Merge tag 'ext4_for_linus_stable' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-block.git] / fs / ext4 / inode.c
CommitLineData
ac27a0ec 1/*
617ba13b 2 * linux/fs/ext4/inode.c
ac27a0ec
DK
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
ac27a0ec
DK
15 * 64-bit file support on 64-bit platforms by Jakub Jelinek
16 * (jj@sunsite.ms.mff.cuni.cz)
17 *
617ba13b 18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
ac27a0ec
DK
19 */
20
ac27a0ec
DK
21#include <linux/fs.h>
22#include <linux/time.h>
dab291af 23#include <linux/jbd2.h>
ac27a0ec
DK
24#include <linux/highuid.h>
25#include <linux/pagemap.h>
26#include <linux/quotaops.h>
27#include <linux/string.h>
28#include <linux/buffer_head.h>
29#include <linux/writeback.h>
64769240 30#include <linux/pagevec.h>
ac27a0ec 31#include <linux/mpage.h>
e83c1397 32#include <linux/namei.h>
ac27a0ec
DK
33#include <linux/uio.h>
34#include <linux/bio.h>
4c0425ff 35#include <linux/workqueue.h>
744692dc 36#include <linux/kernel.h>
6db26ffc 37#include <linux/printk.h>
5a0e3ad6 38#include <linux/slab.h>
a8901d34 39#include <linux/ratelimit.h>
a27bb332 40#include <linux/aio.h>
00a1a053 41#include <linux/bitops.h>
9bffad1e 42
3dcf5451 43#include "ext4_jbd2.h"
ac27a0ec
DK
44#include "xattr.h"
45#include "acl.h"
9f125d64 46#include "truncate.h"
ac27a0ec 47
9bffad1e
TT
48#include <trace/events/ext4.h>
49
a1d6cc56
AK
50#define MPAGE_DA_EXTENT_TAIL 0x01
51
814525f4
DW
52static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
53 struct ext4_inode_info *ei)
54{
55 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
56 __u16 csum_lo;
57 __u16 csum_hi = 0;
58 __u32 csum;
59
171a7f21 60 csum_lo = le16_to_cpu(raw->i_checksum_lo);
814525f4
DW
61 raw->i_checksum_lo = 0;
62 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
63 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
171a7f21 64 csum_hi = le16_to_cpu(raw->i_checksum_hi);
814525f4
DW
65 raw->i_checksum_hi = 0;
66 }
67
68 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
69 EXT4_INODE_SIZE(inode->i_sb));
70
171a7f21 71 raw->i_checksum_lo = cpu_to_le16(csum_lo);
814525f4
DW
72 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
73 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
171a7f21 74 raw->i_checksum_hi = cpu_to_le16(csum_hi);
814525f4
DW
75
76 return csum;
77}
78
79static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
80 struct ext4_inode_info *ei)
81{
82 __u32 provided, calculated;
83
84 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
85 cpu_to_le32(EXT4_OS_LINUX) ||
86 !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
87 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
88 return 1;
89
90 provided = le16_to_cpu(raw->i_checksum_lo);
91 calculated = ext4_inode_csum(inode, raw, ei);
92 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
93 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
94 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
95 else
96 calculated &= 0xFFFF;
97
98 return provided == calculated;
99}
100
101static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
102 struct ext4_inode_info *ei)
103{
104 __u32 csum;
105
106 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
107 cpu_to_le32(EXT4_OS_LINUX) ||
108 !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
109 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
110 return;
111
112 csum = ext4_inode_csum(inode, raw, ei);
113 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
114 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
115 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
116 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
117}
118
678aaf48
JK
119static inline int ext4_begin_ordered_truncate(struct inode *inode,
120 loff_t new_size)
121{
7ff9c073 122 trace_ext4_begin_ordered_truncate(inode, new_size);
8aefcd55
TT
123 /*
124 * If jinode is zero, then we never opened the file for
125 * writing, so there's no need to call
126 * jbd2_journal_begin_ordered_truncate() since there's no
127 * outstanding writes we need to flush.
128 */
129 if (!EXT4_I(inode)->jinode)
130 return 0;
131 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
132 EXT4_I(inode)->jinode,
133 new_size);
678aaf48
JK
134}
135
d47992f8
LC
136static void ext4_invalidatepage(struct page *page, unsigned int offset,
137 unsigned int length);
cb20d518
TT
138static int __ext4_journalled_writepage(struct page *page, unsigned int len);
139static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
fffb2739
JK
140static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
141 int pextents);
64769240 142
ac27a0ec
DK
143/*
144 * Test whether an inode is a fast symlink.
145 */
617ba13b 146static int ext4_inode_is_fast_symlink(struct inode *inode)
ac27a0ec 147{
65eddb56
YY
148 int ea_blocks = EXT4_I(inode)->i_file_acl ?
149 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
ac27a0ec
DK
150
151 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
152}
153
ac27a0ec
DK
154/*
155 * Restart the transaction associated with *handle. This does a commit,
156 * so before we call here everything must be consistently dirtied against
157 * this transaction.
158 */
fa5d1113 159int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
487caeef 160 int nblocks)
ac27a0ec 161{
487caeef
JK
162 int ret;
163
164 /*
e35fd660 165 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
487caeef
JK
166 * moment, get_block can be called only for blocks inside i_size since
167 * page cache has been already dropped and writes are blocked by
168 * i_mutex. So we can safely drop the i_data_sem here.
169 */
0390131b 170 BUG_ON(EXT4_JOURNAL(inode) == NULL);
ac27a0ec 171 jbd_debug(2, "restarting handle %p\n", handle);
487caeef 172 up_write(&EXT4_I(inode)->i_data_sem);
8e8eaabe 173 ret = ext4_journal_restart(handle, nblocks);
487caeef 174 down_write(&EXT4_I(inode)->i_data_sem);
fa5d1113 175 ext4_discard_preallocations(inode);
487caeef
JK
176
177 return ret;
ac27a0ec
DK
178}
179
180/*
181 * Called at the last iput() if i_nlink is zero.
182 */
0930fcc1 183void ext4_evict_inode(struct inode *inode)
ac27a0ec
DK
184{
185 handle_t *handle;
bc965ab3 186 int err;
ac27a0ec 187
7ff9c073 188 trace_ext4_evict_inode(inode);
2581fdc8 189
0930fcc1 190 if (inode->i_nlink) {
2d859db3
JK
191 /*
192 * When journalling data dirty buffers are tracked only in the
193 * journal. So although mm thinks everything is clean and
194 * ready for reaping the inode might still have some pages to
195 * write in the running transaction or waiting to be
196 * checkpointed. Thus calling jbd2_journal_invalidatepage()
197 * (via truncate_inode_pages()) to discard these buffers can
198 * cause data loss. Also even if we did not discard these
199 * buffers, we would have no way to find them after the inode
200 * is reaped and thus user could see stale data if he tries to
201 * read them before the transaction is checkpointed. So be
202 * careful and force everything to disk here... We use
203 * ei->i_datasync_tid to store the newest transaction
204 * containing inode's data.
205 *
206 * Note that directories do not have this problem because they
207 * don't use page cache.
208 */
209 if (ext4_should_journal_data(inode) &&
2b405bfa
TT
210 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
211 inode->i_ino != EXT4_JOURNAL_INO) {
2d859db3
JK
212 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
213 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
214
d76a3a77 215 jbd2_complete_transaction(journal, commit_tid);
2d859db3
JK
216 filemap_write_and_wait(&inode->i_data);
217 }
91b0abe3 218 truncate_inode_pages_final(&inode->i_data);
5dc23bdd
JK
219
220 WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
0930fcc1
AV
221 goto no_delete;
222 }
223
907f4554 224 if (!is_bad_inode(inode))
871a2931 225 dquot_initialize(inode);
907f4554 226
678aaf48
JK
227 if (ext4_should_order_data(inode))
228 ext4_begin_ordered_truncate(inode, 0);
91b0abe3 229 truncate_inode_pages_final(&inode->i_data);
ac27a0ec 230
5dc23bdd 231 WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
ac27a0ec
DK
232 if (is_bad_inode(inode))
233 goto no_delete;
234
8e8ad8a5
JK
235 /*
236 * Protect us against freezing - iput() caller didn't have to have any
237 * protection against it
238 */
239 sb_start_intwrite(inode->i_sb);
9924a92a
TT
240 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
241 ext4_blocks_for_truncate(inode)+3);
ac27a0ec 242 if (IS_ERR(handle)) {
bc965ab3 243 ext4_std_error(inode->i_sb, PTR_ERR(handle));
ac27a0ec
DK
244 /*
245 * If we're going to skip the normal cleanup, we still need to
246 * make sure that the in-core orphan linked list is properly
247 * cleaned up.
248 */
617ba13b 249 ext4_orphan_del(NULL, inode);
8e8ad8a5 250 sb_end_intwrite(inode->i_sb);
ac27a0ec
DK
251 goto no_delete;
252 }
253
254 if (IS_SYNC(inode))
0390131b 255 ext4_handle_sync(handle);
ac27a0ec 256 inode->i_size = 0;
bc965ab3
TT
257 err = ext4_mark_inode_dirty(handle, inode);
258 if (err) {
12062ddd 259 ext4_warning(inode->i_sb,
bc965ab3
TT
260 "couldn't mark inode dirty (err %d)", err);
261 goto stop_handle;
262 }
ac27a0ec 263 if (inode->i_blocks)
617ba13b 264 ext4_truncate(inode);
bc965ab3
TT
265
266 /*
267 * ext4_ext_truncate() doesn't reserve any slop when it
268 * restarts journal transactions; therefore there may not be
269 * enough credits left in the handle to remove the inode from
270 * the orphan list and set the dtime field.
271 */
0390131b 272 if (!ext4_handle_has_enough_credits(handle, 3)) {
bc965ab3
TT
273 err = ext4_journal_extend(handle, 3);
274 if (err > 0)
275 err = ext4_journal_restart(handle, 3);
276 if (err != 0) {
12062ddd 277 ext4_warning(inode->i_sb,
bc965ab3
TT
278 "couldn't extend journal (err %d)", err);
279 stop_handle:
280 ext4_journal_stop(handle);
45388219 281 ext4_orphan_del(NULL, inode);
8e8ad8a5 282 sb_end_intwrite(inode->i_sb);
bc965ab3
TT
283 goto no_delete;
284 }
285 }
286
ac27a0ec 287 /*
617ba13b 288 * Kill off the orphan record which ext4_truncate created.
ac27a0ec 289 * AKPM: I think this can be inside the above `if'.
617ba13b 290 * Note that ext4_orphan_del() has to be able to cope with the
ac27a0ec 291 * deletion of a non-existent orphan - this is because we don't
617ba13b 292 * know if ext4_truncate() actually created an orphan record.
ac27a0ec
DK
293 * (Well, we could do this if we need to, but heck - it works)
294 */
617ba13b
MC
295 ext4_orphan_del(handle, inode);
296 EXT4_I(inode)->i_dtime = get_seconds();
ac27a0ec
DK
297
298 /*
299 * One subtle ordering requirement: if anything has gone wrong
300 * (transaction abort, IO errors, whatever), then we can still
301 * do these next steps (the fs will already have been marked as
302 * having errors), but we can't free the inode if the mark_dirty
303 * fails.
304 */
617ba13b 305 if (ext4_mark_inode_dirty(handle, inode))
ac27a0ec 306 /* If that failed, just do the required in-core inode clear. */
0930fcc1 307 ext4_clear_inode(inode);
ac27a0ec 308 else
617ba13b
MC
309 ext4_free_inode(handle, inode);
310 ext4_journal_stop(handle);
8e8ad8a5 311 sb_end_intwrite(inode->i_sb);
ac27a0ec
DK
312 return;
313no_delete:
0930fcc1 314 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
ac27a0ec
DK
315}
316
a9e7f447
DM
317#ifdef CONFIG_QUOTA
318qsize_t *ext4_get_reserved_space(struct inode *inode)
60e58e0f 319{
a9e7f447 320 return &EXT4_I(inode)->i_reserved_quota;
60e58e0f 321}
a9e7f447 322#endif
9d0be502 323
12219aea
AK
324/*
325 * Calculate the number of metadata blocks need to reserve
9d0be502 326 * to allocate a block located at @lblock
12219aea 327 */
01f49d0b 328static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
12219aea 329{
12e9b892 330 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
9d0be502 331 return ext4_ext_calc_metadata_amount(inode, lblock);
12219aea 332
8bb2b247 333 return ext4_ind_calc_metadata_amount(inode, lblock);
12219aea
AK
334}
335
0637c6f4
TT
336/*
337 * Called with i_data_sem down, which is important since we can call
338 * ext4_discard_preallocations() from here.
339 */
5f634d06
AK
340void ext4_da_update_reserve_space(struct inode *inode,
341 int used, int quota_claim)
12219aea
AK
342{
343 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 344 struct ext4_inode_info *ei = EXT4_I(inode);
0637c6f4
TT
345
346 spin_lock(&ei->i_block_reservation_lock);
d8990240 347 trace_ext4_da_update_reserve_space(inode, used, quota_claim);
0637c6f4 348 if (unlikely(used > ei->i_reserved_data_blocks)) {
8de5c325 349 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
1084f252 350 "with only %d reserved data blocks",
0637c6f4
TT
351 __func__, inode->i_ino, used,
352 ei->i_reserved_data_blocks);
353 WARN_ON(1);
354 used = ei->i_reserved_data_blocks;
355 }
12219aea 356
97795d2a 357 if (unlikely(ei->i_allocated_meta_blocks > ei->i_reserved_meta_blocks)) {
01a523eb
TT
358 ext4_warning(inode->i_sb, "ino %lu, allocated %d "
359 "with only %d reserved metadata blocks "
360 "(releasing %d blocks with reserved %d data blocks)",
361 inode->i_ino, ei->i_allocated_meta_blocks,
362 ei->i_reserved_meta_blocks, used,
363 ei->i_reserved_data_blocks);
97795d2a
BF
364 WARN_ON(1);
365 ei->i_allocated_meta_blocks = ei->i_reserved_meta_blocks;
366 }
367
0637c6f4
TT
368 /* Update per-inode reservations */
369 ei->i_reserved_data_blocks -= used;
0637c6f4 370 ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
57042651 371 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
72b8ab9d 372 used + ei->i_allocated_meta_blocks);
0637c6f4 373 ei->i_allocated_meta_blocks = 0;
6bc6e63f 374
0637c6f4
TT
375 if (ei->i_reserved_data_blocks == 0) {
376 /*
377 * We can release all of the reserved metadata blocks
378 * only when we have written all of the delayed
379 * allocation blocks.
380 */
57042651 381 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
72b8ab9d 382 ei->i_reserved_meta_blocks);
ee5f4d9c 383 ei->i_reserved_meta_blocks = 0;
9d0be502 384 ei->i_da_metadata_calc_len = 0;
6bc6e63f 385 }
12219aea 386 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f 387
72b8ab9d
ES
388 /* Update quota subsystem for data blocks */
389 if (quota_claim)
7b415bf6 390 dquot_claim_block(inode, EXT4_C2B(sbi, used));
72b8ab9d 391 else {
5f634d06
AK
392 /*
393 * We did fallocate with an offset that is already delayed
394 * allocated. So on delayed allocated writeback we should
72b8ab9d 395 * not re-claim the quota for fallocated blocks.
5f634d06 396 */
7b415bf6 397 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
5f634d06 398 }
d6014301
AK
399
400 /*
401 * If we have done all the pending block allocations and if
402 * there aren't any writers on the inode, we can discard the
403 * inode's preallocations.
404 */
0637c6f4
TT
405 if ((ei->i_reserved_data_blocks == 0) &&
406 (atomic_read(&inode->i_writecount) == 0))
d6014301 407 ext4_discard_preallocations(inode);
12219aea
AK
408}
409
e29136f8 410static int __check_block_validity(struct inode *inode, const char *func,
c398eda0
TT
411 unsigned int line,
412 struct ext4_map_blocks *map)
6fd058f7 413{
24676da4
TT
414 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
415 map->m_len)) {
c398eda0
TT
416 ext4_error_inode(inode, func, line, map->m_pblk,
417 "lblock %lu mapped to illegal pblock "
418 "(length %d)", (unsigned long) map->m_lblk,
419 map->m_len);
6fd058f7
TT
420 return -EIO;
421 }
422 return 0;
423}
424
e29136f8 425#define check_block_validity(inode, map) \
c398eda0 426 __check_block_validity((inode), __func__, __LINE__, (map))
e29136f8 427
921f266b
DM
428#ifdef ES_AGGRESSIVE_TEST
429static void ext4_map_blocks_es_recheck(handle_t *handle,
430 struct inode *inode,
431 struct ext4_map_blocks *es_map,
432 struct ext4_map_blocks *map,
433 int flags)
434{
435 int retval;
436
437 map->m_flags = 0;
438 /*
439 * There is a race window that the result is not the same.
440 * e.g. xfstests #223 when dioread_nolock enables. The reason
441 * is that we lookup a block mapping in extent status tree with
442 * out taking i_data_sem. So at the time the unwritten extent
443 * could be converted.
