ext4: fix wrong assert in ext4_mb_normalize_request()
[linux-2.6-block.git] / fs / ext4 / inode.c
CommitLineData
ac27a0ec 1/*
617ba13b 2 * linux/fs/ext4/inode.c
ac27a0ec
DK
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
ac27a0ec
DK
15 * 64-bit file support on 64-bit platforms by Jakub Jelinek
16 * (jj@sunsite.ms.mff.cuni.cz)
17 *
617ba13b 18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
ac27a0ec
DK
19 */
20
ac27a0ec
DK
21#include <linux/fs.h>
22#include <linux/time.h>
dab291af 23#include <linux/jbd2.h>
ac27a0ec
DK
24#include <linux/highuid.h>
25#include <linux/pagemap.h>
26#include <linux/quotaops.h>
27#include <linux/string.h>
28#include <linux/buffer_head.h>
29#include <linux/writeback.h>
64769240 30#include <linux/pagevec.h>
ac27a0ec 31#include <linux/mpage.h>
e83c1397 32#include <linux/namei.h>
ac27a0ec
DK
33#include <linux/uio.h>
34#include <linux/bio.h>
4c0425ff 35#include <linux/workqueue.h>
744692dc 36#include <linux/kernel.h>
6db26ffc 37#include <linux/printk.h>
5a0e3ad6 38#include <linux/slab.h>
a8901d34 39#include <linux/ratelimit.h>
a27bb332 40#include <linux/aio.h>
00a1a053 41#include <linux/bitops.h>
9bffad1e 42
3dcf5451 43#include "ext4_jbd2.h"
ac27a0ec
DK
44#include "xattr.h"
45#include "acl.h"
9f125d64 46#include "truncate.h"
ac27a0ec 47
9bffad1e
TT
48#include <trace/events/ext4.h>
49
a1d6cc56
AK
50#define MPAGE_DA_EXTENT_TAIL 0x01
51
814525f4
DW
52static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
53 struct ext4_inode_info *ei)
54{
55 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
56 __u16 csum_lo;
57 __u16 csum_hi = 0;
58 __u32 csum;
59
171a7f21 60 csum_lo = le16_to_cpu(raw->i_checksum_lo);
814525f4
DW
61 raw->i_checksum_lo = 0;
62 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
63 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
171a7f21 64 csum_hi = le16_to_cpu(raw->i_checksum_hi);
814525f4
DW
65 raw->i_checksum_hi = 0;
66 }
67
68 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
69 EXT4_INODE_SIZE(inode->i_sb));
70
171a7f21 71 raw->i_checksum_lo = cpu_to_le16(csum_lo);
814525f4
DW
72 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
73 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
171a7f21 74 raw->i_checksum_hi = cpu_to_le16(csum_hi);
814525f4
DW
75
76 return csum;
77}
78
79static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
80 struct ext4_inode_info *ei)
81{
82 __u32 provided, calculated;
83
84 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
85 cpu_to_le32(EXT4_OS_LINUX) ||
86 !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
87 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
88 return 1;
89
90 provided = le16_to_cpu(raw->i_checksum_lo);
91 calculated = ext4_inode_csum(inode, raw, ei);
92 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
93 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
94 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
95 else
96 calculated &= 0xFFFF;
97
98 return provided == calculated;
99}
100
101static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
102 struct ext4_inode_info *ei)
103{
104 __u32 csum;
105
106 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
107 cpu_to_le32(EXT4_OS_LINUX) ||
108 !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
109 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
110 return;
111
112 csum = ext4_inode_csum(inode, raw, ei);
113 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
114 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
115 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
116 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
117}
118
678aaf48
JK
119static inline int ext4_begin_ordered_truncate(struct inode *inode,
120 loff_t new_size)
121{
7ff9c073 122 trace_ext4_begin_ordered_truncate(inode, new_size);
8aefcd55
TT
123 /*
124 * If jinode is zero, then we never opened the file for
125 * writing, so there's no need to call
126 * jbd2_journal_begin_ordered_truncate() since there's no
127 * outstanding writes we need to flush.
128 */
129 if (!EXT4_I(inode)->jinode)
130 return 0;
131 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
132 EXT4_I(inode)->jinode,
133 new_size);
678aaf48
JK
134}
135
d47992f8
LC
136static void ext4_invalidatepage(struct page *page, unsigned int offset,
137 unsigned int length);
cb20d518
TT
138static int __ext4_journalled_writepage(struct page *page, unsigned int len);
139static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
fffb2739
JK
140static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
141 int pextents);
64769240 142
ac27a0ec
DK
143/*
144 * Test whether an inode is a fast symlink.
145 */
617ba13b 146static int ext4_inode_is_fast_symlink(struct inode *inode)
ac27a0ec 147{
65eddb56
YY
148 int ea_blocks = EXT4_I(inode)->i_file_acl ?
149 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
ac27a0ec
DK
150
151 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
152}
153
ac27a0ec
DK
154/*
155 * Restart the transaction associated with *handle. This does a commit,
156 * so before we call here everything must be consistently dirtied against
157 * this transaction.
158 */
fa5d1113 159int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
487caeef 160 int nblocks)
ac27a0ec 161{
487caeef
JK
162 int ret;
163
164 /*
e35fd660 165 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
487caeef
JK
166 * moment, get_block can be called only for blocks inside i_size since
167 * page cache has been already dropped and writes are blocked by
168 * i_mutex. So we can safely drop the i_data_sem here.
169 */
0390131b 170 BUG_ON(EXT4_JOURNAL(inode) == NULL);
ac27a0ec 171 jbd_debug(2, "restarting handle %p\n", handle);
487caeef 172 up_write(&EXT4_I(inode)->i_data_sem);
8e8eaabe 173 ret = ext4_journal_restart(handle, nblocks);
487caeef 174 down_write(&EXT4_I(inode)->i_data_sem);
fa5d1113 175 ext4_discard_preallocations(inode);
487caeef
JK
176
177 return ret;
ac27a0ec
DK
178}
179
180/*
181 * Called at the last iput() if i_nlink is zero.
182 */
0930fcc1 183void ext4_evict_inode(struct inode *inode)
ac27a0ec
DK
184{
185 handle_t *handle;
bc965ab3 186 int err;
ac27a0ec 187
7ff9c073 188 trace_ext4_evict_inode(inode);
2581fdc8 189
0930fcc1 190 if (inode->i_nlink) {
2d859db3
JK
191 /*
192 * When journalling data dirty buffers are tracked only in the
193 * journal. So although mm thinks everything is clean and
194 * ready for reaping the inode might still have some pages to
195 * write in the running transaction or waiting to be
196 * checkpointed. Thus calling jbd2_journal_invalidatepage()
197 * (via truncate_inode_pages()) to discard these buffers can
198 * cause data loss. Also even if we did not discard these
199 * buffers, we would have no way to find them after the inode
200 * is reaped and thus user could see stale data if he tries to
201 * read them before the transaction is checkpointed. So be
202 * careful and force everything to disk here... We use
203 * ei->i_datasync_tid to store the newest transaction
204 * containing inode's data.
205 *
206 * Note that directories do not have this problem because they
207 * don't use page cache.
208 */
209 if (ext4_should_journal_data(inode) &&
2b405bfa
TT
210 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
211 inode->i_ino != EXT4_JOURNAL_INO) {
2d859db3
JK
212 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
213 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
214
d76a3a77 215 jbd2_complete_transaction(journal, commit_tid);
2d859db3
JK
216 filemap_write_and_wait(&inode->i_data);
217 }
91b0abe3 218 truncate_inode_pages_final(&inode->i_data);
5dc23bdd
JK
219
220 WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
0930fcc1
AV
221 goto no_delete;
222 }
223
907f4554 224 if (!is_bad_inode(inode))
871a2931 225 dquot_initialize(inode);
907f4554 226
678aaf48
JK
227 if (ext4_should_order_data(inode))
228 ext4_begin_ordered_truncate(inode, 0);
91b0abe3 229 truncate_inode_pages_final(&inode->i_data);
ac27a0ec 230
5dc23bdd 231 WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
ac27a0ec
DK
232 if (is_bad_inode(inode))
233 goto no_delete;
234
8e8ad8a5
JK
235 /*
236 * Protect us against freezing - iput() caller didn't have to have any
237 * protection against it
238 */
239 sb_start_intwrite(inode->i_sb);
9924a92a
TT
240 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
241 ext4_blocks_for_truncate(inode)+3);
ac27a0ec 242 if (IS_ERR(handle)) {
bc965ab3 243 ext4_std_error(inode->i_sb, PTR_ERR(handle));
ac27a0ec
DK
244 /*
245 * If we're going to skip the normal cleanup, we still need to
246 * make sure that the in-core orphan linked list is properly
247 * cleaned up.
248 */
617ba13b 249 ext4_orphan_del(NULL, inode);
8e8ad8a5 250 sb_end_intwrite(inode->i_sb);
ac27a0ec
DK
251 goto no_delete;
252 }
253
254 if (IS_SYNC(inode))
0390131b 255 ext4_handle_sync(handle);
ac27a0ec 256 inode->i_size = 0;
bc965ab3
TT
257 err = ext4_mark_inode_dirty(handle, inode);
258 if (err) {
12062ddd 259 ext4_warning(inode->i_sb,
bc965ab3
TT
260 "couldn't mark inode dirty (err %d)", err);
261 goto stop_handle;
262 }
ac27a0ec 263 if (inode->i_blocks)
617ba13b 264 ext4_truncate(inode);
bc965ab3
TT
265
266 /*
267 * ext4_ext_truncate() doesn't reserve any slop when it
268 * restarts journal transactions; therefore there may not be
269 * enough credits left in the handle to remove the inode from
270 * the orphan list and set the dtime field.
271 */
0390131b 272 if (!ext4_handle_has_enough_credits(handle, 3)) {
bc965ab3
TT
273 err = ext4_journal_extend(handle, 3);
274 if (err > 0)
275 err = ext4_journal_restart(handle, 3);
276 if (err != 0) {
12062ddd 277 ext4_warning(inode->i_sb,
bc965ab3
TT
278 "couldn't extend journal (err %d)", err);
279 stop_handle:
280 ext4_journal_stop(handle);
45388219 281 ext4_orphan_del(NULL, inode);
8e8ad8a5 282 sb_end_intwrite(inode->i_sb);
bc965ab3
TT
283 goto no_delete;
284 }
285 }
286
ac27a0ec 287 /*
617ba13b 288 * Kill off the orphan record which ext4_truncate created.
ac27a0ec 289 * AKPM: I think this can be inside the above `if'.
617ba13b 290 * Note that ext4_orphan_del() has to be able to cope with the
ac27a0ec 291 * deletion of a non-existent orphan - this is because we don't
617ba13b 292 * know if ext4_truncate() actually created an orphan record.
ac27a0ec
DK
293 * (Well, we could do this if we need to, but heck - it works)
294 */
617ba13b
MC
295 ext4_orphan_del(handle, inode);
296 EXT4_I(inode)->i_dtime = get_seconds();
ac27a0ec
DK
297
298 /*
299 * One subtle ordering requirement: if anything has gone wrong
300 * (transaction abort, IO errors, whatever), then we can still
301 * do these next steps (the fs will already have been marked as
302 * having errors), but we can't free the inode if the mark_dirty
303 * fails.
304 */
617ba13b 305 if (ext4_mark_inode_dirty(handle, inode))
ac27a0ec 306 /* If that failed, just do the required in-core inode clear. */
0930fcc1 307 ext4_clear_inode(inode);
ac27a0ec 308 else
617ba13b
MC
309 ext4_free_inode(handle, inode);
310 ext4_journal_stop(handle);
8e8ad8a5 311 sb_end_intwrite(inode->i_sb);
ac27a0ec
DK
312 return;
313no_delete:
0930fcc1 314 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
ac27a0ec
DK
315}
316
a9e7f447
DM
317#ifdef CONFIG_QUOTA
318qsize_t *ext4_get_reserved_space(struct inode *inode)
60e58e0f 319{
a9e7f447 320 return &EXT4_I(inode)->i_reserved_quota;
60e58e0f 321}
a9e7f447 322#endif
9d0be502 323
12219aea
AK
324/*
325 * Calculate the number of metadata blocks need to reserve
9d0be502 326 * to allocate a block located at @lblock
12219aea 327 */
01f49d0b 328static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
12219aea 329{
12e9b892 330 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
9d0be502 331 return ext4_ext_calc_metadata_amount(inode, lblock);
12219aea 332
8bb2b247 333 return ext4_ind_calc_metadata_amount(inode, lblock);
12219aea
AK
334}
335
0637c6f4
TT
336/*
337 * Called with i_data_sem down, which is important since we can call
338 * ext4_discard_preallocations() from here.
339 */
5f634d06
AK
340void ext4_da_update_reserve_space(struct inode *inode,
341 int used, int quota_claim)
12219aea
AK
342{
343 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 344 struct ext4_inode_info *ei = EXT4_I(inode);
0637c6f4
TT
345
346 spin_lock(&ei->i_block_reservation_lock);
d8990240 347 trace_ext4_da_update_reserve_space(inode, used, quota_claim);
0637c6f4 348 if (unlikely(used > ei->i_reserved_data_blocks)) {
8de5c325 349 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
1084f252 350 "with only %d reserved data blocks",
0637c6f4
TT
351 __func__, inode->i_ino, used,
352 ei->i_reserved_data_blocks);
353 WARN_ON(1);
354 used = ei->i_reserved_data_blocks;
355 }
12219aea 356
97795d2a 357 if (unlikely(ei->i_allocated_meta_blocks > ei->i_reserved_meta_blocks)) {
01a523eb
TT
358 ext4_warning(inode->i_sb, "ino %lu, allocated %d "
359 "with only %d reserved metadata blocks "
360 "(releasing %d blocks with reserved %d data blocks)",
361 inode->i_ino, ei->i_allocated_meta_blocks,
362 ei->i_reserved_meta_blocks, used,
363 ei->i_reserved_data_blocks);
97795d2a
BF
364 WARN_ON(1);
365 ei->i_allocated_meta_blocks = ei->i_reserved_meta_blocks;
366 }
367
0637c6f4
TT
368 /* Update per-inode reservations */
369 ei->i_reserved_data_blocks -= used;
0637c6f4 370 ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
57042651 371 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
72b8ab9d 372 used + ei->i_allocated_meta_blocks);
0637c6f4 373 ei->i_allocated_meta_blocks = 0;
6bc6e63f 374
0637c6f4
TT
375 if (ei->i_reserved_data_blocks == 0) {
376 /*
377 * We can release all of the reserved metadata blocks
378 * only when we have written all of the delayed
379 * allocation blocks.
380 */
57042651 381 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
72b8ab9d 382 ei->i_reserved_meta_blocks);
ee5f4d9c 383 ei->i_reserved_meta_blocks = 0;
9d0be502 384 ei->i_da_metadata_calc_len = 0;
6bc6e63f 385 }
12219aea 386 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f 387
72b8ab9d
ES
388 /* Update quota subsystem for data blocks */
389 if (quota_claim)
7b415bf6 390 dquot_claim_block(inode, EXT4_C2B(sbi, used));
72b8ab9d 391 else {
5f634d06
AK
392 /*
393 * We did fallocate with an offset that is already delayed
394 * allocated. So on delayed allocated writeback we should
72b8ab9d 395 * not re-claim the quota for fallocated blocks.
5f634d06 396 */
7b415bf6 397 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
5f634d06 398 }
d6014301
AK
399
400 /*
401 * If we have done all the pending block allocations and if
402 * there aren't any writers on the inode, we can discard the
403 * inode's preallocations.
404 */
0637c6f4
TT
405 if ((ei->i_reserved_data_blocks == 0) &&
406 (atomic_read(&inode->i_writecount) == 0))
d6014301 407 ext4_discard_preallocations(inode);
12219aea
AK
408}
409
e29136f8 410static int __check_block_validity(struct inode *inode, const char *func,
c398eda0
TT
411 unsigned int line,
412 struct ext4_map_blocks *map)
6fd058f7 413{
24676da4
TT
414 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
415 map->m_len)) {
c398eda0
TT
416 ext4_error_inode(inode, func, line, map->m_pblk,
417 "lblock %lu mapped to illegal pblock "
418 "(length %d)", (unsigned long) map->m_lblk,
419 map->m_len);
6fd058f7
TT
420 return -EIO;
421 }
422 return 0;
423}
424
e29136f8 425#define check_block_validity(inode, map) \
c398eda0 426 __check_block_validity((inode), __func__, __LINE__, (map))
e29136f8 427
921f266b
DM
428#ifdef ES_AGGRESSIVE_TEST
429static void ext4_map_blocks_es_recheck(handle_t *handle,
430 struct inode *inode,
431 struct ext4_map_blocks *es_map,
432 struct ext4_map_blocks *map,
433 int flags)
434{
435 int retval;
436
437 map->m_flags = 0;
438 /*
439 * There is a race window that the result is not the same.
440 * e.g. xfstests #223 when dioread_nolock enables. The reason
441 * is that we lookup a block mapping in extent status tree with
442 * out taking i_data_sem. So at the time the unwritten extent
443 * could be converted.
444 */
445 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
c8b459f4 446 down_read(&EXT4_I(inode)->i_data_sem);
921f266b
DM
447 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
448 retval = ext4_ext_map_blocks(handle, inode, map, flags &
449 EXT4_GET_BLOCKS_KEEP_SIZE);
450 } else {
451 retval = ext4_ind_map_blocks(handle, inode, map, flags &
452 EXT4_GET_BLOCKS_KEEP_SIZE);
453 }
454 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
455 up_read((&EXT4_I(inode)->i_data_sem));
456 /*
457 * Clear EXT4_MAP_FROM_CLUSTER and EXT4_MAP_BOUNDARY flag
458 * because it shouldn't be marked in es_map->m_flags.
459 */
460 map->m_flags &= ~(EXT4_MAP_FROM_CLUSTER | EXT4_MAP_BOUNDARY);
461
462 /*
463 * We don't check m_len because extent will be collpased in status
464 * tree. So the m_len might not equal.
465 */
466 if (es_map->m_lblk != map->m_lblk ||
467 es_map->m_flags != map->m_flags ||
468 es_map->m_pblk != map->m_pblk) {
bdafe42a 469 printk("ES cache assertion failed for inode: %lu "
921f266b
DM
470 "es_cached ex [%d/%d/%llu/%x] != "
471 "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
472 inode->i_ino, es_map->m_lblk, es_map->m_len,
473 es_map->m_pblk, es_map->m_flags, map->m_lblk,
474 map->m_len, map->m_pblk, map->m_flags,
475 retval, flags);
476 }
477}
478#endif /* ES_AGGRESSIVE_TEST */
479
f5ab0d1f 480/*
e35fd660 481 * The ext4_map_blocks() function tries to look up the requested blocks,
2b2d6d01 482 * and returns if the blocks are already mapped.
f5ab0d1f 483 *
f5ab0d1f
MC
484 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
485 * and store the allocated blocks in the result buffer head and mark it
486 * mapped.
487 *
e35fd660
TT
488 * If file type is extents based, it will call ext4_ext_map_blocks(),
489 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
f5ab0d1f
MC
490 * based files
491 *
556615dc
LC
492 * On success, it returns the number of blocks being mapped or allocated.
493 * if create==0 and the blocks are pre-allocated and unwritten block,
f5ab0d1f
MC
494 * the result buffer head is unmapped. If the create ==1, it will make sure
495 * the buffer head is mapped.
496 *
497 * It returns 0 if plain look up failed (blocks have not been allocated), in
df3ab170 498 * that case, buffer head is unmapped
f5ab0d1f
MC
499 *
500 * It returns the error in case of allocation failure.
501 */
e35fd660
TT
502int ext4_map_blocks(handle_t *handle, struct inode *inode,
503 struct ext4_map_blocks *map, int flags)
0e855ac8 504{
d100eef2 505 struct extent_status es;
0e855ac8 506 int retval;
b8a86845 507 int ret = 0;
921f266b
DM
508#ifdef ES_AGGRESSIVE_TEST
509 struct ext4_map_blocks orig_map;
510
511 memcpy(&orig_map, map, sizeof(*map));
512#endif
f5ab0d1f 513
e35fd660
TT
514 map->m_flags = 0;
515 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
516 "logical block %lu\n", inode->i_ino, flags, map->m_len,
517 (unsigned long) map->m_lblk);
d100eef2 518
e861b5e9
TT
519 /*
520 * ext4_map_blocks returns an int, and m_len is an unsigned int
521 */
522 if (unlikely(map->m_len > INT_MAX))
523 map->m_len = INT_MAX;
524
4adb6ab3
KM
525 /* We can handle the block number less than EXT_MAX_BLOCKS */
526 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
527 return -EIO;
528
d100eef2
ZL
529 /* Lookup extent status tree firstly */
530 if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
63b99968 531 ext4_es_lru_add(inode);
d100eef2
ZL
532 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
533 map->m_pblk = ext4_es_pblock(&es) +
534 map->m_lblk - es.es_lblk;
535 map->m_flags |= ext4_es_is_written(&es) ?
536 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
537 retval = es.es_len - (map->m_lblk - es.es_lblk);
538 if (retval > map->m_len)
539 retval = map->m_len;
540 map->m_len = retval;
541 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
542 retval = 0;
543 } else {
544 BUG_ON(1);
545 }
921f266b
DM
546#ifdef ES_AGGRESSIVE_TEST
547 ext4_map_blocks_es_recheck(handle, inode, map,
548 &orig_map, flags);
549#endif
d100eef2
ZL
550 goto found;
551 }
552
4df3d265 553 /*
b920c755
TT
554 * Try to see if we can get the block without requesting a new
555 * file system block.
4df3d265 556 */
729f52c6 557 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
c8b459f4 558 down_read(&EXT4_I(inode)->i_data_sem);
12e9b892 559 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
a4e5d88b
DM
560 retval = ext4_ext_map_blocks(handle, inode, map, flags &
561 EXT4_GET_BLOCKS_KEEP_SIZE);
0e855ac8 562 } else {
a4e5d88b
DM
563 retval = ext4_ind_map_blocks(handle, inode, map, flags &
564 EXT4_GET_BLOCKS_KEEP_SIZE);
0e855ac8 565 }
f7fec032 566 if (retval > 0) {
3be78c73 567 unsigned int status;
f7fec032 568
44fb851d
ZL
569 if (unlikely(retval != map->m_len)) {
570 ext4_warning(inode->i_sb,
571 "ES len assertion failed for inode "
572 "%lu: retval %d != map->m_len %d",
573 inode->i_ino, retval, map->m_len);
574 WARN_ON(1);
921f266b 575 }
921f266b 576
f7fec032
ZL
577 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
578 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
579 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
580 ext4_find_delalloc_range(inode, map->m_lblk,
581 map->m_lblk + map->m_len - 1))
582 status |= EXTENT_STATUS_DELAYED;
583 ret = ext4_es_insert_extent(inode, map->m_lblk,
584 map->m_len, map->m_pblk, status);
585 if (ret < 0)
586 retval = ret;
587 }
729f52c6
ZL
588 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
589 up_read((&EXT4_I(inode)->i_data_sem));
f5ab0d1f 590
d100eef2 591found:
e35fd660 592 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
b8a86845 593 ret = check_block_validity(inode, map);
6fd058f7
TT
594 if (ret != 0)
595 return ret;
596 }
597
f5ab0d1f 598 /* If it is only a block(s) look up */
c2177057 599 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
f5ab0d1f
MC
600 return retval;
601
602 /*
603 * Returns if the blocks have already allocated
604 *
605 * Note that if blocks have been preallocated
df3ab170 606 * ext4_ext_get_block() returns the create = 0
f5ab0d1f
MC
607 * with buffer head unmapped.
608 */
e35fd660 609 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
b8a86845
LC
610 /*
611 * If we need to convert extent to unwritten
612 * we continue and do the actual work in
613 * ext4_ext_map_blocks()
614 */
615 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
616 return retval;
4df3d265 617
2a8964d6 618 /*
a25a4e1a
ZL
619 * Here we clear m_flags because after allocating an new extent,
620 * it will be set again.
2a8964d6 621 */
a25a4e1a 622 map->m_flags &= ~EXT4_MAP_FLAGS;
2a8964d6 623
4df3d265 624 /*
556615dc 625 * New blocks allocate and/or writing to unwritten extent
f5ab0d1f
MC
626 * will possibly result in updating i_data, so we take
627 * the write lock of i_data_sem, and call get_blocks()
628 * with create == 1 flag.
4df3d265 629 */
c8b459f4 630 down_write(&EXT4_I(inode)->i_data_sem);
d2a17637
MC
631
632 /*
633 * if the caller is from delayed allocation writeout path
634 * we have already reserved fs blocks for allocation
635 * let the underlying get_block() function know to
636 * avoid double accounting
637 */
c2177057 638 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
f2321097 639 ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
4df3d265
AK
640 /*
641 * We need to check for EXT4 here because migrate
642 * could have changed the inode type in between
643 */
12e9b892 644 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
e35fd660 645 retval = ext4_ext_map_blocks(handle, inode, map, flags);
0e855ac8 646 } else {
e35fd660 647 retval = ext4_ind_map_blocks(handle, inode, map, flags);
267e4db9 648
e35fd660 649 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
267e4db9
AK
650 /*
651 * We allocated new blocks which will result in
652 * i_data's format changing. Force the migrate
653 * to fail by clearing migrate flags
654 */
19f5fb7a 655 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
267e4db9 656 }
d2a17637 657
5f634d06
AK
658 /*
659 * Update reserved blocks/metadata blocks after successful
660 * block allocation which had been deferred till now. We don't
661 * support fallocate for non extent files. So we can update
662 * reserve space here.
