_block(), except that in one
ac27a0ec
DK
745 * place chain is disconnected - *branch->p is still zero (we did not
746 * set the last link), but branch->key contains the number that should
747 * be placed into *branch->p to fill that gap.
748 *
749 * If allocation fails we free all blocks we've allocated (and forget
750 * their buffer_heads) and return the error value the from failed
617ba13b 751 * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
ac27a0ec
DK
752 * as described above and return 0.
753 */
617ba13b 754static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
de9a55b8
TT
755 ext4_lblk_t iblock, int indirect_blks,
756 int *blks, ext4_fsblk_t goal,
757 ext4_lblk_t *offsets, Indirect *branch)
ac27a0ec
DK
758{
759 int blocksize = inode->i_sb->s_blocksize;
760 int i, n = 0;
761 int err = 0;
762 struct buffer_head *bh;
763 int num;
617ba13b
MC
764 ext4_fsblk_t new_blocks[4];
765 ext4_fsblk_t current_block;
ac27a0ec 766
7061eba7 767 num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
ac27a0ec
DK
768 *blks, new_blocks, &err);
769 if (err)
770 return err;
771
772 branch[0].key = cpu_to_le32(new_blocks[0]);
773 /*
774 * metadata blocks and data blocks are allocated.
775 */
776 for (n = 1; n <= indirect_blks; n++) {
777 /*
778 * Get buffer_head for parent block, zero it out
779 * and set the pointer to new one, then send
780 * parent to disk.
781 */
782 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
87783690
NK
783 if (unlikely(!bh)) {
784 err = -EIO;
785 goto failed;
786 }
787
ac27a0ec
DK
788 branch[n].bh = bh;
789 lock_buffer(bh);
790 BUFFER_TRACE(bh, "call get_create_access");
617ba13b 791 err = ext4_journal_get_create_access(handle, bh);
ac27a0ec 792 if (err) {
6487a9d3
CW
793 /* Don't brelse(bh) here; it's done in
794 * ext4_journal_forget() below */
ac27a0ec 795 unlock_buffer(bh);
ac27a0ec
DK
796 goto failed;
797 }
798
799 memset(bh->b_data, 0, blocksize);
800 branch[n].p = (__le32 *) bh->b_data + offsets[n];
801 branch[n].key = cpu_to_le32(new_blocks[n]);
802 *branch[n].p = branch[n].key;
af5bc92d 803 if (n == indirect_blks) {
ac27a0ec
DK
804 current_block = new_blocks[n];
805 /*
806 * End of chain, update the last new metablock of
807 * the chain to point to the new allocated
808 * data blocks numbers
809 */
de9a55b8 810 for (i = 1; i < num; i++)
ac27a0ec
DK
811 *(branch[n].p + i) = cpu_to_le32(++current_block);
812 }
813 BUFFER_TRACE(bh, "marking uptodate");
814 set_buffer_uptodate(bh);
815 unlock_buffer(bh);
816
0390131b
FM
817 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
818 err = ext4_handle_dirty_metadata(handle, inode, bh);
ac27a0ec
DK
819 if (err)
820 goto failed;
821 }
822 *blks = num;
823 return err;
824failed:
825 /* Allocation failed, free what we already allocated */
7dc57615 826 ext4_free_blocks(handle, inode, NULL, new_blocks[0], 1, 0);
ac27a0ec 827 for (i = 1; i <= n ; i++) {
60e6679e 828 /*
e6362609
TT
829 * branch[i].bh is newly allocated, so there is no
830 * need to revoke the block, which is why we don't
831 * need to set EXT4_FREE_BLOCKS_METADATA.
b7e57e7c 832 */
7dc57615 833 ext4_free_blocks(handle, inode, NULL, new_blocks[i], 1,
e6362609 834 EXT4_FREE_BLOCKS_FORGET);
ac27a0ec 835 }
e6362609 836 for (i = n+1; i < indirect_blks; i++)
7dc57615 837 ext4_free_blocks(handle, inode, NULL, new_blocks[i], 1, 0);
ac27a0ec 838
7dc57615 839 ext4_free_blocks(handle, inode, NULL, new_blocks[i], num, 0);
ac27a0ec
DK
840
841 return err;
842}
843
844/**
617ba13b 845 * ext4_splice_branch - splice the allocated branch onto inode.
225db7d3 846 * @handle: handle for this transaction
ac27a0ec
DK
847 * @inode: owner
848 * @block: (logical) number of block we are adding
849 * @chain: chain of indirect blocks (with a missing link - see
617ba13b 850 * ext4_alloc_branch)
ac27a0ec
DK
851 * @where: location of missing link
852 * @num: number of indirect blocks we are adding
853 * @blks: number of direct blocks we are adding
854 *
855 * This function fills the missing link and does all housekeeping needed in
856 * inode (->i_blocks, etc.). In case of success we end up with the full
857 * chain to new block and return 0.
858 */
617ba13b 859static int ext4_splice_branch(handle_t *handle, struct inode *inode,
de9a55b8
TT
860 ext4_lblk_t block, Indirect *where, int num,
861 int blks)
ac27a0ec
DK
862{
863 int i;
864 int err = 0;
617ba13b 865 ext4_fsblk_t current_block;
ac27a0ec 866
ac27a0ec
DK
867 /*
868 * If we're splicing into a [td]indirect block (as opposed to the
869 * inode) then we need to get write access to the [td]indirect block
870 * before the splice.
871 */
872 if (where->bh) {
873 BUFFER_TRACE(where->bh, "get_write_access");
617ba13b 874 err = ext4_journal_get_write_access(handle, where->bh);
ac27a0ec
DK
875 if (err)
876 goto err_out;
877 }
878 /* That's it */
879
880 *where->p = where->key;
881
882 /*
883 * Update the host buffer_head or inode to point to more just allocated
884 * direct blocks blocks
885 */
886 if (num == 0 && blks > 1) {
887 current_block = le32_to_cpu(where->key) + 1;
888 for (i = 1; i < blks; i++)
af5bc92d 889 *(where->p + i) = cpu_to_le32(current_block++);
ac27a0ec
DK
890 }
891
ac27a0ec 892 /* We are done with atomic stuff, now do the rest of housekeeping */
ac27a0ec
DK
893 /* had we spliced it onto indirect block? */
894 if (where->bh) {
895 /*
896 * If we spliced it onto an indirect block, we haven't
897 * altered the inode. Note however that if it is being spliced
898 * onto an indirect block at the very end of the file (the
899 * file is growing) then we *will* alter the inode to reflect
900 * the new i_size. But that is not done here - it is done in
617ba13b 901 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
ac27a0ec
DK
902 */
903 jbd_debug(5, "splicing indirect only\n");
0390131b
FM
904 BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
905 err = ext4_handle_dirty_metadata(handle, inode, where->bh);
ac27a0ec
DK
906 if (err)
907 goto err_out;
908 } else {
909 /*
910 * OK, we spliced it into the inode itself on a direct block.
ac27a0ec 911 */
41591750 912 ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
913 jbd_debug(5, "splicing direct\n");
914 }
915 return err;
916
917err_out:
918 for (i = 1; i <= num; i++) {
60e6679e 919 /*
e6362609
TT
920 * branch[i].bh is newly allocated, so there is no
921 * need to revoke the block, which is why we don't
922 * need to set EXT4_FREE_BLOCKS_METADATA.
b7e57e7c 923 */
e6362609
TT
924 ext4_free_blocks(handle, inode, where[i].bh, 0, 1,
925 EXT4_FREE_BLOCKS_FORGET);
ac27a0ec 926 }
7dc57615 927 ext4_free_blocks(handle, inode, NULL, le32_to_cpu(where[num].key),
e6362609 928 blks, 0);
ac27a0ec
DK
929
930 return err;
931}
932
933/*
e35fd660 934 * The ext4_ind_map_blocks() function handles non-extents inodes
b920c755 935 * (i.e., using the traditional indirect/double-indirect i_blocks
e35fd660 936 * scheme) for ext4_map_blocks().
b920c755 937 *
ac27a0ec
DK
938 * Allocation strategy is simple: if we have to allocate something, we will
939 * have to go the whole way to leaf. So let's do it before attaching anything
940 * to tree, set linkage between the newborn blocks, write them if sync is
941 * required, recheck the path, free and repeat if check fails, otherwise
942 * set the last missing link (that will protect us from any truncate-generated
943 * removals - all blocks on the path are immune now) and possibly force the
944 * write on the parent block.
945 * That has a nice additional property: no special recovery from the failed
946 * allocations is needed - we simply release blocks and do not touch anything
947 * reachable from inode.
948 *
949 * `handle' can be NULL if create == 0.
950 *
ac27a0ec
DK
951 * return > 0, # of blocks mapped or allocated.
952 * return = 0, if plain lookup failed.
953 * return < 0, error case.
c278bfec 954 *
b920c755
TT
955 * The ext4_ind_get_blocks() function should be called with
956 * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
957 * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
958 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
959 * blocks.
ac27a0ec 960 */
e35fd660
TT
961static int ext4_ind_map_blocks(handle_t *handle, struct inode *inode,
962 struct ext4_map_blocks *map,
de9a55b8 963 int flags)
ac27a0ec
DK
964{
965 int err = -EIO;
725d26d3 966 ext4_lblk_t offsets[4];
ac27a0ec
DK
967 Indirect chain[4];
968 Indirect *partial;
617ba13b 969 ext4_fsblk_t goal;
ac27a0ec
DK
970 int indirect_blks;
971 int blocks_to_boundary = 0;
972 int depth;
ac27a0ec 973 int count = 0;
617ba13b 974 ext4_fsblk_t first_block = 0;
ac27a0ec 975
12e9b892 976 J_ASSERT(!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)));
c2177057 977 J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
e35fd660 978 depth = ext4_block_to_path(inode, map->m_lblk, offsets,
de9a55b8 979 &blocks_to_boundary);
ac27a0ec
DK
980
981 if (depth == 0)
982 goto out;
983
617ba13b 984 partial = ext4_get_branch(inode, depth, offsets, chain, &err);
ac27a0ec
DK
985
986 /* Simplest case - block found, no allocation needed */
987 if (!partial) {
988 first_block = le32_to_cpu(chain[depth - 1].key);
ac27a0ec
DK
989 count++;
990 /*map more blocks*/
e35fd660 991 while (count < map->m_len && count <= blocks_to_boundary) {
617ba13b 992 ext4_fsblk_t blk;
ac27a0ec 993
ac27a0ec
DK
994 blk = le32_to_cpu(*(chain[depth-1].p + count));
995
996 if (blk == first_block + count)
997 count++;
998 else
999 break;
1000 }
c278bfec 1001 goto got_it;
ac27a0ec
DK
1002 }
1003
1004 /* Next simple case - plain lookup or failed read of indirect block */
c2177057 1005 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO)
ac27a0ec
DK
1006 goto cleanup;
1007
ac27a0ec 1008 /*
c2ea3fde 1009 * Okay, we need to do block allocation.
ac27a0ec 1010 */
e35fd660 1011 goal = ext4_find_goal(inode, map->m_lblk, partial);
ac27a0ec
DK
1012
1013 /* the number of blocks need to allocate for [d,t]indirect blocks */
1014 indirect_blks = (chain + depth) - partial - 1;
1015
1016 /*
1017 * Next look up the indirect map to count the totoal number of
1018 * direct blocks to allocate for this branch.
1019 */
617ba13b 1020 count = ext4_blks_to_allocate(partial, indirect_blks,
e35fd660 1021 map->m_len, blocks_to_boundary);
ac27a0ec 1022 /*
617ba13b 1023 * Block out ext4_truncate while we alter the tree
ac27a0ec 1024 */
e35fd660 1025 err = ext4_alloc_branch(handle, inode, map->m_lblk, indirect_blks,
de9a55b8
TT
1026 &count, goal,
1027 offsets + (partial - chain), partial);
ac27a0ec
DK
1028
1029 /*
617ba13b 1030 * The ext4_splice_branch call will free and forget any buffers
ac27a0ec
DK
1031 * on the new chain if there is a failure, but that risks using
1032 * up transaction credits, especially for bitmaps where the
1033 * credits cannot be returned. Can we handle this somehow? We
1034 * may need to return -EAGAIN upwards in the worst case. --sct
1035 */
1036 if (!err)
e35fd660 1037 err = ext4_splice_branch(handle, inode, map->m_lblk,
de9a55b8 1038 partial, indirect_blks, count);
2bba702d 1039 if (err)
ac27a0ec
DK
1040 goto cleanup;
1041
e35fd660 1042 map->m_flags |= EXT4_MAP_NEW;
b436b9be
JK
1043
1044 ext4_update_inode_fsync_trans(handle, inode, 1);
ac27a0ec 1045got_it:
e35fd660
TT
1046 map->m_flags |= EXT4_MAP_MAPPED;
1047 map->m_pblk = le32_to_cpu(chain[depth-1].key);
1048 map->m_len = count;
ac27a0ec 1049 if (count > blocks_to_boundary)
e35fd660 1050 map->m_flags |= EXT4_MAP_BOUNDARY;
ac27a0ec
DK
1051 err = count;
1052 /* Clean up and exit */
1053 partial = chain + depth - 1; /* the whole chain */
1054cleanup:
1055 while (partial > chain) {
1056 BUFFER_TRACE(partial->bh, "call brelse");
1057 brelse(partial->bh);
1058 partial--;
1059 }
ac27a0ec
DK
1060out:
1061 return err;
1062}
1063
a9e7f447
DM
1064#ifdef CONFIG_QUOTA
1065qsize_t *ext4_get_reserved_space(struct inode *inode)
60e58e0f 1066{
a9e7f447 1067 return &EXT4_I(inode)->i_reserved_quota;
60e58e0f 1068}
a9e7f447 1069#endif
9d0be502 1070
12219aea
AK
1071/*
1072 * Calculate the number of metadata blocks need to reserve
9d0be502 1073 * to allocate a new block at @lblocks for non extent file based file
12219aea 1074 */
9d0be502
TT
1075static int ext4_indirect_calc_metadata_amount(struct inode *inode,
1076 sector_t lblock)
12219aea 1077{
9d0be502 1078 struct ext4_inode_info *ei = EXT4_I(inode);
d330a5be 1079 sector_t dind_mask = ~((sector_t)EXT4_ADDR_PER_BLOCK(inode->i_sb) - 1);
9d0be502 1080 int blk_bits;
12219aea 1081
9d0be502
TT
1082 if (lblock < EXT4_NDIR_BLOCKS)
1083 return 0;
12219aea 1084
9d0be502 1085 lblock -= EXT4_NDIR_BLOCKS;
12219aea 1086
9d0be502
TT
1087 if (ei->i_da_metadata_calc_len &&
1088 (lblock & dind_mask) == ei->i_da_metadata_calc_last_lblock) {
1089 ei->i_da_metadata_calc_len++;
1090 return 0;
1091 }
1092 ei->i_da_metadata_calc_last_lblock = lblock & dind_mask;
1093 ei->i_da_metadata_calc_len = 1;
d330a5be 1094 blk_bits = order_base_2(lblock);
9d0be502 1095 return (blk_bits / EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb)) + 1;
12219aea
AK
1096}
1097
1098/*
1099 * Calculate the number of metadata blocks need to reserve
9d0be502 1100 * to allocate a block located at @lblock
12219aea 1101 */
01f49d0b 1102static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
12219aea 1103{
12e9b892 1104 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
9d0be502 1105 return ext4_ext_calc_metadata_amount(inode, lblock);
12219aea 1106
9d0be502 1107 return ext4_indirect_calc_metadata_amount(inode, lblock);
12219aea
AK
1108}
1109
0637c6f4
TT
1110/*
1111 * Called with i_data_sem down, which is important since we can call
1112 * ext4_discard_preallocations() from here.
1113 */
5f634d06
AK
1114void ext4_da_update_reserve_space(struct inode *inode,
1115 int used, int quota_claim)
12219aea
AK
1116{
1117 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 1118 struct ext4_inode_info *ei = EXT4_I(inode);
0637c6f4
TT
1119
1120 spin_lock(&ei->i_block_reservation_lock);
f8ec9d68 1121 trace_ext4_da_update_reserve_space(inode, used);
0637c6f4
TT
1122 if (unlikely(used > ei->i_reserved_data_blocks)) {
1123 ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d "
1124 "with only %d reserved data blocks\n",
1125 __func__, inode->i_ino, used,
1126 ei->i_reserved_data_blocks);
1127 WARN_ON(1);
1128 used = ei->i_reserved_data_blocks;
1129 }
12219aea 1130
0637c6f4
TT
1131 /* Update per-inode reservations */
1132 ei->i_reserved_data_blocks -= used;
0637c6f4 1133 ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
72b8ab9d
ES
1134 percpu_counter_sub(&sbi->s_dirtyblocks_counter,
1135 used + ei->i_allocated_meta_blocks);
0637c6f4 1136 ei->i_allocated_meta_blocks = 0;
6bc6e63f 1137
0637c6f4
TT
1138 if (ei->i_reserved_data_blocks == 0) {
1139 /*
1140 * We can release all of the reserved metadata blocks
1141 * only when we have written all of the delayed
1142 * allocation blocks.
1143 */
72b8ab9d
ES
1144 percpu_counter_sub(&sbi->s_dirtyblocks_counter,
1145 ei->i_reserved_meta_blocks);
ee5f4d9c 1146 ei->i_reserved_meta_blocks = 0;
9d0be502 1147 ei->i_da_metadata_calc_len = 0;
6bc6e63f 1148 }
12219aea 1149 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f 1150
72b8ab9d
ES
1151 /* Update quota subsystem for data blocks */
1152 if (quota_claim)
5dd4056d 1153 dquot_claim_block(inode, used);
72b8ab9d 1154 else {
5f634d06
AK
1155 /*
1156 * We did fallocate with an offset that is already delayed
1157 * allocated. So on delayed allocated writeback we should
72b8ab9d 1158 * not re-claim the quota for fallocated blocks.
5f634d06 1159 */
72b8ab9d 1160 dquot_release_reservation_block(inode, used);
5f634d06 1161 }
d6014301
AK
1162
1163 /*
1164 * If we have done all the pending block allocations and if
1165 * there aren't any writers on the inode, we can discard the
1166 * inode's preallocations.
1167 */
0637c6f4
TT
1168 if ((ei->i_reserved_data_blocks == 0) &&
1169 (atomic_read(&inode->i_writecount) == 0))
d6014301 1170 ext4_discard_preallocations(inode);
12219aea
AK
1171}
1172
e29136f8 1173static int __check_block_validity(struct inode *inode, const char *func,
c398eda0
TT
1174 unsigned int line,
1175 struct ext4_map_blocks *map)
6fd058f7 1176{
24676da4
TT
1177 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
1178 map->m_len)) {
c398eda0
TT
1179 ext4_error_inode(inode, func, line, map->m_pblk,
1180 "lblock %lu mapped to illegal pblock "
1181 "(length %d)", (unsigned long) map->m_lblk,
1182 map->m_len);
6fd058f7
TT
1183 return -EIO;
1184 }
1185 return 0;
1186}
1187
e29136f8 1188#define check_block_validity(inode, map) \
c398eda0 1189 __check_block_validity((inode), __func__, __LINE__, (map))
e29136f8 1190
55138e0b 1191/*
1f94533d
TT
1192 * Return the number of contiguous dirty pages in a given inode
1193 * starting at page frame idx.
55138e0b
TT
1194 */
1195static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
1196 unsigned int max_pages)
1197{
1198 struct address_space *mapping = inode->i_mapping;
1199 pgoff_t index;
1200 struct pagevec pvec;
1201 pgoff_t num = 0;
1202 int i, nr_pages, done = 0;
1203
1204 if (max_pages == 0)
1205 return 0;
1206 pagevec_init(&pvec, 0);
1207 while (!done) {
1208 index = idx;
1209 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
1210 PAGECACHE_TAG_DIRTY,
1211 (pgoff_t)PAGEVEC_SIZE);
1212 if (nr_pages == 0)
1213 break;
1214 for (i = 0; i < nr_pages; i++) {
1215 struct page *page = pvec.pages[i];
1216 struct buffer_head *bh, *head;
1217
1218 lock_page(page);
1219 if (unlikely(page->mapping != mapping) ||
1220 !PageDirty(page) ||
1221 PageWriteback(page) ||
1222 page->index != idx) {
1223 done = 1;
1224 unlock_page(page);
1225 break;
1226 }
1f94533d
TT
1227 if (page_has_buffers(page)) {
1228 bh = head = page_buffers(page);
1229 do {
1230 if (!buffer_delay(bh) &&
1231 !buffer_unwritten(bh))
1232 done = 1;
1233 bh = bh->b_this_page;
1234 } while (!done && (bh != head));
1235 }
55138e0b
TT
1236 unlock_page(page);
1237 if (done)
1238 break;
1239 idx++;
1240 num++;
659c6009
ES
1241 if (num >= max_pages) {
1242 done = 1;
55138e0b 1243 break;
659c6009 1244 }
55138e0b
TT
1245 }
1246 pagevec_release(&pvec);
1247 }
1248 return num;
1249}
1250
f5ab0d1f 1251/*
e35fd660 1252 * The ext4_map_blocks() function tries to look up the requested blocks,
2b2d6d01 1253 * and returns if the blocks are already mapped.
f5ab0d1f 1254 *
f5ab0d1f
MC
1255 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
1256 * and store the allocated blocks in the result buffer head and mark it
1257 * mapped.
1258 *
e35fd660
TT
1259 * If file type is extents based, it will call ext4_ext_map_blocks(),
1260 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
f5ab0d1f
MC
1261 * based files
1262 *
1263 * On success, it returns the number of blocks being mapped or allocate.
1264 * if create==0 and the blocks are pre-allocated and uninitialized block,
1265 * the result buffer head is unmapped. If the create ==1, it will make sure
1266 * the buffer head is mapped.
1267 *
1268 * It returns 0 if plain look up failed (blocks have not been allocated), in
1269 * that casem, buffer head is unmapped
1270 *
1271 * It returns the error in case of allocation failure.
1272 */
e35fd660
TT
1273int ext4_map_blocks(handle_t *handle, struct inode *inode,
1274 struct ext4_map_blocks *map, int flags)
0e855ac8
AK
1275{
1276 int retval;
f5ab0d1f 1277
e35fd660
TT
1278 map->m_flags = 0;
1279 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
1280 "logical block %lu\n", inode->i_ino, flags, map->m_len,
1281 (unsigned long) map->m_lblk);
4df3d265 1282 /*
b920c755
TT
1283 * Try to see if we can get the block without requesting a new
1284 * file system block.
4df3d265
AK
1285 */
1286 down_read((&EXT4_I(inode)->i_data_sem));
12e9b892 1287 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
e35fd660 1288 retval = ext4_ext_map_blocks(handle, inode, map, 0);
0e855ac8 1289 } else {
e35fd660 1290 retval = ext4_ind_map_blocks(handle, inode, map, 0);
0e855ac8 1291 }
4df3d265 1292 up_read((&EXT4_I(inode)->i_data_sem));
f5ab0d1f 1293
e35fd660 1294 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
e29136f8 1295 int ret = check_block_validity(inode, map);
6fd058f7
TT
1296 if (ret != 0)
1297 return ret;
1298 }
1299
f5ab0d1f 1300 /* If it is only a block(s) look up */
c2177057 1301 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
f5ab0d1f
MC
1302 return retval;
1303
1304 /*
1305 * Returns if the blocks have already allocated
1306 *
1307 * Note that if blocks have been preallocated
1308 * ext4_ext_get_block() returns th create = 0
1309 * with buffer head unmapped.
1310 */
e35fd660 1311 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
4df3d265
AK
1312 return retval;
1313
2a8964d6
AK
1314 /*
1315 * When we call get_blocks without the create flag, the
1316 * BH_Unwritten flag could have gotten set if the blocks
1317 * requested were part of a uninitialized extent. We need to
1318 * clear this flag now that we are committed to convert all or
1319 * part of the uninitialized extent to be an initialized
1320 * extent. This is because we need to avoid the combination
1321 * of BH_Unwritten and BH_Mapped flags being simultaneously
1322 * set on the buffer_head.
1323 */
e35fd660 1324 map->m_flags &= ~EXT4_MAP_UNWRITTEN;
2a8964d6 1325
4df3d265 1326 /*
f5ab0d1f
MC
1327 * New blocks allocate and/or writing to uninitialized extent
1328 * will possibly result in updating i_data, so we take
1329 * the write lock of i_data_sem, and call get_blocks()
1330 * with create == 1 flag.
4df3d265
AK
1331 */
1332 down_write((&EXT4_I(inode)->i_data_sem));
d2a17637
MC
1333
1334 /*
1335 * if the caller is from delayed allocation writeout path
1336 * we have already reserved fs blocks for allocation
1337 * let the underlying get_block() function know to
1338 * avoid double accounting
1339 */
c2177057 1340 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
f2321097 1341 ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
4df3d265
AK
1342 /*
1343 * We need to check for EXT4 here because migrate
1344 * could have changed the inode type in between
1345 */
12e9b892 1346 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
e35fd660 1347 retval = ext4_ext_map_blocks(handle, inode, map, flags);
0e855ac8 1348 } else {
e35fd660 1349 retval = ext4_ind_map_blocks(handle, inode, map, flags);
267e4db9 1350
e35fd660 1351 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
267e4db9
AK
1352 /*
1353 * We allocated new blocks which will result in
1354 * i_data's format changing. Force the migrate
1355 * to fail by clearing migrate flags
1356 */
19f5fb7a 1357 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
267e4db9 1358 }
d2a17637 1359
5f634d06
AK
1360 /*
1361 * Update reserved blocks/metadata blocks after successful
1362 * block allocation which had been deferred till now. We don't
1363 * support fallocate for non extent files. So we can update
1364 * reserve space here.