444 */
445 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
446 down_read((&EXT4_I(inode)->i_data_sem));
447 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
448 retval = ext4_ext_map_blocks(handle, inode, map, flags &
449 EXT4_GET_BLOCKS_KEEP_SIZE);
450 } else {
451 retval = ext4_ind_map_blocks(handle, inode, map, flags &
452 EXT4_GET_BLOCKS_KEEP_SIZE);
453 }
454 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
455 up_read((&EXT4_I(inode)->i_data_sem));
456 /*
457 * Clear EXT4_MAP_FROM_CLUSTER and EXT4_MAP_BOUNDARY flag
458 * because it shouldn't be marked in es_map->m_flags.
459 */
460 map->m_flags &= ~(EXT4_MAP_FROM_CLUSTER | EXT4_MAP_BOUNDARY);
461
462 /*
463 * We don't check m_len because extent will be collpased in status
464 * tree. So the m_len might not equal.
465 */
466 if (es_map->m_lblk != map->m_lblk ||
467 es_map->m_flags != map->m_flags ||
468 es_map->m_pblk != map->m_pblk) {
bdafe42a 469 printk("ES cache assertion failed for inode: %lu "
921f266b
DM
470 "es_cached ex [%d/%d/%llu/%x] != "
471 "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
472 inode->i_ino, es_map->m_lblk, es_map->m_len,
473 es_map->m_pblk, es_map->m_flags, map->m_lblk,
474 map->m_len, map->m_pblk, map->m_flags,
475 retval, flags);
476 }
477}
478#endif /* ES_AGGRESSIVE_TEST */
479
f5ab0d1f 480/*
e35fd660 481 * The ext4_map_blocks() function tries to look up the requested blocks,
2b2d6d01 482 * and returns if the blocks are already mapped.
f5ab0d1f 483 *
f5ab0d1f
MC
484 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
485 * and store the allocated blocks in the result buffer head and mark it
486 * mapped.
487 *
e35fd660
TT
488 * If file type is extents based, it will call ext4_ext_map_blocks(),
489 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
f5ab0d1f
MC
490 * based files
491 *
492 * On success, it returns the number of blocks being mapped or allocate.
493 * if create==0 and the blocks are pre-allocated and uninitialized block,
494 * the result buffer head is unmapped. If the create ==1, it will make sure
495 * the buffer head is mapped.
496 *
497 * It returns 0 if plain look up failed (blocks have not been allocated), in
df3ab170 498 * that case, buffer head is unmapped
f5ab0d1f
MC
499 *
500 * It returns the error in case of allocation failure.
501 */
e35fd660
TT
502int ext4_map_blocks(handle_t *handle, struct inode *inode,
503 struct ext4_map_blocks *map, int flags)
0e855ac8 504{
d100eef2 505 struct extent_status es;
0e855ac8 506 int retval;
b8a86845 507 int ret = 0;
921f266b
DM
508#ifdef ES_AGGRESSIVE_TEST
509 struct ext4_map_blocks orig_map;
510
511 memcpy(&orig_map, map, sizeof(*map));
512#endif
f5ab0d1f 513
e35fd660
TT
514 map->m_flags = 0;
515 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
516 "logical block %lu\n", inode->i_ino, flags, map->m_len,
517 (unsigned long) map->m_lblk);
d100eef2 518
e861b5e9
TT
519 /*
520 * ext4_map_blocks returns an int, and m_len is an unsigned int
521 */
522 if (unlikely(map->m_len > INT_MAX))
523 map->m_len = INT_MAX;
524
4adb6ab3
KM
525 /* We can handle the block number less than EXT_MAX_BLOCKS */
526 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
527 return -EIO;
528
d100eef2
ZL
529 /* Lookup extent status tree firstly */
530 if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
63b99968 531 ext4_es_lru_add(inode);
d100eef2
ZL
532 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
533 map->m_pblk = ext4_es_pblock(&es) +
534 map->m_lblk - es.es_lblk;
535 map->m_flags |= ext4_es_is_written(&es) ?
536 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
537 retval = es.es_len - (map->m_lblk - es.es_lblk);
538 if (retval > map->m_len)
539 retval = map->m_len;
540 map->m_len = retval;
541 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
542 retval = 0;
543 } else {
544 BUG_ON(1);
545 }
921f266b
DM
546#ifdef ES_AGGRESSIVE_TEST
547 ext4_map_blocks_es_recheck(handle, inode, map,
548 &orig_map, flags);
549#endif
d100eef2
ZL
550 goto found;
551 }
552
4df3d265 553 /*
b920c755
TT
554 * Try to see if we can get the block without requesting a new
555 * file system block.
4df3d265 556 */
729f52c6
ZL
557 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
558 down_read((&EXT4_I(inode)->i_data_sem));
12e9b892 559 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
a4e5d88b
DM
560 retval = ext4_ext_map_blocks(handle, inode, map, flags &
561 EXT4_GET_BLOCKS_KEEP_SIZE);
0e855ac8 562 } else {
a4e5d88b
DM
563 retval = ext4_ind_map_blocks(handle, inode, map, flags &
564 EXT4_GET_BLOCKS_KEEP_SIZE);
0e855ac8 565 }
f7fec032 566 if (retval > 0) {
3be78c73 567 unsigned int status;
f7fec032 568
44fb851d
ZL
569 if (unlikely(retval != map->m_len)) {
570 ext4_warning(inode->i_sb,
571 "ES len assertion failed for inode "
572 "%lu: retval %d != map->m_len %d",
573 inode->i_ino, retval, map->m_len);
574 WARN_ON(1);
921f266b 575 }
921f266b 576
f7fec032
ZL
577 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
578 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
579 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
580 ext4_find_delalloc_range(inode, map->m_lblk,
581 map->m_lblk + map->m_len - 1))
582 status |= EXTENT_STATUS_DELAYED;
583 ret = ext4_es_insert_extent(inode, map->m_lblk,
584 map->m_len, map->m_pblk, status);
585 if (ret < 0)
586 retval = ret;
587 }
729f52c6
ZL
588 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
589 up_read((&EXT4_I(inode)->i_data_sem));
f5ab0d1f 590
d100eef2 591found:
e35fd660 592 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
b8a86845 593 ret = check_block_validity(inode, map);
6fd058f7
TT
594 if (ret != 0)
595 return ret;
596 }
597
f5ab0d1f 598 /* If it is only a block(s) look up */
c2177057 599 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
f5ab0d1f
MC
600 return retval;
601
602 /*
603 * Returns if the blocks have already allocated
604 *
605 * Note that if blocks have been preallocated
df3ab170 606 * ext4_ext_get_block() returns the create = 0
f5ab0d1f
MC
607 * with buffer head unmapped.
608 */
e35fd660 609 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
b8a86845
LC
610 /*
611 * If we need to convert extent to unwritten
612 * we continue and do the actual work in
613 * ext4_ext_map_blocks()
614 */
615 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
616 return retval;
4df3d265 617
2a8964d6 618 /*
a25a4e1a
ZL
619 * Here we clear m_flags because after allocating an new extent,
620 * it will be set again.
2a8964d6 621 */
a25a4e1a 622 map->m_flags &= ~EXT4_MAP_FLAGS;
2a8964d6 623
4df3d265 624 /*
f5ab0d1f
MC
625 * New blocks allocate and/or writing to uninitialized extent
626 * will possibly result in updating i_data, so we take
627 * the write lock of i_data_sem, and call get_blocks()
628 * with create == 1 flag.
4df3d265
AK
629 */
630 down_write((&EXT4_I(inode)->i_data_sem));
d2a17637
MC
631
632 /*
633 * if the caller is from delayed allocation writeout path
634 * we have already reserved fs blocks for allocation
635 * let the underlying get_block() function know to
636 * avoid double accounting
637 */
c2177057 638 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
f2321097 639 ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
4df3d265
AK
640 /*
641 * We need to check for EXT4 here because migrate
642 * could have changed the inode type in between
643 */
12e9b892 644 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
e35fd660 645 retval = ext4_ext_map_blocks(handle, inode, map, flags);
0e855ac8 646 } else {
e35fd660 647 retval = ext4_ind_map_blocks(handle, inode, map, flags);
267e4db9 648
e35fd660 649 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
267e4db9
AK
650 /*
651 * We allocated new blocks which will result in
652 * i_data's format changing. Force the migrate
653 * to fail by clearing migrate flags
654 */
19f5fb7a 655 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
267e4db9 656 }
d2a17637 657
5f634d06
AK
658 /*
659 * Update reserved blocks/metadata blocks after successful
660 * block allocation which had been deferred till now. We don't
661 * support fallocate for non extent files. So we can update
662 * reserve space here.
663 */
664 if ((retval > 0) &&
1296cc85 665 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
5f634d06
AK
666 ext4_da_update_reserve_space(inode, retval, 1);
667 }
f7fec032 668 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
f2321097 669 ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
2ac3b6e0 670
f7fec032 671 if (retval > 0) {
3be78c73 672 unsigned int status;
f7fec032 673
44fb851d
ZL
674 if (unlikely(retval != map->m_len)) {
675 ext4_warning(inode->i_sb,
676 "ES len assertion failed for inode "
677 "%lu: retval %d != map->m_len %d",
678 inode->i_ino, retval, map->m_len);
679 WARN_ON(1);
921f266b 680 }
921f266b 681
adb23551
ZL
682 /*
683 * If the extent has been zeroed out, we don't need to update
684 * extent status tree.
685 */
686 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
687 ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
688 if (ext4_es_is_written(&es))
689 goto has_zeroout;
690 }
f7fec032
ZL
691 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
692 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
693 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
694 ext4_find_delalloc_range(inode, map->m_lblk,
695 map->m_lblk + map->m_len - 1))
696 status |= EXTENT_STATUS_DELAYED;
697 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
698 map->m_pblk, status);
699 if (ret < 0)
700 retval = ret;
5356f261
AK
701 }
702
adb23551 703has_zeroout:
4df3d265 704 up_write((&EXT4_I(inode)->i_data_sem));
e35fd660 705 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
b8a86845 706 ret = check_block_validity(inode, map);
6fd058f7
TT
707 if (ret != 0)
708 return ret;
709 }
0e855ac8
AK
710 return retval;
711}
712
f3bd1f3f
MC
713/* Maximum number of blocks we map for direct IO at once. */
714#define DIO_MAX_BLOCKS 4096
715
2ed88685
TT
716static int _ext4_get_block(struct inode *inode, sector_t iblock,
717 struct buffer_head *bh, int flags)
ac27a0ec 718{
3e4fdaf8 719 handle_t *handle = ext4_journal_current_handle();
2ed88685 720 struct ext4_map_blocks map;
7fb5409d 721 int ret = 0, started = 0;
f3bd1f3f 722 int dio_credits;
ac27a0ec 723
46c7f254
TM
724 if (ext4_has_inline_data(inode))
725 return -ERANGE;
726
2ed88685
TT
727 map.m_lblk = iblock;
728 map.m_len = bh->b_size >> inode->i_blkbits;
729
8b0f165f 730 if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
7fb5409d 731 /* Direct IO write... */
2ed88685
TT
732 if (map.m_len > DIO_MAX_BLOCKS)
733 map.m_len = DIO_MAX_BLOCKS;
734 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
9924a92a
TT
735 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
736 dio_credits);
7fb5409d 737 if (IS_ERR(handle)) {
ac27a0ec 738 ret = PTR_ERR(handle);
2ed88685 739 return ret;
ac27a0ec 740 }
7fb5409d 741 started = 1;
ac27a0ec
DK
742 }
743
2ed88685 744 ret = ext4_map_blocks(handle, inode, &map, flags);
7fb5409d 745 if (ret > 0) {
7b7a8665
CH
746 ext4_io_end_t *io_end = ext4_inode_aio(inode);
747
2ed88685
TT
748 map_bh(bh, inode->i_sb, map.m_pblk);
749 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
7b7a8665
CH
750 if (io_end && io_end->flag & EXT4_IO_END_UNWRITTEN)
751 set_buffer_defer_completion(bh);
2ed88685 752 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
7fb5409d 753 ret = 0;
ac27a0ec 754 }
7fb5409d
JK
755 if (started)
756 ext4_journal_stop(handle);
ac27a0ec
DK
757 return ret;
758}
759
2ed88685
TT
760int ext4_get_block(struct inode *inode, sector_t iblock,
761 struct buffer_head *bh, int create)
762{
763 return _ext4_get_block(inode, iblock, bh,
764 create ? EXT4_GET_BLOCKS_CREATE : 0);
765}
766
ac27a0ec
DK
767/*
768 * `handle' can be NULL if create is zero
769 */
617ba13b 770struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
725d26d3 771 ext4_lblk_t block, int create, int *errp)
ac27a0ec 772{
2ed88685
TT
773 struct ext4_map_blocks map;
774 struct buffer_head *bh;
ac27a0ec
DK
775 int fatal = 0, err;
776
777 J_ASSERT(handle != NULL || create == 0);
778
2ed88685
TT
779 map.m_lblk = block;
780 map.m_len = 1;
781 err = ext4_map_blocks(handle, inode, &map,
782 create ? EXT4_GET_BLOCKS_CREATE : 0);
ac27a0ec 783
90b0a973
CM
784 /* ensure we send some value back into *errp */
785 *errp = 0;
786
0f70b406
TT
787 if (create && err == 0)
788 err = -ENOSPC; /* should never happen */
2ed88685
TT
789 if (err < 0)
790 *errp = err;
791 if (err <= 0)
792 return NULL;
2ed88685
TT
793
794 bh = sb_getblk(inode->i_sb, map.m_pblk);
aebf0243 795 if (unlikely(!bh)) {
860d21e2 796 *errp = -ENOMEM;
2ed88685 797 return NULL;
ac27a0ec 798 }
2ed88685
TT
799 if (map.m_flags & EXT4_MAP_NEW) {
800 J_ASSERT(create != 0);
801 J_ASSERT(handle != NULL);
ac27a0ec 802
2ed88685
TT
803 /*
804 * Now that we do not always journal data, we should
805 * keep in mind whether this should always journal the
806 * new buffer as metadata. For now, regular file
807 * writes use ext4_get_block instead, so it's not a
808 * problem.
809 */
810 lock_buffer(bh);
811 BUFFER_TRACE(bh, "call get_create_access");
812 fatal = ext4_journal_get_create_access(handle, bh);
813 if (!fatal && !buffer_uptodate(bh)) {
814 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
815 set_buffer_uptodate(bh);
ac27a0ec 816 }
2ed88685
TT
817 unlock_buffer(bh);
818 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
819 err = ext4_handle_dirty_metadata(handle, inode, bh);
820 if (!fatal)
821 fatal = err;
822 } else {
823 BUFFER_TRACE(bh, "not a new buffer");
ac27a0ec 824 }
2ed88685
TT
825 if (fatal) {
826 *errp = fatal;
827 brelse(bh);
828 bh = NULL;
829 }
830 return bh;
ac27a0ec
DK
831}
832
617ba13b 833struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
725d26d3 834 ext4_lblk_t block, int create, int *err)
ac27a0ec 835{
af5bc92d 836 struct buffer_head *bh;
ac27a0ec 837
617ba13b 838 bh = ext4_getblk(handle, inode, block, create, err);
ac27a0ec
DK
839 if (!bh)
840 return bh;
841 if (buffer_uptodate(bh))
842 return bh;
65299a3b 843 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
ac27a0ec
DK
844 wait_on_buffer(bh);
845 if (buffer_uptodate(bh))
846 return bh;
847 put_bh(bh);
848 *err = -EIO;
849 return NULL;
850}
851
f19d5870
TM
852int ext4_walk_page_buffers(handle_t *handle,
853 struct buffer_head *head,
854 unsigned from,
855 unsigned to,
856 int *partial,
857 int (*fn)(handle_t *handle,
858 struct buffer_head *bh))
ac27a0ec
DK
859{
860 struct buffer_head *bh;
861 unsigned block_start, block_end;
862 unsigned blocksize = head->b_size;
863 int err, ret = 0;
864 struct buffer_head *next;
865
af5bc92d
TT
866 for (bh = head, block_start = 0;
867 ret == 0 && (bh != head || !block_start);
de9a55b8 868 block_start = block_end, bh = next) {
ac27a0ec
DK
869 next = bh->b_this_page;
870 block_end = block_start + blocksize;
871 if (block_end <= from || block_start >= to) {
872 if (partial && !buffer_uptodate(bh))
873 *partial = 1;
874 continue;
875 }
876 err = (*fn)(handle, bh);
877 if (!ret)
878 ret = err;
879 }
880 return ret;
881}
882
883/*
884 * To preserve ordering, it is essential that the hole instantiation and
885 * the data write be encapsulated in a single transaction. We cannot
617ba13b 886 * close off a transaction and start a new one between the ext4_get_block()
dab291af 887 * and the commit_write(). So doing the jbd2_journal_start at the start of
ac27a0ec
DK
888 * prepare_write() is the right place.
889 *
36ade451
JK
890 * Also, this function can nest inside ext4_writepage(). In that case, we
891 * *know* that ext4_writepage() has generated enough buffer credits to do the
892 * whole page. So we won't block on the journal in that case, which is good,
893 * because the caller may be PF_MEMALLOC.
ac27a0ec 894 *
617ba13b 895 * By accident, ext4 can be reentered when a transaction is open via
ac27a0ec
DK
896 * quota file writes. If we were to commit the transaction while thus
897 * reentered, there can be a deadlock - we would be holding a quota
898 * lock, and the commit would never complete if another thread had a
899 * transaction open and was blocking on the quota lock - a ranking
900 * violation.