663 */
664 if ((retval > 0) &&
1296cc85 665 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
5f634d06
AK
666 ext4_da_update_reserve_space(inode, retval, 1);
667 }
f7fec032 668 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
f2321097 669 ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
2ac3b6e0 670
f7fec032 671 if (retval > 0) {
3be78c73 672 unsigned int status;
f7fec032 673
44fb851d
ZL
674 if (unlikely(retval != map->m_len)) {
675 ext4_warning(inode->i_sb,
676 "ES len assertion failed for inode "
677 "%lu: retval %d != map->m_len %d",
678 inode->i_ino, retval, map->m_len);
679 WARN_ON(1);
921f266b 680 }
921f266b 681
adb23551
ZL
682 /*
683 * If the extent has been zeroed out, we don't need to update
684 * extent status tree.
685 */
686 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
687 ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
688 if (ext4_es_is_written(&es))
689 goto has_zeroout;
690 }
f7fec032
ZL
691 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
692 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
693 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
694 ext4_find_delalloc_range(inode, map->m_lblk,
695 map->m_lblk + map->m_len - 1))
696 status |= EXTENT_STATUS_DELAYED;
697 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
698 map->m_pblk, status);
699 if (ret < 0)
700 retval = ret;
5356f261
AK
701 }
702
adb23551 703has_zeroout:
4df3d265 704 up_write((&EXT4_I(inode)->i_data_sem));
e35fd660 705 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
b8a86845 706 ret = check_block_validity(inode, map);
6fd058f7
TT
707 if (ret != 0)
708 return ret;
709 }
0e855ac8
AK
710 return retval;
711}
712
f3bd1f3f
MC
713/* Maximum number of blocks we map for direct IO at once. */
714#define DIO_MAX_BLOCKS 4096
715
2ed88685
TT
716static int _ext4_get_block(struct inode *inode, sector_t iblock,
717 struct buffer_head *bh, int flags)
ac27a0ec 718{
3e4fdaf8 719 handle_t *handle = ext4_journal_current_handle();
2ed88685 720 struct ext4_map_blocks map;
7fb5409d 721 int ret = 0, started = 0;
f3bd1f3f 722 int dio_credits;
ac27a0ec 723
46c7f254
TM
724 if (ext4_has_inline_data(inode))
725 return -ERANGE;
726
2ed88685
TT
727 map.m_lblk = iblock;
728 map.m_len = bh->b_size >> inode->i_blkbits;
729
8b0f165f 730 if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
7fb5409d 731 /* Direct IO write... */
2ed88685
TT
732 if (map.m_len > DIO_MAX_BLOCKS)
733 map.m_len = DIO_MAX_BLOCKS;
734 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
9924a92a
TT
735 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
736 dio_credits);
7fb5409d 737 if (IS_ERR(handle)) {
ac27a0ec 738 ret = PTR_ERR(handle);
2ed88685 739 return ret;
ac27a0ec 740 }
7fb5409d 741 started = 1;
ac27a0ec
DK
742 }
743
2ed88685 744 ret = ext4_map_blocks(handle, inode, &map, flags);
7fb5409d 745 if (ret > 0) {
7b7a8665
CH
746 ext4_io_end_t *io_end = ext4_inode_aio(inode);
747
2ed88685
TT
748 map_bh(bh, inode->i_sb, map.m_pblk);
749 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
7b7a8665
CH
750 if (io_end && io_end->flag & EXT4_IO_END_UNWRITTEN)
751 set_buffer_defer_completion(bh);
2ed88685 752 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
7fb5409d 753 ret = 0;
ac27a0ec 754 }
7fb5409d
JK
755 if (started)
756 ext4_journal_stop(handle);
ac27a0ec
DK
757 return ret;
758}
759
2ed88685
TT
760int ext4_get_block(struct inode *inode, sector_t iblock,
761 struct buffer_head *bh, int create)
762{
763 return _ext4_get_block(inode, iblock, bh,
764 create ? EXT4_GET_BLOCKS_CREATE : 0);
765}
766
ac27a0ec
DK
767/*
768 * `handle' can be NULL if create is zero
769 */
617ba13b 770struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
725d26d3 771 ext4_lblk_t block, int create, int *errp)
ac27a0ec 772{
2ed88685
TT
773 struct ext4_map_blocks map;
774 struct buffer_head *bh;
ac27a0ec
DK
775 int fatal = 0, err;
776
777 J_ASSERT(handle != NULL || create == 0);
778
2ed88685
TT
779 map.m_lblk = block;
780 map.m_len = 1;
781 err = ext4_map_blocks(handle, inode, &map,
782 create ? EXT4_GET_BLOCKS_CREATE : 0);
ac27a0ec 783
90b0a973
CM
784 /* ensure we send some value back into *errp */
785 *errp = 0;
786
0f70b406
TT
787 if (create && err == 0)
788 err = -ENOSPC; /* should never happen */
2ed88685
TT
789 if (err < 0)
790 *errp = err;
791 if (err <= 0)
792 return NULL;
2ed88685
TT
793
794 bh = sb_getblk(inode->i_sb, map.m_pblk);
aebf0243 795 if (unlikely(!bh)) {
860d21e2 796 *errp = -ENOMEM;
2ed88685 797 return NULL;
ac27a0ec 798 }
2ed88685
TT
799 if (map.m_flags & EXT4_MAP_NEW) {
800 J_ASSERT(create != 0);
801 J_ASSERT(handle != NULL);
ac27a0ec 802
2ed88685
TT
803 /*
804 * Now that we do not always journal data, we should
805 * keep in mind whether this should always journal the
806 * new buffer as metadata. For now, regular file
807 * writes use ext4_get_block instead, so it's not a
808 * problem.
809 */
810 lock_buffer(bh);
811 BUFFER_TRACE(bh, "call get_create_access");
812 fatal = ext4_journal_get_create_access(handle, bh);
813 if (!fatal && !buffer_uptodate(bh)) {
814 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
815 set_buffer_uptodate(bh);
ac27a0ec 816 }
2ed88685
TT
817 unlock_buffer(bh);
818 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
819 err = ext4_handle_dirty_metadata(handle, inode, bh);
820 if (!fatal)
821 fatal = err;
822 } else {
823 BUFFER_TRACE(bh, "not a new buffer");
ac27a0ec 824 }
2ed88685
TT
825 if (fatal) {
826 *errp = fatal;
827 brelse(bh);
828 bh = NULL;
829 }
830 return bh;
ac27a0ec
DK
831}
832
617ba13b 833struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
725d26d3 834 ext4_lblk_t block, int create, int *err)
ac27a0ec 835{
af5bc92d 836 struct buffer_head *bh;
ac27a0ec 837
617ba13b 838 bh = ext4_getblk(handle, inode, block, create, err);
ac27a0ec
DK
839 if (!bh)
840 return bh;
841 if (buffer_uptodate(bh))
842 return bh;
65299a3b 843 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
ac27a0ec
DK
844 wait_on_buffer(bh);
845 if (buffer_uptodate(bh))
846 return bh;
847 put_bh(bh);
848 *err = -EIO;
849 return NULL;
850}
851
f19d5870
TM
852int ext4_walk_page_buffers(handle_t *handle,
853 struct buffer_head *head,
854 unsigned from,
855 unsigned to,
856 int *partial,
857 int (*fn)(handle_t *handle,
858 struct buffer_head *bh))
ac27a0ec
DK
859{
860 struct buffer_head *bh;
861 unsigned block_start, block_end;
862 unsigned blocksize = head->b_size;
863 int err, ret = 0;
864 struct buffer_head *next;
865
af5bc92d
TT
866 for (bh = head, block_start = 0;
867 ret == 0 && (bh != head || !block_start);
de9a55b8 868 block_start = block_end, bh = next) {
ac27a0ec
DK
869 next = bh->b_this_page;
870 block_end = block_start + blocksize;
871 if (block_end <= from || block_start >= to) {
872 if (partial && !buffer_uptodate(bh))
873 *partial = 1;
874 continue;
875 }
876 err = (*fn)(handle, bh);
877 if (!ret)
878 ret = err;
879 }
880 return ret;
881}
882
883/*
884 * To preserve ordering, it is essential that the hole instantiation and
885 * the data write be encapsulated in a single transaction. We cannot
617ba13b 886 * close off a transaction and start a new one between the ext4_get_block()
dab291af 887 * and the commit_write(). So doing the jbd2_journal_start at the start of
ac27a0ec
DK
888 * prepare_write() is the right place.
889 *
36ade451
JK
890 * Also, this function can nest inside ext4_writepage(). In that case, we
891 * *know* that ext4_writepage() has generated enough buffer credits to do the
892 * whole page. So we won't block on the journal in that case, which is good,
893 * because the caller may be PF_MEMALLOC.
ac27a0ec 894 *
617ba13b 895 * By accident, ext4 can be reentered when a transaction is open via
ac27a0ec
DK
896 * quota file writes. If we were to commit the transaction while thus
897 * reentered, there can be a deadlock - we would be holding a quota
898 * lock, and the commit would never complete if another thread had a
899 * transaction open and was blocking on the quota lock - a ranking
900 * violation.
901 *
dab291af 902 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
ac27a0ec
DK
903 * will _not_ run commit under these circumstances because handle->h_ref
904 * is elevated. We'll still have enough credits for the tiny quotafile
905 * write.
906 */
f19d5870
TM
907int do_journal_get_write_access(handle_t *handle,
908 struct buffer_head *bh)
ac27a0ec 909{
56d35a4c
JK
910 int dirty = buffer_dirty(bh);
911 int ret;
912
ac27a0ec
DK
913 if (!buffer_mapped(bh) || buffer_freed(bh))
914 return 0;
56d35a4c 915 /*
ebdec241 916 * __block_write_begin() could have dirtied some buffers. Clean
56d35a4c
JK
917 * the dirty bit as jbd2_journal_get_write_access() could complain
918 * otherwise about fs integrity issues. Setting of the dirty bit
ebdec241 919 * by __block_write_begin() isn't a real problem here as we clear
56d35a4c
JK
920 * the bit before releasing a page lock and thus writeback cannot
921 * ever write the buffer.
922 */
923 if (dirty)
924 clear_buffer_dirty(bh);
5d601255 925 BUFFER_TRACE(bh, "get write access");
56d35a4c
JK
926 ret = ext4_journal_get_write_access(handle, bh);
927 if (!ret && dirty)
928 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
929 return ret;
ac27a0ec
DK
930}
931
8b0f165f
AP
932static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
933 struct buffer_head *bh_result, int create);
bfc1af65 934static int ext4_write_begin(struct file *file, struct address_space *mapping,
de9a55b8
TT
935 loff_t pos, unsigned len, unsigned flags,
936 struct page **pagep, void **fsdata)
ac27a0ec 937{
af5bc92d 938 struct inode *inode = mapping->host;
1938a150 939 int ret, needed_blocks;
ac27a0ec
DK
940 handle_t *handle;
941 int retries = 0;
af5bc92d 942 struct page *page;
de9a55b8 943 pgoff_t index;
af5bc92d 944 unsigned from, to;
bfc1af65 945
9bffad1e 946 trace_ext4_write_begin(inode, pos, len, flags);
1938a150
AK
947 /*
948 * Reserve one block more for addition to orphan list in case
949 * we allocate blocks but write fails for some reason
950 */
951 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
de9a55b8 952 index = pos >> PAGE_CACHE_SHIFT;
af5bc92d
TT
953 from = pos & (PAGE_CACHE_SIZE - 1);
954 to = from + len;
ac27a0ec 955
f19d5870
TM
956 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
957 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
958 flags, pagep);
959 if (ret < 0)
47564bfb
TT
960 return ret;
961 if (ret == 1)
962 return 0;
f19d5870
TM
963 }
964
47564bfb
TT
965 /*
966 * grab_cache_page_write_begin() can take a long time if the
967 * system is thrashing due to memory pressure, or if the page
968 * is being written back. So grab it first before we start
969 * the transaction handle. This also allows us to allocate
970 * the page (if needed) without using GFP_NOFS.
971 */
972retry_grab:
973 page = grab_cache_page_write_begin(mapping, index, flags);
974 if (!page)
975 return -ENOMEM;
976 unlock_page(page);
977
978retry_journal:
9924a92a 979 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
af5bc92d 980 if (IS_ERR(handle)) {
47564bfb
TT
981 page_cache_release(page);
982 return PTR_ERR(handle);
7479d2b9 983 }
ac27a0ec 984
47564bfb
TT
985 lock_page(page);
986 if (page->mapping != mapping) {
987 /* The page got truncated from under us */
988 unlock_page(page);
989 page_cache_release(page);
cf108bca 990 ext4_journal_stop(handle);
47564bfb 991 goto retry_grab;
cf108bca 992 }
7afe5aa5
DM
993 /* In case writeback began while the page was unlocked */
994 wait_for_stable_page(page);
cf108bca 995
744692dc 996 if (ext4_should_dioread_nolock(inode))
6e1db88d 997 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
744692dc 998 else
6e1db88d 999 ret = __block_write_begin(page, pos, len, ext4_get_block);
bfc1af65
NP
1000
1001 if (!ret && ext4_should_journal_data(inode)) {
f19d5870
TM
1002 ret = ext4_walk_page_buffers(handle, page_buffers(page),
1003 from, to, NULL,
1004 do_journal_get_write_access);
ac27a0ec 1005 }
bfc1af65
NP
1006
1007 if (ret) {
af5bc92d 1008 unlock_page(page);
ae4d5372 1009 /*
6e1db88d 1010 * __block_write_begin may have instantiated a few blocks
ae4d5372
AK
1011 * outside i_size. Trim these off again. Don't need
1012 * i_size_read because we hold i_mutex.
1938a150
AK
1013 *
1014 * Add inode to orphan list in case we crash before
1015 * truncate finishes
ae4d5372 1016 */
ffacfa7a 1017 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1938a150
AK
1018 ext4_orphan_add(handle, inode);
1019
1020 ext4_journal_stop(handle);
1021 if (pos + len > inode->i_size) {
b9a4207d 1022 ext4_truncate_failed_write(inode);
de9a55b8 1023 /*
ffacfa7a 1024 * If truncate failed early the inode might
1938a150
AK
1025 * still be on the orphan list; we need to
1026 * make sure the inode is removed from the
1027 * orphan list in that case.
1028 */
1029 if (inode->i_nlink)
1030 ext4_orphan_del(NULL, inode);
1031 }
bfc1af65 1032
47564bfb
TT
1033 if (ret == -ENOSPC &&
1034 ext4_should_retry_alloc(inode->i_sb, &retries))
1035 goto retry_journal;
1036 page_cache_release(page);
1037 return ret;
1038 }
1039 *pagep = page;
ac27a0ec
DK
1040 return ret;
1041}
1042
bfc1af65
NP
1043/* For write_end() in data=journal mode */
1044static int write_end_fn(handle_t *handle, struct buffer_head *bh)
ac27a0ec 1045{
13fca323 1046 int ret;
ac27a0ec
DK
1047 if (!buffer_mapped(bh) || buffer_freed(bh))
1048 return 0;
1049 set_buffer_uptodate(bh);
13fca323
TT
1050 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1051 clear_buffer_meta(bh);
1052 clear_buffer_prio(bh);
1053 return ret;
ac27a0ec
DK
1054}
1055
eed4333f
ZL
1056/*
1057 * We need to pick up the new inode size which generic_commit_write gave us
1058 * `file' can be NULL - eg, when called from page_symlink().
1059 *
1060 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1061 * buffers are managed internally.
1062 */
1063static int ext4_write_end(struct file *file,
1064 struct address_space *mapping,
1065 loff_t pos, unsigned len, unsigned copied,
1066 struct page *page, void *fsdata)
f8514083 1067{
f8514083 1068 handle_t *handle = ext4_journal_current_handle();
eed4333f
ZL
1069 struct inode *inode = mapping->host;
1070 int ret = 0, ret2;
1071 int i_size_changed = 0;
1072
1073 trace_ext4_write_end(inode, pos, len, copied);
1074 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) {
1075 ret = ext4_jbd2_file_inode(handle, inode);
1076 if (ret) {
1077 unlock_page(page);
1078 page_cache_release(page);
1079 goto errout;
1080 }
1081 }
f8514083 1082
42c832de
TT
1083 if (ext4_has_inline_data(inode)) {
1084 ret = ext4_write_inline_data_end(inode, pos, len,
1085 copied, page);
1086 if (ret < 0)
1087 goto errout;
1088 copied = ret;
1089 } else
f19d5870
TM
1090 copied = block_write_end(file, mapping, pos,
1091 len, copied, page, fsdata);
f8514083
AK
1092
1093 /*
1094 * No need to use i_size_read() here, the i_size
eed4333f 1095 * cannot change under us because we hole i_mutex.
f8514083
AK
1096 *
1097 * But it's important to update i_size while still holding page lock:
1098 * page writeout could otherwise come in and zero beyond i_size.
1099 */
1100 if (pos + copied > inode->i_size) {
1101 i_size_write(inode, pos + copied);
1102 i_size_changed = 1;
1103 }
1104
eed4333f 1105 if (pos + copied > EXT4_I(inode)->i_disksize) {
f8514083
AK
1106 /* We need to mark inode dirty even if
1107 * new_i_size is less that inode->i_size
eed4333f 1108 * but greater than i_disksize. (hint delalloc)
f8514083
AK
1109 */
1110 ext4_update_i_disksize(inode, (pos + copied));
1111 i_size_changed = 1;
1112 }
1113 unlock_page(page);
1114 page_cache_release(page);
1115
1116 /*
1117 * Don't mark the inode dirty under page lock. First, it unnecessarily
1118 * makes the holding time of page lock longer. Second, it forces lock
1119 * ordering of page lock and transaction start for journaling
1120 * filesystems.
1121 */
1122 if (i_size_changed)
1123 ext4_mark_inode_dirty(handle, inode);
1124
ffacfa7a 1125 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1126 /* if we have allocated more blocks and copied
1127 * less. We will have blocks allocated outside
1128 * inode->i_size. So truncate them
1129 */
1130 ext4_orphan_add(handle, inode);
74d553aa 1131errout:
617ba13b 1132 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1133 if (!ret)
1134 ret = ret2;
bfc1af65 1135
f8514083 1136 if (pos + len > inode->i_size) {
b9a4207d 1137 ext4_truncate_failed_write(inode);
de9a55b8 1138 /*
ffacfa7a 1139 * If truncate failed early the inode might still be
f8514083
AK
1140 * on the orphan list; we need to make sure the inode
1141 * is removed from the orphan list in that case.
1142 */
1143 if (inode->i_nlink)
1144 ext4_orphan_del(NULL, inode);
1145 }
1146
bfc1af65 1147 return ret ? ret : copied;
ac27a0ec
DK
1148}
1149
bfc1af65 1150static int ext4_journalled_write_end(struct file *file,
de9a55b8
TT
1151 struct address_space *mapping,
1152 loff_t pos, unsigned len, unsigned copied,
1153 struct page *page, void *fsdata)
ac27a0ec 1154{
617ba13b 1155 handle_t *handle = ext4_journal_current_handle();
bfc1af65 1156 struct inode *inode = mapping->host;
ac27a0ec
DK
1157 int ret = 0, ret2;
1158 int partial = 0;
bfc1af65 1159 unsigned from, to;
cf17fea6 1160 loff_t new_i_size;
ac27a0ec 1161
9bffad1e 1162 trace_ext4_journalled_write_end(inode, pos, len, copied);
bfc1af65
NP
1163 from = pos & (PAGE_CACHE_SIZE - 1);
1164 to = from + len;
1165
441c8508
CW
1166 BUG_ON(!ext4_handle_valid(handle));
1167
3fdcfb66
TM
1168 if (ext4_has_inline_data(inode))
1169 copied = ext4_write_inline_data_end(inode, pos, len,
1170 copied, page);
1171 else {
1172 if (copied < len) {
1173 if (!PageUptodate(page))
1174 copied = 0;
1175 page_zero_new_buffers(page, from+copied, to);
1176 }
ac27a0ec 1177
3fdcfb66
TM
1178 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1179 to, &partial, write_end_fn);
1180 if (!partial)
1181 SetPageUptodate(page);
1182 }
cf17fea6
AK
1183 new_i_size = pos + copied;
1184 if (new_i_size > inode->i_size)
bfc1af65 1185 i_size_write(inode, pos+copied);
19f5fb7a 1186 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2d859db3 1187 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
cf17fea6
AK
1188 if (new_i_size > EXT4_I(inode)->i_disksize) {
1189 ext4_update_i_disksize(inode, new_i_size);
617ba13b 1190 ret2 = ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
1191 if (!ret)
1192 ret = ret2;
1193 }
bfc1af65 1194
cf108bca 1195 unlock_page(page);
f8514083 1196 page_cache_release(page);
ffacfa7a 1197 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1198 /* if we have allocated more blocks and copied
1199 * less. We will have blocks allocated outside
1200 * inode->i_size. So truncate them
1201 */
1202 ext4_orphan_add(handle, inode);
1203
617ba13b 1204 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1205 if (!ret)
1206 ret = ret2;
f8514083 1207 if (pos + len > inode->i_size) {
b9a4207d 1208 ext4_truncate_failed_write(inode);
de9a55b8 1209 /*
ffacfa7a 1210 * If truncate failed early the inode might still be
f8514083
AK
1211 * on the orphan list; we need to make sure the inode
1212 * is removed from the orphan list in that case.
1213 */
1214 if (inode->i_nlink)
1215 ext4_orphan_del(NULL, inode);
1216 }
bfc1af65
NP
1217
1218 return ret ? ret : copied;
ac27a0ec 1219}
d2a17637 1220
386ad67c
LC
1221/*
1222 * Reserve a metadata for a single block located at lblock
1223 */
1224static int ext4_da_reserve_metadata(struct inode *inode, ext4_lblk_t lblock)
1225{
386ad67c
LC
1226 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1227 struct ext4_inode_info *ei = EXT4_I(inode);
1228 unsigned int md_needed;
1229 ext4_lblk_t save_last_lblock;
1230 int save_len;
1231
1232 /*
1233 * recalculate the amount of metadata blocks to reserve
1234 * in order to allocate nrblocks
1235 * worse case is one extent per block
1236 */
386ad67c
LC
1237 spin_lock(&ei->i_block_reservation_lock);
1238 /*
1239 * ext4_calc_metadata_amount() has side effects, which we have
1240 * to be prepared undo if we fail to claim space.
1241 */
1242 save_len = ei->i_da_metadata_calc_len;
1243 save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1244 md_needed = EXT4_NUM_B2C(sbi,
1245 ext4_calc_metadata_amount(inode, lblock));
1246 trace_ext4_da_reserve_space(inode, md_needed);
1247
1248 /*
1249 * We do still charge estimated metadata to the sb though;
1250 * we cannot afford to run out of free blocks.
1251 */
1252 if (ext4_claim_free_clusters(sbi, md_needed, 0)) {
1253 ei->i_da_metadata_calc_len = save_len;
1254 ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1255 spin_unlock(&ei->i_block_reservation_lock);
386ad67c
LC
1256 return -ENOSPC;
1257 }
1258 ei->i_reserved_meta_blocks += md_needed;
1259 spin_unlock(&ei->i_block_reservation_lock);
1260
1261 return 0; /* success */
1262}
1263
9d0be502 1264/*
7b415bf6 1265 * Reserve a single cluster located at lblock
9d0be502 1266 */
01f49d0b 1267static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
d2a17637 1268{
60e58e0f 1269 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 1270 struct ext4_inode_info *ei = EXT4_I(inode);
7b415bf6 1271 unsigned int md_needed;
5dd4056d 1272 int ret;
03179fe9
TT
1273 ext4_lblk_t save_last_lblock;
1274 int save_len;
1275
1276 /*
1277 * We will charge metadata quota at writeout time; this saves
1278 * us from metadata over-estimation, though we may go over by
1279 * a small amount in the end. Here we just reserve for data.
1280 */
1281 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1282 if (ret)
1283 return ret;
d2a17637
MC
1284
1285 /*
1286 * recalculate the amount of metadata blocks to reserve
1287 * in order to allocate nrblocks
1288 * worse case is one extent per block
1289 */
0637c6f4 1290 spin_lock(&ei->i_block_reservation_lock);
03179fe9
TT
1291 /*
1292 * ext4_calc_metadata_amount() has side effects, which we have
1293 * to be prepared undo if we fail to claim space.
1294 */
1295 save_len = ei->i_da_metadata_calc_len;
1296 save_last_lblock = ei->i_da_metadata_calc_last_lblock;
7b415bf6
AK
1297 md_needed = EXT4_NUM_B2C(sbi,
1298 ext4_calc_metadata_amount(inode, lblock));
f8ec9d68 1299 trace_ext4_da_reserve_space(inode, md_needed);
d2a17637 1300
72b8ab9d
ES
1301 /*
1302 * We do still charge estimated metadata to the sb though;
1303 * we cannot afford to run out of free blocks.
1304 */
e7d5f315 1305 if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) {
03179fe9
TT
1306 ei->i_da_metadata_calc_len = save_len;
1307 ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1308 spin_unlock(&ei->i_block_reservation_lock);
03179fe9 1309 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
d2a17637
MC
1310 return -ENOSPC;
1311 }
9d0be502 1312 ei->i_reserved_data_blocks++;
0637c6f4
TT
1313 ei->i_reserved_meta_blocks += md_needed;
1314 spin_unlock(&ei->i_block_reservation_lock);
39bc680a 1315
d2a17637
MC
1316 return 0; /* success */
1317}
1318
12219aea 1319static void ext4_da_release_space(struct inode *inode, int to_free)
d2a17637
MC
1320{
1321 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 1322 struct ext4_inode_info *ei = EXT4_I(inode);
d2a17637 1323
cd213226
MC
1324 if (!to_free)
1325 return; /* Nothing to release, exit */
1326
d2a17637 1327 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
cd213226 1328
5a58ec87 1329 trace_ext4_da_release_space(inode, to_free);
0637c6f4 1330 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
cd213226 1331 /*
0637c6f4
TT
1332 * if there aren't enough reserved blocks, then the
1333 * counter is messed up somewhere. Since this
1334 * function is called from invalidate page, it's
1335 * harmless to return without any action.
cd213226 1336 */
8de5c325 1337 ext4_warning(inode->i_sb, "ext4_da_release_space: "
0637c6f4 1338 "ino %lu, to_free %d with only %d reserved "
1084f252 1339 "data blocks", inode->i_ino, to_free,
0637c6f4
TT
1340 ei->i_reserved_data_blocks);
1341 WARN_ON(1);
1342 to_free = ei->i_reserved_data_blocks;
cd213226 1343 }
0637c6f4 1344 ei->i_reserved_data_blocks -= to_free;
cd213226 1345
0637c6f4
TT
1346 if (ei->i_reserved_data_blocks == 0) {
1347 /*
1348 * We can release all of the reserved metadata blocks
1349 * only when we have written all of the delayed
1350 * allocation blocks.