1365 */
1366 if ((retval > 0) &&
1296cc85 1367 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
5f634d06
AK
1368 ext4_da_update_reserve_space(inode, retval, 1);
1369 }
2ac3b6e0 1370 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
f2321097 1371 ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
2ac3b6e0 1372
4df3d265 1373 up_write((&EXT4_I(inode)->i_data_sem));
e35fd660 1374 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
e29136f8 1375 int ret = check_block_validity(inode, map);
6fd058f7
TT
1376 if (ret != 0)
1377 return ret;
1378 }
0e855ac8
AK
1379 return retval;
1380}
1381
f3bd1f3f
MC
1382/* Maximum number of blocks we map for direct IO at once. */
1383#define DIO_MAX_BLOCKS 4096
1384
2ed88685
TT
1385static int _ext4_get_block(struct inode *inode, sector_t iblock,
1386 struct buffer_head *bh, int flags)
ac27a0ec 1387{
3e4fdaf8 1388 handle_t *handle = ext4_journal_current_handle();
2ed88685 1389 struct ext4_map_blocks map;
7fb5409d 1390 int ret = 0, started = 0;
f3bd1f3f 1391 int dio_credits;
ac27a0ec 1392
2ed88685
TT
1393 map.m_lblk = iblock;
1394 map.m_len = bh->b_size >> inode->i_blkbits;
1395
1396 if (flags && !handle) {
7fb5409d 1397 /* Direct IO write... */
2ed88685
TT
1398 if (map.m_len > DIO_MAX_BLOCKS)
1399 map.m_len = DIO_MAX_BLOCKS;
1400 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
f3bd1f3f 1401 handle = ext4_journal_start(inode, dio_credits);
7fb5409d 1402 if (IS_ERR(handle)) {
ac27a0ec 1403 ret = PTR_ERR(handle);
2ed88685 1404 return ret;
ac27a0ec 1405 }
7fb5409d 1406 started = 1;
ac27a0ec
DK
1407 }
1408
2ed88685 1409 ret = ext4_map_blocks(handle, inode, &map, flags);
7fb5409d 1410 if (ret > 0) {
2ed88685
TT
1411 map_bh(bh, inode->i_sb, map.m_pblk);
1412 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1413 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
7fb5409d 1414 ret = 0;
ac27a0ec 1415 }
7fb5409d
JK
1416 if (started)
1417 ext4_journal_stop(handle);
ac27a0ec
DK
1418 return ret;
1419}
1420
2ed88685
TT
1421int ext4_get_block(struct inode *inode, sector_t iblock,
1422 struct buffer_head *bh, int create)
1423{
1424 return _ext4_get_block(inode, iblock, bh,
1425 create ? EXT4_GET_BLOCKS_CREATE : 0);
1426}
1427
ac27a0ec
DK
1428/*
1429 * `handle' can be NULL if create is zero
1430 */
617ba13b 1431struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
725d26d3 1432 ext4_lblk_t block, int create, int *errp)
ac27a0ec 1433{
2ed88685
TT
1434 struct ext4_map_blocks map;
1435 struct buffer_head *bh;
ac27a0ec
DK
1436 int fatal = 0, err;
1437
1438 J_ASSERT(handle != NULL || create == 0);
1439
2ed88685
TT
1440 map.m_lblk = block;
1441 map.m_len = 1;
1442 err = ext4_map_blocks(handle, inode, &map,
1443 create ? EXT4_GET_BLOCKS_CREATE : 0);
ac27a0ec 1444
2ed88685
TT
1445 if (err < 0)
1446 *errp = err;
1447 if (err <= 0)
1448 return NULL;
1449 *errp = 0;
1450
1451 bh = sb_getblk(inode->i_sb, map.m_pblk);
1452 if (!bh) {
1453 *errp = -EIO;
1454 return NULL;
ac27a0ec 1455 }
2ed88685
TT
1456 if (map.m_flags & EXT4_MAP_NEW) {
1457 J_ASSERT(create != 0);
1458 J_ASSERT(handle != NULL);
ac27a0ec 1459
2ed88685
TT
1460 /*
1461 * Now that we do not always journal data, we should
1462 * keep in mind whether this should always journal the
1463 * new buffer as metadata. For now, regular file
1464 * writes use ext4_get_block instead, so it's not a
1465 * problem.
1466 */
1467 lock_buffer(bh);
1468 BUFFER_TRACE(bh, "call get_create_access");
1469 fatal = ext4_journal_get_create_access(handle, bh);
1470 if (!fatal && !buffer_uptodate(bh)) {
1471 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1472 set_buffer_uptodate(bh);
ac27a0ec 1473 }
2ed88685
TT
1474 unlock_buffer(bh);
1475 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
1476 err = ext4_handle_dirty_metadata(handle, inode, bh);
1477 if (!fatal)
1478 fatal = err;
1479 } else {
1480 BUFFER_TRACE(bh, "not a new buffer");
ac27a0ec 1481 }
2ed88685
TT
1482 if (fatal) {
1483 *errp = fatal;
1484 brelse(bh);
1485 bh = NULL;
1486 }
1487 return bh;
ac27a0ec
DK
1488}
1489
617ba13b 1490struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
725d26d3 1491 ext4_lblk_t block, int create, int *err)
ac27a0ec 1492{
af5bc92d 1493 struct buffer_head *bh;
ac27a0ec 1494
617ba13b 1495 bh = ext4_getblk(handle, inode, block, create, err);
ac27a0ec
DK
1496 if (!bh)
1497 return bh;
1498 if (buffer_uptodate(bh))
1499 return bh;
1500 ll_rw_block(READ_META, 1, &bh);
1501 wait_on_buffer(bh);
1502 if (buffer_uptodate(bh))
1503 return bh;
1504 put_bh(bh);
1505 *err = -EIO;
1506 return NULL;
1507}
1508
af5bc92d
TT
1509static int walk_page_buffers(handle_t *handle,
1510 struct buffer_head *head,
1511 unsigned from,
1512 unsigned to,
1513 int *partial,
1514 int (*fn)(handle_t *handle,
1515 struct buffer_head *bh))
ac27a0ec
DK
1516{
1517 struct buffer_head *bh;
1518 unsigned block_start, block_end;
1519 unsigned blocksize = head->b_size;
1520 int err, ret = 0;
1521 struct buffer_head *next;
1522
af5bc92d
TT
1523 for (bh = head, block_start = 0;
1524 ret == 0 && (bh != head || !block_start);
de9a55b8 1525 block_start = block_end, bh = next) {
ac27a0ec
DK
1526 next = bh->b_this_page;
1527 block_end = block_start + blocksize;
1528 if (block_end <= from || block_start >= to) {
1529 if (partial && !buffer_uptodate(bh))
1530 *partial = 1;
1531 continue;
1532 }
1533 err = (*fn)(handle, bh);
1534 if (!ret)
1535 ret = err;
1536 }
1537 return ret;
1538}
1539
1540/*
1541 * To preserve ordering, it is essential that the hole instantiation and
1542 * the data write be encapsulated in a single transaction. We cannot
617ba13b 1543 * close off a transaction and start a new one between the ext4_get_block()
dab291af 1544 * and the commit_write(). So doing the jbd2_journal_start at the start of
ac27a0ec
DK
1545 * prepare_write() is the right place.
1546 *
617ba13b
MC
1547 * Also, this function can nest inside ext4_writepage() ->
1548 * block_write_full_page(). In that case, we *know* that ext4_writepage()
ac27a0ec
DK
1549 * has generated enough buffer credits to do the whole page. So we won't
1550 * block on the journal in that case, which is good, because the caller may
1551 * be PF_MEMALLOC.
1552 *
617ba13b 1553 * By accident, ext4 can be reentered when a transaction is open via
ac27a0ec
DK
1554 * quota file writes. If we were to commit the transaction while thus
1555 * reentered, there can be a deadlock - we would be holding a quota
1556 * lock, and the commit would never complete if another thread had a
1557 * transaction open and was blocking on the quota lock - a ranking
1558 * violation.
1559 *
dab291af 1560 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
ac27a0ec
DK
1561 * will _not_ run commit under these circumstances because handle->h_ref
1562 * is elevated. We'll still have enough credits for the tiny quotafile
1563 * write.
1564 */
1565static int do_journal_get_write_access(handle_t *handle,
de9a55b8 1566 struct buffer_head *bh)
ac27a0ec 1567{
56d35a4c
JK
1568 int dirty = buffer_dirty(bh);
1569 int ret;
1570
ac27a0ec
DK
1571 if (!buffer_mapped(bh) || buffer_freed(bh))
1572 return 0;
56d35a4c 1573 /*
ebdec241 1574 * __block_write_begin() could have dirtied some buffers. Clean
56d35a4c
JK
1575 * the dirty bit as jbd2_journal_get_write_access() could complain
1576 * otherwise about fs integrity issues. Setting of the dirty bit
ebdec241 1577 * by __block_write_begin() isn't a real problem here as we clear
56d35a4c
JK
1578 * the bit before releasing a page lock and thus writeback cannot
1579 * ever write the buffer.
1580 */
1581 if (dirty)
1582 clear_buffer_dirty(bh);
1583 ret = ext4_journal_get_write_access(handle, bh);
1584 if (!ret && dirty)
1585 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1586 return ret;
ac27a0ec
DK
1587}
1588
b9a4207d
JK
1589/*
1590 * Truncate blocks that were not used by write. We have to truncate the
1591 * pagecache as well so that corresponding buffers get properly unmapped.
1592 */
1593static void ext4_truncate_failed_write(struct inode *inode)
1594{
1595 truncate_inode_pages(inode->i_mapping, inode->i_size);
1596 ext4_truncate(inode);
1597}
1598
744692dc
JZ
1599static int ext4_get_block_write(struct inode *inode, sector_t iblock,
1600 struct buffer_head *bh_result, int create);
bfc1af65 1601static int ext4_write_begin(struct file *file, struct address_space *mapping,
de9a55b8
TT
1602 loff_t pos, unsigned len, unsigned flags,
1603 struct page **pagep, void **fsdata)
ac27a0ec 1604{
af5bc92d 1605 struct inode *inode = mapping->host;
1938a150 1606 int ret, needed_blocks;
ac27a0ec
DK
1607 handle_t *handle;
1608 int retries = 0;
af5bc92d 1609 struct page *page;
de9a55b8 1610 pgoff_t index;
af5bc92d 1611 unsigned from, to;
bfc1af65 1612
9bffad1e 1613 trace_ext4_write_begin(inode, pos, len, flags);
1938a150
AK
1614 /*
1615 * Reserve one block more for addition to orphan list in case
1616 * we allocate blocks but write fails for some reason
1617 */
1618 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
de9a55b8 1619 index = pos >> PAGE_CACHE_SHIFT;
af5bc92d
TT
1620 from = pos & (PAGE_CACHE_SIZE - 1);
1621 to = from + len;
ac27a0ec
DK
1622
1623retry:
af5bc92d
TT
1624 handle = ext4_journal_start(inode, needed_blocks);
1625 if (IS_ERR(handle)) {
1626 ret = PTR_ERR(handle);
1627 goto out;
7479d2b9 1628 }
ac27a0ec 1629
ebd3610b
JK
1630 /* We cannot recurse into the filesystem as the transaction is already
1631 * started */
1632 flags |= AOP_FLAG_NOFS;
1633
54566b2c 1634 page = grab_cache_page_write_begin(mapping, index, flags);
cf108bca
JK
1635 if (!page) {
1636 ext4_journal_stop(handle);
1637 ret = -ENOMEM;
1638 goto out;
1639 }
1640 *pagep = page;
1641
744692dc 1642 if (ext4_should_dioread_nolock(inode))
6e1db88d 1643 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
744692dc 1644 else
6e1db88d 1645 ret = __block_write_begin(page, pos, len, ext4_get_block);
bfc1af65
NP
1646
1647 if (!ret && ext4_should_journal_data(inode)) {
ac27a0ec
DK
1648 ret = walk_page_buffers(handle, page_buffers(page),
1649 from, to, NULL, do_journal_get_write_access);
1650 }
bfc1af65
NP
1651
1652 if (ret) {
af5bc92d 1653 unlock_page(page);
af5bc92d 1654 page_cache_release(page);
ae4d5372 1655 /*
6e1db88d 1656 * __block_write_begin may have instantiated a few blocks
ae4d5372
AK
1657 * outside i_size. Trim these off again. Don't need
1658 * i_size_read because we hold i_mutex.
1938a150
AK
1659 *
1660 * Add inode to orphan list in case we crash before
1661 * truncate finishes
ae4d5372 1662 */
ffacfa7a 1663 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1938a150
AK
1664 ext4_orphan_add(handle, inode);
1665
1666 ext4_journal_stop(handle);
1667 if (pos + len > inode->i_size) {
b9a4207d 1668 ext4_truncate_failed_write(inode);
de9a55b8 1669 /*
ffacfa7a 1670 * If truncate failed early the inode might
1938a150
AK
1671 * still be on the orphan list; we need to
1672 * make sure the inode is removed from the
1673 * orphan list in that case.
1674 */
1675 if (inode->i_nlink)
1676 ext4_orphan_del(NULL, inode);
1677 }
bfc1af65
NP
1678 }
1679
617ba13b 1680 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
ac27a0ec 1681 goto retry;
7479d2b9 1682out:
ac27a0ec
DK
1683 return ret;
1684}
1685
bfc1af65
NP
1686/* For write_end() in data=journal mode */
1687static int write_end_fn(handle_t *handle, struct buffer_head *bh)
ac27a0ec
DK
1688{
1689 if (!buffer_mapped(bh) || buffer_freed(bh))
1690 return 0;
1691 set_buffer_uptodate(bh);
0390131b 1692 return ext4_handle_dirty_metadata(handle, NULL, bh);
ac27a0ec
DK
1693}
1694
f8514083 1695static int ext4_generic_write_end(struct file *file,
de9a55b8
TT
1696 struct address_space *mapping,
1697 loff_t pos, unsigned len, unsigned copied,
1698 struct page *page, void *fsdata)
f8514083
AK
1699{
1700 int i_size_changed = 0;
1701 struct inode *inode = mapping->host;
1702 handle_t *handle = ext4_journal_current_handle();
1703
1704 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1705
1706 /*
1707 * No need to use i_size_read() here, the i_size
1708 * cannot change under us because we hold i_mutex.
1709 *
1710 * But it's important to update i_size while still holding page lock:
1711 * page writeout could otherwise come in and zero beyond i_size.
1712 */
1713 if (pos + copied > inode->i_size) {
1714 i_size_write(inode, pos + copied);
1715 i_size_changed = 1;
1716 }
1717
1718 if (pos + copied > EXT4_I(inode)->i_disksize) {
1719 /* We need to mark inode dirty even if
1720 * new_i_size is less that inode->i_size
1721 * bu greater than i_disksize.(hint delalloc)
1722 */
1723 ext4_update_i_disksize(inode, (pos + copied));
1724 i_size_changed = 1;
1725 }
1726 unlock_page(page);
1727 page_cache_release(page);
1728
1729 /*
1730 * Don't mark the inode dirty under page lock. First, it unnecessarily
1731 * makes the holding time of page lock longer. Second, it forces lock
1732 * ordering of page lock and transaction start for journaling
1733 * filesystems.
1734 */
1735 if (i_size_changed)
1736 ext4_mark_inode_dirty(handle, inode);
1737
1738 return copied;
1739}
1740
ac27a0ec
DK
1741/*
1742 * We need to pick up the new inode size which generic_commit_write gave us
1743 * `file' can be NULL - eg, when called from page_symlink().
1744 *
617ba13b 1745 * ext4 never places buffers on inode->i_mapping->private_list. metadata
ac27a0ec
DK
1746 * buffers are managed internally.
1747 */
bfc1af65 1748static int ext4_ordered_write_end(struct file *file,
de9a55b8
TT
1749 struct address_space *mapping,
1750 loff_t pos, unsigned len, unsigned copied,
1751 struct page *page, void *fsdata)
ac27a0ec 1752{
617ba13b 1753 handle_t *handle = ext4_journal_current_handle();
cf108bca 1754 struct inode *inode = mapping->host;
ac27a0ec
DK
1755 int ret = 0, ret2;
1756
9bffad1e 1757 trace_ext4_ordered_write_end(inode, pos, len, copied);
678aaf48 1758 ret = ext4_jbd2_file_inode(handle, inode);
ac27a0ec
DK
1759
1760 if (ret == 0) {
f8514083 1761 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
bfc1af65 1762 page, fsdata);
f8a87d89 1763 copied = ret2;
ffacfa7a 1764 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1765 /* if we have allocated more blocks and copied
1766 * less. We will have blocks allocated outside
1767 * inode->i_size. So truncate them
1768 */
1769 ext4_orphan_add(handle, inode);
f8a87d89
RK
1770 if (ret2 < 0)
1771 ret = ret2;
ac27a0ec 1772 }
617ba13b 1773 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1774 if (!ret)
1775 ret = ret2;
bfc1af65 1776
f8514083 1777 if (pos + len > inode->i_size) {
b9a4207d 1778 ext4_truncate_failed_write(inode);
de9a55b8 1779 /*
ffacfa7a 1780 * If truncate failed early the inode might still be
f8514083
AK
1781 * on the orphan list; we need to make sure the inode
1782 * is removed from the orphan list in that case.
1783 */
1784 if (inode->i_nlink)
1785 ext4_orphan_del(NULL, inode);
1786 }
1787
1788
bfc1af65 1789 return ret ? ret : copied;
ac27a0ec
DK
1790}
1791
bfc1af65 1792static int ext4_writeback_write_end(struct file *file,
de9a55b8
TT
1793 struct address_space *mapping,
1794 loff_t pos, unsigned len, unsigned copied,
1795 struct page *page, void *fsdata)
ac27a0ec 1796{
617ba13b 1797 handle_t *handle = ext4_journal_current_handle();
cf108bca 1798 struct inode *inode = mapping->host;
ac27a0ec 1799 int ret = 0, ret2;
ac27a0ec 1800
9bffad1e 1801 trace_ext4_writeback_write_end(inode, pos, len, copied);
f8514083 1802 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
bfc1af65 1803 page, fsdata);
f8a87d89 1804 copied = ret2;
ffacfa7a 1805 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1806 /* if we have allocated more blocks and copied
1807 * less. We will have blocks allocated outside
1808 * inode->i_size. So truncate them
1809 */
1810 ext4_orphan_add(handle, inode);
1811
f8a87d89
RK
1812 if (ret2 < 0)
1813 ret = ret2;
ac27a0ec 1814
617ba13b 1815 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1816 if (!ret)
1817 ret = ret2;
bfc1af65 1818
f8514083 1819 if (pos + len > inode->i_size) {
b9a4207d 1820 ext4_truncate_failed_write(inode);
de9a55b8 1821 /*
ffacfa7a 1822 * If truncate failed early the inode might still be
f8514083
AK
1823 * on the orphan list; we need to make sure the inode
1824 * is removed from the orphan list in that case.
1825 */
1826 if (inode->i_nlink)
1827 ext4_orphan_del(NULL, inode);
1828 }
1829
bfc1af65 1830 return ret ? ret : copied;
ac27a0ec
DK
1831}
1832
bfc1af65 1833static int ext4_journalled_write_end(struct file *file,
de9a55b8
TT
1834 struct address_space *mapping,
1835 loff_t pos, unsigned len, unsigned copied,
1836 struct page *page, void *fsdata)
ac27a0ec 1837{
617ba13b 1838 handle_t *handle = ext4_journal_current_handle();
bfc1af65 1839 struct inode *inode = mapping->host;
ac27a0ec
DK
1840 int ret = 0, ret2;
1841 int partial = 0;
bfc1af65 1842 unsigned from, to;
cf17fea6 1843 loff_t new_i_size;
ac27a0ec 1844
9bffad1e 1845 trace_ext4_journalled_write_end(inode, pos, len, copied);
bfc1af65
NP
1846 from = pos & (PAGE_CACHE_SIZE - 1);
1847 to = from + len;
1848
1849 if (copied < len) {
1850 if (!PageUptodate(page))
1851 copied = 0;
1852 page_zero_new_buffers(page, from+copied, to);
1853 }
ac27a0ec
DK
1854
1855 ret = walk_page_buffers(handle, page_buffers(page), from,
bfc1af65 1856 to, &partial, write_end_fn);
ac27a0ec
DK
1857 if (!partial)
1858 SetPageUptodate(page);
cf17fea6
AK
1859 new_i_size = pos + copied;
1860 if (new_i_size > inode->i_size)
bfc1af65 1861 i_size_write(inode, pos+copied);
19f5fb7a 1862 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
cf17fea6
AK
1863 if (new_i_size > EXT4_I(inode)->i_disksize) {
1864 ext4_update_i_disksize(inode, new_i_size);
617ba13b 1865 ret2 = ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
1866 if (!ret)
1867 ret = ret2;
1868 }
bfc1af65 1869
cf108bca 1870 unlock_page(page);
f8514083 1871 page_cache_release(page);
ffacfa7a 1872 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1873 /* if we have allocated more blocks and copied
1874 * less. We will have blocks allocated outside
1875 * inode->i_size. So truncate them
1876 */
1877 ext4_orphan_add(handle, inode);
1878
617ba13b 1879 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1880 if (!ret)
1881 ret = ret2;
f8514083 1882 if (pos + len > inode->i_size) {
b9a4207d 1883 ext4_truncate_failed_write(inode);
de9a55b8 1884 /*
ffacfa7a 1885 * If truncate failed early the inode might still be
f8514083
AK
1886 * on the orphan list; we need to make sure the inode
1887 * is removed from the orphan list in that case.
1888 */
1889 if (inode->i_nlink)
1890 ext4_orphan_del(NULL, inode);
1891 }
bfc1af65
NP
1892
1893 return ret ? ret : copied;
ac27a0ec 1894}
d2a17637 1895
9d0be502
TT
1896/*
1897 * Reserve a single block located at lblock
1898 */
01f49d0b 1899static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
d2a17637 1900{
030ba6bc 1901 int retries = 0;
60e58e0f 1902 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 1903 struct ext4_inode_info *ei = EXT4_I(inode);
72b8ab9d 1904 unsigned long md_needed;
5dd4056d 1905 int ret;
d2a17637
MC
1906
1907 /*
1908 * recalculate the amount of metadata blocks to reserve
1909 * in order to allocate nrblocks
1910 * worse case is one extent per block
1911 */
030ba6bc 1912repeat:
0637c6f4 1913 spin_lock(&ei->i_block_reservation_lock);
9d0be502 1914 md_needed = ext4_calc_metadata_amount(inode, lblock);
f8ec9d68 1915 trace_ext4_da_reserve_space(inode, md_needed);
0637c6f4 1916 spin_unlock(&ei->i_block_reservation_lock);
d2a17637 1917
60e58e0f 1918 /*
72b8ab9d
ES
1919 * We will charge metadata quota at writeout time; this saves
1920 * us from metadata over-estimation, though we may go over by
1921 * a small amount in the end. Here we just reserve for data.
60e58e0f 1922 */
72b8ab9d 1923 ret = dquot_reserve_block(inode, 1);
5dd4056d
CH
1924 if (ret)
1925 return ret;
72b8ab9d
ES
1926 /*
1927 * We do still charge estimated metadata to the sb though;
1928 * we cannot afford to run out of free blocks.
1929 */
9d0be502 1930 if (ext4_claim_free_blocks(sbi, md_needed + 1)) {
72b8ab9d 1931 dquot_release_reservation_block(inode, 1);
030ba6bc
AK
1932 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1933 yield();
1934 goto repeat;
1935 }
d2a17637
MC
1936 return -ENOSPC;
1937 }
0637c6f4 1938 spin_lock(&ei->i_block_reservation_lock);
9d0be502 1939 ei->i_reserved_data_blocks++;
0637c6f4
TT
1940 ei->i_reserved_meta_blocks += md_needed;
1941 spin_unlock(&ei->i_block_reservation_lock);
39bc680a 1942
d2a17637
MC
1943 return 0; /* success */
1944}
1945
12219aea 1946static void ext4_da_release_space(struct inode *inode, int to_free)
d2a17637
MC
1947{
1948 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 1949 struct ext4_inode_info *ei = EXT4_I(inode);
d2a17637 1950
cd213226
MC
1951 if (!to_free)
1952 return; /* Nothing to release, exit */
1953
d2a17637 1954 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
cd213226 1955
5a58ec87 1956 trace_ext4_da_release_space(inode, to_free);
0637c6f4 1957 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
cd213226 1958 /*
0637c6f4
TT
1959 * if there aren't enough reserved blocks, then the
1960 * counter is messed up somewhere. Since this
1961 * function is called from invalidate page, it's
1962 * harmless to return without any action.
cd213226 1963 */
0637c6f4
TT
1964 ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: "
1965 "ino %lu, to_free %d with only %d reserved "
1966 "data blocks\n", inode->i_ino, to_free,
1967 ei->i_reserved_data_blocks);
1968 WARN_ON(1);
1969 to_free = ei->i_reserved_data_blocks;
cd213226 1970 }
0637c6f4 1971 ei->i_reserved_data_blocks -= to_free;
cd213226 1972
0637c6f4
TT
1973 if (ei->i_reserved_data_blocks == 0) {
1974 /*
1975 * We can release all of the reserved metadata blocks
1976 * only when we have written all of the delayed
1977 * allocation blocks.
1978 */
72b8ab9d
ES
1979 percpu_counter_sub(&sbi->s_dirtyblocks_counter,
1980 ei->i_reserved_meta_blocks);
ee5f4d9c 1981 ei->i_reserved_meta_blocks = 0;
9d0be502 1982 ei->i_da_metadata_calc_len = 0;
0637c6f4 1983 }
d2a17637 1984
72b8ab9d 1985 /* update fs dirty data blocks counter */
0637c6f4 1986 percpu_counter_sub(&sbi->s_dirtyblocks_counter, to_free);
d2a17637 1987
d2a17637 1988 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f 1989
5dd4056d 1990 dquot_release_reservation_block(inode, to_free);
d2a17637
MC
1991}
1992
1993static void ext4_da_page_release_reservation(struct page *page,
de9a55b8 1994 unsigned long offset)
d2a17637
MC
1995{
1996 int to_release = 0;
1997 struct buffer_head *head, *bh;
1998 unsigned int curr_off = 0;
1999
2000 head = page_buffers(page);
2001 bh = head;
2002 do {
2003 unsigned int next_off = curr_off + bh->b_size;
2004
2005 if ((offset <= curr_off) && (buffer_delay(bh))) {
2006 to_release++;
2007 clear_buffer_delay(bh);
2008 }
2009 curr_off = next_off;
2010 } while ((bh = bh->b_this_page) != head);
12219aea 2011 ext4_da_release_space(page->mapping->host, to_release);
d2a17637 2012}
ac27a0ec 2013
64769240
AT
2014/*
2015 * Delayed allocation stuff
2016 */
2017
64769240
AT
2018/*
2019 * mpage_da_submit_io - walks through extent of pages and try to write
a1d6cc56 2020 * them with writepage() call back
64769240
AT
2021 *
2022 * @mpd->inode: inode
2023 * @mpd->first_page: first page of the extent
2024 * @mpd->next_page: page after the last page of the extent
64769240
AT
2025 *
2026 * By the time mpage_da_submit_io() is called we expect all blocks
2027 * to be allocated. this may be wrong if allocation failed.