901 *
dab291af 902 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
ac27a0ec
DK
903 * will _not_ run commit under these circumstances because handle->h_ref
904 * is elevated. We'll still have enough credits for the tiny quotafile
905 * write.
906 */
f19d5870
TM
907int do_journal_get_write_access(handle_t *handle,
908 struct buffer_head *bh)
ac27a0ec 909{
56d35a4c
JK
910 int dirty = buffer_dirty(bh);
911 int ret;
912
ac27a0ec
DK
913 if (!buffer_mapped(bh) || buffer_freed(bh))
914 return 0;
56d35a4c 915 /*
ebdec241 916 * __block_write_begin() could have dirtied some buffers. Clean
56d35a4c
JK
917 * the dirty bit as jbd2_journal_get_write_access() could complain
918 * otherwise about fs integrity issues. Setting of the dirty bit
ebdec241 919 * by __block_write_begin() isn't a real problem here as we clear
56d35a4c
JK
920 * the bit before releasing a page lock and thus writeback cannot
921 * ever write the buffer.
922 */
923 if (dirty)
924 clear_buffer_dirty(bh);
925 ret = ext4_journal_get_write_access(handle, bh);
926 if (!ret && dirty)
927 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
928 return ret;
ac27a0ec
DK
929}
930
8b0f165f
AP
931static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
932 struct buffer_head *bh_result, int create);
bfc1af65 933static int ext4_write_begin(struct file *file, struct address_space *mapping,
de9a55b8
TT
934 loff_t pos, unsigned len, unsigned flags,
935 struct page **pagep, void **fsdata)
ac27a0ec 936{
af5bc92d 937 struct inode *inode = mapping->host;
1938a150 938 int ret, needed_blocks;
ac27a0ec
DK
939 handle_t *handle;
940 int retries = 0;
af5bc92d 941 struct page *page;
de9a55b8 942 pgoff_t index;
af5bc92d 943 unsigned from, to;
bfc1af65 944
9bffad1e 945 trace_ext4_write_begin(inode, pos, len, flags);
1938a150
AK
946 /*
947 * Reserve one block more for addition to orphan list in case
948 * we allocate blocks but write fails for some reason
949 */
950 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
de9a55b8 951 index = pos >> PAGE_CACHE_SHIFT;
af5bc92d
TT
952 from = pos & (PAGE_CACHE_SIZE - 1);
953 to = from + len;
ac27a0ec 954
f19d5870
TM
955 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
956 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
957 flags, pagep);
958 if (ret < 0)
47564bfb
TT
959 return ret;
960 if (ret == 1)
961 return 0;
f19d5870
TM
962 }
963
47564bfb
TT
964 /*
965 * grab_cache_page_write_begin() can take a long time if the
966 * system is thrashing due to memory pressure, or if the page
967 * is being written back. So grab it first before we start
968 * the transaction handle. This also allows us to allocate
969 * the page (if needed) without using GFP_NOFS.
970 */
971retry_grab:
972 page = grab_cache_page_write_begin(mapping, index, flags);
973 if (!page)
974 return -ENOMEM;
975 unlock_page(page);
976
977retry_journal:
9924a92a 978 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
af5bc92d 979 if (IS_ERR(handle)) {
47564bfb
TT
980 page_cache_release(page);
981 return PTR_ERR(handle);
7479d2b9 982 }
ac27a0ec 983
47564bfb
TT
984 lock_page(page);
985 if (page->mapping != mapping) {
986 /* The page got truncated from under us */
987 unlock_page(page);
988 page_cache_release(page);
cf108bca 989 ext4_journal_stop(handle);
47564bfb 990 goto retry_grab;
cf108bca 991 }
7afe5aa5
DM
992 /* In case writeback began while the page was unlocked */
993 wait_for_stable_page(page);
cf108bca 994
744692dc 995 if (ext4_should_dioread_nolock(inode))
6e1db88d 996 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
744692dc 997 else
6e1db88d 998 ret = __block_write_begin(page, pos, len, ext4_get_block);
bfc1af65
NP
999
1000 if (!ret && ext4_should_journal_data(inode)) {
f19d5870
TM
1001 ret = ext4_walk_page_buffers(handle, page_buffers(page),
1002 from, to, NULL,
1003 do_journal_get_write_access);
ac27a0ec 1004 }
bfc1af65
NP
1005
1006 if (ret) {
af5bc92d 1007 unlock_page(page);
ae4d5372 1008 /*
6e1db88d 1009 * __block_write_begin may have instantiated a few blocks
ae4d5372
AK
1010 * outside i_size. Trim these off again. Don't need
1011 * i_size_read because we hold i_mutex.
1938a150
AK
1012 *
1013 * Add inode to orphan list in case we crash before
1014 * truncate finishes
ae4d5372 1015 */
ffacfa7a 1016 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1938a150
AK
1017 ext4_orphan_add(handle, inode);
1018
1019 ext4_journal_stop(handle);
1020 if (pos + len > inode->i_size) {
b9a4207d 1021 ext4_truncate_failed_write(inode);
de9a55b8 1022 /*
ffacfa7a 1023 * If truncate failed early the inode might
1938a150
AK
1024 * still be on the orphan list; we need to
1025 * make sure the inode is removed from the
1026 * orphan list in that case.
1027 */
1028 if (inode->i_nlink)
1029 ext4_orphan_del(NULL, inode);
1030 }
bfc1af65 1031
47564bfb
TT
1032 if (ret == -ENOSPC &&
1033 ext4_should_retry_alloc(inode->i_sb, &retries))
1034 goto retry_journal;
1035 page_cache_release(page);
1036 return ret;
1037 }
1038 *pagep = page;
ac27a0ec
DK
1039 return ret;
1040}
1041
bfc1af65
NP
1042/* For write_end() in data=journal mode */
1043static int write_end_fn(handle_t *handle, struct buffer_head *bh)
ac27a0ec 1044{
13fca323 1045 int ret;
ac27a0ec
DK
1046 if (!buffer_mapped(bh) || buffer_freed(bh))
1047 return 0;
1048 set_buffer_uptodate(bh);
13fca323
TT
1049 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1050 clear_buffer_meta(bh);
1051 clear_buffer_prio(bh);
1052 return ret;
ac27a0ec
DK
1053}
1054
eed4333f
ZL
1055/*
1056 * We need to pick up the new inode size which generic_commit_write gave us
1057 * `file' can be NULL - eg, when called from page_symlink().
1058 *
1059 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1060 * buffers are managed internally.
1061 */
1062static int ext4_write_end(struct file *file,
1063 struct address_space *mapping,
1064 loff_t pos, unsigned len, unsigned copied,
1065 struct page *page, void *fsdata)
f8514083 1066{
f8514083 1067 handle_t *handle = ext4_journal_current_handle();
eed4333f
ZL
1068 struct inode *inode = mapping->host;
1069 int ret = 0, ret2;
1070 int i_size_changed = 0;
1071
1072 trace_ext4_write_end(inode, pos, len, copied);
1073 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) {
1074 ret = ext4_jbd2_file_inode(handle, inode);
1075 if (ret) {
1076 unlock_page(page);
1077 page_cache_release(page);
1078 goto errout;
1079 }
1080 }
f8514083 1081
42c832de
TT
1082 if (ext4_has_inline_data(inode)) {
1083 ret = ext4_write_inline_data_end(inode, pos, len,
1084 copied, page);
1085 if (ret < 0)
1086 goto errout;
1087 copied = ret;
1088 } else
f19d5870
TM
1089 copied = block_write_end(file, mapping, pos,
1090 len, copied, page, fsdata);
f8514083
AK
1091
1092 /*
1093 * No need to use i_size_read() here, the i_size
eed4333f 1094 * cannot change under us because we hole i_mutex.
f8514083
AK
1095 *
1096 * But it's important to update i_size while still holding page lock:
1097 * page writeout could otherwise come in and zero beyond i_size.
1098 */
1099 if (pos + copied > inode->i_size) {
1100 i_size_write(inode, pos + copied);
1101 i_size_changed = 1;
1102 }
1103
eed4333f 1104 if (pos + copied > EXT4_I(inode)->i_disksize) {
f8514083
AK
1105 /* We need to mark inode dirty even if
1106 * new_i_size is less that inode->i_size
eed4333f 1107 * but greater than i_disksize. (hint delalloc)
f8514083
AK
1108 */
1109 ext4_update_i_disksize(inode, (pos + copied));
1110 i_size_changed = 1;
1111 }
1112 unlock_page(page);
1113 page_cache_release(page);
1114
1115 /*
1116 * Don't mark the inode dirty under page lock. First, it unnecessarily
1117 * makes the holding time of page lock longer. Second, it forces lock
1118 * ordering of page lock and transaction start for journaling
1119 * filesystems.
1120 */
1121 if (i_size_changed)
1122 ext4_mark_inode_dirty(handle, inode);
1123
ffacfa7a 1124 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1125 /* if we have allocated more blocks and copied
1126 * less. We will have blocks allocated outside
1127 * inode->i_size. So truncate them
1128 */
1129 ext4_orphan_add(handle, inode);
74d553aa 1130errout:
617ba13b 1131 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1132 if (!ret)
1133 ret = ret2;
bfc1af65 1134
f8514083 1135 if (pos + len > inode->i_size) {
b9a4207d 1136 ext4_truncate_failed_write(inode);
de9a55b8 1137 /*
ffacfa7a 1138 * If truncate failed early the inode might still be
f8514083
AK
1139 * on the orphan list; we need to make sure the inode
1140 * is removed from the orphan list in that case.
1141 */
1142 if (inode->i_nlink)
1143 ext4_orphan_del(NULL, inode);
1144 }
1145
bfc1af65 1146 return ret ? ret : copied;
ac27a0ec
DK
1147}
1148
bfc1af65 1149static int ext4_journalled_write_end(struct file *file,
de9a55b8
TT
1150 struct address_space *mapping,
1151 loff_t pos, unsigned len, unsigned copied,
1152 struct page *page, void *fsdata)
ac27a0ec 1153{
617ba13b 1154 handle_t *handle = ext4_journal_current_handle();
bfc1af65 1155 struct inode *inode = mapping->host;
ac27a0ec
DK
1156 int ret = 0, ret2;
1157 int partial = 0;
bfc1af65 1158 unsigned from, to;
cf17fea6 1159 loff_t new_i_size;
ac27a0ec 1160
9bffad1e 1161 trace_ext4_journalled_write_end(inode, pos, len, copied);
bfc1af65
NP
1162 from = pos & (PAGE_CACHE_SIZE - 1);
1163 to = from + len;
1164
441c8508
CW
1165 BUG_ON(!ext4_handle_valid(handle));
1166
3fdcfb66
TM
1167 if (ext4_has_inline_data(inode))
1168 copied = ext4_write_inline_data_end(inode, pos, len,
1169 copied, page);
1170 else {
1171 if (copied < len) {
1172 if (!PageUptodate(page))
1173 copied = 0;
1174 page_zero_new_buffers(page, from+copied, to);
1175 }
ac27a0ec 1176
3fdcfb66
TM
1177 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1178 to, &partial, write_end_fn);
1179 if (!partial)
1180 SetPageUptodate(page);
1181 }
cf17fea6
AK
1182 new_i_size = pos + copied;
1183 if (new_i_size > inode->i_size)
bfc1af65 1184 i_size_write(inode, pos+copied);
19f5fb7a 1185 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2d859db3 1186 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
cf17fea6
AK
1187 if (new_i_size > EXT4_I(inode)->i_disksize) {
1188 ext4_update_i_disksize(inode, new_i_size);
617ba13b 1189 ret2 = ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
1190 if (!ret)
1191 ret = ret2;
1192 }
bfc1af65 1193
cf108bca 1194 unlock_page(page);
f8514083 1195 page_cache_release(page);
ffacfa7a 1196 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1197 /* if we have allocated more blocks and copied
1198 * less. We will have blocks allocated outside
1199 * inode->i_size. So truncate them
1200 */
1201 ext4_orphan_add(handle, inode);
1202
617ba13b 1203 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1204 if (!ret)
1205 ret = ret2;
f8514083 1206 if (pos + len > inode->i_size) {
b9a4207d 1207 ext4_truncate_failed_write(inode);
de9a55b8 1208 /*
ffacfa7a 1209 * If truncate failed early the inode might still be
f8514083
AK
1210 * on the orphan list; we need to make sure the inode
1211 * is removed from the orphan list in that case.
1212 */
1213 if (inode->i_nlink)
1214 ext4_orphan_del(NULL, inode);
1215 }
bfc1af65
NP
1216
1217 return ret ? ret : copied;
ac27a0ec 1218}
d2a17637 1219
386ad67c
LC
1220/*
1221 * Reserve a metadata for a single block located at lblock
1222 */
1223static int ext4_da_reserve_metadata(struct inode *inode, ext4_lblk_t lblock)
1224{
386ad67c
LC
1225 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1226 struct ext4_inode_info *ei = EXT4_I(inode);
1227 unsigned int md_needed;
1228 ext4_lblk_t save_last_lblock;
1229 int save_len;
1230
1231 /*
1232 * recalculate the amount of metadata blocks to reserve
1233 * in order to allocate nrblocks
1234 * worse case is one extent per block
1235 */
386ad67c
LC
1236 spin_lock(&ei->i_block_reservation_lock);
1237 /*
1238 * ext4_calc_metadata_amount() has side effects, which we have
1239 * to be prepared undo if we fail to claim space.
1240 */
1241 save_len = ei->i_da_metadata_calc_len;
1242 save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1243 md_needed = EXT4_NUM_B2C(sbi,
1244 ext4_calc_metadata_amount(inode, lblock));
1245 trace_ext4_da_reserve_space(inode, md_needed);
1246
1247 /*
1248 * We do still charge estimated metadata to the sb though;
1249 * we cannot afford to run out of free blocks.
1250 */
1251 if (ext4_claim_free_clusters(sbi, md_needed, 0)) {
1252 ei->i_da_metadata_calc_len = save_len;
1253 ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1254 spin_unlock(&ei->i_block_reservation_lock);
386ad67c
LC
1255 return -ENOSPC;
1256 }
1257 ei->i_reserved_meta_blocks += md_needed;
1258 spin_unlock(&ei->i_block_reservation_lock);
1259
1260 return 0; /* success */
1261}
1262
9d0be502 1263/*
7b415bf6 1264 * Reserve a single cluster located at lblock
9d0be502 1265 */
01f49d0b 1266static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
d2a17637 1267{
60e58e0f 1268 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 1269 struct ext4_inode_info *ei = EXT4_I(inode);
7b415bf6 1270 unsigned int md_needed;
5dd4056d 1271 int ret;
03179fe9
TT
1272 ext4_lblk_t save_last_lblock;
1273 int save_len;
1274
1275 /*
1276 * We will charge metadata quota at writeout time; this saves
1277 * us from metadata over-estimation, though we may go over by
1278 * a small amount in the end. Here we just reserve for data.
1279 */
1280 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1281 if (ret)
1282 return ret;
d2a17637
MC
1283
1284 /*
1285 * recalculate the amount of metadata blocks to reserve
1286 * in order to allocate nrblocks
1287 * worse case is one extent per block
1288 */
0637c6f4 1289 spin_lock(&ei->i_block_reservation_lock);
03179fe9
TT
1290 /*
1291 * ext4_calc_metadata_amount() has side effects, which we have
1292 * to be prepared undo if we fail to claim space.
1293 */
1294 save_len = ei->i_da_metadata_calc_len;
1295 save_last_lblock = ei->i_da_metadata_calc_last_lblock;
7b415bf6
AK
1296 md_needed = EXT4_NUM_B2C(sbi,
1297 ext4_calc_metadata_amount(inode, lblock));
f8ec9d68 1298 trace_ext4_da_reserve_space(inode, md_needed);
d2a17637 1299
72b8ab9d
ES
1300 /*
1301 * We do still charge estimated metadata to the sb though;
1302 * we cannot afford to run out of free blocks.
1303 */
e7d5f315 1304 if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) {
03179fe9
TT
1305 ei->i_da_metadata_calc_len = save_len;
1306 ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1307 spin_unlock(&ei->i_block_reservation_lock);
03179fe9 1308 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
d2a17637
MC
1309 return -ENOSPC;
1310 }
9d0be502 1311 ei->i_reserved_data_blocks++;
0637c6f4
TT
1312 ei->i_reserved_meta_blocks += md_needed;
1313 spin_unlock(&ei->i_block_reservation_lock);
39bc680a 1314
d2a17637
MC
1315 return 0; /* success */
1316}
1317
12219aea 1318static void ext4_da_release_space(struct inode *inode, int to_free)
d2a17637
MC
1319{
1320 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 1321 struct ext4_inode_info *ei = EXT4_I(inode);
d2a17637 1322
cd213226
MC
1323 if (!to_free)
1324 return; /* Nothing to release, exit */
1325
d2a17637 1326 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
cd213226 1327
5a58ec87 1328 trace_ext4_da_release_space(inode, to_free);
0637c6f4 1329 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
cd213226 1330 /*
0637c6f4
TT
1331 * if there aren't enough reserved blocks, then the
1332 * counter is messed up somewhere. Since this
1333 * function is called from invalidate page, it's
1334 * harmless to return without any action.
cd213226 1335 */
8de5c325 1336 ext4_warning(inode->i_sb, "ext4_da_release_space: "
0637c6f4 1337 "ino %lu, to_free %d with only %d reserved "
1084f252 1338 "data blocks", inode->i_ino, to_free,
0637c6f4
TT
1339 ei->i_reserved_data_blocks);
1340 WARN_ON(1);
1341 to_free = ei->i_reserved_data_blocks;
cd213226 1342 }
0637c6f4 1343 ei->i_reserved_data_blocks -= to_free;
cd213226 1344
0637c6f4
TT
1345 if (ei->i_reserved_data_blocks == 0) {
1346 /*
1347 * We can release all of the reserved metadata blocks
1348 * only when we have written all of the delayed
1349 * allocation blocks.