7b415bf6
AK
1351 * Note that in case of bigalloc, i_reserved_meta_blocks,
1352 * i_reserved_data_blocks, etc. refer to number of clusters.
0637c6f4 1353 */
57042651 1354 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
72b8ab9d 1355 ei->i_reserved_meta_blocks);
ee5f4d9c 1356 ei->i_reserved_meta_blocks = 0;
9d0be502 1357 ei->i_da_metadata_calc_len = 0;
0637c6f4 1358 }
d2a17637 1359
72b8ab9d 1360 /* update fs dirty data blocks counter */
57042651 1361 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
d2a17637 1362
d2a17637 1363 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f 1364
7b415bf6 1365 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
d2a17637
MC
1366}
1367
1368static void ext4_da_page_release_reservation(struct page *page,
ca99fdd2
LC
1369 unsigned int offset,
1370 unsigned int length)
d2a17637
MC
1371{
1372 int to_release = 0;
1373 struct buffer_head *head, *bh;
1374 unsigned int curr_off = 0;
7b415bf6
AK
1375 struct inode *inode = page->mapping->host;
1376 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
ca99fdd2 1377 unsigned int stop = offset + length;
7b415bf6 1378 int num_clusters;
51865fda 1379 ext4_fsblk_t lblk;
d2a17637 1380
ca99fdd2
LC
1381 BUG_ON(stop > PAGE_CACHE_SIZE || stop < length);
1382
d2a17637
MC
1383 head = page_buffers(page);
1384 bh = head;
1385 do {
1386 unsigned int next_off = curr_off + bh->b_size;
1387
ca99fdd2
LC
1388 if (next_off > stop)
1389 break;
1390
d2a17637
MC
1391 if ((offset <= curr_off) && (buffer_delay(bh))) {
1392 to_release++;
1393 clear_buffer_delay(bh);
1394 }
1395 curr_off = next_off;
1396 } while ((bh = bh->b_this_page) != head);
7b415bf6 1397
51865fda
ZL
1398 if (to_release) {
1399 lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1400 ext4_es_remove_extent(inode, lblk, to_release);
1401 }
1402
7b415bf6
AK
1403 /* If we have released all the blocks belonging to a cluster, then we
1404 * need to release the reserved space for that cluster. */
1405 num_clusters = EXT4_NUM_B2C(sbi, to_release);
1406 while (num_clusters > 0) {
7b415bf6
AK
1407 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1408 ((num_clusters - 1) << sbi->s_cluster_bits);
1409 if (sbi->s_cluster_ratio == 1 ||
7d1b1fbc 1410 !ext4_find_delalloc_cluster(inode, lblk))
7b415bf6
AK
1411 ext4_da_release_space(inode, 1);
1412
1413 num_clusters--;
1414 }
d2a17637 1415}
ac27a0ec 1416
64769240
AT
1417/*
1418 * Delayed allocation stuff
1419 */
1420
4e7ea81d
JK
1421struct mpage_da_data {
1422 struct inode *inode;
1423 struct writeback_control *wbc;
6b523df4 1424
4e7ea81d
JK
1425 pgoff_t first_page; /* The first page to write */
1426 pgoff_t next_page; /* Current page to examine */
1427 pgoff_t last_page; /* Last page to examine */
791b7f08 1428 /*
4e7ea81d
JK
1429 * Extent to map - this can be after first_page because that can be
1430 * fully mapped. We somewhat abuse m_flags to store whether the extent
1431 * is delalloc or unwritten.
791b7f08 1432 */
4e7ea81d
JK
1433 struct ext4_map_blocks map;
1434 struct ext4_io_submit io_submit; /* IO submission data */
1435};
64769240 1436
4e7ea81d
JK
1437static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1438 bool invalidate)
c4a0c46e
AK
1439{
1440 int nr_pages, i;
1441 pgoff_t index, end;
1442 struct pagevec pvec;
1443 struct inode *inode = mpd->inode;
1444 struct address_space *mapping = inode->i_mapping;
4e7ea81d
JK
1445
1446 /* This is necessary when next_page == 0. */
1447 if (mpd->first_page >= mpd->next_page)
1448 return;
c4a0c46e 1449
c7f5938a
CW
1450 index = mpd->first_page;
1451 end = mpd->next_page - 1;
4e7ea81d
JK
1452 if (invalidate) {
1453 ext4_lblk_t start, last;
1454 start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1455 last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1456 ext4_es_remove_extent(inode, start, last - start + 1);
1457 }
51865fda 1458
66bea92c 1459 pagevec_init(&pvec, 0);
c4a0c46e
AK
1460 while (index <= end) {
1461 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1462 if (nr_pages == 0)
1463 break;
1464 for (i = 0; i < nr_pages; i++) {
1465 struct page *page = pvec.pages[i];
9b1d0998 1466 if (page->index > end)
c4a0c46e 1467 break;
c4a0c46e
AK
1468 BUG_ON(!PageLocked(page));
1469 BUG_ON(PageWriteback(page));
4e7ea81d
JK
1470 if (invalidate) {
1471 block_invalidatepage(page, 0, PAGE_CACHE_SIZE);
1472 ClearPageUptodate(page);
1473 }
c4a0c46e
AK
1474 unlock_page(page);
1475 }
9b1d0998
JK
1476 index = pvec.pages[nr_pages - 1]->index + 1;
1477 pagevec_release(&pvec);
c4a0c46e 1478 }
c4a0c46e
AK
1479}
1480
df22291f
AK
1481static void ext4_print_free_blocks(struct inode *inode)
1482{
1483 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
92b97816 1484 struct super_block *sb = inode->i_sb;
f78ee70d 1485 struct ext4_inode_info *ei = EXT4_I(inode);
92b97816
TT
1486
1487 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
5dee5437 1488 EXT4_C2B(EXT4_SB(inode->i_sb),
f78ee70d 1489 ext4_count_free_clusters(sb)));
92b97816
TT
1490 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1491 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
f78ee70d 1492 (long long) EXT4_C2B(EXT4_SB(sb),
57042651 1493 percpu_counter_sum(&sbi->s_freeclusters_counter)));
92b97816 1494 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
f78ee70d 1495 (long long) EXT4_C2B(EXT4_SB(sb),
7b415bf6 1496 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
92b97816
TT
1497 ext4_msg(sb, KERN_CRIT, "Block reservation details");
1498 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
f78ee70d 1499 ei->i_reserved_data_blocks);
92b97816 1500 ext4_msg(sb, KERN_CRIT, "i_reserved_meta_blocks=%u",
f78ee70d
LC
1501 ei->i_reserved_meta_blocks);
1502 ext4_msg(sb, KERN_CRIT, "i_allocated_meta_blocks=%u",
1503 ei->i_allocated_meta_blocks);
df22291f
AK
1504 return;
1505}
1506
c364b22c 1507static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
29fa89d0 1508{
c364b22c 1509 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
29fa89d0
AK
1510}
1511
5356f261
AK
1512/*
1513 * This function is grabs code from the very beginning of
1514 * ext4_map_blocks, but assumes that the caller is from delayed write
1515 * time. This function looks up the requested blocks and sets the
1516 * buffer delay bit under the protection of i_data_sem.
1517 */
1518static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1519 struct ext4_map_blocks *map,
1520 struct buffer_head *bh)
1521{
d100eef2 1522 struct extent_status es;
5356f261
AK
1523 int retval;
1524 sector_t invalid_block = ~((sector_t) 0xffff);
921f266b
DM
1525#ifdef ES_AGGRESSIVE_TEST
1526 struct ext4_map_blocks orig_map;
1527
1528 memcpy(&orig_map, map, sizeof(*map));
1529#endif
5356f261
AK
1530
1531 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1532 invalid_block = ~0;
1533
1534 map->m_flags = 0;
1535 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1536 "logical block %lu\n", inode->i_ino, map->m_len,
1537 (unsigned long) map->m_lblk);
d100eef2
ZL
1538
1539 /* Lookup extent status tree firstly */
1540 if (ext4_es_lookup_extent(inode, iblock, &es)) {
63b99968 1541 ext4_es_lru_add(inode);
d100eef2
ZL
1542 if (ext4_es_is_hole(&es)) {
1543 retval = 0;
c8b459f4 1544 down_read(&EXT4_I(inode)->i_data_sem);
d100eef2
ZL
1545 goto add_delayed;
1546 }
1547
1548 /*
1549 * Delayed extent could be allocated by fallocate.
1550 * So we need to check it.
1551 */
1552 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1553 map_bh(bh, inode->i_sb, invalid_block);
1554 set_buffer_new(bh);
1555 set_buffer_delay(bh);
1556 return 0;
1557 }
1558
1559 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1560 retval = es.es_len - (iblock - es.es_lblk);
1561 if (retval > map->m_len)
1562 retval = map->m_len;
1563 map->m_len = retval;
1564 if (ext4_es_is_written(&es))
1565 map->m_flags |= EXT4_MAP_MAPPED;
1566 else if (ext4_es_is_unwritten(&es))
1567 map->m_flags |= EXT4_MAP_UNWRITTEN;
1568 else
1569 BUG_ON(1);
1570
921f266b
DM
1571#ifdef ES_AGGRESSIVE_TEST
1572 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1573#endif
d100eef2
ZL
1574 return retval;
1575 }
1576
5356f261
AK
1577 /*
1578 * Try to see if we can get the block without requesting a new
1579 * file system block.
1580 */
c8b459f4 1581 down_read(&EXT4_I(inode)->i_data_sem);
9c3569b5
TM
1582 if (ext4_has_inline_data(inode)) {
1583 /*
1584 * We will soon create blocks for this page, and let
1585 * us pretend as if the blocks aren't allocated yet.
1586 * In case of clusters, we have to handle the work
1587 * of mapping from cluster so that the reserved space
1588 * is calculated properly.
1589 */
1590 if ((EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) &&
1591 ext4_find_delalloc_cluster(inode, map->m_lblk))
1592 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
1593 retval = 0;
1594 } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
d100eef2
ZL
1595 retval = ext4_ext_map_blocks(NULL, inode, map,
1596 EXT4_GET_BLOCKS_NO_PUT_HOLE);
5356f261 1597 else
d100eef2
ZL
1598 retval = ext4_ind_map_blocks(NULL, inode, map,
1599 EXT4_GET_BLOCKS_NO_PUT_HOLE);
5356f261 1600
d100eef2 1601add_delayed:
5356f261 1602 if (retval == 0) {
f7fec032 1603 int ret;
5356f261
AK
1604 /*
1605 * XXX: __block_prepare_write() unmaps passed block,
1606 * is it OK?
1607 */
386ad67c
LC
1608 /*
1609 * If the block was allocated from previously allocated cluster,
1610 * then we don't need to reserve it again. However we still need
1611 * to reserve metadata for every block we're going to write.
1612 */
5356f261 1613 if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
f7fec032
ZL
1614 ret = ext4_da_reserve_space(inode, iblock);
1615 if (ret) {
5356f261 1616 /* not enough space to reserve */
f7fec032 1617 retval = ret;
5356f261 1618 goto out_unlock;
f7fec032 1619 }
386ad67c
LC
1620 } else {
1621 ret = ext4_da_reserve_metadata(inode, iblock);
1622 if (ret) {
1623 /* not enough space to reserve */
1624 retval = ret;
1625 goto out_unlock;
1626 }
5356f261
AK
1627 }
1628
f7fec032
ZL
1629 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1630 ~0, EXTENT_STATUS_DELAYED);
1631 if (ret) {
1632 retval = ret;
51865fda 1633 goto out_unlock;
f7fec032 1634 }
51865fda 1635
5356f261
AK
1636 /* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
1637 * and it should not appear on the bh->b_state.
1638 */
1639 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
1640
1641 map_bh(bh, inode->i_sb, invalid_block);
1642 set_buffer_new(bh);
1643 set_buffer_delay(bh);
f7fec032
ZL
1644 } else if (retval > 0) {
1645 int ret;
3be78c73 1646 unsigned int status;
f7fec032 1647
44fb851d
ZL
1648 if (unlikely(retval != map->m_len)) {
1649 ext4_warning(inode->i_sb,
1650 "ES len assertion failed for inode "
1651 "%lu: retval %d != map->m_len %d",
1652 inode->i_ino, retval, map->m_len);
1653 WARN_ON(1);
921f266b 1654 }
921f266b 1655
f7fec032
ZL
1656 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1657 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1658 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1659 map->m_pblk, status);
1660 if (ret != 0)
1661 retval = ret;
5356f261
AK
1662 }
1663
1664out_unlock:
1665 up_read((&EXT4_I(inode)->i_data_sem));
1666
1667 return retval;
1668}
1669
64769240 1670/*
b920c755
TT
1671 * This is a special get_blocks_t callback which is used by
1672 * ext4_da_write_begin(). It will either return mapped block or
1673 * reserve space for a single block.
29fa89d0
AK
1674 *
1675 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1676 * We also have b_blocknr = -1 and b_bdev initialized properly
1677 *
1678 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1679 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1680 * initialized properly.
64769240 1681 */
9c3569b5
TM
1682int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1683 struct buffer_head *bh, int create)
64769240 1684{
2ed88685 1685 struct ext4_map_blocks map;
64769240
AT
1686 int ret = 0;
1687
1688 BUG_ON(create == 0);
2ed88685
TT
1689 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1690
1691 map.m_lblk = iblock;
1692 map.m_len = 1;
64769240
AT
1693
1694 /*
1695 * first, we need to know whether the block is allocated already
1696 * preallocated blocks are unmapped but should treated
1697 * the same as allocated blocks.
1698 */
5356f261
AK
1699 ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1700 if (ret <= 0)
2ed88685 1701 return ret;
64769240 1702
2ed88685
TT
1703 map_bh(bh, inode->i_sb, map.m_pblk);
1704 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1705
1706 if (buffer_unwritten(bh)) {
1707 /* A delayed write to unwritten bh should be marked
1708 * new and mapped. Mapped ensures that we don't do
1709 * get_block multiple times when we write to the same
1710 * offset and new ensures that we do proper zero out
1711 * for partial write.
1712 */
1713 set_buffer_new(bh);
c8205636 1714 set_buffer_mapped(bh);
2ed88685
TT
1715 }
1716 return 0;
64769240 1717}
61628a3f 1718
62e086be
AK
1719static int bget_one(handle_t *handle, struct buffer_head *bh)
1720{
1721 get_bh(bh);
1722 return 0;
1723}
1724
1725static int bput_one(handle_t *handle, struct buffer_head *bh)
1726{
1727 put_bh(bh);
1728 return 0;
1729}
1730
1731static int __ext4_journalled_writepage(struct page *page,
62e086be
AK
1732 unsigned int len)
1733{
1734 struct address_space *mapping = page->mapping;
1735 struct inode *inode = mapping->host;
3fdcfb66 1736 struct buffer_head *page_bufs = NULL;
62e086be 1737 handle_t *handle = NULL;
3fdcfb66
TM
1738 int ret = 0, err = 0;
1739 int inline_data = ext4_has_inline_data(inode);
1740 struct buffer_head *inode_bh = NULL;
62e086be 1741
cb20d518 1742 ClearPageChecked(page);
3fdcfb66
TM
1743
1744 if (inline_data) {
1745 BUG_ON(page->index != 0);
1746 BUG_ON(len > ext4_get_max_inline_size(inode));
1747 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1748 if (inode_bh == NULL)
1749 goto out;
1750 } else {
1751 page_bufs = page_buffers(page);
1752 if (!page_bufs) {
1753 BUG();
1754 goto out;
1755 }
1756 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1757 NULL, bget_one);
1758 }
62e086be
AK
1759 /* As soon as we unlock the page, it can go away, but we have
1760 * references to buffers so we are safe */
1761 unlock_page(page);
1762
9924a92a
TT
1763 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1764 ext4_writepage_trans_blocks(inode));
62e086be
AK
1765 if (IS_ERR(handle)) {
1766 ret = PTR_ERR(handle);
1767 goto out;
1768 }
1769
441c8508
CW
1770 BUG_ON(!ext4_handle_valid(handle));
1771
3fdcfb66 1772 if (inline_data) {
5d601255 1773 BUFFER_TRACE(inode_bh, "get write access");
3fdcfb66 1774 ret = ext4_journal_get_write_access(handle, inode_bh);
62e086be 1775
3fdcfb66
TM
1776 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
1777
1778 } else {
1779 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1780 do_journal_get_write_access);
1781
1782 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1783 write_end_fn);
1784 }
62e086be
AK
1785 if (ret == 0)
1786 ret = err;
2d859db3 1787 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
62e086be
AK
1788 err = ext4_journal_stop(handle);
1789 if (!ret)
1790 ret = err;
1791
3fdcfb66 1792 if (!ext4_has_inline_data(inode))
8c9367fd 1793 ext4_walk_page_buffers(NULL, page_bufs, 0, len,
3fdcfb66 1794 NULL, bput_one);
19f5fb7a 1795 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
62e086be 1796out:
3fdcfb66 1797 brelse(inode_bh);
62e086be
AK
1798 return ret;
1799}
1800
61628a3f 1801/*
43ce1d23
AK
1802 * Note that we don't need to start a transaction unless we're journaling data
1803 * because we should have holes filled from ext4_page_mkwrite(). We even don't
1804 * need to file the inode to the transaction's list in ordered mode because if
1805 * we are writing back data added by write(), the inode is already there and if
25985edc 1806 * we are writing back data modified via mmap(), no one guarantees in which
43ce1d23
AK
1807 * transaction the data will hit the disk. In case we are journaling data, we
1808 * cannot start transaction directly because transaction start ranks above page
1809 * lock so we have to do some magic.
1810 *
b920c755 1811 * This function can get called via...
20970ba6 1812 * - ext4_writepages after taking page lock (have journal handle)
b920c755 1813 * - journal_submit_inode_data_buffers (no journal handle)
f6463b0d 1814 * - shrink_page_list via the kswapd/direct reclaim (no journal handle)
b920c755 1815 * - grab_page_cache when doing write_begin (have journal handle)
43ce1d23
AK
1816 *
1817 * We don't do any block allocation in this function. If we have page with
1818 * multiple blocks we need to write those buffer_heads that are mapped. This
1819 * is important for mmaped based write. So if we do with blocksize 1K
1820 * truncate(f, 1024);
1821 * a = mmap(f, 0, 4096);
1822 * a[0] = 'a';
1823 * truncate(f, 4096);
1824 * we have in the page first buffer_head mapped via page_mkwrite call back
90802ed9 1825 * but other buffer_heads would be unmapped but dirty (dirty done via the
43ce1d23
AK
1826 * do_wp_page). So writepage should write the first block. If we modify
1827 * the mmap area beyond 1024 we will again get a page_fault and the
1828 * page_mkwrite callback will do the block allocation and mark the
1829 * buffer_heads mapped.
1830 *
1831 * We redirty the page if we have any buffer_heads that is either delay or
1832 * unwritten in the page.
1833 *
1834 * We can get recursively called as show below.
1835 *
1836 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1837 * ext4_writepage()
1838 *
1839 * But since we don't do any block allocation we should not deadlock.
1840 * Page also have the dirty flag cleared so we don't get recurive page_lock.
61628a3f 1841 */
43ce1d23 1842static int ext4_writepage(struct page *page,
62e086be 1843 struct writeback_control *wbc)
64769240 1844{
f8bec370 1845 int ret = 0;
61628a3f 1846 loff_t size;
498e5f24 1847 unsigned int len;
744692dc 1848 struct buffer_head *page_bufs = NULL;
61628a3f 1849 struct inode *inode = page->mapping->host;
36ade451 1850 struct ext4_io_submit io_submit;
1c8349a1 1851 bool keep_towrite = false;
61628a3f 1852
a9c667f8 1853 trace_ext4_writepage(page);
f0e6c985
AK
1854 size = i_size_read(inode);
1855 if (page->index == size >> PAGE_CACHE_SHIFT)
1856 len = size & ~PAGE_CACHE_MASK;
1857 else
1858 len = PAGE_CACHE_SIZE;
64769240 1859
a42afc5f 1860 page_bufs = page_buffers(page);
a42afc5f 1861 /*
fe386132
JK
1862 * We cannot do block allocation or other extent handling in this
1863 * function. If there are buffers needing that, we have to redirty
1864 * the page. But we may reach here when we do a journal commit via
1865 * journal_submit_inode_data_buffers() and in that case we must write
1866 * allocated buffers to achieve data=ordered mode guarantees.
a42afc5f 1867 */
f19d5870
TM
1868 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
1869 ext4_bh_delay_or_unwritten)) {
f8bec370 1870 redirty_page_for_writepage(wbc, page);
fe386132
JK
1871 if (current->flags & PF_MEMALLOC) {
1872 /*
1873 * For memory cleaning there's no point in writing only
1874 * some buffers. So just bail out. Warn if we came here
1875 * from direct reclaim.
1876 */
1877 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
1878 == PF_MEMALLOC);
f0e6c985
AK
1879 unlock_page(page);
1880 return 0;
1881 }
1c8349a1 1882 keep_towrite = true;
a42afc5f 1883 }
64769240 1884
cb20d518 1885 if (PageChecked(page) && ext4_should_journal_data(inode))
43ce1d23
AK
1886 /*
1887 * It's mmapped pagecache. Add buffers and journal it. There
1888 * doesn't seem much point in redirtying the page here.
1889 */
3f0ca309 1890 return __ext4_journalled_writepage(page, len);
43ce1d23 1891
97a851ed
JK
1892 ext4_io_submit_init(&io_submit, wbc);
1893 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
1894 if (!io_submit.io_end) {
1895 redirty_page_for_writepage(wbc, page);
1896 unlock_page(page);
1897 return -ENOMEM;
1898 }
1c8349a1 1899 ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
36ade451 1900 ext4_io_submit(&io_submit);
97a851ed
JK
1901 /* Drop io_end reference we got from init */
1902 ext4_put_io_end_defer(io_submit.io_end);
64769240
AT
1903 return ret;
1904}
1905
5f1132b2
JK
1906static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
1907{
1908 int len;
1909 loff_t size = i_size_read(mpd->inode);
1910 int err;
1911
1912 BUG_ON(page->index != mpd->first_page);
1913 if (page->index == size >> PAGE_CACHE_SHIFT)
1914 len = size & ~PAGE_CACHE_MASK;
1915 else
1916 len = PAGE_CACHE_SIZE;
1917 clear_page_dirty_for_io(page);
1c8349a1 1918 err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
5f1132b2
JK
1919 if (!err)
1920 mpd->wbc->nr_to_write--;
1921 mpd->first_page++;
1922
1923 return err;
1924}
1925
4e7ea81d
JK
1926#define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
1927
61628a3f 1928/*
fffb2739
JK
1929 * mballoc gives us at most this number of blocks...
1930 * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
70261f56 1931 * The rest of mballoc seems to handle chunks up to full group size.
61628a3f 1932 */
fffb2739 1933#define MAX_WRITEPAGES_EXTENT_LEN 2048
525f4ed8 1934
4e7ea81d
JK
1935/*
1936 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
1937 *
1938 * @mpd - extent of blocks
1939 * @lblk - logical number of the block in the file
09930042 1940 * @bh - buffer head we want to add to the extent
4e7ea81d 1941 *
09930042
JK
1942 * The function is used to collect contig. blocks in the same state. If the
1943 * buffer doesn't require mapping for writeback and we haven't started the
1944 * extent of buffers to map yet, the function returns 'true' immediately - the
1945 * caller can write the buffer right away. Otherwise the function returns true
1946 * if the block has been added to the extent, false if the block couldn't be
1947 * added.
4e7ea81d 1948 */
09930042
JK
1949static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
1950 struct buffer_head *bh)
4e7ea81d
JK
1951{
1952 struct ext4_map_blocks *map = &mpd->map;
1953
09930042
JK
1954 /* Buffer that doesn't need mapping for writeback? */
1955 if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
1956 (!buffer_delay(bh) && !buffer_unwritten(bh))) {
1957 /* So far no extent to map => we write the buffer right away */
1958 if (map->m_len == 0)
1959 return true;
1960 return false;
1961 }
4e7ea81d
JK
1962
1963 /* First block in the extent? */
1964 if (map->m_len == 0) {
1965 map->m_lblk = lblk;
1966 map->m_len = 1;
09930042
JK
1967 map->m_flags = bh->b_state & BH_FLAGS;
1968 return true;
4e7ea81d
JK
1969 }
1970
09930042
JK
1971 /* Don't go larger than mballoc is willing to allocate */
1972 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
1973 return false;
1974
4e7ea81d
JK
1975 /* Can we merge the block to our big extent? */
1976 if (lblk == map->m_lblk + map->m_len &&
09930042 1977 (bh->b_state & BH_FLAGS) == map->m_flags) {
4e7ea81d 1978 map->m_len++;
09930042 1979 return true;
4e7ea81d 1980 }
09930042 1981 return false;
4e7ea81d
JK
1982}
1983
5f1132b2
JK
1984/*
1985 * mpage_process_page_bufs - submit page buffers for IO or add them to extent
1986 *
1987 * @mpd - extent of blocks for mapping
1988 * @head - the first buffer in the page
1989 * @bh - buffer we should start processing from
1990 * @lblk - logical number of the block in the file corresponding to @bh
1991 *
1992 * Walk through page buffers from @bh upto @head (exclusive) and either submit
1993 * the page for IO if all buffers in this page were mapped and there's no
1994 * accumulated extent of buffers to map or add buffers in the page to the
1995 * extent of buffers to map. The function returns 1 if the caller can continue
1996 * by processing the next page, 0 if it should stop adding buffers to the
1997 * extent to map because we cannot extend it anymore. It can also return value
1998 * < 0 in case of error during IO submission.
1999 */
2000static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2001 struct buffer_head *head,
2002 struct buffer_head *bh,
2003 ext4_lblk_t lblk)
4e7ea81d
JK
2004{
2005 struct inode *inode = mpd->inode;
5f1132b2 2006 int err;
4e7ea81d
JK
2007 ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1)
2008 >> inode->i_blkbits;
2009
2010 do {
2011 BUG_ON(buffer_locked(bh));
2012
09930042 2013 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
4e7ea81d
JK
2014 /* Found extent to map? */
2015 if (mpd->map.m_len)
5f1132b2 2016 return 0;
09930042 2017 /* Everything mapped so far and we hit EOF */
5f1132b2 2018 break;
4e7ea81d 2019 }
4e7ea81d 2020 } while (lblk++, (bh = bh->b_this_page) != head);
5f1132b2
JK
2021 /* So far everything mapped? Submit the page for IO. */
2022 if (mpd->map.m_len == 0) {
2023 err = mpage_submit_page(mpd, head->b_page);
2024 if (err < 0)
2025 return err;
2026 }
2027 return lblk < blocks;
4e7ea81d
JK
2028}
2029
2030/*
2031 * mpage_map_buffers - update buffers corresponding to changed extent and
2032 * submit fully mapped pages for IO
2033 *
2034 * @mpd - description of extent to map, on return next extent to map
2035 *
2036 * Scan buffers corresponding to changed extent (we expect corresponding pages
2037 * to be already locked) and update buffer state according to new extent state.
2038 * We map delalloc buffers to their physical location, clear unwritten bits,
556615dc 2039 * and mark buffers as uninit when we perform writes to unwritten extents
4e7ea81d
JK
2040 * and do extent conversion after IO is finished. If the last page is not fully
2041 * mapped, we update @map to the next extent in the last page that needs
2042 * mapping. Otherwise we submit the page for IO.
2043 */
2044static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2045{
2046 struct pagevec pvec;
2047 int nr_pages, i;
2048 struct inode *inode = mpd->inode;
2049 struct buffer_head *head, *bh;
2050 int bpp_bits = PAGE_CACHE_SHIFT - inode->i_blkbits;
4e7ea81d
JK
2051 pgoff_t start, end;
2052 ext4_lblk_t lblk;
2053 sector_t pblock;
2054 int err;
2055
2056 start = mpd->map.m_lblk >> bpp_bits;
2057 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2058 lblk = start << bpp_bits;
2059 pblock = mpd->map.m_pblk;
2060
2061 pagevec_init(&pvec, 0);
2062 while (start <= end) {
2063 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start,
2064 PAGEVEC_SIZE);
2065 if (nr_pages == 0)
2066 break;
2067 for (i = 0; i < nr_pages; i++) {
2068 struct page *page = pvec.pages[i];
2069
2070 if (page->index > end)
2071 break;
70261f56 2072 /* Up to 'end' pages must be contiguous */
4e7ea81d
JK
2073 BUG_ON(page->index != start);
2074 bh = head = page_buffers(page);
2075 do {
2076 if (lblk < mpd->map.m_lblk)
2077 continue;
2078 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2079 /*
2080 * Buffer after end of mapped extent.
2081 * Find next buffer in the page to map.
2082 */
2083 mpd->map.m_len = 0;
2084 mpd->map.m_flags = 0;
5f1132b2
JK
2085 /*
2086 * FIXME: If dioread_nolock supports
2087 * blocksize < pagesize, we need to make
2088 * sure we add size mapped so far to
2089 * io_end->size as the following call
2090 * can submit the page for IO.
2091 */
2092 err = mpage_process_page_bufs(mpd, head,
2093 bh, lblk);
4e7ea81d 2094 pagevec_release(&pvec);
5f1132b2
JK
2095 if (err > 0)
2096 err = 0;
2097 return err;
4e7ea81d
JK
2098 }
2099 if (buffer_delay(bh)) {
2100 clear_buffer_delay(bh);
2101 bh->b_blocknr = pblock++;
2102 }
4e7ea81d 2103 clear_buffer_unwritten(bh);
5f1132b2 2104 } while (lblk++, (bh = bh->b_this_page) != head);
4e7ea81d
JK
2105
2106 /*
2107 * FIXME: This is going to break if dioread_nolock
2108 * supports blocksize < pagesize as we will try to
2109 * convert potentially unmapped parts of inode.
2110 */
2111 mpd->io_submit.io_end->size += PAGE_CACHE_SIZE;
2112 /* Page fully mapped - let IO run! */
2113 err = mpage_submit_page(mpd, page);
2114 if (err < 0) {
2115 pagevec_release(&pvec);
2116 return err;
2117 }
2118 start++;
2119 }
2120 pagevec_release(&pvec);
2121 }
2122 /* Extent fully mapped and matches with page boundary. We are done. */
2123 mpd->map.m_len = 0;
2124 mpd->map.m_flags = 0;
2125 return 0;
2126}
2127
2128static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2129{
2130 struct inode *inode = mpd->inode;
2131 struct ext4_map_blocks *map = &mpd->map;
2132 int get_blocks_flags;
090f32ee 2133 int err, dioread_nolock;
4e7ea81d
JK
2134
2135 trace_ext4_da_write_pages_extent(inode, map);
2136 /*
2137 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
556615dc 2138 * to convert an unwritten extent to be initialized (in the case
4e7ea81d
JK
2139 * where we have written into one or more preallocated blocks). It is
2140 * possible that we're going to need more metadata blocks than
2141 * previously reserved. However we must not fail because we're in
2142 * writeback and there is nothing we can do about it so it might result
2143 * in data loss. So use reserved blocks to allocate metadata if
2144 * possible.
2145 *
2146 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if the blocks
2147 * in question are delalloc blocks. This affects functions in many
2148 * different parts of the allocation call path. This flag exists
2149 * primarily because we don't want to change *many* call functions, so
2150 * ext4_map_blocks() will set the EXT4_STATE_DELALLOC_RESERVED flag
2151 * once the inode's allocation semaphore is taken.
2152 */
2153 get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2154 EXT4_GET_BLOCKS_METADATA_NOFAIL;
090f32ee
LC
2155 dioread_nolock = ext4_should_dioread_nolock(inode);
2156 if (dioread_nolock)
4e7ea81d
JK
2157 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2158 if (map->m_flags & (1 << BH_Delay))
2159 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2160
2161 err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2162 if (err < 0)
2163 return err;
090f32ee 2164 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
6b523df4
JK
2165 if (!mpd->io_submit.io_end->handle &&
2166 ext4_handle_valid(handle)) {
2167 mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2168 handle->h_rsv_handle = NULL;
2169 }
3613d228 2170 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
6b523df4 2171 }
4e7ea81d
JK
2172
2173 BUG_ON(map->m_len == 0);
2174 if (map->m_flags & EXT4_MAP_NEW) {
2175 struct block_device *bdev = inode->i_sb->s_bdev;
2176 int i;
2177
2178 for (i = 0; i < map->m_len; i++)
2179 unmap_underlying_metadata(bdev, map->m_pblk + i);
2180 }
2181 return 0;
2182}
2183
2184/*
2185 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2186 * mpd->len and submit pages underlying it for IO
2187 *
2188 * @handle - handle for journal operations
2189 * @mpd - extent to map
7534e854
JK
2190 * @give_up_on_write - we set this to true iff there is a fatal error and there
2191 * is no hope of writing the data. The caller should discard
2192 * dirty pages to avoid infinite loops.
4e7ea81d
JK
2193 *
2194 * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2195 * delayed, blocks are allocated, if it is unwritten, we may need to convert
2196 * them to initialized or split the described range from larger unwritten
2197 * extent. Note that we need not map all the described range since allocation
2198 * can return less blocks or the range is covered by more unwritten extents. We
2199 * cannot map more because we are limited by reserved transaction credits. On
2200 * the other hand we always make sure that the last touched page is fully
2201 * mapped so that it can be written out (and thus forward progress is
2202 * guaranteed). After mapping we submit all mapped pages for IO.
2203 */
2204static int mpage_map_and_submit_extent(handle_t *handle,
cb530541
TT
2205 struct mpage_da_data *mpd,
2206 bool *give_up_on_write)
4e7ea81d
JK
2207{
2208 struct inode *inode = mpd->inode;
2209 struct ext4_map_blocks *map = &mpd->map;
2210 int err;
2211 loff_t disksize;
2212
2213 mpd->io_submit.io_end->offset =
2214 ((loff_t)map->m_lblk) << inode->i_blkbits;
27d7c4ed 2215 do {
4e7ea81d
JK
2216 err = mpage_map_one_extent(handle, mpd);
2217 if (err < 0) {
2218 struct super_block *sb = inode->i_sb;
2219
cb530541
TT
2220 if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2221 goto invalidate_dirty_pages;
4e7ea81d 2222 /*
cb530541
TT
2223 * Let the uper layers retry transient errors.
2224 * In the case of ENOSPC, if ext4_count_free_blocks()
2225 * is non-zero, a commit should free up blocks.
4e7ea81d 2226 */
cb530541
TT
2227 if ((err == -ENOMEM) ||
2228 (err == -ENOSPC && ext4_count_free_clusters(sb)))
2229 return err;
2230 ext4_msg(sb, KERN_CRIT,
2231 "Delayed block allocation failed for "
2232 "inode %lu at logical offset %llu with"
2233 " max blocks %u with error %d",
2234 inode->i_ino,
2235 (unsigned long long)map->m_lblk,
2236 (unsigned)map->m_len, -err);
2237 ext4_msg(sb, KERN_CRIT,
2238 "This should not happen!! Data will "
2239 "be lost\n");
2240 if (err == -ENOSPC)
2241 ext4_print_free_blocks(inode);
2242 invalidate_dirty_pages:
2243 *give_up_on_write = true;
4e7ea81d
JK
2244 return err;
2245 }
2246 /*
2247 * Update buffer state, submit mapped pages, and get us new
2248 * extent to map
2249 */
2250 err = mpage_map_and_submit_buffers(mpd);
2251 if (err < 0)
2252 return err;
27d7c4ed 2253 } while (map->m_len);
4e7ea81d 2254
622cad13
TT
2255 /*
2256 * Update on-disk size after IO is submitted. Races with
2257 * truncate are avoided by checking i_size under i_data_sem.
2258 */
4e7ea81d 2259 disksize = ((loff_t)mpd->first_page) << PAGE_CACHE_SHIFT;
4e7ea81d
JK
2260 if (disksize > EXT4_I(inode)->i_disksize) {
2261 int err2;
622cad13
TT
2262 loff_t i_size;
2263
2264 down_write(&EXT4_I(inode)->i_data_sem);
2265 i_size = i_size_read(inode);
2266 if (disksize > i_size)
2267 disksize = i_size;
2268 if (disksize > EXT4_I(inode)->i_disksize)
2269 EXT4_I(inode)->i_disksize = disksize;
4e7ea81d 2270 err2 = ext4_mark_inode_dirty(handle, inode);
622cad13 2271 up_write(&EXT4_I(inode)->i_data_sem);
4e7ea81d
JK
2272 if (err2)
2273 ext4_error(inode->i_sb,
2274 "Failed to mark inode %lu dirty",
2275 inode->i_ino);
2276 if (!err)
2277 err = err2;
2278 }
2279 return err;
2280}
2281
fffb2739
JK
2282/*
2283 * Calculate the total number of credits to reserve for one writepages
20970ba6 2284 * iteration. This is called from ext4_writepages(). We map an extent of
70261f56 2285 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
fffb2739
JK
2286 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2287 * bpp - 1 blocks in bpp different extents.
2288 */
525f4ed8
MC
2289static int ext4_da_writepages_trans_blocks(struct inode *inode)
2290{
fffb2739 2291 int bpp = ext4_journal_blocks_per_page(inode);
525f4ed8 2292
fffb2739
JK
2293 return ext4_meta_trans_blocks(inode,
2294 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
525f4ed8 2295}
61628a3f 2296
8e48dcfb 2297/*
4e7ea81d
JK
2298 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2299 * and underlying extent to map
2300 *
2301 * @mpd - where to look for pages
2302 *
2303 * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2304 * IO immediately. When we find a page which isn't mapped we start accumulating
2305 * extent of buffers underlying these pages that needs mapping (formed by
2306 * either delayed or unwritten buffers). We also lock the pages containing
2307 * these buffers. The extent found is returned in @mpd structure (starting at
2308 * mpd->lblk with length mpd->len blocks).
2309 *
2310 * Note that this function can attach bios to one io_end structure which are
2311 * neither logically nor physically contiguous. Although it may seem as an
2312 * unnecessary complication, it is actually inevitable in blocksize < pagesize
2313 * case as we need to track IO to all buffers underlying a page in one io_end.
8e48dcfb 2314 */
4e7ea81d 2315static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
8e48dcfb 2316{
4e7ea81d
JK
2317 struct address_space *mapping = mpd->inode->i_mapping;
2318 struct pagevec pvec;
2319 unsigned int nr_pages;
aeac589a 2320 long left = mpd->wbc->nr_to_write;
4e7ea81d
JK
2321 pgoff_t index = mpd->first_page;
2322 pgoff_t end = mpd->last_page;
2323 int tag;
2324 int i, err = 0;
2325 int blkbits = mpd->inode->i_blkbits;
2326 ext4_lblk_t lblk;
2327 struct buffer_head *head;
8e48dcfb 2328
4e7ea81d 2329 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
5b41d924
ES
2330 tag = PAGECACHE_TAG_TOWRITE;
2331 else
2332 tag = PAGECACHE_TAG_DIRTY;
2333
4e7ea81d
JK
2334 pagevec_init(&pvec, 0);
2335 mpd->map.m_len = 0;
2336 mpd->next_page = index;
4f01b02c 2337 while (index <= end) {
5b41d924 2338 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
8e48dcfb
TT
2339 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2340 if (nr_pages == 0)
4e7ea81d 2341 goto out;
8e48dcfb
TT
2342
2343 for (i = 0; i < nr_pages; i++) {
2344 struct page *page = pvec.pages[i];
2345
2346 /*
2347 * At this point, the page may be truncated or
2348 * invalidated (changing page->mapping to NULL), or
2349 * even swizzled back from swapper_space to tmpfs file
2350 * mapping. However, page->index will not change
2351 * because we have a reference on the page.
2352 */
4f01b02c
TT
2353 if (page->index > end)
2354 goto out;
8e48dcfb 2355
aeac589a
ML
2356 /*
2357 * Accumulated enough dirty pages? This doesn't apply
2358 * to WB_SYNC_ALL mode. For integrity sync we have to
2359 * keep going because someone may be concurrently
2360 * dirtying pages, and we might have synced a lot of
2361 * newly appeared dirty pages, but have not synced all
2362 * of the old dirty pages.
2363 */
2364 if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2365 goto out;
2366
4e7ea81d
JK
2367 /* If we can't merge this page, we are done. */
2368 if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2369 goto out;
78aaced3 2370
8e48dcfb 2371 lock_page(page);
8e48dcfb 2372 /*
4e7ea81d
JK
2373 * If the page is no longer dirty, or its mapping no
2374 * longer corresponds to inode we are writing (which
2375 * means it has been truncated or invalidated), or the
2376 * page is already under writeback and we are not doing
2377 * a data integrity writeback, skip the page
8e48dcfb 2378 */
4f01b02c
TT
2379 if (!PageDirty(page) ||
2380 (PageWriteback(page) &&
4e7ea81d 2381 (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
4f01b02c 2382 unlikely(page->mapping != mapping)) {
8e48dcfb
TT
2383 unlock_page(page);
2384 continue;
2385 }
2386
7cb1a535 2387 wait_on_page_writeback(page);
8e48dcfb 2388 BUG_ON(PageWriteback(page));
8e48dcfb 2389
4e7ea81d 2390 if (mpd->map.m_len == 0)
8eb9e5ce 2391 mpd->first_page = page->index;
8eb9e5ce 2392 mpd->next_page = page->index + 1;
f8bec370 2393 /* Add all dirty buffers to mpd */
4e7ea81d
JK
2394 lblk = ((ext4_lblk_t)page->index) <<
2395 (PAGE_CACHE_SHIFT - blkbits);
f8bec370 2396 head = page_buffers(page);
5f1132b2
JK
2397 err = mpage_process_page_bufs(mpd, head, head, lblk);
2398 if (err <= 0)
4e7ea81d 2399 goto out;
5f1132b2 2400 err = 0;
aeac589a 2401 left--;
8e48dcfb
TT
2402 }
2403 pagevec_release(&pvec);
2404 cond_resched();
2405 }
4f01b02c 2406 return 0;
8eb9e5ce
TT
2407out:
2408 pagevec_release(&pvec);
4e7ea81d 2409 return err;
8e48dcfb
TT
2410}
2411
20970ba6
TT
2412static int __writepage(struct page *page, struct writeback_control *wbc,
2413 void *data)
2414{
2415 struct address_space *mapping = data;
2416 int ret = ext4_writepage(page, wbc);
2417 mapping_set_error(mapping, ret);
2418 return ret;
2419}
2420
2421static int ext4_writepages(struct address_space *mapping,
2422 struct writeback_control *wbc)
64769240 2423{
4e7ea81d
JK
2424 pgoff_t writeback_index = 0;
2425 long nr_to_write = wbc->nr_to_write;
22208ded 2426 int range_whole = 0;
4e7ea81d 2427 int cycled = 1;
61628a3f 2428 handle_t *handle = NULL;
df22291f 2429 struct mpage_da_data mpd;
5e745b04 2430 struct inode *inode = mapping->host;
6b523df4 2431 int needed_blocks, rsv_blocks = 0, ret = 0;
5e745b04 2432 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
4e7ea81d 2433 bool done;
1bce63d1 2434 struct blk_plug plug;
cb530541 2435 bool give_up_on_write = false;
61628a3f 2436
20970ba6 2437 trace_ext4_writepages(inode, wbc);
ba80b101 2438
61628a3f
MC
2439 /*
2440 * No pages to write? This is mainly a kludge to avoid starting
2441 * a transaction for special inodes like journal inode on last iput()
2442 * because that could violate lock ordering on umount
2443 */
a1d6cc56 2444 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
bbf023c7 2445 goto out_writepages;
2a21e37e 2446
20970ba6
TT
2447 if (ext4_should_journal_data(inode)) {
2448 struct blk_plug plug;
20970ba6
TT
2449
2450 blk_start_plug(&plug);
2451 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2452 blk_finish_plug(&plug);
bbf023c7 2453 goto out_writepages;
20970ba6
TT
2454 }
2455
2a21e37e
TT
2456 /*
2457 * If the filesystem has aborted, it is read-only, so return
2458 * right away instead of dumping stack traces later on that
2459 * will obscure the real source of the problem. We test
4ab2f15b 2460 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2a21e37e 2461 * the latter could be true if the filesystem is mounted
20970ba6 2462 * read-only, and in that case, ext4_writepages should
2a21e37e
TT
2463 * *never* be called, so if that ever happens, we would want
2464 * the stack trace.
2465 */
bbf023c7
ML
2466 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2467 ret = -EROFS;
2468 goto out_writepages;
2469 }
2a21e37e 2470
6b523df4
JK
2471 if (ext4_should_dioread_nolock(inode)) {
2472 /*
70261f56 2473 * We may need to convert up to one extent per block in
6b523df4
JK
2474 * the page and we may dirty the inode.
2475 */
2476 rsv_blocks = 1 + (PAGE_CACHE_SIZE >> inode->i_blkbits);
2477 }
2478
4e7ea81d
JK
2479 /*
2480 * If we have inline data and arrive here, it means that
2481 * we will soon create the block for the 1st page, so
2482 * we'd better clear the inline data here.
2483 */
2484 if (ext4_has_inline_data(inode)) {
2485 /* Just inode will be modified... */
2486 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2487 if (IS_ERR(handle)) {
2488 ret = PTR_ERR(handle);
2489 goto out_writepages;
2490 }
2491 BUG_ON(ext4_test_inode_state(inode,
2492 EXT4_STATE_MAY_INLINE_DATA));
2493 ext4_destroy_inline_data(handle, inode);
2494 ext4_journal_stop(handle);
2495 }
2496
22208ded
AK
2497 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2498 range_whole = 1;
61628a3f 2499
2acf2c26 2500 if (wbc->range_cyclic) {
4e7ea81d
JK
2501 writeback_index = mapping->writeback_index;
2502 if (writeback_index)
2acf2c26 2503 cycled = 0;
4e7ea81d
JK
2504 mpd.first_page = writeback_index;
2505 mpd.last_page = -1;
5b41d924 2506 } else {
4e7ea81d
JK
2507 mpd.first_page = wbc->range_start >> PAGE_CACHE_SHIFT;
2508 mpd.last_page = wbc->range_end >> PAGE_CACHE_SHIFT;
5b41d924 2509 }
a1d6cc56 2510
4e7ea81d
JK
2511 mpd.inode = inode;
2512 mpd.wbc = wbc;
2513 ext4_io_submit_init(&mpd.io_submit, wbc);
2acf2c26 2514retry:
6e6938b6 2515 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
4e7ea81d
JK
2516 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2517 done = false;
1bce63d1 2518 blk_start_plug(&plug);
4e7ea81d
JK
2519 while (!done && mpd.first_page <= mpd.last_page) {
2520 /* For each extent of pages we use new io_end */
2521 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2522 if (!mpd.io_submit.io_end) {
2523 ret = -ENOMEM;
2524 break;
2525 }
a1d6cc56
AK
2526
2527 /*
4e7ea81d
JK
2528 * We have two constraints: We find one extent to map and we
2529 * must always write out whole page (makes a difference when
2530 * blocksize < pagesize) so that we don't block on IO when we
2531 * try to write out the rest of the page. Journalled mode is
2532 * not supported by delalloc.
a1d6cc56
AK
2533 */
2534 BUG_ON(ext4_should_journal_data(inode));
525f4ed8 2535 needed_blocks = ext4_da_writepages_trans_blocks(inode);
a1d6cc56 2536
4e7ea81d 2537 /* start a new transaction */
6b523df4
JK
2538 handle = ext4_journal_start_with_reserve(inode,
2539 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
61628a3f
MC
2540 if (IS_ERR(handle)) {
2541 ret = PTR_ERR(handle);
1693918e 2542 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
fbe845dd 2543 "%ld pages, ino %lu; err %d", __func__,
a1d6cc56 2544 wbc->nr_to_write, inode->i_ino, ret);
4e7ea81d
JK
2545 /* Release allocated io_end */
2546 ext4_put_io_end(mpd.io_submit.io_end);
2547 break;
61628a3f 2548 }
f63e6005 2549
4e7ea81d
JK
2550 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2551 ret = mpage_prepare_extent_to_map(&mpd);
2552 if (!ret) {
2553 if (mpd.map.m_len)
cb530541
TT
2554 ret = mpage_map_and_submit_extent(handle, &mpd,
2555 &give_up_on_write);
4e7ea81d
JK
2556 else {
2557 /*
2558 * We scanned the whole range (or exhausted
2559 * nr_to_write), submitted what was mapped and
2560 * didn't find anything needing mapping. We are
2561 * done.
2562 */
2563 done = true;
2564 }
f63e6005 2565 }
61628a3f 2566 ext4_journal_stop(handle);
4e7ea81d
JK
2567 /* Submit prepared bio */
2568 ext4_io_submit(&mpd.io_submit);
2569 /* Unlock pages we didn't use */
cb530541 2570 mpage_release_unused_pages(&mpd, give_up_on_write);
4e7ea81d
JK
2571 /* Drop our io_end reference we got from init */
2572 ext4_put_io_end(mpd.io_submit.io_end);
2573
2574 if (ret == -ENOSPC && sbi->s_journal) {
2575 /*
2576 * Commit the transaction which would
22208ded
AK
2577 * free blocks released in the transaction
2578 * and try again
2579 */
df22291f 2580 jbd2_journal_force_commit_nested(sbi->s_journal);
22208ded 2581 ret = 0;
4e7ea81d
JK
2582 continue;
2583 }
2584 /* Fatal error - ENOMEM, EIO... */
2585 if (ret)
61628a3f 2586 break;
a1d6cc56 2587 }
1bce63d1 2588 blk_finish_plug(&plug);
9c12a831 2589 if (!ret && !cycled && wbc->nr_to_write > 0) {
2acf2c26 2590 cycled = 1;
4e7ea81d
JK
2591 mpd.last_page = writeback_index - 1;
2592 mpd.first_page = 0;
2acf2c26
AK
2593 goto retry;
2594 }
22208ded
AK
2595
2596 /* Update index */
22208ded
AK
2597 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2598 /*
4e7ea81d 2599 * Set the writeback_index so that range_cyclic
22208ded
AK
2600 * mode will write it back later
2601 */
4e7ea81d 2602 mapping->writeback_index = mpd.first_page;
a1d6cc56 2603
61628a3f 2604out_writepages:
20970ba6
TT
2605 trace_ext4_writepages_result(inode, wbc, ret,
2606 nr_to_write - wbc->nr_to_write);
61628a3f 2607 return ret;
64769240
AT
2608}
2609
79f0be8d
AK
2610static int ext4_nonda_switch(struct super_block *sb)
2611{
5c1ff336 2612 s64 free_clusters, dirty_clusters;
79f0be8d
AK
2613 struct ext4_sb_info *sbi = EXT4_SB(sb);
2614
2615 /*
2616 * switch to non delalloc mode if we are running low
2617 * on free block. The free block accounting via percpu
179f7ebf 2618 * counters can get slightly wrong with percpu_counter_batch getting
79f0be8d
AK
2619 * accumulated on each CPU without updating global counters
2620 * Delalloc need an accurate free block accounting. So switch
2621 * to non delalloc when we are near to error range.
2622 */
5c1ff336
EW
2623 free_clusters =
2624 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2625 dirty_clusters =
2626 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
00d4e736
TT
2627 /*
2628 * Start pushing delalloc when 1/2 of free blocks are dirty.
2629 */
5c1ff336 2630 if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
10ee27a0 2631 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
00d4e736 2632
5c1ff336
EW
2633 if (2 * free_clusters < 3 * dirty_clusters ||
2634 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
79f0be8d 2635 /*
c8afb446
ES
2636 * free block count is less than 150% of dirty blocks
2637 * or free blocks is less than watermark
79f0be8d
AK
2638 */
2639 return 1;
2640 }
2641 return 0;
2642}
2643
64769240 2644static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
de9a55b8
TT
2645 loff_t pos, unsigned len, unsigned flags,
2646 struct page **pagep, void **fsdata)
64769240 2647{
72b8ab9d 2648 int ret, retries = 0;
64769240
AT
2649 struct page *page;
2650 pgoff_t index;
64769240
AT
2651 struct inode *inode = mapping->host;
2652 handle_t *handle;
2653
2654 index = pos >> PAGE_CACHE_SHIFT;
79f0be8d
AK
2655
2656 if (ext4_nonda_switch(inode->i_sb)) {
2657 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2658 return ext4_write_begin(file, mapping, pos,
2659 len, flags, pagep, fsdata);
2660 }
2661 *fsdata = (void *)0;
9bffad1e 2662 trace_ext4_da_write_begin(inode, pos, len, flags);
9c3569b5
TM
2663
2664 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2665 ret = ext4_da_write_inline_data_begin(mapping, inode,
2666 pos, len, flags,
2667 pagep, fsdata);
2668 if (ret < 0)
47564bfb
TT
2669 return ret;
2670 if (ret == 1)
2671 return 0;
9c3569b5
TM
2672 }
2673
47564bfb
TT
2674 /*
2675 * grab_cache_page_write_begin() can take a long time if the
2676 * system is thrashing due to memory pressure, or if the page
2677 * is being written back. So grab it first before we start
2678 * the transaction handle. This also allows us to allocate
2679 * the page (if needed) without using GFP_NOFS.
2680 */
2681retry_grab:
2682 page = grab_cache_page_write_begin(mapping, index, flags);
2683 if (!page)
2684 return -ENOMEM;
2685 unlock_page(page);
2686
64769240
AT
2687 /*
2688 * With delayed allocation, we don't log the i_disksize update
2689 * if there is delayed block allocation. But we still need
2690 * to journalling the i_disksize update if writes to the end
2691 * of file which has an already mapped buffer.
2692 */
47564bfb 2693retry_journal:
9924a92a 2694 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 1);
64769240 2695 if (IS_ERR(handle)) {
47564bfb
TT
2696 page_cache_release(page);
2697 return PTR_ERR(handle);
64769240
AT
2698 }
2699
47564bfb
TT
2700 lock_page(page);
2701 if (page->mapping != mapping) {
2702 /* The page got truncated from under us */
2703 unlock_page(page);
2704 page_cache_release(page);
d5a0d4f7 2705 ext4_journal_stop(handle);
47564bfb 2706 goto retry_grab;
d5a0d4f7 2707 }
47564bfb 2708 /* In case writeback began while the page was unlocked */
7afe5aa5 2709 wait_for_stable_page(page);
64769240 2710
6e1db88d 2711 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
64769240
AT
2712 if (ret < 0) {
2713 unlock_page(page);
2714 ext4_journal_stop(handle);
ae4d5372
AK
2715 /*
2716 * block_write_begin may have instantiated a few blocks
2717 * outside i_size. Trim these off again. Don't need
2718 * i_size_read because we hold i_mutex.
2719 */
2720 if (pos + len > inode->i_size)
b9a4207d 2721 ext4_truncate_failed_write(inode);
47564bfb
TT
2722
2723 if (ret == -ENOSPC &&
2724 ext4_should_retry_alloc(inode->i_sb, &retries))
2725 goto retry_journal;
2726
2727 page_cache_release(page);
2728 return ret;
64769240
AT
2729 }
2730
47564bfb 2731 *pagep = page;
64769240
AT
2732 return ret;
2733}
2734
632eaeab
MC
2735/*
2736 * Check if we should update i_disksize
2737 * when write to the end of file but not require block allocation
2738 */
2739static int ext4_da_should_update_i_disksize(struct page *page,
de9a55b8 2740 unsigned long offset)
632eaeab
MC
2741{
2742 struct buffer_head *bh;
2743 struct inode *inode = page->mapping->host;
2744 unsigned int idx;
2745 int i;
2746
2747 bh = page_buffers(page);
2748 idx = offset >> inode->i_blkbits;
2749
af5bc92d 2750 for (i = 0; i < idx; i++)
632eaeab
MC
2751 bh = bh->b_this_page;
2752
29fa89d0 2753 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
632eaeab
MC
2754 return 0;
2755 return 1;
2756}
2757
64769240 2758static int ext4_da_write_end(struct file *file,
de9a55b8
TT
2759 struct address_space *mapping,
2760 loff_t pos, unsigned len, unsigned copied,
2761 struct page *page, void *fsdata)
64769240
AT
2762{
2763 struct inode *inode = mapping->host;
2764 int ret = 0, ret2;
2765 handle_t *handle = ext4_journal_current_handle();
2766 loff_t new_i_size;
632eaeab 2767 unsigned long start, end;
79f0be8d
AK
2768 int write_mode = (int)(unsigned long)fsdata;
2769
74d553aa
TT
2770 if (write_mode == FALL_BACK_TO_NONDELALLOC)
2771 return ext4_write_end(file, mapping, pos,
2772 len, copied, page, fsdata);
632eaeab 2773
9bffad1e 2774 trace_ext4_da_write_end(inode, pos, len, copied);
632eaeab 2775 start = pos & (PAGE_CACHE_SIZE - 1);
af5bc92d 2776 end = start + copied - 1;
64769240
AT
2777
2778 /*
2779 * generic_write_end() will run mark_inode_dirty() if i_size
2780 * changes. So let's piggyback the i_disksize mark_inode_dirty
2781 * into that.
2782 */
64769240 2783 new_i_size = pos + copied;
ea51d132 2784 if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
9c3569b5
TM
2785 if (ext4_has_inline_data(inode) ||
2786 ext4_da_should_update_i_disksize(page, end)) {
632eaeab 2787 down_write(&EXT4_I(inode)->i_data_sem);
f3b59291 2788 if (new_i_size > EXT4_I(inode)->i_disksize)
632eaeab 2789 EXT4_I(inode)->i_disksize = new_i_size;
632eaeab 2790 up_write(&EXT4_I(inode)->i_data_sem);
cf17fea6
AK
2791 /* We need to mark inode dirty even if
2792 * new_i_size is less that inode->i_size
2793 * bu greater than i_disksize.(hint delalloc)
2794 */
2795 ext4_mark_inode_dirty(handle, inode);
64769240 2796 }
632eaeab 2797 }
9c3569b5
TM
2798
2799 if (write_mode != CONVERT_INLINE_DATA &&
2800 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2801 ext4_has_inline_data(inode))
2802 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
2803 page);
2804 else
2805 ret2 = generic_write_end(file, mapping, pos, len, copied,
64769240 2806 page, fsdata);
9c3569b5 2807
64769240
AT
2808 copied = ret2;
2809 if (ret2 < 0)
2810 ret = ret2;
2811 ret2 = ext4_journal_stop(handle);
2812 if (!ret)
2813 ret = ret2;
2814
2815 return ret ? ret : copied;
2816}
2817
d47992f8
LC
2818static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
2819 unsigned int length)
64769240 2820{
64769240
AT
2821 /*
2822 * Drop reserved blocks
2823 */
2824 BUG_ON(!PageLocked(page));
2825 if (!page_has_buffers(page))
2826 goto out;
2827
ca99fdd2 2828 ext4_da_page_release_reservation(page, offset, length);
64769240
AT
2829
2830out:
d47992f8 2831 ext4_invalidatepage(page, offset, length);
64769240
AT
2832
2833 return;
2834}
2835
ccd2506b
TT
2836/*
2837 * Force all delayed allocation blocks to be allocated for a given inode.
2838 */
2839int ext4_alloc_da_blocks(struct inode *inode)
2840{
fb40ba0d
TT
2841 trace_ext4_alloc_da_blocks(inode);
2842
ccd2506b
TT
2843 if (!EXT4_I(inode)->i_reserved_data_blocks &&
2844 !EXT4_I(inode)->i_reserved_meta_blocks)
2845 return 0;
2846
2847 /*
2848 * We do something simple for now. The filemap_flush() will
2849 * also start triggering a write of the data blocks, which is
2850 * not strictly speaking necessary (and for users of
2851 * laptop_mode, not even desirable). However, to do otherwise
2852 * would require replicating code paths in:
de9a55b8 2853 *
20970ba6 2854 * ext4_writepages() ->
ccd2506b
TT
2855 * write_cache_pages() ---> (via passed in callback function)
2856 * __mpage_da_writepage() -->
2857 * mpage_add_bh_to_extent()
2858 * mpage_da_map_blocks()
2859 *
2860 * The problem is that write_cache_pages(), located in
2861 * mm/page-writeback.c, marks pages clean in preparation for
2862 * doing I/O, which is not desirable if we're not planning on
2863 * doing I/O at all.
2864 *
2865 * We could call write_cache_pages(), and then redirty all of
380cf090 2866 * the pages by calling redirty_page_for_writepage() but that
ccd2506b
TT
2867 * would be ugly in the extreme. So instead we would need to
2868 * replicate parts of the code in the above functions,
25985edc 2869 * simplifying them because we wouldn't actually intend to
ccd2506b
TT
2870 * write out the pages, but rather only collect contiguous
2871 * logical block extents, call the multi-block allocator, and
2872 * then update the buffer heads with the block allocations.
de9a55b8 2873 *
ccd2506b
TT
2874 * For now, though, we'll cheat by calling filemap_flush(),
2875 * which will map the blocks, and start the I/O, but not
2876 * actually wait for the I/O to complete.
2877 */
2878 return filemap_flush(inode->i_mapping);
2879}
64769240 2880
ac27a0ec
DK
2881/*
2882 * bmap() is special. It gets used by applications such as lilo and by
2883 * the swapper to find the on-disk block of a specific piece of data.
2884 *
2885 * Naturally, this is dangerous if the block concerned is still in the
617ba13b 2886 * journal. If somebody makes a swapfile on an ext4 data-journaling
ac27a0ec
DK
2887 * filesystem and enables swap, then they may get a nasty shock when the
2888 * data getting swapped to that swapfile suddenly gets overwritten by
2889 * the original zero's written out previously to the journal and
2890 * awaiting writeback in the kernel's buffer cache.
2891 *
2892 * So, if we see any bmap calls here on a modified, data-journaled file,
2893 * take extra steps to flush any blocks which might be in the cache.
2894 */
617ba13b 2895static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
ac27a0ec
DK
2896{
2897 struct inode *inode = mapping->host;
2898 journal_t *journal;
2899 int err;
2900
46c7f254
TM
2901 /*
2902 * We can get here for an inline file via the FIBMAP ioctl
2903 */
2904 if (ext4_has_inline_data(inode))
2905 return 0;
2906
64769240
AT
2907 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2908 test_opt(inode->i_sb, DELALLOC)) {
2909 /*
2910 * With delalloc we want to sync the file
2911 * so that we can make sure we allocate
2912 * blocks for file
2913 */
2914 filemap_write_and_wait(mapping);
2915 }
2916
19f5fb7a
TT
2917 if (EXT4_JOURNAL(inode) &&
2918 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
ac27a0ec
DK
2919 /*
2920 * This is a REALLY heavyweight approach, but the use of
2921 * bmap on dirty files is expected to be extremely rare:
2922 * only if we run lilo or swapon on a freshly made file
2923 * do we expect this to happen.
2924 *
2925 * (bmap requires CAP_SYS_RAWIO so this does not
2926 * represent an unprivileged user DOS attack --- we'd be
2927 * in trouble if mortal users could trigger this path at
2928 * will.)
2929 *
617ba13b 2930 * NB. EXT4_STATE_JDATA is not set on files other than
ac27a0ec
DK
2931 * regular files. If somebody wants to bmap a directory
2932 * or symlink and gets confused because the buffer
2933 * hasn't yet been flushed to disk, they deserve
2934 * everything they get.
2935 */
2936
19f5fb7a 2937 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
617ba13b 2938 journal = EXT4_JOURNAL(inode);
dab291af
MC
2939 jbd2_journal_lock_updates(journal);
2940 err = jbd2_journal_flush(journal);
2941 jbd2_journal_unlock_updates(journal);
ac27a0ec
DK
2942
2943 if (err)
2944 return 0;
2945 }
2946
af5bc92d 2947 return generic_block_bmap(mapping, block, ext4_get_block);
ac27a0ec
DK
2948}
2949
617ba13b 2950static int ext4_readpage(struct file *file, struct page *page)
ac27a0ec 2951{
46c7f254
TM
2952 int ret = -EAGAIN;
2953 struct inode *inode = page->mapping->host;
2954
0562e0ba 2955 trace_ext4_readpage(page);
46c7f254
TM
2956
2957 if (ext4_has_inline_data(inode))
2958 ret = ext4_readpage_inline(inode, page);
2959
2960 if (ret == -EAGAIN)
2961 return mpage_readpage(page, ext4_get_block);
2962
2963 return ret;
ac27a0ec
DK
2964}
2965
2966static int
617ba13b 2967ext4_readpages(struct file *file, struct address_space *mapping,
ac27a0ec
DK
2968 struct list_head *pages, unsigned nr_pages)
2969{
46c7f254
TM
2970 struct inode *inode = mapping->host;
2971
2972 /* If the file has inline data, no need to do readpages. */
2973 if (ext4_has_inline_data(inode))
2974 return 0;
2975
617ba13b 2976 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
ac27a0ec
DK
2977}
2978
d47992f8
LC
2979static void ext4_invalidatepage(struct page *page, unsigned int offset,
2980 unsigned int length)
ac27a0ec 2981{
ca99fdd2 2982 trace_ext4_invalidatepage(page, offset, length);
0562e0ba 2983
4520fb3c
JK
2984 /* No journalling happens on data buffers when this function is used */
2985 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
2986
ca99fdd2 2987 block_invalidatepage(page, offset, length);
4520fb3c
JK
2988}
2989
53e87268 2990static int __ext4_journalled_invalidatepage(struct page *page,
ca99fdd2
LC
2991 unsigned int offset,
2992 unsigned int length)
4520fb3c
JK
2993{
2994 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2995
ca99fdd2 2996 trace_ext4_journalled_invalidatepage(page, offset, length);
4520fb3c 2997
ac27a0ec
DK
2998 /*
2999 * If it's a full truncate we just forget about the pending dirtying
3000 */
ca99fdd2 3001 if (offset == 0 && length == PAGE_CACHE_SIZE)
ac27a0ec
DK
3002 ClearPageChecked(page);
3003
ca99fdd2 3004 return jbd2_journal_invalidatepage(journal, page, offset, length);
53e87268
JK
3005}
3006
3007/* Wrapper for aops... */
3008static void ext4_journalled_invalidatepage(struct page *page,
d47992f8
LC
3009 unsigned int offset,
3010 unsigned int length)
53e87268 3011{
ca99fdd2 3012 WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
ac27a0ec
DK
3013}
3014
617ba13b 3015static int ext4_releasepage(struct page *page, gfp_t wait)
ac27a0ec 3016{
617ba13b 3017 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
ac27a0ec 3018
0562e0ba
JZ
3019 trace_ext4_releasepage(page);
3020
e1c36595
JK
3021 /* Page has dirty journalled data -> cannot release */
3022 if (PageChecked(page))
ac27a0ec 3023 return 0;
0390131b
FM
3024 if (journal)
3025 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3026 else
3027 return try_to_free_buffers(page);
ac27a0ec
DK
3028}
3029
2ed88685
TT
3030/*
3031 * ext4_get_block used when preparing for a DIO write or buffer write.
3032 * We allocate an uinitialized extent if blocks haven't been allocated.
3033 * The extent will be converted to initialized after the IO is complete.
3034 */
f19d5870 3035int ext4_get_block_write(struct inode *inode, sector_t iblock,
4c0425ff
MC
3036 struct buffer_head *bh_result, int create)
3037{
c7064ef1 3038 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
8d5d02e6 3039 inode->i_ino, create);
2ed88685
TT
3040 return _ext4_get_block(inode, iblock, bh_result,
3041 EXT4_GET_BLOCKS_IO_CREATE_EXT);
4c0425ff
MC
3042}
3043
729f52c6 3044static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
8b0f165f 3045 struct buffer_head *bh_result, int create)
729f52c6 3046{
8b0f165f
AP
3047 ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
3048 inode->i_ino, create);
3049 return _ext4_get_block(inode, iblock, bh_result,
3050 EXT4_GET_BLOCKS_NO_LOCK);
729f52c6
ZL
3051}
3052
4c0425ff 3053static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
7b7a8665 3054 ssize_t size, void *private)
4c0425ff
MC
3055{
3056 ext4_io_end_t *io_end = iocb->private;
4c0425ff 3057
97a851ed 3058 /* if not async direct IO just return */
7b7a8665 3059 if (!io_end)
97a851ed 3060 return;
4b70df18 3061
88635ca2 3062 ext_debug("ext4_end_io_dio(): io_end 0x%p "
ace36ad4 3063 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
8d5d02e6
MC
3064 iocb->private, io_end->inode->i_ino, iocb, offset,
3065 size);
8d5d02e6 3066
b5a7e970 3067 iocb->private = NULL;
4c0425ff
MC
3068 io_end->offset = offset;
3069 io_end->size = size;
7b7a8665 3070 ext4_put_io_end(io_end);
4c0425ff 3071}
c7064ef1 3072
4c0425ff
MC
3073/*
3074 * For ext4 extent files, ext4 will do direct-io write to holes,
3075 * preallocated extents, and those write extend the file, no need to
3076 * fall back to buffered IO.
3077 *
556615dc 3078 * For holes, we fallocate those blocks, mark them as unwritten
69c499d1 3079 * If those blocks were preallocated, we mark sure they are split, but
556615dc 3080 * still keep the range to write as unwritten.
4c0425ff 3081 *
69c499d1 3082 * The unwritten extents will be converted to written when DIO is completed.
8d5d02e6 3083 * For async direct IO, since the IO may still pending when return, we
25985edc 3084 * set up an end_io call back function, which will do the conversion
8d5d02e6 3085 * when async direct IO completed.
4c0425ff
MC
3086 *
3087 * If the O_DIRECT write will extend the file then add this inode to the
3088 * orphan list. So recovery will truncate it back to the original size
3089 * if the machine crashes during the write.
3090 *
3091 */
3092static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
3093 const struct iovec *iov, loff_t offset,
3094 unsigned long nr_segs)
3095{
3096 struct file *file = iocb->ki_filp;
3097 struct inode *inode = file->f_mapping->host;
3098 ssize_t ret;
3099 size_t count = iov_length(iov, nr_segs);
69c499d1
TT
3100 int overwrite = 0;
3101 get_block_t *get_block_func = NULL;
3102 int dio_flags = 0;
4c0425ff 3103 loff_t final_size = offset + count;
97a851ed 3104 ext4_io_end_t *io_end = NULL;
729f52c6 3105
69c499d1
TT
3106 /* Use the old path for reads and writes beyond i_size. */
3107 if (rw != WRITE || final_size > inode->i_size)
3108 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
4bd809db 3109
69c499d1 3110 BUG_ON(iocb->private == NULL);
4bd809db 3111
e8340395
JK
3112 /*
3113 * Make all waiters for direct IO properly wait also for extent
3114 * conversion. This also disallows race between truncate() and
3115 * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3116 */
3117 if (rw == WRITE)
3118 atomic_inc(&inode->i_dio_count);
3119
69c499d1
TT
3120 /* If we do a overwrite dio, i_mutex locking can be released */
3121 overwrite = *((int *)iocb->private);
4bd809db 3122
69c499d1 3123 if (overwrite) {
69c499d1
TT
3124 down_read(&EXT4_I(inode)->i_data_sem);
3125 mutex_unlock(&inode->i_mutex);
3126 }
8d5d02e6 3127
69c499d1
TT
3128 /*
3129 * We could direct write to holes and fallocate.
3130 *
3131 * Allocated blocks to fill the hole are marked as
556615dc 3132 * unwritten to prevent parallel buffered read to expose
69c499d1
TT
3133 * the stale data before DIO complete the data IO.
3134 *
3135 * As to previously fallocated extents, ext4 get_block will
3136 * just simply mark the buffer mapped but still keep the
556615dc 3137 * extents unwritten.
69c499d1
TT
3138 *
3139 * For non AIO case, we will convert those unwritten extents
3140 * to written after return back from blockdev_direct_IO.
3141 *
3142 * For async DIO, the conversion needs to be deferred when the
3143 * IO is completed. The ext4 end_io callback function will be
3144 * called to take care of the conversion work. Here for async
3145 * case, we allocate an io_end structure to hook to the iocb.
3146 */
3147 iocb->private = NULL;
3148 ext4_inode_aio_set(inode, NULL);
3149 if (!is_sync_kiocb(iocb)) {
97a851ed 3150 io_end = ext4_init_io_end(inode, GFP_NOFS);
69c499d1
TT
3151 if (!io_end) {
3152 ret = -ENOMEM;
3153 goto retake_lock;
8b0f165f 3154 }
97a851ed
JK
3155 /*
3156 * Grab reference for DIO. Will be dropped in ext4_end_io_dio()
3157 */
3158 iocb->private = ext4_get_io_end(io_end);
8d5d02e6 3159 /*
69c499d1
TT
3160 * we save the io structure for current async direct
3161 * IO, so that later ext4_map_blocks() could flag the
3162 * io structure whether there is a unwritten extents
3163 * needs to be converted when IO is completed.
8d5d02e6 3164 */
69c499d1
TT
3165 ext4_inode_aio_set(inode, io_end);
3166 }
4bd809db 3167
69c499d1
TT
3168 if (overwrite) {
3169 get_block_func = ext4_get_block_write_nolock;
3170 } else {
3171 get_block_func = ext4_get_block_write;
3172 dio_flags = DIO_LOCKING;
3173 }
3174 ret = __blockdev_direct_IO(rw, iocb, inode,
3175 inode->i_sb->s_bdev, iov,
3176 offset, nr_segs,
3177 get_block_func,
3178 ext4_end_io_dio,
3179 NULL,
3180 dio_flags);
3181
69c499d1 3182 /*
97a851ed
JK
3183 * Put our reference to io_end. This can free the io_end structure e.g.
3184 * in sync IO case or in case of error. It can even perform extent
3185 * conversion if all bios we submitted finished before we got here.
3186 * Note that in that case iocb->private can be already set to NULL
3187 * here.
69c499d1 3188 */
97a851ed
JK
3189 if (io_end) {
3190 ext4_inode_aio_set(inode, NULL);
3191 ext4_put_io_end(io_end);
3192 /*
3193 * When no IO was submitted ext4_end_io_dio() was not
3194 * called so we have to put iocb's reference.
3195 */
3196 if (ret <= 0 && ret != -EIOCBQUEUED && iocb->private) {
3197 WARN_ON(iocb->private != io_end);
3198 WARN_ON(io_end->flag & EXT4_IO_END_UNWRITTEN);
97a851ed
JK
3199 ext4_put_io_end(io_end);
3200 iocb->private = NULL;
3201 }
3202 }
3203 if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
69c499d1
TT
3204 EXT4_STATE_DIO_UNWRITTEN)) {
3205 int err;
3206 /*
3207 * for non AIO case, since the IO is already
3208 * completed, we could do the conversion right here
3209 */
6b523df4 3210 err = ext4_convert_unwritten_extents(NULL, inode,
69c499d1
TT
3211 offset, ret);
3212 if (err < 0)
3213 ret = err;
3214 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3215 }
4bd809db 3216
69c499d1 3217retake_lock:
e8340395
JK
3218 if (rw == WRITE)
3219 inode_dio_done(inode);
69c499d1
TT
3220 /* take i_mutex locking again if we do a ovewrite dio */
3221 if (overwrite) {
69c499d1
TT
3222 up_read(&EXT4_I(inode)->i_data_sem);
3223 mutex_lock(&inode->i_mutex);
4c0425ff 3224 }
8d5d02e6 3225
69c499d1 3226 return ret;
4c0425ff
MC
3227}
3228
3229static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3230 const struct iovec *iov, loff_t offset,
3231 unsigned long nr_segs)
3232{
3233 struct file *file = iocb->ki_filp;
3234 struct inode *inode = file->f_mapping->host;
0562e0ba 3235 ssize_t ret;
4c0425ff 3236
84ebd795
TT
3237 /*
3238 * If we are doing data journalling we don't support O_DIRECT
3239 */
3240 if (ext4_should_journal_data(inode))
3241 return 0;
3242
46c7f254
TM
3243 /* Let buffer I/O handle the inline data case. */
3244 if (ext4_has_inline_data(inode))
3245 return 0;
3246
0562e0ba 3247 trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
12e9b892 3248 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
0562e0ba
JZ
3249 ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3250 else
3251 ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3252 trace_ext4_direct_IO_exit(inode, offset,
3253 iov_length(iov, nr_segs), rw, ret);
3254 return ret;
4c0425ff
MC
3255}
3256
ac27a0ec 3257/*
617ba13b 3258 * Pages can be marked dirty completely asynchronously from ext4's journalling
ac27a0ec
DK
3259 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3260 * much here because ->set_page_dirty is called under VFS locks. The page is
3261 * not necessarily locked.
3262 *
3263 * We cannot just dirty the page and leave attached buffers clean, because the
3264 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3265 * or jbddirty because all the journalling code will explode.
3266 *
3267 * So what we do is to mark the page "pending dirty" and next time writepage
3268 * is called, propagate that into the buffers appropriately.
3269 */
617ba13b 3270static int ext4_journalled_set_page_dirty(struct page *page)
ac27a0ec
DK
3271{
3272 SetPageChecked(page);
3273 return __set_page_dirty_nobuffers(page);
3274}
3275
74d553aa 3276static const struct address_space_operations ext4_aops = {
8ab22b9a
HH
3277 .readpage = ext4_readpage,
3278 .readpages = ext4_readpages,
43ce1d23 3279 .writepage = ext4_writepage,
20970ba6 3280 .writepages = ext4_writepages,
8ab22b9a 3281 .write_begin = ext4_write_begin,
74d553aa 3282 .write_end = ext4_write_end,
8ab22b9a
HH
3283 .bmap = ext4_bmap,
3284 .invalidatepage = ext4_invalidatepage,
3285 .releasepage = ext4_releasepage,
3286 .direct_IO = ext4_direct_IO,
3287 .migratepage = buffer_migrate_page,
3288 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3289 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
3290};
3291
617ba13b 3292static const struct address_space_operations ext4_journalled_aops = {
8ab22b9a
HH
3293 .readpage = ext4_readpage,
3294 .readpages = ext4_readpages,
43ce1d23 3295 .writepage = ext4_writepage,
20970ba6 3296 .writepages = ext4_writepages,
8ab22b9a
HH
3297 .write_begin = ext4_write_begin,
3298 .write_end = ext4_journalled_write_end,
3299 .set_page_dirty = ext4_journalled_set_page_dirty,
3300 .bmap = ext4_bmap,
4520fb3c 3301 .invalidatepage = ext4_journalled_invalidatepage,
8ab22b9a 3302 .releasepage = ext4_releasepage,
84ebd795 3303 .direct_IO = ext4_direct_IO,
8ab22b9a 3304 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3305 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
3306};
3307
64769240 3308static const struct address_space_operations ext4_da_aops = {
8ab22b9a
HH
3309 .readpage = ext4_readpage,
3310 .readpages = ext4_readpages,
43ce1d23 3311 .writepage = ext4_writepage,
20970ba6 3312 .writepages = ext4_writepages,
8ab22b9a
HH
3313 .write_begin = ext4_da_write_begin,
3314 .write_end = ext4_da_write_end,
3315 .bmap = ext4_bmap,
3316 .invalidatepage = ext4_da_invalidatepage,
3317 .releasepage = ext4_releasepage,
3318 .direct_IO = ext4_direct_IO,
3319 .migratepage = buffer_migrate_page,
3320 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3321 .error_remove_page = generic_error_remove_page,
64769240
AT
3322};
3323
617ba13b 3324void ext4_set_aops(struct inode *inode)
ac27a0ec 3325{
3d2b1582
LC
3326 switch (ext4_inode_journal_mode(inode)) {
3327 case EXT4_INODE_ORDERED_DATA_MODE:
74d553aa 3328 ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3d2b1582
LC
3329 break;
3330 case EXT4_INODE_WRITEBACK_DATA_MODE:
74d553aa 3331 ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3d2b1582
LC
3332 break;
3333 case EXT4_INODE_JOURNAL_DATA_MODE:
617ba13b 3334 inode->i_mapping->a_ops = &ext4_journalled_aops;
74d553aa 3335 return;
3d2b1582
LC
3336 default:
3337 BUG();
3338 }
74d553aa
TT
3339 if (test_opt(inode->i_sb, DELALLOC))
3340 inode->i_mapping->a_ops = &ext4_da_aops;
3341 else
3342 inode->i_mapping->a_ops = &ext4_aops;
ac27a0ec
DK
3343}
3344
d863dc36
LC
3345/*
3346 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3347 * starting from file offset 'from'. The range to be zero'd must
3348 * be contained with in one block. If the specified range exceeds
3349 * the end of the block it will be shortened to end of the block
3350 * that cooresponds to 'from'
3351 */
94350ab5 3352static int ext4_block_zero_page_range(handle_t *handle,
d863dc36
LC
3353 struct address_space *mapping, loff_t from, loff_t length)
3354{
3355 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3356 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3357 unsigned blocksize, max, pos;
3358 ext4_lblk_t iblock;
3359 struct inode *inode = mapping->host;
3360 struct buffer_head *bh;
3361 struct page *page;
3362 int err = 0;
3363
3364 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3365 mapping_gfp_mask(mapping) & ~__GFP_FS);
3366 if (!page)
3367 return -ENOMEM;
3368
3369 blocksize = inode->i_sb->s_blocksize;
3370 max = blocksize - (offset & (blocksize - 1));
3371
3372 /*
3373 * correct length if it does not fall between
3374 * 'from' and the end of the block
3375 */
3376 if (length > max || length < 0)
3377 length = max;
3378
3379 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3380
3381 if (!page_has_buffers(page))
3382 create_empty_buffers(page, blocksize, 0);
3383
3384 /* Find the buffer that contains "offset" */
3385 bh = page_buffers(page);
3386 pos = blocksize;
3387 while (offset >= pos) {
3388 bh = bh->b_this_page;
3389 iblock++;
3390 pos += blocksize;
3391 }
d863dc36
LC
3392 if (buffer_freed(bh)) {
3393 BUFFER_TRACE(bh, "freed: skip");
3394 goto unlock;
3395 }
d863dc36
LC
3396 if (!buffer_mapped(bh)) {
3397 BUFFER_TRACE(bh, "unmapped");
3398 ext4_get_block(inode, iblock, bh, 0);
3399 /* unmapped? It's a hole - nothing to do */
3400 if (!buffer_mapped(bh)) {
3401 BUFFER_TRACE(bh, "still unmapped");
3402 goto unlock;
3403 }
3404 }
3405
3406 /* Ok, it's mapped. Make sure it's up-to-date */
3407 if (PageUptodate(page))
3408 set_buffer_uptodate(bh);
3409
3410 if (!buffer_uptodate(bh)) {
3411 err = -EIO;
3412 ll_rw_block(READ, 1, &bh);
3413 wait_on_buffer(bh);
3414 /* Uhhuh. Read error. Complain and punt. */
3415 if (!buffer_uptodate(bh))
3416 goto unlock;
3417 }
d863dc36
LC
3418 if (ext4_should_journal_data(inode)) {
3419 BUFFER_TRACE(bh, "get write access");
3420 err = ext4_journal_get_write_access(handle, bh);
3421 if (err)
3422 goto unlock;
3423 }
d863dc36 3424 zero_user(page, offset, length);
d863dc36
LC
3425 BUFFER_TRACE(bh, "zeroed end of block");
3426
d863dc36
LC
3427 if (ext4_should_journal_data(inode)) {
3428 err = ext4_handle_dirty_metadata(handle, inode, bh);
0713ed0c 3429 } else {
353eefd3 3430 err = 0;
d863dc36 3431 mark_buffer_dirty(bh);
0713ed0c
LC
3432 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE))
3433 err = ext4_jbd2_file_inode(handle, inode);
3434 }
d863dc36
LC
3435
3436unlock:
3437 unlock_page(page);
3438 page_cache_release(page);
3439 return err;
3440}
3441
94350ab5
MW
3442/*
3443 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3444 * up to the end of the block which corresponds to `from'.
3445 * This required during truncate. We need to physically zero the tail end
3446 * of that block so it doesn't yield old data if the file is later grown.
3447 */
c197855e 3448static int ext4_block_truncate_page(handle_t *handle,
94350ab5
MW
3449 struct address_space *mapping, loff_t from)
3450{
3451 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3452 unsigned length;
3453 unsigned blocksize;
3454 struct inode *inode = mapping->host;
3455
3456 blocksize = inode->i_sb->s_blocksize;
3457 length = blocksize - (offset & (blocksize - 1));
3458
3459 return ext4_block_zero_page_range(handle, mapping, from, length);
3460}
3461
a87dd18c
LC
3462int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3463 loff_t lstart, loff_t length)
3464{
3465 struct super_block *sb = inode->i_sb;
3466 struct address_space *mapping = inode->i_mapping;
e1be3a92 3467 unsigned partial_start, partial_end;
a87dd18c
LC
3468 ext4_fsblk_t start, end;
3469 loff_t byte_end = (lstart + length - 1);
3470 int err = 0;
3471
e1be3a92
LC
3472 partial_start = lstart & (sb->s_blocksize - 1);
3473 partial_end = byte_end & (sb->s_blocksize - 1);
3474
a87dd18c
LC
3475 start = lstart >> sb->s_blocksize_bits;
3476 end = byte_end >> sb->s_blocksize_bits;
3477
3478 /* Handle partial zero within the single block */
e1be3a92
LC
3479 if (start == end &&
3480 (partial_start || (partial_end != sb->s_blocksize - 1))) {
a87dd18c
LC
3481 err = ext4_block_zero_page_range(handle, mapping,
3482 lstart, length);
3483 return err;
3484 }
3485 /* Handle partial zero out on the start of the range */
e1be3a92 3486 if (partial_start) {
a87dd18c
LC
3487 err = ext4_block_zero_page_range(handle, mapping,
3488 lstart, sb->s_blocksize);
3489 if (err)
3490 return err;
3491 }
3492 /* Handle partial zero out on the end of the range */
e1be3a92 3493 if (partial_end != sb->s_blocksize - 1)
a87dd18c 3494 err = ext4_block_zero_page_range(handle, mapping,
e1be3a92
LC
3495 byte_end - partial_end,
3496 partial_end + 1);
a87dd18c
LC
3497 return err;
3498}
3499
91ef4caf
DG
3500int ext4_can_truncate(struct inode *inode)
3501{
91ef4caf
DG
3502 if (S_ISREG(inode->i_mode))
3503 return 1;
3504 if (S_ISDIR(inode->i_mode))
3505 return 1;
3506 if (S_ISLNK(inode->i_mode))
3507 return !ext4_inode_is_fast_symlink(inode);
3508 return 0;
3509}
3510
a4bb6b64
AH
3511/*
3512 * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3513 * associated with the given offset and length
3514 *
3515 * @inode: File inode
3516 * @offset: The offset where the hole will begin
3517 * @len: The length of the hole
3518 *
4907cb7b 3519 * Returns: 0 on success or negative on failure
a4bb6b64
AH
3520 */
3521
aeb2817a 3522int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
a4bb6b64 3523{
26a4c0c6
TT
3524 struct super_block *sb = inode->i_sb;
3525 ext4_lblk_t first_block, stop_block;
3526 struct address_space *mapping = inode->i_mapping;
a87dd18c 3527 loff_t first_block_offset, last_block_offset;
26a4c0c6
TT
3528 handle_t *handle;
3529 unsigned int credits;
3530 int ret = 0;
3531
a4bb6b64 3532 if (!S_ISREG(inode->i_mode))
73355192 3533 return -EOPNOTSUPP;
a4bb6b64 3534
b8a86845 3535 trace_ext4_punch_hole(inode, offset, length, 0);
aaddea81 3536
26a4c0c6
TT
3537 /*
3538 * Write out all dirty pages to avoid race conditions
3539 * Then release them.
3540 */
3541 if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3542 ret = filemap_write_and_wait_range(mapping, offset,
3543 offset + length - 1);
3544 if (ret)
3545 return ret;
3546 }
3547
3548 mutex_lock(&inode->i_mutex);
9ef06cec 3549
26a4c0c6
TT
3550 /* No need to punch hole beyond i_size */
3551 if (offset >= inode->i_size)
3552 goto out_mutex;
3553
3554 /*
3555 * If the hole extends beyond i_size, set the hole
3556 * to end after the page that contains i_size
3557 */
3558 if (offset + length > inode->i_size) {
3559 length = inode->i_size +
3560 PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
3561 offset;
3562 }
3563
a361293f
JK
3564 if (offset & (sb->s_blocksize - 1) ||
3565 (offset + length) & (sb->s_blocksize - 1)) {
3566 /*
3567 * Attach jinode to inode for jbd2 if we do any zeroing of
3568 * partial block
3569 */
3570 ret = ext4_inode_attach_jinode(inode);
3571 if (ret < 0)
3572 goto out_mutex;
3573
3574 }
3575
a87dd18c
LC
3576 first_block_offset = round_up(offset, sb->s_blocksize);
3577 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
26a4c0c6 3578
a87dd18c
LC
3579 /* Now release the pages and zero block aligned part of pages*/
3580 if (last_block_offset > first_block_offset)
3581 truncate_pagecache_range(inode, first_block_offset,
3582 last_block_offset);
26a4c0c6
TT
3583
3584 /* Wait all existing dio workers, newcomers will block on i_mutex */
3585 ext4_inode_block_unlocked_dio(inode);
26a4c0c6
TT
3586 inode_dio_wait(inode);
3587
3588 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3589 credits = ext4_writepage_trans_blocks(inode);
3590 else
3591 credits = ext4_blocks_for_truncate(inode);
3592 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3593 if (IS_ERR(handle)) {
3594 ret = PTR_ERR(handle);
3595 ext4_std_error(sb, ret);
3596 goto out_dio;
3597 }
3598
a87dd18c
LC
3599 ret = ext4_zero_partial_blocks(handle, inode, offset,
3600 length);
3601 if (ret)
3602 goto out_stop;
26a4c0c6
TT
3603
3604 first_block = (offset + sb->s_blocksize - 1) >>
3605 EXT4_BLOCK_SIZE_BITS(sb);
3606 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
3607
3608 /* If there are no blocks to remove, return now */
3609 if (first_block >= stop_block)
3610 goto out_stop;
3611
3612 down_write(&EXT4_I(inode)->i_data_sem);
3613 ext4_discard_preallocations(inode);
3614
3615 ret = ext4_es_remove_extent(inode, first_block,
3616 stop_block - first_block);
3617 if (ret) {
3618 up_write(&EXT4_I(inode)->i_data_sem);
3619 goto out_stop;
3620 }
3621
3622 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3623 ret = ext4_ext_remove_space(inode, first_block,
3624 stop_block - 1);
3625 else
3626 ret = ext4_free_hole_blocks(handle, inode, first_block,
3627 stop_block);
3628
819c4920 3629 up_write(&EXT4_I(inode)->i_data_sem);
26a4c0c6
TT
3630 if (IS_SYNC(inode))
3631 ext4_handle_sync(handle);
e251f9bc
MP
3632
3633 /* Now release the pages again to reduce race window */
3634 if (last_block_offset > first_block_offset)
3635 truncate_pagecache_range(inode, first_block_offset,
3636 last_block_offset);
3637
26a4c0c6
TT
3638 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3639 ext4_mark_inode_dirty(handle, inode);
3640out_stop:
3641 ext4_journal_stop(handle);
3642out_dio:
3643 ext4_inode_resume_unlocked_dio(inode);
3644out_mutex:
3645 mutex_unlock(&inode->i_mutex);
3646 return ret;
a4bb6b64
AH
3647}
3648
a361293f
JK
3649int ext4_inode_attach_jinode(struct inode *inode)
3650{
3651 struct ext4_inode_info *ei = EXT4_I(inode);
3652 struct jbd2_inode *jinode;
3653
3654 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
3655 return 0;
3656
3657 jinode = jbd2_alloc_inode(GFP_KERNEL);
3658 spin_lock(&inode->i_lock);
3659 if (!ei->jinode) {
3660 if (!jinode) {
3661 spin_unlock(&inode->i_lock);
3662 return -ENOMEM;
3663 }
3664 ei->jinode = jinode;
3665 jbd2_journal_init_jbd_inode(ei->jinode, inode);
3666 jinode = NULL;
3667 }
3668 spin_unlock(&inode->i_lock);
3669 if (unlikely(jinode != NULL))
3670 jbd2_free_inode(jinode);
3671 return 0;
3672}
3673
ac27a0ec 3674/*
617ba13b 3675 * ext4_truncate()
ac27a0ec 3676 *
617ba13b
MC
3677 * We block out ext4_get_block() block instantiations across the entire
3678 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
ac27a0ec
DK
3679 * simultaneously on behalf of the same inode.
3680 *
42b2aa86 3681 * As we work through the truncate and commit bits of it to the journal there
ac27a0ec
DK
3682 * is one core, guiding principle: the file's tree must always be consistent on
3683 * disk. We must be able to restart the truncate after a crash.
3684 *
3685 * The file's tree may be transiently inconsistent in memory (although it
3686 * probably isn't), but whenever we close off and commit a journal transaction,
3687 * the contents of (the filesystem + the journal) must be consistent and
3688 * restartable. It's pretty simple, really: bottom up, right to left (although
3689 * left-to-right works OK too).
3690 *
3691 * Note that at recovery time, journal replay occurs *before* the restart of
3692 * truncate against the orphan inode list.
3693 *
3694 * The committed inode has the new, desired i_size (which is the same as
617ba13b 3695 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
ac27a0ec 3696 * that this inode's truncate did not complete and it will again call
617ba13b
MC
3697 * ext4_truncate() to have another go. So there will be instantiated blocks
3698 * to the right of the truncation point in a crashed ext4 filesystem. But
ac27a0ec 3699 * that's fine - as long as they are linked from the inode, the post-crash
617ba13b 3700 * ext4_truncate() run will find them and release them.
ac27a0ec 3701 */
617ba13b 3702void ext4_truncate(struct inode *inode)
ac27a0ec 3703{
819c4920
TT
3704 struct ext4_inode_info *ei = EXT4_I(inode);
3705 unsigned int credits;
3706 handle_t *handle;
3707 struct address_space *mapping = inode->i_mapping;
819c4920 3708
19b5ef61
TT
3709 /*
3710 * There is a possibility that we're either freeing the inode
e04027e8 3711 * or it's a completely new inode. In those cases we might not
19b5ef61
TT
3712 * have i_mutex locked because it's not necessary.
3713 */
3714 if (!(inode->i_state & (I_NEW|I_FREEING)))
3715 WARN_ON(!mutex_is_locked(&inode->i_mutex));
0562e0ba
JZ
3716 trace_ext4_truncate_enter(inode);
3717
91ef4caf 3718 if (!ext4_can_truncate(inode))
ac27a0ec
DK
3719 return;
3720
12e9b892 3721 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
c8d46e41 3722
5534fb5b 3723 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
19f5fb7a 3724 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
7d8f9f7d 3725
aef1c851
TM
3726 if (ext4_has_inline_data(inode)) {
3727 int has_inline = 1;
3728
3729 ext4_inline_data_truncate(inode, &has_inline);
3730 if (has_inline)
3731 return;
3732 }
3733
a361293f
JK
3734 /* If we zero-out tail of the page, we have to create jinode for jbd2 */
3735 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
3736 if (ext4_inode_attach_jinode(inode) < 0)
3737 return;
3738 }
3739
819c4920
TT
3740 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3741 credits = ext4_writepage_trans_blocks(inode);
3742 else
3743 credits = ext4_blocks_for_truncate(inode);
3744
3745 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3746 if (IS_ERR(handle)) {
3747 ext4_std_error(inode->i_sb, PTR_ERR(handle));
3748 return;
3749 }
3750
eb3544c6
LC
3751 if (inode->i_size & (inode->i_sb->s_blocksize - 1))
3752 ext4_block_truncate_page(handle, mapping, inode->i_size);
819c4920
TT
3753
3754 /*
3755 * We add the inode to the orphan list, so that if this
3756 * truncate spans multiple transactions, and we crash, we will
3757 * resume the truncate when the filesystem recovers. It also
3758 * marks the inode dirty, to catch the new size.
3759 *
3760 * Implication: the file must always be in a sane, consistent
3761 * truncatable state while each transaction commits.
3762 */
3763 if (ext4_orphan_add(handle, inode))
3764 goto out_stop;
3765
3766 down_write(&EXT4_I(inode)->i_data_sem);
3767
3768 ext4_discard_preallocations(inode);
3769
ff9893dc 3770 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
819c4920 3771 ext4_ext_truncate(handle, inode);
ff9893dc 3772 else
819c4920
TT
3773 ext4_ind_truncate(handle, inode);
3774
3775 up_write(&ei->i_data_sem);
3776
3777 if (IS_SYNC(inode))
3778 ext4_handle_sync(handle);
3779
3780out_stop:
3781 /*
3782 * If this was a simple ftruncate() and the file will remain alive,
3783 * then we need to clear up the orphan record which we created above.
3784 * However, if this was a real unlink then we were called by
3785 * ext4_delete_inode(), and we allow that function to clean up the
3786 * orphan info for us.
3787 */
3788 if (inode->i_nlink)
3789 ext4_orphan_del(handle, inode);
3790
3791 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3792 ext4_mark_inode_dirty(handle, inode);
3793 ext4_journal_stop(handle);
ac27a0ec 3794
0562e0ba 3795 trace_ext4_truncate_exit(inode);
ac27a0ec
DK
3796}
3797
ac27a0ec 3798/*
617ba13b 3799 * ext4_get_inode_loc returns with an extra refcount against the inode's
ac27a0ec
DK
3800 * underlying buffer_head on success. If 'in_mem' is true, we have all
3801 * data in memory that is needed to recreate the on-disk version of this
3802 * inode.
3803 */
617ba13b
MC
3804static int __ext4_get_inode_loc(struct inode *inode,
3805 struct ext4_iloc *iloc, int in_mem)
ac27a0ec 3806{
240799cd
TT
3807 struct ext4_group_desc *gdp;
3808 struct buffer_head *bh;
3809 struct super_block *sb = inode->i_sb;
3810 ext4_fsblk_t block;
3811 int inodes_per_block, inode_offset;
3812
3a06d778 3813 iloc->bh = NULL;
240799cd
TT
3814 if (!ext4_valid_inum(sb, inode->i_ino))
3815 return -EIO;
ac27a0ec 3816
240799cd
TT
3817 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3818 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3819 if (!gdp)
ac27a0ec
DK
3820 return -EIO;
3821
240799cd
TT
3822 /*
3823 * Figure out the offset within the block group inode table
3824 */
00d09882 3825 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
240799cd
TT
3826 inode_offset = ((inode->i_ino - 1) %
3827 EXT4_INODES_PER_GROUP(sb));
3828 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3829 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3830
3831 bh = sb_getblk(sb, block);
aebf0243 3832 if (unlikely(!bh))
860d21e2 3833 return -ENOMEM;
ac27a0ec
DK
3834 if (!buffer_uptodate(bh)) {
3835 lock_buffer(bh);
9c83a923
HK
3836
3837 /*
3838 * If the buffer has the write error flag, we have failed
3839 * to write out another inode in the same block. In this
3840 * case, we don't have to read the block because we may
3841 * read the old inode data successfully.
3842 */
3843 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3844 set_buffer_uptodate(bh);
3845
ac27a0ec
DK
3846 if (buffer_uptodate(bh)) {
3847 /* someone brought it uptodate while we waited */
3848 unlock_buffer(bh);
3849 goto has_buffer;
3850 }
3851
3852 /*
3853 * If we have all information of the inode in memory and this
3854 * is the only valid inode in the block, we need not read the
3855 * block.
3856 */
3857 if (in_mem) {
3858 struct buffer_head *bitmap_bh;
240799cd 3859 int i, start;
ac27a0ec 3860
240799cd 3861 start = inode_offset & ~(inodes_per_block - 1);
ac27a0ec 3862
240799cd
TT
3863 /* Is the inode bitmap in cache? */
3864 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
aebf0243 3865 if (unlikely(!bitmap_bh))
ac27a0ec
DK
3866 goto make_io;
3867
3868 /*
3869 * If the inode bitmap isn't in cache then the
3870 * optimisation may end up performing two reads instead
3871 * of one, so skip it.
3872 */
3873 if (!buffer_uptodate(bitmap_bh)) {
3874 brelse(bitmap_bh);
3875 goto make_io;
3876 }
240799cd 3877 for (i = start; i < start + inodes_per_block; i++) {
ac27a0ec
DK
3878 if (i == inode_offset)
3879 continue;
617ba13b 3880 if (ext4_test_bit(i, bitmap_bh->b_data))
ac27a0ec
DK
3881 break;
3882 }
3883 brelse(bitmap_bh);
240799cd 3884 if (i == start + inodes_per_block) {
ac27a0ec
DK
3885 /* all other inodes are free, so skip I/O */
3886 memset(bh->b_data, 0, bh->b_size);
3887 set_buffer_uptodate(bh);
3888 unlock_buffer(bh);
3889 goto has_buffer;
3890 }
3891 }
3892
3893make_io:
240799cd
TT
3894 /*
3895 * If we need to do any I/O, try to pre-readahead extra
3896 * blocks from the inode table.
3897 */
3898 if (EXT4_SB(sb)->s_inode_readahead_blks) {
3899 ext4_fsblk_t b, end, table;
3900 unsigned num;
0d606e2c 3901 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
240799cd
TT
3902
3903 table = ext4_inode_table(sb, gdp);
b713a5ec 3904 /* s_inode_readahead_blks is always a power of 2 */
0d606e2c 3905 b = block & ~((ext4_fsblk_t) ra_blks - 1);
240799cd
TT
3906 if (table > b)
3907 b = table;
0d606e2c 3908 end = b + ra_blks;
240799cd 3909 num = EXT4_INODES_PER_GROUP(sb);
feb0ab32 3910 if (ext4_has_group_desc_csum(sb))
560671a0 3911 num -= ext4_itable_unused_count(sb, gdp);
240799cd
TT
3912 table += num / inodes_per_block;
3913 if (end > table)
3914 end = table;
3915 while (b <= end)
3916 sb_breadahead(sb, b++);
3917 }
3918
ac27a0ec
DK
3919 /*
3920 * There are other valid inodes in the buffer, this inode
3921 * has in-inode xattrs, or we don't have this inode in memory.
3922 * Read the block from disk.
3923 */
0562e0ba 3924 trace_ext4_load_inode(inode);
ac27a0ec
DK
3925 get_bh(bh);
3926 bh->b_end_io = end_buffer_read_sync;
65299a3b 3927 submit_bh(READ | REQ_META | REQ_PRIO, bh);
ac27a0ec
DK
3928 wait_on_buffer(bh);
3929 if (!buffer_uptodate(bh)) {
c398eda0
TT
3930 EXT4_ERROR_INODE_BLOCK(inode, block,
3931 "unable to read itable block");
ac27a0ec
DK
3932 brelse(bh);
3933 return -EIO;
3934 }
3935 }
3936has_buffer:
3937 iloc->bh = bh;
3938 return 0;
3939}
3940
617ba13b 3941int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
3942{
3943 /* We have all inode data except xattrs in memory here. */
617ba13b 3944 return __ext4_get_inode_loc(inode, iloc,
19f5fb7a 3945 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
ac27a0ec
DK
3946}
3947
617ba13b 3948void ext4_set_inode_flags(struct inode *inode)
ac27a0ec 3949{
617ba13b 3950 unsigned int flags = EXT4_I(inode)->i_flags;
00a1a053 3951 unsigned int new_fl = 0;
ac27a0ec 3952
617ba13b 3953 if (flags & EXT4_SYNC_FL)
00a1a053 3954 new_fl |= S_SYNC;
617ba13b 3955 if (flags & EXT4_APPEND_FL)
00a1a053 3956 new_fl |= S_APPEND;
617ba13b 3957 if (flags & EXT4_IMMUTABLE_FL)
00a1a053 3958 new_fl |= S_IMMUTABLE;
617ba13b 3959 if (flags & EXT4_NOATIME_FL)
00a1a053 3960 new_fl |= S_NOATIME;
617ba13b 3961 if (flags & EXT4_DIRSYNC_FL)
00a1a053 3962 new_fl |= S_DIRSYNC;
5f16f322
TT
3963 inode_set_flags(inode, new_fl,
3964 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
ac27a0ec
DK
3965}
3966
ff9ddf7e
JK
3967/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3968void ext4_get_inode_flags(struct ext4_inode_info *ei)
3969{
84a8dce2
DM
3970 unsigned int vfs_fl;
3971 unsigned long old_fl, new_fl;
3972
3973 do {
3974 vfs_fl = ei->vfs_inode.i_flags;
3975 old_fl = ei->i_flags;
3976 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3977 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
3978 EXT4_DIRSYNC_FL);
3979 if (vfs_fl & S_SYNC)
3980 new_fl |= EXT4_SYNC_FL;
3981 if (vfs_fl & S_APPEND)
3982 new_fl |= EXT4_APPEND_FL;
3983 if (vfs_fl & S_IMMUTABLE)
3984 new_fl |= EXT4_IMMUTABLE_FL;
3985 if (vfs_fl & S_NOATIME)
3986 new_fl |= EXT4_NOATIME_FL;
3987 if (vfs_fl & S_DIRSYNC)
3988 new_fl |= EXT4_DIRSYNC_FL;
3989 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
ff9ddf7e 3990}
de9a55b8 3991
0fc1b451 3992static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
de9a55b8 3993 struct ext4_inode_info *ei)
0fc1b451
AK
3994{
3995 blkcnt_t i_blocks ;
8180a562
AK
3996 struct inode *inode = &(ei->vfs_inode);
3997 struct super_block *sb = inode->i_sb;
0fc1b451
AK
3998
3999 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4000 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
4001 /* we are using combined 48 bit field */
4002 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4003 le32_to_cpu(raw_inode->i_blocks_lo);
07a03824 4004 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
8180a562
AK
4005 /* i_blocks represent file system block size */
4006 return i_blocks << (inode->i_blkbits - 9);
4007 } else {
4008 return i_blocks;
4009 }
0fc1b451
AK
4010 } else {
4011 return le32_to_cpu(raw_inode->i_blocks_lo);
4012 }
4013}
ff9ddf7e 4014
152a7b0a
TM
4015static inline void ext4_iget_extra_inode(struct inode *inode,
4016 struct ext4_inode *raw_inode,
4017 struct ext4_inode_info *ei)
4018{
4019 __le32 *magic = (void *)raw_inode +
4020 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
67cf5b09 4021 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
152a7b0a 4022 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
67cf5b09 4023 ext4_find_inline_data_nolock(inode);
f19d5870
TM
4024 } else
4025 EXT4_I(inode)->i_inline_off = 0;
152a7b0a
TM
4026}
4027
1d1fe1ee 4028struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
ac27a0ec 4029{
617ba13b
MC
4030 struct ext4_iloc iloc;
4031 struct ext4_inode *raw_inode;
1d1fe1ee 4032 struct ext4_inode_info *ei;
1d1fe1ee 4033 struct inode *inode;
b436b9be 4034 journal_t *journal = EXT4_SB(sb)->s_journal;
1d1fe1ee 4035 long ret;
ac27a0ec 4036 int block;
08cefc7a
EB
4037 uid_t i_uid;
4038 gid_t i_gid;
ac27a0ec 4039
1d1fe1ee
DH
4040 inode = iget_locked(sb, ino);
4041 if (!inode)
4042 return ERR_PTR(-ENOMEM);
4043 if (!(inode->i_state & I_NEW))
4044 return inode;
4045
4046 ei = EXT4_I(inode);
7dc57615 4047 iloc.bh = NULL;
ac27a0ec 4048
1d1fe1ee
DH
4049 ret = __ext4_get_inode_loc(inode, &iloc, 0);
4050 if (ret < 0)
ac27a0ec 4051 goto bad_inode;
617ba13b 4052 raw_inode = ext4_raw_inode(&iloc);
814525f4
DW
4053
4054 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4055 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4056 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4057 EXT4_INODE_SIZE(inode->i_sb)) {
4058 EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
4059 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
4060 EXT4_INODE_SIZE(inode->i_sb));
4061 ret = -EIO;
4062 goto bad_inode;
4063 }
4064 } else
4065 ei->i_extra_isize = 0;
4066
4067 /* Precompute checksum seed for inode metadata */
4068 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4069 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
4070 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4071 __u32 csum;
4072 __le32 inum = cpu_to_le32(inode->i_ino);
4073 __le32 gen = raw_inode->i_generation;
4074 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4075 sizeof(inum));
4076 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4077 sizeof(gen));
4078 }
4079
4080 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4081 EXT4_ERROR_INODE(inode, "checksum invalid");
4082 ret = -EIO;
4083 goto bad_inode;
4084 }
4085
ac27a0ec 4086 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
08cefc7a
EB
4087 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4088 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
af5bc92d 4089 if (!(test_opt(inode->i_sb, NO_UID32))) {
08cefc7a
EB
4090 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4091 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
ac27a0ec 4092 }
08cefc7a
EB
4093 i_uid_write(inode, i_uid);
4094 i_gid_write(inode, i_gid);
bfe86848 4095 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
ac27a0ec 4096
353eb83c 4097 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
67cf5b09 4098 ei->i_inline_off = 0;
ac27a0ec
DK
4099 ei->i_dir_start_lookup = 0;
4100 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4101 /* We now have enough fields to check if the inode was active or not.
4102 * This is needed because nfsd might try to access dead inodes
4103 * the test is that same one that e2fsck uses
4104 * NeilBrown 1999oct15
4105 */
4106 if (inode->i_nlink == 0) {
393d1d1d
DTB
4107 if ((inode->i_mode == 0 ||
4108 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4109 ino != EXT4_BOOT_LOADER_INO) {
ac27a0ec 4110 /* this inode is deleted */
1d1fe1ee 4111 ret = -ESTALE;
ac27a0ec
DK
4112 goto bad_inode;
4113 }
4114 /* The only unlinked inodes we let through here have
4115 * valid i_mode and are being read by the orphan
4116 * recovery code: that's fine, we're about to complete
393d1d1d
DTB
4117 * the process of deleting those.
4118 * OR it is the EXT4_BOOT_LOADER_INO which is
4119 * not initialized on a new filesystem. */
ac27a0ec 4120 }
ac27a0ec 4121 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
0fc1b451 4122 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
7973c0c1 4123 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
a9e81742 4124 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
a1ddeb7e
BP
4125 ei->i_file_acl |=
4126 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
a48380f7 4127 inode->i_size = ext4_isize(raw_inode);
ac27a0ec 4128 ei->i_disksize = inode->i_size;
a9e7f447
DM
4129#ifdef CONFIG_QUOTA
4130 ei->i_reserved_quota = 0;
4131#endif
ac27a0ec
DK
4132 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4133 ei->i_block_group = iloc.block_group;
a4912123 4134 ei->i_last_alloc_group = ~0;
ac27a0ec
DK
4135 /*
4136 * NOTE! The in-memory inode i_data array is in little-endian order
4137 * even on big-endian machines: we do NOT byteswap the block numbers!
4138 */
617ba13b 4139 for (block = 0; block < EXT4_N_BLOCKS; block++)
ac27a0ec
DK
4140 ei->i_data[block] = raw_inode->i_block[block];
4141 INIT_LIST_HEAD(&ei->i_orphan);
4142
b436b9be
JK
4143 /*
4144 * Set transaction id's of transactions that have to be committed
4145 * to finish f[data]sync. We set them to currently running transaction
4146 * as we cannot be sure that the inode or some of its metadata isn't
4147 * part of the transaction - the inode could have been reclaimed and
4148 * now it is reread from disk.
4149 */
4150 if (journal) {
4151 transaction_t *transaction;
4152 tid_t tid;
4153
a931da6a 4154 read_lock(&journal->j_state_lock);
b436b9be
JK
4155 if (journal->j_running_transaction)
4156 transaction = journal->j_running_transaction;
4157 else
4158 transaction = journal->j_committing_transaction;
4159 if (transaction)
4160 tid = transaction->t_tid;
4161 else
4162 tid = journal->j_commit_sequence;
a931da6a 4163 read_unlock(&journal->j_state_lock);
b436b9be
JK
4164 ei->i_sync_tid = tid;
4165 ei->i_datasync_tid = tid;
4166 }
4167
0040d987 4168 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
ac27a0ec
DK
4169 if (ei->i_extra_isize == 0) {
4170 /* The extra space is currently unused. Use it. */
617ba13b
MC
4171 ei->i_extra_isize = sizeof(struct ext4_inode) -
4172 EXT4_GOOD_OLD_INODE_SIZE;
ac27a0ec 4173 } else {
152a7b0a 4174 ext4_iget_extra_inode(inode, raw_inode, ei);
ac27a0ec 4175 }
814525f4 4176 }
ac27a0ec 4177
ef7f3835
KS
4178 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4179 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4180 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4181 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4182
ed3654eb 4183 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
c4f65706
TT
4184 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4185 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4186 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4187 inode->i_version |=
4188 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4189 }
25ec56b5
JNC
4190 }
4191
c4b5a614 4192 ret = 0;
485c26ec 4193 if (ei->i_file_acl &&
1032988c 4194 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
24676da4
TT
4195 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4196 ei->i_file_acl);
485c26ec
TT
4197 ret = -EIO;
4198 goto bad_inode;
f19d5870
TM
4199 } else if (!ext4_has_inline_data(inode)) {
4200 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4201 if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4202 (S_ISLNK(inode->i_mode) &&
4203 !ext4_inode_is_fast_symlink(inode))))
4204 /* Validate extent which is part of inode */
4205 ret = ext4_ext_check_inode(inode);
4206 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4207 (S_ISLNK(inode->i_mode) &&
4208 !ext4_inode_is_fast_symlink(inode))) {
4209 /* Validate block references which are part of inode */
4210 ret = ext4_ind_check_inode(inode);
4211 }
fe2c8191 4212 }
567f3e9a 4213 if (ret)
de9a55b8 4214 goto bad_inode;
7a262f7c 4215
ac27a0ec 4216 if (S_ISREG(inode->i_mode)) {
617ba13b
MC
4217 inode->i_op = &ext4_file_inode_operations;
4218 inode->i_fop = &ext4_file_operations;
4219 ext4_set_aops(inode);
ac27a0ec 4220 } else if (S_ISDIR(inode->i_mode)) {
617ba13b
MC
4221 inode->i_op = &ext4_dir_inode_operations;
4222 inode->i_fop = &ext4_dir_operations;
ac27a0ec 4223 } else if (S_ISLNK(inode->i_mode)) {
e83c1397 4224 if (ext4_inode_is_fast_symlink(inode)) {
617ba13b 4225 inode->i_op = &ext4_fast_symlink_inode_operations;
e83c1397
DG
4226 nd_terminate_link(ei->i_data, inode->i_size,
4227 sizeof(ei->i_data) - 1);
4228 } else {
617ba13b
MC
4229 inode->i_op = &ext4_symlink_inode_operations;
4230 ext4_set_aops(inode);
ac27a0ec 4231 }
563bdd61
TT
4232 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4233 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
617ba13b 4234 inode->i_op = &ext4_special_inode_operations;
ac27a0ec
DK
4235 if (raw_inode->i_block[0])
4236 init_special_inode(inode, inode->i_mode,
4237 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4238 else
4239 init_special_inode(inode, inode->i_mode,
4240 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
393d1d1d
DTB
4241 } else if (ino == EXT4_BOOT_LOADER_INO) {
4242 make_bad_inode(inode);
563bdd61 4243 } else {
563bdd61 4244 ret = -EIO;
24676da4 4245 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
563bdd61 4246 goto bad_inode;
ac27a0ec 4247 }
af5bc92d 4248 brelse(iloc.bh);
617ba13b 4249 ext4_set_inode_flags(inode);
1d1fe1ee
DH
4250 unlock_new_inode(inode);
4251 return inode;
ac27a0ec
DK
4252
4253bad_inode:
567f3e9a 4254 brelse(iloc.bh);
1d1fe1ee
DH
4255 iget_failed(inode);
4256 return ERR_PTR(ret);
ac27a0ec
DK
4257}
4258
0fc1b451
AK
4259static int ext4_inode_blocks_set(handle_t *handle,
4260 struct ext4_inode *raw_inode,
4261 struct ext4_inode_info *ei)
4262{
4263 struct inode *inode = &(ei->vfs_inode);
4264 u64 i_blocks = inode->i_blocks;
4265 struct super_block *sb = inode->i_sb;
0fc1b451
AK
4266
4267 if (i_blocks <= ~0U) {
4268 /*
4907cb7b 4269 * i_blocks can be represented in a 32 bit variable
0fc1b451
AK
4270 * as multiple of 512 bytes
4271 */
8180a562 4272 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 4273 raw_inode->i_blocks_high = 0;
84a8dce2 4274 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
f287a1a5
TT
4275 return 0;
4276 }
4277 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4278 return -EFBIG;
4279
4280 if (i_blocks <= 0xffffffffffffULL) {
0fc1b451
AK
4281 /*
4282 * i_blocks can be represented in a 48 bit variable
4283 * as multiple of 512 bytes
4284 */
8180a562 4285 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 4286 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
84a8dce2 4287 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
0fc1b451 4288 } else {
84a8dce2 4289 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
8180a562
AK
4290 /* i_block is stored in file system block size */
4291 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4292 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4293 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
0fc1b451 4294 }
f287a1a5 4295 return 0;
0fc1b451
AK
4296}
4297
ac27a0ec
DK
4298/*
4299 * Post the struct inode info into an on-disk inode location in the
4300 * buffer-cache. This gobbles the caller's reference to the
4301 * buffer_head in the inode location struct.
4302 *
4303 * The caller must have write access to iloc->bh.
4304 */
617ba13b 4305static int ext4_do_update_inode(handle_t *handle,
ac27a0ec 4306 struct inode *inode,
830156c7 4307 struct ext4_iloc *iloc)
ac27a0ec 4308{
617ba13b
MC
4309 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4310 struct ext4_inode_info *ei = EXT4_I(inode);
ac27a0ec 4311 struct buffer_head *bh = iloc->bh;
202ee5df 4312 struct super_block *sb = inode->i_sb;
ac27a0ec 4313 int err = 0, rc, block;
202ee5df 4314 int need_datasync = 0, set_large_file = 0;
08cefc7a
EB
4315 uid_t i_uid;
4316 gid_t i_gid;
ac27a0ec 4317
202ee5df
TT
4318 spin_lock(&ei->i_raw_lock);
4319
4320 /* For fields not tracked in the in-memory inode,
ac27a0ec 4321 * initialise them to zero for new inodes. */
19f5fb7a 4322 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
617ba13b 4323 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
ac27a0ec 4324
ff9ddf7e 4325 ext4_get_inode_flags(ei);
ac27a0ec 4326 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
08cefc7a
EB
4327 i_uid = i_uid_read(inode);
4328 i_gid = i_gid_read(inode);
af5bc92d 4329 if (!(test_opt(inode->i_sb, NO_UID32))) {
08cefc7a
EB
4330 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4331 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
ac27a0ec
DK
4332/*
4333 * Fix up interoperability with old kernels. Otherwise, old inodes get
4334 * re-used with the upper 16 bits of the uid/gid intact
4335 */
af5bc92d 4336 if (!ei->i_dtime) {
ac27a0ec 4337 raw_inode->i_uid_high =
08cefc7a 4338 cpu_to_le16(high_16_bits(i_uid));
ac27a0ec 4339 raw_inode->i_gid_high =
08cefc7a 4340 cpu_to_le16(high_16_bits(i_gid));
ac27a0ec
DK
4341 } else {
4342 raw_inode->i_uid_high = 0;
4343 raw_inode->i_gid_high = 0;
4344 }
4345 } else {
08cefc7a
EB
4346 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4347 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
ac27a0ec
DK
4348 raw_inode->i_uid_high = 0;
4349 raw_inode->i_gid_high = 0;
4350 }
4351 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
ef7f3835
KS
4352
4353 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4354 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4355 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4356 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4357
202ee5df
TT
4358 if (ext4_inode_blocks_set(handle, raw_inode, ei)) {
4359 spin_unlock(&ei->i_raw_lock);
0fc1b451 4360 goto out_brelse;
202ee5df 4361 }
ac27a0ec 4362 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
353eb83c 4363 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
ed3654eb 4364 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
a1ddeb7e
BP
4365 raw_inode->i_file_acl_high =
4366 cpu_to_le16(ei->i_file_acl >> 32);
7973c0c1 4367 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
b71fc079
JK
4368 if (ei->i_disksize != ext4_isize(raw_inode)) {
4369 ext4_isize_set(raw_inode, ei->i_disksize);
4370 need_datasync = 1;
4371 }
a48380f7 4372 if (ei->i_disksize > 0x7fffffffULL) {
a48380f7
AK
4373 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4374 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4375 EXT4_SB(sb)->s_es->s_rev_level ==
202ee5df
TT
4376 cpu_to_le32(EXT4_GOOD_OLD_REV))
4377 set_large_file = 1;
ac27a0ec
DK
4378 }
4379 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4380 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4381 if (old_valid_dev(inode->i_rdev)) {
4382 raw_inode->i_block[0] =
4383 cpu_to_le32(old_encode_dev(inode->i_rdev));
4384 raw_inode->i_block[1] = 0;
4385 } else {
4386 raw_inode->i_block[0] = 0;
4387 raw_inode->i_block[1] =
4388 cpu_to_le32(new_encode_dev(inode->i_rdev));
4389 raw_inode->i_block[2] = 0;
4390 }
f19d5870 4391 } else if (!ext4_has_inline_data(inode)) {
de9a55b8
TT
4392 for (block = 0; block < EXT4_N_BLOCKS; block++)
4393 raw_inode->i_block[block] = ei->i_data[block];
f19d5870 4394 }
ac27a0ec 4395
ed3654eb 4396 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
c4f65706
TT
4397 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4398 if (ei->i_extra_isize) {
4399 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4400 raw_inode->i_version_hi =
4401 cpu_to_le32(inode->i_version >> 32);
4402 raw_inode->i_extra_isize =
4403 cpu_to_le16(ei->i_extra_isize);
4404 }
25ec56b5
JNC
4405 }
4406
814525f4
DW
4407 ext4_inode_csum_set(inode, raw_inode, ei);
4408
202ee5df
TT
4409 spin_unlock(&ei->i_raw_lock);
4410
830156c7 4411 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
73b50c1c 4412 rc = ext4_handle_dirty_metadata(handle, NULL, bh);
830156c7
FM
4413 if (!err)
4414 err = rc;
19f5fb7a 4415 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
202ee5df 4416 if (set_large_file) {
5d601255 4417 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
202ee5df
TT
4418 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
4419 if (err)
4420 goto out_brelse;
4421 ext4_update_dynamic_rev(sb);
4422 EXT4_SET_RO_COMPAT_FEATURE(sb,
4423 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4424 ext4_handle_sync(handle);
4425 err = ext4_handle_dirty_super(handle, sb);
4426 }
b71fc079 4427 ext4_update_inode_fsync_trans(handle, inode, need_datasync);
ac27a0ec 4428out_brelse:
af5bc92d 4429 brelse(bh);
617ba13b 4430 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4431 return err;
4432}
4433
4434/*
617ba13b 4435 * ext4_write_inode()
ac27a0ec
DK
4436 *
4437 * We are called from a few places:
4438 *
87f7e416 4439 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
ac27a0ec 4440 * Here, there will be no transaction running. We wait for any running
4907cb7b 4441 * transaction to commit.
ac27a0ec 4442 *
87f7e416
TT
4443 * - Within flush work (sys_sync(), kupdate and such).
4444 * We wait on commit, if told to.
ac27a0ec 4445 *
87f7e416
TT
4446 * - Within iput_final() -> write_inode_now()
4447 * We wait on commit, if told to.
ac27a0ec
DK
4448 *
4449 * In all cases it is actually safe for us to return without doing anything,
4450 * because the inode has been copied into a raw inode buffer in
87f7e416
TT
4451 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL
4452 * writeback.
ac27a0ec
DK
4453 *
4454 * Note that we are absolutely dependent upon all inode dirtiers doing the
4455 * right thing: they *must* call mark_inode_dirty() after dirtying info in
4456 * which we are interested.
4457 *
4458 * It would be a bug for them to not do this. The code:
4459 *
4460 * mark_inode_dirty(inode)
4461 * stuff();
4462 * inode->i_size = expr;
4463 *
87f7e416
TT
4464 * is in error because write_inode() could occur while `stuff()' is running,
4465 * and the new i_size will be lost. Plus the inode will no longer be on the
4466 * superblock's dirty inode list.
ac27a0ec 4467 */
a9185b41 4468int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
ac27a0ec 4469{
91ac6f43
FM
4470 int err;
4471
87f7e416 4472 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
ac27a0ec
DK
4473 return 0;
4474
91ac6f43
FM
4475 if (EXT4_SB(inode->i_sb)->s_journal) {
4476 if (ext4_journal_current_handle()) {
4477 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4478 dump_stack();
4479 return -EIO;
4480 }
ac27a0ec 4481
10542c22
JK
4482 /*
4483 * No need to force transaction in WB_SYNC_NONE mode. Also
4484 * ext4_sync_fs() will force the commit after everything is
4485 * written.
4486 */
4487 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
91ac6f43
FM
4488 return 0;
4489
4490 err = ext4_force_commit(inode->i_sb);
4491 } else {
4492 struct ext4_iloc iloc;
ac27a0ec 4493
8b472d73 4494 err = __ext4_get_inode_loc(inode, &iloc, 0);
91ac6f43
FM
4495 if (err)
4496 return err;
10542c22
JK
4497 /*
4498 * sync(2) will flush the whole buffer cache. No need to do
4499 * it here separately for each inode.
4500 */
4501 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
830156c7
FM
4502 sync_dirty_buffer(iloc.bh);
4503 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
c398eda0
TT
4504 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4505 "IO error syncing inode");
830156c7
FM
4506 err = -EIO;
4507 }
fd2dd9fb 4508 brelse(iloc.bh);
91ac6f43
FM
4509 }
4510 return err;
ac27a0ec
DK
4511}
4512
53e87268
JK
4513/*
4514 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4515 * buffers that are attached to a page stradding i_size and are undergoing
4516 * commit. In that case we have to wait for commit to finish and try again.
4517 */
4518static void ext4_wait_for_tail_page_commit(struct inode *inode)
4519{
4520 struct page *page;
4521 unsigned offset;
4522 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4523 tid_t commit_tid = 0;
4524 int ret;
4525
4526 offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
4527 /*
4528 * All buffers in the last page remain valid? Then there's nothing to
4529 * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
4530 * blocksize case
4531 */
4532 if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
4533 return;
4534 while (1) {
4535 page = find_lock_page(inode->i_mapping,
4536 inode->i_size >> PAGE_CACHE_SHIFT);
4537 if (!page)
4538 return;
ca99fdd2
LC
4539 ret = __ext4_journalled_invalidatepage(page, offset,
4540 PAGE_CACHE_SIZE - offset);
53e87268
JK
4541 unlock_page(page);
4542 page_cache_release(page);
4543 if (ret != -EBUSY)
4544 return;
4545 commit_tid = 0;
4546 read_lock(&journal->j_state_lock);
4547 if (journal->j_committing_transaction)
4548 commit_tid = journal->j_committing_transaction->t_tid;
4549 read_unlock(&journal->j_state_lock);
4550 if (commit_tid)
4551 jbd2_log_wait_commit(journal, commit_tid);
4552 }
4553}
4554
ac27a0ec 4555/*
617ba13b 4556 * ext4_setattr()
ac27a0ec
DK
4557 *
4558 * Called from notify_change.
4559 *
4560 * We want to trap VFS attempts to truncate the file as soon as
4561 * possible. In particular, we want to make sure that when the VFS
4562 * shrinks i_size, we put the inode on the orphan list and modify
4563 * i_disksize immediately, so that during the subsequent flushing of
4564 * dirty pages and freeing of disk blocks, we can guarantee that any
4565 * commit will leave the blocks being flushed in an unused state on
4566 * disk. (On recovery, the inode will get truncated and the blocks will
4567 * be freed, so we have a strong guarantee that no future commit will
4568 * leave these blocks visible to the user.)
4569 *
678aaf48
JK
4570 * Another thing we have to assure is that if we are in ordered mode
4571 * and inode is still attached to the committing transaction, we must
4572 * we start writeout of all the dirty pages which are being truncated.
4573 * This way we are sure that all the data written in the previous
4574 * transaction are already on disk (truncate waits for pages under
4575 * writeback).
4576 *
4577 * Called with inode->i_mutex down.
ac27a0ec 4578 */
617ba13b 4579int ext4_setattr(struct dentry *dentry, struct iattr *attr)
ac27a0ec
DK
4580{
4581 struct inode *inode = dentry->d_inode;
4582 int error, rc = 0;
3d287de3 4583 int orphan = 0;
ac27a0ec
DK
4584 const unsigned int ia_valid = attr->ia_valid;
4585
4586 error = inode_change_ok(inode, attr);
4587 if (error)
4588 return error;
4589
12755627 4590 if (is_quota_modification(inode, attr))
871a2931 4591 dquot_initialize(inode);
08cefc7a
EB
4592 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4593 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
ac27a0ec
DK
4594 handle_t *handle;
4595
4596 /* (user+group)*(old+new) structure, inode write (sb,
4597 * inode block, ? - but truncate inode update has it) */
9924a92a
TT
4598 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4599 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
4600 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
ac27a0ec
DK
4601 if (IS_ERR(handle)) {
4602 error = PTR_ERR(handle);
4603 goto err_out;
4604 }
b43fa828 4605 error = dquot_transfer(inode, attr);
ac27a0ec 4606 if (error) {
617ba13b 4607 ext4_journal_stop(handle);
ac27a0ec
DK
4608 return error;
4609 }
4610 /* Update corresponding info in inode so that everything is in
4611 * one transaction */
4612 if (attr->ia_valid & ATTR_UID)
4613 inode->i_uid = attr->ia_uid;
4614 if (attr->ia_valid & ATTR_GID)
4615 inode->i_gid = attr->ia_gid;
617ba13b
MC
4616 error = ext4_mark_inode_dirty(handle, inode);
4617 ext4_journal_stop(handle);
ac27a0ec
DK
4618 }
4619
5208386c
JK
4620 if (attr->ia_valid & ATTR_SIZE && attr->ia_size != inode->i_size) {
4621 handle_t *handle;
562c72aa 4622
12e9b892 4623 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
e2b46574
ES
4624 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4625
0c095c7f
TT
4626 if (attr->ia_size > sbi->s_bitmap_maxbytes)
4627 return -EFBIG;
e2b46574 4628 }
dff6efc3
CH
4629
4630 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
4631 inode_inc_iversion(inode);
4632
5208386c
JK
4633 if (S_ISREG(inode->i_mode) &&
4634 (attr->ia_size < inode->i_size)) {
4635 if (ext4_should_order_data(inode)) {
4636 error = ext4_begin_ordered_truncate(inode,
678aaf48 4637 attr->ia_size);
5208386c 4638 if (error)
678aaf48 4639 goto err_out;
5208386c
JK
4640 }
4641 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
4642 if (IS_ERR(handle)) {
4643 error = PTR_ERR(handle);
4644 goto err_out;
4645 }
4646 if (ext4_handle_valid(handle)) {
4647 error = ext4_orphan_add(handle, inode);
4648 orphan = 1;
4649 }
90e775b7 4650 down_write(&EXT4_I(inode)->i_data_sem);
5208386c
JK
4651 EXT4_I(inode)->i_disksize = attr->ia_size;
4652 rc = ext4_mark_inode_dirty(handle, inode);
4653 if (!error)
4654 error = rc;
90e775b7
JK
4655 /*
4656 * We have to update i_size under i_data_sem together
4657 * with i_disksize to avoid races with writeback code
4658 * running ext4_wb_update_i_disksize().
4659 */
4660 if (!error)
4661 i_size_write(inode, attr->ia_size);
4662 up_write(&EXT4_I(inode)->i_data_sem);
5208386c
JK
4663 ext4_journal_stop(handle);
4664 if (error) {
4665 ext4_orphan_del(NULL, inode);
678aaf48
JK
4666 goto err_out;
4667 }
90e775b7
JK
4668 } else
4669 i_size_write(inode, attr->ia_size);
53e87268 4670
5208386c
JK
4671 /*
4672 * Blocks are going to be removed from the inode. Wait
4673 * for dio in flight. Temporarily disable
4674 * dioread_nolock to prevent livelock.
4675 */
4676 if (orphan) {
4677 if (!ext4_should_journal_data(inode)) {
4678 ext4_inode_block_unlocked_dio(inode);
4679 inode_dio_wait(inode);
4680 ext4_inode_resume_unlocked_dio(inode);
4681 } else
4682 ext4_wait_for_tail_page_commit(inode);
1c9114f9 4683 }
5208386c
JK
4684 /*
4685 * Truncate pagecache after we've waited for commit
4686 * in data=journal mode to make pages freeable.
4687 */
7caef267 4688 truncate_pagecache(inode, inode->i_size);
072bd7ea 4689 }
5208386c
JK
4690 /*
4691 * We want to call ext4_truncate() even if attr->ia_size ==
4692 * inode->i_size for cases like truncation of fallocated space
4693 */
4694 if (attr->ia_valid & ATTR_SIZE)
4695 ext4_truncate(inode);
ac27a0ec 4696
1025774c
CH
4697 if (!rc) {
4698 setattr_copy(inode, attr);
4699 mark_inode_dirty(inode);
4700 }
4701
4702 /*
4703 * If the call to ext4_truncate failed to get a transaction handle at
4704 * all, we need to clean up the in-core orphan list manually.
4705 */
3d287de3 4706 if (orphan && inode->i_nlink)
617ba13b 4707 ext4_orphan_del(NULL, inode);
ac27a0ec
DK
4708
4709 if (!rc && (ia_valid & ATTR_MODE))
64e178a7 4710 rc = posix_acl_chmod(inode, inode->i_mode);
ac27a0ec
DK
4711
4712err_out:
617ba13b 4713 ext4_std_error(inode->i_sb, error);
ac27a0ec
DK
4714 if (!error)
4715 error = rc;
4716 return error;
4717}
4718
3e3398a0
MC
4719int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4720 struct kstat *stat)
4721{
4722 struct inode *inode;
8af8eecc 4723 unsigned long long delalloc_blocks;
3e3398a0
MC
4724
4725 inode = dentry->d_inode;
4726 generic_fillattr(inode, stat);
4727
9206c561
AD
4728 /*
4729 * If there is inline data in the inode, the inode will normally not
4730 * have data blocks allocated (it may have an external xattr block).
4731 * Report at least one sector for such files, so tools like tar, rsync,
4732 * others doen't incorrectly think the file is completely sparse.
4733 */
4734 if (unlikely(ext4_has_inline_data(inode)))
4735 stat->blocks += (stat->size + 511) >> 9;
4736
3e3398a0
MC
4737 /*
4738 * We can't update i_blocks if the block allocation is delayed
4739 * otherwise in the case of system crash before the real block
4740 * allocation is done, we will have i_blocks inconsistent with
4741 * on-disk file blocks.
4742 * We always keep i_blocks updated together with real
4743 * allocation. But to not confuse with user, stat
4744 * will return the blocks that include the delayed allocation
4745 * blocks for this file.
4746 */
96607551 4747 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
9206c561
AD
4748 EXT4_I(inode)->i_reserved_data_blocks);
4749 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
3e3398a0
MC
4750 return 0;
4751}
ac27a0ec 4752
fffb2739
JK
4753static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
4754 int pextents)
a02908f1 4755{
12e9b892 4756 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
fffb2739
JK
4757 return ext4_ind_trans_blocks(inode, lblocks);
4758 return ext4_ext_index_trans_blocks(inode, pextents);
a02908f1 4759}
ac51d837 4760
ac27a0ec 4761/*
a02908f1
MC
4762 * Account for index blocks, block groups bitmaps and block group
4763 * descriptor blocks if modify datablocks and index blocks
4764 * worse case, the indexs blocks spread over different block groups
ac27a0ec 4765 *
a02908f1 4766 * If datablocks are discontiguous, they are possible to spread over
4907cb7b 4767 * different block groups too. If they are contiguous, with flexbg,
a02908f1 4768 * they could still across block group boundary.
ac27a0ec 4769 *
a02908f1
MC
4770 * Also account for superblock, inode, quota and xattr blocks
4771 */
fffb2739
JK
4772static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
4773 int pextents)
a02908f1 4774{
8df9675f
TT
4775 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4776 int gdpblocks;
a02908f1
MC
4777 int idxblocks;
4778 int ret = 0;
4779
4780 /*
fffb2739
JK
4781 * How many index blocks need to touch to map @lblocks logical blocks
4782 * to @pextents physical extents?
a02908f1 4783 */
fffb2739 4784 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
a02908f1
MC
4785
4786 ret = idxblocks;
4787
4788 /*
4789 * Now let's see how many group bitmaps and group descriptors need
4790 * to account
4791 */
fffb2739 4792 groups = idxblocks + pextents;
a02908f1 4793 gdpblocks = groups;
8df9675f
TT
4794 if (groups > ngroups)
4795 groups = ngroups;
a02908f1
MC
4796 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4797 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4798
4799 /* bitmaps and block group descriptor blocks */
4800 ret += groups + gdpblocks;
4801
4802 /* Blocks for super block, inode, quota and xattr blocks */
4803 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4804
4805 return ret;
4806}
4807
4808/*
25985edc 4809 * Calculate the total number of credits to reserve to fit
f3bd1f3f
MC
4810 * the modification of a single pages into a single transaction,
4811 * which may include multiple chunks of block allocations.
ac27a0ec 4812 *
525f4ed8 4813 * This could be called via ext4_write_begin()
ac27a0ec 4814 *
525f4ed8 4815 * We need to consider the worse case, when
a02908f1 4816 * one new block per extent.
ac27a0ec 4817 */
a86c6181 4818int ext4_writepage_trans_blocks(struct inode *inode)
ac27a0ec 4819{
617ba13b 4820 int bpp = ext4_journal_blocks_per_page(inode);
ac27a0ec
DK
4821 int ret;
4822
fffb2739 4823 ret = ext4_meta_trans_blocks(inode, bpp, bpp);
a86c6181 4824
a02908f1 4825 /* Account for data blocks for journalled mode */
617ba13b 4826 if (ext4_should_journal_data(inode))
a02908f1 4827 ret += bpp;
ac27a0ec
DK
4828 return ret;
4829}
f3bd1f3f
MC
4830
4831/*
4832 * Calculate the journal credits for a chunk of data modification.
4833 *
4834 * This is called from DIO, fallocate or whoever calling
79e83036 4835 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
f3bd1f3f
MC
4836 *
4837 * journal buffers for data blocks are not included here, as DIO
4838 * and fallocate do no need to journal data buffers.
4839 */
4840int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4841{
4842 return ext4_meta_trans_blocks(inode, nrblocks, 1);
4843}
4844
ac27a0ec 4845/*
617ba13b 4846 * The caller must have previously called ext4_reserve_inode_write().
ac27a0ec
DK
4847 * Give this, we know that the caller already has write access to iloc->bh.
4848 */
617ba13b 4849int ext4_mark_iloc_dirty(handle_t *handle,
de9a55b8 4850 struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
4851{
4852 int err = 0;
4853
c64db50e 4854 if (IS_I_VERSION(inode))
25ec56b5
JNC
4855 inode_inc_iversion(inode);
4856
ac27a0ec
DK
4857 /* the do_update_inode consumes one bh->b_count */
4858 get_bh(iloc->bh);
4859
dab291af 4860 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
830156c7 4861 err = ext4_do_update_inode(handle, inode, iloc);
ac27a0ec
DK
4862 put_bh(iloc->bh);
4863 return err;
4864}
4865
4866/*
4867 * On success, We end up with an outstanding reference count against
4868 * iloc->bh. This _must_ be cleaned up later.
4869 */
4870
4871int
617ba13b
MC
4872ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4873 struct ext4_iloc *iloc)
ac27a0ec 4874{
0390131b
FM
4875 int err;
4876
4877 err = ext4_get_inode_loc(inode, iloc);
4878 if (!err) {
4879 BUFFER_TRACE(iloc->bh, "get_write_access");
4880 err = ext4_journal_get_write_access(handle, iloc->bh);
4881 if (err) {
4882 brelse(iloc->bh);
4883 iloc->bh = NULL;
ac27a0ec
DK
4884 }
4885 }
617ba13b 4886 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4887 return err;
4888}
4889
6dd4ee7c
KS
4890/*
4891 * Expand an inode by new_extra_isize bytes.
4892 * Returns 0 on success or negative error number on failure.
4893 */
1d03ec98
AK
4894static int ext4_expand_extra_isize(struct inode *inode,
4895 unsigned int new_extra_isize,
4896 struct ext4_iloc iloc,
4897 handle_t *handle)
6dd4ee7c
KS
4898{
4899 struct ext4_inode *raw_inode;
4900 struct ext4_xattr_ibody_header *header;
6dd4ee7c
KS
4901
4902 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4903 return 0;
4904
4905 raw_inode = ext4_raw_inode(&iloc);
4906
4907 header = IHDR(inode, raw_inode);
6dd4ee7c
KS
4908
4909 /* No extended attributes present */
19f5fb7a
TT
4910 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4911 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
6dd4ee7c
KS
4912 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4913 new_extra_isize);
4914 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4915 return 0;
4916 }
4917
4918 /* try to expand with EAs present */
4919 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4920 raw_inode, handle);
4921}
4922
ac27a0ec
DK
4923/*
4924 * What we do here is to mark the in-core inode as clean with respect to inode
4925 * dirtiness (it may still be data-dirty).
4926 * This means that the in-core inode may be reaped by prune_icache
4927 * without having to perform any I/O. This is a very good thing,
4928 * because *any* task may call prune_icache - even ones which
4929 * have a transaction open against a different journal.
4930 *
4931 * Is this cheating? Not really. Sure, we haven't written the
4932 * inode out, but prune_icache isn't a user-visible syncing function.
4933 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4934 * we start and wait on commits.
ac27a0ec 4935 */
617ba13b 4936int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
ac27a0ec 4937{
617ba13b 4938 struct ext4_iloc iloc;
6dd4ee7c
KS
4939 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4940 static unsigned int mnt_count;
4941 int err, ret;
ac27a0ec
DK
4942
4943 might_sleep();
7ff9c073 4944 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
617ba13b 4945 err = ext4_reserve_inode_write(handle, inode, &iloc);
0390131b
FM
4946 if (ext4_handle_valid(handle) &&
4947 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
19f5fb7a 4948 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
6dd4ee7c
KS
4949 /*
4950 * We need extra buffer credits since we may write into EA block
4951 * with this same handle. If journal_extend fails, then it will
4952 * only result in a minor loss of functionality for that inode.
4953 * If this is felt to be critical, then e2fsck should be run to
4954 * force a large enough s_min_extra_isize.
4955 */
4956 if ((jbd2_journal_extend(handle,
4957 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4958 ret = ext4_expand_extra_isize(inode,
4959 sbi->s_want_extra_isize,
4960 iloc, handle);
4961 if (ret) {
19f5fb7a
TT
4962 ext4_set_inode_state(inode,
4963 EXT4_STATE_NO_EXPAND);
c1bddad9
AK
4964 if (mnt_count !=
4965 le16_to_cpu(sbi->s_es->s_mnt_count)) {
12062ddd 4966 ext4_warning(inode->i_sb,
6dd4ee7c
KS
4967 "Unable to expand inode %lu. Delete"
4968 " some EAs or run e2fsck.",
4969 inode->i_ino);
c1bddad9
AK
4970 mnt_count =
4971 le16_to_cpu(sbi->s_es->s_mnt_count);
6dd4ee7c
KS
4972 }
4973 }
4974 }
4975 }
ac27a0ec 4976 if (!err)
617ba13b 4977 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
ac27a0ec
DK
4978 return err;
4979}
4980
4981/*
617ba13b 4982 * ext4_dirty_inode() is called from __mark_inode_dirty()
ac27a0ec
DK
4983 *
4984 * We're really interested in the case where a file is being extended.
4985 * i_size has been changed by generic_commit_write() and we thus need
4986 * to include the updated inode in the current transaction.
4987 *
5dd4056d 4988 * Also, dquot_alloc_block() will always dirty the inode when blocks
ac27a0ec
DK
4989 * are allocated to the file.
4990 *
4991 * If the inode is marked synchronous, we don't honour that here - doing
4992 * so would cause a commit on atime updates, which we don't bother doing.
4993 * We handle synchronous inodes at the highest possible level.
4994 */
aa385729 4995void ext4_dirty_inode(struct inode *inode, int flags)
ac27a0ec 4996{
ac27a0ec
DK
4997 handle_t *handle;
4998
9924a92a 4999 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
ac27a0ec
DK
5000 if (IS_ERR(handle))
5001 goto out;
f3dc272f 5002
f3dc272f
CW
5003 ext4_mark_inode_dirty(handle, inode);
5004
617ba13b 5005 ext4_journal_stop(handle);
ac27a0ec
DK
5006out:
5007 return;
5008}
5009
5010#if 0
5011/*
5012 * Bind an inode's backing buffer_head into this transaction, to prevent
5013 * it from being flushed to disk early. Unlike
617ba13b 5014 * ext4_reserve_inode_write, this leaves behind no bh reference and
ac27a0ec
DK
5015 * returns no iloc structure, so the caller needs to repeat the iloc
5016 * lookup to mark the inode dirty later.
5017 */
617ba13b 5018static int ext4_pin_inode(handle_t *handle, struct inode *inode)
ac27a0ec 5019{
617ba13b 5020 struct ext4_iloc iloc;
ac27a0ec
DK
5021
5022 int err = 0;
5023 if (handle) {
617ba13b 5024 err = ext4_get_inode_loc(inode, &iloc);
ac27a0ec
DK
5025 if (!err) {
5026 BUFFER_TRACE(iloc.bh, "get_write_access");
dab291af 5027 err = jbd2_journal_get_write_access(handle, iloc.bh);
ac27a0ec 5028 if (!err)
0390131b 5029 err = ext4_handle_dirty_metadata(handle,
73b50c1c 5030 NULL,
0390131b 5031 iloc.bh);
ac27a0ec
DK
5032 brelse(iloc.bh);
5033 }
5034 }
617ba13b 5035 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5036 return err;
5037}
5038#endif
5039
617ba13b 5040int ext4_change_inode_journal_flag(struct inode *inode, int val)
ac27a0ec
DK
5041{
5042 journal_t *journal;
5043 handle_t *handle;
5044 int err;
5045
5046 /*
5047 * We have to be very careful here: changing a data block's
5048 * journaling status dynamically is dangerous. If we write a
5049 * data block to the journal, change the status and then delete
5050 * that block, we risk forgetting to revoke the old log record
5051 * from the journal and so a subsequent replay can corrupt data.
5052 * So, first we make sure that the journal is empty and that
5053 * nobody is changing anything.
5054 */
5055
617ba13b 5056 journal = EXT4_JOURNAL(inode);
0390131b
FM
5057 if (!journal)
5058 return 0;
d699594d 5059 if (is_journal_aborted(journal))
ac27a0ec 5060 return -EROFS;
2aff57b0
YY
5061 /* We have to allocate physical blocks for delalloc blocks
5062 * before flushing journal. otherwise delalloc blocks can not
5063 * be allocated any more. even more truncate on delalloc blocks
5064 * could trigger BUG by flushing delalloc blocks in journal.
5065 * There is no delalloc block in non-journal data mode.
5066 */
5067 if (val && test_opt(inode->i_sb, DELALLOC)) {
5068 err = ext4_alloc_da_blocks(inode);
5069 if (err < 0)
5070 return err;
5071 }
ac27a0ec 5072
17335dcc
DM
5073 /* Wait for all existing dio workers */
5074 ext4_inode_block_unlocked_dio(inode);
5075 inode_dio_wait(inode);
5076
dab291af 5077 jbd2_journal_lock_updates(journal);
ac27a0ec
DK
5078
5079 /*
5080 * OK, there are no updates running now, and all cached data is
5081 * synced to disk. We are now in a completely consistent state
5082 * which doesn't have anything in the journal, and we know that
5083 * no filesystem updates are running, so it is safe to modify
5084 * the inode's in-core data-journaling state flag now.
5085 */
5086
5087 if (val)
12e9b892 5088 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5872ddaa
YY
5089 else {
5090 jbd2_journal_flush(journal);
12e9b892 5091 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5872ddaa 5092 }
617ba13b 5093 ext4_set_aops(inode);
ac27a0ec 5094
dab291af 5095 jbd2_journal_unlock_updates(journal);
17335dcc 5096 ext4_inode_resume_unlocked_dio(inode);
ac27a0ec
DK
5097
5098 /* Finally we can mark the inode as dirty. */
5099
9924a92a 5100 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
ac27a0ec
DK
5101 if (IS_ERR(handle))
5102 return PTR_ERR(handle);
5103
617ba13b 5104 err = ext4_mark_inode_dirty(handle, inode);
0390131b 5105 ext4_handle_sync(handle);
617ba13b
MC
5106 ext4_journal_stop(handle);
5107 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5108
5109 return err;
5110}
2e9ee850
AK
5111
5112static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5113{
5114 return !buffer_mapped(bh);
5115}
5116
c2ec175c 5117int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2e9ee850 5118{
c2ec175c 5119 struct page *page = vmf->page;
2e9ee850
AK
5120 loff_t size;
5121 unsigned long len;
9ea7df53 5122 int ret;
2e9ee850 5123 struct file *file = vma->vm_file;
496ad9aa 5124 struct inode *inode = file_inode(file);
2e9ee850 5125 struct address_space *mapping = inode->i_mapping;
9ea7df53
JK
5126 handle_t *handle;
5127 get_block_t *get_block;
5128 int retries = 0;
2e9ee850 5129
8e8ad8a5 5130 sb_start_pagefault(inode->i_sb);
041bbb6d 5131 file_update_time(vma->vm_file);
9ea7df53
JK
5132 /* Delalloc case is easy... */
5133 if (test_opt(inode->i_sb, DELALLOC) &&
5134 !ext4_should_journal_data(inode) &&
5135 !ext4_nonda_switch(inode->i_sb)) {
5136 do {
5137 ret = __block_page_mkwrite(vma, vmf,
5138 ext4_da_get_block_prep);
5139 } while (ret == -ENOSPC &&
5140 ext4_should_retry_alloc(inode->i_sb, &retries));
5141 goto out_ret;
2e9ee850 5142 }
0e499890
DW
5143
5144 lock_page(page);
9ea7df53
JK
5145 size = i_size_read(inode);
5146 /* Page got truncated from under us? */
5147 if (page->mapping != mapping || page_offset(page) > size) {
5148 unlock_page(page);
5149 ret = VM_FAULT_NOPAGE;
5150 goto out;
0e499890 5151 }
2e9ee850
AK
5152
5153 if (page->index == size >> PAGE_CACHE_SHIFT)
5154 len = size & ~PAGE_CACHE_MASK;
5155 else
5156 len = PAGE_CACHE_SIZE;
a827eaff 5157 /*
9ea7df53
JK
5158 * Return if we have all the buffers mapped. This avoids the need to do
5159 * journal_start/journal_stop which can block and take a long time
a827eaff 5160 */
2e9ee850 5161 if (page_has_buffers(page)) {
f19d5870
TM
5162 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5163 0, len, NULL,
5164 ext4_bh_unmapped)) {
9ea7df53 5165 /* Wait so that we don't change page under IO */
1d1d1a76 5166 wait_for_stable_page(page);
9ea7df53
JK
5167 ret = VM_FAULT_LOCKED;
5168 goto out;
a827eaff 5169 }
2e9ee850 5170 }
a827eaff 5171 unlock_page(page);
9ea7df53
JK
5172 /* OK, we need to fill the hole... */
5173 if (ext4_should_dioread_nolock(inode))
5174 get_block = ext4_get_block_write;
5175 else
5176 get_block = ext4_get_block;
5177retry_alloc:
9924a92a
TT
5178 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5179 ext4_writepage_trans_blocks(inode));
9ea7df53 5180 if (IS_ERR(handle)) {
c2ec175c 5181 ret = VM_FAULT_SIGBUS;
9ea7df53
JK
5182 goto out;
5183 }
5184 ret = __block_page_mkwrite(vma, vmf, get_block);
5185 if (!ret && ext4_should_journal_data(inode)) {
f19d5870 5186 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
9ea7df53
JK
5187 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
5188 unlock_page(page);
5189 ret = VM_FAULT_SIGBUS;
fcbb5515 5190 ext4_journal_stop(handle);
9ea7df53
JK
5191 goto out;
5192 }
5193 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5194 }
5195 ext4_journal_stop(handle);
5196 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5197 goto retry_alloc;
5198out_ret:
5199 ret = block_page_mkwrite_return(ret);
5200out:
8e8ad8a5 5201 sb_end_pagefault(inode->i_sb);
2e9ee850
AK
5202 return ret;
5203}