2028 *
2029 * As pages are already locked by write_cache_pages(), we can't use it
2030 */
1de3e3df
TT
2031static int mpage_da_submit_io(struct mpage_da_data *mpd,
2032 struct ext4_map_blocks *map)
64769240 2033{
791b7f08
AK
2034 struct pagevec pvec;
2035 unsigned long index, end;
2036 int ret = 0, err, nr_pages, i;
2037 struct inode *inode = mpd->inode;
2038 struct address_space *mapping = inode->i_mapping;
cb20d518 2039 loff_t size = i_size_read(inode);
3ecdb3a1
TT
2040 unsigned int len, block_start;
2041 struct buffer_head *bh, *page_bufs = NULL;
cb20d518 2042 int journal_data = ext4_should_journal_data(inode);
1de3e3df 2043 sector_t pblock = 0, cur_logical = 0;
bd2d0210 2044 struct ext4_io_submit io_submit;
64769240
AT
2045
2046 BUG_ON(mpd->next_page <= mpd->first_page);
bd2d0210 2047 memset(&io_submit, 0, sizeof(io_submit));
791b7f08
AK
2048 /*
2049 * We need to start from the first_page to the next_page - 1
2050 * to make sure we also write the mapped dirty buffer_heads.
8dc207c0 2051 * If we look at mpd->b_blocknr we would only be looking
791b7f08
AK
2052 * at the currently mapped buffer_heads.
2053 */
64769240
AT
2054 index = mpd->first_page;
2055 end = mpd->next_page - 1;
2056
791b7f08 2057 pagevec_init(&pvec, 0);
64769240 2058 while (index <= end) {
791b7f08 2059 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
64769240
AT
2060 if (nr_pages == 0)
2061 break;
2062 for (i = 0; i < nr_pages; i++) {
1de3e3df 2063 int commit_write = 0, redirty_page = 0;
64769240
AT
2064 struct page *page = pvec.pages[i];
2065
791b7f08
AK
2066 index = page->index;
2067 if (index > end)
2068 break;
cb20d518
TT
2069
2070 if (index == size >> PAGE_CACHE_SHIFT)
2071 len = size & ~PAGE_CACHE_MASK;
2072 else
2073 len = PAGE_CACHE_SIZE;
1de3e3df
TT
2074 if (map) {
2075 cur_logical = index << (PAGE_CACHE_SHIFT -
2076 inode->i_blkbits);
2077 pblock = map->m_pblk + (cur_logical -
2078 map->m_lblk);
2079 }
791b7f08
AK
2080 index++;
2081
2082 BUG_ON(!PageLocked(page));
2083 BUG_ON(PageWriteback(page));
2084
64769240 2085 /*
cb20d518
TT
2086 * If the page does not have buffers (for
2087 * whatever reason), try to create them using
a107e5a3 2088 * __block_write_begin. If this fails,
cb20d518 2089 * redirty the page and move on.
64769240 2090 */
cb20d518 2091 if (!page_has_buffers(page)) {
a107e5a3 2092 if (__block_write_begin(page, 0, len,
cb20d518
TT
2093 noalloc_get_block_write)) {
2094 redirty_page:
2095 redirty_page_for_writepage(mpd->wbc,
2096 page);
2097 unlock_page(page);
2098 continue;
2099 }
2100 commit_write = 1;
2101 }
64769240 2102
3ecdb3a1
TT
2103 bh = page_bufs = page_buffers(page);
2104 block_start = 0;
64769240 2105 do {
1de3e3df 2106 if (!bh)
3ecdb3a1 2107 goto redirty_page;
1de3e3df
TT
2108 if (map && (cur_logical >= map->m_lblk) &&
2109 (cur_logical <= (map->m_lblk +
2110 (map->m_len - 1)))) {
29fa89d0
AK
2111 if (buffer_delay(bh)) {
2112 clear_buffer_delay(bh);
2113 bh->b_blocknr = pblock;
29fa89d0 2114 }
1de3e3df
TT
2115 if (buffer_unwritten(bh) ||
2116 buffer_mapped(bh))
2117 BUG_ON(bh->b_blocknr != pblock);
2118 if (map->m_flags & EXT4_MAP_UNINIT)
2119 set_buffer_uninit(bh);
2120 clear_buffer_unwritten(bh);
2121 }
29fa89d0 2122
1de3e3df
TT
2123 /* redirty page if block allocation undone */
2124 if (buffer_delay(bh) || buffer_unwritten(bh))
2125 redirty_page = 1;
3ecdb3a1
TT
2126 bh = bh->b_this_page;
2127 block_start += bh->b_size;
64769240
AT
2128 cur_logical++;
2129 pblock++;
1de3e3df
TT
2130 } while (bh != page_bufs);
2131
2132 if (redirty_page)
2133 goto redirty_page;
cb20d518
TT
2134
2135 if (commit_write)
2136 /* mark the buffer_heads as dirty & uptodate */
2137 block_commit_write(page, 0, len);
2138
bd2d0210
TT
2139 /*
2140 * Delalloc doesn't support data journalling,
2141 * but eventually maybe we'll lift this
2142 * restriction.
2143 */
2144 if (unlikely(journal_data && PageChecked(page)))
cb20d518 2145 err = __ext4_journalled_writepage(page, len);
1449032b 2146 else if (test_opt(inode->i_sb, MBLK_IO_SUBMIT))
bd2d0210
TT
2147 err = ext4_bio_write_page(&io_submit, page,
2148 len, mpd->wbc);
1449032b
TT
2149 else
2150 err = block_write_full_page(page,
2151 noalloc_get_block_write, mpd->wbc);
cb20d518
TT
2152
2153 if (!err)
a1d6cc56 2154 mpd->pages_written++;
64769240
AT
2155 /*
2156 * In error case, we have to continue because
2157 * remaining pages are still locked
64769240
AT
2158 */
2159 if (ret == 0)
2160 ret = err;
64769240
AT
2161 }
2162 pagevec_release(&pvec);
2163 }
bd2d0210 2164 ext4_io_submit(&io_submit);
64769240 2165 return ret;
64769240
AT
2166}
2167
c4a0c46e
AK
2168static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd,
2169 sector_t logical, long blk_cnt)
2170{
2171 int nr_pages, i;
2172 pgoff_t index, end;
2173 struct pagevec pvec;
2174 struct inode *inode = mpd->inode;
2175 struct address_space *mapping = inode->i_mapping;
2176
2177 index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2178 end = (logical + blk_cnt - 1) >>
2179 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2180 while (index <= end) {
2181 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2182 if (nr_pages == 0)
2183 break;
2184 for (i = 0; i < nr_pages; i++) {
2185 struct page *page = pvec.pages[i];
9b1d0998 2186 if (page->index > end)
c4a0c46e 2187 break;
c4a0c46e
AK
2188 BUG_ON(!PageLocked(page));
2189 BUG_ON(PageWriteback(page));
2190 block_invalidatepage(page, 0);
2191 ClearPageUptodate(page);
2192 unlock_page(page);
2193 }
9b1d0998
JK
2194 index = pvec.pages[nr_pages - 1]->index + 1;
2195 pagevec_release(&pvec);
c4a0c46e
AK
2196 }
2197 return;
2198}
2199
df22291f
AK
2200static void ext4_print_free_blocks(struct inode *inode)
2201{
2202 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1693918e
TT
2203 printk(KERN_CRIT "Total free blocks count %lld\n",
2204 ext4_count_free_blocks(inode->i_sb));
2205 printk(KERN_CRIT "Free/Dirty block details\n");
2206 printk(KERN_CRIT "free_blocks=%lld\n",
2207 (long long) percpu_counter_sum(&sbi->s_freeblocks_counter));
2208 printk(KERN_CRIT "dirty_blocks=%lld\n",
2209 (long long) percpu_counter_sum(&sbi->s_dirtyblocks_counter));
2210 printk(KERN_CRIT "Block reservation details\n");
2211 printk(KERN_CRIT "i_reserved_data_blocks=%u\n",
2212 EXT4_I(inode)->i_reserved_data_blocks);
2213 printk(KERN_CRIT "i_reserved_meta_blocks=%u\n",
2214 EXT4_I(inode)->i_reserved_meta_blocks);
df22291f
AK
2215 return;
2216}
2217
64769240 2218/*
5a87b7a5
TT
2219 * mpage_da_map_and_submit - go through given space, map them
2220 * if necessary, and then submit them for I/O
64769240 2221 *
8dc207c0 2222 * @mpd - bh describing space
64769240
AT
2223 *
2224 * The function skips space we know is already mapped to disk blocks.
2225 *
64769240 2226 */
5a87b7a5 2227static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
64769240 2228{
2ac3b6e0 2229 int err, blks, get_blocks_flags;
1de3e3df 2230 struct ext4_map_blocks map, *mapp = NULL;
2fa3cdfb
TT
2231 sector_t next = mpd->b_blocknr;
2232 unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
2233 loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
2234 handle_t *handle = NULL;
64769240
AT
2235
2236 /*
5a87b7a5
TT
2237 * If the blocks are mapped already, or we couldn't accumulate
2238 * any blocks, then proceed immediately to the submission stage.
2fa3cdfb 2239 */
5a87b7a5
TT
2240 if ((mpd->b_size == 0) ||
2241 ((mpd->b_state & (1 << BH_Mapped)) &&
2242 !(mpd->b_state & (1 << BH_Delay)) &&
2243 !(mpd->b_state & (1 << BH_Unwritten))))
2244 goto submit_io;
2fa3cdfb
TT
2245
2246 handle = ext4_journal_current_handle();
2247 BUG_ON(!handle);
2248
79ffab34 2249 /*
79e83036 2250 * Call ext4_map_blocks() to allocate any delayed allocation
2ac3b6e0
TT
2251 * blocks, or to convert an uninitialized extent to be
2252 * initialized (in the case where we have written into
2253 * one or more preallocated blocks).
2254 *
2255 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
2256 * indicate that we are on the delayed allocation path. This
2257 * affects functions in many different parts of the allocation
2258 * call path. This flag exists primarily because we don't
79e83036 2259 * want to change *many* call functions, so ext4_map_blocks()
f2321097 2260 * will set the EXT4_STATE_DELALLOC_RESERVED flag once the
2ac3b6e0
TT
2261 * inode's allocation semaphore is taken.
2262 *
2263 * If the blocks in questions were delalloc blocks, set
2264 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
2265 * variables are updated after the blocks have been allocated.
79ffab34 2266 */
2ed88685
TT
2267 map.m_lblk = next;
2268 map.m_len = max_blocks;
1296cc85 2269 get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
744692dc
JZ
2270 if (ext4_should_dioread_nolock(mpd->inode))
2271 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2ac3b6e0 2272 if (mpd->b_state & (1 << BH_Delay))
1296cc85
AK
2273 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2274
2ed88685 2275 blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
2fa3cdfb 2276 if (blks < 0) {
e3570639
ES
2277 struct super_block *sb = mpd->inode->i_sb;
2278
2fa3cdfb 2279 err = blks;
ed5bde0b 2280 /*
5a87b7a5
TT
2281 * If get block returns EAGAIN or ENOSPC and there
2282 * appears to be free blocks we will call
2283 * ext4_writepage() for all of the pages which will
2284 * just redirty the pages.
c4a0c46e
AK
2285 */
2286 if (err == -EAGAIN)
5a87b7a5 2287 goto submit_io;
df22291f
AK
2288
2289 if (err == -ENOSPC &&
e3570639 2290 ext4_count_free_blocks(sb)) {
df22291f 2291 mpd->retval = err;
5a87b7a5 2292 goto submit_io;
df22291f
AK
2293 }
2294
c4a0c46e 2295 /*
ed5bde0b
TT
2296 * get block failure will cause us to loop in
2297 * writepages, because a_ops->writepage won't be able
2298 * to make progress. The page will be redirtied by
2299 * writepage and writepages will again try to write
2300 * the same.
c4a0c46e 2301 */
e3570639
ES
2302 if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2303 ext4_msg(sb, KERN_CRIT,
2304 "delayed block allocation failed for inode %lu "
2305 "at logical offset %llu with max blocks %zd "
2306 "with error %d", mpd->inode->i_ino,
2307 (unsigned long long) next,
2308 mpd->b_size >> mpd->inode->i_blkbits, err);
2309 ext4_msg(sb, KERN_CRIT,
2310 "This should not happen!! Data will be lost\n");
2311 if (err == -ENOSPC)
2312 ext4_print_free_blocks(mpd->inode);
030ba6bc 2313 }
2fa3cdfb 2314 /* invalidate all the pages */
c4a0c46e 2315 ext4_da_block_invalidatepages(mpd, next,
8dc207c0 2316 mpd->b_size >> mpd->inode->i_blkbits);
e0fd9b90
CW
2317
2318 /* Mark this page range as having been completed */
2319 mpd->io_done = 1;
5a87b7a5 2320 return;
c4a0c46e 2321 }
2fa3cdfb
TT
2322 BUG_ON(blks == 0);
2323
1de3e3df 2324 mapp = &map;
2ed88685
TT
2325 if (map.m_flags & EXT4_MAP_NEW) {
2326 struct block_device *bdev = mpd->inode->i_sb->s_bdev;
2327 int i;
64769240 2328
2ed88685
TT
2329 for (i = 0; i < map.m_len; i++)
2330 unmap_underlying_metadata(bdev, map.m_pblk + i);
2331 }
64769240 2332
2fa3cdfb
TT
2333 if (ext4_should_order_data(mpd->inode)) {
2334 err = ext4_jbd2_file_inode(handle, mpd->inode);
2335 if (err)
5a87b7a5
TT
2336 /* This only happens if the journal is aborted */
2337 return;
2fa3cdfb
TT
2338 }
2339
2340 /*
03f5d8bc 2341 * Update on-disk size along with block allocation.
2fa3cdfb
TT
2342 */
2343 disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
2344 if (disksize > i_size_read(mpd->inode))
2345 disksize = i_size_read(mpd->inode);
2346 if (disksize > EXT4_I(mpd->inode)->i_disksize) {
2347 ext4_update_i_disksize(mpd->inode, disksize);
5a87b7a5
TT
2348 err = ext4_mark_inode_dirty(handle, mpd->inode);
2349 if (err)
2350 ext4_error(mpd->inode->i_sb,
2351 "Failed to mark inode %lu dirty",
2352 mpd->inode->i_ino);
2fa3cdfb
TT
2353 }
2354
5a87b7a5 2355submit_io:
1de3e3df 2356 mpage_da_submit_io(mpd, mapp);
5a87b7a5 2357 mpd->io_done = 1;
64769240
AT
2358}
2359
bf068ee2
AK
2360#define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
2361 (1 << BH_Delay) | (1 << BH_Unwritten))
64769240
AT
2362
2363/*
2364 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
2365 *
2366 * @mpd->lbh - extent of blocks
2367 * @logical - logical number of the block in the file
2368 * @bh - bh of the block (used to access block's state)
2369 *
2370 * the function is used to collect contig. blocks in same state
2371 */
2372static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
8dc207c0
TT
2373 sector_t logical, size_t b_size,
2374 unsigned long b_state)
64769240 2375{
64769240 2376 sector_t next;
8dc207c0 2377 int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
64769240 2378
c445e3e0
ES
2379 /*
2380 * XXX Don't go larger than mballoc is willing to allocate
2381 * This is a stopgap solution. We eventually need to fold
2382 * mpage_da_submit_io() into this function and then call
79e83036 2383 * ext4_map_blocks() multiple times in a loop
c445e3e0
ES
2384 */
2385 if (nrblocks >= 8*1024*1024/mpd->inode->i_sb->s_blocksize)
2386 goto flush_it;
2387
525f4ed8 2388 /* check if thereserved journal credits might overflow */
12e9b892 2389 if (!(ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS))) {
525f4ed8
MC
2390 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
2391 /*
2392 * With non-extent format we are limited by the journal
2393 * credit available. Total credit needed to insert
2394 * nrblocks contiguous blocks is dependent on the
2395 * nrblocks. So limit nrblocks.
2396 */
2397 goto flush_it;
2398 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
2399 EXT4_MAX_TRANS_DATA) {
2400 /*
2401 * Adding the new buffer_head would make it cross the
2402 * allowed limit for which we have journal credit
2403 * reserved. So limit the new bh->b_size
2404 */
2405 b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
2406 mpd->inode->i_blkbits;
2407 /* we will do mpage_da_submit_io in the next loop */
2408 }
2409 }
64769240
AT
2410 /*
2411 * First block in the extent
2412 */
8dc207c0
TT
2413 if (mpd->b_size == 0) {
2414 mpd->b_blocknr = logical;
2415 mpd->b_size = b_size;
2416 mpd->b_state = b_state & BH_FLAGS;
64769240
AT
2417 return;
2418 }
2419
8dc207c0 2420 next = mpd->b_blocknr + nrblocks;
64769240
AT
2421 /*
2422 * Can we merge the block to our big extent?
2423 */
8dc207c0
TT
2424 if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
2425 mpd->b_size += b_size;
64769240
AT
2426 return;
2427 }
2428
525f4ed8 2429flush_it:
64769240
AT
2430 /*
2431 * We couldn't merge the block to our extent, so we
2432 * need to flush current extent and start new one
2433 */
5a87b7a5 2434 mpage_da_map_and_submit(mpd);
a1d6cc56 2435 return;
64769240
AT
2436}
2437
c364b22c 2438static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
29fa89d0 2439{
c364b22c 2440 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
29fa89d0
AK
2441}
2442
64769240
AT
2443/*
2444 * __mpage_da_writepage - finds extent of pages and blocks
2445 *
2446 * @page: page to consider
2447 * @wbc: not used, we just follow rules
2448 * @data: context
2449 *
2450 * The function finds extents of pages and scan them for all blocks.
2451 */
2452static int __mpage_da_writepage(struct page *page,
bbd08344
ES
2453 struct writeback_control *wbc,
2454 struct mpage_da_data *mpd)
64769240 2455{
64769240 2456 struct inode *inode = mpd->inode;
8dc207c0 2457 struct buffer_head *bh, *head;
64769240
AT
2458 sector_t logical;
2459
2460 /*
2461 * Can we merge this page to current extent?
2462 */
2463 if (mpd->next_page != page->index) {
2464 /*
2465 * Nope, we can't. So, we map non-allocated blocks
5a87b7a5 2466 * and start IO on them
64769240
AT
2467 */
2468 if (mpd->next_page != mpd->first_page) {
5a87b7a5 2469 mpage_da_map_and_submit(mpd);
a1d6cc56
AK
2470 /*
2471 * skip rest of the page in the page_vec
2472 */
a1d6cc56
AK
2473 redirty_page_for_writepage(wbc, page);
2474 unlock_page(page);
2475 return MPAGE_DA_EXTENT_TAIL;
64769240
AT
2476 }
2477
2478 /*
2479 * Start next extent of pages ...
2480 */
2481 mpd->first_page = page->index;
2482
2483 /*
2484 * ... and blocks
2485 */
8dc207c0
TT
2486 mpd->b_size = 0;
2487 mpd->b_state = 0;
2488 mpd->b_blocknr = 0;
64769240
AT
2489 }
2490
2491 mpd->next_page = page->index + 1;
2492 logical = (sector_t) page->index <<
2493 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2494
2495 if (!page_has_buffers(page)) {
8dc207c0
TT
2496 mpage_add_bh_to_extent(mpd, logical, PAGE_CACHE_SIZE,
2497 (1 << BH_Dirty) | (1 << BH_Uptodate));
a1d6cc56
AK
2498 if (mpd->io_done)
2499 return MPAGE_DA_EXTENT_TAIL;
64769240
AT
2500 } else {
2501 /*
2502 * Page with regular buffer heads, just add all dirty ones
2503 */
2504 head = page_buffers(page);
2505 bh = head;
2506 do {
2507 BUG_ON(buffer_locked(bh));
791b7f08
AK
2508 /*
2509 * We need to try to allocate
2510 * unmapped blocks in the same page.
2511 * Otherwise we won't make progress
43ce1d23 2512 * with the page in ext4_writepage
791b7f08 2513 */
c364b22c 2514 if (ext4_bh_delay_or_unwritten(NULL, bh)) {
8dc207c0
TT
2515 mpage_add_bh_to_extent(mpd, logical,
2516 bh->b_size,
2517 bh->b_state);
a1d6cc56
AK
2518 if (mpd->io_done)
2519 return MPAGE_DA_EXTENT_TAIL;
791b7f08
AK
2520 } else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2521 /*
2522 * mapped dirty buffer. We need to update
2523 * the b_state because we look at
2524 * b_state in mpage_da_map_blocks. We don't
2525 * update b_size because if we find an
2526 * unmapped buffer_head later we need to
2527 * use the b_state flag of that buffer_head.
2528 */
8dc207c0
TT
2529 if (mpd->b_size == 0)
2530 mpd->b_state = bh->b_state & BH_FLAGS;
a1d6cc56 2531 }
64769240
AT
2532 logical++;
2533 } while ((bh = bh->b_this_page) != head);
2534 }
2535
2536 return 0;
2537}
2538
64769240 2539/*
b920c755
TT
2540 * This is a special get_blocks_t callback which is used by
2541 * ext4_da_write_begin(). It will either return mapped block or
2542 * reserve space for a single block.
29fa89d0
AK
2543 *
2544 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
2545 * We also have b_blocknr = -1 and b_bdev initialized properly
2546 *
2547 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
2548 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
2549 * initialized properly.
64769240
AT
2550 */
2551static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2ed88685 2552 struct buffer_head *bh, int create)
64769240 2553{
2ed88685 2554 struct ext4_map_blocks map;
64769240 2555 int ret = 0;
33b9817e
AK
2556 sector_t invalid_block = ~((sector_t) 0xffff);
2557
2558 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
2559 invalid_block = ~0;
64769240
AT
2560
2561 BUG_ON(create == 0);
2ed88685
TT
2562 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
2563
2564 map.m_lblk = iblock;
2565 map.m_len = 1;
64769240
AT
2566
2567 /*
2568 * first, we need to know whether the block is allocated already
2569 * preallocated blocks are unmapped but should treated
2570 * the same as allocated blocks.
2571 */
2ed88685
TT
2572 ret = ext4_map_blocks(NULL, inode, &map, 0);
2573 if (ret < 0)
2574 return ret;
2575 if (ret == 0) {
2576 if (buffer_delay(bh))
2577 return 0; /* Not sure this could or should happen */
64769240 2578 /*
ebdec241 2579 * XXX: __block_write_begin() unmaps passed block, is it OK?
64769240 2580 */
9d0be502 2581 ret = ext4_da_reserve_space(inode, iblock);
d2a17637
MC
2582 if (ret)
2583 /* not enough space to reserve */
2584 return ret;
2585
2ed88685
TT
2586 map_bh(bh, inode->i_sb, invalid_block);
2587 set_buffer_new(bh);
2588 set_buffer_delay(bh);
2589 return 0;
64769240
AT
2590 }
2591
2ed88685
TT
2592 map_bh(bh, inode->i_sb, map.m_pblk);
2593 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
2594
2595 if (buffer_unwritten(bh)) {
2596 /* A delayed write to unwritten bh should be marked
2597 * new and mapped. Mapped ensures that we don't do
2598 * get_block multiple times when we write to the same
2599 * offset and new ensures that we do proper zero out
2600 * for partial write.
2601 */
2602 set_buffer_new(bh);
2603 set_buffer_mapped(bh);
2604 }
2605 return 0;
64769240 2606}
61628a3f 2607
b920c755
TT
2608/*
2609 * This function is used as a standard get_block_t calback function
2610 * when there is no desire to allocate any blocks. It is used as a
ebdec241 2611 * callback function for block_write_begin() and block_write_full_page().
206f7ab4 2612 * These functions should only try to map a single block at a time.
b920c755
TT
2613 *
2614 * Since this function doesn't do block allocations even if the caller
2615 * requests it by passing in create=1, it is critically important that
2616 * any caller checks to make sure that any buffer heads are returned
2617 * by this function are either all already mapped or marked for
206f7ab4
CH
2618 * delayed allocation before calling block_write_full_page(). Otherwise,
2619 * b_blocknr could be left unitialized, and the page write functions will
2620 * be taken by surprise.
b920c755
TT
2621 */
2622static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
f0e6c985
AK
2623 struct buffer_head *bh_result, int create)
2624{
a2dc52b5 2625 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2ed88685 2626 return _ext4_get_block(inode, iblock, bh_result, 0);
61628a3f
MC
2627}
2628
62e086be
AK
2629static int bget_one(handle_t *handle, struct buffer_head *bh)
2630{
2631 get_bh(bh);
2632 return 0;
2633}
2634
2635static int bput_one(handle_t *handle, struct buffer_head *bh)
2636{
2637 put_bh(bh);
2638 return 0;
2639}
2640
2641static int __ext4_journalled_writepage(struct page *page,
62e086be
AK
2642 unsigned int len)
2643{
2644 struct address_space *mapping = page->mapping;
2645 struct inode *inode = mapping->host;
2646 struct buffer_head *page_bufs;
2647 handle_t *handle = NULL;
2648 int ret = 0;
2649 int err;
2650
cb20d518 2651 ClearPageChecked(page);
62e086be
AK
2652 page_bufs = page_buffers(page);
2653 BUG_ON(!page_bufs);
2654 walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
2655 /* As soon as we unlock the page, it can go away, but we have
2656 * references to buffers so we are safe */
2657 unlock_page(page);
2658
2659 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
2660 if (IS_ERR(handle)) {
2661 ret = PTR_ERR(handle);
2662 goto out;
2663 }
2664
2665 ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
2666 do_journal_get_write_access);
2667
2668 err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
2669 write_end_fn);
2670 if (ret == 0)
2671 ret = err;
2672 err = ext4_journal_stop(handle);
2673 if (!ret)
2674 ret = err;
2675
2676 walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
19f5fb7a 2677 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
62e086be
AK
2678out:
2679 return ret;
2680}
2681
744692dc
JZ
2682static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
2683static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
2684
61628a3f 2685/*
43ce1d23
AK
2686 * Note that we don't need to start a transaction unless we're journaling data
2687 * because we should have holes filled from ext4_page_mkwrite(). We even don't
2688 * need to file the inode to the transaction's list in ordered mode because if
2689 * we are writing back data added by write(), the inode is already there and if
2690 * we are writing back data modified via mmap(), noone guarantees in which
2691 * transaction the data will hit the disk. In case we are journaling data, we
2692 * cannot start transaction directly because transaction start ranks above page
2693 * lock so we have to do some magic.
2694 *
b920c755
TT
2695 * This function can get called via...
2696 * - ext4_da_writepages after taking page lock (have journal handle)
2697 * - journal_submit_inode_data_buffers (no journal handle)
2698 * - shrink_page_list via pdflush (no journal handle)
2699 * - grab_page_cache when doing write_begin (have journal handle)
43ce1d23
AK
2700 *
2701 * We don't do any block allocation in this function. If we have page with
2702 * multiple blocks we need to write those buffer_heads that are mapped. This
2703 * is important for mmaped based write. So if we do with blocksize 1K
2704 * truncate(f, 1024);
2705 * a = mmap(f, 0, 4096);
2706 * a[0] = 'a';
2707 * truncate(f, 4096);
2708 * we have in the page first buffer_head mapped via page_mkwrite call back
2709 * but other bufer_heads would be unmapped but dirty(dirty done via the
2710 * do_wp_page). So writepage should write the first block. If we modify
2711 * the mmap area beyond 1024 we will again get a page_fault and the
2712 * page_mkwrite callback will do the block allocation and mark the
2713 * buffer_heads mapped.
2714 *
2715 * We redirty the page if we have any buffer_heads that is either delay or
2716 * unwritten in the page.
2717 *
2718 * We can get recursively called as show below.
2719 *
2720 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2721 * ext4_writepage()
2722 *
2723 * But since we don't do any block allocation we should not deadlock.
2724 * Page also have the dirty flag cleared so we don't get recurive page_lock.
61628a3f 2725 */
43ce1d23 2726static int ext4_writepage(struct page *page,
62e086be 2727 struct writeback_control *wbc)
64769240 2728{
a42afc5f 2729 int ret = 0, commit_write = 0;
61628a3f 2730 loff_t size;
498e5f24 2731 unsigned int len;
744692dc 2732 struct buffer_head *page_bufs = NULL;
61628a3f
MC
2733 struct inode *inode = page->mapping->host;
2734
43ce1d23 2735 trace_ext4_writepage(inode, page);
f0e6c985
AK
2736 size = i_size_read(inode);
2737 if (page->index == size >> PAGE_CACHE_SHIFT)
2738 len = size & ~PAGE_CACHE_MASK;
2739 else
2740 len = PAGE_CACHE_SIZE;
64769240 2741
a42afc5f
TT
2742 /*
2743 * If the page does not have buffers (for whatever reason),
a107e5a3 2744 * try to create them using __block_write_begin. If this
a42afc5f
TT
2745 * fails, redirty the page and move on.
2746 */
b1142e8f 2747 if (!page_has_buffers(page)) {
a107e5a3 2748 if (__block_write_begin(page, 0, len,
a42afc5f
TT
2749 noalloc_get_block_write)) {
2750 redirty_page:
f0e6c985
AK
2751 redirty_page_for_writepage(wbc, page);
2752 unlock_page(page);
2753 return 0;
2754 }
a42afc5f
TT
2755 commit_write = 1;
2756 }
2757 page_bufs = page_buffers(page);
2758 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2759 ext4_bh_delay_or_unwritten)) {
f0e6c985 2760 /*
b1142e8f
TT
2761 * We don't want to do block allocation, so redirty
2762 * the page and return. We may reach here when we do
2763 * a journal commit via journal_submit_inode_data_buffers.
2764 * We can also reach here via shrink_page_list
f0e6c985 2765 */
a42afc5f
TT
2766 goto redirty_page;
2767 }
2768 if (commit_write)
ed9b3e33 2769 /* now mark the buffer_heads as dirty and uptodate */
b767e78a 2770 block_commit_write(page, 0, len);
64769240 2771
cb20d518 2772 if (PageChecked(page) && ext4_should_journal_data(inode))
43ce1d23
AK
2773 /*
2774 * It's mmapped pagecache. Add buffers and journal it. There
2775 * doesn't seem much point in redirtying the page here.
2776 */
3f0ca309 2777 return __ext4_journalled_writepage(page, len);
43ce1d23 2778
a42afc5f 2779 if (buffer_uninit(page_bufs)) {
744692dc
JZ
2780 ext4_set_bh_endio(page_bufs, inode);
2781 ret = block_write_full_page_endio(page, noalloc_get_block_write,
2782 wbc, ext4_end_io_buffer_write);
2783 } else
b920c755
TT
2784 ret = block_write_full_page(page, noalloc_get_block_write,
2785 wbc);
64769240 2786
64769240
AT
2787 return ret;
2788}
2789
61628a3f 2790/*
525f4ed8
MC
2791 * This is called via ext4_da_writepages() to
2792 * calulate the total number of credits to reserve to fit
2793 * a single extent allocation into a single transaction,
2794 * ext4_da_writpeages() will loop calling this before
2795 * the block allocation.
61628a3f 2796 */
525f4ed8
MC
2797
2798static int ext4_da_writepages_trans_blocks(struct inode *inode)
2799{
2800 int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2801
2802 /*
2803 * With non-extent format the journal credit needed to
2804 * insert nrblocks contiguous block is dependent on
2805 * number of contiguous block. So we will limit
2806 * number of contiguous block to a sane value
2807 */
12e9b892 2808 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
525f4ed8
MC
2809 (max_blocks > EXT4_MAX_TRANS_DATA))
2810 max_blocks = EXT4_MAX_TRANS_DATA;
2811
2812 return ext4_chunk_trans_blocks(inode, max_blocks);
2813}
61628a3f 2814
8e48dcfb
TT
2815/*
2816 * write_cache_pages_da - walk the list of dirty pages of the given
2817 * address space and call the callback function (which usually writes
2818 * the pages).
2819 *
2820 * This is a forked version of write_cache_pages(). Differences:
2821 * Range cyclic is ignored.
2822 * no_nrwrite_index_update is always presumed true
2823 */
2824static int write_cache_pages_da(struct address_space *mapping,
2825 struct writeback_control *wbc,
72f84e65
ES
2826 struct mpage_da_data *mpd,
2827 pgoff_t *done_index)
8e48dcfb
TT
2828{
2829 int ret = 0;
2830 int done = 0;
2831 struct pagevec pvec;
72f84e65 2832 unsigned nr_pages;
8e48dcfb
TT
2833 pgoff_t index;
2834 pgoff_t end; /* Inclusive */
2835 long nr_to_write = wbc->nr_to_write;
5b41d924 2836 int tag;
8e48dcfb
TT
2837
2838 pagevec_init(&pvec, 0);
2839 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2840 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2841
5b41d924
ES
2842 if (wbc->sync_mode == WB_SYNC_ALL)
2843 tag = PAGECACHE_TAG_TOWRITE;
2844 else
2845 tag = PAGECACHE_TAG_DIRTY;
2846
72f84e65 2847 *done_index = index;
8e48dcfb
TT
2848 while (!done && (index <= end)) {
2849 int i;
2850
5b41d924 2851 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
8e48dcfb
TT
2852 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2853 if (nr_pages == 0)
2854 break;
2855
2856 for (i = 0; i < nr_pages; i++) {
2857 struct page *page = pvec.pages[i];
2858
2859 /*
2860 * At this point, the page may be truncated or
2861 * invalidated (changing page->mapping to NULL), or
2862 * even swizzled back from swapper_space to tmpfs file
2863 * mapping. However, page->index will not change
2864 * because we have a reference on the page.
2865 */
2866 if (page->index > end) {
2867 done = 1;
2868 break;
2869 }
2870
72f84e65
ES
2871 *done_index = page->index + 1;
2872
8e48dcfb
TT
2873 lock_page(page);
2874
2875 /*
2876 * Page truncated or invalidated. We can freely skip it
2877 * then, even for data integrity operations: the page
2878 * has disappeared concurrently, so there could be no
2879 * real expectation of this data interity operation
2880 * even if there is now a new, dirty page at the same
2881 * pagecache address.
2882 */
2883 if (unlikely(page->mapping != mapping)) {
2884continue_unlock:
2885 unlock_page(page);
2886 continue;
2887 }
2888
2889 if (!PageDirty(page)) {
2890 /* someone wrote it for us */
2891 goto continue_unlock;
2892 }
2893
2894 if (PageWriteback(page)) {
2895 if (wbc->sync_mode != WB_SYNC_NONE)
2896 wait_on_page_writeback(page);
2897 else
2898 goto continue_unlock;
2899 }
2900
2901 BUG_ON(PageWriteback(page));
2902 if (!clear_page_dirty_for_io(page))
2903 goto continue_unlock;
2904
2905 ret = __mpage_da_writepage(page, wbc, mpd);
2906 if (unlikely(ret)) {
2907 if (ret == AOP_WRITEPAGE_ACTIVATE) {
2908 unlock_page(page);
2909 ret = 0;
2910 } else {
2911 done = 1;
2912 break;
2913 }
2914 }
2915
2916 if (nr_to_write > 0) {
2917 nr_to_write--;
2918 if (nr_to_write == 0 &&
2919 wbc->sync_mode == WB_SYNC_NONE) {
2920 /*
2921 * We stop writing back only if we are
2922 * not doing integrity sync. In case of
2923 * integrity sync we have to keep going
2924 * because someone may be concurrently
2925 * dirtying pages, and we might have
2926 * synced a lot of newly appeared dirty
2927 * pages, but have not synced all of the
2928 * old dirty pages.
2929 */
2930 done = 1;
2931 break;
2932 }
2933 }
2934 }
2935 pagevec_release(&pvec);
2936 cond_resched();
2937 }
2938 return ret;
2939}
2940
2941
64769240 2942static int ext4_da_writepages(struct address_space *mapping,
a1d6cc56 2943 struct writeback_control *wbc)
64769240 2944{
22208ded
AK
2945 pgoff_t index;
2946 int range_whole = 0;
61628a3f 2947 handle_t *handle = NULL;
df22291f 2948 struct mpage_da_data mpd;
5e745b04 2949 struct inode *inode = mapping->host;
498e5f24
TT
2950 int pages_written = 0;
2951 long pages_skipped;
55138e0b 2952 unsigned int max_pages;
2acf2c26 2953 int range_cyclic, cycled = 1, io_done = 0;
55138e0b
TT
2954 int needed_blocks, ret = 0;
2955 long desired_nr_to_write, nr_to_writebump = 0;
de89de6e 2956 loff_t range_start = wbc->range_start;
5e745b04 2957 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
72f84e65 2958 pgoff_t done_index = 0;
5b41d924 2959 pgoff_t end;
61628a3f 2960
9bffad1e 2961 trace_ext4_da_writepages(inode, wbc);
ba80b101 2962
61628a3f
MC
2963 /*
2964 * No pages to write? This is mainly a kludge to avoid starting
2965 * a transaction for special inodes like journal inode on last iput()
2966 * because that could violate lock ordering on umount
2967 */
a1d6cc56 2968 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
61628a3f 2969 return 0;
2a21e37e
TT
2970
2971 /*
2972 * If the filesystem has aborted, it is read-only, so return
2973 * right away instead of dumping stack traces later on that
2974 * will obscure the real source of the problem. We test
4ab2f15b 2975 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2a21e37e
TT
2976 * the latter could be true if the filesystem is mounted
2977 * read-only, and in that case, ext4_da_writepages should
2978 * *never* be called, so if that ever happens, we would want
2979 * the stack trace.
2980 */
4ab2f15b 2981 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2a21e37e
TT
2982 return -EROFS;
2983
22208ded
AK
2984 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2985 range_whole = 1;
61628a3f 2986
2acf2c26
AK
2987 range_cyclic = wbc->range_cyclic;
2988 if (wbc->range_cyclic) {
22208ded 2989 index = mapping->writeback_index;
2acf2c26
AK
2990 if (index)
2991 cycled = 0;
2992 wbc->range_start = index << PAGE_CACHE_SHIFT;
2993 wbc->range_end = LLONG_MAX;
2994 wbc->range_cyclic = 0;
5b41d924
ES
2995 end = -1;
2996 } else {
22208ded 2997 index = wbc->range_start >> PAGE_CACHE_SHIFT;
5b41d924
ES
2998 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2999 }
a1d6cc56 3000
55138e0b
TT
3001 /*
3002 * This works around two forms of stupidity. The first is in
3003 * the writeback code, which caps the maximum number of pages
3004 * written to be 1024 pages. This is wrong on multiple
3005 * levels; different architectues have a different page size,
3006 * which changes the maximum amount of data which gets
3007 * written. Secondly, 4 megabytes is way too small. XFS
3008 * forces this value to be 16 megabytes by multiplying
3009 * nr_to_write parameter by four, and then relies on its
3010 * allocator to allocate larger extents to make them
3011 * contiguous. Unfortunately this brings us to the second
3012 * stupidity, which is that ext4's mballoc code only allocates
3013 * at most 2048 blocks. So we force contiguous writes up to
3014 * the number of dirty blocks in the inode, or
3015 * sbi->max_writeback_mb_bump whichever is smaller.
3016 */
3017 max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
b443e733
ES
3018 if (!range_cyclic && range_whole) {
3019 if (wbc->nr_to_write == LONG_MAX)
3020 desired_nr_to_write = wbc->nr_to_write;
3021 else
3022 desired_nr_to_write = wbc->nr_to_write * 8;
3023 } else
55138e0b
TT
3024 desired_nr_to_write = ext4_num_dirty_pages(inode, index,
3025 max_pages);
3026 if (desired_nr_to_write > max_pages)
3027 desired_nr_to_write = max_pages;
3028
3029 if (wbc->nr_to_write < desired_nr_to_write) {
3030 nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
3031 wbc->nr_to_write = desired_nr_to_write;
3032 }
3033
df22291f
AK
3034 mpd.wbc = wbc;
3035 mpd.inode = mapping->host;
3036
22208ded
AK
3037 pages_skipped = wbc->pages_skipped;
3038
2acf2c26 3039retry:
5b41d924
ES
3040 if (wbc->sync_mode == WB_SYNC_ALL)
3041 tag_pages_for_writeback(mapping, index, end);
3042
22208ded 3043 while (!ret && wbc->nr_to_write > 0) {
a1d6cc56
AK
3044
3045 /*
3046 * we insert one extent at a time. So we need
3047 * credit needed for single extent allocation.
3048 * journalled mode is currently not supported
3049 * by delalloc
3050 */
3051 BUG_ON(ext4_should_journal_data(inode));
525f4ed8 3052 needed_blocks = ext4_da_writepages_trans_blocks(inode);
a1d6cc56 3053
61628a3f
MC
3054 /* start a new transaction*/
3055 handle = ext4_journal_start(inode, needed_blocks);
3056 if (IS_ERR(handle)) {
3057 ret = PTR_ERR(handle);
1693918e 3058 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
fbe845dd 3059 "%ld pages, ino %lu; err %d", __func__,
a1d6cc56 3060 wbc->nr_to_write, inode->i_ino, ret);
61628a3f
MC
3061 goto out_writepages;
3062 }
f63e6005
TT
3063
3064 /*
3065 * Now call __mpage_da_writepage to find the next
3066 * contiguous region of logical blocks that need
3067 * blocks to be allocated by ext4. We don't actually
3068 * submit the blocks for I/O here, even though
3069 * write_cache_pages thinks it will, and will set the
3070 * pages as clean for write before calling
3071 * __mpage_da_writepage().
3072 */
3073 mpd.b_size = 0;
3074 mpd.b_state = 0;
3075 mpd.b_blocknr = 0;
3076 mpd.first_page = 0;
3077 mpd.next_page = 0;
3078 mpd.io_done = 0;
3079 mpd.pages_written = 0;
3080 mpd.retval = 0;
72f84e65 3081 ret = write_cache_pages_da(mapping, wbc, &mpd, &done_index);
f63e6005 3082 /*
af901ca1 3083 * If we have a contiguous extent of pages and we
f63e6005
TT
3084 * haven't done the I/O yet, map the blocks and submit
3085 * them for I/O.
3086 */
3087 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
5a87b7a5 3088 mpage_da_map_and_submit(&mpd);
f63e6005
TT
3089 ret = MPAGE_DA_EXTENT_TAIL;
3090 }
b3a3ca8c 3091 trace_ext4_da_write_pages(inode, &mpd);
f63e6005 3092 wbc->nr_to_write -= mpd.pages_written;
df22291f 3093
61628a3f 3094 ext4_journal_stop(handle);
df22291f 3095
8f64b32e 3096 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
22208ded
AK
3097 /* commit the transaction which would
3098 * free blocks released in the transaction
3099 * and try again
3100 */
df22291f 3101 jbd2_journal_force_commit_nested(sbi->s_journal);
22208ded
AK
3102 wbc->pages_skipped = pages_skipped;
3103 ret = 0;
3104 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
a1d6cc56
AK
3105 /*
3106 * got one extent now try with
3107 * rest of the pages
3108 */
22208ded
AK
3109 pages_written += mpd.pages_written;
3110 wbc->pages_skipped = pages_skipped;
a1d6cc56 3111 ret = 0;
2acf2c26 3112 io_done = 1;
22208ded 3113 } else if (wbc->nr_to_write)
61628a3f
MC
3114 /*
3115 * There is no more writeout needed
3116 * or we requested for a noblocking writeout
3117 * and we found the device congested
3118 */
61628a3f 3119 break;
a1d6cc56 3120 }
2acf2c26
AK
3121 if (!io_done && !cycled) {
3122 cycled = 1;
3123 index = 0;
3124 wbc->range_start = index << PAGE_CACHE_SHIFT;
3125 wbc->range_end = mapping->writeback_index - 1;
3126 goto retry;
3127 }
22208ded 3128 if (pages_skipped != wbc->pages_skipped)
1693918e
TT
3129 ext4_msg(inode->i_sb, KERN_CRIT,
3130 "This should not happen leaving %s "
fbe845dd 3131 "with nr_to_write = %ld ret = %d",
1693918e 3132 __func__, wbc->nr_to_write, ret);
22208ded
AK
3133
3134 /* Update index */
2acf2c26 3135 wbc->range_cyclic = range_cyclic;
22208ded
AK
3136 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
3137 /*
3138 * set the writeback_index so that range_cyclic
3139 * mode will write it back later
3140 */
72f84e65 3141 mapping->writeback_index = done_index;
a1d6cc56 3142
61628a3f 3143out_writepages:
2faf2e19 3144 wbc->nr_to_write -= nr_to_writebump;
de89de6e 3145 wbc->range_start = range_start;
9bffad1e 3146 trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
61628a3f 3147 return ret;
64769240
AT
3148}
3149
79f0be8d
AK
3150#define FALL_BACK_TO_NONDELALLOC 1
3151static int ext4_nonda_switch(struct super_block *sb)
3152{
3153 s64 free_blocks, dirty_blocks;
3154 struct ext4_sb_info *sbi = EXT4_SB(sb);
3155
3156 /*
3157 * switch to non delalloc mode if we are running low
3158 * on free block. The free block accounting via percpu
179f7ebf 3159 * counters can get slightly wrong with percpu_counter_batch getting
79f0be8d
AK
3160 * accumulated on each CPU without updating global counters
3161 * Delalloc need an accurate free block accounting. So switch
3162 * to non delalloc when we are near to error range.
3163 */
3164 free_blocks = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
3165 dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
3166 if (2 * free_blocks < 3 * dirty_blocks ||
3167 free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
3168 /*
c8afb446
ES
3169 * free block count is less than 150% of dirty blocks
3170 * or free blocks is less than watermark
79f0be8d
AK
3171 */
3172 return 1;
3173 }
c8afb446
ES
3174 /*
3175 * Even if we don't switch but are nearing capacity,
3176 * start pushing delalloc when 1/2 of free blocks are dirty.
3177 */
3178 if (free_blocks < 2 * dirty_blocks)
3179 writeback_inodes_sb_if_idle(sb);
3180
79f0be8d
AK
3181 return 0;
3182}
3183
64769240 3184static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
de9a55b8
TT
3185 loff_t pos, unsigned len, unsigned flags,
3186 struct page **pagep, void **fsdata)
64769240 3187{
72b8ab9d 3188 int ret, retries = 0;
64769240
AT
3189 struct page *page;
3190 pgoff_t index;
64769240
AT
3191 struct inode *inode = mapping->host;
3192 handle_t *handle;
3193
3194 index = pos >> PAGE_CACHE_SHIFT;
79f0be8d
AK
3195
3196 if (ext4_nonda_switch(inode->i_sb)) {
3197 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
3198 return ext4_write_begin(file, mapping, pos,
3199 len, flags, pagep, fsdata);
3200 }
3201 *fsdata = (void *)0;
9bffad1e 3202 trace_ext4_da_write_begin(inode, pos, len, flags);
d2a17637 3203retry:
64769240
AT
3204 /*
3205 * With delayed allocation, we don't log the i_disksize update
3206 * if there is delayed block allocation. But we still need
3207 * to journalling the i_disksize update if writes to the end
3208 * of file which has an already mapped buffer.
3209 */
3210 handle = ext4_journal_start(inode, 1);
3211 if (IS_ERR(handle)) {
3212 ret = PTR_ERR(handle);
3213 goto out;
3214 }
ebd3610b
JK
3215 /* We cannot recurse into the filesystem as the transaction is already
3216 * started */
3217 flags |= AOP_FLAG_NOFS;
64769240 3218
54566b2c 3219 page = grab_cache_page_write_begin(mapping, index, flags);
d5a0d4f7
ES
3220 if (!page) {
3221 ext4_journal_stop(handle);
3222 ret = -ENOMEM;
3223 goto out;
3224 }
64769240
AT
3225 *pagep = page;
3226
6e1db88d 3227 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
64769240
AT
3228 if (ret < 0) {
3229 unlock_page(page);
3230 ext4_journal_stop(handle);
3231 page_cache_release(page);
ae4d5372
AK
3232 /*
3233 * block_write_begin may have instantiated a few blocks
3234 * outside i_size. Trim these off again. Don't need
3235 * i_size_read because we hold i_mutex.
3236 */
3237 if (pos + len > inode->i_size)
b9a4207d 3238 ext4_truncate_failed_write(inode);
64769240
AT
3239 }
3240
d2a17637
MC
3241 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3242 goto retry;
64769240
AT
3243out:
3244 return ret;
3245}
3246
632eaeab
MC
3247/*
3248 * Check if we should update i_disksize
3249 * when write to the end of file but not require block allocation
3250 */
3251static int ext4_da_should_update_i_disksize(struct page *page,
de9a55b8 3252 unsigned long offset)
632eaeab
MC
3253{
3254 struct buffer_head *bh;
3255 struct inode *inode = page->mapping->host;
3256 unsigned int idx;
3257 int i;
3258
3259 bh = page_buffers(page);
3260 idx = offset >> inode->i_blkbits;
3261
af5bc92d 3262 for (i = 0; i < idx; i++)
632eaeab
MC
3263 bh = bh->b_this_page;
3264
29fa89d0 3265 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
632eaeab
MC
3266 return 0;
3267 return 1;
3268}
3269
64769240 3270static int ext4_da_write_end(struct file *file,
de9a55b8
TT
3271 struct address_space *mapping,
3272 loff_t pos, unsigned len, unsigned copied,
3273 struct page *page, void *fsdata)
64769240
AT
3274{
3275 struct inode *inode = mapping->host;
3276 int ret = 0, ret2;
3277 handle_t *handle = ext4_journal_current_handle();
3278 loff_t new_i_size;
632eaeab 3279 unsigned long start, end;
79f0be8d
AK
3280 int write_mode = (int)(unsigned long)fsdata;
3281
3282 if (write_mode == FALL_BACK_TO_NONDELALLOC) {
3283 if (ext4_should_order_data(inode)) {
3284 return ext4_ordered_write_end(file, mapping, pos,
3285 len, copied, page, fsdata);
3286 } else if (ext4_should_writeback_data(inode)) {
3287 return ext4_writeback_write_end(file, mapping, pos,
3288 len, copied, page, fsdata);
3289 } else {
3290 BUG();
3291 }
3292 }
632eaeab 3293
9bffad1e 3294 trace_ext4_da_write_end(inode, pos, len, copied);
632eaeab 3295 start = pos & (PAGE_CACHE_SIZE - 1);
af5bc92d 3296 end = start + copied - 1;
64769240
AT
3297
3298 /*
3299 * generic_write_end() will run mark_inode_dirty() if i_size
3300 * changes. So let's piggyback the i_disksize mark_inode_dirty
3301 * into that.
3302 */
3303
3304 new_i_size = pos + copied;
632eaeab
MC
3305 if (new_i_size > EXT4_I(inode)->i_disksize) {
3306 if (ext4_da_should_update_i_disksize(page, end)) {
3307 down_write(&EXT4_I(inode)->i_data_sem);
3308 if (new_i_size > EXT4_I(inode)->i_disksize) {
3309 /*
3310 * Updating i_disksize when extending file
3311 * without needing block allocation
3312 */
3313 if (ext4_should_order_data(inode))
3314 ret = ext4_jbd2_file_inode(handle,
3315 inode);
64769240 3316
632eaeab
MC
3317 EXT4_I(inode)->i_disksize = new_i_size;
3318 }
3319 up_write(&EXT4_I(inode)->i_data_sem);
cf17fea6
AK
3320 /* We need to mark inode dirty even if
3321 * new_i_size is less that inode->i_size
3322 * bu greater than i_disksize.(hint delalloc)
3323 */
3324 ext4_mark_inode_dirty(handle, inode);
64769240 3325 }
632eaeab 3326 }
64769240
AT
3327 ret2 = generic_write_end(file, mapping, pos, len, copied,
3328 page, fsdata);
3329 copied = ret2;
3330 if (ret2 < 0)
3331 ret = ret2;
3332 ret2 = ext4_journal_stop(handle);
3333 if (!ret)
3334 ret = ret2;
3335
3336 return ret ? ret : copied;
3337}
3338
3339static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
3340{
64769240
AT
3341 /*
3342 * Drop reserved blocks
3343 */
3344 BUG_ON(!PageLocked(page));
3345 if (!page_has_buffers(page))
3346 goto out;
3347
d2a17637 3348 ext4_da_page_release_reservation(page, offset);
64769240
AT
3349
3350out:
3351 ext4_invalidatepage(page, offset);
3352
3353 return;
3354}
3355
ccd2506b
TT
3356/*
3357 * Force all delayed allocation blocks to be allocated for a given inode.
3358 */
3359int ext4_alloc_da_blocks(struct inode *inode)
3360{
fb40ba0d
TT
3361 trace_ext4_alloc_da_blocks(inode);
3362
ccd2506b
TT
3363 if (!EXT4_I(inode)->i_reserved_data_blocks &&
3364 !EXT4_I(inode)->i_reserved_meta_blocks)
3365 return 0;
3366
3367 /*
3368 * We do something simple for now. The filemap_flush() will
3369 * also start triggering a write of the data blocks, which is
3370 * not strictly speaking necessary (and for users of
3371 * laptop_mode, not even desirable). However, to do otherwise
3372 * would require replicating code paths in:
de9a55b8 3373 *
ccd2506b
TT
3374 * ext4_da_writepages() ->
3375 * write_cache_pages() ---> (via passed in callback function)
3376 * __mpage_da_writepage() -->
3377 * mpage_add_bh_to_extent()
3378 * mpage_da_map_blocks()
3379 *
3380 * The problem is that write_cache_pages(), located in
3381 * mm/page-writeback.c, marks pages clean in preparation for
3382 * doing I/O, which is not desirable if we're not planning on
3383 * doing I/O at all.
3384 *
3385 * We could call write_cache_pages(), and then redirty all of
380cf090 3386 * the pages by calling redirty_page_for_writepage() but that
ccd2506b
TT
3387 * would be ugly in the extreme. So instead we would need to
3388 * replicate parts of the code in the above functions,
3389 * simplifying them becuase we wouldn't actually intend to
3390 * write out the pages, but rather only collect contiguous
3391 * logical block extents, call the multi-block allocator, and
3392 * then update the buffer heads with the block allocations.
de9a55b8 3393 *
ccd2506b
TT
3394 * For now, though, we'll cheat by calling filemap_flush(),
3395 * which will map the blocks, and start the I/O, but not
3396 * actually wait for the I/O to complete.
3397 */
3398 return filemap_flush(inode->i_mapping);
3399}
64769240 3400
ac27a0ec
DK
3401/*
3402 * bmap() is special. It gets used by applications such as lilo and by
3403 * the swapper to find the on-disk block of a specific piece of data.
3404 *
3405 * Naturally, this is dangerous if the block concerned is still in the
617ba13b 3406 * journal. If somebody makes a swapfile on an ext4 data-journaling
ac27a0ec
DK
3407 * filesystem and enables swap, then they may get a nasty shock when the
3408 * data getting swapped to that swapfile suddenly gets overwritten by
3409 * the original zero's written out previously to the journal and
3410 * awaiting writeback in the kernel's buffer cache.
3411 *
3412 * So, if we see any bmap calls here on a modified, data-journaled file,
3413 * take extra steps to flush any blocks which might be in the cache.
3414 */
617ba13b 3415static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
ac27a0ec
DK
3416{
3417 struct inode *inode = mapping->host;
3418 journal_t *journal;
3419 int err;
3420
64769240
AT
3421 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3422 test_opt(inode->i_sb, DELALLOC)) {
3423 /*
3424 * With delalloc we want to sync the file
3425 * so that we can make sure we allocate
3426 * blocks for file
3427 */
3428 filemap_write_and_wait(mapping);
3429 }
3430
19f5fb7a
TT
3431 if (EXT4_JOURNAL(inode) &&
3432 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
ac27a0ec
DK
3433 /*
3434 * This is a REALLY heavyweight approach, but the use of
3435 * bmap on dirty files is expected to be extremely rare:
3436 * only if we run lilo or swapon on a freshly made file
3437 * do we expect this to happen.
3438 *
3439 * (bmap requires CAP_SYS_RAWIO so this does not
3440 * represent an unprivileged user DOS attack --- we'd be
3441 * in trouble if mortal users could trigger this path at
3442 * will.)
3443 *
617ba13b 3444 * NB. EXT4_STATE_JDATA is not set on files other than
ac27a0ec
DK
3445 * regular files. If somebody wants to bmap a directory
3446 * or symlink and gets confused because the buffer
3447 * hasn't yet been flushed to disk, they deserve
3448 * everything they get.
3449 */
3450
19f5fb7a 3451 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
617ba13b 3452 journal = EXT4_JOURNAL(inode);
dab291af
MC
3453 jbd2_journal_lock_updates(journal);
3454 err = jbd2_journal_flush(journal);
3455 jbd2_journal_unlock_updates(journal);
ac27a0ec
DK
3456
3457 if (err)
3458 return 0;
3459 }
3460
af5bc92d 3461 return generic_block_bmap(mapping, block, ext4_get_block);
ac27a0ec
DK
3462}
3463
617ba13b 3464static int ext4_readpage(struct file *file, struct page *page)
ac27a0ec 3465{
617ba13b 3466 return mpage_readpage(page, ext4_get_block);
ac27a0ec
DK
3467}
3468
3469static int
617ba13b 3470ext4_readpages(struct file *file, struct address_space *mapping,
ac27a0ec
DK
3471 struct list_head *pages, unsigned nr_pages)
3472{
617ba13b 3473 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
ac27a0ec
DK
3474}
3475
744692dc
JZ
3476static void ext4_invalidatepage_free_endio(struct page *page, unsigned long offset)
3477{
3478 struct buffer_head *head, *bh;
3479 unsigned int curr_off = 0;
3480
3481 if (!page_has_buffers(page))
3482 return;
3483 head = bh = page_buffers(page);
3484 do {
3485 if (offset <= curr_off && test_clear_buffer_uninit(bh)
3486 && bh->b_private) {
3487 ext4_free_io_end(bh->b_private);
3488 bh->b_private = NULL;
3489 bh->b_end_io = NULL;
3490 }
3491 curr_off = curr_off + bh->b_size;
3492 bh = bh->b_this_page;
3493 } while (bh != head);
3494}
3495
617ba13b 3496static void ext4_invalidatepage(struct page *page, unsigned long offset)
ac27a0ec 3497{
617ba13b 3498 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
ac27a0ec 3499
744692dc
JZ
3500 /*
3501 * free any io_end structure allocated for buffers to be discarded
3502 */
3503 if (ext4_should_dioread_nolock(page->mapping->host))
3504 ext4_invalidatepage_free_endio(page, offset);
ac27a0ec
DK
3505 /*
3506 * If it's a full truncate we just forget about the pending dirtying
3507 */
3508 if (offset == 0)
3509 ClearPageChecked(page);
3510
0390131b
FM
3511 if (journal)
3512 jbd2_journal_invalidatepage(journal, page, offset);
3513 else
3514 block_invalidatepage(page, offset);
ac27a0ec
DK
3515}
3516
617ba13b 3517static int ext4_releasepage(struct page *page, gfp_t wait)
ac27a0ec 3518{
617ba13b 3519 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
ac27a0ec
DK
3520
3521 WARN_ON(PageChecked(page));
3522 if (!page_has_buffers(page))
3523 return 0;
0390131b
FM
3524 if (journal)
3525 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3526 else
3527 return try_to_free_buffers(page);
ac27a0ec
DK
3528}
3529
3530/*
4c0425ff
MC
3531 * O_DIRECT for ext3 (or indirect map) based files
3532 *
ac27a0ec
DK
3533 * If the O_DIRECT write will extend the file then add this inode to the
3534 * orphan list. So recovery will truncate it back to the original size
3535 * if the machine crashes during the write.
3536 *
3537 * If the O_DIRECT write is intantiating holes inside i_size and the machine
7fb5409d
JK
3538 * crashes then stale disk data _may_ be exposed inside the file. But current
3539 * VFS code falls back into buffered path in that case so we are safe.
ac27a0ec 3540 */
4c0425ff 3541static ssize_t ext4_ind_direct_IO(int rw, struct kiocb *iocb,
de9a55b8
TT
3542 const struct iovec *iov, loff_t offset,
3543 unsigned long nr_segs)
ac27a0ec
DK
3544{
3545 struct file *file = iocb->ki_filp;
3546 struct inode *inode = file->f_mapping->host;
617ba13b 3547 struct ext4_inode_info *ei = EXT4_I(inode);
7fb5409d 3548 handle_t *handle;
ac27a0ec
DK
3549 ssize_t ret;
3550 int orphan = 0;
3551 size_t count = iov_length(iov, nr_segs);
fbbf6945 3552 int retries = 0;
ac27a0ec
DK
3553
3554 if (rw == WRITE) {
3555 loff_t final_size = offset + count;
3556
ac27a0ec 3557 if (final_size > inode->i_size) {
7fb5409d
JK
3558 /* Credits for sb + inode write */
3559 handle = ext4_journal_start(inode, 2);
3560 if (IS_ERR(handle)) {
3561 ret = PTR_ERR(handle);
3562 goto out;
3563 }
617ba13b 3564 ret = ext4_orphan_add(handle, inode);
7fb5409d
JK
3565 if (ret) {
3566 ext4_journal_stop(handle);
3567 goto out;
3568 }
ac27a0ec
DK
3569 orphan = 1;
3570 ei->i_disksize = inode->i_size;
7fb5409d 3571 ext4_journal_stop(handle);
ac27a0ec
DK
3572 }
3573 }
3574
fbbf6945 3575retry:
b7adc1f3 3576 if (rw == READ && ext4_should_dioread_nolock(inode))
eafdc7d1 3577 ret = __blockdev_direct_IO(rw, iocb, inode,
b7adc1f3
JZ
3578 inode->i_sb->s_bdev, iov,
3579 offset, nr_segs,
eafdc7d1
CH
3580 ext4_get_block, NULL, NULL, 0);
3581 else {
b7adc1f3
JZ
3582 ret = blockdev_direct_IO(rw, iocb, inode,
3583 inode->i_sb->s_bdev, iov,
ac27a0ec 3584 offset, nr_segs,
617ba13b 3585 ext4_get_block, NULL);
eafdc7d1
CH
3586
3587 if (unlikely((rw & WRITE) && ret < 0)) {
3588 loff_t isize = i_size_read(inode);
3589 loff_t end = offset + iov_length(iov, nr_segs);
3590
3591 if (end > isize)
3592 vmtruncate(inode, isize);
3593 }
3594 }
fbbf6945
ES
3595 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3596 goto retry;
ac27a0ec 3597
7fb5409d 3598 if (orphan) {
ac27a0ec
DK
3599 int err;
3600
7fb5409d
JK
3601 /* Credits for sb + inode write */
3602 handle = ext4_journal_start(inode, 2);
3603 if (IS_ERR(handle)) {
3604 /* This is really bad luck. We've written the data
3605 * but cannot extend i_size. Bail out and pretend
3606 * the write failed... */
3607 ret = PTR_ERR(handle);
da1dafca
DM
3608 if (inode->i_nlink)
3609 ext4_orphan_del(NULL, inode);
3610
7fb5409d
JK
3611 goto out;
3612 }
3613 if (inode->i_nlink)
617ba13b 3614 ext4_orphan_del(handle, inode);
7fb5409d 3615 if (ret > 0) {
ac27a0ec
DK
3616 loff_t end = offset + ret;
3617 if (end > inode->i_size) {
3618 ei->i_disksize = end;
3619 i_size_write(inode, end);
3620 /*
3621 * We're going to return a positive `ret'
3622 * here due to non-zero-length I/O, so there's
3623 * no way of reporting error returns from
617ba13b 3624 * ext4_mark_inode_dirty() to userspace. So
ac27a0ec
DK
3625 * ignore it.
3626 */
617ba13b 3627 ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
3628 }
3629 }
617ba13b 3630 err = ext4_journal_stop(handle);
ac27a0ec
DK
3631 if (ret == 0)
3632 ret = err;
3633 }
3634out:
3635 return ret;
3636}
3637
2ed88685
TT
3638/*
3639 * ext4_get_block used when preparing for a DIO write or buffer write.
3640 * We allocate an uinitialized extent if blocks haven't been allocated.
3641 * The extent will be converted to initialized after the IO is complete.
3642 */
c7064ef1 3643static int ext4_get_block_write(struct inode *inode, sector_t iblock,
4c0425ff
MC
3644 struct buffer_head *bh_result, int create)
3645{
c7064ef1 3646 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
8d5d02e6 3647 inode->i_ino, create);
2ed88685
TT
3648 return _ext4_get_block(inode, iblock, bh_result,
3649 EXT4_GET_BLOCKS_IO_CREATE_EXT);
4c0425ff
MC
3650}
3651
4c0425ff 3652static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
552ef802
CH
3653 ssize_t size, void *private, int ret,
3654 bool is_async)
4c0425ff
MC
3655{
3656 ext4_io_end_t *io_end = iocb->private;
3657 struct workqueue_struct *wq;
744692dc
JZ
3658 unsigned long flags;
3659 struct ext4_inode_info *ei;
4c0425ff 3660
4b70df18
M
3661 /* if not async direct IO or dio with 0 bytes write, just return */
3662 if (!io_end || !size)
552ef802 3663 goto out;
4b70df18 3664
8d5d02e6
MC
3665 ext_debug("ext4_end_io_dio(): io_end 0x%p"
3666 "for inode %lu, iocb 0x%p, offset %llu, size %llu\n",
3667 iocb->private, io_end->inode->i_ino, iocb, offset,
3668 size);
8d5d02e6
MC
3669
3670 /* if not aio dio with unwritten extents, just free io and return */
bd2d0210 3671 if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
8d5d02e6
MC
3672 ext4_free_io_end(io_end);
3673 iocb->private = NULL;
5b3ff237
JZ
3674out:
3675 if (is_async)
3676 aio_complete(iocb, ret, 0);
3677 return;
8d5d02e6
MC
3678 }
3679
4c0425ff
MC
3680 io_end->offset = offset;
3681 io_end->size = size;
5b3ff237
JZ
3682 if (is_async) {
3683 io_end->iocb = iocb;
3684 io_end->result = ret;
3685 }
4c0425ff
MC
3686 wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq;
3687
8d5d02e6 3688 /* Add the io_end to per-inode completed aio dio list*/
744692dc
JZ
3689 ei = EXT4_I(io_end->inode);
3690 spin_lock_irqsave(&ei->i_completed_io_lock, flags);
3691 list_add_tail(&io_end->list, &ei->i_completed_io_list);
3692 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
c999af2b
ES
3693
3694 /* queue the work to convert unwritten extents to written */
3695 queue_work(wq, &io_end->work);
4c0425ff
MC
3696 iocb->private = NULL;
3697}
c7064ef1 3698
744692dc
JZ
3699static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate)
3700{
3701 ext4_io_end_t *io_end = bh->b_private;
3702 struct workqueue_struct *wq;
3703 struct inode *inode;
3704 unsigned long flags;
3705
3706 if (!test_clear_buffer_uninit(bh) || !io_end)
3707 goto out;
3708
3709 if (!(io_end->inode->i_sb->s_flags & MS_ACTIVE)) {
3710 printk("sb umounted, discard end_io request for inode %lu\n",
3711 io_end->inode->i_ino);
3712 ext4_free_io_end(io_end);
3713 goto out;
3714 }
3715
bd2d0210 3716 io_end->flag = EXT4_IO_END_UNWRITTEN;
744692dc
JZ
3717 inode = io_end->inode;
3718
3719 /* Add the io_end to per-inode completed io list*/
3720 spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
3721 list_add_tail(&io_end->list, &EXT4_I(inode)->i_completed_io_list);
3722 spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);
3723
3724 wq = EXT4_SB(inode->i_sb)->dio_unwritten_wq;
3725 /* queue the work to convert unwritten extents to written */
3726 queue_work(wq, &io_end->work);
3727out:
3728 bh->b_private = NULL;
3729 bh->b_end_io = NULL;
3730 clear_buffer_uninit(bh);
3731 end_buffer_async_write(bh, uptodate);
3732}
3733
3734static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode)
3735{
3736 ext4_io_end_t *io_end;
3737 struct page *page = bh->b_page;
3738 loff_t offset = (sector_t)page->index << PAGE_CACHE_SHIFT;
3739 size_t size = bh->b_size;
3740
3741retry:
3742 io_end = ext4_init_io_end(inode, GFP_ATOMIC);
3743 if (!io_end) {
6db26ffc 3744 pr_warn_ratelimited("%s: allocation fail\n", __func__);
744692dc
JZ
3745 schedule();
3746 goto retry;
3747 }
3748 io_end->offset = offset;
3749 io_end->size = size;
3750 /*
3751 * We need to hold a reference to the page to make sure it
3752 * doesn't get evicted before ext4_end_io_work() has a chance
3753 * to convert the extent from written to unwritten.
3754 */
3755 io_end->page = page;
3756 get_page(io_end->page);
3757
3758 bh->b_private = io_end;
3759 bh->b_end_io = ext4_end_io_buffer_write;
3760 return 0;
3761}
3762
4c0425ff
MC
3763/*
3764 * For ext4 extent files, ext4 will do direct-io write to holes,
3765 * preallocated extents, and those write extend the file, no need to
3766 * fall back to buffered IO.
3767 *
b595076a 3768 * For holes, we fallocate those blocks, mark them as uninitialized
4c0425ff 3769 * If those blocks were preallocated, we mark sure they are splited, but
b595076a 3770 * still keep the range to write as uninitialized.
4c0425ff 3771 *
8d5d02e6
MC
3772 * The unwrritten extents will be converted to written when DIO is completed.
3773 * For async direct IO, since the IO may still pending when return, we
3774 * set up an end_io call back function, which will do the convertion
3775 * when async direct IO completed.
4c0425ff
MC
3776 *
3777 * If the O_DIRECT write will extend the file then add this inode to the
3778 * orphan list. So recovery will truncate it back to the original size
3779 * if the machine crashes during the write.
3780 *
3781 */
3782static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
3783 const struct iovec *iov, loff_t offset,
3784 unsigned long nr_segs)
3785{
3786 struct file *file = iocb->ki_filp;
3787 struct inode *inode = file->f_mapping->host;
3788 ssize_t ret;
3789 size_t count = iov_length(iov, nr_segs);
3790
3791 loff_t final_size = offset + count;
3792 if (rw == WRITE && final_size <= inode->i_size) {
3793 /*
8d5d02e6
MC
3794 * We could direct write to holes and fallocate.
3795 *
3796 * Allocated blocks to fill the hole are marked as uninitialized
4c0425ff
MC
3797 * to prevent paralel buffered read to expose the stale data
3798 * before DIO complete the data IO.
8d5d02e6
MC
3799 *
3800 * As to previously fallocated extents, ext4 get_block
4c0425ff
MC
3801 * will just simply mark the buffer mapped but still
3802 * keep the extents uninitialized.
3803 *
8d5d02e6
MC
3804 * for non AIO case, we will convert those unwritten extents
3805 * to written after return back from blockdev_direct_IO.
3806 *
3807 * for async DIO, the conversion needs to be defered when
3808 * the IO is completed. The ext4 end_io callback function
3809 * will be called to take care of the conversion work.
3810 * Here for async case, we allocate an io_end structure to
3811 * hook to the iocb.
4c0425ff 3812 */
8d5d02e6
MC
3813 iocb->private = NULL;
3814 EXT4_I(inode)->cur_aio_dio = NULL;
3815 if (!is_sync_kiocb(iocb)) {
744692dc 3816 iocb->private = ext4_init_io_end(inode, GFP_NOFS);
8d5d02e6
MC
3817 if (!iocb->private)
3818 return -ENOMEM;
3819 /*
3820 * we save the io structure for current async
79e83036 3821 * direct IO, so that later ext4_map_blocks()
8d5d02e6
MC
3822 * could flag the io structure whether there
3823 * is a unwritten extents needs to be converted
3824 * when IO is completed.
3825 */
3826 EXT4_I(inode)->cur_aio_dio = iocb->private;
3827 }
3828
4c0425ff
MC
3829 ret = blockdev_direct_IO(rw, iocb, inode,
3830 inode->i_sb->s_bdev, iov,
3831 offset, nr_segs,
c7064ef1 3832 ext4_get_block_write,
4c0425ff 3833 ext4_end_io_dio);
8d5d02e6
MC
3834 if (iocb->private)
3835 EXT4_I(inode)->cur_aio_dio = NULL;
3836 /*
3837 * The io_end structure takes a reference to the inode,
3838 * that structure needs to be destroyed and the
3839 * reference to the inode need to be dropped, when IO is
3840 * complete, even with 0 byte write, or failed.
3841 *
3842 * In the successful AIO DIO case, the io_end structure will be
3843 * desctroyed and the reference to the inode will be dropped
3844 * after the end_io call back function is called.
3845 *
3846 * In the case there is 0 byte write, or error case, since
3847 * VFS direct IO won't invoke the end_io call back function,
3848 * we need to free the end_io structure here.
3849 */
3850 if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
3851 ext4_free_io_end(iocb->private);
3852 iocb->private = NULL;
19f5fb7a
TT
3853 } else if (ret > 0 && ext4_test_inode_state(inode,
3854 EXT4_STATE_DIO_UNWRITTEN)) {
109f5565 3855 int err;
8d5d02e6
MC
3856 /*
3857 * for non AIO case, since the IO is already
3858 * completed, we could do the convertion right here
3859 */
109f5565
M
3860 err = ext4_convert_unwritten_extents(inode,
3861 offset, ret);
3862 if (err < 0)
3863 ret = err;
19f5fb7a 3864 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
109f5565 3865 }
4c0425ff
MC
3866 return ret;
3867 }
8d5d02e6
MC
3868
3869 /* for write the the end of file case, we fall back to old way */
4c0425ff
MC
3870 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3871}
3872
3873static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3874 const struct iovec *iov, loff_t offset,
3875 unsigned long nr_segs)
3876{
3877 struct file *file = iocb->ki_filp;
3878 struct inode *inode = file->f_mapping->host;
3879
12e9b892 3880 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4c0425ff
MC
3881 return ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3882
3883 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3884}
3885
ac27a0ec 3886/*
617ba13b 3887 * Pages can be marked dirty completely asynchronously from ext4's journalling
ac27a0ec
DK
3888 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3889 * much here because ->set_page_dirty is called under VFS locks. The page is
3890 * not necessarily locked.
3891 *
3892 * We cannot just dirty the page and leave attached buffers clean, because the
3893 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3894 * or jbddirty because all the journalling code will explode.
3895 *
3896 * So what we do is to mark the page "pending dirty" and next time writepage
3897 * is called, propagate that into the buffers appropriately.
3898 */
617ba13b 3899static int ext4_journalled_set_page_dirty(struct page *page)
ac27a0ec
DK
3900{
3901 SetPageChecked(page);
3902 return __set_page_dirty_nobuffers(page);
3903}
3904
617ba13b 3905static const struct address_space_operations ext4_ordered_aops = {
8ab22b9a
HH
3906 .readpage = ext4_readpage,
3907 .readpages = ext4_readpages,
43ce1d23 3908 .writepage = ext4_writepage,
8ab22b9a
HH
3909 .sync_page = block_sync_page,
3910 .write_begin = ext4_write_begin,
3911 .write_end = ext4_ordered_write_end,
3912 .bmap = ext4_bmap,
3913 .invalidatepage = ext4_invalidatepage,
3914 .releasepage = ext4_releasepage,
3915 .direct_IO = ext4_direct_IO,
3916 .migratepage = buffer_migrate_page,
3917 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3918 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
3919};
3920
617ba13b 3921static const struct address_space_operations ext4_writeback_aops = {
8ab22b9a
HH
3922 .readpage = ext4_readpage,
3923 .readpages = ext4_readpages,
43ce1d23 3924 .writepage = ext4_writepage,
8ab22b9a
HH
3925 .sync_page = block_sync_page,
3926 .write_begin = ext4_write_begin,
3927 .write_end = ext4_writeback_write_end,
3928 .bmap = ext4_bmap,
3929 .invalidatepage = ext4_invalidatepage,
3930 .releasepage = ext4_releasepage,
3931 .direct_IO = ext4_direct_IO,
3932 .migratepage = buffer_migrate_page,
3933 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3934 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
3935};
3936
617ba13b 3937static const struct address_space_operations ext4_journalled_aops = {
8ab22b9a
HH
3938 .readpage = ext4_readpage,
3939 .readpages = ext4_readpages,
43ce1d23 3940 .writepage = ext4_writepage,
8ab22b9a
HH
3941 .sync_page = block_sync_page,
3942 .write_begin = ext4_write_begin,
3943 .write_end = ext4_journalled_write_end,
3944 .set_page_dirty = ext4_journalled_set_page_dirty,
3945 .bmap = ext4_bmap,
3946 .invalidatepage = ext4_invalidatepage,
3947 .releasepage = ext4_releasepage,
3948 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3949 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
3950};
3951
64769240 3952static const struct address_space_operations ext4_da_aops = {
8ab22b9a
HH
3953 .readpage = ext4_readpage,
3954 .readpages = ext4_readpages,
43ce1d23 3955 .writepage = ext4_writepage,
8ab22b9a
HH
3956 .writepages = ext4_da_writepages,
3957 .sync_page = block_sync_page,
3958 .write_begin = ext4_da_write_begin,
3959 .write_end = ext4_da_write_end,
3960 .bmap = ext4_bmap,
3961 .invalidatepage = ext4_da_invalidatepage,
3962 .releasepage = ext4_releasepage,
3963 .direct_IO = ext4_direct_IO,
3964 .migratepage = buffer_migrate_page,
3965 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3966 .error_remove_page = generic_error_remove_page,
64769240
AT
3967};
3968
617ba13b 3969void ext4_set_aops(struct inode *inode)
ac27a0ec 3970{
cd1aac32
AK
3971 if (ext4_should_order_data(inode) &&
3972 test_opt(inode->i_sb, DELALLOC))
3973 inode->i_mapping->a_ops = &ext4_da_aops;
3974 else if (ext4_should_order_data(inode))
617ba13b 3975 inode->i_mapping->a_ops = &ext4_ordered_aops;
64769240
AT
3976 else if (ext4_should_writeback_data(inode) &&
3977 test_opt(inode->i_sb, DELALLOC))
3978 inode->i_mapping->a_ops = &ext4_da_aops;
617ba13b
MC
3979 else if (ext4_should_writeback_data(inode))
3980 inode->i_mapping->a_ops = &ext4_writeback_aops;
ac27a0ec 3981 else
617ba13b 3982 inode->i_mapping->a_ops = &ext4_journalled_aops;
ac27a0ec
DK
3983}
3984
3985/*
617ba13b 3986 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
ac27a0ec
DK
3987 * up to the end of the block which corresponds to `from'.
3988 * This required during truncate. We need to physically zero the tail end
3989 * of that block so it doesn't yield old data if the file is later grown.
3990 */
cf108bca 3991int ext4_block_truncate_page(handle_t *handle,
ac27a0ec
DK
3992 struct address_space *mapping, loff_t from)
3993{
617ba13b 3994 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
ac27a0ec 3995 unsigned offset = from & (PAGE_CACHE_SIZE-1);
725d26d3
AK
3996 unsigned blocksize, length, pos;
3997 ext4_lblk_t iblock;
ac27a0ec
DK
3998 struct inode *inode = mapping->host;
3999 struct buffer_head *bh;
cf108bca 4000 struct page *page;
ac27a0ec 4001 int err = 0;
ac27a0ec 4002
f4a01017
TT
4003 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
4004 mapping_gfp_mask(mapping) & ~__GFP_FS);
cf108bca
JK
4005 if (!page)
4006 return -EINVAL;
4007
ac27a0ec
DK
4008 blocksize = inode->i_sb->s_blocksize;
4009 length = blocksize - (offset & (blocksize - 1));
4010 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
4011
ac27a0ec
DK
4012 if (!page_has_buffers(page))
4013 create_empty_buffers(page, blocksize, 0);
4014
4015 /* Find the buffer that contains "offset" */
4016 bh = page_buffers(page);
4017 pos = blocksize;
4018 while (offset >= pos) {
4019 bh = bh->b_this_page;
4020 iblock++;
4021 pos += blocksize;
4022 }
4023
4024 err = 0;
4025 if (buffer_freed(bh)) {
4026 BUFFER_TRACE(bh, "freed: skip");
4027 goto unlock;
4028 }
4029
4030 if (!buffer_mapped(bh)) {
4031 BUFFER_TRACE(bh, "unmapped");
617ba13b 4032 ext4_get_block(inode, iblock, bh, 0);
ac27a0ec
DK
4033 /* unmapped? It's a hole - nothing to do */
4034 if (!buffer_mapped(bh)) {
4035 BUFFER_TRACE(bh, "still unmapped");
4036 goto unlock;
4037 }
4038 }
4039
4040 /* Ok, it's mapped. Make sure it's up-to-date */
4041 if (PageUptodate(page))
4042 set_buffer_uptodate(bh);
4043
4044 if (!buffer_uptodate(bh)) {
4045 err = -EIO;
4046 ll_rw_block(READ, 1, &bh);
4047 wait_on_buffer(bh);
4048 /* Uhhuh. Read error. Complain and punt. */
4049 if (!buffer_uptodate(bh))
4050 goto unlock;
4051 }
4052
617ba13b 4053 if (ext4_should_journal_data(inode)) {
ac27a0ec 4054 BUFFER_TRACE(bh, "get write access");
617ba13b 4055 err = ext4_journal_get_write_access(handle, bh);
ac27a0ec
DK
4056 if (err)
4057 goto unlock;
4058 }
4059
eebd2aa3 4060 zero_user(page, offset, length);
ac27a0ec
DK
4061
4062 BUFFER_TRACE(bh, "zeroed end of block");
4063
4064 err = 0;
617ba13b 4065 if (ext4_should_journal_data(inode)) {
0390131b 4066 err = ext4_handle_dirty_metadata(handle, inode, bh);
ac27a0ec 4067 } else {
8aefcd55 4068 if (ext4_should_order_data(inode) && EXT4_I(inode)->jinode)
678aaf48 4069 err = ext4_jbd2_file_inode(handle, inode);
ac27a0ec
DK
4070 mark_buffer_dirty(bh);
4071 }
4072
4073unlock:
4074 unlock_page(page);
4075 page_cache_release(page);
4076 return err;
4077}
4078
4079/*
4080 * Probably it should be a library function... search for first non-zero word
4081 * or memcmp with zero_page, whatever is better for particular architecture.
4082 * Linus?
4083 */
4084static inline int all_zeroes(__le32 *p, __le32 *q)
4085{
4086 while (p < q)
4087 if (*p++)
4088 return 0;
4089 return 1;
4090}
4091
4092/**
617ba13b 4093 * ext4_find_shared - find the indirect blocks for partial truncation.
ac27a0ec
DK
4094 * @inode: inode in question
4095 * @depth: depth of the affected branch
617ba13b 4096 * @offsets: offsets of pointers in that branch (see ext4_block_to_path)
ac27a0ec
DK
4097 * @chain: place to store the pointers to partial indirect blocks
4098 * @top: place to the (detached) top of branch
4099 *
617ba13b 4100 * This is a helper function used by ext4_truncate().
ac27a0ec
DK
4101 *
4102 * When we do truncate() we may have to clean the ends of several
4103 * indirect blocks but leave the blocks themselves alive. Block is
4104 * partially truncated if some data below the new i_size is refered
4105 * from it (and it is on the path to the first completely truncated
4106 * data block, indeed). We have to free the top of that path along
4107 * with everything to the right of the path. Since no allocation
617ba13b 4108 * past the truncation point is possible until ext4_truncate()
ac27a0ec
DK
4109 * finishes, we may safely do the latter, but top of branch may
4110 * require special attention - pageout below the truncation point
4111 * might try to populate it.
4112 *
4113 * We atomically detach the top of branch from the tree, store the
4114 * block number of its root in *@top, pointers to buffer_heads of
4115 * partially truncated blocks - in @chain[].bh and pointers to
4116 * their last elements that should not be removed - in
4117 * @chain[].p. Return value is the pointer to last filled element
4118 * of @chain.
4119 *
4120 * The work left to caller to do the actual freeing of subtrees:
4121 * a) free the subtree starting from *@top
4122 * b) free the subtrees whose roots are stored in
4123 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
4124 * c) free the subtrees growing from the inode past the @chain[0].
4125 * (no partially truncated stuff there). */
4126
617ba13b 4127static Indirect *ext4_find_shared(struct inode *inode, int depth,
de9a55b8
TT
4128 ext4_lblk_t offsets[4], Indirect chain[4],
4129 __le32 *top)
ac27a0ec
DK
4130{
4131 Indirect *partial, *p;
4132 int k, err;
4133
4134 *top = 0;
bf48aabb 4135 /* Make k index the deepest non-null offset + 1 */
ac27a0ec
DK
4136 for (k = depth; k > 1 && !offsets[k-1]; k--)
4137 ;
617ba13b 4138 partial = ext4_get_branch(inode, k, offsets, chain, &err);
ac27a0ec
DK
4139 /* Writer: pointers */
4140 if (!partial)
4141 partial = chain + k-1;
4142 /*
4143 * If the branch acquired continuation since we've looked at it -
4144 * fine, it should all survive and (new) top doesn't belong to us.
4145 */
4146 if (!partial->key && *partial->p)
4147 /* Writer: end */
4148 goto no_top;
af5bc92d 4149 for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
ac27a0ec
DK
4150 ;
4151 /*
4152 * OK, we've found the last block that must survive. The rest of our
4153 * branch should be detached before unlocking. However, if that rest
4154 * of branch is all ours and does not grow immediately from the inode
4155 * it's easier to cheat and just decrement partial->p.
4156 */
4157 if (p == chain + k - 1 && p > chain) {
4158 p->p--;
4159 } else {
4160 *top = *p->p;
617ba13b 4161 /* Nope, don't do this in ext4. Must leave the tree intact */
ac27a0ec
DK
4162#if 0
4163 *p->p = 0;
4164#endif
4165 }
4166 /* Writer: end */
4167
af5bc92d 4168 while (partial > p) {
ac27a0ec
DK
4169 brelse(partial->bh);
4170 partial--;
4171 }
4172no_top:
4173 return partial;
4174}
4175
4176/*
4177 * Zero a number of block pointers in either an inode or an indirect block.
4178 * If we restart the transaction we must again get write access to the
4179 * indirect block for further modification.
4180 *
4181 * We release `count' blocks on disk, but (last - first) may be greater
4182 * than `count' because there can be holes in there.
4183 */
1f2acb60
TT
4184static int ext4_clear_blocks(handle_t *handle, struct inode *inode,
4185 struct buffer_head *bh,
4186 ext4_fsblk_t block_to_free,
4187 unsigned long count, __le32 *first,
4188 __le32 *last)
ac27a0ec
DK
4189{
4190 __le32 *p;
1f2acb60 4191 int flags = EXT4_FREE_BLOCKS_FORGET | EXT4_FREE_BLOCKS_VALIDATED;
b4097142 4192 int err;
e6362609
TT
4193
4194 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
4195 flags |= EXT4_FREE_BLOCKS_METADATA;
50689696 4196
1f2acb60
TT
4197 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), block_to_free,
4198 count)) {
24676da4
TT
4199 EXT4_ERROR_INODE(inode, "attempt to clear invalid "
4200 "blocks %llu len %lu",
4201 (unsigned long long) block_to_free, count);
1f2acb60
TT
4202 return 1;
4203 }
4204
ac27a0ec
DK
4205 if (try_to_extend_transaction(handle, inode)) {
4206 if (bh) {
0390131b 4207 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
b4097142
TT
4208 err = ext4_handle_dirty_metadata(handle, inode, bh);
4209 if (unlikely(err)) {
4210 ext4_std_error(inode->i_sb, err);
4211 return 1;
4212 }
4213 }
4214 err = ext4_mark_inode_dirty(handle, inode);
4215 if (unlikely(err)) {
4216 ext4_std_error(inode->i_sb, err);
4217 return 1;
4218 }
4219 err = ext4_truncate_restart_trans(handle, inode,
4220 blocks_for_truncate(inode));
4221 if (unlikely(err)) {
4222 ext4_std_error(inode->i_sb, err);
4223 return 1;
ac27a0ec 4224 }
ac27a0ec
DK
4225 if (bh) {
4226 BUFFER_TRACE(bh, "retaking write access");
617ba13b 4227 ext4_journal_get_write_access(handle, bh);
ac27a0ec
DK
4228 }
4229 }
4230
e6362609
TT
4231 for (p = first; p < last; p++)
4232 *p = 0;
ac27a0ec 4233
7dc57615 4234 ext4_free_blocks(handle, inode, NULL, block_to_free, count, flags);
1f2acb60 4235 return 0;
ac27a0ec
DK
4236}
4237
4238/**
617ba13b 4239 * ext4_free_data - free a list of data blocks
ac27a0ec
DK
4240 * @handle: handle for this transaction
4241 * @inode: inode we are dealing with
4242 * @this_bh: indirect buffer_head which contains *@first and *@last
4243 * @first: array of block numbers
4244 * @last: points immediately past the end of array
4245 *
4246 * We are freeing all blocks refered from that array (numbers are stored as
4247 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
4248 *
4249 * We accumulate contiguous runs of blocks to free. Conveniently, if these
4250 * blocks are contiguous then releasing them at one time will only affect one
4251 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
4252 * actually use a lot of journal space.
4253 *
4254 * @this_bh will be %NULL if @first and @last point into the inode's direct
4255 * block pointers.
4256 */
617ba13b 4257static void ext4_free_data(handle_t *handle, struct inode *inode,
ac27a0ec
DK
4258 struct buffer_head *this_bh,
4259 __le32 *first, __le32 *last)
4260{
617ba13b 4261 ext4_fsblk_t block_to_free = 0; /* Starting block # of a run */
ac27a0ec
DK
4262 unsigned long count = 0; /* Number of blocks in the run */
4263 __le32 *block_to_free_p = NULL; /* Pointer into inode/ind
4264 corresponding to
4265 block_to_free */
617ba13b 4266 ext4_fsblk_t nr; /* Current block # */
ac27a0ec
DK
4267 __le32 *p; /* Pointer into inode/ind
4268 for current block */
4269 int err;
4270
4271 if (this_bh) { /* For indirect block */
4272 BUFFER_TRACE(this_bh, "get_write_access");
617ba13b 4273 err = ext4_journal_get_write_access(handle, this_bh);
ac27a0ec
DK
4274 /* Important: if we can't update the indirect pointers
4275 * to the blocks, we can't free them. */
4276 if (err)
4277 return;
4278 }
4279
4280 for (p = first; p < last; p++) {
4281 nr = le32_to_cpu(*p);
4282 if (nr) {
4283 /* accumulate blocks to free if they're contiguous */
4284 if (count == 0) {
4285 block_to_free = nr;
4286 block_to_free_p = p;
4287 count = 1;
4288 } else if (nr == block_to_free + count) {
4289 count++;
4290 } else {
1f2acb60
TT
4291 if (ext4_clear_blocks(handle, inode, this_bh,
4292 block_to_free, count,
4293 block_to_free_p, p))
4294 break;
ac27a0ec
DK
4295 block_to_free = nr;
4296 block_to_free_p = p;
4297 count = 1;
4298 }
4299 }
4300 }
4301
4302 if (count > 0)
617ba13b 4303 ext4_clear_blocks(handle, inode, this_bh, block_to_free,
ac27a0ec
DK
4304 count, block_to_free_p, p);
4305
4306 if (this_bh) {
0390131b 4307 BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
71dc8fbc
DG
4308
4309 /*
4310 * The buffer head should have an attached journal head at this
4311 * point. However, if the data is corrupted and an indirect
4312 * block pointed to itself, it would have been detached when
4313 * the block was cleared. Check for this instead of OOPSing.
4314 */
e7f07968 4315 if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
0390131b 4316 ext4_handle_dirty_metadata(handle, inode, this_bh);
71dc8fbc 4317 else
24676da4
TT
4318 EXT4_ERROR_INODE(inode,
4319 "circular indirect block detected at "
4320 "block %llu",
4321 (unsigned long long) this_bh->b_blocknr);
ac27a0ec
DK
4322 }
4323}
4324
4325/**
617ba13b 4326 * ext4_free_branches - free an array of branches
ac27a0ec
DK
4327 * @handle: JBD handle for this transaction
4328 * @inode: inode we are dealing with
4329 * @parent_bh: the buffer_head which contains *@first and *@last
4330 * @first: array of block numbers
4331 * @last: pointer immediately past the end of array
4332 * @depth: depth of the branches to free
4333 *
4334 * We are freeing all blocks refered from these branches (numbers are
4335 * stored as little-endian 32-bit) and updating @inode->i_blocks
4336 * appropriately.
4337 */
617ba13b 4338static void ext4_free_branches(handle_t *handle, struct inode *inode,
ac27a0ec
DK
4339 struct buffer_head *parent_bh,
4340 __le32 *first, __le32 *last, int depth)
4341{
617ba13b 4342 ext4_fsblk_t nr;
ac27a0ec
DK
4343 __le32 *p;
4344
0390131b 4345 if (ext4_handle_is_aborted(handle))
ac27a0ec
DK
4346 return;
4347
4348 if (depth--) {
4349 struct buffer_head *bh;
617ba13b 4350 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
ac27a0ec
DK
4351 p = last;
4352 while (--p >= first) {
4353 nr = le32_to_cpu(*p);
4354 if (!nr)
4355 continue; /* A hole */
4356
1f2acb60
TT
4357 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb),
4358 nr, 1)) {
24676da4
TT
4359 EXT4_ERROR_INODE(inode,
4360 "invalid indirect mapped "
4361 "block %lu (level %d)",
4362 (unsigned long) nr, depth);
1f2acb60
TT
4363 break;
4364 }
4365
ac27a0ec
DK
4366 /* Go read the buffer for the next level down */
4367 bh = sb_bread(inode->i_sb, nr);
4368
4369 /*
4370 * A read failure? Report error and clear slot
4371 * (should be rare).
4372 */
4373 if (!bh) {
c398eda0
TT
4374 EXT4_ERROR_INODE_BLOCK(inode, nr,
4375 "Read failure");
ac27a0ec
DK
4376 continue;
4377 }
4378
4379 /* This zaps the entire block. Bottom up. */
4380 BUFFER_TRACE(bh, "free child branches");
617ba13b 4381 ext4_free_branches(handle, inode, bh,
af5bc92d
TT
4382 (__le32 *) bh->b_data,
4383 (__le32 *) bh->b_data + addr_per_block,
4384 depth);
1c5b9e90 4385 brelse(bh);
ac27a0ec 4386
ac27a0ec
DK
4387 /*
4388 * Everything below this this pointer has been
4389 * released. Now let this top-of-subtree go.
4390 *
4391 * We want the freeing of this indirect block to be
4392 * atomic in the journal with the updating of the
4393 * bitmap block which owns it. So make some room in
4394 * the journal.
4395 *
4396 * We zero the parent pointer *after* freeing its
4397 * pointee in the bitmaps, so if extend_transaction()
4398 * for some reason fails to put the bitmap changes and
4399 * the release into the same transaction, recovery
4400 * will merely complain about releasing a free block,
4401 * rather than leaking blocks.
4402 */
0390131b 4403 if (ext4_handle_is_aborted(handle))
ac27a0ec
DK
4404 return;
4405 if (try_to_extend_transaction(handle, inode)) {
617ba13b 4406 ext4_mark_inode_dirty(handle, inode);
487caeef
JK
4407 ext4_truncate_restart_trans(handle, inode,
4408 blocks_for_truncate(inode));
ac27a0ec
DK
4409 }
4410
40389687
A
4411 /*
4412 * The forget flag here is critical because if
4413 * we are journaling (and not doing data
4414 * journaling), we have to make sure a revoke
4415 * record is written to prevent the journal
4416 * replay from overwriting the (former)
4417 * indirect block if it gets reallocated as a
4418 * data block. This must happen in the same
4419 * transaction where the data blocks are
4420 * actually freed.
4421 */
7dc57615 4422 ext4_free_blocks(handle, inode, NULL, nr, 1,
40389687
A
4423 EXT4_FREE_BLOCKS_METADATA|
4424 EXT4_FREE_BLOCKS_FORGET);
ac27a0ec
DK
4425
4426 if (parent_bh) {
4427 /*
4428 * The block which we have just freed is
4429 * pointed to by an indirect block: journal it
4430 */
4431 BUFFER_TRACE(parent_bh, "get_write_access");
617ba13b 4432 if (!ext4_journal_get_write_access(handle,
ac27a0ec
DK
4433 parent_bh)){
4434 *p = 0;
4435 BUFFER_TRACE(parent_bh,
0390131b
FM
4436 "call ext4_handle_dirty_metadata");
4437 ext4_handle_dirty_metadata(handle,
4438 inode,
4439 parent_bh);
ac27a0ec
DK
4440 }
4441 }
4442 }
4443 } else {
4444 /* We have reached the bottom of the tree. */
4445 BUFFER_TRACE(parent_bh, "free data blocks");
617ba13b 4446 ext4_free_data(handle, inode, parent_bh, first, last);
ac27a0ec
DK
4447 }
4448}
4449
91ef4caf
DG
4450int ext4_can_truncate(struct inode *inode)
4451{
4452 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4453 return 0;
4454 if (S_ISREG(inode->i_mode))
4455 return 1;
4456 if (S_ISDIR(inode->i_mode))
4457 return 1;
4458 if (S_ISLNK(inode->i_mode))
4459 return !ext4_inode_is_fast_symlink(inode);
4460 return 0;
4461}
4462
ac27a0ec 4463/*
617ba13b 4464 * ext4_truncate()
ac27a0ec 4465 *
617ba13b
MC
4466 * We block out ext4_get_block() block instantiations across the entire
4467 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
ac27a0ec
DK
4468 * simultaneously on behalf of the same inode.
4469 *
4470 * As we work through the truncate and commmit bits of it to the journal there
4471 * is one core, guiding principle: the file's tree must always be consistent on
4472 * disk. We must be able to restart the truncate after a crash.
4473 *
4474 * The file's tree may be transiently inconsistent in memory (although it
4475 * probably isn't), but whenever we close off and commit a journal transaction,
4476 * the contents of (the filesystem + the journal) must be consistent and
4477 * restartable. It's pretty simple, really: bottom up, right to left (although
4478 * left-to-right works OK too).
4479 *
4480 * Note that at recovery time, journal replay occurs *before* the restart of
4481 * truncate against the orphan inode list.
4482 *
4483 * The committed inode has the new, desired i_size (which is the same as
617ba13b 4484 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
ac27a0ec 4485 * that this inode's truncate did not complete and it will again call
617ba13b
MC
4486 * ext4_truncate() to have another go. So there will be instantiated blocks
4487 * to the right of the truncation point in a crashed ext4 filesystem. But
ac27a0ec 4488 * that's fine - as long as they are linked from the inode, the post-crash
617ba13b 4489 * ext4_truncate() run will find them and release them.
ac27a0ec 4490 */
617ba13b 4491void ext4_truncate(struct inode *inode)
ac27a0ec
DK
4492{
4493 handle_t *handle;
617ba13b 4494 struct ext4_inode_info *ei = EXT4_I(inode);
ac27a0ec 4495 __le32 *i_data = ei->i_data;
617ba13b 4496 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
ac27a0ec 4497 struct address_space *mapping = inode->i_mapping;
725d26d3 4498 ext4_lblk_t offsets[4];
ac27a0ec
DK
4499 Indirect chain[4];
4500 Indirect *partial;
4501 __le32 nr = 0;
4502 int n;
725d26d3 4503 ext4_lblk_t last_block;
ac27a0ec 4504 unsigned blocksize = inode->i_sb->s_blocksize;
ac27a0ec 4505
91ef4caf 4506 if (!ext4_can_truncate(inode))
ac27a0ec
DK
4507 return;
4508
12e9b892 4509 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
c8d46e41 4510
5534fb5b 4511 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
19f5fb7a 4512 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
7d8f9f7d 4513
12e9b892 4514 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
cf108bca 4515 ext4_ext_truncate(inode);
1d03ec98
AK
4516 return;
4517 }
a86c6181 4518
ac27a0ec 4519 handle = start_transaction(inode);
cf108bca 4520 if (IS_ERR(handle))
ac27a0ec 4521 return; /* AKPM: return what? */
ac27a0ec
DK
4522
4523 last_block = (inode->i_size + blocksize-1)
617ba13b 4524 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
ac27a0ec 4525
cf108bca
JK
4526 if (inode->i_size & (blocksize - 1))
4527 if (ext4_block_truncate_page(handle, mapping, inode->i_size))
4528 goto out_stop;
ac27a0ec 4529
617ba13b 4530 n = ext4_block_to_path(inode, last_block, offsets, NULL);
ac27a0ec
DK
4531 if (n == 0)
4532 goto out_stop; /* error */
4533
4534 /*
4535 * OK. This truncate is going to happen. We add the inode to the
4536 * orphan list, so that if this truncate spans multiple transactions,
4537 * and we crash, we will resume the truncate when the filesystem
4538 * recovers. It also marks the inode dirty, to catch the new size.
4539 *
4540 * Implication: the file must always be in a sane, consistent
4541 * truncatable state while each transaction commits.
4542 */
617ba13b 4543 if (ext4_orphan_add(handle, inode))
ac27a0ec
DK
4544 goto out_stop;
4545
632eaeab
MC
4546 /*
4547 * From here we block out all ext4_get_block() callers who want to
4548 * modify the block allocation tree.
4549 */
4550 down_write(&ei->i_data_sem);
b4df2030 4551
c2ea3fde 4552 ext4_discard_preallocations(inode);
b4df2030 4553
ac27a0ec
DK
4554 /*
4555 * The orphan list entry will now protect us from any crash which
4556 * occurs before the truncate completes, so it is now safe to propagate
4557 * the new, shorter inode size (held for now in i_size) into the
4558 * on-disk inode. We do this via i_disksize, which is the value which
617ba13b 4559 * ext4 *really* writes onto the disk inode.
ac27a0ec
DK
4560 */
4561 ei->i_disksize = inode->i_size;
4562
ac27a0ec 4563 if (n == 1) { /* direct blocks */
617ba13b
MC
4564 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
4565 i_data + EXT4_NDIR_BLOCKS);
ac27a0ec
DK
4566 goto do_indirects;
4567 }
4568
617ba13b 4569 partial = ext4_find_shared(inode, n, offsets, chain, &nr);
ac27a0ec
DK
4570 /* Kill the top of shared branch (not detached) */
4571 if (nr) {
4572 if (partial == chain) {
4573 /* Shared branch grows from the inode */
617ba13b 4574 ext4_free_branches(handle, inode, NULL,
ac27a0ec
DK
4575 &nr, &nr+1, (chain+n-1) - partial);
4576 *partial->p = 0;
4577 /*
4578 * We mark the inode dirty prior to restart,
4579 * and prior to stop. No need for it here.
4580 */
4581 } else {
4582 /* Shared branch grows from an indirect block */
4583 BUFFER_TRACE(partial->bh, "get_write_access");
617ba13b 4584 ext4_free_branches(handle, inode, partial->bh,
ac27a0ec
DK
4585 partial->p,
4586 partial->p+1, (chain+n-1) - partial);
4587 }
4588 }
4589 /* Clear the ends of indirect blocks on the shared branch */
4590 while (partial > chain) {
617ba13b 4591 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
ac27a0ec
DK
4592 (__le32*)partial->bh->b_data+addr_per_block,
4593 (chain+n-1) - partial);
4594 BUFFER_TRACE(partial->bh, "call brelse");
de9a55b8 4595 brelse(partial->bh);
ac27a0ec
DK
4596 partial--;
4597 }
4598do_indirects:
4599 /* Kill the remaining (whole) subtrees */
4600 switch (offsets[0]) {
4601 default:
617ba13b 4602 nr = i_data[EXT4_IND_BLOCK];
ac27a0ec 4603 if (nr) {
617ba13b
MC
4604 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
4605 i_data[EXT4_IND_BLOCK] = 0;
ac27a0ec 4606 }
617ba13b
MC
4607 case EXT4_IND_BLOCK:
4608 nr = i_data[EXT4_DIND_BLOCK];
ac27a0ec 4609 if (nr) {
617ba13b
MC
4610 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
4611 i_data[EXT4_DIND_BLOCK] = 0;
ac27a0ec 4612 }
617ba13b
MC
4613 case EXT4_DIND_BLOCK:
4614 nr = i_data[EXT4_TIND_BLOCK];
ac27a0ec 4615 if (nr) {
617ba13b
MC
4616 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
4617 i_data[EXT4_TIND_BLOCK] = 0;
ac27a0ec 4618 }
617ba13b 4619 case EXT4_TIND_BLOCK:
ac27a0ec
DK
4620 ;
4621 }
4622
0e855ac8 4623 up_write(&ei->i_data_sem);
ef7f3835 4624 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
617ba13b 4625 ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
4626
4627 /*
4628 * In a multi-transaction truncate, we only make the final transaction
4629 * synchronous
4630 */
4631 if (IS_SYNC(inode))
0390131b 4632 ext4_handle_sync(handle);
ac27a0ec
DK
4633out_stop:
4634 /*
4635 * If this was a simple ftruncate(), and the file will remain alive
4636 * then we need to clear up the orphan record which we created above.
4637 * However, if this was a real unlink then we were called by
617ba13b 4638 * ext4_delete_inode(), and we allow that function to clean up the
ac27a0ec
DK
4639 * orphan info for us.
4640 */
4641 if (inode->i_nlink)
617ba13b 4642 ext4_orphan_del(handle, inode);
ac27a0ec 4643
617ba13b 4644 ext4_journal_stop(handle);
ac27a0ec
DK
4645}
4646
ac27a0ec 4647/*
617ba13b 4648 * ext4_get_inode_loc returns with an extra refcount against the inode's
ac27a0ec
DK
4649 * underlying buffer_head on success. If 'in_mem' is true, we have all
4650 * data in memory that is needed to recreate the on-disk version of this
4651 * inode.
4652 */
617ba13b
MC
4653static int __ext4_get_inode_loc(struct inode *inode,
4654 struct ext4_iloc *iloc, int in_mem)
ac27a0ec 4655{
240799cd
TT
4656 struct ext4_group_desc *gdp;
4657 struct buffer_head *bh;
4658 struct super_block *sb = inode->i_sb;
4659 ext4_fsblk_t block;
4660 int inodes_per_block, inode_offset;
4661
3a06d778 4662 iloc->bh = NULL;
240799cd
TT
4663 if (!ext4_valid_inum(sb, inode->i_ino))
4664 return -EIO;
ac27a0ec 4665
240799cd
TT
4666 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4667 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4668 if (!gdp)
ac27a0ec
DK
4669 return -EIO;
4670
240799cd
TT
4671 /*
4672 * Figure out the offset within the block group inode table
4673 */
4674 inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb));
4675 inode_offset = ((inode->i_ino - 1) %
4676 EXT4_INODES_PER_GROUP(sb));
4677 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4678 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4679
4680 bh = sb_getblk(sb, block);
ac27a0ec 4681 if (!bh) {
c398eda0
TT
4682 EXT4_ERROR_INODE_BLOCK(inode, block,
4683 "unable to read itable block");
ac27a0ec
DK
4684 return -EIO;
4685 }
4686 if (!buffer_uptodate(bh)) {
4687 lock_buffer(bh);
9c83a923
HK
4688
4689 /*
4690 * If the buffer has the write error flag, we have failed
4691 * to write out another inode in the same block. In this
4692 * case, we don't have to read the block because we may
4693 * read the old inode data successfully.
4694 */
4695 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4696 set_buffer_uptodate(bh);
4697
ac27a0ec
DK
4698 if (buffer_uptodate(bh)) {
4699 /* someone brought it uptodate while we waited */
4700 unlock_buffer(bh);
4701 goto has_buffer;
4702 }
4703
4704 /*
4705 * If we have all information of the inode in memory and this
4706 * is the only valid inode in the block, we need not read the
4707 * block.
4708 */
4709 if (in_mem) {
4710 struct buffer_head *bitmap_bh;
240799cd 4711 int i, start;
ac27a0ec 4712
240799cd 4713 start = inode_offset & ~(inodes_per_block - 1);
ac27a0ec 4714
240799cd
TT
4715 /* Is the inode bitmap in cache? */
4716 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
ac27a0ec
DK
4717 if (!bitmap_bh)
4718 goto make_io;
4719
4720 /*
4721 * If the inode bitmap isn't in cache then the
4722 * optimisation may end up performing two reads instead
4723 * of one, so skip it.
4724 */
4725 if (!buffer_uptodate(bitmap_bh)) {
4726 brelse(bitmap_bh);
4727 goto make_io;
4728 }
240799cd 4729 for (i = start; i < start + inodes_per_block; i++) {
ac27a0ec
DK
4730 if (i == inode_offset)
4731 continue;
617ba13b 4732 if (ext4_test_bit(i, bitmap_bh->b_data))
ac27a0ec
DK
4733 break;
4734 }
4735 brelse(bitmap_bh);
240799cd 4736 if (i == start + inodes_per_block) {
ac27a0ec
DK
4737 /* all other inodes are free, so skip I/O */
4738 memset(bh->b_data, 0, bh->b_size);
4739 set_buffer_uptodate(bh);
4740 unlock_buffer(bh);
4741 goto has_buffer;
4742 }
4743 }
4744
4745make_io:
240799cd
TT
4746 /*
4747 * If we need to do any I/O, try to pre-readahead extra
4748 * blocks from the inode table.
4749 */
4750 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4751 ext4_fsblk_t b, end, table;
4752 unsigned num;
4753
4754 table = ext4_inode_table(sb, gdp);
b713a5ec 4755 /* s_inode_readahead_blks is always a power of 2 */
240799cd
TT
4756 b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
4757 if (table > b)
4758 b = table;
4759 end = b + EXT4_SB(sb)->s_inode_readahead_blks;
4760 num = EXT4_INODES_PER_GROUP(sb);
4761 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4762 EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
560671a0 4763 num -= ext4_itable_unused_count(sb, gdp);
240799cd
TT
4764 table += num / inodes_per_block;
4765 if (end > table)
4766 end = table;
4767 while (b <= end)
4768 sb_breadahead(sb, b++);
4769 }
4770
ac27a0ec
DK
4771 /*
4772 * There are other valid inodes in the buffer, this inode
4773 * has in-inode xattrs, or we don't have this inode in memory.
4774 * Read the block from disk.
4775 */
4776 get_bh(bh);
4777 bh->b_end_io = end_buffer_read_sync;
4778 submit_bh(READ_META, bh);
4779 wait_on_buffer(bh);
4780 if (!buffer_uptodate(bh)) {
c398eda0
TT
4781 EXT4_ERROR_INODE_BLOCK(inode, block,
4782 "unable to read itable block");
ac27a0ec
DK
4783 brelse(bh);
4784 return -EIO;
4785 }
4786 }
4787has_buffer:
4788 iloc->bh = bh;
4789 return 0;
4790}
4791
617ba13b 4792int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
4793{
4794 /* We have all inode data except xattrs in memory here. */
617ba13b 4795 return __ext4_get_inode_loc(inode, iloc,
19f5fb7a 4796 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
ac27a0ec
DK
4797}
4798
617ba13b 4799void ext4_set_inode_flags(struct inode *inode)
ac27a0ec 4800{
617ba13b 4801 unsigned int flags = EXT4_I(inode)->i_flags;
ac27a0ec
DK
4802
4803 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
617ba13b 4804 if (flags & EXT4_SYNC_FL)
ac27a0ec 4805 inode->i_flags |= S_SYNC;
617ba13b 4806 if (flags & EXT4_APPEND_FL)
ac27a0ec 4807 inode->i_flags |= S_APPEND;
617ba13b 4808 if (flags & EXT4_IMMUTABLE_FL)
ac27a0ec 4809 inode->i_flags |= S_IMMUTABLE;
617ba13b 4810 if (flags & EXT4_NOATIME_FL)
ac27a0ec 4811 inode->i_flags |= S_NOATIME;
617ba13b 4812 if (flags & EXT4_DIRSYNC_FL)
ac27a0ec
DK
4813 inode->i_flags |= S_DIRSYNC;
4814}
4815
ff9ddf7e
JK
4816/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4817void ext4_get_inode_flags(struct ext4_inode_info *ei)
4818{
84a8dce2
DM
4819 unsigned int vfs_fl;
4820 unsigned long old_fl, new_fl;
4821
4822 do {
4823 vfs_fl = ei->vfs_inode.i_flags;
4824 old_fl = ei->i_flags;
4825 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4826 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
4827 EXT4_DIRSYNC_FL);
4828 if (vfs_fl & S_SYNC)
4829 new_fl |= EXT4_SYNC_FL;
4830 if (vfs_fl & S_APPEND)
4831 new_fl |= EXT4_APPEND_FL;
4832 if (vfs_fl & S_IMMUTABLE)
4833 new_fl |= EXT4_IMMUTABLE_FL;
4834 if (vfs_fl & S_NOATIME)
4835 new_fl |= EXT4_NOATIME_FL;
4836 if (vfs_fl & S_DIRSYNC)
4837 new_fl |= EXT4_DIRSYNC_FL;
4838 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
ff9ddf7e 4839}
de9a55b8 4840
0fc1b451 4841static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
de9a55b8 4842 struct ext4_inode_info *ei)
0fc1b451
AK
4843{
4844 blkcnt_t i_blocks ;
8180a562
AK
4845 struct inode *inode = &(ei->vfs_inode);
4846 struct super_block *sb = inode->i_sb;
0fc1b451
AK
4847
4848 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4849 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
4850 /* we are using combined 48 bit field */
4851 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4852 le32_to_cpu(raw_inode->i_blocks_lo);
07a03824 4853 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
8180a562
AK
4854 /* i_blocks represent file system block size */
4855 return i_blocks << (inode->i_blkbits - 9);
4856 } else {
4857 return i_blocks;
4858 }
0fc1b451
AK
4859 } else {
4860 return le32_to_cpu(raw_inode->i_blocks_lo);
4861 }
4862}
ff9ddf7e 4863
1d1fe1ee 4864struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
ac27a0ec 4865{
617ba13b
MC
4866 struct ext4_iloc iloc;
4867 struct ext4_inode *raw_inode;
1d1fe1ee 4868 struct ext4_inode_info *ei;
1d1fe1ee 4869 struct inode *inode;
b436b9be 4870 journal_t *journal = EXT4_SB(sb)->s_journal;
1d1fe1ee 4871 long ret;
ac27a0ec
DK
4872 int block;
4873
1d1fe1ee
DH
4874 inode = iget_locked(sb, ino);
4875 if (!inode)
4876 return ERR_PTR(-ENOMEM);
4877 if (!(inode->i_state & I_NEW))
4878 return inode;
4879
4880 ei = EXT4_I(inode);
7dc57615 4881 iloc.bh = NULL;
ac27a0ec 4882
1d1fe1ee
DH
4883 ret = __ext4_get_inode_loc(inode, &iloc, 0);
4884 if (ret < 0)
ac27a0ec 4885 goto bad_inode;
617ba13b 4886 raw_inode = ext4_raw_inode(&iloc);
ac27a0ec
DK
4887 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4888 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4889 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
af5bc92d 4890 if (!(test_opt(inode->i_sb, NO_UID32))) {
ac27a0ec
DK
4891 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4892 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4893 }
4894 inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
ac27a0ec 4895
353eb83c 4896 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
ac27a0ec
DK
4897 ei->i_dir_start_lookup = 0;
4898 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4899 /* We now have enough fields to check if the inode was active or not.
4900 * This is needed because nfsd might try to access dead inodes
4901 * the test is that same one that e2fsck uses
4902 * NeilBrown 1999oct15
4903 */
4904 if (inode->i_nlink == 0) {
4905 if (inode->i_mode == 0 ||
617ba13b 4906 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
ac27a0ec 4907 /* this inode is deleted */
1d1fe1ee 4908 ret = -ESTALE;
ac27a0ec
DK
4909 goto bad_inode;
4910 }
4911 /* The only unlinked inodes we let through here have
4912 * valid i_mode and are being read by the orphan
4913 * recovery code: that's fine, we're about to complete
4914 * the process of deleting those. */
4915 }
ac27a0ec 4916 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
0fc1b451 4917 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
7973c0c1 4918 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
a9e81742 4919 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
a1ddeb7e
BP
4920 ei->i_file_acl |=
4921 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
a48380f7 4922 inode->i_size = ext4_isize(raw_inode);
ac27a0ec 4923 ei->i_disksize = inode->i_size;
a9e7f447
DM
4924#ifdef CONFIG_QUOTA
4925 ei->i_reserved_quota = 0;
4926#endif
ac27a0ec
DK
4927 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4928 ei->i_block_group = iloc.block_group;
a4912123 4929 ei->i_last_alloc_group = ~0;
ac27a0ec
DK
4930 /*
4931 * NOTE! The in-memory inode i_data array is in little-endian order
4932 * even on big-endian machines: we do NOT byteswap the block numbers!
4933 */
617ba13b 4934 for (block = 0; block < EXT4_N_BLOCKS; block++)
ac27a0ec
DK
4935 ei->i_data[block] = raw_inode->i_block[block];
4936 INIT_LIST_HEAD(&ei->i_orphan);
4937
b436b9be
JK
4938 /*
4939 * Set transaction id's of transactions that have to be committed
4940 * to finish f[data]sync. We set them to currently running transaction
4941 * as we cannot be sure that the inode or some of its metadata isn't
4942 * part of the transaction - the inode could have been reclaimed and
4943 * now it is reread from disk.
4944 */
4945 if (journal) {
4946 transaction_t *transaction;
4947 tid_t tid;
4948
a931da6a 4949 read_lock(&journal->j_state_lock);
b436b9be
JK
4950 if (journal->j_running_transaction)
4951 transaction = journal->j_running_transaction;
4952 else
4953 transaction = journal->j_committing_transaction;
4954 if (transaction)
4955 tid = transaction->t_tid;
4956 else
4957 tid = journal->j_commit_sequence;
a931da6a 4958 read_unlock(&journal->j_state_lock);
b436b9be
JK
4959 ei->i_sync_tid = tid;
4960 ei->i_datasync_tid = tid;
4961 }
4962
0040d987 4963 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
ac27a0ec 4964 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
617ba13b 4965 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
e5d2861f 4966 EXT4_INODE_SIZE(inode->i_sb)) {
1d1fe1ee 4967 ret = -EIO;
ac27a0ec 4968 goto bad_inode;
e5d2861f 4969 }
ac27a0ec
DK
4970 if (ei->i_extra_isize == 0) {
4971 /* The extra space is currently unused. Use it. */
617ba13b
MC
4972 ei->i_extra_isize = sizeof(struct ext4_inode) -
4973 EXT4_GOOD_OLD_INODE_SIZE;
ac27a0ec
DK
4974 } else {
4975 __le32 *magic = (void *)raw_inode +
617ba13b 4976 EXT4_GOOD_OLD_INODE_SIZE +
ac27a0ec 4977 ei->i_extra_isize;
617ba13b 4978 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
19f5fb7a 4979 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
ac27a0ec
DK
4980 }
4981 } else
4982 ei->i_extra_isize = 0;
4983
ef7f3835
KS
4984 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4985 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4986 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4987 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4988
25ec56b5
JNC
4989 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4990 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4991 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4992 inode->i_version |=
4993 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4994 }
4995
c4b5a614 4996 ret = 0;
485c26ec 4997 if (ei->i_file_acl &&
1032988c 4998 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
24676da4
TT
4999 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
5000 ei->i_file_acl);
485c26ec
TT
5001 ret = -EIO;
5002 goto bad_inode;
07a03824 5003 } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
c4b5a614
TT
5004 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
5005 (S_ISLNK(inode->i_mode) &&
5006 !ext4_inode_is_fast_symlink(inode)))
5007 /* Validate extent which is part of inode */
5008 ret = ext4_ext_check_inode(inode);
de9a55b8 5009 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
fe2c8191
TN
5010 (S_ISLNK(inode->i_mode) &&
5011 !ext4_inode_is_fast_symlink(inode))) {
de9a55b8 5012 /* Validate block references which are part of inode */
fe2c8191
TN
5013 ret = ext4_check_inode_blockref(inode);
5014 }
567f3e9a 5015 if (ret)
de9a55b8 5016 goto bad_inode;
7a262f7c 5017
ac27a0ec 5018 if (S_ISREG(inode->i_mode)) {
617ba13b
MC
5019 inode->i_op = &ext4_file_inode_operations;
5020 inode->i_fop = &ext4_file_operations;
5021 ext4_set_aops(inode);
ac27a0ec 5022 } else if (S_ISDIR(inode->i_mode)) {
617ba13b
MC
5023 inode->i_op = &ext4_dir_inode_operations;
5024 inode->i_fop = &ext4_dir_operations;
ac27a0ec 5025 } else if (S_ISLNK(inode->i_mode)) {
e83c1397 5026 if (ext4_inode_is_fast_symlink(inode)) {
617ba13b 5027 inode->i_op = &ext4_fast_symlink_inode_operations;
e83c1397
DG
5028 nd_terminate_link(ei->i_data, inode->i_size,
5029 sizeof(ei->i_data) - 1);
5030 } else {
617ba13b
MC
5031 inode->i_op = &ext4_symlink_inode_operations;
5032 ext4_set_aops(inode);
ac27a0ec 5033 }
563bdd61
TT
5034 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
5035 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
617ba13b 5036 inode->i_op = &ext4_special_inode_operations;
ac27a0ec
DK
5037 if (raw_inode->i_block[0])
5038 init_special_inode(inode, inode->i_mode,
5039 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
5040 else
5041 init_special_inode(inode, inode->i_mode,
5042 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
563bdd61 5043 } else {
563bdd61 5044 ret = -EIO;
24676da4 5045 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
563bdd61 5046 goto bad_inode;
ac27a0ec 5047 }
af5bc92d 5048 brelse(iloc.bh);
617ba13b 5049 ext4_set_inode_flags(inode);
1d1fe1ee
DH
5050 unlock_new_inode(inode);
5051 return inode;
ac27a0ec
DK
5052
5053bad_inode:
567f3e9a 5054 brelse(iloc.bh);
1d1fe1ee
DH
5055 iget_failed(inode);
5056 return ERR_PTR(ret);
ac27a0ec
DK
5057}
5058
0fc1b451
AK
5059static int ext4_inode_blocks_set(handle_t *handle,
5060 struct ext4_inode *raw_inode,
5061 struct ext4_inode_info *ei)
5062{
5063 struct inode *inode = &(ei->vfs_inode);
5064 u64 i_blocks = inode->i_blocks;
5065 struct super_block *sb = inode->i_sb;
0fc1b451
AK
5066
5067 if (i_blocks <= ~0U) {
5068 /*
5069 * i_blocks can be represnted in a 32 bit variable
5070 * as multiple of 512 bytes
5071 */
8180a562 5072 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 5073 raw_inode->i_blocks_high = 0;
84a8dce2 5074 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
f287a1a5
TT
5075 return 0;
5076 }
5077 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
5078 return -EFBIG;
5079
5080 if (i_blocks <= 0xffffffffffffULL) {
0fc1b451
AK
5081 /*
5082 * i_blocks can be represented in a 48 bit variable
5083 * as multiple of 512 bytes
5084 */
8180a562 5085 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 5086 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
84a8dce2 5087 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
0fc1b451 5088 } else {
84a8dce2 5089 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
8180a562
AK
5090 /* i_block is stored in file system block size */
5091 i_blocks = i_blocks >> (inode->i_blkbits - 9);
5092 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
5093 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
0fc1b451 5094 }
f287a1a5 5095 return 0;
0fc1b451
AK
5096}
5097
ac27a0ec
DK
5098/*
5099 * Post the struct inode info into an on-disk inode location in the
5100 * buffer-cache. This gobbles the caller's reference to the
5101 * buffer_head in the inode location struct.
5102 *
5103 * The caller must have write access to iloc->bh.
5104 */
617ba13b 5105static int ext4_do_update_inode(handle_t *handle,
ac27a0ec 5106 struct inode *inode,
830156c7 5107 struct ext4_iloc *iloc)
ac27a0ec 5108{
617ba13b
MC
5109 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5110 struct ext4_inode_info *ei = EXT4_I(inode);
ac27a0ec
DK
5111 struct buffer_head *bh = iloc->bh;
5112 int err = 0, rc, block;
5113
5114 /* For fields not not tracking in the in-memory inode,
5115 * initialise them to zero for new inodes. */
19f5fb7a 5116 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
617ba13b 5117 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
ac27a0ec 5118
ff9ddf7e 5119 ext4_get_inode_flags(ei);
ac27a0ec 5120 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
af5bc92d 5121 if (!(test_opt(inode->i_sb, NO_UID32))) {
ac27a0ec
DK
5122 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
5123 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
5124/*
5125 * Fix up interoperability with old kernels. Otherwise, old inodes get
5126 * re-used with the upper 16 bits of the uid/gid intact
5127 */
af5bc92d 5128 if (!ei->i_dtime) {
ac27a0ec
DK
5129 raw_inode->i_uid_high =
5130 cpu_to_le16(high_16_bits(inode->i_uid));
5131 raw_inode->i_gid_high =
5132 cpu_to_le16(high_16_bits(inode->i_gid));
5133 } else {
5134 raw_inode->i_uid_high = 0;
5135 raw_inode->i_gid_high = 0;
5136 }
5137 } else {
5138 raw_inode->i_uid_low =
5139 cpu_to_le16(fs_high2lowuid(inode->i_uid));
5140 raw_inode->i_gid_low =
5141 cpu_to_le16(fs_high2lowgid(inode->i_gid));
5142 raw_inode->i_uid_high = 0;
5143 raw_inode->i_gid_high = 0;
5144 }
5145 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
ef7f3835
KS
5146
5147 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5148 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5149 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5150 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
5151
0fc1b451
AK
5152 if (ext4_inode_blocks_set(handle, raw_inode, ei))
5153 goto out_brelse;
ac27a0ec 5154 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
353eb83c 5155 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
9b8f1f01
MC
5156 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
5157 cpu_to_le32(EXT4_OS_HURD))
a1ddeb7e
BP
5158 raw_inode->i_file_acl_high =
5159 cpu_to_le16(ei->i_file_acl >> 32);
7973c0c1 5160 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
a48380f7
AK
5161 ext4_isize_set(raw_inode, ei->i_disksize);
5162 if (ei->i_disksize > 0x7fffffffULL) {
5163 struct super_block *sb = inode->i_sb;
5164 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
5165 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
5166 EXT4_SB(sb)->s_es->s_rev_level ==
5167 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
5168 /* If this is the first large file
5169 * created, add a flag to the superblock.
5170 */
5171 err = ext4_journal_get_write_access(handle,
5172 EXT4_SB(sb)->s_sbh);
5173 if (err)
5174 goto out_brelse;
5175 ext4_update_dynamic_rev(sb);
5176 EXT4_SET_RO_COMPAT_FEATURE(sb,
617ba13b 5177 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
a48380f7 5178 sb->s_dirt = 1;
0390131b 5179 ext4_handle_sync(handle);
73b50c1c 5180 err = ext4_handle_dirty_metadata(handle, NULL,
a48380f7 5181 EXT4_SB(sb)->s_sbh);
ac27a0ec
DK
5182 }
5183 }
5184 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5185 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5186 if (old_valid_dev(inode->i_rdev)) {
5187 raw_inode->i_block[0] =
5188 cpu_to_le32(old_encode_dev(inode->i_rdev));
5189 raw_inode->i_block[1] = 0;
5190 } else {
5191 raw_inode->i_block[0] = 0;
5192 raw_inode->i_block[1] =
5193 cpu_to_le32(new_encode_dev(inode->i_rdev));
5194 raw_inode->i_block[2] = 0;
5195 }
de9a55b8
TT
5196 } else
5197 for (block = 0; block < EXT4_N_BLOCKS; block++)
5198 raw_inode->i_block[block] = ei->i_data[block];
ac27a0ec 5199
25ec56b5
JNC
5200 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
5201 if (ei->i_extra_isize) {
5202 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5203 raw_inode->i_version_hi =
5204 cpu_to_le32(inode->i_version >> 32);
ac27a0ec 5205 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
25ec56b5
JNC
5206 }
5207
830156c7 5208 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
73b50c1c 5209 rc = ext4_handle_dirty_metadata(handle, NULL, bh);
830156c7
FM
5210 if (!err)
5211 err = rc;
19f5fb7a 5212 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
ac27a0ec 5213
b436b9be 5214 ext4_update_inode_fsync_trans(handle, inode, 0);
ac27a0ec 5215out_brelse:
af5bc92d 5216 brelse(bh);
617ba13b 5217 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5218 return err;
5219}
5220
5221/*
617ba13b 5222 * ext4_write_inode()
ac27a0ec
DK
5223 *
5224 * We are called from a few places:
5225 *
5226 * - Within generic_file_write() for O_SYNC files.