7b415bf6
AK
1350 * Note that in case of bigalloc, i_reserved_meta_blocks,
1351 * i_reserved_data_blocks, etc. refer to number of clusters.
0637c6f4 1352 */
57042651 1353 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
72b8ab9d 1354 ei->i_reserved_meta_blocks);
ee5f4d9c 1355 ei->i_reserved_meta_blocks = 0;
9d0be502 1356 ei->i_da_metadata_calc_len = 0;
0637c6f4 1357 }
d2a17637 1358
72b8ab9d 1359 /* update fs dirty data blocks counter */
57042651 1360 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
d2a17637 1361
d2a17637 1362 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f 1363
7b415bf6 1364 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
d2a17637
MC
1365}
1366
1367static void ext4_da_page_release_reservation(struct page *page,
ca99fdd2
LC
1368 unsigned int offset,
1369 unsigned int length)
d2a17637
MC
1370{
1371 int to_release = 0;
1372 struct buffer_head *head, *bh;
1373 unsigned int curr_off = 0;
7b415bf6
AK
1374 struct inode *inode = page->mapping->host;
1375 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
ca99fdd2 1376 unsigned int stop = offset + length;
7b415bf6 1377 int num_clusters;
51865fda 1378 ext4_fsblk_t lblk;
d2a17637 1379
ca99fdd2
LC
1380 BUG_ON(stop > PAGE_CACHE_SIZE || stop < length);
1381
d2a17637
MC
1382 head = page_buffers(page);
1383 bh = head;
1384 do {
1385 unsigned int next_off = curr_off + bh->b_size;
1386
ca99fdd2
LC
1387 if (next_off > stop)
1388 break;
1389
d2a17637
MC
1390 if ((offset <= curr_off) && (buffer_delay(bh))) {
1391 to_release++;
1392 clear_buffer_delay(bh);
1393 }
1394 curr_off = next_off;
1395 } while ((bh = bh->b_this_page) != head);
7b415bf6 1396
51865fda
ZL
1397 if (to_release) {
1398 lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1399 ext4_es_remove_extent(inode, lblk, to_release);
1400 }
1401
7b415bf6
AK
1402 /* If we have released all the blocks belonging to a cluster, then we
1403 * need to release the reserved space for that cluster. */
1404 num_clusters = EXT4_NUM_B2C(sbi, to_release);
1405 while (num_clusters > 0) {
7b415bf6
AK
1406 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1407 ((num_clusters - 1) << sbi->s_cluster_bits);
1408 if (sbi->s_cluster_ratio == 1 ||
7d1b1fbc 1409 !ext4_find_delalloc_cluster(inode, lblk))
7b415bf6
AK
1410 ext4_da_release_space(inode, 1);
1411
1412 num_clusters--;
1413 }
d2a17637 1414}
ac27a0ec 1415
64769240
AT
1416/*
1417 * Delayed allocation stuff
1418 */
1419
4e7ea81d
JK
1420struct mpage_da_data {
1421 struct inode *inode;
1422 struct writeback_control *wbc;
6b523df4 1423
4e7ea81d
JK
1424 pgoff_t first_page; /* The first page to write */
1425 pgoff_t next_page; /* Current page to examine */
1426 pgoff_t last_page; /* Last page to examine */
791b7f08 1427 /*
4e7ea81d
JK
1428 * Extent to map - this can be after first_page because that can be
1429 * fully mapped. We somewhat abuse m_flags to store whether the extent
1430 * is delalloc or unwritten.
791b7f08 1431 */
4e7ea81d
JK
1432 struct ext4_map_blocks map;
1433 struct ext4_io_submit io_submit; /* IO submission data */
1434};
64769240 1435
4e7ea81d
JK
1436static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1437 bool invalidate)
c4a0c46e
AK
1438{
1439 int nr_pages, i;
1440 pgoff_t index, end;
1441 struct pagevec pvec;
1442 struct inode *inode = mpd->inode;
1443 struct address_space *mapping = inode->i_mapping;
4e7ea81d
JK
1444
1445 /* This is necessary when next_page == 0. */
1446 if (mpd->first_page >= mpd->next_page)
1447 return;
c4a0c46e 1448
c7f5938a
CW
1449 index = mpd->first_page;
1450 end = mpd->next_page - 1;
4e7ea81d
JK
1451 if (invalidate) {
1452 ext4_lblk_t start, last;
1453 start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1454 last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1455 ext4_es_remove_extent(inode, start, last - start + 1);
1456 }
51865fda 1457
66bea92c 1458 pagevec_init(&pvec, 0);
c4a0c46e
AK
1459 while (index <= end) {
1460 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1461 if (nr_pages == 0)
1462 break;
1463 for (i = 0; i < nr_pages; i++) {
1464 struct page *page = pvec.pages[i];
9b1d0998 1465 if (page->index > end)
c4a0c46e 1466 break;
c4a0c46e
AK
1467 BUG_ON(!PageLocked(page));
1468 BUG_ON(PageWriteback(page));
4e7ea81d
JK
1469 if (invalidate) {
1470 block_invalidatepage(page, 0, PAGE_CACHE_SIZE);
1471 ClearPageUptodate(page);
1472 }
c4a0c46e
AK
1473 unlock_page(page);
1474 }
9b1d0998
JK
1475 index = pvec.pages[nr_pages - 1]->index + 1;
1476 pagevec_release(&pvec);
c4a0c46e 1477 }
c4a0c46e
AK
1478}
1479
df22291f
AK
1480static void ext4_print_free_blocks(struct inode *inode)
1481{
1482 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
92b97816 1483 struct super_block *sb = inode->i_sb;
f78ee70d 1484 struct ext4_inode_info *ei = EXT4_I(inode);
92b97816
TT
1485
1486 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
5dee5437 1487 EXT4_C2B(EXT4_SB(inode->i_sb),
f78ee70d 1488 ext4_count_free_clusters(sb)));
92b97816
TT
1489 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1490 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
f78ee70d 1491 (long long) EXT4_C2B(EXT4_SB(sb),
57042651 1492 percpu_counter_sum(&sbi->s_freeclusters_counter)));
92b97816 1493 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
f78ee70d 1494 (long long) EXT4_C2B(EXT4_SB(sb),
7b415bf6 1495 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
92b97816
TT
1496 ext4_msg(sb, KERN_CRIT, "Block reservation details");
1497 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
f78ee70d 1498 ei->i_reserved_data_blocks);
92b97816 1499 ext4_msg(sb, KERN_CRIT, "i_reserved_meta_blocks=%u",
f78ee70d
LC
1500 ei->i_reserved_meta_blocks);
1501 ext4_msg(sb, KERN_CRIT, "i_allocated_meta_blocks=%u",
1502 ei->i_allocated_meta_blocks);
df22291f
AK
1503 return;
1504}
1505
c364b22c 1506static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
29fa89d0 1507{
c364b22c 1508 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
29fa89d0
AK
1509}
1510
5356f261
AK
1511/*
1512 * This function is grabs code from the very beginning of
1513 * ext4_map_blocks, but assumes that the caller is from delayed write
1514 * time. This function looks up the requested blocks and sets the
1515 * buffer delay bit under the protection of i_data_sem.
1516 */
1517static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1518 struct ext4_map_blocks *map,
1519 struct buffer_head *bh)
1520{
d100eef2 1521 struct extent_status es;
5356f261
AK
1522 int retval;
1523 sector_t invalid_block = ~((sector_t) 0xffff);
921f266b
DM
1524#ifdef ES_AGGRESSIVE_TEST
1525 struct ext4_map_blocks orig_map;
1526
1527 memcpy(&orig_map, map, sizeof(*map));
1528#endif
5356f261
AK
1529
1530 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1531 invalid_block = ~0;
1532
1533 map->m_flags = 0;
1534 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1535 "logical block %lu\n", inode->i_ino, map->m_len,
1536 (unsigned long) map->m_lblk);
d100eef2
ZL
1537
1538 /* Lookup extent status tree firstly */
1539 if (ext4_es_lookup_extent(inode, iblock, &es)) {
63b99968 1540 ext4_es_lru_add(inode);
d100eef2
ZL
1541 if (ext4_es_is_hole(&es)) {
1542 retval = 0;
1543 down_read((&EXT4_I(inode)->i_data_sem));
1544 goto add_delayed;
1545 }
1546
1547 /*
1548 * Delayed extent could be allocated by fallocate.
1549 * So we need to check it.
1550 */
1551 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1552 map_bh(bh, inode->i_sb, invalid_block);
1553 set_buffer_new(bh);
1554 set_buffer_delay(bh);
1555 return 0;
1556 }
1557
1558 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1559 retval = es.es_len - (iblock - es.es_lblk);
1560 if (retval > map->m_len)
1561 retval = map->m_len;
1562 map->m_len = retval;
1563 if (ext4_es_is_written(&es))
1564 map->m_flags |= EXT4_MAP_MAPPED;
1565 else if (ext4_es_is_unwritten(&es))
1566 map->m_flags |= EXT4_MAP_UNWRITTEN;
1567 else
1568 BUG_ON(1);
1569
921f266b
DM
1570#ifdef ES_AGGRESSIVE_TEST
1571 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1572#endif
d100eef2
ZL
1573 return retval;
1574 }
1575
5356f261
AK
1576 /*
1577 * Try to see if we can get the block without requesting a new
1578 * file system block.
1579 */
1580 down_read((&EXT4_I(inode)->i_data_sem));
9c3569b5
TM
1581 if (ext4_has_inline_data(inode)) {
1582 /*
1583 * We will soon create blocks for this page, and let
1584 * us pretend as if the blocks aren't allocated yet.
1585 * In case of clusters, we have to handle the work
1586 * of mapping from cluster so that the reserved space
1587 * is calculated properly.
1588 */
1589 if ((EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) &&
1590 ext4_find_delalloc_cluster(inode, map->m_lblk))
1591 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
1592 retval = 0;
1593 } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
d100eef2
ZL
1594 retval = ext4_ext_map_blocks(NULL, inode, map,
1595 EXT4_GET_BLOCKS_NO_PUT_HOLE);
5356f261 1596 else
d100eef2
ZL
1597 retval = ext4_ind_map_blocks(NULL, inode, map,
1598 EXT4_GET_BLOCKS_NO_PUT_HOLE);
5356f261 1599
d100eef2 1600add_delayed:
5356f261 1601 if (retval == 0) {
f7fec032 1602 int ret;
5356f261
AK
1603 /*
1604 * XXX: __block_prepare_write() unmaps passed block,
1605 * is it OK?
1606 */
386ad67c
LC
1607 /*
1608 * If the block was allocated from previously allocated cluster,
1609 * then we don't need to reserve it again. However we still need
1610 * to reserve metadata for every block we're going to write.
1611 */
5356f261 1612 if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
f7fec032
ZL
1613 ret = ext4_da_reserve_space(inode, iblock);
1614 if (ret) {
5356f261 1615 /* not enough space to reserve */
f7fec032 1616 retval = ret;
5356f261 1617 goto out_unlock;
f7fec032 1618 }
386ad67c
LC
1619 } else {
1620 ret = ext4_da_reserve_metadata(inode, iblock);
1621 if (ret) {
1622 /* not enough space to reserve */
1623 retval = ret;
1624 goto out_unlock;
1625 }
5356f261
AK
1626 }
1627
f7fec032
ZL
1628 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1629 ~0, EXTENT_STATUS_DELAYED);
1630 if (ret) {
1631 retval = ret;
51865fda 1632 goto out_unlock;
f7fec032 1633 }
51865fda 1634
5356f261
AK
1635 /* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
1636 * and it should not appear on the bh->b_state.
1637 */
1638 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
1639
1640 map_bh(bh, inode->i_sb, invalid_block);
1641 set_buffer_new(bh);
1642 set_buffer_delay(bh);
f7fec032
ZL
1643 } else if (retval > 0) {
1644 int ret;
3be78c73 1645 unsigned int status;
f7fec032 1646
44fb851d
ZL
1647 if (unlikely(retval != map->m_len)) {
1648 ext4_warning(inode->i_sb,
1649 "ES len assertion failed for inode "
1650 "%lu: retval %d != map->m_len %d",
1651 inode->i_ino, retval, map->m_len);
1652 WARN_ON(1);
921f266b 1653 }
921f266b 1654
f7fec032
ZL
1655 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1656 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1657 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1658 map->m_pblk, status);
1659 if (ret != 0)
1660 retval = ret;
5356f261
AK
1661 }
1662
1663out_unlock:
1664 up_read((&EXT4_I(inode)->i_data_sem));
1665
1666 return retval;
1667}
1668
64769240 1669/*
b920c755
TT
1670 * This is a special get_blocks_t callback which is used by
1671 * ext4_da_write_begin(). It will either return mapped block or
1672 * reserve space for a single block.
29fa89d0
AK
1673 *
1674 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1675 * We also have b_blocknr = -1 and b_bdev initialized properly
1676 *
1677 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1678 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1679 * initialized properly.
64769240 1680 */
9c3569b5
TM
1681int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1682 struct buffer_head *bh, int create)
64769240 1683{
2ed88685 1684 struct ext4_map_blocks map;
64769240
AT
1685 int ret = 0;
1686
1687 BUG_ON(create == 0);
2ed88685
TT
1688 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1689
1690 map.m_lblk = iblock;
1691 map.m_len = 1;
64769240
AT
1692
1693 /*
1694 * first, we need to know whether the block is allocated already
1695 * preallocated blocks are unmapped but should treated
1696 * the same as allocated blocks.
1697 */
5356f261
AK
1698 ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1699 if (ret <= 0)
2ed88685 1700 return ret;
64769240 1701
2ed88685
TT
1702 map_bh(bh, inode->i_sb, map.m_pblk);
1703 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1704
1705 if (buffer_unwritten(bh)) {
1706 /* A delayed write to unwritten bh should be marked
1707 * new and mapped. Mapped ensures that we don't do
1708 * get_block multiple times when we write to the same
1709 * offset and new ensures that we do proper zero out
1710 * for partial write.
1711 */
1712 set_buffer_new(bh);
c8205636 1713 set_buffer_mapped(bh);
2ed88685
TT
1714 }
1715 return 0;
64769240 1716}
61628a3f 1717
62e086be
AK
1718static int bget_one(handle_t *handle, struct buffer_head *bh)
1719{
1720 get_bh(bh);
1721 return 0;
1722}
1723
1724static int bput_one(handle_t *handle, struct buffer_head *bh)
1725{
1726 put_bh(bh);
1727 return 0;
1728}
1729
1730static int __ext4_journalled_writepage(struct page *page,
62e086be
AK
1731 unsigned int len)
1732{
1733 struct address_space *mapping = page->mapping;
1734 struct inode *inode = mapping->host;
3fdcfb66 1735 struct buffer_head *page_bufs = NULL;
62e086be 1736 handle_t *handle = NULL;
3fdcfb66
TM
1737 int ret = 0, err = 0;
1738 int inline_data = ext4_has_inline_data(inode);
1739 struct buffer_head *inode_bh = NULL;
62e086be 1740
cb20d518 1741 ClearPageChecked(page);
3fdcfb66
TM
1742
1743 if (inline_data) {
1744 BUG_ON(page->index != 0);
1745 BUG_ON(len > ext4_get_max_inline_size(inode));
1746 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1747 if (inode_bh == NULL)
1748 goto out;
1749 } else {
1750 page_bufs = page_buffers(page);
1751 if (!page_bufs) {
1752 BUG();
1753 goto out;
1754 }
1755 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1756 NULL, bget_one);
1757 }
62e086be
AK
1758 /* As soon as we unlock the page, it can go away, but we have
1759 * references to buffers so we are safe */
1760 unlock_page(page);
1761
9924a92a
TT
1762 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1763 ext4_writepage_trans_blocks(inode));
62e086be
AK
1764 if (IS_ERR(handle)) {
1765 ret = PTR_ERR(handle);
1766 goto out;
1767 }
1768
441c8508
CW
1769 BUG_ON(!ext4_handle_valid(handle));
1770
3fdcfb66
TM
1771 if (inline_data) {
1772 ret = ext4_journal_get_write_access(handle, inode_bh);
62e086be 1773
3fdcfb66
TM
1774 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
1775
1776 } else {
1777 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1778 do_journal_get_write_access);
1779
1780 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1781 write_end_fn);
1782 }
62e086be
AK
1783 if (ret == 0)
1784 ret = err;
2d859db3 1785 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
62e086be
AK
1786 err = ext4_journal_stop(handle);
1787 if (!ret)
1788 ret = err;
1789
3fdcfb66 1790 if (!ext4_has_inline_data(inode))
8c9367fd 1791 ext4_walk_page_buffers(NULL, page_bufs, 0, len,
3fdcfb66 1792 NULL, bput_one);
19f5fb7a 1793 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
62e086be 1794out:
3fdcfb66 1795 brelse(inode_bh);
62e086be
AK
1796 return ret;
1797}
1798
61628a3f 1799/*
43ce1d23
AK
1800 * Note that we don't need to start a transaction unless we're journaling data
1801 * because we should have holes filled from ext4_page_mkwrite(). We even don't
1802 * need to file the inode to the transaction's list in ordered mode because if
1803 * we are writing back data added by write(), the inode is already there and if
25985edc 1804 * we are writing back data modified via mmap(), no one guarantees in which
43ce1d23
AK
1805 * transaction the data will hit the disk. In case we are journaling data, we
1806 * cannot start transaction directly because transaction start ranks above page
1807 * lock so we have to do some magic.
1808 *
b920c755 1809 * This function can get called via...
20970ba6 1810 * - ext4_writepages after taking page lock (have journal handle)
b920c755 1811 * - journal_submit_inode_data_buffers (no journal handle)
f6463b0d 1812 * - shrink_page_list via the kswapd/direct reclaim (no journal handle)
b920c755 1813 * - grab_page_cache when doing write_begin (have journal handle)
43ce1d23
AK
1814 *
1815 * We don't do any block allocation in this function. If we have page with
1816 * multiple blocks we need to write those buffer_heads that are mapped. This
1817 * is important for mmaped based write. So if we do with blocksize 1K
1818 * truncate(f, 1024);
1819 * a = mmap(f, 0, 4096);
1820 * a[0] = 'a';
1821 * truncate(f, 4096);
1822 * we have in the page first buffer_head mapped via page_mkwrite call back
90802ed9 1823 * but other buffer_heads would be unmapped but dirty (dirty done via the
43ce1d23
AK
1824 * do_wp_page). So writepage should write the first block. If we modify
1825 * the mmap area beyond 1024 we will again get a page_fault and the
1826 * page_mkwrite callback will do the block allocation and mark the
1827 * buffer_heads mapped.
1828 *
1829 * We redirty the page if we have any buffer_heads that is either delay or
1830 * unwritten in the page.
1831 *
1832 * We can get recursively called as show below.
1833 *
1834 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1835 * ext4_writepage()
1836 *
1837 * But since we don't do any block allocation we should not deadlock.
1838 * Page also have the dirty flag cleared so we don't get recurive page_lock.
61628a3f 1839 */
43ce1d23 1840static int ext4_writepage(struct page *page,
62e086be 1841 struct writeback_control *wbc)
64769240 1842{
f8bec370 1843 int ret = 0;
61628a3f 1844 loff_t size;
498e5f24 1845 unsigned int len;
744692dc 1846 struct buffer_head *page_bufs = NULL;
61628a3f 1847 struct inode *inode = page->mapping->host;
36ade451 1848 struct ext4_io_submit io_submit;
61628a3f 1849
a9c667f8 1850 trace_ext4_writepage(page);
f0e6c985
AK
1851 size = i_size_read(inode);
1852 if (page->index == size >> PAGE_CACHE_SHIFT)
1853 len = size & ~PAGE_CACHE_MASK;
1854 else
1855 len = PAGE_CACHE_SIZE;
64769240 1856
a42afc5f 1857 page_bufs = page_buffers(page);
a42afc5f 1858 /*
fe386132
JK
1859 * We cannot do block allocation or other extent handling in this
1860 * function. If there are buffers needing that, we have to redirty
1861 * the page. But we may reach here when we do a journal commit via
1862 * journal_submit_inode_data_buffers() and in that case we must write
1863 * allocated buffers to achieve data=ordered mode guarantees.
a42afc5f 1864 */
f19d5870
TM
1865 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
1866 ext4_bh_delay_or_unwritten)) {
f8bec370 1867 redirty_page_for_writepage(wbc, page);
fe386132
JK
1868 if (current->flags & PF_MEMALLOC) {
1869 /*
1870 * For memory cleaning there's no point in writing only
1871 * some buffers. So just bail out. Warn if we came here
1872 * from direct reclaim.
1873 */
1874 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
1875 == PF_MEMALLOC);
f0e6c985
AK
1876 unlock_page(page);
1877 return 0;
1878 }
a42afc5f 1879 }
64769240 1880
cb20d518 1881 if (PageChecked(page) && ext4_should_journal_data(inode))
43ce1d23
AK
1882 /*
1883 * It's mmapped pagecache. Add buffers and journal it. There
1884 * doesn't seem much point in redirtying the page here.
1885 */
3f0ca309 1886 return __ext4_journalled_writepage(page, len);
43ce1d23 1887
97a851ed
JK
1888 ext4_io_submit_init(&io_submit, wbc);
1889 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
1890 if (!io_submit.io_end) {
1891 redirty_page_for_writepage(wbc, page);
1892 unlock_page(page);
1893 return -ENOMEM;
1894 }
36ade451
JK
1895 ret = ext4_bio_write_page(&io_submit, page, len, wbc);
1896 ext4_io_submit(&io_submit);
97a851ed
JK
1897 /* Drop io_end reference we got from init */
1898 ext4_put_io_end_defer(io_submit.io_end);
64769240
AT
1899 return ret;
1900}
1901
5f1132b2
JK
1902static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
1903{
1904 int len;
1905 loff_t size = i_size_read(mpd->inode);
1906 int err;
1907
1908 BUG_ON(page->index != mpd->first_page);
1909 if (page->index == size >> PAGE_CACHE_SHIFT)
1910 len = size & ~PAGE_CACHE_MASK;
1911 else
1912 len = PAGE_CACHE_SIZE;
1913 clear_page_dirty_for_io(page);
1914 err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc);
1915 if (!err)
1916 mpd->wbc->nr_to_write--;
1917 mpd->first_page++;
1918
1919 return err;
1920}
1921
4e7ea81d
JK
1922#define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
1923
61628a3f 1924/*
fffb2739
JK
1925 * mballoc gives us at most this number of blocks...
1926 * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
70261f56 1927 * The rest of mballoc seems to handle chunks up to full group size.
61628a3f 1928 */
fffb2739 1929#define MAX_WRITEPAGES_EXTENT_LEN 2048
525f4ed8 1930
4e7ea81d
JK
1931/*
1932 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
1933 *
1934 * @mpd - extent of blocks
1935 * @lblk - logical number of the block in the file
09930042 1936 * @bh - buffer head we want to add to the extent
4e7ea81d 1937 *
09930042
JK
1938 * The function is used to collect contig. blocks in the same state. If the
1939 * buffer doesn't require mapping for writeback and we haven't started the
1940 * extent of buffers to map yet, the function returns 'true' immediately - the
1941 * caller can write the buffer right away. Otherwise the function returns true
1942 * if the block has been added to the extent, false if the block couldn't be
1943 * added.
4e7ea81d 1944 */
09930042
JK
1945static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
1946 struct buffer_head *bh)
4e7ea81d
JK
1947{
1948 struct ext4_map_blocks *map = &mpd->map;
1949
09930042
JK
1950 /* Buffer that doesn't need mapping for writeback? */
1951 if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
1952 (!buffer_delay(bh) && !buffer_unwritten(bh))) {
1953 /* So far no extent to map => we write the buffer right away */
1954 if (map->m_len == 0)
1955 return true;
1956 return false;
1957 }
4e7ea81d
JK
1958
1959 /* First block in the extent? */
1960 if (map->m_len == 0) {
1961 map->m_lblk = lblk;
1962 map->m_len = 1;
09930042
JK
1963 map->m_flags = bh->b_state & BH_FLAGS;
1964 return true;
4e7ea81d
JK
1965 }
1966
09930042
JK
1967 /* Don't go larger than mballoc is willing to allocate */
1968 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
1969 return false;
1970
4e7ea81d
JK
1971 /* Can we merge the block to our big extent? */
1972 if (lblk == map->m_lblk + map->m_len &&
09930042 1973 (bh->b_state & BH_FLAGS) == map->m_flags) {
4e7ea81d 1974 map->m_len++;
09930042 1975 return true;
4e7ea81d 1976 }
09930042 1977 return false;
4e7ea81d
JK
1978}
1979
5f1132b2
JK
1980/*
1981 * mpage_process_page_bufs - submit page buffers for IO or add them to extent
1982 *
1983 * @mpd - extent of blocks for mapping
1984 * @head - the first buffer in the page
1985 * @bh - buffer we should start processing from
1986 * @lblk - logical number of the block in the file corresponding to @bh
1987 *
1988 * Walk through page buffers from @bh upto @head (exclusive) and either submit
1989 * the page for IO if all buffers in this page were mapped and there's no
1990 * accumulated extent of buffers to map or add buffers in the page to the
1991 * extent of buffers to map. The function returns 1 if the caller can continue
1992 * by processing the next page, 0 if it should stop adding buffers to the
1993 * extent to map because we cannot extend it anymore. It can also return value
1994 * < 0 in case of error during IO submission.
1995 */
1996static int mpage_process_page_bufs(struct mpage_da_data *mpd,
1997 struct buffer_head *head,
1998 struct buffer_head *bh,
1999 ext4_lblk_t lblk)
4e7ea81d
JK
2000{
2001 struct inode *inode = mpd->inode;
5f1132b2 2002 int err;
4e7ea81d
JK
2003 ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1)
2004 >> inode->i_blkbits;
2005
2006 do {
2007 BUG_ON(buffer_locked(bh));
2008
09930042 2009 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
4e7ea81d
JK
2010 /* Found extent to map? */
2011 if (mpd->map.m_len)
5f1132b2 2012 return 0;
09930042 2013 /* Everything mapped so far and we hit EOF */
5f1132b2 2014 break;
4e7ea81d 2015 }
4e7ea81d 2016 } while (lblk++, (bh = bh->b_this_page) != head);
5f1132b2
JK
2017 /* So far everything mapped? Submit the page for IO. */
2018 if (mpd->map.m_len == 0) {
2019 err = mpage_submit_page(mpd, head->b_page);
2020 if (err < 0)
2021 return err;
2022 }
2023 return lblk < blocks;
4e7ea81d
JK
2024}
2025
2026/*
2027 * mpage_map_buffers - update buffers corresponding to changed extent and
2028 * submit fully mapped pages for IO
2029 *
2030 * @mpd - description of extent to map, on return next extent to map
2031 *
2032 * Scan buffers corresponding to changed extent (we expect corresponding pages
2033 * to be already locked) and update buffer state according to new extent state.
2034 * We map delalloc buffers to their physical location, clear unwritten bits,
2035 * and mark buffers as uninit when we perform writes to uninitialized extents
2036 * and do extent conversion after IO is finished. If the last page is not fully
2037 * mapped, we update @map to the next extent in the last page that needs
2038 * mapping. Otherwise we submit the page for IO.
2039 */
2040static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2041{
2042 struct pagevec pvec;
2043 int nr_pages, i;
2044 struct inode *inode = mpd->inode;
2045 struct buffer_head *head, *bh;
2046 int bpp_bits = PAGE_CACHE_SHIFT - inode->i_blkbits;
4e7ea81d
JK
2047 pgoff_t start, end;
2048 ext4_lblk_t lblk;
2049 sector_t pblock;
2050 int err;
2051
2052 start = mpd->map.m_lblk >> bpp_bits;
2053 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2054 lblk = start << bpp_bits;
2055 pblock = mpd->map.m_pblk;
2056
2057 pagevec_init(&pvec, 0);
2058 while (start <= end) {
2059 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start,
2060 PAGEVEC_SIZE);
2061 if (nr_pages == 0)
2062 break;
2063 for (i = 0; i < nr_pages; i++) {
2064 struct page *page = pvec.pages[i];
2065
2066 if (page->index > end)
2067 break;
70261f56 2068 /* Up to 'end' pages must be contiguous */
4e7ea81d
JK
2069 BUG_ON(page->index != start);
2070 bh = head = page_buffers(page);
2071 do {
2072 if (lblk < mpd->map.m_lblk)
2073 continue;
2074 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2075 /*
2076 * Buffer after end of mapped extent.
2077 * Find next buffer in the page to map.
2078 */
2079 mpd->map.m_len = 0;
2080 mpd->map.m_flags = 0;
5f1132b2
JK
2081 /*
2082 * FIXME: If dioread_nolock supports
2083 * blocksize < pagesize, we need to make
2084 * sure we add size mapped so far to
2085 * io_end->size as the following call
2086 * can submit the page for IO.
2087 */
2088 err = mpage_process_page_bufs(mpd, head,
2089 bh, lblk);
4e7ea81d 2090 pagevec_release(&pvec);
5f1132b2
JK
2091 if (err > 0)
2092 err = 0;
2093 return err;
4e7ea81d
JK
2094 }
2095 if (buffer_delay(bh)) {
2096 clear_buffer_delay(bh);
2097 bh->b_blocknr = pblock++;
2098 }
4e7ea81d 2099 clear_buffer_unwritten(bh);
5f1132b2 2100 } while (lblk++, (bh = bh->b_this_page) != head);
4e7ea81d
JK
2101
2102 /*
2103 * FIXME: This is going to break if dioread_nolock
2104 * supports blocksize < pagesize as we will try to
2105 * convert potentially unmapped parts of inode.
2106 */
2107 mpd->io_submit.io_end->size += PAGE_CACHE_SIZE;
2108 /* Page fully mapped - let IO run! */
2109 err = mpage_submit_page(mpd, page);
2110 if (err < 0) {
2111 pagevec_release(&pvec);
2112 return err;
2113 }
2114 start++;
2115 }
2116 pagevec_release(&pvec);
2117 }
2118 /* Extent fully mapped and matches with page boundary. We are done. */
2119 mpd->map.m_len = 0;
2120 mpd->map.m_flags = 0;
2121 return 0;
2122}
2123
2124static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2125{
2126 struct inode *inode = mpd->inode;
2127 struct ext4_map_blocks *map = &mpd->map;
2128 int get_blocks_flags;
2129 int err;
2130
2131 trace_ext4_da_write_pages_extent(inode, map);
2132 /*
2133 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2134 * to convert an uninitialized extent to be initialized (in the case
2135 * where we have written into one or more preallocated blocks). It is
2136 * possible that we're going to need more metadata blocks than
2137 * previously reserved. However we must not fail because we're in
2138 * writeback and there is nothing we can do about it so it might result
2139 * in data loss. So use reserved blocks to allocate metadata if
2140 * possible.
2141 *
2142 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if the blocks
2143 * in question are delalloc blocks. This affects functions in many
2144 * different parts of the allocation call path. This flag exists
2145 * primarily because we don't want to change *many* call functions, so
2146 * ext4_map_blocks() will set the EXT4_STATE_DELALLOC_RESERVED flag
2147 * once the inode's allocation semaphore is taken.
2148 */
2149 get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2150 EXT4_GET_BLOCKS_METADATA_NOFAIL;
2151 if (ext4_should_dioread_nolock(inode))
2152 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2153 if (map->m_flags & (1 << BH_Delay))
2154 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2155
2156 err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2157 if (err < 0)
2158 return err;
6b523df4
JK
2159 if (map->m_flags & EXT4_MAP_UNINIT) {
2160 if (!mpd->io_submit.io_end->handle &&
2161 ext4_handle_valid(handle)) {
2162 mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2163 handle->h_rsv_handle = NULL;
2164 }
3613d228 2165 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
6b523df4 2166 }
4e7ea81d
JK
2167
2168 BUG_ON(map->m_len == 0);
2169 if (map->m_flags & EXT4_MAP_NEW) {
2170 struct block_device *bdev = inode->i_sb->s_bdev;
2171 int i;
2172
2173 for (i = 0; i < map->m_len; i++)
2174 unmap_underlying_metadata(bdev, map->m_pblk + i);
2175 }
2176 return 0;
2177}
2178
2179/*
2180 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2181 * mpd->len and submit pages underlying it for IO
2182 *
2183 * @handle - handle for journal operations
2184 * @mpd - extent to map
7534e854
JK
2185 * @give_up_on_write - we set this to true iff there is a fatal error and there
2186 * is no hope of writing the data. The caller should discard
2187 * dirty pages to avoid infinite loops.
4e7ea81d
JK
2188 *
2189 * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2190 * delayed, blocks are allocated, if it is unwritten, we may need to convert
2191 * them to initialized or split the described range from larger unwritten
2192 * extent. Note that we need not map all the described range since allocation
2193 * can return less blocks or the range is covered by more unwritten extents. We
2194 * cannot map more because we are limited by reserved transaction credits. On
2195 * the other hand we always make sure that the last touched page is fully
2196 * mapped so that it can be written out (and thus forward progress is
2197 * guaranteed). After mapping we submit all mapped pages for IO.
2198 */
2199static int mpage_map_and_submit_extent(handle_t *handle,
cb530541
TT
2200 struct mpage_da_data *mpd,
2201 bool *give_up_on_write)
4e7ea81d
JK
2202{
2203 struct inode *inode = mpd->inode;
2204 struct ext4_map_blocks *map = &mpd->map;
2205 int err;
2206 loff_t disksize;
2207
2208 mpd->io_submit.io_end->offset =
2209 ((loff_t)map->m_lblk) << inode->i_blkbits;
27d7c4ed 2210 do {
4e7ea81d
JK
2211 err = mpage_map_one_extent(handle, mpd);
2212 if (err < 0) {
2213 struct super_block *sb = inode->i_sb;
2214
cb530541
TT
2215 if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2216 goto invalidate_dirty_pages;
4e7ea81d 2217 /*
cb530541
TT
2218 * Let the uper layers retry transient errors.
2219 * In the case of ENOSPC, if ext4_count_free_blocks()
2220 * is non-zero, a commit should free up blocks.
4e7ea81d 2221 */
cb530541
TT
2222 if ((err == -ENOMEM) ||
2223 (err == -ENOSPC && ext4_count_free_clusters(sb)))
2224 return err;
2225 ext4_msg(sb, KERN_CRIT,
2226 "Delayed block allocation failed for "
2227 "inode %lu at logical offset %llu with"
2228 " max blocks %u with error %d",
2229 inode->i_ino,
2230 (unsigned long long)map->m_lblk,
2231 (unsigned)map->m_len, -err);
2232 ext4_msg(sb, KERN_CRIT,
2233 "This should not happen!! Data will "
2234 "be lost\n");
2235 if (err == -ENOSPC)
2236 ext4_print_free_blocks(inode);
2237 invalidate_dirty_pages:
2238 *give_up_on_write = true;
4e7ea81d
JK
2239 return err;
2240 }
2241 /*
2242 * Update buffer state, submit mapped pages, and get us new
2243 * extent to map
2244 */
2245 err = mpage_map_and_submit_buffers(mpd);
2246 if (err < 0)
2247 return err;
27d7c4ed 2248 } while (map->m_len);
4e7ea81d 2249
622cad13
TT
2250 /*
2251 * Update on-disk size after IO is submitted. Races with
2252 * truncate are avoided by checking i_size under i_data_sem.
2253 */
4e7ea81d 2254 disksize = ((loff_t)mpd->first_page) << PAGE_CACHE_SHIFT;
4e7ea81d
JK
2255 if (disksize > EXT4_I(inode)->i_disksize) {
2256 int err2;
622cad13
TT
2257 loff_t i_size;
2258
2259 down_write(&EXT4_I(inode)->i_data_sem);
2260 i_size = i_size_read(inode);
2261 if (disksize > i_size)
2262 disksize = i_size;
2263 if (disksize > EXT4_I(inode)->i_disksize)
2264 EXT4_I(inode)->i_disksize = disksize;
4e7ea81d 2265 err2 = ext4_mark_inode_dirty(handle, inode);
622cad13 2266 up_write(&EXT4_I(inode)->i_data_sem);
4e7ea81d
JK
2267 if (err2)
2268 ext4_error(inode->i_sb,
2269 "Failed to mark inode %lu dirty",
2270 inode->i_ino);
2271 if (!err)
2272 err = err2;
2273 }
2274 return err;
2275}
2276
fffb2739
JK
2277/*
2278 * Calculate the total number of credits to reserve for one writepages
20970ba6 2279 * iteration. This is called from ext4_writepages(). We map an extent of
70261f56 2280 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
fffb2739
JK
2281 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2282 * bpp - 1 blocks in bpp different extents.
2283 */
525f4ed8
MC
2284static int ext4_da_writepages_trans_blocks(struct inode *inode)
2285{
fffb2739 2286 int bpp = ext4_journal_blocks_per_page(inode);
525f4ed8 2287
fffb2739
JK
2288 return ext4_meta_trans_blocks(inode,
2289 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
525f4ed8 2290}
61628a3f 2291
8e48dcfb 2292/*
4e7ea81d
JK
2293 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2294 * and underlying extent to map
2295 *
2296 * @mpd - where to look for pages
2297 *
2298 * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2299 * IO immediately. When we find a page which isn't mapped we start accumulating
2300 * extent of buffers underlying these pages that needs mapping (formed by
2301 * either delayed or unwritten buffers). We also lock the pages containing
2302 * these buffers. The extent found is returned in @mpd structure (starting at
2303 * mpd->lblk with length mpd->len blocks).
2304 *
2305 * Note that this function can attach bios to one io_end structure which are
2306 * neither logically nor physically contiguous. Although it may seem as an
2307 * unnecessary complication, it is actually inevitable in blocksize < pagesize
2308 * case as we need to track IO to all buffers underlying a page in one io_end.
8e48dcfb 2309 */
4e7ea81d 2310static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
8e48dcfb 2311{
4e7ea81d
JK
2312 struct address_space *mapping = mpd->inode->i_mapping;
2313 struct pagevec pvec;
2314 unsigned int nr_pages;
aeac589a 2315 long left = mpd->wbc->nr_to_write;
4e7ea81d
JK
2316 pgoff_t index = mpd->first_page;
2317 pgoff_t end = mpd->last_page;
2318 int tag;
2319 int i, err = 0;
2320 int blkbits = mpd->inode->i_blkbits;
2321 ext4_lblk_t lblk;
2322 struct buffer_head *head;
8e48dcfb 2323
4e7ea81d 2324 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
5b41d924
ES
2325 tag = PAGECACHE_TAG_TOWRITE;
2326 else
2327 tag = PAGECACHE_TAG_DIRTY;
2328
4e7ea81d
JK
2329 pagevec_init(&pvec, 0);
2330 mpd->map.m_len = 0;
2331 mpd->next_page = index;
4f01b02c 2332 while (index <= end) {
5b41d924 2333 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
8e48dcfb
TT
2334 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2335 if (nr_pages == 0)
4e7ea81d 2336 goto out;
8e48dcfb
TT
2337
2338 for (i = 0; i < nr_pages; i++) {
2339 struct page *page = pvec.pages[i];
2340
2341 /*
2342 * At this point, the page may be truncated or
2343 * invalidated (changing page->mapping to NULL), or
2344 * even swizzled back from swapper_space to tmpfs file
2345 * mapping. However, page->index will not change
2346 * because we have a reference on the page.
2347 */
4f01b02c
TT
2348 if (page->index > end)
2349 goto out;
8e48dcfb 2350
aeac589a
ML
2351 /*
2352 * Accumulated enough dirty pages? This doesn't apply
2353 * to WB_SYNC_ALL mode. For integrity sync we have to
2354 * keep going because someone may be concurrently
2355 * dirtying pages, and we might have synced a lot of
2356 * newly appeared dirty pages, but have not synced all
2357 * of the old dirty pages.
2358 */
2359 if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2360 goto out;
2361
4e7ea81d
JK
2362 /* If we can't merge this page, we are done. */
2363 if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2364 goto out;
78aaced3 2365
8e48dcfb 2366 lock_page(page);
8e48dcfb 2367 /*
4e7ea81d
JK
2368 * If the page is no longer dirty, or its mapping no
2369 * longer corresponds to inode we are writing (which
2370 * means it has been truncated or invalidated), or the
2371 * page is already under writeback and we are not doing
2372 * a data integrity writeback, skip the page
8e48dcfb 2373 */
4f01b02c
TT
2374 if (!PageDirty(page) ||
2375 (PageWriteback(page) &&
4e7ea81d 2376 (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
4f01b02c 2377 unlikely(page->mapping != mapping)) {
8e48dcfb
TT
2378 unlock_page(page);
2379 continue;
2380 }
2381
7cb1a535 2382 wait_on_page_writeback(page);
8e48dcfb 2383 BUG_ON(PageWriteback(page));
8e48dcfb 2384
4e7ea81d 2385 if (mpd->map.m_len == 0)
8eb9e5ce 2386 mpd->first_page = page->index;
8eb9e5ce 2387 mpd->next_page = page->index + 1;
f8bec370 2388 /* Add all dirty buffers to mpd */
4e7ea81d
JK
2389 lblk = ((ext4_lblk_t)page->index) <<
2390 (PAGE_CACHE_SHIFT - blkbits);
f8bec370 2391 head = page_buffers(page);
5f1132b2
JK
2392 err = mpage_process_page_bufs(mpd, head, head, lblk);
2393 if (err <= 0)
4e7ea81d 2394 goto out;
5f1132b2 2395 err = 0;
aeac589a 2396 left--;
8e48dcfb
TT
2397 }
2398 pagevec_release(&pvec);
2399 cond_resched();
2400 }
4f01b02c 2401 return 0;
8eb9e5ce
TT
2402out:
2403 pagevec_release(&pvec);
4e7ea81d 2404 return err;
8e48dcfb
TT
2405}
2406
20970ba6
TT
2407static int __writepage(struct page *page, struct writeback_control *wbc,
2408 void *data)
2409{
2410 struct address_space *mapping = data;
2411 int ret = ext4_writepage(page, wbc);
2412 mapping_set_error(mapping, ret);
2413 return ret;
2414}
2415
2416static int ext4_writepages(struct address_space *mapping,
2417 struct writeback_control *wbc)
64769240 2418{
4e7ea81d
JK
2419 pgoff_t writeback_index = 0;
2420 long nr_to_write = wbc->nr_to_write;
22208ded 2421 int range_whole = 0;
4e7ea81d 2422 int cycled = 1;
61628a3f 2423 handle_t *handle = NULL;
df22291f 2424 struct mpage_da_data mpd;
5e745b04 2425 struct inode *inode = mapping->host;
6b523df4 2426 int needed_blocks, rsv_blocks = 0, ret = 0;
5e745b04 2427 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
4e7ea81d 2428 bool done;
1bce63d1 2429 struct blk_plug plug;
cb530541 2430 bool give_up_on_write = false;
61628a3f 2431
20970ba6 2432 trace_ext4_writepages(inode, wbc);
ba80b101 2433
61628a3f
MC
2434 /*
2435 * No pages to write? This is mainly a kludge to avoid starting
2436 * a transaction for special inodes like journal inode on last iput()
2437 * because that could violate lock ordering on umount
2438 */
a1d6cc56 2439 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
bbf023c7 2440 goto out_writepages;
2a21e37e 2441
20970ba6
TT
2442 if (ext4_should_journal_data(inode)) {
2443 struct blk_plug plug;
20970ba6
TT
2444
2445 blk_start_plug(&plug);
2446 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2447 blk_finish_plug(&plug);
bbf023c7 2448 goto out_writepages;
20970ba6
TT
2449 }
2450
2a21e37e
TT
2451 /*
2452 * If the filesystem has aborted, it is read-only, so return
2453 * right away instead of dumping stack traces later on that
2454 * will obscure the real source of the problem. We test
4ab2f15b 2455 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2a21e37e 2456 * the latter could be true if the filesystem is mounted
20970ba6 2457 * read-only, and in that case, ext4_writepages should
2a21e37e
TT
2458 * *never* be called, so if that ever happens, we would want
2459 * the stack trace.
2460 */
bbf023c7
ML
2461 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2462 ret = -EROFS;
2463 goto out_writepages;
2464 }
2a21e37e 2465
6b523df4
JK
2466 if (ext4_should_dioread_nolock(inode)) {
2467 /*
70261f56 2468 * We may need to convert up to one extent per block in
6b523df4
JK
2469 * the page and we may dirty the inode.
2470 */
2471 rsv_blocks = 1 + (PAGE_CACHE_SIZE >> inode->i_blkbits);
2472 }
2473
4e7ea81d
JK
2474 /*
2475 * If we have inline data and arrive here, it means that
2476 * we will soon create the block for the 1st page, so
2477 * we'd better clear the inline data here.
2478 */
2479 if (ext4_has_inline_data(inode)) {
2480 /* Just inode will be modified... */
2481 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2482 if (IS_ERR(handle)) {
2483 ret = PTR_ERR(handle);
2484 goto out_writepages;
2485 }
2486 BUG_ON(ext4_test_inode_state(inode,
2487 EXT4_STATE_MAY_INLINE_DATA));
2488 ext4_destroy_inline_data(handle, inode);
2489 ext4_journal_stop(handle);
2490 }
2491
22208ded
AK
2492 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2493 range_whole = 1;
61628a3f 2494
2acf2c26 2495 if (wbc->range_cyclic) {
4e7ea81d
JK
2496 writeback_index = mapping->writeback_index;
2497 if (writeback_index)
2acf2c26 2498 cycled = 0;
4e7ea81d
JK
2499 mpd.first_page = writeback_index;
2500 mpd.last_page = -1;
5b41d924 2501 } else {
4e7ea81d
JK
2502 mpd.first_page = wbc->range_start >> PAGE_CACHE_SHIFT;
2503 mpd.last_page = wbc->range_end >> PAGE_CACHE_SHIFT;
5b41d924 2504 }
a1d6cc56 2505
4e7ea81d
JK
2506 mpd.inode = inode;
2507 mpd.wbc = wbc;
2508 ext4_io_submit_init(&mpd.io_submit, wbc);
2acf2c26 2509retry:
6e6938b6 2510 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
4e7ea81d
JK
2511 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2512 done = false;
1bce63d1 2513 blk_start_plug(&plug);
4e7ea81d
JK
2514 while (!done && mpd.first_page <= mpd.last_page) {
2515 /* For each extent of pages we use new io_end */
2516 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2517 if (!mpd.io_submit.io_end) {
2518 ret = -ENOMEM;
2519 break;
2520 }
a1d6cc56
AK
2521
2522 /*
4e7ea81d
JK
2523 * We have two constraints: We find one extent to map and we
2524 * must always write out whole page (makes a difference when
2525 * blocksize < pagesize) so that we don't block on IO when we
2526 * try to write out the rest of the page. Journalled mode is
2527 * not supported by delalloc.
a1d6cc56
AK
2528 */
2529 BUG_ON(ext4_should_journal_data(inode));
525f4ed8 2530 needed_blocks = ext4_da_writepages_trans_blocks(inode);
a1d6cc56 2531
4e7ea81d 2532 /* start a new transaction */
6b523df4
JK
2533 handle = ext4_journal_start_with_reserve(inode,
2534 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
61628a3f
MC
2535 if (IS_ERR(handle)) {
2536 ret = PTR_ERR(handle);
1693918e 2537 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
fbe845dd 2538 "%ld pages, ino %lu; err %d", __func__,
a1d6cc56 2539 wbc->nr_to_write, inode->i_ino, ret);
4e7ea81d
JK
2540 /* Release allocated io_end */
2541 ext4_put_io_end(mpd.io_submit.io_end);
2542 break;
61628a3f 2543 }
f63e6005 2544
4e7ea81d
JK
2545 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2546 ret = mpage_prepare_extent_to_map(&mpd);
2547 if (!ret) {
2548 if (mpd.map.m_len)
cb530541
TT
2549 ret = mpage_map_and_submit_extent(handle, &mpd,
2550 &give_up_on_write);
4e7ea81d
JK
2551 else {
2552 /*
2553 * We scanned the whole range (or exhausted
2554 * nr_to_write), submitted what was mapped and
2555 * didn't find anything needing mapping. We are
2556 * done.
2557 */
2558 done = true;
2559 }
f63e6005 2560 }
61628a3f 2561 ext4_journal_stop(handle);
4e7ea81d
JK
2562 /* Submit prepared bio */
2563 ext4_io_submit(&mpd.io_submit);
2564 /* Unlock pages we didn't use */
cb530541 2565 mpage_release_unused_pages(&mpd, give_up_on_write);
4e7ea81d
JK
2566 /* Drop our io_end reference we got from init */
2567 ext4_put_io_end(mpd.io_submit.io_end);
2568
2569 if (ret == -ENOSPC && sbi->s_journal) {
2570 /*
2571 * Commit the transaction which would
22208ded
AK
2572 * free blocks released in the transaction
2573 * and try again
2574 */
df22291f 2575 jbd2_journal_force_commit_nested(sbi->s_journal);
22208ded 2576 ret = 0;
4e7ea81d
JK
2577 continue;
2578 }
2579 /* Fatal error - ENOMEM, EIO... */
2580 if (ret)
61628a3f 2581 break;
a1d6cc56 2582 }
1bce63d1 2583 blk_finish_plug(&plug);
9c12a831 2584 if (!ret && !cycled && wbc->nr_to_write > 0) {
2acf2c26 2585 cycled = 1;
4e7ea81d
JK
2586 mpd.last_page = writeback_index - 1;
2587 mpd.first_page = 0;
2acf2c26
AK
2588 goto retry;
2589 }
22208ded
AK
2590
2591 /* Update index */
22208ded
AK
2592 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2593 /*
4e7ea81d 2594 * Set the writeback_index so that range_cyclic
22208ded
AK
2595 * mode will write it back later
2596 */
4e7ea81d 2597 mapping->writeback_index = mpd.first_page;
a1d6cc56 2598
61628a3f 2599out_writepages:
20970ba6
TT
2600 trace_ext4_writepages_result(inode, wbc, ret,
2601 nr_to_write - wbc->nr_to_write);
61628a3f 2602 return ret;
64769240
AT
2603}
2604
79f0be8d
AK
2605static int ext4_nonda_switch(struct super_block *sb)
2606{
5c1ff336 2607 s64 free_clusters, dirty_clusters;
79f0be8d
AK
2608 struct ext4_sb_info *sbi = EXT4_SB(sb);
2609
2610 /*
2611 * switch to non delalloc mode if we are running low
2612 * on free block. The free block accounting via percpu
179f7ebf 2613 * counters can get slightly wrong with percpu_counter_batch getting
79f0be8d
AK
2614 * accumulated on each CPU without updating global counters
2615 * Delalloc need an accurate free block accounting. So switch
2616 * to non delalloc when we are near to error range.
2617 */
5c1ff336
EW
2618 free_clusters =
2619 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2620 dirty_clusters =
2621 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
00d4e736
TT
2622 /*
2623 * Start pushing delalloc when 1/2 of free blocks are dirty.
2624 */
5c1ff336 2625 if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
10ee27a0 2626 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
00d4e736 2627
5c1ff336
EW
2628 if (2 * free_clusters < 3 * dirty_clusters ||
2629 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
79f0be8d 2630 /*
c8afb446
ES
2631 * free block count is less than 150% of dirty blocks
2632 * or free blocks is less than watermark
79f0be8d
AK
2633 */
2634 return 1;
2635 }
2636 return 0;
2637}
2638
64769240 2639static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
de9a55b8
TT
2640 loff_t pos, unsigned len, unsigned flags,
2641 struct page **pagep, void **fsdata)
64769240 2642{
72b8ab9d 2643 int ret, retries = 0;
64769240
AT
2644 struct page *page;
2645 pgoff_t index;
64769240
AT
2646 struct inode *inode = mapping->host;
2647 handle_t *handle;
2648
2649 index = pos >> PAGE_CACHE_SHIFT;
79f0be8d
AK
2650
2651 if (ext4_nonda_switch(inode->i_sb)) {
2652 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2653 return ext4_write_begin(file, mapping, pos,
2654 len, flags, pagep, fsdata);
2655 }
2656 *fsdata = (void *)0;
9bffad1e 2657 trace_ext4_da_write_begin(inode, pos, len, flags);
9c3569b5
TM
2658
2659 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2660 ret = ext4_da_write_inline_data_begin(mapping, inode,
2661 pos, len, flags,
2662 pagep, fsdata);
2663 if (ret < 0)
47564bfb
TT
2664 return ret;
2665 if (ret == 1)
2666 return 0;
9c3569b5
TM
2667 }
2668
47564bfb
TT
2669 /*
2670 * grab_cache_page_write_begin() can take a long time if the
2671 * system is thrashing due to memory pressure, or if the page
2672 * is being written back. So grab it first before we start
2673 * the transaction handle. This also allows us to allocate
2674 * the page (if needed) without using GFP_NOFS.
2675 */
2676retry_grab:
2677 page = grab_cache_page_write_begin(mapping, index, flags);
2678 if (!page)
2679 return -ENOMEM;
2680 unlock_page(page);
2681
64769240
AT
2682 /*
2683 * With delayed allocation, we don't log the i_disksize update
2684 * if there is delayed block allocation. But we still need
2685 * to journalling the i_disksize update if writes to the end
2686 * of file which has an already mapped buffer.
2687 */
47564bfb 2688retry_journal:
9924a92a 2689 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 1);
64769240 2690 if (IS_ERR(handle)) {
47564bfb
TT
2691 page_cache_release(page);
2692 return PTR_ERR(handle);
64769240
AT
2693 }
2694
47564bfb
TT
2695 lock_page(page);
2696 if (page->mapping != mapping) {
2697 /* The page got truncated from under us */
2698 unlock_page(page);
2699 page_cache_release(page);
d5a0d4f7 2700 ext4_journal_stop(handle);
47564bfb 2701 goto retry_grab;
d5a0d4f7 2702 }
47564bfb 2703 /* In case writeback began while the page was unlocked */
7afe5aa5 2704 wait_for_stable_page(page);
64769240 2705
6e1db88d 2706 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
64769240
AT
2707 if (ret < 0) {
2708 unlock_page(page);
2709 ext4_journal_stop(handle);
ae4d5372
AK
2710 /*
2711 * block_write_begin may have instantiated a few blocks
2712 * outside i_size. Trim these off again. Don't need
2713 * i_size_read because we hold i_mutex.
2714 */
2715 if (pos + len > inode->i_size)
b9a4207d 2716 ext4_truncate_failed_write(inode);
47564bfb
TT
2717
2718 if (ret == -ENOSPC &&
2719 ext4_should_retry_alloc(inode->i_sb, &retries))
2720 goto retry_journal;
2721
2722 page_cache_release(page);
2723 return ret;
64769240
AT
2724 }
2725
47564bfb 2726 *pagep = page;
64769240
AT
2727 return ret;
2728}
2729
632eaeab
MC
2730/*
2731 * Check if we should update i_disksize
2732 * when write to the end of file but not require block allocation
2733 */
2734static int ext4_da_should_update_i_disksize(struct page *page,
de9a55b8 2735 unsigned long offset)
632eaeab
MC
2736{
2737 struct buffer_head *bh;
2738 struct inode *inode = page->mapping->host;
2739 unsigned int idx;
2740 int i;
2741
2742 bh = page_buffers(page);
2743 idx = offset >> inode->i_blkbits;
2744
af5bc92d 2745 for (i = 0; i < idx; i++)
632eaeab
MC
2746 bh = bh->b_this_page;
2747
29fa89d0 2748 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
632eaeab
MC
2749 return 0;
2750 return 1;
2751}
2752
64769240 2753static int ext4_da_write_end(struct file *file,
de9a55b8
TT
2754 struct address_space *mapping,
2755 loff_t pos, unsigned len, unsigned copied,
2756 struct page *page, void *fsdata)
64769240
AT
2757{
2758 struct inode *inode = mapping->host;
2759 int ret = 0, ret2;
2760 handle_t *handle = ext4_journal_current_handle();
2761 loff_t new_i_size;
632eaeab 2762 unsigned long start, end;
79f0be8d
AK
2763 int write_mode = (int)(unsigned long)fsdata;
2764
74d553aa
TT
2765 if (write_mode == FALL_BACK_TO_NONDELALLOC)
2766 return ext4_write_end(file, mapping, pos,
2767 len, copied, page, fsdata);
632eaeab 2768
9bffad1e 2769 trace_ext4_da_write_end(inode, pos, len, copied);
632eaeab 2770 start = pos & (PAGE_CACHE_SIZE - 1);
af5bc92d 2771 end = start + copied - 1;
64769240
AT
2772
2773 /*
2774 * generic_write_end() will run mark_inode_dirty() if i_size
2775 * changes. So let's piggyback the i_disksize mark_inode_dirty
2776 * into that.
2777 */
64769240 2778 new_i_size = pos + copied;
ea51d132 2779 if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
9c3569b5
TM
2780 if (ext4_has_inline_data(inode) ||
2781 ext4_da_should_update_i_disksize(page, end)) {
632eaeab 2782 down_write(&EXT4_I(inode)->i_data_sem);
f3b59291 2783 if (new_i_size > EXT4_I(inode)->i_disksize)
632eaeab 2784 EXT4_I(inode)->i_disksize = new_i_size;
632eaeab 2785 up_write(&EXT4_I(inode)->i_data_sem);
cf17fea6
AK
2786 /* We need to mark inode dirty even if
2787 * new_i_size is less that inode->i_size
2788 * bu greater than i_disksize.(hint delalloc)
2789 */
2790 ext4_mark_inode_dirty(handle, inode);
64769240 2791 }
632eaeab 2792 }
9c3569b5
TM
2793
2794 if (write_mode != CONVERT_INLINE_DATA &&
2795 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2796 ext4_has_inline_data(inode))
2797 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
2798 page);
2799 else
2800 ret2 = generic_write_end(file, mapping, pos, len, copied,
64769240 2801 page, fsdata);
9c3569b5 2802
64769240
AT
2803 copied = ret2;
2804 if (ret2 < 0)
2805 ret = ret2;
2806 ret2 = ext4_journal_stop(handle);
2807 if (!ret)
2808 ret = ret2;
2809
2810 return ret ? ret : copied;
2811}
2812
d47992f8
LC
2813static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
2814 unsigned int length)
64769240 2815{
64769240
AT
2816 /*
2817 * Drop reserved blocks
2818 */
2819 BUG_ON(!PageLocked(page));
2820 if (!page_has_buffers(page))
2821 goto out;
2822
ca99fdd2 2823 ext4_da_page_release_reservation(page, offset, length);
64769240
AT
2824
2825out:
d47992f8 2826 ext4_invalidatepage(page, offset, length);
64769240
AT
2827
2828 return;
2829}
2830
ccd2506b
TT
2831/*
2832 * Force all delayed allocation blocks to be allocated for a given inode.
2833 */
2834int ext4_alloc_da_blocks(struct inode *inode)
2835{
fb40ba0d
TT
2836 trace_ext4_alloc_da_blocks(inode);
2837
ccd2506b
TT
2838 if (!EXT4_I(inode)->i_reserved_data_blocks &&
2839 !EXT4_I(inode)->i_reserved_meta_blocks)
2840 return 0;
2841
2842 /*
2843 * We do something simple for now. The filemap_flush() will
2844 * also start triggering a write of the data blocks, which is
2845 * not strictly speaking necessary (and for users of
2846 * laptop_mode, not even desirable). However, to do otherwise
2847 * would require replicating code paths in:
de9a55b8 2848 *
20970ba6 2849 * ext4_writepages() ->
ccd2506b
TT
2850 * write_cache_pages() ---> (via passed in callback function)
2851 * __mpage_da_writepage() -->
2852 * mpage_add_bh_to_extent()
2853 * mpage_da_map_blocks()
2854 *
2855 * The problem is that write_cache_pages(), located in
2856 * mm/page-writeback.c, marks pages clean in preparation for
2857 * doing I/O, which is not desirable if we're not planning on
2858 * doing I/O at all.
2859 *
2860 * We could call write_cache_pages(), and then redirty all of
380cf090 2861 * the pages by calling redirty_page_for_writepage() but that
ccd2506b
TT
2862 * would be ugly in the extreme. So instead we would need to
2863 * replicate parts of the code in the above functions,
25985edc 2864 * simplifying them because we wouldn't actually intend to
ccd2506b
TT
2865 * write out the pages, but rather only collect contiguous
2866 * logical block extents, call the multi-block allocator, and
2867 * then update the buffer heads with the block allocations.
de9a55b8 2868 *
ccd2506b
TT
2869 * For now, though, we'll cheat by calling filemap_flush(),
2870 * which will map the blocks, and start the I/O, but not
2871 * actually wait for the I/O to complete.
2872 */
2873 return filemap_flush(inode->i_mapping);
2874}
64769240 2875
ac27a0ec
DK
2876/*
2877 * bmap() is special. It gets used by applications such as lilo and by
2878 * the swapper to find the on-disk block of a specific piece of data.
2879 *
2880 * Naturally, this is dangerous if the block concerned is still in the
617ba13b 2881 * journal. If somebody makes a swapfile on an ext4 data-journaling
ac27a0ec
DK
2882 * filesystem and enables swap, then they may get a nasty shock when the
2883 * data getting swapped to that swapfile suddenly gets overwritten by
2884 * the original zero's written out previously to the journal and
2885 * awaiting writeback in the kernel's buffer cache.
2886 *
2887 * So, if we see any bmap calls here on a modified, data-journaled file,
2888 * take extra steps to flush any blocks which might be in the cache.
2889 */
617ba13b 2890static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
ac27a0ec
DK
2891{
2892 struct inode *inode = mapping->host;
2893 journal_t *journal;
2894 int err;
2895
46c7f254
TM
2896 /*
2897 * We can get here for an inline file via the FIBMAP ioctl
2898 */
2899 if (ext4_has_inline_data(inode))
2900 return 0;
2901
64769240
AT
2902 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2903 test_opt(inode->i_sb, DELALLOC)) {
2904 /*
2905 * With delalloc we want to sync the file
2906 * so that we can make sure we allocate
2907 * blocks for file
2908 */
2909 filemap_write_and_wait(mapping);
2910 }
2911
19f5fb7a
TT
2912 if (EXT4_JOURNAL(inode) &&
2913 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
ac27a0ec
DK
2914 /*
2915 * This is a REALLY heavyweight approach, but the use of
2916 * bmap on dirty files is expected to be extremely rare:
2917 * only if we run lilo or swapon on a freshly made file
2918 * do we expect this to happen.
2919 *
2920 * (bmap requires CAP_SYS_RAWIO so this does not
2921 * represent an unprivileged user DOS attack --- we'd be
2922 * in trouble if mortal users could trigger this path at
2923 * will.)
2924 *
617ba13b 2925 * NB. EXT4_STATE_JDATA is not set on files other than
ac27a0ec
DK
2926 * regular files. If somebody wants to bmap a directory
2927 * or symlink and gets confused because the buffer
2928 * hasn't yet been flushed to disk, they deserve
2929 * everything they get.
2930 */
2931
19f5fb7a 2932 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
617ba13b 2933 journal = EXT4_JOURNAL(inode);
dab291af
MC
2934 jbd2_journal_lock_updates(journal);
2935 err = jbd2_journal_flush(journal);
2936 jbd2_journal_unlock_updates(journal);
ac27a0ec
DK
2937
2938 if (err)
2939 return 0;
2940 }
2941
af5bc92d 2942 return generic_block_bmap(mapping, block, ext4_get_block);
ac27a0ec
DK
2943}
2944
617ba13b 2945static int ext4_readpage(struct file *file, struct page *page)
ac27a0ec 2946{
46c7f254
TM
2947 int ret = -EAGAIN;
2948 struct inode *inode = page->mapping->host;
2949
0562e0ba 2950 trace_ext4_readpage(page);
46c7f254
TM
2951
2952 if (ext4_has_inline_data(inode))
2953 ret = ext4_readpage_inline(inode, page);
2954
2955 if (ret == -EAGAIN)
2956 return mpage_readpage(page, ext4_get_block);
2957
2958 return ret;
ac27a0ec
DK
2959}
2960
2961static int
617ba13b 2962ext4_readpages(struct file *file, struct address_space *mapping,
ac27a0ec
DK
2963 struct list_head *pages, unsigned nr_pages)
2964{
46c7f254
TM
2965 struct inode *inode = mapping->host;
2966
2967 /* If the file has inline data, no need to do readpages. */
2968 if (ext4_has_inline_data(inode))
2969 return 0;
2970
617ba13b 2971 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
ac27a0ec
DK
2972}
2973
d47992f8
LC
2974static void ext4_invalidatepage(struct page *page, unsigned int offset,
2975 unsigned int length)
ac27a0ec 2976{
ca99fdd2 2977 trace_ext4_invalidatepage(page, offset, length);
0562e0ba 2978
4520fb3c
JK
2979 /* No journalling happens on data buffers when this function is used */
2980 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
2981
ca99fdd2 2982 block_invalidatepage(page, offset, length);
4520fb3c
JK
2983}
2984
53e87268 2985static int __ext4_journalled_invalidatepage(struct page *page,
ca99fdd2
LC
2986 unsigned int offset,
2987 unsigned int length)
4520fb3c
JK
2988{
2989 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2990
ca99fdd2 2991 trace_ext4_journalled_invalidatepage(page, offset, length);
4520fb3c 2992
ac27a0ec
DK
2993 /*
2994 * If it's a full truncate we just forget about the pending dirtying
2995 */
ca99fdd2 2996 if (offset == 0 && length == PAGE_CACHE_SIZE)
ac27a0ec
DK
2997 ClearPageChecked(page);
2998
ca99fdd2 2999 return jbd2_journal_invalidatepage(journal, page, offset, length);
53e87268
JK
3000}
3001
3002/* Wrapper for aops... */
3003static void ext4_journalled_invalidatepage(struct page *page,
d47992f8
LC
3004 unsigned int offset,
3005 unsigned int length)
53e87268 3006{
ca99fdd2 3007 WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
ac27a0ec
DK
3008}
3009
617ba13b 3010static int ext4_releasepage(struct page *page, gfp_t wait)
ac27a0ec 3011{
617ba13b 3012 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
ac27a0ec 3013
0562e0ba
JZ
3014 trace_ext4_releasepage(page);
3015
e1c36595
JK
3016 /* Page has dirty journalled data -> cannot release */
3017 if (PageChecked(page))
ac27a0ec 3018 return 0;
0390131b
FM
3019 if (journal)
3020 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3021 else
3022 return try_to_free_buffers(page);
ac27a0ec
DK
3023}
3024
2ed88685
TT
3025/*
3026 * ext4_get_block used when preparing for a DIO write or buffer write.
3027 * We allocate an uinitialized extent if blocks haven't been allocated.
3028 * The extent will be converted to initialized after the IO is complete.
3029 */
f19d5870 3030int ext4_get_block_write(struct inode *inode, sector_t iblock,
4c0425ff
MC
3031 struct buffer_head *bh_result, int create)
3032{
c7064ef1 3033 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
8d5d02e6 3034 inode->i_ino, create);
2ed88685
TT
3035 return _ext4_get_block(inode, iblock, bh_result,
3036 EXT4_GET_BLOCKS_IO_CREATE_EXT);
4c0425ff
MC
3037}
3038
729f52c6 3039static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
8b0f165f 3040 struct buffer_head *bh_result, int create)
729f52c6 3041{
8b0f165f
AP
3042 ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
3043 inode->i_ino, create);
3044 return _ext4_get_block(inode, iblock, bh_result,
3045 EXT4_GET_BLOCKS_NO_LOCK);
729f52c6
ZL
3046}
3047
4c0425ff 3048static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
7b7a8665 3049 ssize_t size, void *private)
4c0425ff
MC
3050{
3051 ext4_io_end_t *io_end = iocb->private;
4c0425ff 3052
97a851ed 3053 /* if not async direct IO just return */
7b7a8665 3054 if (!io_end)
97a851ed 3055 return;
4b70df18 3056
88635ca2 3057 ext_debug("ext4_end_io_dio(): io_end 0x%p "
ace36ad4 3058 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
8d5d02e6
MC
3059 iocb->private, io_end->inode->i_ino, iocb, offset,
3060 size);
8d5d02e6 3061
b5a7e970 3062 iocb->private = NULL;
4c0425ff
MC
3063 io_end->offset = offset;
3064 io_end->size = size;
7b7a8665 3065 ext4_put_io_end(io_end);
4c0425ff 3066}
c7064ef1 3067
4c0425ff
MC
3068/*
3069 * For ext4 extent files, ext4 will do direct-io write to holes,
3070 * preallocated extents, and those write extend the file, no need to
3071 * fall back to buffered IO.
3072 *
b595076a 3073 * For holes, we fallocate those blocks, mark them as uninitialized
69c499d1 3074 * If those blocks were preallocated, we mark sure they are split, but
b595076a 3075 * still keep the range to write as uninitialized.
4c0425ff 3076 *
69c499d1 3077 * The unwritten extents will be converted to written when DIO is completed.
8d5d02e6 3078 * For async direct IO, since the IO may still pending when return, we
25985edc 3079 * set up an end_io call back function, which will do the conversion
8d5d02e6 3080 * when async direct IO completed.
4c0425ff
MC
3081 *
3082 * If the O_DIRECT write will extend the file then add this inode to the
3083 * orphan list. So recovery will truncate it back to the original size
3084 * if the machine crashes during the write.
3085 *
3086 */
3087static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
3088 const struct iovec *iov, loff_t offset,
3089 unsigned long nr_segs)
3090{
3091 struct file *file = iocb->ki_filp;
3092 struct inode *inode = file->f_mapping->host;
3093 ssize_t ret;
3094 size_t count = iov_length(iov, nr_segs);
69c499d1
TT
3095 int overwrite = 0;
3096 get_block_t *get_block_func = NULL;
3097 int dio_flags = 0;
4c0425ff 3098 loff_t final_size = offset + count;
97a851ed 3099 ext4_io_end_t *io_end = NULL;
729f52c6 3100
69c499d1
TT
3101 /* Use the old path for reads and writes beyond i_size. */
3102 if (rw != WRITE || final_size > inode->i_size)
3103 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
4bd809db 3104
69c499d1 3105 BUG_ON(iocb->private == NULL);
4bd809db 3106
e8340395
JK
3107 /*
3108 * Make all waiters for direct IO properly wait also for extent
3109 * conversion. This also disallows race between truncate() and
3110 * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3111 */
3112 if (rw == WRITE)
3113 atomic_inc(&inode->i_dio_count);
3114
69c499d1
TT
3115 /* If we do a overwrite dio, i_mutex locking can be released */
3116 overwrite = *((int *)iocb->private);
4bd809db 3117
69c499d1 3118 if (overwrite) {
69c499d1
TT
3119 down_read(&EXT4_I(inode)->i_data_sem);
3120 mutex_unlock(&inode->i_mutex);
3121 }
8d5d02e6 3122
69c499d1
TT
3123 /*
3124 * We could direct write to holes and fallocate.
3125 *
3126 * Allocated blocks to fill the hole are marked as
3127 * uninitialized to prevent parallel buffered read to expose
3128 * the stale data before DIO complete the data IO.
3129 *
3130 * As to previously fallocated extents, ext4 get_block will
3131 * just simply mark the buffer mapped but still keep the
3132 * extents uninitialized.
3133 *
3134 * For non AIO case, we will convert those unwritten extents
3135 * to written after return back from blockdev_direct_IO.
3136 *
3137 * For async DIO, the conversion needs to be deferred when the
3138 * IO is completed. The ext4 end_io callback function will be
3139 * called to take care of the conversion work. Here for async
3140 * case, we allocate an io_end structure to hook to the iocb.
3141 */
3142 iocb->private = NULL;
3143 ext4_inode_aio_set(inode, NULL);
3144 if (!is_sync_kiocb(iocb)) {
97a851ed 3145 io_end = ext4_init_io_end(inode, GFP_NOFS);
69c499d1
TT
3146 if (!io_end) {
3147 ret = -ENOMEM;
3148 goto retake_lock;
8b0f165f 3149 }
97a851ed
JK
3150 /*
3151 * Grab reference for DIO. Will be dropped in ext4_end_io_dio()
3152 */
3153 iocb->private = ext4_get_io_end(io_end);
8d5d02e6 3154 /*
69c499d1
TT
3155 * we save the io structure for current async direct
3156 * IO, so that later ext4_map_blocks() could flag the
3157 * io structure whether there is a unwritten extents
3158 * needs to be converted when IO is completed.
8d5d02e6 3159 */
69c499d1
TT
3160 ext4_inode_aio_set(inode, io_end);
3161 }
4bd809db 3162
69c499d1
TT
3163 if (overwrite) {
3164 get_block_func = ext4_get_block_write_nolock;
3165 } else {
3166 get_block_func = ext4_get_block_write;
3167 dio_flags = DIO_LOCKING;
3168 }
3169 ret = __blockdev_direct_IO(rw, iocb, inode,
3170 inode->i_sb->s_bdev, iov,
3171 offset, nr_segs,
3172 get_block_func,
3173 ext4_end_io_dio,
3174 NULL,
3175 dio_flags);
3176
69c499d1 3177 /*
97a851ed
JK
3178 * Put our reference to io_end. This can free the io_end structure e.g.
3179 * in sync IO case or in case of error. It can even perform extent
3180 * conversion if all bios we submitted finished before we got here.
3181 * Note that in that case iocb->private can be already set to NULL
3182 * here.
69c499d1 3183 */
97a851ed
JK
3184 if (io_end) {
3185 ext4_inode_aio_set(inode, NULL);
3186 ext4_put_io_end(io_end);
3187 /*
3188 * When no IO was submitted ext4_end_io_dio() was not
3189 * called so we have to put iocb's reference.
3190 */
3191 if (ret <= 0 && ret != -EIOCBQUEUED && iocb->private) {
3192 WARN_ON(iocb->private != io_end);
3193 WARN_ON(io_end->flag & EXT4_IO_END_UNWRITTEN);
97a851ed
JK
3194 ext4_put_io_end(io_end);
3195 iocb->private = NULL;
3196 }
3197 }
3198 if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
69c499d1
TT
3199 EXT4_STATE_DIO_UNWRITTEN)) {
3200 int err;
3201 /*
3202 * for non AIO case, since the IO is already
3203 * completed, we could do the conversion right here
3204 */
6b523df4 3205 err = ext4_convert_unwritten_extents(NULL, inode,
69c499d1
TT
3206 offset, ret);
3207 if (err < 0)
3208 ret = err;
3209 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3210 }
4bd809db 3211
69c499d1 3212retake_lock:
e8340395
JK
3213 if (rw == WRITE)
3214 inode_dio_done(inode);
69c499d1
TT
3215 /* take i_mutex locking again if we do a ovewrite dio */
3216 if (overwrite) {
69c499d1
TT
3217 up_read(&EXT4_I(inode)->i_data_sem);
3218 mutex_lock(&inode->i_mutex);
4c0425ff 3219 }
8d5d02e6 3220
69c499d1 3221 return ret;
4c0425ff
MC
3222}
3223
3224static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3225 const struct iovec *iov, loff_t offset,
3226 unsigned long nr_segs)
3227{
3228 struct file *file = iocb->ki_filp;
3229 struct inode *inode = file->f_mapping->host;
0562e0ba 3230 ssize_t ret;
4c0425ff 3231
84ebd795
TT
3232 /*
3233 * If we are doing data journalling we don't support O_DIRECT
3234 */
3235 if (ext4_should_journal_data(inode))
3236 return 0;
3237
46c7f254
TM
3238 /* Let buffer I/O handle the inline data case. */
3239 if (ext4_has_inline_data(inode))
3240 return 0;
3241
0562e0ba 3242 trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
12e9b892 3243 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
0562e0ba
JZ
3244 ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3245 else
3246 ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3247 trace_ext4_direct_IO_exit(inode, offset,
3248 iov_length(iov, nr_segs), rw, ret);
3249 return ret;
4c0425ff
MC
3250}
3251
ac27a0ec 3252/*
617ba13b 3253 * Pages can be marked dirty completely asynchronously from ext4's journalling
ac27a0ec
DK
3254 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3255 * much here because ->set_page_dirty is called under VFS locks. The page is
3256 * not necessarily locked.
3257 *
3258 * We cannot just dirty the page and leave attached buffers clean, because the
3259 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3260 * or jbddirty because all the journalling code will explode.
3261 *
3262 * So what we do is to mark the page "pending dirty" and next time writepage
3263 * is called, propagate that into the buffers appropriately.
3264 */
617ba13b 3265static int ext4_journalled_set_page_dirty(struct page *page)
ac27a0ec
DK
3266{
3267 SetPageChecked(page);
3268 return __set_page_dirty_nobuffers(page);
3269}
3270
74d553aa 3271static const struct address_space_operations ext4_aops = {
8ab22b9a
HH
3272 .readpage = ext4_readpage,
3273 .readpages = ext4_readpages,
43ce1d23 3274 .writepage = ext4_writepage,
20970ba6 3275 .writepages = ext4_writepages,
8ab22b9a 3276 .write_begin = ext4_write_begin,
74d553aa 3277 .write_end = ext4_write_end,
8ab22b9a
HH
3278 .bmap = ext4_bmap,
3279 .invalidatepage = ext4_invalidatepage,
3280 .releasepage = ext4_releasepage,
3281 .direct_IO = ext4_direct_IO,
3282 .migratepage = buffer_migrate_page,
3283 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3284 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
3285};
3286
617ba13b 3287static const struct address_space_operations ext4_journalled_aops = {
8ab22b9a
HH
3288 .readpage = ext4_readpage,
3289 .readpages = ext4_readpages,
43ce1d23 3290 .writepage = ext4_writepage,
20970ba6 3291 .writepages = ext4_writepages,
8ab22b9a
HH
3292 .write_begin = ext4_write_begin,
3293 .write_end = ext4_journalled_write_end,
3294 .set_page_dirty = ext4_journalled_set_page_dirty,
3295 .bmap = ext4_bmap,
4520fb3c 3296 .invalidatepage = ext4_journalled_invalidatepage,
8ab22b9a 3297 .releasepage = ext4_releasepage,
84ebd795 3298 .direct_IO = ext4_direct_IO,
8ab22b9a 3299 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3300 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
3301};
3302
64769240 3303static const struct address_space_operations ext4_da_aops = {
8ab22b9a
HH
3304 .readpage = ext4_readpage,
3305 .readpages = ext4_readpages,
43ce1d23 3306 .writepage = ext4_writepage,
20970ba6 3307 .writepages = ext4_writepages,
8ab22b9a
HH
3308 .write_begin = ext4_da_write_begin,
3309 .write_end = ext4_da_write_end,
3310 .bmap = ext4_bmap,
3311 .invalidatepage = ext4_da_invalidatepage,
3312 .releasepage = ext4_releasepage,
3313 .direct_IO = ext4_direct_IO,
3314 .migratepage = buffer_migrate_page,
3315 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3316 .error_remove_page = generic_error_remove_page,
64769240
AT
3317};
3318
617ba13b 3319void ext4_set_aops(struct inode *inode)
ac27a0ec 3320{
3d2b1582
LC
3321 switch (ext4_inode_journal_mode(inode)) {
3322 case EXT4_INODE_ORDERED_DATA_MODE:
74d553aa 3323 ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3d2b1582
LC
3324 break;
3325 case EXT4_INODE_WRITEBACK_DATA_MODE:
74d553aa 3326 ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3d2b1582
LC
3327 break;
3328 case EXT4_INODE_JOURNAL_DATA_MODE:
617ba13b 3329 inode->i_mapping->a_ops = &ext4_journalled_aops;
74d553aa 3330 return;
3d2b1582
LC
3331 default:
3332 BUG();
3333 }
74d553aa
TT
3334 if (test_opt(inode->i_sb, DELALLOC))
3335 inode->i_mapping->a_ops = &ext4_da_aops;
3336 else
3337 inode->i_mapping->a_ops = &ext4_aops;
ac27a0ec
DK
3338}
3339
d863dc36
LC
3340/*
3341 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3342 * starting from file offset 'from'. The range to be zero'd must
3343 * be contained with in one block. If the specified range exceeds
3344 * the end of the block it will be shortened to end of the block
3345 * that cooresponds to 'from'
3346 */
94350ab5 3347static int ext4_block_zero_page_range(handle_t *handle,
d863dc36
LC
3348 struct address_space *mapping, loff_t from, loff_t length)
3349{
3350 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3351 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3352 unsigned blocksize, max, pos;
3353 ext4_lblk_t iblock;
3354 struct inode *inode = mapping->host;
3355 struct buffer_head *bh;
3356 struct page *page;
3357 int err = 0;
3358
3359 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3360 mapping_gfp_mask(mapping) & ~__GFP_FS);
3361 if (!page)
3362 return -ENOMEM;
3363
3364 blocksize = inode->i_sb->s_blocksize;
3365 max = blocksize - (offset & (blocksize - 1));
3366
3367 /*
3368 * correct length if it does not fall between
3369 * 'from' and the end of the block
3370 */
3371 if (length > max || length < 0)
3372 length = max;
3373
3374 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3375
3376 if (!page_has_buffers(page))
3377 create_empty_buffers(page, blocksize, 0);
3378
3379 /* Find the buffer that contains "offset" */
3380 bh = page_buffers(page);
3381 pos = blocksize;
3382 while (offset >= pos) {
3383 bh = bh->b_this_page;
3384 iblock++;
3385 pos += blocksize;
3386 }
d863dc36
LC
3387 if (buffer_freed(bh)) {
3388 BUFFER_TRACE(bh, "freed: skip");
3389 goto unlock;
3390 }
d863dc36
LC
3391 if (!buffer_mapped(bh)) {
3392 BUFFER_TRACE(bh, "unmapped");
3393 ext4_get_block(inode, iblock, bh, 0);
3394 /* unmapped? It's a hole - nothing to do */
3395 if (!buffer_mapped(bh)) {
3396 BUFFER_TRACE(bh, "still unmapped");
3397 goto unlock;
3398 }
3399 }
3400
3401 /* Ok, it's mapped. Make sure it's up-to-date */
3402 if (PageUptodate(page))
3403 set_buffer_uptodate(bh);
3404
3405 if (!buffer_uptodate(bh)) {
3406 err = -EIO;
3407 ll_rw_block(READ, 1, &bh);
3408 wait_on_buffer(bh);
3409 /* Uhhuh. Read error. Complain and punt. */
3410 if (!buffer_uptodate(bh))
3411 goto unlock;
3412 }
d863dc36
LC
3413 if (ext4_should_journal_data(inode)) {
3414 BUFFER_TRACE(bh, "get write access");
3415 err = ext4_journal_get_write_access(handle, bh);
3416 if (err)
3417 goto unlock;
3418 }
d863dc36 3419 zero_user(page, offset, length);
d863dc36
LC
3420 BUFFER_TRACE(bh, "zeroed end of block");
3421
d863dc36
LC
3422 if (ext4_should_journal_data(inode)) {
3423 err = ext4_handle_dirty_metadata(handle, inode, bh);
0713ed0c 3424 } else {
353eefd3 3425 err = 0;
d863dc36 3426 mark_buffer_dirty(bh);
0713ed0c
LC
3427 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE))
3428 err = ext4_jbd2_file_inode(handle, inode);
3429 }
d863dc36
LC
3430
3431unlock:
3432 unlock_page(page);
3433 page_cache_release(page);
3434 return err;
3435}
3436
94350ab5
MW
3437/*
3438 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3439 * up to the end of the block which corresponds to `from'.
3440 * This required during truncate. We need to physically zero the tail end
3441 * of that block so it doesn't yield old data if the file is later grown.
3442 */
3443int ext4_block_truncate_page(handle_t *handle,
3444 struct address_space *mapping, loff_t from)
3445{
3446 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3447 unsigned length;
3448 unsigned blocksize;
3449 struct inode *inode = mapping->host;
3450
3451 blocksize = inode->i_sb->s_blocksize;
3452 length = blocksize - (offset & (blocksize - 1));
3453
3454 return ext4_block_zero_page_range(handle, mapping, from, length);
3455}
3456
a87dd18c
LC
3457int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3458 loff_t lstart, loff_t length)
3459{
3460 struct super_block *sb = inode->i_sb;
3461 struct address_space *mapping = inode->i_mapping;
e1be3a92 3462 unsigned partial_start, partial_end;
a87dd18c
LC
3463 ext4_fsblk_t start, end;
3464 loff_t byte_end = (lstart + length - 1);
3465 int err = 0;
3466
e1be3a92
LC
3467 partial_start = lstart & (sb->s_blocksize - 1);
3468 partial_end = byte_end & (sb->s_blocksize - 1);
3469
a87dd18c
LC
3470 start = lstart >> sb->s_blocksize_bits;
3471 end = byte_end >> sb->s_blocksize_bits;
3472
3473 /* