ext4 crypto: inherit encryption policies on inode and directory create
[linux-2.6-block.git] / fs / ext4 / inode.c
CommitLineData
ac27a0ec 1/*
617ba13b 2 * linux/fs/ext4/inode.c
ac27a0ec
DK
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
ac27a0ec
DK
15 * 64-bit file support on 64-bit platforms by Jakub Jelinek
16 * (jj@sunsite.ms.mff.cuni.cz)
17 *
617ba13b 18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
ac27a0ec
DK
19 */
20
ac27a0ec
DK
21#include <linux/fs.h>
22#include <linux/time.h>
ac27a0ec
DK
23#include <linux/highuid.h>
24#include <linux/pagemap.h>
25#include <linux/quotaops.h>
26#include <linux/string.h>
27#include <linux/buffer_head.h>
28#include <linux/writeback.h>
64769240 29#include <linux/pagevec.h>
ac27a0ec 30#include <linux/mpage.h>
e83c1397 31#include <linux/namei.h>
ac27a0ec
DK
32#include <linux/uio.h>
33#include <linux/bio.h>
4c0425ff 34#include <linux/workqueue.h>
744692dc 35#include <linux/kernel.h>
6db26ffc 36#include <linux/printk.h>
5a0e3ad6 37#include <linux/slab.h>
a27bb332 38#include <linux/aio.h>
00a1a053 39#include <linux/bitops.h>
9bffad1e 40
3dcf5451 41#include "ext4_jbd2.h"
ac27a0ec
DK
42#include "xattr.h"
43#include "acl.h"
9f125d64 44#include "truncate.h"
ac27a0ec 45
9bffad1e
TT
46#include <trace/events/ext4.h>
47
a1d6cc56
AK
48#define MPAGE_DA_EXTENT_TAIL 0x01
49
814525f4
DW
50static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
51 struct ext4_inode_info *ei)
52{
53 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
54 __u16 csum_lo;
55 __u16 csum_hi = 0;
56 __u32 csum;
57
171a7f21 58 csum_lo = le16_to_cpu(raw->i_checksum_lo);
814525f4
DW
59 raw->i_checksum_lo = 0;
60 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
61 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
171a7f21 62 csum_hi = le16_to_cpu(raw->i_checksum_hi);
814525f4
DW
63 raw->i_checksum_hi = 0;
64 }
65
66 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
67 EXT4_INODE_SIZE(inode->i_sb));
68
171a7f21 69 raw->i_checksum_lo = cpu_to_le16(csum_lo);
814525f4
DW
70 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
71 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
171a7f21 72 raw->i_checksum_hi = cpu_to_le16(csum_hi);
814525f4
DW
73
74 return csum;
75}
76
77static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
78 struct ext4_inode_info *ei)
79{
80 __u32 provided, calculated;
81
82 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
83 cpu_to_le32(EXT4_OS_LINUX) ||
9aa5d32b 84 !ext4_has_metadata_csum(inode->i_sb))
814525f4
DW
85 return 1;
86
87 provided = le16_to_cpu(raw->i_checksum_lo);
88 calculated = ext4_inode_csum(inode, raw, ei);
89 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
90 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
91 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
92 else
93 calculated &= 0xFFFF;
94
95 return provided == calculated;
96}
97
98static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
99 struct ext4_inode_info *ei)
100{
101 __u32 csum;
102
103 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
104 cpu_to_le32(EXT4_OS_LINUX) ||
9aa5d32b 105 !ext4_has_metadata_csum(inode->i_sb))
814525f4
DW
106 return;
107
108 csum = ext4_inode_csum(inode, raw, ei);
109 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
110 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
111 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
112 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
113}
114
678aaf48
JK
115static inline int ext4_begin_ordered_truncate(struct inode *inode,
116 loff_t new_size)
117{
7ff9c073 118 trace_ext4_begin_ordered_truncate(inode, new_size);
8aefcd55
TT
119 /*
120 * If jinode is zero, then we never opened the file for
121 * writing, so there's no need to call
122 * jbd2_journal_begin_ordered_truncate() since there's no
123 * outstanding writes we need to flush.
124 */
125 if (!EXT4_I(inode)->jinode)
126 return 0;
127 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
128 EXT4_I(inode)->jinode,
129 new_size);
678aaf48
JK
130}
131
d47992f8
LC
132static void ext4_invalidatepage(struct page *page, unsigned int offset,
133 unsigned int length);
cb20d518
TT
134static int __ext4_journalled_writepage(struct page *page, unsigned int len);
135static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
fffb2739
JK
136static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
137 int pextents);
64769240 138
ac27a0ec
DK
139/*
140 * Test whether an inode is a fast symlink.
141 */
617ba13b 142static int ext4_inode_is_fast_symlink(struct inode *inode)
ac27a0ec 143{
65eddb56
YY
144 int ea_blocks = EXT4_I(inode)->i_file_acl ?
145 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
ac27a0ec 146
bd9db175
ZL
147 if (ext4_has_inline_data(inode))
148 return 0;
149
ac27a0ec
DK
150 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
151}
152
ac27a0ec
DK
153/*
154 * Restart the transaction associated with *handle. This does a commit,
155 * so before we call here everything must be consistently dirtied against
156 * this transaction.
157 */
fa5d1113 158int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
487caeef 159 int nblocks)
ac27a0ec 160{
487caeef
JK
161 int ret;
162
163 /*
e35fd660 164 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
487caeef
JK
165 * moment, get_block can be called only for blocks inside i_size since
166 * page cache has been already dropped and writes are blocked by
167 * i_mutex. So we can safely drop the i_data_sem here.
168 */
0390131b 169 BUG_ON(EXT4_JOURNAL(inode) == NULL);
ac27a0ec 170 jbd_debug(2, "restarting handle %p\n", handle);
487caeef 171 up_write(&EXT4_I(inode)->i_data_sem);
8e8eaabe 172 ret = ext4_journal_restart(handle, nblocks);
487caeef 173 down_write(&EXT4_I(inode)->i_data_sem);
fa5d1113 174 ext4_discard_preallocations(inode);
487caeef
JK
175
176 return ret;
ac27a0ec
DK
177}
178
179/*
180 * Called at the last iput() if i_nlink is zero.
181 */
0930fcc1 182void ext4_evict_inode(struct inode *inode)
ac27a0ec
DK
183{
184 handle_t *handle;
bc965ab3 185 int err;
ac27a0ec 186
7ff9c073 187 trace_ext4_evict_inode(inode);
2581fdc8 188
0930fcc1 189 if (inode->i_nlink) {
2d859db3
JK
190 /*
191 * When journalling data dirty buffers are tracked only in the
192 * journal. So although mm thinks everything is clean and
193 * ready for reaping the inode might still have some pages to
194 * write in the running transaction or waiting to be
195 * checkpointed. Thus calling jbd2_journal_invalidatepage()
196 * (via truncate_inode_pages()) to discard these buffers can
197 * cause data loss. Also even if we did not discard these
198 * buffers, we would have no way to find them after the inode
199 * is reaped and thus user could see stale data if he tries to
200 * read them before the transaction is checkpointed. So be
201 * careful and force everything to disk here... We use
202 * ei->i_datasync_tid to store the newest transaction
203 * containing inode's data.
204 *
205 * Note that directories do not have this problem because they
206 * don't use page cache.
207 */
208 if (ext4_should_journal_data(inode) &&
2b405bfa
TT
209 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
210 inode->i_ino != EXT4_JOURNAL_INO) {
2d859db3
JK
211 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
212 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
213
d76a3a77 214 jbd2_complete_transaction(journal, commit_tid);
2d859db3
JK
215 filemap_write_and_wait(&inode->i_data);
216 }
91b0abe3 217 truncate_inode_pages_final(&inode->i_data);
5dc23bdd
JK
218
219 WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
0930fcc1
AV
220 goto no_delete;
221 }
222
e2bfb088
TT
223 if (is_bad_inode(inode))
224 goto no_delete;
225 dquot_initialize(inode);
907f4554 226
678aaf48
JK
227 if (ext4_should_order_data(inode))
228 ext4_begin_ordered_truncate(inode, 0);
91b0abe3 229 truncate_inode_pages_final(&inode->i_data);
ac27a0ec 230
5dc23bdd 231 WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
ac27a0ec 232
8e8ad8a5
JK
233 /*
234 * Protect us against freezing - iput() caller didn't have to have any
235 * protection against it
236 */
237 sb_start_intwrite(inode->i_sb);
9924a92a
TT
238 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
239 ext4_blocks_for_truncate(inode)+3);
ac27a0ec 240 if (IS_ERR(handle)) {
bc965ab3 241 ext4_std_error(inode->i_sb, PTR_ERR(handle));
ac27a0ec
DK
242 /*
243 * If we're going to skip the normal cleanup, we still need to
244 * make sure that the in-core orphan linked list is properly
245 * cleaned up.
246 */
617ba13b 247 ext4_orphan_del(NULL, inode);
8e8ad8a5 248 sb_end_intwrite(inode->i_sb);
ac27a0ec
DK
249 goto no_delete;
250 }
251
252 if (IS_SYNC(inode))
0390131b 253 ext4_handle_sync(handle);
ac27a0ec 254 inode->i_size = 0;
bc965ab3
TT
255 err = ext4_mark_inode_dirty(handle, inode);
256 if (err) {
12062ddd 257 ext4_warning(inode->i_sb,
bc965ab3
TT
258 "couldn't mark inode dirty (err %d)", err);
259 goto stop_handle;
260 }
ac27a0ec 261 if (inode->i_blocks)
617ba13b 262 ext4_truncate(inode);
bc965ab3
TT
263
264 /*
265 * ext4_ext_truncate() doesn't reserve any slop when it
266 * restarts journal transactions; therefore there may not be
267 * enough credits left in the handle to remove the inode from
268 * the orphan list and set the dtime field.
269 */
0390131b 270 if (!ext4_handle_has_enough_credits(handle, 3)) {
bc965ab3
TT
271 err = ext4_journal_extend(handle, 3);
272 if (err > 0)
273 err = ext4_journal_restart(handle, 3);
274 if (err != 0) {
12062ddd 275 ext4_warning(inode->i_sb,
bc965ab3
TT
276 "couldn't extend journal (err %d)", err);
277 stop_handle:
278 ext4_journal_stop(handle);
45388219 279 ext4_orphan_del(NULL, inode);
8e8ad8a5 280 sb_end_intwrite(inode->i_sb);
bc965ab3
TT
281 goto no_delete;
282 }
283 }
284
ac27a0ec 285 /*
617ba13b 286 * Kill off the orphan record which ext4_truncate created.
ac27a0ec 287 * AKPM: I think this can be inside the above `if'.
617ba13b 288 * Note that ext4_orphan_del() has to be able to cope with the
ac27a0ec 289 * deletion of a non-existent orphan - this is because we don't
617ba13b 290 * know if ext4_truncate() actually created an orphan record.
ac27a0ec
DK
291 * (Well, we could do this if we need to, but heck - it works)
292 */
617ba13b
MC
293 ext4_orphan_del(handle, inode);
294 EXT4_I(inode)->i_dtime = get_seconds();
ac27a0ec
DK
295
296 /*
297 * One subtle ordering requirement: if anything has gone wrong
298 * (transaction abort, IO errors, whatever), then we can still
299 * do these next steps (the fs will already have been marked as
300 * having errors), but we can't free the inode if the mark_dirty
301 * fails.
302 */
617ba13b 303 if (ext4_mark_inode_dirty(handle, inode))
ac27a0ec 304 /* If that failed, just do the required in-core inode clear. */
0930fcc1 305 ext4_clear_inode(inode);
ac27a0ec 306 else
617ba13b
MC
307 ext4_free_inode(handle, inode);
308 ext4_journal_stop(handle);
8e8ad8a5 309 sb_end_intwrite(inode->i_sb);
ac27a0ec
DK
310 return;
311no_delete:
0930fcc1 312 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
ac27a0ec
DK
313}
314
a9e7f447
DM
315#ifdef CONFIG_QUOTA
316qsize_t *ext4_get_reserved_space(struct inode *inode)
60e58e0f 317{
a9e7f447 318 return &EXT4_I(inode)->i_reserved_quota;
60e58e0f 319}
a9e7f447 320#endif
9d0be502 321
0637c6f4
TT
322/*
323 * Called with i_data_sem down, which is important since we can call
324 * ext4_discard_preallocations() from here.
325 */
5f634d06
AK
326void ext4_da_update_reserve_space(struct inode *inode,
327 int used, int quota_claim)
12219aea
AK
328{
329 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 330 struct ext4_inode_info *ei = EXT4_I(inode);
0637c6f4
TT
331
332 spin_lock(&ei->i_block_reservation_lock);
d8990240 333 trace_ext4_da_update_reserve_space(inode, used, quota_claim);
0637c6f4 334 if (unlikely(used > ei->i_reserved_data_blocks)) {
8de5c325 335 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
1084f252 336 "with only %d reserved data blocks",
0637c6f4
TT
337 __func__, inode->i_ino, used,
338 ei->i_reserved_data_blocks);
339 WARN_ON(1);
340 used = ei->i_reserved_data_blocks;
341 }
12219aea 342
0637c6f4
TT
343 /* Update per-inode reservations */
344 ei->i_reserved_data_blocks -= used;
71d4f7d0 345 percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
6bc6e63f 346
12219aea 347 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f 348
72b8ab9d
ES
349 /* Update quota subsystem for data blocks */
350 if (quota_claim)
7b415bf6 351 dquot_claim_block(inode, EXT4_C2B(sbi, used));
72b8ab9d 352 else {
5f634d06
AK
353 /*
354 * We did fallocate with an offset that is already delayed
355 * allocated. So on delayed allocated writeback we should
72b8ab9d 356 * not re-claim the quota for fallocated blocks.
5f634d06 357 */
7b415bf6 358 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
5f634d06 359 }
d6014301
AK
360
361 /*
362 * If we have done all the pending block allocations and if
363 * there aren't any writers on the inode, we can discard the
364 * inode's preallocations.
365 */
0637c6f4
TT
366 if ((ei->i_reserved_data_blocks == 0) &&
367 (atomic_read(&inode->i_writecount) == 0))
d6014301 368 ext4_discard_preallocations(inode);
12219aea
AK
369}
370
e29136f8 371static int __check_block_validity(struct inode *inode, const char *func,
c398eda0
TT
372 unsigned int line,
373 struct ext4_map_blocks *map)
6fd058f7 374{
24676da4
TT
375 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
376 map->m_len)) {
c398eda0
TT
377 ext4_error_inode(inode, func, line, map->m_pblk,
378 "lblock %lu mapped to illegal pblock "
379 "(length %d)", (unsigned long) map->m_lblk,
380 map->m_len);
6fd058f7
TT
381 return -EIO;
382 }
383 return 0;
384}
385
e29136f8 386#define check_block_validity(inode, map) \
c398eda0 387 __check_block_validity((inode), __func__, __LINE__, (map))
e29136f8 388
921f266b
DM
389#ifdef ES_AGGRESSIVE_TEST
390static void ext4_map_blocks_es_recheck(handle_t *handle,
391 struct inode *inode,
392 struct ext4_map_blocks *es_map,
393 struct ext4_map_blocks *map,
394 int flags)
395{
396 int retval;
397
398 map->m_flags = 0;
399 /*
400 * There is a race window that the result is not the same.
401 * e.g. xfstests #223 when dioread_nolock enables. The reason
402 * is that we lookup a block mapping in extent status tree with
403 * out taking i_data_sem. So at the time the unwritten extent
404 * could be converted.
405 */
406 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
c8b459f4 407 down_read(&EXT4_I(inode)->i_data_sem);
921f266b
DM
408 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
409 retval = ext4_ext_map_blocks(handle, inode, map, flags &
410 EXT4_GET_BLOCKS_KEEP_SIZE);
411 } else {
412 retval = ext4_ind_map_blocks(handle, inode, map, flags &
413 EXT4_GET_BLOCKS_KEEP_SIZE);
414 }
415 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
416 up_read((&EXT4_I(inode)->i_data_sem));
921f266b
DM
417
418 /*
419 * We don't check m_len because extent will be collpased in status
420 * tree. So the m_len might not equal.
421 */
422 if (es_map->m_lblk != map->m_lblk ||
423 es_map->m_flags != map->m_flags ||
424 es_map->m_pblk != map->m_pblk) {
bdafe42a 425 printk("ES cache assertion failed for inode: %lu "
921f266b
DM
426 "es_cached ex [%d/%d/%llu/%x] != "
427 "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
428 inode->i_ino, es_map->m_lblk, es_map->m_len,
429 es_map->m_pblk, es_map->m_flags, map->m_lblk,
430 map->m_len, map->m_pblk, map->m_flags,
431 retval, flags);
432 }
433}
434#endif /* ES_AGGRESSIVE_TEST */
435
f5ab0d1f 436/*
e35fd660 437 * The ext4_map_blocks() function tries to look up the requested blocks,
2b2d6d01 438 * and returns if the blocks are already mapped.
f5ab0d1f 439 *
f5ab0d1f
MC
440 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
441 * and store the allocated blocks in the result buffer head and mark it
442 * mapped.
443 *
e35fd660
TT
444 * If file type is extents based, it will call ext4_ext_map_blocks(),
445 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
f5ab0d1f
MC
446 * based files
447 *
556615dc
LC
448 * On success, it returns the number of blocks being mapped or allocated.
449 * if create==0 and the blocks are pre-allocated and unwritten block,
f5ab0d1f
MC
450 * the result buffer head is unmapped. If the create ==1, it will make sure
451 * the buffer head is mapped.
452 *
453 * It returns 0 if plain look up failed (blocks have not been allocated), in
df3ab170 454 * that case, buffer head is unmapped
f5ab0d1f
MC
455 *
456 * It returns the error in case of allocation failure.
457 */
e35fd660
TT
458int ext4_map_blocks(handle_t *handle, struct inode *inode,
459 struct ext4_map_blocks *map, int flags)
0e855ac8 460{
d100eef2 461 struct extent_status es;
0e855ac8 462 int retval;
b8a86845 463 int ret = 0;
921f266b
DM
464#ifdef ES_AGGRESSIVE_TEST
465 struct ext4_map_blocks orig_map;
466
467 memcpy(&orig_map, map, sizeof(*map));
468#endif
f5ab0d1f 469
e35fd660
TT
470 map->m_flags = 0;
471 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
472 "logical block %lu\n", inode->i_ino, flags, map->m_len,
473 (unsigned long) map->m_lblk);
d100eef2 474
e861b5e9
TT
475 /*
476 * ext4_map_blocks returns an int, and m_len is an unsigned int
477 */
478 if (unlikely(map->m_len > INT_MAX))
479 map->m_len = INT_MAX;
480
4adb6ab3
KM
481 /* We can handle the block number less than EXT_MAX_BLOCKS */
482 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
483 return -EIO;
484
d100eef2
ZL
485 /* Lookup extent status tree firstly */
486 if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
487 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
488 map->m_pblk = ext4_es_pblock(&es) +
489 map->m_lblk - es.es_lblk;
490 map->m_flags |= ext4_es_is_written(&es) ?
491 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
492 retval = es.es_len - (map->m_lblk - es.es_lblk);
493 if (retval > map->m_len)
494 retval = map->m_len;
495 map->m_len = retval;
496 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
497 retval = 0;
498 } else {
499 BUG_ON(1);
500 }
921f266b
DM
501#ifdef ES_AGGRESSIVE_TEST
502 ext4_map_blocks_es_recheck(handle, inode, map,
503 &orig_map, flags);
504#endif
d100eef2
ZL
505 goto found;
506 }
507
4df3d265 508 /*
b920c755
TT
509 * Try to see if we can get the block without requesting a new
510 * file system block.
4df3d265 511 */
729f52c6 512 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
c8b459f4 513 down_read(&EXT4_I(inode)->i_data_sem);
12e9b892 514 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
a4e5d88b
DM
515 retval = ext4_ext_map_blocks(handle, inode, map, flags &
516 EXT4_GET_BLOCKS_KEEP_SIZE);
0e855ac8 517 } else {
a4e5d88b
DM
518 retval = ext4_ind_map_blocks(handle, inode, map, flags &
519 EXT4_GET_BLOCKS_KEEP_SIZE);
0e855ac8 520 }
f7fec032 521 if (retval > 0) {
3be78c73 522 unsigned int status;
f7fec032 523
44fb851d
ZL
524 if (unlikely(retval != map->m_len)) {
525 ext4_warning(inode->i_sb,
526 "ES len assertion failed for inode "
527 "%lu: retval %d != map->m_len %d",
528 inode->i_ino, retval, map->m_len);
529 WARN_ON(1);
921f266b 530 }
921f266b 531
f7fec032
ZL
532 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
533 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
534 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
535 ext4_find_delalloc_range(inode, map->m_lblk,
536 map->m_lblk + map->m_len - 1))
537 status |= EXTENT_STATUS_DELAYED;
538 ret = ext4_es_insert_extent(inode, map->m_lblk,
539 map->m_len, map->m_pblk, status);
540 if (ret < 0)
541 retval = ret;
542 }
729f52c6
ZL
543 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
544 up_read((&EXT4_I(inode)->i_data_sem));
f5ab0d1f 545
d100eef2 546found:
e35fd660 547 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
b8a86845 548 ret = check_block_validity(inode, map);
6fd058f7
TT
549 if (ret != 0)
550 return ret;
551 }
552
f5ab0d1f 553 /* If it is only a block(s) look up */
c2177057 554 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
f5ab0d1f
MC
555 return retval;
556
557 /*
558 * Returns if the blocks have already allocated
559 *
560 * Note that if blocks have been preallocated
df3ab170 561 * ext4_ext_get_block() returns the create = 0
f5ab0d1f
MC
562 * with buffer head unmapped.
563 */
e35fd660 564 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
b8a86845
LC
565 /*
566 * If we need to convert extent to unwritten
567 * we continue and do the actual work in
568 * ext4_ext_map_blocks()
569 */
570 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
571 return retval;
4df3d265 572
2a8964d6 573 /*
a25a4e1a
ZL
574 * Here we clear m_flags because after allocating an new extent,
575 * it will be set again.
2a8964d6 576 */
a25a4e1a 577 map->m_flags &= ~EXT4_MAP_FLAGS;
2a8964d6 578
4df3d265 579 /*
556615dc 580 * New blocks allocate and/or writing to unwritten extent
f5ab0d1f 581 * will possibly result in updating i_data, so we take
d91bd2c1 582 * the write lock of i_data_sem, and call get_block()
f5ab0d1f 583 * with create == 1 flag.
4df3d265 584 */
c8b459f4 585 down_write(&EXT4_I(inode)->i_data_sem);
d2a17637 586
4df3d265
AK
587 /*
588 * We need to check for EXT4 here because migrate
589 * could have changed the inode type in between
590 */
12e9b892 591 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
e35fd660 592 retval = ext4_ext_map_blocks(handle, inode, map, flags);
0e855ac8 593 } else {
e35fd660 594 retval = ext4_ind_map_blocks(handle, inode, map, flags);
267e4db9 595
e35fd660 596 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
267e4db9
AK
597 /*
598 * We allocated new blocks which will result in
599 * i_data's format changing. Force the migrate
600 * to fail by clearing migrate flags
601 */
19f5fb7a 602 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
267e4db9 603 }
d2a17637 604
5f634d06
AK
605 /*
606 * Update reserved blocks/metadata blocks after successful
607 * block allocation which had been deferred till now. We don't
608 * support fallocate for non extent files. So we can update
609 * reserve space here.
610 */
611 if ((retval > 0) &&
1296cc85 612 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
5f634d06
AK
613 ext4_da_update_reserve_space(inode, retval, 1);
614 }
2ac3b6e0 615
f7fec032 616 if (retval > 0) {
3be78c73 617 unsigned int status;
f7fec032 618
44fb851d
ZL
619 if (unlikely(retval != map->m_len)) {
620 ext4_warning(inode->i_sb,
621 "ES len assertion failed for inode "
622 "%lu: retval %d != map->m_len %d",
623 inode->i_ino, retval, map->m_len);
624 WARN_ON(1);
921f266b 625 }
921f266b 626
adb23551
ZL
627 /*
628 * If the extent has been zeroed out, we don't need to update
629 * extent status tree.
630 */
631 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
632 ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
633 if (ext4_es_is_written(&es))
634 goto has_zeroout;
635 }
f7fec032
ZL
636 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
637 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
638 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
639 ext4_find_delalloc_range(inode, map->m_lblk,
640 map->m_lblk + map->m_len - 1))
641 status |= EXTENT_STATUS_DELAYED;
642 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
643 map->m_pblk, status);
644 if (ret < 0)
645 retval = ret;
5356f261
AK
646 }
647
adb23551 648has_zeroout:
4df3d265 649 up_write((&EXT4_I(inode)->i_data_sem));
e35fd660 650 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
b8a86845 651 ret = check_block_validity(inode, map);
6fd058f7
TT
652 if (ret != 0)
653 return ret;
654 }
0e855ac8
AK
655 return retval;
656}
657
923ae0ff
RZ
658static void ext4_end_io_unwritten(struct buffer_head *bh, int uptodate)
659{
660 struct inode *inode = bh->b_assoc_map->host;
661 /* XXX: breaks on 32-bit > 16GB. Is that even supported? */
662 loff_t offset = (loff_t)(uintptr_t)bh->b_private << inode->i_blkbits;
663 int err;
664 if (!uptodate)
665 return;
666 WARN_ON(!buffer_unwritten(bh));
667 err = ext4_convert_unwritten_extents(NULL, inode, offset, bh->b_size);
668}
669
f3bd1f3f
MC
670/* Maximum number of blocks we map for direct IO at once. */
671#define DIO_MAX_BLOCKS 4096
672
2ed88685
TT
673static int _ext4_get_block(struct inode *inode, sector_t iblock,
674 struct buffer_head *bh, int flags)
ac27a0ec 675{
3e4fdaf8 676 handle_t *handle = ext4_journal_current_handle();
2ed88685 677 struct ext4_map_blocks map;
7fb5409d 678 int ret = 0, started = 0;
f3bd1f3f 679 int dio_credits;
ac27a0ec 680
46c7f254
TM
681 if (ext4_has_inline_data(inode))
682 return -ERANGE;
683
2ed88685
TT
684 map.m_lblk = iblock;
685 map.m_len = bh->b_size >> inode->i_blkbits;
686
8b0f165f 687 if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
7fb5409d 688 /* Direct IO write... */
2ed88685
TT
689 if (map.m_len > DIO_MAX_BLOCKS)
690 map.m_len = DIO_MAX_BLOCKS;
691 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
9924a92a
TT
692 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
693 dio_credits);
7fb5409d 694 if (IS_ERR(handle)) {
ac27a0ec 695 ret = PTR_ERR(handle);
2ed88685 696 return ret;
ac27a0ec 697 }
7fb5409d 698 started = 1;
ac27a0ec
DK
699 }
700
2ed88685 701 ret = ext4_map_blocks(handle, inode, &map, flags);
7fb5409d 702 if (ret > 0) {
7b7a8665
CH
703 ext4_io_end_t *io_end = ext4_inode_aio(inode);
704
2ed88685
TT
705 map_bh(bh, inode->i_sb, map.m_pblk);
706 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
923ae0ff
RZ
707 if (IS_DAX(inode) && buffer_unwritten(bh) && !io_end) {
708 bh->b_assoc_map = inode->i_mapping;
709 bh->b_private = (void *)(unsigned long)iblock;
710 bh->b_end_io = ext4_end_io_unwritten;
711 }
7b7a8665
CH
712 if (io_end && io_end->flag & EXT4_IO_END_UNWRITTEN)
713 set_buffer_defer_completion(bh);
2ed88685 714 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
7fb5409d 715 ret = 0;
ac27a0ec 716 }
7fb5409d
JK
717 if (started)
718 ext4_journal_stop(handle);
ac27a0ec
DK
719 return ret;
720}
721
2ed88685
TT
722int ext4_get_block(struct inode *inode, sector_t iblock,
723 struct buffer_head *bh, int create)
724{
725 return _ext4_get_block(inode, iblock, bh,
726 create ? EXT4_GET_BLOCKS_CREATE : 0);
727}
728
ac27a0ec
DK
729/*
730 * `handle' can be NULL if create is zero
731 */
617ba13b 732struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
10560082 733 ext4_lblk_t block, int create)
ac27a0ec 734{
2ed88685
TT
735 struct ext4_map_blocks map;
736 struct buffer_head *bh;
10560082 737 int err;
ac27a0ec
DK
738
739 J_ASSERT(handle != NULL || create == 0);
740
2ed88685
TT
741 map.m_lblk = block;
742 map.m_len = 1;
743 err = ext4_map_blocks(handle, inode, &map,
744 create ? EXT4_GET_BLOCKS_CREATE : 0);
ac27a0ec 745
10560082
TT
746 if (err == 0)
747 return create ? ERR_PTR(-ENOSPC) : NULL;
2ed88685 748 if (err < 0)
10560082 749 return ERR_PTR(err);
2ed88685
TT
750
751 bh = sb_getblk(inode->i_sb, map.m_pblk);
10560082
TT
752 if (unlikely(!bh))
753 return ERR_PTR(-ENOMEM);
2ed88685
TT
754 if (map.m_flags & EXT4_MAP_NEW) {
755 J_ASSERT(create != 0);
756 J_ASSERT(handle != NULL);
ac27a0ec 757
2ed88685
TT
758 /*
759 * Now that we do not always journal data, we should
760 * keep in mind whether this should always journal the
761 * new buffer as metadata. For now, regular file
762 * writes use ext4_get_block instead, so it's not a
763 * problem.
764 */
765 lock_buffer(bh);
766 BUFFER_TRACE(bh, "call get_create_access");
10560082
TT
767 err = ext4_journal_get_create_access(handle, bh);
768 if (unlikely(err)) {
769 unlock_buffer(bh);
770 goto errout;
771 }
772 if (!buffer_uptodate(bh)) {
2ed88685
TT
773 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
774 set_buffer_uptodate(bh);
ac27a0ec 775 }
2ed88685
TT
776 unlock_buffer(bh);
777 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
778 err = ext4_handle_dirty_metadata(handle, inode, bh);
10560082
TT
779 if (unlikely(err))
780 goto errout;
781 } else
2ed88685 782 BUFFER_TRACE(bh, "not a new buffer");
2ed88685 783 return bh;
10560082
TT
784errout:
785 brelse(bh);
786 return ERR_PTR(err);
ac27a0ec
DK
787}
788
617ba13b 789struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1c215028 790 ext4_lblk_t block, int create)
ac27a0ec 791{
af5bc92d 792 struct buffer_head *bh;
ac27a0ec 793
10560082 794 bh = ext4_getblk(handle, inode, block, create);
1c215028 795 if (IS_ERR(bh))
ac27a0ec 796 return bh;
1c215028 797 if (!bh || buffer_uptodate(bh))
ac27a0ec 798 return bh;
65299a3b 799 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
ac27a0ec
DK
800 wait_on_buffer(bh);
801 if (buffer_uptodate(bh))
802 return bh;
803 put_bh(bh);
1c215028 804 return ERR_PTR(-EIO);
ac27a0ec
DK
805}
806
f19d5870
TM
807int ext4_walk_page_buffers(handle_t *handle,
808 struct buffer_head *head,
809 unsigned from,
810 unsigned to,
811 int *partial,
812 int (*fn)(handle_t *handle,
813 struct buffer_head *bh))
ac27a0ec
DK
814{
815 struct buffer_head *bh;
816 unsigned block_start, block_end;
817 unsigned blocksize = head->b_size;
818 int err, ret = 0;
819 struct buffer_head *next;
820
af5bc92d
TT
821 for (bh = head, block_start = 0;
822 ret == 0 && (bh != head || !block_start);
de9a55b8 823 block_start = block_end, bh = next) {
ac27a0ec
DK
824 next = bh->b_this_page;
825 block_end = block_start + blocksize;
826 if (block_end <= from || block_start >= to) {
827 if (partial && !buffer_uptodate(bh))
828 *partial = 1;
829 continue;
830 }
831 err = (*fn)(handle, bh);
832 if (!ret)
833 ret = err;
834 }
835 return ret;
836}
837
838/*
839 * To preserve ordering, it is essential that the hole instantiation and
840 * the data write be encapsulated in a single transaction. We cannot
617ba13b 841 * close off a transaction and start a new one between the ext4_get_block()
dab291af 842 * and the commit_write(). So doing the jbd2_journal_start at the start of
ac27a0ec
DK
843 * prepare_write() is the right place.
844 *
36ade451
JK
845 * Also, this function can nest inside ext4_writepage(). In that case, we
846 * *know* that ext4_writepage() has generated enough buffer credits to do the
847 * whole page. So we won't block on the journal in that case, which is good,
848 * because the caller may be PF_MEMALLOC.
ac27a0ec 849 *
617ba13b 850 * By accident, ext4 can be reentered when a transaction is open via
ac27a0ec
DK
851 * quota file writes. If we were to commit the transaction while thus
852 * reentered, there can be a deadlock - we would be holding a quota
853 * lock, and the commit would never complete if another thread had a
854 * transaction open and was blocking on the quota lock - a ranking
855 * violation.
856 *
dab291af 857 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
ac27a0ec
DK
858 * will _not_ run commit under these circumstances because handle->h_ref
859 * is elevated. We'll still have enough credits for the tiny quotafile
860 * write.
861 */
f19d5870
TM
862int do_journal_get_write_access(handle_t *handle,
863 struct buffer_head *bh)
ac27a0ec 864{
56d35a4c
JK
865 int dirty = buffer_dirty(bh);
866 int ret;
867
ac27a0ec
DK
868 if (!buffer_mapped(bh) || buffer_freed(bh))
869 return 0;
56d35a4c 870 /*
ebdec241 871 * __block_write_begin() could have dirtied some buffers. Clean
56d35a4c
JK
872 * the dirty bit as jbd2_journal_get_write_access() could complain
873 * otherwise about fs integrity issues. Setting of the dirty bit
ebdec241 874 * by __block_write_begin() isn't a real problem here as we clear
56d35a4c
JK
875 * the bit before releasing a page lock and thus writeback cannot
876 * ever write the buffer.
877 */
878 if (dirty)
879 clear_buffer_dirty(bh);
5d601255 880 BUFFER_TRACE(bh, "get write access");
56d35a4c
JK
881 ret = ext4_journal_get_write_access(handle, bh);
882 if (!ret && dirty)
883 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
884 return ret;
ac27a0ec
DK
885}
886
8b0f165f
AP
887static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
888 struct buffer_head *bh_result, int create);
bfc1af65 889static int ext4_write_begin(struct file *file, struct address_space *mapping,
de9a55b8
TT
890 loff_t pos, unsigned len, unsigned flags,
891 struct page **pagep, void **fsdata)
ac27a0ec 892{
af5bc92d 893 struct inode *inode = mapping->host;
1938a150 894 int ret, needed_blocks;
ac27a0ec
DK
895 handle_t *handle;
896 int retries = 0;
af5bc92d 897 struct page *page;
de9a55b8 898 pgoff_t index;
af5bc92d 899 unsigned from, to;
bfc1af65 900
9bffad1e 901 trace_ext4_write_begin(inode, pos, len, flags);
1938a150
AK
902 /*
903 * Reserve one block more for addition to orphan list in case
904 * we allocate blocks but write fails for some reason
905 */
906 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
de9a55b8 907 index = pos >> PAGE_CACHE_SHIFT;
af5bc92d
TT
908 from = pos & (PAGE_CACHE_SIZE - 1);
909 to = from + len;
ac27a0ec 910
f19d5870
TM
911 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
912 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
913 flags, pagep);
914 if (ret < 0)
47564bfb
TT
915 return ret;
916 if (ret == 1)
917 return 0;
f19d5870
TM
918 }
919
47564bfb
TT
920 /*
921 * grab_cache_page_write_begin() can take a long time if the
922 * system is thrashing due to memory pressure, or if the page
923 * is being written back. So grab it first before we start
924 * the transaction handle. This also allows us to allocate
925 * the page (if needed) without using GFP_NOFS.
926 */
927retry_grab:
928 page = grab_cache_page_write_begin(mapping, index, flags);
929 if (!page)
930 return -ENOMEM;
931 unlock_page(page);
932
933retry_journal:
9924a92a 934 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
af5bc92d 935 if (IS_ERR(handle)) {
47564bfb
TT
936 page_cache_release(page);
937 return PTR_ERR(handle);
7479d2b9 938 }
ac27a0ec 939
47564bfb
TT
940 lock_page(page);
941 if (page->mapping != mapping) {
942 /* The page got truncated from under us */
943 unlock_page(page);
944 page_cache_release(page);
cf108bca 945 ext4_journal_stop(handle);
47564bfb 946 goto retry_grab;
cf108bca 947 }
7afe5aa5
DM
948 /* In case writeback began while the page was unlocked */
949 wait_for_stable_page(page);
cf108bca 950
744692dc 951 if (ext4_should_dioread_nolock(inode))
6e1db88d 952 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
744692dc 953 else
6e1db88d 954 ret = __block_write_begin(page, pos, len, ext4_get_block);
bfc1af65
NP
955
956 if (!ret && ext4_should_journal_data(inode)) {
f19d5870
TM
957 ret = ext4_walk_page_buffers(handle, page_buffers(page),
958 from, to, NULL,
959 do_journal_get_write_access);
ac27a0ec 960 }
bfc1af65
NP
961
962 if (ret) {
af5bc92d 963 unlock_page(page);
ae4d5372 964 /*
6e1db88d 965 * __block_write_begin may have instantiated a few blocks
ae4d5372
AK
966 * outside i_size. Trim these off again. Don't need
967 * i_size_read because we hold i_mutex.
1938a150
AK
968 *
969 * Add inode to orphan list in case we crash before
970 * truncate finishes
ae4d5372 971 */
ffacfa7a 972 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1938a150
AK
973 ext4_orphan_add(handle, inode);
974
975 ext4_journal_stop(handle);
976 if (pos + len > inode->i_size) {
b9a4207d 977 ext4_truncate_failed_write(inode);
de9a55b8 978 /*
ffacfa7a 979 * If truncate failed early the inode might
1938a150
AK
980 * still be on the orphan list; we need to
981 * make sure the inode is removed from the
982 * orphan list in that case.
983 */
984 if (inode->i_nlink)
985 ext4_orphan_del(NULL, inode);
986 }
bfc1af65 987
47564bfb
TT
988 if (ret == -ENOSPC &&
989 ext4_should_retry_alloc(inode->i_sb, &retries))
990 goto retry_journal;
991 page_cache_release(page);
992 return ret;
993 }
994 *pagep = page;
ac27a0ec
DK
995 return ret;
996}
997
bfc1af65
NP
998/* For write_end() in data=journal mode */
999static int write_end_fn(handle_t *handle, struct buffer_head *bh)
ac27a0ec 1000{
13fca323 1001 int ret;
ac27a0ec
DK
1002 if (!buffer_mapped(bh) || buffer_freed(bh))
1003 return 0;
1004 set_buffer_uptodate(bh);
13fca323
TT
1005 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1006 clear_buffer_meta(bh);
1007 clear_buffer_prio(bh);
1008 return ret;
ac27a0ec
DK
1009}
1010
eed4333f
ZL
1011/*
1012 * We need to pick up the new inode size which generic_commit_write gave us
1013 * `file' can be NULL - eg, when called from page_symlink().
1014 *
1015 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1016 * buffers are managed internally.
1017 */
1018static int ext4_write_end(struct file *file,
1019 struct address_space *mapping,
1020 loff_t pos, unsigned len, unsigned copied,
1021 struct page *page, void *fsdata)
f8514083 1022{
f8514083 1023 handle_t *handle = ext4_journal_current_handle();
eed4333f 1024 struct inode *inode = mapping->host;
0572639f 1025 loff_t old_size = inode->i_size;
eed4333f
ZL
1026 int ret = 0, ret2;
1027 int i_size_changed = 0;
1028
1029 trace_ext4_write_end(inode, pos, len, copied);
1030 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) {
1031 ret = ext4_jbd2_file_inode(handle, inode);
1032 if (ret) {
1033 unlock_page(page);
1034 page_cache_release(page);
1035 goto errout;
1036 }
1037 }
f8514083 1038
42c832de
TT
1039 if (ext4_has_inline_data(inode)) {
1040 ret = ext4_write_inline_data_end(inode, pos, len,
1041 copied, page);
1042 if (ret < 0)
1043 goto errout;
1044 copied = ret;
1045 } else
f19d5870
TM
1046 copied = block_write_end(file, mapping, pos,
1047 len, copied, page, fsdata);
f8514083 1048 /*
4631dbf6 1049 * it's important to update i_size while still holding page lock:
f8514083
AK
1050 * page writeout could otherwise come in and zero beyond i_size.
1051 */
4631dbf6 1052 i_size_changed = ext4_update_inode_size(inode, pos + copied);
f8514083
AK
1053 unlock_page(page);
1054 page_cache_release(page);
1055
0572639f
XW
1056 if (old_size < pos)
1057 pagecache_isize_extended(inode, old_size, pos);
f8514083
AK
1058 /*
1059 * Don't mark the inode dirty under page lock. First, it unnecessarily
1060 * makes the holding time of page lock longer. Second, it forces lock
1061 * ordering of page lock and transaction start for journaling
1062 * filesystems.
1063 */
1064 if (i_size_changed)
1065 ext4_mark_inode_dirty(handle, inode);
1066
ffacfa7a 1067 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1068 /* if we have allocated more blocks and copied
1069 * less. We will have blocks allocated outside
1070 * inode->i_size. So truncate them
1071 */
1072 ext4_orphan_add(handle, inode);
74d553aa 1073errout:
617ba13b 1074 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1075 if (!ret)
1076 ret = ret2;
bfc1af65 1077
f8514083 1078 if (pos + len > inode->i_size) {
b9a4207d 1079 ext4_truncate_failed_write(inode);
de9a55b8 1080 /*
ffacfa7a 1081 * If truncate failed early the inode might still be
f8514083
AK
1082 * on the orphan list; we need to make sure the inode
1083 * is removed from the orphan list in that case.
1084 */
1085 if (inode->i_nlink)
1086 ext4_orphan_del(NULL, inode);
1087 }
1088
bfc1af65 1089 return ret ? ret : copied;
ac27a0ec
DK
1090}
1091
bfc1af65 1092static int ext4_journalled_write_end(struct file *file,
de9a55b8
TT
1093 struct address_space *mapping,
1094 loff_t pos, unsigned len, unsigned copied,
1095 struct page *page, void *fsdata)
ac27a0ec 1096{
617ba13b 1097 handle_t *handle = ext4_journal_current_handle();
bfc1af65 1098 struct inode *inode = mapping->host;
0572639f 1099 loff_t old_size = inode->i_size;
ac27a0ec
DK
1100 int ret = 0, ret2;
1101 int partial = 0;
bfc1af65 1102 unsigned from, to;
4631dbf6 1103 int size_changed = 0;
ac27a0ec 1104
9bffad1e 1105 trace_ext4_journalled_write_end(inode, pos, len, copied);
bfc1af65
NP
1106 from = pos & (PAGE_CACHE_SIZE - 1);
1107 to = from + len;
1108
441c8508
CW
1109 BUG_ON(!ext4_handle_valid(handle));
1110
3fdcfb66
TM
1111 if (ext4_has_inline_data(inode))
1112 copied = ext4_write_inline_data_end(inode, pos, len,
1113 copied, page);
1114 else {
1115 if (copied < len) {
1116 if (!PageUptodate(page))
1117 copied = 0;
1118 page_zero_new_buffers(page, from+copied, to);
1119 }
ac27a0ec 1120
3fdcfb66
TM
1121 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1122 to, &partial, write_end_fn);
1123 if (!partial)
1124 SetPageUptodate(page);
1125 }
4631dbf6 1126 size_changed = ext4_update_inode_size(inode, pos + copied);
19f5fb7a 1127 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2d859db3 1128 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
4631dbf6
DM
1129 unlock_page(page);
1130 page_cache_release(page);
1131
0572639f
XW
1132 if (old_size < pos)
1133 pagecache_isize_extended(inode, old_size, pos);
1134
4631dbf6 1135 if (size_changed) {
617ba13b 1136 ret2 = ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
1137 if (!ret)
1138 ret = ret2;
1139 }
bfc1af65 1140
ffacfa7a 1141 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1142 /* if we have allocated more blocks and copied
1143 * less. We will have blocks allocated outside
1144 * inode->i_size. So truncate them
1145 */
1146 ext4_orphan_add(handle, inode);
1147
617ba13b 1148 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1149 if (!ret)
1150 ret = ret2;
f8514083 1151 if (pos + len > inode->i_size) {
b9a4207d 1152 ext4_truncate_failed_write(inode);
de9a55b8 1153 /*
ffacfa7a 1154 * If truncate failed early the inode might still be
f8514083
AK
1155 * on the orphan list; we need to make sure the inode
1156 * is removed from the orphan list in that case.
1157 */
1158 if (inode->i_nlink)
1159 ext4_orphan_del(NULL, inode);
1160 }
bfc1af65
NP
1161
1162 return ret ? ret : copied;
ac27a0ec 1163}
d2a17637 1164
9d0be502 1165/*
7b415bf6 1166 * Reserve a single cluster located at lblock
9d0be502 1167 */
01f49d0b 1168static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
d2a17637 1169{
60e58e0f 1170 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 1171 struct ext4_inode_info *ei = EXT4_I(inode);
7b415bf6 1172 unsigned int md_needed;
5dd4056d 1173 int ret;
03179fe9
TT
1174
1175 /*
1176 * We will charge metadata quota at writeout time; this saves
1177 * us from metadata over-estimation, though we may go over by
1178 * a small amount in the end. Here we just reserve for data.
1179 */
1180 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1181 if (ret)
1182 return ret;
d2a17637
MC
1183
1184 /*
1185 * recalculate the amount of metadata blocks to reserve
1186 * in order to allocate nrblocks
1187 * worse case is one extent per block
1188 */
0637c6f4 1189 spin_lock(&ei->i_block_reservation_lock);
03179fe9
TT
1190 /*
1191 * ext4_calc_metadata_amount() has side effects, which we have
1192 * to be prepared undo if we fail to claim space.
1193 */
71d4f7d0
TT
1194 md_needed = 0;
1195 trace_ext4_da_reserve_space(inode, 0);
d2a17637 1196
71d4f7d0 1197 if (ext4_claim_free_clusters(sbi, 1, 0)) {
03179fe9 1198 spin_unlock(&ei->i_block_reservation_lock);
03179fe9 1199 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
d2a17637
MC
1200 return -ENOSPC;
1201 }
9d0be502 1202 ei->i_reserved_data_blocks++;
0637c6f4 1203 spin_unlock(&ei->i_block_reservation_lock);
39bc680a 1204
d2a17637
MC
1205 return 0; /* success */
1206}
1207
12219aea 1208static void ext4_da_release_space(struct inode *inode, int to_free)
d2a17637
MC
1209{
1210 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 1211 struct ext4_inode_info *ei = EXT4_I(inode);
d2a17637 1212
cd213226
MC
1213 if (!to_free)
1214 return; /* Nothing to release, exit */
1215
d2a17637 1216 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
cd213226 1217
5a58ec87 1218 trace_ext4_da_release_space(inode, to_free);
0637c6f4 1219 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
cd213226 1220 /*
0637c6f4
TT
1221 * if there aren't enough reserved blocks, then the
1222 * counter is messed up somewhere. Since this
1223 * function is called from invalidate page, it's
1224 * harmless to return without any action.
cd213226 1225 */
8de5c325 1226 ext4_warning(inode->i_sb, "ext4_da_release_space: "
0637c6f4 1227 "ino %lu, to_free %d with only %d reserved "
1084f252 1228 "data blocks", inode->i_ino, to_free,
0637c6f4
TT
1229 ei->i_reserved_data_blocks);
1230 WARN_ON(1);
1231 to_free = ei->i_reserved_data_blocks;
cd213226 1232 }
0637c6f4 1233 ei->i_reserved_data_blocks -= to_free;
cd213226 1234
72b8ab9d 1235 /* update fs dirty data blocks counter */
57042651 1236 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
d2a17637 1237
d2a17637 1238 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f 1239
7b415bf6 1240 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
d2a17637
MC
1241}
1242
1243static void ext4_da_page_release_reservation(struct page *page,
ca99fdd2
LC
1244 unsigned int offset,
1245 unsigned int length)
d2a17637
MC
1246{
1247 int to_release = 0;
1248 struct buffer_head *head, *bh;
1249 unsigned int curr_off = 0;
7b415bf6
AK
1250 struct inode *inode = page->mapping->host;
1251 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
ca99fdd2 1252 unsigned int stop = offset + length;
7b415bf6 1253 int num_clusters;
51865fda 1254 ext4_fsblk_t lblk;
d2a17637 1255
ca99fdd2
LC
1256 BUG_ON(stop > PAGE_CACHE_SIZE || stop < length);
1257
d2a17637
MC
1258 head = page_buffers(page);
1259 bh = head;
1260 do {
1261 unsigned int next_off = curr_off + bh->b_size;
1262
ca99fdd2
LC
1263 if (next_off > stop)
1264 break;
1265
d2a17637
MC
1266 if ((offset <= curr_off) && (buffer_delay(bh))) {
1267 to_release++;
1268 clear_buffer_delay(bh);
1269 }
1270 curr_off = next_off;
1271 } while ((bh = bh->b_this_page) != head);
7b415bf6 1272
51865fda
ZL
1273 if (to_release) {
1274 lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1275 ext4_es_remove_extent(inode, lblk, to_release);
1276 }
1277
7b415bf6
AK
1278 /* If we have released all the blocks belonging to a cluster, then we
1279 * need to release the reserved space for that cluster. */
1280 num_clusters = EXT4_NUM_B2C(sbi, to_release);
1281 while (num_clusters > 0) {
7b415bf6
AK
1282 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1283 ((num_clusters - 1) << sbi->s_cluster_bits);
1284 if (sbi->s_cluster_ratio == 1 ||
7d1b1fbc 1285 !ext4_find_delalloc_cluster(inode, lblk))
7b415bf6
AK
1286 ext4_da_release_space(inode, 1);
1287
1288 num_clusters--;
1289 }
d2a17637 1290}
ac27a0ec 1291
64769240
AT
1292/*
1293 * Delayed allocation stuff
1294 */
1295
4e7ea81d
JK
1296struct mpage_da_data {
1297 struct inode *inode;
1298 struct writeback_control *wbc;
6b523df4 1299
4e7ea81d
JK
1300 pgoff_t first_page; /* The first page to write */
1301 pgoff_t next_page; /* Current page to examine */
1302 pgoff_t last_page; /* Last page to examine */
791b7f08 1303 /*
4e7ea81d
JK
1304 * Extent to map - this can be after first_page because that can be
1305 * fully mapped. We somewhat abuse m_flags to store whether the extent
1306 * is delalloc or unwritten.
791b7f08 1307 */
4e7ea81d
JK
1308 struct ext4_map_blocks map;
1309 struct ext4_io_submit io_submit; /* IO submission data */
1310};
64769240 1311
4e7ea81d
JK
1312static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1313 bool invalidate)
c4a0c46e
AK
1314{
1315 int nr_pages, i;
1316 pgoff_t index, end;
1317 struct pagevec pvec;
1318 struct inode *inode = mpd->inode;
1319 struct address_space *mapping = inode->i_mapping;
4e7ea81d
JK
1320
1321 /* This is necessary when next_page == 0. */
1322 if (mpd->first_page >= mpd->next_page)
1323 return;
c4a0c46e 1324
c7f5938a
CW
1325 index = mpd->first_page;
1326 end = mpd->next_page - 1;
4e7ea81d
JK
1327 if (invalidate) {
1328 ext4_lblk_t start, last;
1329 start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1330 last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1331 ext4_es_remove_extent(inode, start, last - start + 1);
1332 }
51865fda 1333
66bea92c 1334 pagevec_init(&pvec, 0);
c4a0c46e
AK
1335 while (index <= end) {
1336 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1337 if (nr_pages == 0)
1338 break;
1339 for (i = 0; i < nr_pages; i++) {
1340 struct page *page = pvec.pages[i];
9b1d0998 1341 if (page->index > end)
c4a0c46e 1342 break;
c4a0c46e
AK
1343 BUG_ON(!PageLocked(page));
1344 BUG_ON(PageWriteback(page));
4e7ea81d
JK
1345 if (invalidate) {
1346 block_invalidatepage(page, 0, PAGE_CACHE_SIZE);
1347 ClearPageUptodate(page);
1348 }
c4a0c46e
AK
1349 unlock_page(page);
1350 }
9b1d0998
JK
1351 index = pvec.pages[nr_pages - 1]->index + 1;
1352 pagevec_release(&pvec);
c4a0c46e 1353 }
c4a0c46e
AK
1354}
1355
df22291f
AK
1356static void ext4_print_free_blocks(struct inode *inode)
1357{
1358 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
92b97816 1359 struct super_block *sb = inode->i_sb;
f78ee70d 1360 struct ext4_inode_info *ei = EXT4_I(inode);
92b97816
TT
1361
1362 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
5dee5437 1363 EXT4_C2B(EXT4_SB(inode->i_sb),
f78ee70d 1364 ext4_count_free_clusters(sb)));
92b97816
TT
1365 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1366 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
f78ee70d 1367 (long long) EXT4_C2B(EXT4_SB(sb),
57042651 1368 percpu_counter_sum(&sbi->s_freeclusters_counter)));
92b97816 1369 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
f78ee70d 1370 (long long) EXT4_C2B(EXT4_SB(sb),
7b415bf6 1371 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
92b97816
TT
1372 ext4_msg(sb, KERN_CRIT, "Block reservation details");
1373 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
f78ee70d 1374 ei->i_reserved_data_blocks);
df22291f
AK
1375 return;
1376}
1377
c364b22c 1378static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
29fa89d0 1379{
c364b22c 1380 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
29fa89d0
AK
1381}
1382
5356f261
AK
1383/*
1384 * This function is grabs code from the very beginning of
1385 * ext4_map_blocks, but assumes that the caller is from delayed write
1386 * time. This function looks up the requested blocks and sets the
1387 * buffer delay bit under the protection of i_data_sem.
1388 */
1389static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1390 struct ext4_map_blocks *map,
1391 struct buffer_head *bh)
1392{
d100eef2 1393 struct extent_status es;
5356f261
AK
1394 int retval;
1395 sector_t invalid_block = ~((sector_t) 0xffff);
921f266b
DM
1396#ifdef ES_AGGRESSIVE_TEST
1397 struct ext4_map_blocks orig_map;
1398
1399 memcpy(&orig_map, map, sizeof(*map));
1400#endif
5356f261
AK
1401
1402 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1403 invalid_block = ~0;
1404
1405 map->m_flags = 0;
1406 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1407 "logical block %lu\n", inode->i_ino, map->m_len,
1408 (unsigned long) map->m_lblk);
d100eef2
ZL
1409
1410 /* Lookup extent status tree firstly */
1411 if (ext4_es_lookup_extent(inode, iblock, &es)) {
d100eef2
ZL
1412 if (ext4_es_is_hole(&es)) {
1413 retval = 0;
c8b459f4 1414 down_read(&EXT4_I(inode)->i_data_sem);
d100eef2
ZL
1415 goto add_delayed;
1416 }
1417
1418 /*
1419 * Delayed extent could be allocated by fallocate.
1420 * So we need to check it.
1421 */
1422 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1423 map_bh(bh, inode->i_sb, invalid_block);
1424 set_buffer_new(bh);
1425 set_buffer_delay(bh);
1426 return 0;
1427 }
1428
1429 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1430 retval = es.es_len - (iblock - es.es_lblk);
1431 if (retval > map->m_len)
1432 retval = map->m_len;
1433 map->m_len = retval;
1434 if (ext4_es_is_written(&es))
1435 map->m_flags |= EXT4_MAP_MAPPED;
1436 else if (ext4_es_is_unwritten(&es))
1437 map->m_flags |= EXT4_MAP_UNWRITTEN;
1438 else
1439 BUG_ON(1);
1440
921f266b
DM
1441#ifdef ES_AGGRESSIVE_TEST
1442 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1443#endif
d100eef2
ZL
1444 return retval;
1445 }
1446
5356f261
AK
1447 /*
1448 * Try to see if we can get the block without requesting a new
1449 * file system block.
1450 */
c8b459f4 1451 down_read(&EXT4_I(inode)->i_data_sem);
cbd7584e 1452 if (ext4_has_inline_data(inode))
9c3569b5 1453 retval = 0;
cbd7584e 1454 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
2f8e0a7c 1455 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
5356f261 1456 else
2f8e0a7c 1457 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
5356f261 1458
d100eef2 1459add_delayed:
5356f261 1460 if (retval == 0) {
f7fec032 1461 int ret;
5356f261
AK
1462 /*
1463 * XXX: __block_prepare_write() unmaps passed block,
1464 * is it OK?
1465 */
386ad67c
LC
1466 /*
1467 * If the block was allocated from previously allocated cluster,
1468 * then we don't need to reserve it again. However we still need
1469 * to reserve metadata for every block we're going to write.
1470 */
cbd7584e
JK
1471 if (EXT4_SB(inode->i_sb)->s_cluster_ratio <= 1 ||
1472 !ext4_find_delalloc_cluster(inode, map->m_lblk)) {
f7fec032
ZL
1473 ret = ext4_da_reserve_space(inode, iblock);
1474 if (ret) {
5356f261 1475 /* not enough space to reserve */
f7fec032 1476 retval = ret;
5356f261 1477 goto out_unlock;
f7fec032 1478 }
5356f261
AK
1479 }
1480
f7fec032
ZL
1481 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1482 ~0, EXTENT_STATUS_DELAYED);
1483 if (ret) {
1484 retval = ret;
51865fda 1485 goto out_unlock;
f7fec032 1486 }
51865fda 1487
5356f261
AK
1488 map_bh(bh, inode->i_sb, invalid_block);
1489 set_buffer_new(bh);
1490 set_buffer_delay(bh);
f7fec032
ZL
1491 } else if (retval > 0) {
1492 int ret;
3be78c73 1493 unsigned int status;
f7fec032 1494
44fb851d
ZL
1495 if (unlikely(retval != map->m_len)) {
1496 ext4_warning(inode->i_sb,
1497 "ES len assertion failed for inode "
1498 "%lu: retval %d != map->m_len %d",
1499 inode->i_ino, retval, map->m_len);
1500 WARN_ON(1);
921f266b 1501 }
921f266b 1502
f7fec032
ZL
1503 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1504 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1505 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1506 map->m_pblk, status);
1507 if (ret != 0)
1508 retval = ret;
5356f261
AK
1509 }
1510
1511out_unlock:
1512 up_read((&EXT4_I(inode)->i_data_sem));
1513
1514 return retval;
1515}
1516
64769240 1517/*
d91bd2c1 1518 * This is a special get_block_t callback which is used by
b920c755
TT
1519 * ext4_da_write_begin(). It will either return mapped block or
1520 * reserve space for a single block.
29fa89d0
AK
1521 *
1522 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1523 * We also have b_blocknr = -1 and b_bdev initialized properly
1524 *
1525 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1526 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1527 * initialized properly.
64769240 1528 */
9c3569b5
TM
1529int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1530 struct buffer_head *bh, int create)
64769240 1531{
2ed88685 1532 struct ext4_map_blocks map;
64769240
AT
1533 int ret = 0;
1534
1535 BUG_ON(create == 0);
2ed88685
TT
1536 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1537
1538 map.m_lblk = iblock;
1539 map.m_len = 1;
64769240
AT
1540
1541 /*
1542 * first, we need to know whether the block is allocated already
1543 * preallocated blocks are unmapped but should treated
1544 * the same as allocated blocks.
1545 */
5356f261
AK
1546 ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1547 if (ret <= 0)
2ed88685 1548 return ret;
64769240 1549
2ed88685
TT
1550 map_bh(bh, inode->i_sb, map.m_pblk);
1551 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1552
1553 if (buffer_unwritten(bh)) {
1554 /* A delayed write to unwritten bh should be marked
1555 * new and mapped. Mapped ensures that we don't do
1556 * get_block multiple times when we write to the same
1557 * offset and new ensures that we do proper zero out
1558 * for partial write.
1559 */
1560 set_buffer_new(bh);
c8205636 1561 set_buffer_mapped(bh);
2ed88685
TT
1562 }
1563 return 0;
64769240 1564}
61628a3f 1565
62e086be
AK
1566static int bget_one(handle_t *handle, struct buffer_head *bh)
1567{
1568 get_bh(bh);
1569 return 0;
1570}
1571
1572static int bput_one(handle_t *handle, struct buffer_head *bh)
1573{
1574 put_bh(bh);
1575 return 0;
1576}
1577
1578static int __ext4_journalled_writepage(struct page *page,
62e086be
AK
1579 unsigned int len)
1580{
1581 struct address_space *mapping = page->mapping;
1582 struct inode *inode = mapping->host;
3fdcfb66 1583 struct buffer_head *page_bufs = NULL;
62e086be 1584 handle_t *handle = NULL;
3fdcfb66
TM
1585 int ret = 0, err = 0;
1586 int inline_data = ext4_has_inline_data(inode);
1587 struct buffer_head *inode_bh = NULL;
62e086be 1588
cb20d518 1589 ClearPageChecked(page);
3fdcfb66
TM
1590
1591 if (inline_data) {
1592 BUG_ON(page->index != 0);
1593 BUG_ON(len > ext4_get_max_inline_size(inode));
1594 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1595 if (inode_bh == NULL)
1596 goto out;
1597 } else {
1598 page_bufs = page_buffers(page);
1599 if (!page_bufs) {
1600 BUG();
1601 goto out;
1602 }
1603 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1604 NULL, bget_one);
1605 }
62e086be
AK
1606 /* As soon as we unlock the page, it can go away, but we have
1607 * references to buffers so we are safe */
1608 unlock_page(page);
1609
9924a92a
TT
1610 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1611 ext4_writepage_trans_blocks(inode));
62e086be
AK
1612 if (IS_ERR(handle)) {
1613 ret = PTR_ERR(handle);
1614 goto out;
1615 }
1616
441c8508
CW
1617 BUG_ON(!ext4_handle_valid(handle));
1618
3fdcfb66 1619 if (inline_data) {
5d601255 1620 BUFFER_TRACE(inode_bh, "get write access");
3fdcfb66 1621 ret = ext4_journal_get_write_access(handle, inode_bh);
62e086be 1622
3fdcfb66
TM
1623 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
1624
1625 } else {
1626 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1627 do_journal_get_write_access);
1628
1629 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1630 write_end_fn);
1631 }
62e086be
AK
1632 if (ret == 0)
1633 ret = err;
2d859db3 1634 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
62e086be
AK
1635 err = ext4_journal_stop(handle);
1636 if (!ret)
1637 ret = err;
1638
3fdcfb66 1639 if (!ext4_has_inline_data(inode))
8c9367fd 1640 ext4_walk_page_buffers(NULL, page_bufs, 0, len,
3fdcfb66 1641 NULL, bput_one);
19f5fb7a 1642 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
62e086be 1643out:
3fdcfb66 1644 brelse(inode_bh);
62e086be
AK
1645 return ret;
1646}
1647
61628a3f 1648/*
43ce1d23
AK
1649 * Note that we don't need to start a transaction unless we're journaling data
1650 * because we should have holes filled from ext4_page_mkwrite(). We even don't
1651 * need to file the inode to the transaction's list in ordered mode because if
1652 * we are writing back data added by write(), the inode is already there and if
25985edc 1653 * we are writing back data modified via mmap(), no one guarantees in which
43ce1d23
AK
1654 * transaction the data will hit the disk. In case we are journaling data, we
1655 * cannot start transaction directly because transaction start ranks above page
1656 * lock so we have to do some magic.
1657 *
b920c755 1658 * This function can get called via...
20970ba6 1659 * - ext4_writepages after taking page lock (have journal handle)
b920c755 1660 * - journal_submit_inode_data_buffers (no journal handle)
f6463b0d 1661 * - shrink_page_list via the kswapd/direct reclaim (no journal handle)
b920c755 1662 * - grab_page_cache when doing write_begin (have journal handle)
43ce1d23
AK
1663 *
1664 * We don't do any block allocation in this function. If we have page with
1665 * multiple blocks we need to write those buffer_heads that are mapped. This
1666 * is important for mmaped based write. So if we do with blocksize 1K
1667 * truncate(f, 1024);
1668 * a = mmap(f, 0, 4096);
1669 * a[0] = 'a';
1670 * truncate(f, 4096);
1671 * we have in the page first buffer_head mapped via page_mkwrite call back
90802ed9 1672 * but other buffer_heads would be unmapped but dirty (dirty done via the
43ce1d23
AK
1673 * do_wp_page). So writepage should write the first block. If we modify
1674 * the mmap area beyond 1024 we will again get a page_fault and the
1675 * page_mkwrite callback will do the block allocation and mark the
1676 * buffer_heads mapped.
1677 *
1678 * We redirty the page if we have any buffer_heads that is either delay or
1679 * unwritten in the page.
1680 *
1681 * We can get recursively called as show below.
1682 *
1683 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1684 * ext4_writepage()
1685 *
1686 * But since we don't do any block allocation we should not deadlock.
1687 * Page also have the dirty flag cleared so we don't get recurive page_lock.
61628a3f 1688 */
43ce1d23 1689static int ext4_writepage(struct page *page,
62e086be 1690 struct writeback_control *wbc)
64769240 1691{
f8bec370 1692 int ret = 0;
61628a3f 1693 loff_t size;
498e5f24 1694 unsigned int len;
744692dc 1695 struct buffer_head *page_bufs = NULL;
61628a3f 1696 struct inode *inode = page->mapping->host;
36ade451 1697 struct ext4_io_submit io_submit;
1c8349a1 1698 bool keep_towrite = false;
61628a3f 1699
a9c667f8 1700 trace_ext4_writepage(page);
f0e6c985
AK
1701 size = i_size_read(inode);
1702 if (page->index == size >> PAGE_CACHE_SHIFT)
1703 len = size & ~PAGE_CACHE_MASK;
1704 else
1705 len = PAGE_CACHE_SIZE;
64769240 1706
a42afc5f 1707 page_bufs = page_buffers(page);
a42afc5f 1708 /*
fe386132
JK
1709 * We cannot do block allocation or other extent handling in this
1710 * function. If there are buffers needing that, we have to redirty
1711 * the page. But we may reach here when we do a journal commit via
1712 * journal_submit_inode_data_buffers() and in that case we must write
1713 * allocated buffers to achieve data=ordered mode guarantees.
a42afc5f 1714 */
f19d5870
TM
1715 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
1716 ext4_bh_delay_or_unwritten)) {
f8bec370 1717 redirty_page_for_writepage(wbc, page);
fe386132
JK
1718 if (current->flags & PF_MEMALLOC) {
1719 /*
1720 * For memory cleaning there's no point in writing only
1721 * some buffers. So just bail out. Warn if we came here
1722 * from direct reclaim.
1723 */
1724 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
1725 == PF_MEMALLOC);
f0e6c985
AK
1726 unlock_page(page);
1727 return 0;
1728 }
1c8349a1 1729 keep_towrite = true;
a42afc5f 1730 }
64769240 1731
cb20d518 1732 if (PageChecked(page) && ext4_should_journal_data(inode))
43ce1d23
AK
1733 /*
1734 * It's mmapped pagecache. Add buffers and journal it. There
1735 * doesn't seem much point in redirtying the page here.
1736 */
3f0ca309 1737 return __ext4_journalled_writepage(page, len);
43ce1d23 1738
97a851ed
JK
1739 ext4_io_submit_init(&io_submit, wbc);
1740 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
1741 if (!io_submit.io_end) {
1742 redirty_page_for_writepage(wbc, page);
1743 unlock_page(page);
1744 return -ENOMEM;
1745 }
1c8349a1 1746 ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
36ade451 1747 ext4_io_submit(&io_submit);
97a851ed
JK
1748 /* Drop io_end reference we got from init */
1749 ext4_put_io_end_defer(io_submit.io_end);
64769240
AT
1750 return ret;
1751}
1752
5f1132b2
JK
1753static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
1754{
1755 int len;
1756 loff_t size = i_size_read(mpd->inode);
1757 int err;
1758
1759 BUG_ON(page->index != mpd->first_page);
1760 if (page->index == size >> PAGE_CACHE_SHIFT)
1761 len = size & ~PAGE_CACHE_MASK;
1762 else
1763 len = PAGE_CACHE_SIZE;
1764 clear_page_dirty_for_io(page);
1c8349a1 1765 err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
5f1132b2
JK
1766 if (!err)
1767 mpd->wbc->nr_to_write--;
1768 mpd->first_page++;
1769
1770 return err;
1771}
1772
4e7ea81d
JK
1773#define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
1774
61628a3f 1775/*
fffb2739
JK
1776 * mballoc gives us at most this number of blocks...
1777 * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
70261f56 1778 * The rest of mballoc seems to handle chunks up to full group size.
61628a3f 1779 */
fffb2739 1780#define MAX_WRITEPAGES_EXTENT_LEN 2048
525f4ed8 1781
4e7ea81d
JK
1782/*
1783 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
1784 *
1785 * @mpd - extent of blocks
1786 * @lblk - logical number of the block in the file
09930042 1787 * @bh - buffer head we want to add to the extent
4e7ea81d 1788 *
09930042
JK
1789 * The function is used to collect contig. blocks in the same state. If the
1790 * buffer doesn't require mapping for writeback and we haven't started the
1791 * extent of buffers to map yet, the function returns 'true' immediately - the
1792 * caller can write the buffer right away. Otherwise the function returns true
1793 * if the block has been added to the extent, false if the block couldn't be
1794 * added.
4e7ea81d 1795 */
09930042
JK
1796static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
1797 struct buffer_head *bh)
4e7ea81d
JK
1798{
1799 struct ext4_map_blocks *map = &mpd->map;
1800
09930042
JK
1801 /* Buffer that doesn't need mapping for writeback? */
1802 if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
1803 (!buffer_delay(bh) && !buffer_unwritten(bh))) {
1804 /* So far no extent to map => we write the buffer right away */
1805 if (map->m_len == 0)
1806 return true;
1807 return false;
1808 }
4e7ea81d
JK
1809
1810 /* First block in the extent? */
1811 if (map->m_len == 0) {
1812 map->m_lblk = lblk;
1813 map->m_len = 1;
09930042
JK
1814 map->m_flags = bh->b_state & BH_FLAGS;
1815 return true;
4e7ea81d
JK
1816 }
1817
09930042
JK
1818 /* Don't go larger than mballoc is willing to allocate */
1819 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
1820 return false;
1821
4e7ea81d
JK
1822 /* Can we merge the block to our big extent? */
1823 if (lblk == map->m_lblk + map->m_len &&
09930042 1824 (bh->b_state & BH_FLAGS) == map->m_flags) {
4e7ea81d 1825 map->m_len++;
09930042 1826 return true;
4e7ea81d 1827 }
09930042 1828 return false;
4e7ea81d
JK
1829}
1830
5f1132b2
JK
1831/*
1832 * mpage_process_page_bufs - submit page buffers for IO or add them to extent
1833 *
1834 * @mpd - extent of blocks for mapping
1835 * @head - the first buffer in the page
1836 * @bh - buffer we should start processing from
1837 * @lblk - logical number of the block in the file corresponding to @bh
1838 *
1839 * Walk through page buffers from @bh upto @head (exclusive) and either submit
1840 * the page for IO if all buffers in this page were mapped and there's no
1841 * accumulated extent of buffers to map or add buffers in the page to the
1842 * extent of buffers to map. The function returns 1 if the caller can continue
1843 * by processing the next page, 0 if it should stop adding buffers to the
1844 * extent to map because we cannot extend it anymore. It can also return value
1845 * < 0 in case of error during IO submission.
1846 */
1847static int mpage_process_page_bufs(struct mpage_da_data *mpd,
1848 struct buffer_head *head,
1849 struct buffer_head *bh,
1850 ext4_lblk_t lblk)
4e7ea81d
JK
1851{
1852 struct inode *inode = mpd->inode;
5f1132b2 1853 int err;
4e7ea81d
JK
1854 ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1)
1855 >> inode->i_blkbits;
1856
1857 do {
1858 BUG_ON(buffer_locked(bh));
1859
09930042 1860 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
4e7ea81d
JK
1861 /* Found extent to map? */
1862 if (mpd->map.m_len)
5f1132b2 1863 return 0;
09930042 1864 /* Everything mapped so far and we hit EOF */
5f1132b2 1865 break;
4e7ea81d 1866 }
4e7ea81d 1867 } while (lblk++, (bh = bh->b_this_page) != head);
5f1132b2
JK
1868 /* So far everything mapped? Submit the page for IO. */
1869 if (mpd->map.m_len == 0) {
1870 err = mpage_submit_page(mpd, head->b_page);
1871 if (err < 0)
1872 return err;
1873 }
1874 return lblk < blocks;
4e7ea81d
JK
1875}
1876
1877/*
1878 * mpage_map_buffers - update buffers corresponding to changed extent and
1879 * submit fully mapped pages for IO
1880 *
1881 * @mpd - description of extent to map, on return next extent to map
1882 *
1883 * Scan buffers corresponding to changed extent (we expect corresponding pages
1884 * to be already locked) and update buffer state according to new extent state.
1885 * We map delalloc buffers to their physical location, clear unwritten bits,
556615dc 1886 * and mark buffers as uninit when we perform writes to unwritten extents
4e7ea81d
JK
1887 * and do extent conversion after IO is finished. If the last page is not fully
1888 * mapped, we update @map to the next extent in the last page that needs
1889 * mapping. Otherwise we submit the page for IO.
1890 */
1891static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
1892{
1893 struct pagevec pvec;
1894 int nr_pages, i;
1895 struct inode *inode = mpd->inode;
1896 struct buffer_head *head, *bh;
1897 int bpp_bits = PAGE_CACHE_SHIFT - inode->i_blkbits;
4e7ea81d
JK
1898 pgoff_t start, end;
1899 ext4_lblk_t lblk;
1900 sector_t pblock;
1901 int err;
1902
1903 start = mpd->map.m_lblk >> bpp_bits;
1904 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
1905 lblk = start << bpp_bits;
1906 pblock = mpd->map.m_pblk;
1907
1908 pagevec_init(&pvec, 0);
1909 while (start <= end) {
1910 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start,
1911 PAGEVEC_SIZE);
1912 if (nr_pages == 0)
1913 break;
1914 for (i = 0; i < nr_pages; i++) {
1915 struct page *page = pvec.pages[i];
1916
1917 if (page->index > end)
1918 break;
70261f56 1919 /* Up to 'end' pages must be contiguous */
4e7ea81d
JK
1920 BUG_ON(page->index != start);
1921 bh = head = page_buffers(page);
1922 do {
1923 if (lblk < mpd->map.m_lblk)
1924 continue;
1925 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
1926 /*
1927 * Buffer after end of mapped extent.
1928 * Find next buffer in the page to map.
1929 */
1930 mpd->map.m_len = 0;
1931 mpd->map.m_flags = 0;
5f1132b2
JK
1932 /*
1933 * FIXME: If dioread_nolock supports
1934 * blocksize < pagesize, we need to make
1935 * sure we add size mapped so far to
1936 * io_end->size as the following call
1937 * can submit the page for IO.
1938 */
1939 err = mpage_process_page_bufs(mpd, head,
1940 bh, lblk);
4e7ea81d 1941 pagevec_release(&pvec);
5f1132b2
JK
1942 if (err > 0)
1943 err = 0;
1944 return err;
4e7ea81d
JK
1945 }
1946 if (buffer_delay(bh)) {
1947 clear_buffer_delay(bh);
1948 bh->b_blocknr = pblock++;
1949 }
4e7ea81d 1950 clear_buffer_unwritten(bh);
5f1132b2 1951 } while (lblk++, (bh = bh->b_this_page) != head);
4e7ea81d
JK
1952
1953 /*
1954 * FIXME: This is going to break if dioread_nolock
1955 * supports blocksize < pagesize as we will try to
1956 * convert potentially unmapped parts of inode.
1957 */
1958 mpd->io_submit.io_end->size += PAGE_CACHE_SIZE;
1959 /* Page fully mapped - let IO run! */
1960 err = mpage_submit_page(mpd, page);
1961 if (err < 0) {
1962 pagevec_release(&pvec);
1963 return err;
1964 }
1965 start++;
1966 }
1967 pagevec_release(&pvec);
1968 }
1969 /* Extent fully mapped and matches with page boundary. We are done. */
1970 mpd->map.m_len = 0;
1971 mpd->map.m_flags = 0;
1972 return 0;
1973}
1974
1975static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
1976{
1977 struct inode *inode = mpd->inode;
1978 struct ext4_map_blocks *map = &mpd->map;
1979 int get_blocks_flags;
090f32ee 1980 int err, dioread_nolock;
4e7ea81d
JK
1981
1982 trace_ext4_da_write_pages_extent(inode, map);
1983 /*
1984 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
556615dc 1985 * to convert an unwritten extent to be initialized (in the case
4e7ea81d
JK
1986 * where we have written into one or more preallocated blocks). It is
1987 * possible that we're going to need more metadata blocks than
1988 * previously reserved. However we must not fail because we're in
1989 * writeback and there is nothing we can do about it so it might result
1990 * in data loss. So use reserved blocks to allocate metadata if
1991 * possible.
1992 *
754cfed6
TT
1993 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
1994 * the blocks in question are delalloc blocks. This indicates
1995 * that the blocks and quotas has already been checked when
1996 * the data was copied into the page cache.
4e7ea81d
JK
1997 */
1998 get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
1999 EXT4_GET_BLOCKS_METADATA_NOFAIL;
090f32ee
LC
2000 dioread_nolock = ext4_should_dioread_nolock(inode);
2001 if (dioread_nolock)
4e7ea81d
JK
2002 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2003 if (map->m_flags & (1 << BH_Delay))
2004 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2005
2006 err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2007 if (err < 0)
2008 return err;
090f32ee 2009 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
6b523df4
JK
2010 if (!mpd->io_submit.io_end->handle &&
2011 ext4_handle_valid(handle)) {
2012 mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2013 handle->h_rsv_handle = NULL;
2014 }
3613d228 2015 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
6b523df4 2016 }
4e7ea81d
JK
2017
2018 BUG_ON(map->m_len == 0);
2019 if (map->m_flags & EXT4_MAP_NEW) {
2020 struct block_device *bdev = inode->i_sb->s_bdev;
2021 int i;
2022
2023 for (i = 0; i < map->m_len; i++)
2024 unmap_underlying_metadata(bdev, map->m_pblk + i);
2025 }
2026 return 0;
2027}
2028
2029/*
2030 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2031 * mpd->len and submit pages underlying it for IO
2032 *
2033 * @handle - handle for journal operations
2034 * @mpd - extent to map
7534e854
JK
2035 * @give_up_on_write - we set this to true iff there is a fatal error and there
2036 * is no hope of writing the data. The caller should discard
2037 * dirty pages to avoid infinite loops.
4e7ea81d
JK
2038 *
2039 * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2040 * delayed, blocks are allocated, if it is unwritten, we may need to convert
2041 * them to initialized or split the described range from larger unwritten
2042 * extent. Note that we need not map all the described range since allocation
2043 * can return less blocks or the range is covered by more unwritten extents. We
2044 * cannot map more because we are limited by reserved transaction credits. On
2045 * the other hand we always make sure that the last touched page is fully
2046 * mapped so that it can be written out (and thus forward progress is
2047 * guaranteed). After mapping we submit all mapped pages for IO.
2048 */
2049static int mpage_map_and_submit_extent(handle_t *handle,
cb530541
TT
2050 struct mpage_da_data *mpd,
2051 bool *give_up_on_write)
4e7ea81d
JK
2052{
2053 struct inode *inode = mpd->inode;
2054 struct ext4_map_blocks *map = &mpd->map;
2055 int err;
2056 loff_t disksize;
6603120e 2057 int progress = 0;
4e7ea81d
JK
2058
2059 mpd->io_submit.io_end->offset =
2060 ((loff_t)map->m_lblk) << inode->i_blkbits;
27d7c4ed 2061 do {
4e7ea81d
JK
2062 err = mpage_map_one_extent(handle, mpd);
2063 if (err < 0) {
2064 struct super_block *sb = inode->i_sb;
2065
cb530541
TT
2066 if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2067 goto invalidate_dirty_pages;
4e7ea81d 2068 /*
cb530541
TT
2069 * Let the uper layers retry transient errors.
2070 * In the case of ENOSPC, if ext4_count_free_blocks()
2071 * is non-zero, a commit should free up blocks.
4e7ea81d 2072 */
cb530541 2073 if ((err == -ENOMEM) ||
6603120e
DM
2074 (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2075 if (progress)
2076 goto update_disksize;
cb530541 2077 return err;
6603120e 2078 }
cb530541
TT
2079 ext4_msg(sb, KERN_CRIT,
2080 "Delayed block allocation failed for "
2081 "inode %lu at logical offset %llu with"
2082 " max blocks %u with error %d",
2083 inode->i_ino,
2084 (unsigned long long)map->m_lblk,
2085 (unsigned)map->m_len, -err);
2086 ext4_msg(sb, KERN_CRIT,
2087 "This should not happen!! Data will "
2088 "be lost\n");
2089 if (err == -ENOSPC)
2090 ext4_print_free_blocks(inode);
2091 invalidate_dirty_pages:
2092 *give_up_on_write = true;
4e7ea81d
JK
2093 return err;
2094 }
6603120e 2095 progress = 1;
4e7ea81d
JK
2096 /*
2097 * Update buffer state, submit mapped pages, and get us new
2098 * extent to map
2099 */
2100 err = mpage_map_and_submit_buffers(mpd);
2101 if (err < 0)
6603120e 2102 goto update_disksize;
27d7c4ed 2103 } while (map->m_len);
4e7ea81d 2104
6603120e 2105update_disksize:
622cad13
TT
2106 /*
2107 * Update on-disk size after IO is submitted. Races with
2108 * truncate are avoided by checking i_size under i_data_sem.
2109 */
4e7ea81d 2110 disksize = ((loff_t)mpd->first_page) << PAGE_CACHE_SHIFT;
4e7ea81d
JK
2111 if (disksize > EXT4_I(inode)->i_disksize) {
2112 int err2;
622cad13
TT
2113 loff_t i_size;
2114
2115 down_write(&EXT4_I(inode)->i_data_sem);
2116 i_size = i_size_read(inode);
2117 if (disksize > i_size)
2118 disksize = i_size;
2119 if (disksize > EXT4_I(inode)->i_disksize)
2120 EXT4_I(inode)->i_disksize = disksize;
4e7ea81d 2121 err2 = ext4_mark_inode_dirty(handle, inode);
622cad13 2122 up_write(&EXT4_I(inode)->i_data_sem);
4e7ea81d
JK
2123 if (err2)
2124 ext4_error(inode->i_sb,
2125 "Failed to mark inode %lu dirty",
2126 inode->i_ino);
2127 if (!err)
2128 err = err2;
2129 }
2130 return err;
2131}
2132
fffb2739
JK
2133/*
2134 * Calculate the total number of credits to reserve for one writepages
20970ba6 2135 * iteration. This is called from ext4_writepages(). We map an extent of
70261f56 2136 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
fffb2739
JK
2137 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2138 * bpp - 1 blocks in bpp different extents.
2139 */
525f4ed8
MC
2140static int ext4_da_writepages_trans_blocks(struct inode *inode)
2141{
fffb2739 2142 int bpp = ext4_journal_blocks_per_page(inode);
525f4ed8 2143
fffb2739
JK
2144 return ext4_meta_trans_blocks(inode,
2145 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
525f4ed8 2146}
61628a3f 2147
8e48dcfb 2148/*
4e7ea81d
JK
2149 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2150 * and underlying extent to map
2151 *
2152 * @mpd - where to look for pages
2153 *
2154 * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2155 * IO immediately. When we find a page which isn't mapped we start accumulating
2156 * extent of buffers underlying these pages that needs mapping (formed by
2157 * either delayed or unwritten buffers). We also lock the pages containing
2158 * these buffers. The extent found is returned in @mpd structure (starting at
2159 * mpd->lblk with length mpd->len blocks).
2160 *
2161 * Note that this function can attach bios to one io_end structure which are
2162 * neither logically nor physically contiguous. Although it may seem as an
2163 * unnecessary complication, it is actually inevitable in blocksize < pagesize
2164 * case as we need to track IO to all buffers underlying a page in one io_end.
8e48dcfb 2165 */
4e7ea81d 2166static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
8e48dcfb 2167{
4e7ea81d
JK
2168 struct address_space *mapping = mpd->inode->i_mapping;
2169 struct pagevec pvec;
2170 unsigned int nr_pages;
aeac589a 2171 long left = mpd->wbc->nr_to_write;
4e7ea81d
JK
2172 pgoff_t index = mpd->first_page;
2173 pgoff_t end = mpd->last_page;
2174 int tag;
2175 int i, err = 0;
2176 int blkbits = mpd->inode->i_blkbits;
2177 ext4_lblk_t lblk;
2178 struct buffer_head *head;
8e48dcfb 2179
4e7ea81d 2180 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
5b41d924
ES
2181 tag = PAGECACHE_TAG_TOWRITE;
2182 else
2183 tag = PAGECACHE_TAG_DIRTY;
2184
4e7ea81d
JK
2185 pagevec_init(&pvec, 0);
2186 mpd->map.m_len = 0;
2187 mpd->next_page = index;
4f01b02c 2188 while (index <= end) {
5b41d924 2189 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
8e48dcfb
TT
2190 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2191 if (nr_pages == 0)
4e7ea81d 2192 goto out;
8e48dcfb
TT
2193
2194 for (i = 0; i < nr_pages; i++) {
2195 struct page *page = pvec.pages[i];
2196
2197 /*
2198 * At this point, the page may be truncated or
2199 * invalidated (changing page->mapping to NULL), or
2200 * even swizzled back from swapper_space to tmpfs file
2201 * mapping. However, page->index will not change
2202 * because we have a reference on the page.
2203 */
4f01b02c
TT
2204 if (page->index > end)
2205 goto out;
8e48dcfb 2206
aeac589a
ML
2207 /*
2208 * Accumulated enough dirty pages? This doesn't apply
2209 * to WB_SYNC_ALL mode. For integrity sync we have to
2210 * keep going because someone may be concurrently
2211 * dirtying pages, and we might have synced a lot of
2212 * newly appeared dirty pages, but have not synced all
2213 * of the old dirty pages.
2214 */
2215 if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2216 goto out;
2217
4e7ea81d
JK
2218 /* If we can't merge this page, we are done. */
2219 if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2220 goto out;
78aaced3 2221
8e48dcfb 2222 lock_page(page);
8e48dcfb 2223 /*
4e7ea81d
JK
2224 * If the page is no longer dirty, or its mapping no
2225 * longer corresponds to inode we are writing (which
2226 * means it has been truncated or invalidated), or the
2227 * page is already under writeback and we are not doing
2228 * a data integrity writeback, skip the page
8e48dcfb 2229 */
4f01b02c
TT
2230 if (!PageDirty(page) ||
2231 (PageWriteback(page) &&
4e7ea81d 2232 (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
4f01b02c 2233 unlikely(page->mapping != mapping)) {
8e48dcfb
TT
2234 unlock_page(page);
2235 continue;
2236 }
2237
7cb1a535 2238 wait_on_page_writeback(page);
8e48dcfb 2239 BUG_ON(PageWriteback(page));
8e48dcfb 2240
4e7ea81d 2241 if (mpd->map.m_len == 0)
8eb9e5ce 2242 mpd->first_page = page->index;
8eb9e5ce 2243 mpd->next_page = page->index + 1;
f8bec370 2244 /* Add all dirty buffers to mpd */
4e7ea81d
JK
2245 lblk = ((ext4_lblk_t)page->index) <<
2246 (PAGE_CACHE_SHIFT - blkbits);
f8bec370 2247 head = page_buffers(page);
5f1132b2
JK
2248 err = mpage_process_page_bufs(mpd, head, head, lblk);
2249 if (err <= 0)
4e7ea81d 2250 goto out;
5f1132b2 2251 err = 0;
aeac589a 2252 left--;
8e48dcfb
TT
2253 }
2254 pagevec_release(&pvec);
2255 cond_resched();
2256 }
4f01b02c 2257 return 0;
8eb9e5ce
TT
2258out:
2259 pagevec_release(&pvec);
4e7ea81d 2260 return err;
8e48dcfb
TT
2261}
2262
20970ba6
TT
2263static int __writepage(struct page *page, struct writeback_control *wbc,
2264 void *data)
2265{
2266 struct address_space *mapping = data;
2267 int ret = ext4_writepage(page, wbc);
2268 mapping_set_error(mapping, ret);
2269 return ret;
2270}
2271
2272static int ext4_writepages(struct address_space *mapping,
2273 struct writeback_control *wbc)
64769240 2274{
4e7ea81d
JK
2275 pgoff_t writeback_index = 0;
2276 long nr_to_write = wbc->nr_to_write;
22208ded 2277 int range_whole = 0;
4e7ea81d 2278 int cycled = 1;
61628a3f 2279 handle_t *handle = NULL;
df22291f 2280 struct mpage_da_data mpd;
5e745b04 2281 struct inode *inode = mapping->host;
6b523df4 2282 int needed_blocks, rsv_blocks = 0, ret = 0;
5e745b04 2283 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
4e7ea81d 2284 bool done;
1bce63d1 2285 struct blk_plug plug;
cb530541 2286 bool give_up_on_write = false;
61628a3f 2287
20970ba6 2288 trace_ext4_writepages(inode, wbc);
ba80b101 2289
61628a3f
MC
2290 /*
2291 * No pages to write? This is mainly a kludge to avoid starting
2292 * a transaction for special inodes like journal inode on last iput()
2293 * because that could violate lock ordering on umount
2294 */
a1d6cc56 2295 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
bbf023c7 2296 goto out_writepages;
2a21e37e 2297
20970ba6
TT
2298 if (ext4_should_journal_data(inode)) {
2299 struct blk_plug plug;
20970ba6
TT
2300
2301 blk_start_plug(&plug);
2302 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2303 blk_finish_plug(&plug);
bbf023c7 2304 goto out_writepages;
20970ba6
TT
2305 }
2306
2a21e37e
TT
2307 /*
2308 * If the filesystem has aborted, it is read-only, so return
2309 * right away instead of dumping stack traces later on that
2310 * will obscure the real source of the problem. We test
4ab2f15b 2311 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2a21e37e 2312 * the latter could be true if the filesystem is mounted
20970ba6 2313 * read-only, and in that case, ext4_writepages should
2a21e37e
TT
2314 * *never* be called, so if that ever happens, we would want
2315 * the stack trace.
2316 */
bbf023c7
ML
2317 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2318 ret = -EROFS;
2319 goto out_writepages;
2320 }
2a21e37e 2321
6b523df4
JK
2322 if (ext4_should_dioread_nolock(inode)) {
2323 /*
70261f56 2324 * We may need to convert up to one extent per block in
6b523df4
JK
2325 * the page and we may dirty the inode.
2326 */
2327 rsv_blocks = 1 + (PAGE_CACHE_SIZE >> inode->i_blkbits);
2328 }
2329
4e7ea81d
JK
2330 /*
2331 * If we have inline data and arrive here, it means that
2332 * we will soon create the block for the 1st page, so
2333 * we'd better clear the inline data here.
2334 */
2335 if (ext4_has_inline_data(inode)) {
2336 /* Just inode will be modified... */
2337 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2338 if (IS_ERR(handle)) {
2339 ret = PTR_ERR(handle);
2340 goto out_writepages;
2341 }
2342 BUG_ON(ext4_test_inode_state(inode,
2343 EXT4_STATE_MAY_INLINE_DATA));
2344 ext4_destroy_inline_data(handle, inode);
2345 ext4_journal_stop(handle);
2346 }
2347
22208ded
AK
2348 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2349 range_whole = 1;
61628a3f 2350
2acf2c26 2351 if (wbc->range_cyclic) {
4e7ea81d
JK
2352 writeback_index = mapping->writeback_index;
2353 if (writeback_index)
2acf2c26 2354 cycled = 0;
4e7ea81d
JK
2355 mpd.first_page = writeback_index;
2356 mpd.last_page = -1;
5b41d924 2357 } else {
4e7ea81d
JK
2358 mpd.first_page = wbc->range_start >> PAGE_CACHE_SHIFT;
2359 mpd.last_page = wbc->range_end >> PAGE_CACHE_SHIFT;
5b41d924 2360 }
a1d6cc56 2361
4e7ea81d
JK
2362 mpd.inode = inode;
2363 mpd.wbc = wbc;
2364 ext4_io_submit_init(&mpd.io_submit, wbc);
2acf2c26 2365retry:
6e6938b6 2366 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
4e7ea81d
JK
2367 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2368 done = false;
1bce63d1 2369 blk_start_plug(&plug);
4e7ea81d
JK
2370 while (!done && mpd.first_page <= mpd.last_page) {
2371 /* For each extent of pages we use new io_end */
2372 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2373 if (!mpd.io_submit.io_end) {
2374 ret = -ENOMEM;
2375 break;
2376 }
a1d6cc56
AK
2377
2378 /*
4e7ea81d
JK
2379 * We have two constraints: We find one extent to map and we
2380 * must always write out whole page (makes a difference when
2381 * blocksize < pagesize) so that we don't block on IO when we
2382 * try to write out the rest of the page. Journalled mode is
2383 * not supported by delalloc.
a1d6cc56
AK
2384 */
2385 BUG_ON(ext4_should_journal_data(inode));
525f4ed8 2386 needed_blocks = ext4_da_writepages_trans_blocks(inode);
a1d6cc56 2387
4e7ea81d 2388 /* start a new transaction */
6b523df4
JK
2389 handle = ext4_journal_start_with_reserve(inode,
2390 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
61628a3f
MC
2391 if (IS_ERR(handle)) {
2392 ret = PTR_ERR(handle);
1693918e 2393 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
fbe845dd 2394 "%ld pages, ino %lu; err %d", __func__,
a1d6cc56 2395 wbc->nr_to_write, inode->i_ino, ret);
4e7ea81d
JK
2396 /* Release allocated io_end */
2397 ext4_put_io_end(mpd.io_submit.io_end);
2398 break;
61628a3f 2399 }
f63e6005 2400
4e7ea81d
JK
2401 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2402 ret = mpage_prepare_extent_to_map(&mpd);
2403 if (!ret) {
2404 if (mpd.map.m_len)
cb530541
TT
2405 ret = mpage_map_and_submit_extent(handle, &mpd,
2406 &give_up_on_write);
4e7ea81d
JK
2407 else {
2408 /*
2409 * We scanned the whole range (or exhausted
2410 * nr_to_write), submitted what was mapped and
2411 * didn't find anything needing mapping. We are
2412 * done.
2413 */
2414 done = true;
2415 }
f63e6005 2416 }
61628a3f 2417 ext4_journal_stop(handle);
4e7ea81d
JK
2418 /* Submit prepared bio */
2419 ext4_io_submit(&mpd.io_submit);
2420 /* Unlock pages we didn't use */
cb530541 2421 mpage_release_unused_pages(&mpd, give_up_on_write);
4e7ea81d
JK
2422 /* Drop our io_end reference we got from init */
2423 ext4_put_io_end(mpd.io_submit.io_end);
2424
2425 if (ret == -ENOSPC && sbi->s_journal) {
2426 /*
2427 * Commit the transaction which would
22208ded
AK
2428 * free blocks released in the transaction
2429 * and try again
2430 */
df22291f 2431 jbd2_journal_force_commit_nested(sbi->s_journal);
22208ded 2432 ret = 0;
4e7ea81d
JK
2433 continue;
2434 }
2435 /* Fatal error - ENOMEM, EIO... */
2436 if (ret)
61628a3f 2437 break;
a1d6cc56 2438 }
1bce63d1 2439 blk_finish_plug(&plug);
9c12a831 2440 if (!ret && !cycled && wbc->nr_to_write > 0) {
2acf2c26 2441 cycled = 1;
4e7ea81d
JK
2442 mpd.last_page = writeback_index - 1;
2443 mpd.first_page = 0;
2acf2c26
AK
2444 goto retry;
2445 }
22208ded
AK
2446
2447 /* Update index */
22208ded
AK
2448 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2449 /*
4e7ea81d 2450 * Set the writeback_index so that range_cyclic
22208ded
AK
2451 * mode will write it back later
2452 */
4e7ea81d 2453 mapping->writeback_index = mpd.first_page;
a1d6cc56 2454
61628a3f 2455out_writepages:
20970ba6
TT
2456 trace_ext4_writepages_result(inode, wbc, ret,
2457 nr_to_write - wbc->nr_to_write);
61628a3f 2458 return ret;
64769240
AT
2459}
2460
79f0be8d
AK
2461static int ext4_nonda_switch(struct super_block *sb)
2462{
5c1ff336 2463 s64 free_clusters, dirty_clusters;
79f0be8d
AK
2464 struct ext4_sb_info *sbi = EXT4_SB(sb);
2465
2466 /*
2467 * switch to non delalloc mode if we are running low
2468 * on free block. The free block accounting via percpu
179f7ebf 2469 * counters can get slightly wrong with percpu_counter_batch getting
79f0be8d
AK
2470 * accumulated on each CPU without updating global counters
2471 * Delalloc need an accurate free block accounting. So switch
2472 * to non delalloc when we are near to error range.
2473 */
5c1ff336
EW
2474 free_clusters =
2475 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2476 dirty_clusters =
2477 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
00d4e736
TT
2478 /*
2479 * Start pushing delalloc when 1/2 of free blocks are dirty.
2480 */
5c1ff336 2481 if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
10ee27a0 2482 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
00d4e736 2483
5c1ff336
EW
2484 if (2 * free_clusters < 3 * dirty_clusters ||
2485 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
79f0be8d 2486 /*
c8afb446
ES
2487 * free block count is less than 150% of dirty blocks
2488 * or free blocks is less than watermark
79f0be8d
AK
2489 */
2490 return 1;
2491 }
2492 return 0;
2493}
2494
0ff8947f
ES
2495/* We always reserve for an inode update; the superblock could be there too */
2496static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2497{
2498 if (likely(EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
2499 EXT4_FEATURE_RO_COMPAT_LARGE_FILE)))
2500 return 1;
2501
2502 if (pos + len <= 0x7fffffffULL)
2503 return 1;
2504
2505 /* We might need to update the superblock to set LARGE_FILE */
2506 return 2;
2507}
2508
64769240 2509static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
de9a55b8
TT
2510 loff_t pos, unsigned len, unsigned flags,
2511 struct page **pagep, void **fsdata)
64769240 2512{
72b8ab9d 2513 int ret, retries = 0;
64769240
AT
2514 struct page *page;
2515 pgoff_t index;
64769240
AT
2516 struct inode *inode = mapping->host;
2517 handle_t *handle;
2518
2519 index = pos >> PAGE_CACHE_SHIFT;
79f0be8d
AK
2520
2521 if (ext4_nonda_switch(inode->i_sb)) {
2522 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2523 return ext4_write_begin(file, mapping, pos,
2524 len, flags, pagep, fsdata);
2525 }
2526 *fsdata = (void *)0;
9bffad1e 2527 trace_ext4_da_write_begin(inode, pos, len, flags);
9c3569b5
TM
2528
2529 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2530 ret = ext4_da_write_inline_data_begin(mapping, inode,
2531 pos, len, flags,
2532 pagep, fsdata);
2533 if (ret < 0)
47564bfb
TT
2534 return ret;
2535 if (ret == 1)
2536 return 0;
9c3569b5
TM
2537 }
2538
47564bfb
TT
2539 /*
2540 * grab_cache_page_write_begin() can take a long time if the
2541 * system is thrashing due to memory pressure, or if the page
2542 * is being written back. So grab it first before we start
2543 * the transaction handle. This also allows us to allocate
2544 * the page (if needed) without using GFP_NOFS.
2545 */
2546retry_grab:
2547 page = grab_cache_page_write_begin(mapping, index, flags);
2548 if (!page)
2549 return -ENOMEM;
2550 unlock_page(page);
2551
64769240
AT
2552 /*
2553 * With delayed allocation, we don't log the i_disksize update
2554 * if there is delayed block allocation. But we still need
2555 * to journalling the i_disksize update if writes to the end
2556 * of file which has an already mapped buffer.
2557 */
47564bfb 2558retry_journal:
0ff8947f
ES
2559 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2560 ext4_da_write_credits(inode, pos, len));
64769240 2561 if (IS_ERR(handle)) {
47564bfb
TT
2562 page_cache_release(page);
2563 return PTR_ERR(handle);
64769240
AT
2564 }
2565
47564bfb
TT
2566 lock_page(page);
2567 if (page->mapping != mapping) {
2568 /* The page got truncated from under us */
2569 unlock_page(page);
2570 page_cache_release(page);
d5a0d4f7 2571 ext4_journal_stop(handle);
47564bfb 2572 goto retry_grab;
d5a0d4f7 2573 }
47564bfb 2574 /* In case writeback began while the page was unlocked */
7afe5aa5 2575 wait_for_stable_page(page);
64769240 2576
6e1db88d 2577 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
64769240
AT
2578 if (ret < 0) {
2579 unlock_page(page);
2580 ext4_journal_stop(handle);
ae4d5372
AK
2581 /*
2582 * block_write_begin may have instantiated a few blocks
2583 * outside i_size. Trim these off again. Don't need
2584 * i_size_read because we hold i_mutex.
2585 */
2586 if (pos + len > inode->i_size)
b9a4207d 2587 ext4_truncate_failed_write(inode);
47564bfb
TT
2588
2589 if (ret == -ENOSPC &&
2590 ext4_should_retry_alloc(inode->i_sb, &retries))
2591 goto retry_journal;
2592
2593 page_cache_release(page);
2594 return ret;
64769240
AT
2595 }
2596
47564bfb 2597 *pagep = page;
64769240
AT
2598 return ret;
2599}
2600
632eaeab
MC
2601/*
2602 * Check if we should update i_disksize
2603 * when write to the end of file but not require block allocation
2604 */
2605static int ext4_da_should_update_i_disksize(struct page *page,
de9a55b8 2606 unsigned long offset)
632eaeab
MC
2607{
2608 struct buffer_head *bh;
2609 struct inode *inode = page->mapping->host;
2610 unsigned int idx;
2611 int i;
2612
2613 bh = page_buffers(page);
2614 idx = offset >> inode->i_blkbits;
2615
af5bc92d 2616 for (i = 0; i < idx; i++)
632eaeab
MC
2617 bh = bh->b_this_page;
2618
29fa89d0 2619 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
632eaeab
MC
2620 return 0;
2621 return 1;
2622}
2623
64769240 2624static int ext4_da_write_end(struct file *file,
de9a55b8
TT
2625 struct address_space *mapping,
2626 loff_t pos, unsigned len, unsigned copied,
2627 struct page *page, void *fsdata)
64769240
AT
2628{
2629 struct inode *inode = mapping->host;
2630 int ret = 0, ret2;
2631 handle_t *handle = ext4_journal_current_handle();
2632 loff_t new_i_size;
632eaeab 2633 unsigned long start, end;
79f0be8d
AK
2634 int write_mode = (int)(unsigned long)fsdata;
2635
74d553aa
TT
2636 if (write_mode == FALL_BACK_TO_NONDELALLOC)
2637 return ext4_write_end(file, mapping, pos,
2638 len, copied, page, fsdata);
632eaeab 2639
9bffad1e 2640 trace_ext4_da_write_end(inode, pos, len, copied);
632eaeab 2641 start = pos & (PAGE_CACHE_SIZE - 1);
af5bc92d 2642 end = start + copied - 1;
64769240
AT
2643
2644 /*
2645 * generic_write_end() will run mark_inode_dirty() if i_size
2646 * changes. So let's piggyback the i_disksize mark_inode_dirty
2647 * into that.
2648 */
64769240 2649 new_i_size = pos + copied;
ea51d132 2650 if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
9c3569b5
TM
2651 if (ext4_has_inline_data(inode) ||
2652 ext4_da_should_update_i_disksize(page, end)) {
ee124d27 2653 ext4_update_i_disksize(inode, new_i_size);
cf17fea6
AK
2654 /* We need to mark inode dirty even if
2655 * new_i_size is less that inode->i_size
2656 * bu greater than i_disksize.(hint delalloc)
2657 */
2658 ext4_mark_inode_dirty(handle, inode);
64769240 2659 }
632eaeab 2660 }
9c3569b5
TM
2661
2662 if (write_mode != CONVERT_INLINE_DATA &&
2663 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2664 ext4_has_inline_data(inode))
2665 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
2666 page);
2667 else
2668 ret2 = generic_write_end(file, mapping, pos, len, copied,
64769240 2669 page, fsdata);
9c3569b5 2670
64769240
AT
2671 copied = ret2;
2672 if (ret2 < 0)
2673 ret = ret2;
2674 ret2 = ext4_journal_stop(handle);
2675 if (!ret)
2676 ret = ret2;
2677
2678 return ret ? ret : copied;
2679}
2680
d47992f8
LC
2681static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
2682 unsigned int length)
64769240 2683{
64769240
AT
2684 /*
2685 * Drop reserved blocks
2686 */
2687 BUG_ON(!PageLocked(page));
2688 if (!page_has_buffers(page))
2689 goto out;
2690
ca99fdd2 2691 ext4_da_page_release_reservation(page, offset, length);
64769240
AT
2692
2693out:
d47992f8 2694 ext4_invalidatepage(page, offset, length);
64769240
AT
2695
2696 return;
2697}
2698
ccd2506b
TT
2699/*
2700 * Force all delayed allocation blocks to be allocated for a given inode.
2701 */
2702int ext4_alloc_da_blocks(struct inode *inode)
2703{
fb40ba0d
TT
2704 trace_ext4_alloc_da_blocks(inode);
2705
71d4f7d0 2706 if (!EXT4_I(inode)->i_reserved_data_blocks)
ccd2506b
TT
2707 return 0;
2708
2709 /*
2710 * We do something simple for now. The filemap_flush() will
2711 * also start triggering a write of the data blocks, which is
2712 * not strictly speaking necessary (and for users of
2713 * laptop_mode, not even desirable). However, to do otherwise
2714 * would require replicating code paths in:
de9a55b8 2715 *
20970ba6 2716 * ext4_writepages() ->
ccd2506b
TT
2717 * write_cache_pages() ---> (via passed in callback function)
2718 * __mpage_da_writepage() -->
2719 * mpage_add_bh_to_extent()
2720 * mpage_da_map_blocks()
2721 *
2722 * The problem is that write_cache_pages(), located in
2723 * mm/page-writeback.c, marks pages clean in preparation for
2724 * doing I/O, which is not desirable if we're not planning on
2725 * doing I/O at all.
2726 *
2727 * We could call write_cache_pages(), and then redirty all of
380cf090 2728 * the pages by calling redirty_page_for_writepage() but that
ccd2506b
TT
2729 * would be ugly in the extreme. So instead we would need to
2730 * replicate parts of the code in the above functions,
25985edc 2731 * simplifying them because we wouldn't actually intend to
ccd2506b
TT
2732 * write out the pages, but rather only collect contiguous
2733 * logical block extents, call the multi-block allocator, and
2734 * then update the buffer heads with the block allocations.
de9a55b8 2735 *
ccd2506b
TT
2736 * For now, though, we'll cheat by calling filemap_flush(),
2737 * which will map the blocks, and start the I/O, but not
2738 * actually wait for the I/O to complete.
2739 */
2740 return filemap_flush(inode->i_mapping);
2741}
64769240 2742
ac27a0ec
DK
2743/*
2744 * bmap() is special. It gets used by applications such as lilo and by
2745 * the swapper to find the on-disk block of a specific piece of data.
2746 *
2747 * Naturally, this is dangerous if the block concerned is still in the
617ba13b 2748 * journal. If somebody makes a swapfile on an ext4 data-journaling
ac27a0ec
DK
2749 * filesystem and enables swap, then they may get a nasty shock when the
2750 * data getting swapped to that swapfile suddenly gets overwritten by
2751 * the original zero's written out previously to the journal and
2752 * awaiting writeback in the kernel's buffer cache.
2753 *
2754 * So, if we see any bmap calls here on a modified, data-journaled file,
2755 * take extra steps to flush any blocks which might be in the cache.
2756 */
617ba13b 2757static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
ac27a0ec
DK
2758{
2759 struct inode *inode = mapping->host;
2760 journal_t *journal;
2761 int err;
2762
46c7f254
TM
2763 /*
2764 * We can get here for an inline file via the FIBMAP ioctl
2765 */
2766 if (ext4_has_inline_data(inode))
2767 return 0;
2768
64769240
AT
2769 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2770 test_opt(inode->i_sb, DELALLOC)) {
2771 /*
2772 * With delalloc we want to sync the file
2773 * so that we can make sure we allocate
2774 * blocks for file
2775 */
2776 filemap_write_and_wait(mapping);
2777 }
2778
19f5fb7a
TT
2779 if (EXT4_JOURNAL(inode) &&
2780 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
ac27a0ec
DK
2781 /*
2782 * This is a REALLY heavyweight approach, but the use of
2783 * bmap on dirty files is expected to be extremely rare:
2784 * only if we run lilo or swapon on a freshly made file
2785 * do we expect this to happen.
2786 *
2787 * (bmap requires CAP_SYS_RAWIO so this does not
2788 * represent an unprivileged user DOS attack --- we'd be
2789 * in trouble if mortal users could trigger this path at
2790 * will.)
2791 *
617ba13b 2792 * NB. EXT4_STATE_JDATA is not set on files other than
ac27a0ec
DK
2793 * regular files. If somebody wants to bmap a directory
2794 * or symlink and gets confused because the buffer
2795 * hasn't yet been flushed to disk, they deserve
2796 * everything they get.
2797 */
2798
19f5fb7a 2799 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
617ba13b 2800 journal = EXT4_JOURNAL(inode);
dab291af
MC
2801 jbd2_journal_lock_updates(journal);
2802 err = jbd2_journal_flush(journal);
2803 jbd2_journal_unlock_updates(journal);
ac27a0ec
DK
2804
2805 if (err)
2806 return 0;
2807 }
2808
af5bc92d 2809 return generic_block_bmap(mapping, block, ext4_get_block);
ac27a0ec
DK
2810}
2811
617ba13b 2812static int ext4_readpage(struct file *file, struct page *page)
ac27a0ec 2813{
46c7f254
TM
2814 int ret = -EAGAIN;
2815 struct inode *inode = page->mapping->host;
2816
0562e0ba 2817 trace_ext4_readpage(page);
46c7f254
TM
2818
2819 if (ext4_has_inline_data(inode))
2820 ret = ext4_readpage_inline(inode, page);
2821
2822 if (ret == -EAGAIN)
f64e02fe 2823 return ext4_mpage_readpages(page->mapping, NULL, page, 1);
46c7f254
TM
2824
2825 return ret;
ac27a0ec
DK
2826}
2827
2828static int
617ba13b 2829ext4_readpages(struct file *file, struct address_space *mapping,
ac27a0ec
DK
2830 struct list_head *pages, unsigned nr_pages)
2831{
46c7f254
TM
2832 struct inode *inode = mapping->host;
2833
2834 /* If the file has inline data, no need to do readpages. */
2835 if (ext4_has_inline_data(inode))
2836 return 0;
2837
f64e02fe 2838 return ext4_mpage_readpages(mapping, pages, NULL, nr_pages);
ac27a0ec
DK
2839}
2840
d47992f8
LC
2841static void ext4_invalidatepage(struct page *page, unsigned int offset,
2842 unsigned int length)
ac27a0ec 2843{
ca99fdd2 2844 trace_ext4_invalidatepage(page, offset, length);
0562e0ba 2845
4520fb3c
JK
2846 /* No journalling happens on data buffers when this function is used */
2847 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
2848
ca99fdd2 2849 block_invalidatepage(page, offset, length);
4520fb3c
JK
2850}
2851
53e87268 2852static int __ext4_journalled_invalidatepage(struct page *page,
ca99fdd2
LC
2853 unsigned int offset,
2854 unsigned int length)
4520fb3c
JK
2855{
2856 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2857
ca99fdd2 2858 trace_ext4_journalled_invalidatepage(page, offset, length);
4520fb3c 2859
ac27a0ec
DK
2860 /*
2861 * If it's a full truncate we just forget about the pending dirtying
2862 */
ca99fdd2 2863 if (offset == 0 && length == PAGE_CACHE_SIZE)
ac27a0ec
DK
2864 ClearPageChecked(page);
2865
ca99fdd2 2866 return jbd2_journal_invalidatepage(journal, page, offset, length);
53e87268
JK
2867}
2868
2869/* Wrapper for aops... */
2870static void ext4_journalled_invalidatepage(struct page *page,
d47992f8
LC
2871 unsigned int offset,
2872 unsigned int length)
53e87268 2873{
ca99fdd2 2874 WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
ac27a0ec
DK
2875}
2876
617ba13b 2877static int ext4_releasepage(struct page *page, gfp_t wait)
ac27a0ec 2878{
617ba13b 2879 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
ac27a0ec 2880
0562e0ba
JZ
2881 trace_ext4_releasepage(page);
2882
e1c36595
JK
2883 /* Page has dirty journalled data -> cannot release */
2884 if (PageChecked(page))
ac27a0ec 2885 return 0;
0390131b
FM
2886 if (journal)
2887 return jbd2_journal_try_to_free_buffers(journal, page, wait);
2888 else
2889 return try_to_free_buffers(page);
ac27a0ec
DK
2890}
2891
2ed88685
TT
2892/*
2893 * ext4_get_block used when preparing for a DIO write or buffer write.
2894 * We allocate an uinitialized extent if blocks haven't been allocated.
2895 * The extent will be converted to initialized after the IO is complete.
2896 */
f19d5870 2897int ext4_get_block_write(struct inode *inode, sector_t iblock,
4c0425ff
MC
2898 struct buffer_head *bh_result, int create)
2899{
c7064ef1 2900 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
8d5d02e6 2901 inode->i_ino, create);
2ed88685
TT
2902 return _ext4_get_block(inode, iblock, bh_result,
2903 EXT4_GET_BLOCKS_IO_CREATE_EXT);
4c0425ff
MC
2904}
2905
729f52c6 2906static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
8b0f165f 2907 struct buffer_head *bh_result, int create)
729f52c6 2908{
8b0f165f
AP
2909 ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
2910 inode->i_ino, create);
2911 return _ext4_get_block(inode, iblock, bh_result,
2912 EXT4_GET_BLOCKS_NO_LOCK);
729f52c6
ZL
2913}
2914
4c0425ff 2915static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
7b7a8665 2916 ssize_t size, void *private)
4c0425ff
MC
2917{
2918 ext4_io_end_t *io_end = iocb->private;
4c0425ff 2919
97a851ed 2920 /* if not async direct IO just return */
7b7a8665 2921 if (!io_end)
97a851ed 2922 return;
4b70df18 2923
88635ca2 2924 ext_debug("ext4_end_io_dio(): io_end 0x%p "
ace36ad4 2925 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
8d5d02e6
MC
2926 iocb->private, io_end->inode->i_ino, iocb, offset,
2927 size);
8d5d02e6 2928
b5a7e970 2929 iocb->private = NULL;
4c0425ff
MC
2930 io_end->offset = offset;
2931 io_end->size = size;
7b7a8665 2932 ext4_put_io_end(io_end);
4c0425ff 2933}
c7064ef1 2934
4c0425ff
MC
2935/*
2936 * For ext4 extent files, ext4 will do direct-io write to holes,
2937 * preallocated extents, and those write extend the file, no need to
2938 * fall back to buffered IO.
2939 *
556615dc 2940 * For holes, we fallocate those blocks, mark them as unwritten
69c499d1 2941 * If those blocks were preallocated, we mark sure they are split, but
556615dc 2942 * still keep the range to write as unwritten.
4c0425ff 2943 *
69c499d1 2944 * The unwritten extents will be converted to written when DIO is completed.
8d5d02e6 2945 * For async direct IO, since the IO may still pending when return, we
25985edc 2946 * set up an end_io call back function, which will do the conversion
8d5d02e6 2947 * when async direct IO completed.
4c0425ff
MC
2948 *
2949 * If the O_DIRECT write will extend the file then add this inode to the
2950 * orphan list. So recovery will truncate it back to the original size
2951 * if the machine crashes during the write.
2952 *
2953 */
2954static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
16b1f05d 2955 struct iov_iter *iter, loff_t offset)
4c0425ff
MC
2956{
2957 struct file *file = iocb->ki_filp;
2958 struct inode *inode = file->f_mapping->host;
2959 ssize_t ret;
a6cbcd4a 2960 size_t count = iov_iter_count(iter);
69c499d1
TT
2961 int overwrite = 0;
2962 get_block_t *get_block_func = NULL;
2963 int dio_flags = 0;
4c0425ff 2964 loff_t final_size = offset + count;
97a851ed 2965 ext4_io_end_t *io_end = NULL;
729f52c6 2966
69c499d1
TT
2967 /* Use the old path for reads and writes beyond i_size. */
2968 if (rw != WRITE || final_size > inode->i_size)
16b1f05d 2969 return ext4_ind_direct_IO(rw, iocb, iter, offset);
4bd809db 2970
69c499d1 2971 BUG_ON(iocb->private == NULL);
4bd809db 2972
e8340395
JK
2973 /*
2974 * Make all waiters for direct IO properly wait also for extent
2975 * conversion. This also disallows race between truncate() and
2976 * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
2977 */
2978 if (rw == WRITE)
2979 atomic_inc(&inode->i_dio_count);
2980
69c499d1
TT
2981 /* If we do a overwrite dio, i_mutex locking can be released */
2982 overwrite = *((int *)iocb->private);
4bd809db 2983
69c499d1 2984 if (overwrite) {
69c499d1
TT
2985 down_read(&EXT4_I(inode)->i_data_sem);
2986 mutex_unlock(&inode->i_mutex);
2987 }
8d5d02e6 2988
69c499d1
TT
2989 /*
2990 * We could direct write to holes and fallocate.
2991 *
2992 * Allocated blocks to fill the hole are marked as
556615dc 2993 * unwritten to prevent parallel buffered read to expose
69c499d1
TT
2994 * the stale data before DIO complete the data IO.
2995 *
2996 * As to previously fallocated extents, ext4 get_block will
2997 * just simply mark the buffer mapped but still keep the
556615dc 2998 * extents unwritten.
69c499d1
TT
2999 *
3000 * For non AIO case, we will convert those unwritten extents
3001 * to written after return back from blockdev_direct_IO.
3002 *
3003 * For async DIO, the conversion needs to be deferred when the
3004 * IO is completed. The ext4 end_io callback function will be
3005 * called to take care of the conversion work. Here for async
3006 * case, we allocate an io_end structure to hook to the iocb.
3007 */
3008 iocb->private = NULL;
3009 ext4_inode_aio_set(inode, NULL);
3010 if (!is_sync_kiocb(iocb)) {
97a851ed 3011 io_end = ext4_init_io_end(inode, GFP_NOFS);
69c499d1
TT
3012 if (!io_end) {
3013 ret = -ENOMEM;
3014 goto retake_lock;
8b0f165f 3015 }
97a851ed
JK
3016 /*
3017 * Grab reference for DIO. Will be dropped in ext4_end_io_dio()
3018 */
3019 iocb->private = ext4_get_io_end(io_end);
8d5d02e6 3020 /*
69c499d1
TT
3021 * we save the io structure for current async direct
3022 * IO, so that later ext4_map_blocks() could flag the
3023 * io structure whether there is a unwritten extents
3024 * needs to be converted when IO is completed.
8d5d02e6 3025 */
69c499d1
TT
3026 ext4_inode_aio_set(inode, io_end);
3027 }
4bd809db 3028
69c499d1
TT
3029 if (overwrite) {
3030 get_block_func = ext4_get_block_write_nolock;
3031 } else {
3032 get_block_func = ext4_get_block_write;
3033 dio_flags = DIO_LOCKING;
3034 }
923ae0ff
RZ
3035 if (IS_DAX(inode))
3036 ret = dax_do_io(rw, iocb, inode, iter, offset, get_block_func,
3037 ext4_end_io_dio, dio_flags);
3038 else
3039 ret = __blockdev_direct_IO(rw, iocb, inode,
3040 inode->i_sb->s_bdev, iter, offset,
3041 get_block_func,
3042 ext4_end_io_dio, NULL, dio_flags);
69c499d1 3043
69c499d1 3044 /*
97a851ed
JK
3045 * Put our reference to io_end. This can free the io_end structure e.g.
3046 * in sync IO case or in case of error. It can even perform extent
3047 * conversion if all bios we submitted finished before we got here.
3048 * Note that in that case iocb->private can be already set to NULL
3049 * here.
69c499d1 3050 */
97a851ed
JK
3051 if (io_end) {
3052 ext4_inode_aio_set(inode, NULL);
3053 ext4_put_io_end(io_end);
3054 /*
3055 * When no IO was submitted ext4_end_io_dio() was not
3056 * called so we have to put iocb's reference.
3057 */
3058 if (ret <= 0 && ret != -EIOCBQUEUED && iocb->private) {
3059 WARN_ON(iocb->private != io_end);
3060 WARN_ON(io_end->flag & EXT4_IO_END_UNWRITTEN);
97a851ed
JK
3061 ext4_put_io_end(io_end);
3062 iocb->private = NULL;
3063 }
3064 }
3065 if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
69c499d1
TT
3066 EXT4_STATE_DIO_UNWRITTEN)) {
3067 int err;
3068 /*
3069 * for non AIO case, since the IO is already
3070 * completed, we could do the conversion right here
3071 */
6b523df4 3072 err = ext4_convert_unwritten_extents(NULL, inode,
69c499d1
TT
3073 offset, ret);
3074 if (err < 0)
3075 ret = err;
3076 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3077 }
4bd809db 3078
69c499d1 3079retake_lock:
e8340395
JK
3080 if (rw == WRITE)
3081 inode_dio_done(inode);
69c499d1
TT
3082 /* take i_mutex locking again if we do a ovewrite dio */
3083 if (overwrite) {
69c499d1
TT
3084 up_read(&EXT4_I(inode)->i_data_sem);
3085 mutex_lock(&inode->i_mutex);
4c0425ff 3086 }
8d5d02e6 3087
69c499d1 3088 return ret;
4c0425ff
MC
3089}
3090
3091static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
d8d3d94b 3092 struct iov_iter *iter, loff_t offset)
4c0425ff
MC
3093{
3094 struct file *file = iocb->ki_filp;
3095 struct inode *inode = file->f_mapping->host;
a6cbcd4a 3096 size_t count = iov_iter_count(iter);
0562e0ba 3097 ssize_t ret;
4c0425ff 3098
84ebd795
TT
3099 /*
3100 * If we are doing data journalling we don't support O_DIRECT
3101 */
3102 if (ext4_should_journal_data(inode))
3103 return 0;
3104
46c7f254
TM
3105 /* Let buffer I/O handle the inline data case. */
3106 if (ext4_has_inline_data(inode))
3107 return 0;
3108
a6cbcd4a 3109 trace_ext4_direct_IO_enter(inode, offset, count, rw);
12e9b892 3110 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
16b1f05d 3111 ret = ext4_ext_direct_IO(rw, iocb, iter, offset);
0562e0ba 3112 else
16b1f05d 3113 ret = ext4_ind_direct_IO(rw, iocb, iter, offset);
a6cbcd4a 3114 trace_ext4_direct_IO_exit(inode, offset, count, rw, ret);
0562e0ba 3115 return ret;
4c0425ff
MC
3116}
3117
ac27a0ec 3118/*
617ba13b 3119 * Pages can be marked dirty completely asynchronously from ext4's journalling
ac27a0ec
DK
3120 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3121 * much here because ->set_page_dirty is called under VFS locks. The page is
3122 * not necessarily locked.
3123 *
3124 * We cannot just dirty the page and leave attached buffers clean, because the
3125 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3126 * or jbddirty because all the journalling code will explode.
3127 *
3128 * So what we do is to mark the page "pending dirty" and next time writepage
3129 * is called, propagate that into the buffers appropriately.
3130 */
617ba13b 3131static int ext4_journalled_set_page_dirty(struct page *page)
ac27a0ec
DK
3132{
3133 SetPageChecked(page);
3134 return __set_page_dirty_nobuffers(page);
3135}
3136
74d553aa 3137static const struct address_space_operations ext4_aops = {
8ab22b9a
HH
3138 .readpage = ext4_readpage,
3139 .readpages = ext4_readpages,
43ce1d23 3140 .writepage = ext4_writepage,
20970ba6 3141 .writepages = ext4_writepages,
8ab22b9a 3142 .write_begin = ext4_write_begin,
74d553aa 3143 .write_end = ext4_write_end,
8ab22b9a
HH
3144 .bmap = ext4_bmap,
3145 .invalidatepage = ext4_invalidatepage,
3146 .releasepage = ext4_releasepage,
3147 .direct_IO = ext4_direct_IO,
3148 .migratepage = buffer_migrate_page,
3149 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3150 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
3151};
3152
617ba13b 3153static const struct address_space_operations ext4_journalled_aops = {
8ab22b9a
HH
3154 .readpage = ext4_readpage,
3155 .readpages = ext4_readpages,
43ce1d23 3156 .writepage = ext4_writepage,
20970ba6 3157 .writepages = ext4_writepages,
8ab22b9a
HH
3158 .write_begin = ext4_write_begin,
3159 .write_end = ext4_journalled_write_end,
3160 .set_page_dirty = ext4_journalled_set_page_dirty,
3161 .bmap = ext4_bmap,
4520fb3c 3162 .invalidatepage = ext4_journalled_invalidatepage,
8ab22b9a 3163 .releasepage = ext4_releasepage,
84ebd795 3164 .direct_IO = ext4_direct_IO,
8ab22b9a 3165 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3166 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
3167};
3168
64769240 3169static const struct address_space_operations ext4_da_aops = {
8ab22b9a
HH
3170 .readpage = ext4_readpage,
3171 .readpages = ext4_readpages,
43ce1d23 3172 .writepage = ext4_writepage,
20970ba6 3173 .writepages = ext4_writepages,
8ab22b9a
HH
3174 .write_begin = ext4_da_write_begin,
3175 .write_end = ext4_da_write_end,
3176 .bmap = ext4_bmap,
3177 .invalidatepage = ext4_da_invalidatepage,
3178 .releasepage = ext4_releasepage,
3179 .direct_IO = ext4_direct_IO,
3180 .migratepage = buffer_migrate_page,
3181 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3182 .error_remove_page = generic_error_remove_page,
64769240
AT
3183};
3184
617ba13b 3185void ext4_set_aops(struct inode *inode)
ac27a0ec 3186{
3d2b1582
LC
3187 switch (ext4_inode_journal_mode(inode)) {
3188 case EXT4_INODE_ORDERED_DATA_MODE:
74d553aa 3189 ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3d2b1582
LC
3190 break;
3191 case EXT4_INODE_WRITEBACK_DATA_MODE:
74d553aa 3192 ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3d2b1582
LC
3193 break;
3194 case EXT4_INODE_JOURNAL_DATA_MODE:
617ba13b 3195 inode->i_mapping->a_ops = &ext4_journalled_aops;
74d553aa 3196 return;
3d2b1582
LC
3197 default:
3198 BUG();
3199 }
74d553aa
TT
3200 if (test_opt(inode->i_sb, DELALLOC))
3201 inode->i_mapping->a_ops = &ext4_da_aops;
3202 else
3203 inode->i_mapping->a_ops = &ext4_aops;
ac27a0ec
DK
3204}
3205
923ae0ff 3206static int __ext4_block_zero_page_range(handle_t *handle,
d863dc36
LC
3207 struct address_space *mapping, loff_t from, loff_t length)
3208{
3209 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3210 unsigned offset = from & (PAGE_CACHE_SIZE-1);
923ae0ff 3211 unsigned blocksize, pos;
d863dc36
LC
3212 ext4_lblk_t iblock;
3213 struct inode *inode = mapping->host;
3214 struct buffer_head *bh;
3215 struct page *page;
3216 int err = 0;
3217
3218 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3219 mapping_gfp_mask(mapping) & ~__GFP_FS);
3220 if (!page)
3221 return -ENOMEM;
3222
3223 blocksize = inode->i_sb->s_blocksize;
d863dc36
LC
3224
3225 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3226
3227 if (!page_has_buffers(page))
3228 create_empty_buffers(page, blocksize, 0);
3229
3230 /* Find the buffer that contains "offset" */
3231 bh = page_buffers(page);
3232 pos = blocksize;
3233 while (offset >= pos) {
3234 bh = bh->b_this_page;
3235 iblock++;
3236 pos += blocksize;
3237 }
d863dc36
LC
3238 if (buffer_freed(bh)) {
3239 BUFFER_TRACE(bh, "freed: skip");
3240 goto unlock;
3241 }
d863dc36
LC
3242 if (!buffer_mapped(bh)) {
3243 BUFFER_TRACE(bh, "unmapped");
3244 ext4_get_block(inode, iblock, bh, 0);
3245 /* unmapped? It's a hole - nothing to do */
3246 if (!buffer_mapped(bh)) {
3247 BUFFER_TRACE(bh, "still unmapped");
3248 goto unlock;
3249 }
3250 }
3251
3252 /* Ok, it's mapped. Make sure it's up-to-date */
3253 if (PageUptodate(page))
3254 set_buffer_uptodate(bh);
3255
3256 if (!buffer_uptodate(bh)) {
3257 err = -EIO;
3258 ll_rw_block(READ, 1, &bh);
3259 wait_on_buffer(bh);
3260 /* Uhhuh. Read error. Complain and punt. */
3261 if (!buffer_uptodate(bh))
3262 goto unlock;
3263 }
d863dc36
LC
3264 if (ext4_should_journal_data(inode)) {
3265 BUFFER_TRACE(bh, "get write access");
3266 err = ext4_journal_get_write_access(handle, bh);
3267 if (err)
3268 goto unlock;
3269 }
d863dc36 3270 zero_user(page, offset, length);
d863dc36
LC
3271 BUFFER_TRACE(bh, "zeroed end of block");
3272
d863dc36
LC
3273 if (ext4_should_journal_data(inode)) {
3274 err = ext4_handle_dirty_metadata(handle, inode, bh);
0713ed0c 3275 } else {
353eefd3 3276 err = 0;
d863dc36 3277 mark_buffer_dirty(bh);
0713ed0c
LC
3278 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE))
3279 err = ext4_jbd2_file_inode(handle, inode);
3280 }
d863dc36
LC
3281
3282unlock:
3283 unlock_page(page);
3284 page_cache_release(page);
3285 return err;
3286}
3287
923ae0ff
RZ
3288/*
3289 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3290 * starting from file offset 'from'. The range to be zero'd must
3291 * be contained with in one block. If the specified range exceeds
3292 * the end of the block it will be shortened to end of the block
3293 * that cooresponds to 'from'
3294 */
3295static int ext4_block_zero_page_range(handle_t *handle,
3296 struct address_space *mapping, loff_t from, loff_t length)
3297{
3298 struct inode *inode = mapping->host;
3299 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3300 unsigned blocksize = inode->i_sb->s_blocksize;
3301 unsigned max = blocksize - (offset & (blocksize - 1));
3302
3303 /*
3304 * correct length if it does not fall between
3305 * 'from' and the end of the block
3306 */
3307 if (length > max || length < 0)
3308 length = max;
3309
3310 if (IS_DAX(inode))
3311 return dax_zero_page_range(inode, from, length, ext4_get_block);
3312 return __ext4_block_zero_page_range(handle, mapping, from, length);
3313}
3314
94350ab5
MW
3315/*
3316 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3317 * up to the end of the block which corresponds to `from'.
3318 * This required during truncate. We need to physically zero the tail end
3319 * of that block so it doesn't yield old data if the file is later grown.
3320 */
c197855e 3321static int ext4_block_truncate_page(handle_t *handle,
94350ab5
MW
3322 struct address_space *mapping, loff_t from)
3323{
3324 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3325 unsigned length;
3326 unsigned blocksize;
3327 struct inode *inode = mapping->host;
3328
3329 blocksize = inode->i_sb->s_blocksize;
3330 length = blocksize - (offset & (blocksize - 1));
3331
3332 return ext4_block_zero_page_range(handle, mapping, from, length);
3333}
3334
a87dd18c
LC
3335int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3336 loff_t lstart, loff_t length)
3337{
3338 struct super_block *sb = inode->i_sb;
3339 struct address_space *mapping = inode->i_mapping;
e1be3a92 3340 unsigned partial_start, partial_end;
a87dd18c
LC
3341 ext4_fsblk_t start, end;
3342 loff_t byte_end = (lstart + length - 1);
3343 int err = 0;
3344
e1be3a92
LC
3345 partial_start = lstart & (sb->s_blocksize - 1);
3346 partial_end = byte_end & (sb->s_blocksize - 1);
3347
a87dd18c
LC
3348 start = lstart >> sb->s_blocksize_bits;
3349 end = byte_end >> sb->s_blocksize_bits;
3350
3351 /* Handle partial zero within the single block */
e1be3a92
LC
3352 if (start == end &&
3353 (partial_start || (partial_end != sb->s_blocksize - 1))) {
a87dd18c
LC
3354 err = ext4_block_zero_page_range(handle, mapping,
3355 lstart, length);
3356 return err;
3357 }
3358 /* Handle partial zero out on the start of the range */
e1be3a92 3359 if (partial_start) {
a87dd18c
LC
3360 err = ext4_block_zero_page_range(handle, mapping,
3361 lstart, sb->s_blocksize);
3362 if (err)
3363 return err;
3364 }
3365 /* Handle partial zero out on the end of the range */
e1be3a92 3366 if (partial_end != sb->s_blocksize - 1)
a87dd18c 3367 err = ext4_block_zero_page_range(handle, mapping,
e1be3a92
LC
3368 byte_end - partial_end,
3369 partial_end + 1);
a87dd18c
LC
3370 return err;
3371}
3372
91ef4caf
DG
3373int ext4_can_truncate(struct inode *inode)
3374{
91ef4caf
DG
3375 if (S_ISREG(inode->i_mode))
3376 return 1;
3377 if (S_ISDIR(inode->i_mode))
3378 return 1;
3379 if (S_ISLNK(inode->i_mode))
3380 return !ext4_inode_is_fast_symlink(inode);
3381 return 0;
3382}
3383
a4bb6b64
AH
3384/*
3385 * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3386 * associated with the given offset and length
3387 *
3388 * @inode: File inode
3389 * @offset: The offset where the hole will begin
3390 * @len: The length of the hole
3391 *
4907cb7b 3392 * Returns: 0 on success or negative on failure
a4bb6b64
AH
3393 */
3394
aeb2817a 3395int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
a4bb6b64 3396{
26a4c0c6
TT
3397 struct super_block *sb = inode->i_sb;
3398 ext4_lblk_t first_block, stop_block;
3399 struct address_space *mapping = inode->i_mapping;
a87dd18c 3400 loff_t first_block_offset, last_block_offset;
26a4c0c6
TT
3401 handle_t *handle;
3402 unsigned int credits;
3403 int ret = 0;
3404
a4bb6b64 3405 if (!S_ISREG(inode->i_mode))
73355192 3406 return -EOPNOTSUPP;
a4bb6b64 3407
b8a86845 3408 trace_ext4_punch_hole(inode, offset, length, 0);
aaddea81 3409
26a4c0c6
TT
3410 /*
3411 * Write out all dirty pages to avoid race conditions
3412 * Then release them.
3413 */
3414 if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3415 ret = filemap_write_and_wait_range(mapping, offset,
3416 offset + length - 1);
3417 if (ret)
3418 return ret;
3419 }
3420
3421 mutex_lock(&inode->i_mutex);
9ef06cec 3422
26a4c0c6
TT
3423 /* No need to punch hole beyond i_size */
3424 if (offset >= inode->i_size)
3425 goto out_mutex;
3426
3427 /*
3428 * If the hole extends beyond i_size, set the hole
3429 * to end after the page that contains i_size
3430 */
3431 if (offset + length > inode->i_size) {
3432 length = inode->i_size +
3433 PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
3434 offset;
3435 }
3436
a361293f
JK
3437 if (offset & (sb->s_blocksize - 1) ||
3438 (offset + length) & (sb->s_blocksize - 1)) {
3439 /*
3440 * Attach jinode to inode for jbd2 if we do any zeroing of
3441 * partial block
3442 */
3443 ret = ext4_inode_attach_jinode(inode);
3444 if (ret < 0)
3445 goto out_mutex;
3446
3447 }
3448
a87dd18c
LC
3449 first_block_offset = round_up(offset, sb->s_blocksize);
3450 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
26a4c0c6 3451
a87dd18c
LC
3452 /* Now release the pages and zero block aligned part of pages*/
3453 if (last_block_offset > first_block_offset)
3454 truncate_pagecache_range(inode, first_block_offset,
3455 last_block_offset);
26a4c0c6
TT
3456
3457 /* Wait all existing dio workers, newcomers will block on i_mutex */
3458 ext4_inode_block_unlocked_dio(inode);
26a4c0c6
TT
3459 inode_dio_wait(inode);
3460
3461 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3462 credits = ext4_writepage_trans_blocks(inode);
3463 else
3464 credits = ext4_blocks_for_truncate(inode);
3465 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3466 if (IS_ERR(handle)) {
3467 ret = PTR_ERR(handle);
3468 ext4_std_error(sb, ret);
3469 goto out_dio;
3470 }
3471
a87dd18c
LC
3472 ret = ext4_zero_partial_blocks(handle, inode, offset,
3473 length);
3474 if (ret)
3475 goto out_stop;
26a4c0c6
TT
3476
3477 first_block = (offset + sb->s_blocksize - 1) >>
3478 EXT4_BLOCK_SIZE_BITS(sb);
3479 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
3480
3481 /* If there are no blocks to remove, return now */
3482 if (first_block >= stop_block)
3483 goto out_stop;
3484
3485 down_write(&EXT4_I(inode)->i_data_sem);
3486 ext4_discard_preallocations(inode);
3487
3488 ret = ext4_es_remove_extent(inode, first_block,
3489 stop_block - first_block);
3490 if (ret) {
3491 up_write(&EXT4_I(inode)->i_data_sem);
3492 goto out_stop;
3493 }
3494
3495 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3496 ret = ext4_ext_remove_space(inode, first_block,
3497 stop_block - 1);
3498 else
4f579ae7 3499 ret = ext4_ind_remove_space(handle, inode, first_block,
26a4c0c6
TT
3500 stop_block);
3501
819c4920 3502 up_write(&EXT4_I(inode)->i_data_sem);
26a4c0c6
TT
3503 if (IS_SYNC(inode))
3504 ext4_handle_sync(handle);
e251f9bc
MP
3505
3506 /* Now release the pages again to reduce race window */
3507 if (last_block_offset > first_block_offset)
3508 truncate_pagecache_range(inode, first_block_offset,
3509 last_block_offset);
3510
26a4c0c6
TT
3511 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3512 ext4_mark_inode_dirty(handle, inode);
3513out_stop:
3514 ext4_journal_stop(handle);
3515out_dio:
3516 ext4_inode_resume_unlocked_dio(inode);
3517out_mutex:
3518 mutex_unlock(&inode->i_mutex);
3519 return ret;
a4bb6b64
AH
3520}
3521
a361293f
JK
3522int ext4_inode_attach_jinode(struct inode *inode)
3523{
3524 struct ext4_inode_info *ei = EXT4_I(inode);
3525 struct jbd2_inode *jinode;
3526
3527 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
3528 return 0;
3529
3530 jinode = jbd2_alloc_inode(GFP_KERNEL);
3531 spin_lock(&inode->i_lock);
3532 if (!ei->jinode) {
3533 if (!jinode) {
3534 spin_unlock(&inode->i_lock);
3535 return -ENOMEM;
3536 }
3537 ei->jinode = jinode;
3538 jbd2_journal_init_jbd_inode(ei->jinode, inode);
3539 jinode = NULL;
3540 }
3541 spin_unlock(&inode->i_lock);
3542 if (unlikely(jinode != NULL))
3543 jbd2_free_inode(jinode);
3544 return 0;
3545}
3546
ac27a0ec 3547/*
617ba13b 3548 * ext4_truncate()
ac27a0ec 3549 *
617ba13b
MC
3550 * We block out ext4_get_block() block instantiations across the entire
3551 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
ac27a0ec
DK
3552 * simultaneously on behalf of the same inode.
3553 *
42b2aa86 3554 * As we work through the truncate and commit bits of it to the journal there
ac27a0ec
DK
3555 * is one core, guiding principle: the file's tree must always be consistent on
3556 * disk. We must be able to restart the truncate after a crash.
3557 *
3558 * The file's tree may be transiently inconsistent in memory (although it
3559 * probably isn't), but whenever we close off and commit a journal transaction,
3560 * the contents of (the filesystem + the journal) must be consistent and
3561 * restartable. It's pretty simple, really: bottom up, right to left (although
3562 * left-to-right works OK too).
3563 *
3564 * Note that at recovery time, journal replay occurs *before* the restart of
3565 * truncate against the orphan inode list.
3566 *
3567 * The committed inode has the new, desired i_size (which is the same as
617ba13b 3568 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
ac27a0ec 3569 * that this inode's truncate did not complete and it will again call
617ba13b
MC
3570 * ext4_truncate() to have another go. So there will be instantiated blocks
3571 * to the right of the truncation point in a crashed ext4 filesystem. But
ac27a0ec 3572 * that's fine - as long as they are linked from the inode, the post-crash
617ba13b 3573 * ext4_truncate() run will find them and release them.
ac27a0ec 3574 */
617ba13b 3575void ext4_truncate(struct inode *inode)
ac27a0ec 3576{
819c4920
TT
3577 struct ext4_inode_info *ei = EXT4_I(inode);
3578 unsigned int credits;
3579 handle_t *handle;
3580 struct address_space *mapping = inode->i_mapping;
819c4920 3581
19b5ef61
TT
3582 /*
3583 * There is a possibility that we're either freeing the inode
e04027e8 3584 * or it's a completely new inode. In those cases we might not
19b5ef61
TT
3585 * have i_mutex locked because it's not necessary.
3586 */
3587 if (!(inode->i_state & (I_NEW|I_FREEING)))
3588 WARN_ON(!mutex_is_locked(&inode->i_mutex));
0562e0ba
JZ
3589 trace_ext4_truncate_enter(inode);
3590
91ef4caf 3591 if (!ext4_can_truncate(inode))
ac27a0ec
DK
3592 return;
3593
12e9b892 3594 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
c8d46e41 3595
5534fb5b 3596 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
19f5fb7a 3597 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
7d8f9f7d 3598
aef1c851
TM
3599 if (ext4_has_inline_data(inode)) {
3600 int has_inline = 1;
3601
3602 ext4_inline_data_truncate(inode, &has_inline);
3603 if (has_inline)
3604 return;
3605 }
3606
a361293f
JK
3607 /* If we zero-out tail of the page, we have to create jinode for jbd2 */
3608 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
3609 if (ext4_inode_attach_jinode(inode) < 0)
3610 return;
3611 }
3612
819c4920
TT
3613 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3614 credits = ext4_writepage_trans_blocks(inode);
3615 else
3616 credits = ext4_blocks_for_truncate(inode);
3617
3618 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3619 if (IS_ERR(handle)) {
3620 ext4_std_error(inode->i_sb, PTR_ERR(handle));
3621 return;
3622 }
3623
eb3544c6
LC
3624 if (inode->i_size & (inode->i_sb->s_blocksize - 1))
3625 ext4_block_truncate_page(handle, mapping, inode->i_size);
819c4920
TT
3626
3627 /*
3628 * We add the inode to the orphan list, so that if this
3629 * truncate spans multiple transactions, and we crash, we will
3630 * resume the truncate when the filesystem recovers. It also
3631 * marks the inode dirty, to catch the new size.
3632 *
3633 * Implication: the file must always be in a sane, consistent
3634 * truncatable state while each transaction commits.
3635 */
3636 if (ext4_orphan_add(handle, inode))
3637 goto out_stop;
3638
3639 down_write(&EXT4_I(inode)->i_data_sem);
3640
3641 ext4_discard_preallocations(inode);
3642
ff9893dc 3643 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
819c4920 3644 ext4_ext_truncate(handle, inode);
ff9893dc 3645 else
819c4920
TT
3646 ext4_ind_truncate(handle, inode);
3647
3648 up_write(&ei->i_data_sem);
3649
3650 if (IS_SYNC(inode))
3651 ext4_handle_sync(handle);
3652
3653out_stop:
3654 /*
3655 * If this was a simple ftruncate() and the file will remain alive,
3656 * then we need to clear up the orphan record which we created above.
3657 * However, if this was a real unlink then we were called by
58d86a50 3658 * ext4_evict_inode(), and we allow that function to clean up the
819c4920
TT
3659 * orphan info for us.
3660 */
3661 if (inode->i_nlink)
3662 ext4_orphan_del(handle, inode);
3663
3664 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3665 ext4_mark_inode_dirty(handle, inode);
3666 ext4_journal_stop(handle);
ac27a0ec 3667
0562e0ba 3668 trace_ext4_truncate_exit(inode);
ac27a0ec
DK
3669}
3670
ac27a0ec 3671/*
617ba13b 3672 * ext4_get_inode_loc returns with an extra refcount against the inode's
ac27a0ec
DK
3673 * underlying buffer_head on success. If 'in_mem' is true, we have all
3674 * data in memory that is needed to recreate the on-disk version of this
3675 * inode.
3676 */
617ba13b
MC
3677static int __ext4_get_inode_loc(struct inode *inode,
3678 struct ext4_iloc *iloc, int in_mem)
ac27a0ec 3679{
240799cd
TT
3680 struct ext4_group_desc *gdp;
3681 struct buffer_head *bh;
3682 struct super_block *sb = inode->i_sb;
3683 ext4_fsblk_t block;
3684 int inodes_per_block, inode_offset;
3685
3a06d778 3686 iloc->bh = NULL;
240799cd
TT
3687 if (!ext4_valid_inum(sb, inode->i_ino))
3688 return -EIO;
ac27a0ec 3689
240799cd
TT
3690 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3691 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3692 if (!gdp)
ac27a0ec
DK
3693 return -EIO;
3694
240799cd
TT
3695 /*
3696 * Figure out the offset within the block group inode table
3697 */
00d09882 3698 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
240799cd
TT
3699 inode_offset = ((inode->i_ino - 1) %
3700 EXT4_INODES_PER_GROUP(sb));
3701 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3702 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3703
3704 bh = sb_getblk(sb, block);
aebf0243 3705 if (unlikely(!bh))
860d21e2 3706 return -ENOMEM;
ac27a0ec
DK
3707 if (!buffer_uptodate(bh)) {
3708 lock_buffer(bh);
9c83a923
HK
3709
3710 /*
3711 * If the buffer has the write error flag, we have failed
3712 * to write out another inode in the same block. In this
3713 * case, we don't have to read the block because we may
3714 * read the old inode data successfully.
3715 */
3716 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3717 set_buffer_uptodate(bh);
3718
ac27a0ec
DK
3719 if (buffer_uptodate(bh)) {
3720 /* someone brought it uptodate while we waited */
3721 unlock_buffer(bh);
3722 goto has_buffer;
3723 }
3724
3725 /*
3726 * If we have all information of the inode in memory and this
3727 * is the only valid inode in the block, we need not read the
3728 * block.
3729 */
3730 if (in_mem) {
3731 struct buffer_head *bitmap_bh;
240799cd 3732 int i, start;
ac27a0ec 3733
240799cd 3734 start = inode_offset & ~(inodes_per_block - 1);
ac27a0ec 3735
240799cd
TT
3736 /* Is the inode bitmap in cache? */
3737 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
aebf0243 3738 if (unlikely(!bitmap_bh))
ac27a0ec
DK
3739 goto make_io;
3740
3741 /*
3742 * If the inode bitmap isn't in cache then the
3743 * optimisation may end up performing two reads instead
3744 * of one, so skip it.
3745 */
3746 if (!buffer_uptodate(bitmap_bh)) {
3747 brelse(bitmap_bh);
3748 goto make_io;
3749 }
240799cd 3750 for (i = start; i < start + inodes_per_block; i++) {
ac27a0ec
DK
3751 if (i == inode_offset)
3752 continue;
617ba13b 3753 if (ext4_test_bit(i, bitmap_bh->b_data))
ac27a0ec
DK
3754 break;
3755 }
3756 brelse(bitmap_bh);
240799cd 3757 if (i == start + inodes_per_block) {
ac27a0ec
DK
3758 /* all other inodes are free, so skip I/O */
3759 memset(bh->b_data, 0, bh->b_size);
3760 set_buffer_uptodate(bh);
3761 unlock_buffer(bh);
3762 goto has_buffer;
3763 }
3764 }
3765
3766make_io:
240799cd
TT
3767 /*
3768 * If we need to do any I/O, try to pre-readahead extra
3769 * blocks from the inode table.
3770 */
3771 if (EXT4_SB(sb)->s_inode_readahead_blks) {
3772 ext4_fsblk_t b, end, table;
3773 unsigned num;
0d606e2c 3774 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
240799cd
TT
3775
3776 table = ext4_inode_table(sb, gdp);
b713a5ec 3777 /* s_inode_readahead_blks is always a power of 2 */
0d606e2c 3778 b = block & ~((ext4_fsblk_t) ra_blks - 1);
240799cd
TT
3779 if (table > b)
3780 b = table;
0d606e2c 3781 end = b + ra_blks;
240799cd 3782 num = EXT4_INODES_PER_GROUP(sb);
feb0ab32 3783 if (ext4_has_group_desc_csum(sb))
560671a0 3784 num -= ext4_itable_unused_count(sb, gdp);
240799cd
TT
3785 table += num / inodes_per_block;
3786 if (end > table)
3787 end = table;
3788 while (b <= end)
3789 sb_breadahead(sb, b++);
3790 }
3791
ac27a0ec
DK
3792 /*
3793 * There are other valid inodes in the buffer, this inode
3794 * has in-inode xattrs, or we don't have this inode in memory.
3795 * Read the block from disk.
3796 */
0562e0ba 3797 trace_ext4_load_inode(inode);
ac27a0ec
DK
3798 get_bh(bh);
3799 bh->b_end_io = end_buffer_read_sync;
65299a3b 3800 submit_bh(READ | REQ_META | REQ_PRIO, bh);
ac27a0ec
DK
3801 wait_on_buffer(bh);
3802 if (!buffer_uptodate(bh)) {
c398eda0
TT
3803 EXT4_ERROR_INODE_BLOCK(inode, block,
3804 "unable to read itable block");
ac27a0ec
DK
3805 brelse(bh);
3806 return -EIO;
3807 }
3808 }
3809has_buffer:
3810 iloc->bh = bh;
3811 return 0;
3812}
3813
617ba13b 3814int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
3815{
3816 /* We have all inode data except xattrs in memory here. */
617ba13b 3817 return __ext4_get_inode_loc(inode, iloc,
19f5fb7a 3818 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
ac27a0ec
DK
3819}
3820
617ba13b 3821void ext4_set_inode_flags(struct inode *inode)
ac27a0ec 3822{
617ba13b 3823 unsigned int flags = EXT4_I(inode)->i_flags;
00a1a053 3824 unsigned int new_fl = 0;
ac27a0ec 3825
617ba13b 3826 if (flags & EXT4_SYNC_FL)
00a1a053 3827 new_fl |= S_SYNC;
617ba13b 3828 if (flags & EXT4_APPEND_FL)
00a1a053 3829 new_fl |= S_APPEND;
617ba13b 3830 if (flags & EXT4_IMMUTABLE_FL)
00a1a053 3831 new_fl |= S_IMMUTABLE;
617ba13b 3832 if (flags & EXT4_NOATIME_FL)
00a1a053 3833 new_fl |= S_NOATIME;
617ba13b 3834 if (flags & EXT4_DIRSYNC_FL)
00a1a053 3835 new_fl |= S_DIRSYNC;
923ae0ff
RZ
3836 if (test_opt(inode->i_sb, DAX))
3837 new_fl |= S_DAX;
5f16f322 3838 inode_set_flags(inode, new_fl,
923ae0ff 3839 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX);
ac27a0ec
DK
3840}
3841
ff9ddf7e
JK
3842/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3843void ext4_get_inode_flags(struct ext4_inode_info *ei)
3844{
84a8dce2
DM
3845 unsigned int vfs_fl;
3846 unsigned long old_fl, new_fl;
3847
3848 do {
3849 vfs_fl = ei->vfs_inode.i_flags;
3850 old_fl = ei->i_flags;
3851 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3852 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
3853 EXT4_DIRSYNC_FL);
3854 if (vfs_fl & S_SYNC)
3855 new_fl |= EXT4_SYNC_FL;
3856 if (vfs_fl & S_APPEND)
3857 new_fl |= EXT4_APPEND_FL;
3858 if (vfs_fl & S_IMMUTABLE)
3859 new_fl |= EXT4_IMMUTABLE_FL;
3860 if (vfs_fl & S_NOATIME)
3861 new_fl |= EXT4_NOATIME_FL;
3862 if (vfs_fl & S_DIRSYNC)
3863 new_fl |= EXT4_DIRSYNC_FL;
3864 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
ff9ddf7e 3865}
de9a55b8 3866
0fc1b451 3867static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
de9a55b8 3868 struct ext4_inode_info *ei)
0fc1b451
AK
3869{
3870 blkcnt_t i_blocks ;
8180a562
AK
3871 struct inode *inode = &(ei->vfs_inode);
3872 struct super_block *sb = inode->i_sb;
0fc1b451
AK
3873
3874 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3875 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3876 /* we are using combined 48 bit field */
3877 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3878 le32_to_cpu(raw_inode->i_blocks_lo);
07a03824 3879 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
8180a562
AK
3880 /* i_blocks represent file system block size */
3881 return i_blocks << (inode->i_blkbits - 9);
3882 } else {
3883 return i_blocks;
3884 }
0fc1b451
AK
3885 } else {
3886 return le32_to_cpu(raw_inode->i_blocks_lo);
3887 }
3888}
ff9ddf7e 3889
152a7b0a
TM
3890static inline void ext4_iget_extra_inode(struct inode *inode,
3891 struct ext4_inode *raw_inode,
3892 struct ext4_inode_info *ei)
3893{
3894 __le32 *magic = (void *)raw_inode +
3895 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
67cf5b09 3896 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
152a7b0a 3897 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
67cf5b09 3898 ext4_find_inline_data_nolock(inode);
f19d5870
TM
3899 } else
3900 EXT4_I(inode)->i_inline_off = 0;
152a7b0a
TM
3901}
3902
1d1fe1ee 3903struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
ac27a0ec 3904{
617ba13b
MC
3905 struct ext4_iloc iloc;
3906 struct ext4_inode *raw_inode;
1d1fe1ee 3907 struct ext4_inode_info *ei;
1d1fe1ee 3908 struct inode *inode;
b436b9be 3909 journal_t *journal = EXT4_SB(sb)->s_journal;
1d1fe1ee 3910 long ret;
ac27a0ec 3911 int block;
08cefc7a
EB
3912 uid_t i_uid;
3913 gid_t i_gid;
ac27a0ec 3914
1d1fe1ee
DH
3915 inode = iget_locked(sb, ino);
3916 if (!inode)
3917 return ERR_PTR(-ENOMEM);
3918 if (!(inode->i_state & I_NEW))
3919 return inode;
3920
3921 ei = EXT4_I(inode);
7dc57615 3922 iloc.bh = NULL;
ac27a0ec 3923
1d1fe1ee
DH
3924 ret = __ext4_get_inode_loc(inode, &iloc, 0);
3925 if (ret < 0)
ac27a0ec 3926 goto bad_inode;
617ba13b 3927 raw_inode = ext4_raw_inode(&iloc);
814525f4
DW
3928
3929 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3930 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
3931 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
3932 EXT4_INODE_SIZE(inode->i_sb)) {
3933 EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
3934 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
3935 EXT4_INODE_SIZE(inode->i_sb));
3936 ret = -EIO;
3937 goto bad_inode;
3938 }
3939 } else
3940 ei->i_extra_isize = 0;
3941
3942 /* Precompute checksum seed for inode metadata */
9aa5d32b 3943 if (ext4_has_metadata_csum(sb)) {
814525f4
DW
3944 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3945 __u32 csum;
3946 __le32 inum = cpu_to_le32(inode->i_ino);
3947 __le32 gen = raw_inode->i_generation;
3948 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
3949 sizeof(inum));
3950 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
3951 sizeof(gen));
3952 }
3953
3954 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
3955 EXT4_ERROR_INODE(inode, "checksum invalid");
3956 ret = -EIO;
3957 goto bad_inode;
3958 }
3959
ac27a0ec 3960 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
08cefc7a
EB
3961 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
3962 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
af5bc92d 3963 if (!(test_opt(inode->i_sb, NO_UID32))) {
08cefc7a
EB
3964 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
3965 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
ac27a0ec 3966 }
08cefc7a
EB
3967 i_uid_write(inode, i_uid);
3968 i_gid_write(inode, i_gid);
bfe86848 3969 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
ac27a0ec 3970
353eb83c 3971 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
67cf5b09 3972 ei->i_inline_off = 0;
ac27a0ec
DK
3973 ei->i_dir_start_lookup = 0;
3974 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
3975 /* We now have enough fields to check if the inode was active or not.
3976 * This is needed because nfsd might try to access dead inodes
3977 * the test is that same one that e2fsck uses
3978 * NeilBrown 1999oct15
3979 */
3980 if (inode->i_nlink == 0) {
393d1d1d
DTB
3981 if ((inode->i_mode == 0 ||
3982 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
3983 ino != EXT4_BOOT_LOADER_INO) {
ac27a0ec 3984 /* this inode is deleted */
1d1fe1ee 3985 ret = -ESTALE;
ac27a0ec
DK
3986 goto bad_inode;
3987 }
3988 /* The only unlinked inodes we let through here have
3989 * valid i_mode and are being read by the orphan
3990 * recovery code: that's fine, we're about to complete
393d1d1d
DTB
3991 * the process of deleting those.
3992 * OR it is the EXT4_BOOT_LOADER_INO which is
3993 * not initialized on a new filesystem. */
ac27a0ec 3994 }
ac27a0ec 3995 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
0fc1b451 3996 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
7973c0c1 3997 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
a9e81742 3998 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
a1ddeb7e
BP
3999 ei->i_file_acl |=
4000 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
a48380f7 4001 inode->i_size = ext4_isize(raw_inode);
ac27a0ec 4002 ei->i_disksize = inode->i_size;
a9e7f447
DM
4003#ifdef CONFIG_QUOTA
4004 ei->i_reserved_quota = 0;
4005#endif
ac27a0ec
DK
4006 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4007 ei->i_block_group = iloc.block_group;
a4912123 4008 ei->i_last_alloc_group = ~0;
ac27a0ec
DK
4009 /*
4010 * NOTE! The in-memory inode i_data array is in little-endian order
4011 * even on big-endian machines: we do NOT byteswap the block numbers!
4012 */
617ba13b 4013 for (block = 0; block < EXT4_N_BLOCKS; block++)
ac27a0ec
DK
4014 ei->i_data[block] = raw_inode->i_block[block];
4015 INIT_LIST_HEAD(&ei->i_orphan);
4016
b436b9be
JK
4017 /*
4018 * Set transaction id's of transactions that have to be committed
4019 * to finish f[data]sync. We set them to currently running transaction
4020 * as we cannot be sure that the inode or some of its metadata isn't
4021 * part of the transaction - the inode could have been reclaimed and
4022 * now it is reread from disk.
4023 */
4024 if (journal) {
4025 transaction_t *transaction;
4026 tid_t tid;
4027
a931da6a 4028 read_lock(&journal->j_state_lock);
b436b9be
JK
4029 if (journal->j_running_transaction)
4030 transaction = journal->j_running_transaction;
4031 else
4032 transaction = journal->j_committing_transaction;
4033 if (transaction)
4034 tid = transaction->t_tid;
4035 else
4036 tid = journal->j_commit_sequence;
a931da6a 4037 read_unlock(&journal->j_state_lock);
b436b9be
JK
4038 ei->i_sync_tid = tid;
4039 ei->i_datasync_tid = tid;
4040 }
4041
0040d987 4042 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
ac27a0ec
DK
4043 if (ei->i_extra_isize == 0) {
4044 /* The extra space is currently unused. Use it. */
617ba13b
MC
4045 ei->i_extra_isize = sizeof(struct ext4_inode) -
4046 EXT4_GOOD_OLD_INODE_SIZE;
ac27a0ec 4047 } else {
152a7b0a 4048 ext4_iget_extra_inode(inode, raw_inode, ei);
ac27a0ec 4049 }
814525f4 4050 }
ac27a0ec 4051
ef7f3835
KS
4052 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4053 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4054 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4055 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4056
ed3654eb 4057 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
c4f65706
TT
4058 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4059 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4060 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4061 inode->i_version |=
4062 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4063 }
25ec56b5
JNC
4064 }
4065
c4b5a614 4066 ret = 0;
485c26ec 4067 if (ei->i_file_acl &&
1032988c 4068 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
24676da4
TT
4069 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4070 ei->i_file_acl);
485c26ec
TT
4071 ret = -EIO;
4072 goto bad_inode;
f19d5870
TM
4073 } else if (!ext4_has_inline_data(inode)) {
4074 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4075 if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4076 (S_ISLNK(inode->i_mode) &&
4077 !ext4_inode_is_fast_symlink(inode))))
4078 /* Validate extent which is part of inode */
4079 ret = ext4_ext_check_inode(inode);
4080 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4081 (S_ISLNK(inode->i_mode) &&
4082 !ext4_inode_is_fast_symlink(inode))) {
4083 /* Validate block references which are part of inode */
4084 ret = ext4_ind_check_inode(inode);
4085 }
fe2c8191 4086 }
567f3e9a 4087 if (ret)
de9a55b8 4088 goto bad_inode;
7a262f7c 4089
ac27a0ec 4090 if (S_ISREG(inode->i_mode)) {
617ba13b 4091 inode->i_op = &ext4_file_inode_operations;
923ae0ff
RZ
4092 if (test_opt(inode->i_sb, DAX))
4093 inode->i_fop = &ext4_dax_file_operations;
4094 else
4095 inode->i_fop = &ext4_file_operations;
617ba13b 4096 ext4_set_aops(inode);
ac27a0ec 4097 } else if (S_ISDIR(inode->i_mode)) {
617ba13b
MC
4098 inode->i_op = &ext4_dir_inode_operations;
4099 inode->i_fop = &ext4_dir_operations;
ac27a0ec 4100 } else if (S_ISLNK(inode->i_mode)) {
e83c1397 4101 if (ext4_inode_is_fast_symlink(inode)) {
617ba13b 4102 inode->i_op = &ext4_fast_symlink_inode_operations;
e83c1397
DG
4103 nd_terminate_link(ei->i_data, inode->i_size,
4104 sizeof(ei->i_data) - 1);
4105 } else {
617ba13b
MC
4106 inode->i_op = &ext4_symlink_inode_operations;
4107 ext4_set_aops(inode);
ac27a0ec 4108 }
563bdd61
TT
4109 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4110 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
617ba13b 4111 inode->i_op = &ext4_special_inode_operations;
ac27a0ec
DK
4112 if (raw_inode->i_block[0])
4113 init_special_inode(inode, inode->i_mode,
4114 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4115 else
4116 init_special_inode(inode, inode->i_mode,
4117 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
393d1d1d
DTB
4118 } else if (ino == EXT4_BOOT_LOADER_INO) {
4119 make_bad_inode(inode);
563bdd61 4120 } else {
563bdd61 4121 ret = -EIO;
24676da4 4122 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
563bdd61 4123 goto bad_inode;
ac27a0ec 4124 }
af5bc92d 4125 brelse(iloc.bh);
617ba13b 4126 ext4_set_inode_flags(inode);
1d1fe1ee
DH
4127 unlock_new_inode(inode);
4128 return inode;
ac27a0ec
DK
4129
4130bad_inode:
567f3e9a 4131 brelse(iloc.bh);
1d1fe1ee
DH
4132 iget_failed(inode);
4133 return ERR_PTR(ret);
ac27a0ec
DK
4134}
4135
f4bb2981
TT
4136struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino)
4137{
4138 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
4139 return ERR_PTR(-EIO);
4140 return ext4_iget(sb, ino);
4141}
4142
0fc1b451
AK
4143static int ext4_inode_blocks_set(handle_t *handle,
4144 struct ext4_inode *raw_inode,
4145 struct ext4_inode_info *ei)
4146{
4147 struct inode *inode = &(ei->vfs_inode);
4148 u64 i_blocks = inode->i_blocks;
4149 struct super_block *sb = inode->i_sb;
0fc1b451
AK
4150
4151 if (i_blocks <= ~0U) {
4152 /*
4907cb7b 4153 * i_blocks can be represented in a 32 bit variable
0fc1b451
AK
4154 * as multiple of 512 bytes
4155 */
8180a562 4156 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 4157 raw_inode->i_blocks_high = 0;
84a8dce2 4158 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
f287a1a5
TT
4159 return 0;
4160 }
4161 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4162 return -EFBIG;
4163
4164 if (i_blocks <= 0xffffffffffffULL) {
0fc1b451
AK
4165 /*
4166 * i_blocks can be represented in a 48 bit variable
4167 * as multiple of 512 bytes
4168 */
8180a562 4169 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 4170 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
84a8dce2 4171 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
0fc1b451 4172 } else {
84a8dce2 4173 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
8180a562
AK
4174 /* i_block is stored in file system block size */
4175 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4176 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4177 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
0fc1b451 4178 }
f287a1a5 4179 return 0;
0fc1b451
AK
4180}
4181
a26f4992
TT
4182struct other_inode {
4183 unsigned long orig_ino;
4184 struct ext4_inode *raw_inode;
4185};
4186
4187static int other_inode_match(struct inode * inode, unsigned long ino,
4188 void *data)
4189{
4190 struct other_inode *oi = (struct other_inode *) data;
4191
4192 if ((inode->i_ino != ino) ||
4193 (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4194 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
4195 ((inode->i_state & I_DIRTY_TIME) == 0))
4196 return 0;
4197 spin_lock(&inode->i_lock);
4198 if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4199 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) == 0) &&
4200 (inode->i_state & I_DIRTY_TIME)) {
4201 struct ext4_inode_info *ei = EXT4_I(inode);
4202
4203 inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED);
4204 spin_unlock(&inode->i_lock);
4205
4206 spin_lock(&ei->i_raw_lock);
4207 EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode);
4208 EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode);
4209 EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode);
4210 ext4_inode_csum_set(inode, oi->raw_inode, ei);
4211 spin_unlock(&ei->i_raw_lock);
4212 trace_ext4_other_inode_update_time(inode, oi->orig_ino);
4213 return -1;
4214 }
4215 spin_unlock(&inode->i_lock);
4216 return -1;
4217}
4218
4219/*
4220 * Opportunistically update the other time fields for other inodes in
4221 * the same inode table block.
4222 */
4223static void ext4_update_other_inodes_time(struct super_block *sb,
4224 unsigned long orig_ino, char *buf)
4225{
4226 struct other_inode oi;
4227 unsigned long ino;
4228 int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4229 int inode_size = EXT4_INODE_SIZE(sb);
4230
4231 oi.orig_ino = orig_ino;
4232 ino = orig_ino & ~(inodes_per_block - 1);
4233 for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
4234 if (ino == orig_ino)
4235 continue;
4236 oi.raw_inode = (struct ext4_inode *) buf;
4237 (void) find_inode_nowait(sb, ino, other_inode_match, &oi);
4238 }
4239}
4240
ac27a0ec
DK
4241/*
4242 * Post the struct inode info into an on-disk inode location in the
4243 * buffer-cache. This gobbles the caller's reference to the
4244 * buffer_head in the inode location struct.
4245 *
4246 * The caller must have write access to iloc->bh.
4247 */
617ba13b 4248static int ext4_do_update_inode(handle_t *handle,
ac27a0ec 4249 struct inode *inode,
830156c7 4250 struct ext4_iloc *iloc)
ac27a0ec 4251{
617ba13b
MC
4252 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4253 struct ext4_inode_info *ei = EXT4_I(inode);
ac27a0ec 4254 struct buffer_head *bh = iloc->bh;
202ee5df 4255 struct super_block *sb = inode->i_sb;
ac27a0ec 4256 int err = 0, rc, block;
202ee5df 4257 int need_datasync = 0, set_large_file = 0;
08cefc7a
EB
4258 uid_t i_uid;
4259 gid_t i_gid;
ac27a0ec 4260
202ee5df
TT
4261 spin_lock(&ei->i_raw_lock);
4262
4263 /* For fields not tracked in the in-memory inode,
ac27a0ec 4264 * initialise them to zero for new inodes. */
19f5fb7a 4265 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
617ba13b 4266 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
ac27a0ec 4267
ff9ddf7e 4268 ext4_get_inode_flags(ei);
ac27a0ec 4269 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
08cefc7a
EB
4270 i_uid = i_uid_read(inode);
4271 i_gid = i_gid_read(inode);
af5bc92d 4272 if (!(test_opt(inode->i_sb, NO_UID32))) {
08cefc7a
EB
4273 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4274 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
ac27a0ec
DK
4275/*
4276 * Fix up interoperability with old kernels. Otherwise, old inodes get
4277 * re-used with the upper 16 bits of the uid/gid intact
4278 */
af5bc92d 4279 if (!ei->i_dtime) {
ac27a0ec 4280 raw_inode->i_uid_high =
08cefc7a 4281 cpu_to_le16(high_16_bits(i_uid));
ac27a0ec 4282 raw_inode->i_gid_high =
08cefc7a 4283 cpu_to_le16(high_16_bits(i_gid));
ac27a0ec
DK
4284 } else {
4285 raw_inode->i_uid_high = 0;
4286 raw_inode->i_gid_high = 0;
4287 }
4288 } else {
08cefc7a
EB
4289 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4290 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
ac27a0ec
DK
4291 raw_inode->i_uid_high = 0;
4292 raw_inode->i_gid_high = 0;
4293 }
4294 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
ef7f3835
KS
4295
4296 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4297 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4298 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4299 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4300
bce92d56
LX
4301 err = ext4_inode_blocks_set(handle, raw_inode, ei);
4302 if (err) {
202ee5df 4303 spin_unlock(&ei->i_raw_lock);
0fc1b451 4304 goto out_brelse;
202ee5df 4305 }
ac27a0ec 4306 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
353eb83c 4307 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
ed3654eb 4308 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
a1ddeb7e
BP
4309 raw_inode->i_file_acl_high =
4310 cpu_to_le16(ei->i_file_acl >> 32);
7973c0c1 4311 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
b71fc079
JK
4312 if (ei->i_disksize != ext4_isize(raw_inode)) {
4313 ext4_isize_set(raw_inode, ei->i_disksize);
4314 need_datasync = 1;
4315 }
a48380f7 4316 if (ei->i_disksize > 0x7fffffffULL) {
a48380f7
AK
4317 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4318 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4319 EXT4_SB(sb)->s_es->s_rev_level ==
202ee5df
TT
4320 cpu_to_le32(EXT4_GOOD_OLD_REV))
4321 set_large_file = 1;
ac27a0ec
DK
4322 }
4323 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4324 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4325 if (old_valid_dev(inode->i_rdev)) {
4326 raw_inode->i_block[0] =
4327 cpu_to_le32(old_encode_dev(inode->i_rdev));
4328 raw_inode->i_block[1] = 0;
4329 } else {
4330 raw_inode->i_block[0] = 0;
4331 raw_inode->i_block[1] =
4332 cpu_to_le32(new_encode_dev(inode->i_rdev));
4333 raw_inode->i_block[2] = 0;
4334 }
f19d5870 4335 } else if (!ext4_has_inline_data(inode)) {
de9a55b8
TT
4336 for (block = 0; block < EXT4_N_BLOCKS; block++)
4337 raw_inode->i_block[block] = ei->i_data[block];
f19d5870 4338 }
ac27a0ec 4339
ed3654eb 4340 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
c4f65706
TT
4341 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4342 if (ei->i_extra_isize) {
4343 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4344 raw_inode->i_version_hi =
4345 cpu_to_le32(inode->i_version >> 32);
4346 raw_inode->i_extra_isize =
4347 cpu_to_le16(ei->i_extra_isize);
4348 }
25ec56b5 4349 }
814525f4 4350 ext4_inode_csum_set(inode, raw_inode, ei);
202ee5df 4351 spin_unlock(&ei->i_raw_lock);
a26f4992
TT
4352 if (inode->i_sb->s_flags & MS_LAZYTIME)
4353 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
4354 bh->b_data);
202ee5df 4355
830156c7 4356 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
73b50c1c 4357 rc = ext4_handle_dirty_metadata(handle, NULL, bh);
830156c7
FM
4358 if (!err)
4359 err = rc;
19f5fb7a 4360 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
202ee5df 4361 if (set_large_file) {
5d601255 4362 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
202ee5df
TT
4363 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
4364 if (err)
4365 goto out_brelse;
4366 ext4_update_dynamic_rev(sb);
4367 EXT4_SET_RO_COMPAT_FEATURE(sb,
4368 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4369 ext4_handle_sync(handle);
4370 err = ext4_handle_dirty_super(handle, sb);
4371 }
b71fc079 4372 ext4_update_inode_fsync_trans(handle, inode, need_datasync);
ac27a0ec 4373out_brelse:
af5bc92d 4374 brelse(bh);
617ba13b 4375 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4376 return err;
4377}
4378
4379/*
617ba13b 4380 * ext4_write_inode()
ac27a0ec
DK
4381 *
4382 * We are called from a few places:
4383 *
87f7e416 4384 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
ac27a0ec 4385 * Here, there will be no transaction running. We wait for any running
4907cb7b 4386 * transaction to commit.
ac27a0ec 4387 *
87f7e416
TT
4388 * - Within flush work (sys_sync(), kupdate and such).
4389 * We wait on commit, if told to.
ac27a0ec 4390 *
87f7e416
TT
4391 * - Within iput_final() -> write_inode_now()
4392 * We wait on commit, if told to.
ac27a0ec
DK
4393 *
4394 * In all cases it is actually safe for us to return without doing anything,
4395 * because the inode has been copied into a raw inode buffer in
87f7e416
TT
4396 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL
4397 * writeback.
ac27a0ec
DK
4398 *
4399 * Note that we are absolutely dependent upon all inode dirtiers doing the
4400 * right thing: they *must* call mark_inode_dirty() after dirtying info in
4401 * which we are interested.
4402 *
4403 * It would be a bug for them to not do this. The code:
4404 *
4405 * mark_inode_dirty(inode)
4406 * stuff();
4407 * inode->i_size = expr;
4408 *
87f7e416
TT
4409 * is in error because write_inode() could occur while `stuff()' is running,
4410 * and the new i_size will be lost. Plus the inode will no longer be on the
4411 * superblock's dirty inode list.
ac27a0ec 4412 */
a9185b41 4413int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
ac27a0ec 4414{
91ac6f43
FM
4415 int err;
4416
87f7e416 4417 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
ac27a0ec
DK
4418 return 0;
4419
91ac6f43
FM
4420 if (EXT4_SB(inode->i_sb)->s_journal) {
4421 if (ext4_journal_current_handle()) {
4422 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4423 dump_stack();
4424 return -EIO;
4425 }
ac27a0ec 4426
10542c22
JK
4427 /*
4428 * No need to force transaction in WB_SYNC_NONE mode. Also
4429 * ext4_sync_fs() will force the commit after everything is
4430 * written.
4431 */
4432 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
91ac6f43
FM
4433 return 0;
4434
4435 err = ext4_force_commit(inode->i_sb);
4436 } else {
4437 struct ext4_iloc iloc;
ac27a0ec 4438
8b472d73 4439 err = __ext4_get_inode_loc(inode, &iloc, 0);
91ac6f43
FM
4440 if (err)
4441 return err;
10542c22
JK
4442 /*
4443 * sync(2) will flush the whole buffer cache. No need to do
4444 * it here separately for each inode.
4445 */
4446 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
830156c7
FM
4447 sync_dirty_buffer(iloc.bh);
4448 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
c398eda0
TT
4449 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4450 "IO error syncing inode");
830156c7
FM
4451 err = -EIO;
4452 }
fd2dd9fb 4453 brelse(iloc.bh);
91ac6f43
FM
4454 }
4455 return err;
ac27a0ec
DK
4456}
4457
53e87268
JK
4458/*
4459 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4460 * buffers that are attached to a page stradding i_size and are undergoing
4461 * commit. In that case we have to wait for commit to finish and try again.
4462 */
4463static void ext4_wait_for_tail_page_commit(struct inode *inode)
4464{
4465 struct page *page;
4466 unsigned offset;
4467 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4468 tid_t commit_tid = 0;
4469 int ret;
4470
4471 offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
4472 /*
4473 * All buffers in the last page remain valid? Then there's nothing to
4474 * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
4475 * blocksize case
4476 */
4477 if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
4478 return;
4479 while (1) {
4480 page = find_lock_page(inode->i_mapping,
4481 inode->i_size >> PAGE_CACHE_SHIFT);
4482 if (!page)
4483 return;
ca99fdd2
LC
4484 ret = __ext4_journalled_invalidatepage(page, offset,
4485 PAGE_CACHE_SIZE - offset);
53e87268
JK
4486 unlock_page(page);
4487 page_cache_release(page);
4488 if (ret != -EBUSY)
4489 return;
4490 commit_tid = 0;
4491 read_lock(&journal->j_state_lock);
4492 if (journal->j_committing_transaction)
4493 commit_tid = journal->j_committing_transaction->t_tid;
4494 read_unlock(&journal->j_state_lock);
4495 if (commit_tid)
4496 jbd2_log_wait_commit(journal, commit_tid);
4497 }
4498}
4499
ac27a0ec 4500/*
617ba13b 4501 * ext4_setattr()
ac27a0ec
DK
4502 *
4503 * Called from notify_change.
4504 *
4505 * We want to trap VFS attempts to truncate the file as soon as
4506 * possible. In particular, we want to make sure that when the VFS
4507 * shrinks i_size, we put the inode on the orphan list and modify
4508 * i_disksize immediately, so that during the subsequent flushing of
4509 * dirty pages and freeing of disk blocks, we can guarantee that any
4510 * commit will leave the blocks being flushed in an unused state on
4511 * disk. (On recovery, the inode will get truncated and the blocks will
4512 * be freed, so we have a strong guarantee that no future commit will
4513 * leave these blocks visible to the user.)
4514 *
678aaf48
JK
4515 * Another thing we have to assure is that if we are in ordered mode
4516 * and inode is still attached to the committing transaction, we must
4517 * we start writeout of all the dirty pages which are being truncated.
4518 * This way we are sure that all the data written in the previous
4519 * transaction are already on disk (truncate waits for pages under
4520 * writeback).
4521 *
4522 * Called with inode->i_mutex down.
ac27a0ec 4523 */
617ba13b 4524int ext4_setattr(struct dentry *dentry, struct iattr *attr)
ac27a0ec
DK
4525{
4526 struct inode *inode = dentry->d_inode;
4527 int error, rc = 0;
3d287de3 4528 int orphan = 0;
ac27a0ec
DK
4529 const unsigned int ia_valid = attr->ia_valid;
4530
4531 error = inode_change_ok(inode, attr);
4532 if (error)
4533 return error;
4534
12755627 4535 if (is_quota_modification(inode, attr))
871a2931 4536 dquot_initialize(inode);
08cefc7a
EB
4537 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4538 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
ac27a0ec
DK
4539 handle_t *handle;
4540
4541 /* (user+group)*(old+new) structure, inode write (sb,
4542 * inode block, ? - but truncate inode update has it) */
9924a92a
TT
4543 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4544 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
4545 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
ac27a0ec
DK
4546 if (IS_ERR(handle)) {
4547 error = PTR_ERR(handle);
4548 goto err_out;
4549 }
b43fa828 4550 error = dquot_transfer(inode, attr);
ac27a0ec 4551 if (error) {
617ba13b 4552 ext4_journal_stop(handle);
ac27a0ec
DK
4553 return error;
4554 }
4555 /* Update corresponding info in inode so that everything is in
4556 * one transaction */
4557 if (attr->ia_valid & ATTR_UID)
4558 inode->i_uid = attr->ia_uid;
4559 if (attr->ia_valid & ATTR_GID)
4560 inode->i_gid = attr->ia_gid;
617ba13b
MC
4561 error = ext4_mark_inode_dirty(handle, inode);
4562 ext4_journal_stop(handle);
ac27a0ec
DK
4563 }
4564
5208386c
JK
4565 if (attr->ia_valid & ATTR_SIZE && attr->ia_size != inode->i_size) {
4566 handle_t *handle;
562c72aa 4567
12e9b892 4568 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
e2b46574
ES
4569 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4570
0c095c7f
TT
4571 if (attr->ia_size > sbi->s_bitmap_maxbytes)
4572 return -EFBIG;
e2b46574 4573 }
dff6efc3
CH
4574
4575 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
4576 inode_inc_iversion(inode);
4577
5208386c
JK
4578 if (S_ISREG(inode->i_mode) &&
4579 (attr->ia_size < inode->i_size)) {
4580 if (ext4_should_order_data(inode)) {
4581 error = ext4_begin_ordered_truncate(inode,
678aaf48 4582 attr->ia_size);
5208386c 4583 if (error)
678aaf48 4584 goto err_out;
5208386c
JK
4585 }
4586 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
4587 if (IS_ERR(handle)) {
4588 error = PTR_ERR(handle);
4589 goto err_out;
4590 }
4591 if (ext4_handle_valid(handle)) {
4592 error = ext4_orphan_add(handle, inode);
4593 orphan = 1;
4594 }
90e775b7 4595 down_write(&EXT4_I(inode)->i_data_sem);
5208386c
JK
4596 EXT4_I(inode)->i_disksize = attr->ia_size;
4597 rc = ext4_mark_inode_dirty(handle, inode);
4598 if (!error)
4599 error = rc;
90e775b7
JK
4600 /*
4601 * We have to update i_size under i_data_sem together
4602 * with i_disksize to avoid races with writeback code
4603 * running ext4_wb_update_i_disksize().
4604 */
4605 if (!error)
4606 i_size_write(inode, attr->ia_size);
4607 up_write(&EXT4_I(inode)->i_data_sem);
5208386c
JK
4608 ext4_journal_stop(handle);
4609 if (error) {
4610 ext4_orphan_del(NULL, inode);
678aaf48
JK
4611 goto err_out;
4612 }
d6320cbf
JK
4613 } else {
4614 loff_t oldsize = inode->i_size;
4615
90e775b7 4616 i_size_write(inode, attr->ia_size);
d6320cbf
JK
4617 pagecache_isize_extended(inode, oldsize, inode->i_size);
4618 }
53e87268 4619
5208386c
JK
4620 /*
4621 * Blocks are going to be removed from the inode. Wait
4622 * for dio in flight. Temporarily disable
4623 * dioread_nolock to prevent livelock.
4624 */
4625 if (orphan) {
4626 if (!ext4_should_journal_data(inode)) {
4627 ext4_inode_block_unlocked_dio(inode);
4628 inode_dio_wait(inode);
4629 ext4_inode_resume_unlocked_dio(inode);
4630 } else
4631 ext4_wait_for_tail_page_commit(inode);
1c9114f9 4632 }
5208386c
JK
4633 /*
4634 * Truncate pagecache after we've waited for commit
4635 * in data=journal mode to make pages freeable.
4636 */
923ae0ff 4637 truncate_pagecache(inode, inode->i_size);
072bd7ea 4638 }
5208386c
JK
4639 /*
4640 * We want to call ext4_truncate() even if attr->ia_size ==
4641 * inode->i_size for cases like truncation of fallocated space
4642 */
4643 if (attr->ia_valid & ATTR_SIZE)
4644 ext4_truncate(inode);
ac27a0ec 4645
1025774c
CH
4646 if (!rc) {
4647 setattr_copy(inode, attr);
4648 mark_inode_dirty(inode);
4649 }
4650
4651 /*
4652 * If the call to ext4_truncate failed to get a transaction handle at
4653 * all, we need to clean up the in-core orphan list manually.
4654 */
3d287de3 4655 if (orphan && inode->i_nlink)
617ba13b 4656 ext4_orphan_del(NULL, inode);
ac27a0ec
DK
4657
4658 if (!rc && (ia_valid & ATTR_MODE))
64e178a7 4659 rc = posix_acl_chmod(inode, inode->i_mode);
ac27a0ec
DK
4660
4661err_out:
617ba13b 4662 ext4_std_error(inode->i_sb, error);
ac27a0ec
DK
4663 if (!error)
4664 error = rc;
4665 return error;
4666}
4667
3e3398a0
MC
4668int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4669 struct kstat *stat)
4670{
4671 struct inode *inode;
8af8eecc 4672 unsigned long long delalloc_blocks;
3e3398a0
MC
4673
4674 inode = dentry->d_inode;
4675 generic_fillattr(inode, stat);
4676
9206c561
AD
4677 /*
4678 * If there is inline data in the inode, the inode will normally not
4679 * have data blocks allocated (it may have an external xattr block).
4680 * Report at least one sector for such files, so tools like tar, rsync,
4681 * others doen't incorrectly think the file is completely sparse.
4682 */
4683 if (unlikely(ext4_has_inline_data(inode)))
4684 stat->blocks += (stat->size + 511) >> 9;
4685
3e3398a0
MC
4686 /*
4687 * We can't update i_blocks if the block allocation is delayed
4688 * otherwise in the case of system crash before the real block
4689 * allocation is done, we will have i_blocks inconsistent with
4690 * on-disk file blocks.
4691 * We always keep i_blocks updated together with real
4692 * allocation. But to not confuse with user, stat
4693 * will return the blocks that include the delayed allocation
4694 * blocks for this file.
4695 */
96607551 4696 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
9206c561
AD
4697 EXT4_I(inode)->i_reserved_data_blocks);
4698 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
3e3398a0
MC
4699 return 0;
4700}
ac27a0ec 4701
fffb2739
JK
4702static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
4703 int pextents)
a02908f1 4704{
12e9b892 4705 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
fffb2739
JK
4706 return ext4_ind_trans_blocks(inode, lblocks);
4707 return ext4_ext_index_trans_blocks(inode, pextents);
a02908f1 4708}
ac51d837 4709
ac27a0ec 4710/*
a02908f1
MC
4711 * Account for index blocks, block groups bitmaps and block group
4712 * descriptor blocks if modify datablocks and index blocks
4713 * worse case, the indexs blocks spread over different block groups
ac27a0ec 4714 *
a02908f1 4715 * If datablocks are discontiguous, they are possible to spread over
4907cb7b 4716 * different block groups too. If they are contiguous, with flexbg,
a02908f1 4717 * they could still across block group boundary.
ac27a0ec 4718 *
a02908f1
MC
4719 * Also account for superblock, inode, quota and xattr blocks
4720 */
fffb2739
JK
4721static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
4722 int pextents)
a02908f1 4723{
8df9675f
TT
4724 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4725 int gdpblocks;
a02908f1
MC
4726 int idxblocks;
4727 int ret = 0;
4728
4729 /*
fffb2739
JK
4730 * How many index blocks need to touch to map @lblocks logical blocks
4731 * to @pextents physical extents?
a02908f1 4732 */
fffb2739 4733 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
a02908f1
MC
4734
4735 ret = idxblocks;
4736
4737 /*
4738 * Now let's see how many group bitmaps and group descriptors need
4739 * to account
4740 */
fffb2739 4741 groups = idxblocks + pextents;
a02908f1 4742 gdpblocks = groups;
8df9675f
TT
4743 if (groups > ngroups)
4744 groups = ngroups;
a02908f1
MC
4745 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4746 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4747
4748 /* bitmaps and block group descriptor blocks */
4749 ret += groups + gdpblocks;
4750
4751 /* Blocks for super block, inode, quota and xattr blocks */
4752 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4753
4754 return ret;
4755}
4756
4757/*
25985edc 4758 * Calculate the total number of credits to reserve to fit
f3bd1f3f
MC
4759 * the modification of a single pages into a single transaction,
4760 * which may include multiple chunks of block allocations.
ac27a0ec 4761 *
525f4ed8 4762 * This could be called via ext4_write_begin()
ac27a0ec 4763 *
525f4ed8 4764 * We need to consider the worse case, when
a02908f1 4765 * one new block per extent.
ac27a0ec 4766 */
a86c6181 4767int ext4_writepage_trans_blocks(struct inode *inode)
ac27a0ec 4768{
617ba13b 4769 int bpp = ext4_journal_blocks_per_page(inode);
ac27a0ec
DK
4770 int ret;
4771
fffb2739 4772 ret = ext4_meta_trans_blocks(inode, bpp, bpp);
a86c6181 4773
a02908f1 4774 /* Account for data blocks for journalled mode */
617ba13b 4775 if (ext4_should_journal_data(inode))
a02908f1 4776 ret += bpp;
ac27a0ec
DK
4777 return ret;
4778}
f3bd1f3f
MC
4779
4780/*
4781 * Calculate the journal credits for a chunk of data modification.
4782 *
4783 * This is called from DIO, fallocate or whoever calling
79e83036 4784 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
f3bd1f3f
MC
4785 *
4786 * journal buffers for data blocks are not included here, as DIO
4787 * and fallocate do no need to journal data buffers.
4788 */
4789int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4790{
4791 return ext4_meta_trans_blocks(inode, nrblocks, 1);
4792}
4793
ac27a0ec 4794/*
617ba13b 4795 * The caller must have previously called ext4_reserve_inode_write().
ac27a0ec
DK
4796 * Give this, we know that the caller already has write access to iloc->bh.
4797 */
617ba13b 4798int ext4_mark_iloc_dirty(handle_t *handle,
de9a55b8 4799 struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
4800{
4801 int err = 0;
4802
c64db50e 4803 if (IS_I_VERSION(inode))
25ec56b5
JNC
4804 inode_inc_iversion(inode);
4805
ac27a0ec
DK
4806 /* the do_update_inode consumes one bh->b_count */
4807 get_bh(iloc->bh);
4808
dab291af 4809 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
830156c7 4810 err = ext4_do_update_inode(handle, inode, iloc);
ac27a0ec
DK
4811 put_bh(iloc->bh);
4812 return err;
4813}
4814
4815/*
4816 * On success, We end up with an outstanding reference count against
4817 * iloc->bh. This _must_ be cleaned up later.
4818 */
4819
4820int
617ba13b
MC
4821ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4822 struct ext4_iloc *iloc)
ac27a0ec 4823{
0390131b
FM
4824 int err;
4825
4826 err = ext4_get_inode_loc(inode, iloc);
4827 if (!err) {
4828 BUFFER_TRACE(iloc->bh, "get_write_access");
4829 err = ext4_journal_get_write_access(handle, iloc->bh);
4830 if (err) {
4831 brelse(iloc->bh);
4832 iloc->bh = NULL;
ac27a0ec
DK
4833 }
4834 }
617ba13b 4835 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4836 return err;
4837}
4838
6dd4ee7c
KS
4839/*
4840 * Expand an inode by new_extra_isize bytes.
4841 * Returns 0 on success or negative error number on failure.
4842 */
1d03ec98
AK
4843static int ext4_expand_extra_isize(struct inode *inode,
4844 unsigned int new_extra_isize,
4845 struct ext4_iloc iloc,
4846 handle_t *handle)
6dd4ee7c
KS
4847{
4848 struct ext4_inode *raw_inode;
4849 struct ext4_xattr_ibody_header *header;
6dd4ee7c
KS
4850
4851 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4852 return 0;
4853
4854 raw_inode = ext4_raw_inode(&iloc);
4855
4856 header = IHDR(inode, raw_inode);
6dd4ee7c
KS
4857
4858 /* No extended attributes present */
19f5fb7a
TT
4859 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4860 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
6dd4ee7c
KS
4861 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4862 new_extra_isize);
4863 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4864 return 0;
4865 }
4866
4867 /* try to expand with EAs present */
4868 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4869 raw_inode, handle);
4870}
4871
ac27a0ec
DK
4872/*
4873 * What we do here is to mark the in-core inode as clean with respect to inode
4874 * dirtiness (it may still be data-dirty).
4875 * This means that the in-core inode may be reaped by prune_icache
4876 * without having to perform any I/O. This is a very good thing,
4877 * because *any* task may call prune_icache - even ones which
4878 * have a transaction open against a different journal.
4879 *
4880 * Is this cheating? Not really. Sure, we haven't written the
4881 * inode out, but prune_icache isn't a user-visible syncing function.
4882 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4883 * we start and wait on commits.
ac27a0ec 4884 */
617ba13b 4885int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
ac27a0ec 4886{
617ba13b 4887 struct ext4_iloc iloc;
6dd4ee7c
KS
4888 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4889 static unsigned int mnt_count;
4890 int err, ret;
ac27a0ec
DK
4891
4892 might_sleep();
7ff9c073 4893 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
617ba13b 4894 err = ext4_reserve_inode_write(handle, inode, &iloc);
0390131b
FM
4895 if (ext4_handle_valid(handle) &&
4896 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
19f5fb7a 4897 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
6dd4ee7c
KS
4898 /*
4899 * We need extra buffer credits since we may write into EA block
4900 * with this same handle. If journal_extend fails, then it will
4901 * only result in a minor loss of functionality for that inode.
4902 * If this is felt to be critical, then e2fsck should be run to
4903 * force a large enough s_min_extra_isize.
4904 */
4905 if ((jbd2_journal_extend(handle,
4906 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4907 ret = ext4_expand_extra_isize(inode,
4908 sbi->s_want_extra_isize,
4909 iloc, handle);
4910 if (ret) {
19f5fb7a
TT
4911 ext4_set_inode_state(inode,
4912 EXT4_STATE_NO_EXPAND);
c1bddad9
AK
4913 if (mnt_count !=
4914 le16_to_cpu(sbi->s_es->s_mnt_count)) {
12062ddd 4915 ext4_warning(inode->i_sb,
6dd4ee7c
KS
4916 "Unable to expand inode %lu. Delete"
4917 " some EAs or run e2fsck.",
4918 inode->i_ino);
c1bddad9
AK
4919 mnt_count =
4920 le16_to_cpu(sbi->s_es->s_mnt_count);
6dd4ee7c
KS
4921 }
4922 }
4923 }
4924 }
ac27a0ec 4925 if (!err)
617ba13b 4926 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
ac27a0ec
DK
4927 return err;
4928}
4929
4930/*
617ba13b 4931 * ext4_dirty_inode() is called from __mark_inode_dirty()
ac27a0ec
DK
4932 *
4933 * We're really interested in the case where a file is being extended.
4934 * i_size has been changed by generic_commit_write() and we thus need
4935 * to include the updated inode in the current transaction.
4936 *
5dd4056d 4937 * Also, dquot_alloc_block() will always dirty the inode when blocks
ac27a0ec
DK
4938 * are allocated to the file.
4939 *
4940 * If the inode is marked synchronous, we don't honour that here - doing
4941 * so would cause a commit on atime updates, which we don't bother doing.
4942 * We handle synchronous inodes at the highest possible level.
0ae45f63
TT
4943 *
4944 * If only the I_DIRTY_TIME flag is set, we can skip everything. If
4945 * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
4946 * to copy into the on-disk inode structure are the timestamp files.
ac27a0ec 4947 */
aa385729 4948void ext4_dirty_inode(struct inode *inode, int flags)
ac27a0ec 4949{
ac27a0ec
DK
4950 handle_t *handle;
4951
0ae45f63
TT
4952 if (flags == I_DIRTY_TIME)
4953 return;
9924a92a 4954 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
ac27a0ec
DK
4955 if (IS_ERR(handle))
4956 goto out;
f3dc272f 4957
f3dc272f
CW
4958 ext4_mark_inode_dirty(handle, inode);
4959
617ba13b 4960 ext4_journal_stop(handle);
ac27a0ec
DK
4961out:
4962 return;
4963}
4964
4965#if 0
4966/*
4967 * Bind an inode's backing buffer_head into this transaction, to prevent
4968 * it from being flushed to disk early. Unlike
617ba13b 4969 * ext4_reserve_inode_write, this leaves behind no bh reference and
ac27a0ec
DK
4970 * returns no iloc structure, so the caller needs to repeat the iloc
4971 * lookup to mark the inode dirty later.
4972 */
617ba13b 4973static int ext4_pin_inode(handle_t *handle, struct inode *inode)
ac27a0ec 4974{
617ba13b 4975 struct ext4_iloc iloc;
ac27a0ec
DK
4976
4977 int err = 0;
4978 if (handle) {
617ba13b 4979 err = ext4_get_inode_loc(inode, &iloc);
ac27a0ec
DK
4980 if (!err) {
4981 BUFFER_TRACE(iloc.bh, "get_write_access");
dab291af 4982 err = jbd2_journal_get_write_access(handle, iloc.bh);
ac27a0ec 4983 if (!err)
0390131b 4984 err = ext4_handle_dirty_metadata(handle,
73b50c1c 4985 NULL,
0390131b 4986 iloc.bh);
ac27a0ec
DK
4987 brelse(iloc.bh);
4988 }
4989 }
617ba13b 4990 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4991 return err;
4992}
4993#endif
4994
617ba13b 4995int ext4_change_inode_journal_flag(struct inode *inode, int val)
ac27a0ec
DK
4996{
4997 journal_t *journal;
4998 handle_t *handle;
4999 int err;
5000
5001 /*
5002 * We have to be very careful here: changing a data block's
5003 * journaling status dynamically is dangerous. If we write a
5004 * data block to the journal, change the status and then delete
5005 * that block, we risk forgetting to revoke the old log record
5006 * from the journal and so a subsequent replay can corrupt data.
5007 * So, first we make sure that the journal is empty and that
5008 * nobody is changing anything.
5009 */
5010
617ba13b 5011 journal = EXT4_JOURNAL(inode);
0390131b
FM
5012 if (!journal)
5013 return 0;
d699594d 5014 if (is_journal_aborted(journal))
ac27a0ec 5015 return -EROFS;
2aff57b0
YY
5016 /* We have to allocate physical blocks for delalloc blocks
5017 * before flushing journal. otherwise delalloc blocks can not
5018 * be allocated any more. even more truncate on delalloc blocks
5019 * could trigger BUG by flushing delalloc blocks in journal.
5020 * There is no delalloc block in non-journal data mode.
5021 */
5022 if (val && test_opt(inode->i_sb, DELALLOC)) {
5023 err = ext4_alloc_da_blocks(inode);
5024 if (err < 0)
5025 return err;
5026 }
ac27a0ec 5027
17335dcc
DM
5028 /* Wait for all existing dio workers */
5029 ext4_inode_block_unlocked_dio(inode);
5030 inode_dio_wait(inode);
5031
dab291af 5032 jbd2_journal_lock_updates(journal);
ac27a0ec
DK
5033
5034 /*
5035 * OK, there are no updates running now, and all cached data is
5036 * synced to disk. We are now in a completely consistent state
5037 * which doesn't have anything in the journal, and we know that
5038 * no filesystem updates are running, so it is safe to modify
5039 * the inode's in-core data-journaling state flag now.
5040 */
5041
5042 if (val)
12e9b892 5043 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5872ddaa 5044 else {
4f879ca6
JK
5045 err = jbd2_journal_flush(journal);
5046 if (err < 0) {
5047 jbd2_journal_unlock_updates(journal);
5048 ext4_inode_resume_unlocked_dio(inode);
5049 return err;
5050 }
12e9b892 5051 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5872ddaa 5052 }
617ba13b 5053 ext4_set_aops(inode);
ac27a0ec 5054
dab291af 5055 jbd2_journal_unlock_updates(journal);
17335dcc 5056 ext4_inode_resume_unlocked_dio(inode);
ac27a0ec
DK
5057
5058 /* Finally we can mark the inode as dirty. */
5059
9924a92a 5060 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
ac27a0ec
DK
5061 if (IS_ERR(handle))
5062 return PTR_ERR(handle);
5063
617ba13b 5064 err = ext4_mark_inode_dirty(handle, inode);
0390131b 5065 ext4_handle_sync(handle);
617ba13b
MC
5066 ext4_journal_stop(handle);
5067 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5068
5069 return err;
5070}
2e9ee850
AK
5071
5072static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5073{
5074 return !buffer_mapped(bh);
5075}
5076
c2ec175c 5077int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2e9ee850 5078{
c2ec175c 5079 struct page *page = vmf->page;
2e9ee850
AK
5080 loff_t size;
5081 unsigned long len;
9ea7df53 5082 int ret;
2e9ee850 5083 struct file *file = vma->vm_file;
496ad9aa 5084 struct inode *inode = file_inode(file);
2e9ee850 5085 struct address_space *mapping = inode->i_mapping;
9ea7df53
JK
5086 handle_t *handle;
5087 get_block_t *get_block;
5088 int retries = 0;
2e9ee850 5089
8e8ad8a5 5090 sb_start_pagefault(inode->i_sb);
041bbb6d 5091 file_update_time(vma->vm_file);
9ea7df53
JK
5092 /* Delalloc case is easy... */
5093 if (test_opt(inode->i_sb, DELALLOC) &&
5094 !ext4_should_journal_data(inode) &&
5095 !ext4_nonda_switch(inode->i_sb)) {
5096 do {
5097 ret = __block_page_mkwrite(vma, vmf,
5098 ext4_da_get_block_prep);
5099 } while (ret == -ENOSPC &&
5100 ext4_should_retry_alloc(inode->i_sb, &retries));
5101 goto out_ret;
2e9ee850 5102 }
0e499890
DW
5103
5104 lock_page(page);
9ea7df53
JK
5105 size = i_size_read(inode);
5106 /* Page got truncated from under us? */
5107 if (page->mapping != mapping || page_offset(page) > size) {
5108 unlock_page(page);
5109 ret = VM_FAULT_NOPAGE;
5110 goto out;
0e499890 5111 }
2e9ee850
AK
5112
5113 if (page->index == size >> PAGE_CACHE_SHIFT)
5114 len = size & ~PAGE_CACHE_MASK;
5115 else
5116 len = PAGE_CACHE_SIZE;
a827eaff 5117 /*
9ea7df53
JK
5118 * Return if we have all the buffers mapped. This avoids the need to do
5119 * journal_start/journal_stop which can block and take a long time
a827eaff 5120 */
2e9ee850 5121 if (page_has_buffers(page)) {
f19d5870
TM
5122 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5123 0, len, NULL,
5124 ext4_bh_unmapped)) {
9ea7df53 5125 /* Wait so that we don't change page under IO */
1d1d1a76 5126 wait_for_stable_page(page);
9ea7df53
JK
5127 ret = VM_FAULT_LOCKED;
5128 goto out;
a827eaff 5129 }
2e9ee850 5130 }
a827eaff 5131 unlock_page(page);
9ea7df53
JK
5132 /* OK, we need to fill the hole... */
5133 if (ext4_should_dioread_nolock(inode))
5134 get_block = ext4_get_block_write;
5135 else
5136 get_block = ext4_get_block;
5137retry_alloc:
9924a92a
TT
5138 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5139 ext4_writepage_trans_blocks(inode));
9ea7df53 5140 if (IS_ERR(handle)) {
c2ec175c 5141 ret = VM_FAULT_SIGBUS;
9ea7df53
JK
5142 goto out;
5143 }
5144 ret = __block_page_mkwrite(vma, vmf, get_block);
5145 if (!ret && ext4_should_journal_data(inode)) {
f19d5870 5146 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
9ea7df53
JK
5147 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
5148 unlock_page(page);
5149 ret = VM_FAULT_SIGBUS;
fcbb5515 5150 ext4_journal_stop(handle);
9ea7df53
JK
5151 goto out;
5152 }
5153 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5154 }
5155 ext4_journal_stop(handle);
5156 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5157 goto retry_alloc;
5158out_ret:
5159 ret = block_page_mkwrite_return(ret);
5160out:
8e8ad8a5 5161 sb_end_pagefault(inode->i_sb);
2e9ee850
AK
5162 return ret;
5163}