5227 * Here, there will be no transaction running. We wait for any running
5228 * trasnaction to commit.
5229 *
5230 * - Within sys_sync(), kupdate and such.
5231 * We wait on commit, if tol to.
5232 *
5233 * - Within prune_icache() (PF_MEMALLOC == true)
5234 * Here we simply return. We can't afford to block kswapd on the
5235 * journal commit.
5236 *
5237 * In all cases it is actually safe for us to return without doing anything,
5238 * because the inode has been copied into a raw inode buffer in
617ba13b 5239 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
ac27a0ec
DK
5240 * knfsd.
5241 *
5242 * Note that we are absolutely dependent upon all inode dirtiers doing the
5243 * right thing: they *must* call mark_inode_dirty() after dirtying info in
5244 * which we are interested.
5245 *
5246 * It would be a bug for them to not do this. The code:
5247 *
5248 * mark_inode_dirty(inode)
5249 * stuff();
5250 * inode->i_size = expr;
5251 *
5252 * is in error because a kswapd-driven write_inode() could occur while
5253 * `stuff()' is running, and the new i_size will be lost. Plus the inode
5254 * will no longer be on the superblock's dirty inode list.
5255 */
a9185b41 5256int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
ac27a0ec 5257{
91ac6f43
FM
5258 int err;
5259
ac27a0ec
DK
5260 if (current->flags & PF_MEMALLOC)
5261 return 0;
5262
91ac6f43
FM
5263 if (EXT4_SB(inode->i_sb)->s_journal) {
5264 if (ext4_journal_current_handle()) {
5265 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5266 dump_stack();
5267 return -EIO;
5268 }
ac27a0ec 5269
a9185b41 5270 if (wbc->sync_mode != WB_SYNC_ALL)
91ac6f43
FM
5271 return 0;
5272
5273 err = ext4_force_commit(inode->i_sb);
5274 } else {
5275 struct ext4_iloc iloc;
ac27a0ec 5276
8b472d73 5277 err = __ext4_get_inode_loc(inode, &iloc, 0);
91ac6f43
FM
5278 if (err)
5279 return err;
a9185b41 5280 if (wbc->sync_mode == WB_SYNC_ALL)
830156c7
FM
5281 sync_dirty_buffer(iloc.bh);
5282 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
c398eda0
TT
5283 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
5284 "IO error syncing inode");
830156c7
FM
5285 err = -EIO;
5286 }
fd2dd9fb 5287 brelse(iloc.bh);
91ac6f43
FM
5288 }
5289 return err;
ac27a0ec
DK
5290}
5291
5292/*
617ba13b 5293 * ext4_setattr()
ac27a0ec
DK
5294 *
5295 * Called from notify_change.
5296 *
5297 * We want to trap VFS attempts to truncate the file as soon as
5298 * possible. In particular, we want to make sure that when the VFS
5299 * shrinks i_size, we put the inode on the orphan list and modify
5300 * i_disksize immediately, so that during the subsequent flushing of
5301 * dirty pages and freeing of disk blocks, we can guarantee that any
5302 * commit will leave the blocks being flushed in an unused state on
5303 * disk. (On recovery, the inode will get truncated and the blocks will
5304 * be freed, so we have a strong guarantee that no future commit will
5305 * leave these blocks visible to the user.)
5306 *
678aaf48
JK
5307 * Another thing we have to assure is that if we are in ordered mode
5308 * and inode is still attached to the committing transaction, we must
5309 * we start writeout of all the dirty pages which are being truncated.
5310 * This way we are sure that all the data written in the previous
5311 * transaction are already on disk (truncate waits for pages under
5312 * writeback).
5313 *
5314 * Called with inode->i_mutex down.
ac27a0ec 5315 */
617ba13b 5316int ext4_setattr(struct dentry *dentry, struct iattr *attr)
ac27a0ec
DK
5317{
5318 struct inode *inode = dentry->d_inode;
5319 int error, rc = 0;
3d287de3 5320 int orphan = 0;
ac27a0ec
DK
5321 const unsigned int ia_valid = attr->ia_valid;
5322
5323 error = inode_change_ok(inode, attr);
5324 if (error)
5325 return error;
5326
12755627 5327 if (is_quota_modification(inode, attr))
871a2931 5328 dquot_initialize(inode);
ac27a0ec
DK
5329 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
5330 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
5331 handle_t *handle;
5332
5333 /* (user+group)*(old+new) structure, inode write (sb,
5334 * inode block, ? - but truncate inode update has it) */
5aca07eb 5335 handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
194074ac 5336 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3);
ac27a0ec
DK
5337 if (IS_ERR(handle)) {
5338 error = PTR_ERR(handle);
5339 goto err_out;
5340 }
b43fa828 5341 error = dquot_transfer(inode, attr);
ac27a0ec 5342 if (error) {
617ba13b 5343 ext4_journal_stop(handle);
ac27a0ec
DK
5344 return error;
5345 }
5346 /* Update corresponding info in inode so that everything is in
5347 * one transaction */
5348 if (attr->ia_valid & ATTR_UID)
5349 inode->i_uid = attr->ia_uid;
5350 if (attr->ia_valid & ATTR_GID)
5351 inode->i_gid = attr->ia_gid;
617ba13b
MC
5352 error = ext4_mark_inode_dirty(handle, inode);
5353 ext4_journal_stop(handle);
ac27a0ec
DK
5354 }
5355
e2b46574 5356 if (attr->ia_valid & ATTR_SIZE) {
12e9b892 5357 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
e2b46574
ES
5358 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5359
0c095c7f
TT
5360 if (attr->ia_size > sbi->s_bitmap_maxbytes)
5361 return -EFBIG;
e2b46574
ES
5362 }
5363 }
5364
ac27a0ec 5365 if (S_ISREG(inode->i_mode) &&
c8d46e41
JZ
5366 attr->ia_valid & ATTR_SIZE &&
5367 (attr->ia_size < inode->i_size ||
12e9b892 5368 (ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS)))) {
ac27a0ec
DK
5369 handle_t *handle;
5370
617ba13b 5371 handle = ext4_journal_start(inode, 3);
ac27a0ec
DK
5372 if (IS_ERR(handle)) {
5373 error = PTR_ERR(handle);
5374 goto err_out;
5375 }
3d287de3
DM
5376 if (ext4_handle_valid(handle)) {
5377 error = ext4_orphan_add(handle, inode);
5378 orphan = 1;
5379 }
617ba13b
MC
5380 EXT4_I(inode)->i_disksize = attr->ia_size;
5381 rc = ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
5382 if (!error)
5383 error = rc;
617ba13b 5384 ext4_journal_stop(handle);
678aaf48
JK
5385
5386 if (ext4_should_order_data(inode)) {
5387 error = ext4_begin_ordered_truncate(inode,
5388 attr->ia_size);
5389 if (error) {
5390 /* Do as much error cleanup as possible */
5391 handle = ext4_journal_start(inode, 3);
5392 if (IS_ERR(handle)) {
5393 ext4_orphan_del(NULL, inode);
5394 goto err_out;
5395 }
5396 ext4_orphan_del(handle, inode);
3d287de3 5397 orphan = 0;
678aaf48
JK
5398 ext4_journal_stop(handle);
5399 goto err_out;
5400 }
5401 }
c8d46e41 5402 /* ext4_truncate will clear the flag */
12e9b892 5403 if ((ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS)))
c8d46e41 5404 ext4_truncate(inode);
ac27a0ec
DK
5405 }
5406
1025774c
CH
5407 if ((attr->ia_valid & ATTR_SIZE) &&
5408 attr->ia_size != i_size_read(inode))
5409 rc = vmtruncate(inode, attr->ia_size);
ac27a0ec 5410
1025774c
CH
5411 if (!rc) {
5412 setattr_copy(inode, attr);
5413 mark_inode_dirty(inode);
5414 }
5415
5416 /*
5417 * If the call to ext4_truncate failed to get a transaction handle at
5418 * all, we need to clean up the in-core orphan list manually.
5419 */
3d287de3 5420 if (orphan && inode->i_nlink)
617ba13b 5421 ext4_orphan_del(NULL, inode);
ac27a0ec
DK
5422
5423 if (!rc && (ia_valid & ATTR_MODE))
617ba13b 5424 rc = ext4_acl_chmod(inode);
ac27a0ec
DK
5425
5426err_out:
617ba13b 5427 ext4_std_error(inode->i_sb, error);
ac27a0ec
DK
5428 if (!error)
5429 error = rc;
5430 return error;
5431}
5432
3e3398a0
MC
5433int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
5434 struct kstat *stat)
5435{
5436 struct inode *inode;
5437 unsigned long delalloc_blocks;
5438
5439 inode = dentry->d_inode;
5440 generic_fillattr(inode, stat);
5441
5442 /*
5443 * We can't update i_blocks if the block allocation is delayed
5444 * otherwise in the case of system crash before the real block
5445 * allocation is done, we will have i_blocks inconsistent with
5446 * on-disk file blocks.
5447 * We always keep i_blocks updated together with real
5448 * allocation. But to not confuse with user, stat
5449 * will return the blocks that include the delayed allocation
5450 * blocks for this file.
5451 */
3e3398a0 5452 delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
3e3398a0
MC
5453
5454 stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
5455 return 0;
5456}
ac27a0ec 5457
a02908f1
MC
5458static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
5459 int chunk)
5460{
5461 int indirects;
5462
5463 /* if nrblocks are contiguous */
5464 if (chunk) {
5465 /*
5466 * With N contiguous data blocks, it need at most
5467 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
5468 * 2 dindirect blocks
5469 * 1 tindirect block
5470 */
5471 indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
5472 return indirects + 3;
5473 }
5474 /*
5475 * if nrblocks are not contiguous, worse case, each block touch
5476 * a indirect block, and each indirect block touch a double indirect
5477 * block, plus a triple indirect block
5478 */
5479 indirects = nrblocks * 2 + 1;
5480 return indirects;
5481}
5482
5483static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
5484{
12e9b892 5485 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
ac51d837
TT
5486 return ext4_indirect_trans_blocks(inode, nrblocks, chunk);
5487 return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
a02908f1 5488}
ac51d837 5489
ac27a0ec 5490/*
a02908f1
MC
5491 * Account for index blocks, block groups bitmaps and block group
5492 * descriptor blocks if modify datablocks and index blocks
5493 * worse case, the indexs blocks spread over different block groups
ac27a0ec 5494 *
a02908f1 5495 * If datablocks are discontiguous, they are possible to spread over
af901ca1 5496 * different block groups too. If they are contiuguous, with flexbg,
a02908f1 5497 * they could still across block group boundary.
ac27a0ec 5498 *
a02908f1
MC
5499 * Also account for superblock, inode, quota and xattr blocks
5500 */
1f109d5a 5501static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
a02908f1 5502{
8df9675f
TT
5503 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5504 int gdpblocks;
a02908f1
MC
5505 int idxblocks;
5506 int ret = 0;
5507
5508 /*
5509 * How many index blocks need to touch to modify nrblocks?
5510 * The "Chunk" flag indicating whether the nrblocks is
5511 * physically contiguous on disk
5512 *
5513 * For Direct IO and fallocate, they calls get_block to allocate
5514 * one single extent at a time, so they could set the "Chunk" flag
5515 */
5516 idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
5517
5518 ret = idxblocks;
5519
5520 /*
5521 * Now let's see how many group bitmaps and group descriptors need
5522 * to account
5523 */
5524 groups = idxblocks;
5525 if (chunk)
5526 groups += 1;
5527 else
5528 groups += nrblocks;
5529
5530 gdpblocks = groups;
8df9675f
TT
5531 if (groups > ngroups)
5532 groups = ngroups;
a02908f1
MC
5533 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5534 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5535
5536 /* bitmaps and block group descriptor blocks */
5537 ret += groups + gdpblocks;
5538
5539 /* Blocks for super block, inode, quota and xattr blocks */
5540 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5541
5542 return ret;
5543}
5544
5545/*
5546 * Calulate the total number of credits to reserve to fit
f3bd1f3f
MC
5547 * the modification of a single pages into a single transaction,
5548 * which may include multiple chunks of block allocations.
ac27a0ec 5549 *
525f4ed8 5550 * This could be called via ext4_write_begin()
ac27a0ec 5551 *
525f4ed8 5552 * We need to consider the worse case, when
a02908f1 5553 * one new block per extent.
ac27a0ec 5554 */
a86c6181 5555int ext4_writepage_trans_blocks(struct inode *inode)
ac27a0ec 5556{
617ba13b 5557 int bpp = ext4_journal_blocks_per_page(inode);
ac27a0ec
DK
5558 int ret;
5559
a02908f1 5560 ret = ext4_meta_trans_blocks(inode, bpp, 0);
a86c6181 5561
a02908f1 5562 /* Account for data blocks for journalled mode */
617ba13b 5563 if (ext4_should_journal_data(inode))
a02908f1 5564 ret += bpp;
ac27a0ec
DK
5565 return ret;
5566}
f3bd1f3f
MC
5567
5568/*
5569 * Calculate the journal credits for a chunk of data modification.
5570 *
5571 * This is called from DIO, fallocate or whoever calling
79e83036 5572 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
f3bd1f3f
MC
5573 *
5574 * journal buffers for data blocks are not included here, as DIO
5575 * and fallocate do no need to journal data buffers.
5576 */
5577int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5578{
5579 return ext4_meta_trans_blocks(inode, nrblocks, 1);
5580}
5581
ac27a0ec 5582/*
617ba13b 5583 * The caller must have previously called ext4_reserve_inode_write().
ac27a0ec
DK
5584 * Give this, we know that the caller already has write access to iloc->bh.
5585 */
617ba13b 5586int ext4_mark_iloc_dirty(handle_t *handle,
de9a55b8 5587 struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
5588{
5589 int err = 0;
5590
25ec56b5
JNC
5591 if (test_opt(inode->i_sb, I_VERSION))
5592 inode_inc_iversion(inode);
5593
ac27a0ec
DK
5594 /* the do_update_inode consumes one bh->b_count */
5595 get_bh(iloc->bh);
5596
dab291af 5597 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
830156c7 5598 err = ext4_do_update_inode(handle, inode, iloc);
ac27a0ec
DK
5599 put_bh(iloc->bh);
5600 return err;
5601}
5602
5603/*
5604 * On success, We end up with an outstanding reference count against
5605 * iloc->bh. This _must_ be cleaned up later.
5606 */
5607
5608int
617ba13b
MC
5609ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5610 struct ext4_iloc *iloc)
ac27a0ec 5611{
0390131b
FM
5612 int err;
5613
5614 err = ext4_get_inode_loc(inode, iloc);
5615 if (!err) {
5616 BUFFER_TRACE(iloc->bh, "get_write_access");
5617 err = ext4_journal_get_write_access(handle, iloc->bh);
5618 if (err) {
5619 brelse(iloc->bh);
5620 iloc->bh = NULL;
ac27a0ec
DK
5621 }
5622 }
617ba13b 5623 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5624 return err;
5625}
5626
6dd4ee7c
KS
5627/*
5628 * Expand an inode by new_extra_isize bytes.
5629 * Returns 0 on success or negative error number on failure.
5630 */
1d03ec98
AK
5631static int ext4_expand_extra_isize(struct inode *inode,
5632 unsigned int new_extra_isize,
5633 struct ext4_iloc iloc,
5634 handle_t *handle)
6dd4ee7c
KS
5635{
5636 struct ext4_inode *raw_inode;
5637 struct ext4_xattr_ibody_header *header;
6dd4ee7c
KS
5638
5639 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5640 return 0;
5641
5642 raw_inode = ext4_raw_inode(&iloc);
5643
5644 header = IHDR(inode, raw_inode);
6dd4ee7c
KS
5645
5646 /* No extended attributes present */
19f5fb7a
TT
5647 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5648 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
6dd4ee7c
KS
5649 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5650 new_extra_isize);
5651 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5652 return 0;
5653 }
5654
5655 /* try to expand with EAs present */
5656 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5657 raw_inode, handle);
5658}
5659
ac27a0ec
DK
5660/*
5661 * What we do here is to mark the in-core inode as clean with respect to inode
5662 * dirtiness (it may still be data-dirty).
5663 * This means that the in-core inode may be reaped by prune_icache
5664 * without having to perform any I/O. This is a very good thing,
5665 * because *any* task may call prune_icache - even ones which
5666 * have a transaction open against a different journal.
5667 *
5668 * Is this cheating? Not really. Sure, we haven't written the
5669 * inode out, but prune_icache isn't a user-visible syncing function.
5670 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5671 * we start and wait on commits.
5672 *
5673 * Is this efficient/effective? Well, we're being nice to the system
5674 * by cleaning up our inodes proactively so they can be reaped
5675 * without I/O. But we are potentially leaving up to five seconds'
5676 * worth of inodes floating about which prune_icache wants us to
5677 * write out. One way to fix that would be to get prune_icache()
5678 * to do a write_super() to free up some memory. It has the desired
5679 * effect.
5680 */
617ba13b 5681int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
ac27a0ec 5682{
617ba13b 5683 struct ext4_iloc iloc;
6dd4ee7c
KS
5684 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5685 static unsigned int mnt_count;
5686 int err, ret;
ac27a0ec
DK
5687
5688 might_sleep();
7ff9c073 5689 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
617ba13b 5690 err = ext4_reserve_inode_write(handle, inode, &iloc);
0390131b
FM
5691 if (ext4_handle_valid(handle) &&
5692 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
19f5fb7a 5693 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
6dd4ee7c
KS
5694 /*
5695 * We need extra buffer credits since we may write into EA block
5696 * with this same handle. If journal_extend fails, then it will
5697 * only result in a minor loss of functionality for that inode.
5698 * If this is felt to be critical, then e2fsck should be run to
5699 * force a large enough s_min_extra_isize.
5700 */
5701 if ((jbd2_journal_extend(handle,
5702 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5703 ret = ext4_expand_extra_isize(inode,
5704 sbi->s_want_extra_isize,
5705 iloc, handle);
5706 if (ret) {
19f5fb7a
TT
5707 ext4_set_inode_state(inode,
5708 EXT4_STATE_NO_EXPAND);
c1bddad9
AK
5709 if (mnt_count !=
5710 le16_to_cpu(sbi->s_es->s_mnt_count)) {
12062ddd 5711 ext4_warning(inode->i_sb,
6dd4ee7c
KS
5712 "Unable to expand inode %lu. Delete"
5713 " some EAs or run e2fsck.",
5714 inode->i_ino);
c1bddad9
AK
5715 mnt_count =
5716 le16_to_cpu(sbi->s_es->s_mnt_count);
6dd4ee7c
KS
5717 }
5718 }
5719 }
5720 }
ac27a0ec 5721 if (!err)
617ba13b 5722 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
ac27a0ec
DK
5723 return err;
5724}
5725
5726/*
617ba13b 5727 * ext4_dirty_inode() is called from __mark_inode_dirty()
ac27a0ec
DK
5728 *
5729 * We're really interested in the case where a file is being extended.
5730 * i_size has been changed by generic_commit_write() and we thus need
5731 * to include the updated inode in the current transaction.
5732 *
5dd4056d 5733 * Also, dquot_alloc_block() will always dirty the inode when blocks
ac27a0ec
DK
5734 * are allocated to the file.
5735 *
5736 * If the inode is marked synchronous, we don't honour that here - doing
5737 * so would cause a commit on atime updates, which we don't bother doing.
5738 * We handle synchronous inodes at the highest possible level.
5739 */
617ba13b 5740void ext4_dirty_inode(struct inode *inode)
ac27a0ec 5741{
ac27a0ec
DK
5742 handle_t *handle;
5743
617ba13b 5744 handle = ext4_journal_start(inode, 2);
ac27a0ec
DK
5745 if (IS_ERR(handle))
5746 goto out;
f3dc272f 5747
f3dc272f
CW
5748 ext4_mark_inode_dirty(handle, inode);
5749
617ba13b 5750 ext4_journal_stop(handle);
ac27a0ec
DK
5751out:
5752 return;
5753}
5754
5755#if 0
5756/*
5757 * Bind an inode's backing buffer_head into this transaction, to prevent
5758 * it from being flushed to disk early. Unlike
617ba13b 5759 * ext4_reserve_inode_write, this leaves behind no bh reference and
ac27a0ec
DK
5760 * returns no iloc structure, so the caller needs to repeat the iloc
5761 * lookup to mark the inode dirty later.
5762 */
617ba13b 5763static int ext4_pin_inode(handle_t *handle, struct inode *inode)
ac27a0ec 5764{
617ba13b 5765 struct ext4_iloc iloc;
ac27a0ec
DK
5766
5767 int err = 0;
5768 if (handle) {
617ba13b 5769 err = ext4_get_inode_loc(inode, &iloc);
ac27a0ec
DK
5770 if (!err) {
5771 BUFFER_TRACE(iloc.bh, "get_write_access");
dab291af 5772 err = jbd2_journal_get_write_access(handle, iloc.bh);
ac27a0ec 5773 if (!err)
0390131b 5774 err = ext4_handle_dirty_metadata(handle,
73b50c1c 5775 NULL,
0390131b 5776 iloc.bh);
ac27a0ec
DK
5777 brelse(iloc.bh);
5778 }
5779 }
617ba13b 5780 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5781 return err;
5782}
5783#endif
5784
617ba13b 5785int ext4_change_inode_journal_flag(struct inode *inode, int val)
ac27a0ec
DK
5786{
5787 journal_t *journal;
5788 handle_t *handle;
5789 int err;
5790
5791 /*
5792 * We have to be very careful here: changing a data block's
5793 * journaling status dynamically is dangerous. If we write a
5794 * data block to the journal, change the status and then delete
5795 * that block, we risk forgetting to revoke the old log record
5796 * from the journal and so a subsequent replay can corrupt data.
5797 * So, first we make sure that the journal is empty and that
5798 * nobody is changing anything.
5799 */
5800
617ba13b 5801 journal = EXT4_JOURNAL(inode);
0390131b
FM
5802 if (!journal)
5803 return 0;
d699594d 5804 if (is_journal_aborted(journal))
ac27a0ec
DK
5805 return -EROFS;
5806
dab291af
MC
5807 jbd2_journal_lock_updates(journal);
5808 jbd2_journal_flush(journal);
ac27a0ec
DK
5809
5810 /*
5811 * OK, there are no updates running now, and all cached data is
5812 * synced to disk. We are now in a completely consistent state
5813 * which doesn't have anything in the journal, and we know that
5814 * no filesystem updates are running, so it is safe to modify
5815 * the inode's in-core data-journaling state flag now.
5816 */
5817
5818 if (val)
12e9b892 5819 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
ac27a0ec 5820 else
12e9b892 5821 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
617ba13b 5822 ext4_set_aops(inode);
ac27a0ec 5823
dab291af 5824 jbd2_journal_unlock_updates(journal);
ac27a0ec
DK
5825
5826 /* Finally we can mark the inode as dirty. */
5827
617ba13b 5828 handle = ext4_journal_start(inode, 1);
ac27a0ec
DK
5829 if (IS_ERR(handle))
5830 return PTR_ERR(handle);
5831
617ba13b 5832 err = ext4_mark_inode_dirty(handle, inode);
0390131b 5833 ext4_handle_sync(handle);
617ba13b
MC
5834 ext4_journal_stop(handle);
5835 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5836
5837 return err;
5838}
2e9ee850
AK
5839
5840static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5841{
5842 return !buffer_mapped(bh);
5843}
5844
c2ec175c 5845int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2e9ee850 5846{
c2ec175c 5847 struct page *page = vmf->page;
2e9ee850
AK
5848 loff_t size;
5849 unsigned long len;
5850 int ret = -EINVAL;
79f0be8d 5851 void *fsdata;
2e9ee850
AK
5852 struct file *file = vma->vm_file;
5853 struct inode *inode = file->f_path.dentry->d_inode;
5854 struct address_space *mapping = inode->i_mapping;
5855
5856 /*
5857 * Get i_alloc_sem to stop truncates messing with the inode. We cannot
5858 * get i_mutex because we are already holding mmap_sem.
5859 */
5860 down_read(&inode->i_alloc_sem);
5861 size = i_size_read(inode);
5862 if (page->mapping != mapping || size <= page_offset(page)
5863 || !PageUptodate(page)) {
5864 /* page got truncated from under us? */
5865 goto out_unlock;
5866 }
5867 ret = 0;
5868 if (PageMappedToDisk(page))
5869 goto out_unlock;
5870
5871 if (page->index == size >> PAGE_CACHE_SHIFT)
5872 len = size & ~PAGE_CACHE_MASK;
5873 else
5874 len = PAGE_CACHE_SIZE;
5875
a827eaff
AK
5876 lock_page(page);
5877 /*
5878 * return if we have all the buffers mapped. This avoid
5879 * the need to call write_begin/write_end which does a
5880 * journal_start/journal_stop which can block and take
5881 * long time
5882 */
2e9ee850 5883 if (page_has_buffers(page)) {
2e9ee850 5884 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
a827eaff
AK
5885 ext4_bh_unmapped)) {
5886 unlock_page(page);
2e9ee850 5887 goto out_unlock;
a827eaff 5888 }
2e9ee850 5889 }
a827eaff 5890 unlock_page(page);
2e9ee850
AK
5891 /*
5892 * OK, we need to fill the hole... Do write_begin write_end
5893 * to do block allocation/reservation.We are not holding
5894 * inode.i__mutex here. That allow * parallel write_begin,
5895 * write_end call. lock_page prevent this from happening
5896 * on the same page though
5897 */
5898 ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
79f0be8d 5899 len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
2e9ee850
AK
5900 if (ret < 0)
5901 goto out_unlock;
5902 ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
79f0be8d 5903 len, len, page, fsdata);
2e9ee850
AK
5904 if (ret < 0)
5905 goto out_unlock;
5906 ret = 0;
5907out_unlock:
c2ec175c
NP
5908 if (ret)
5909 ret = VM_FAULT_SIGBUS;
2e9ee850
AK
5910 up_read(&inode->i_alloc_sem);
5911 return ret;
5912}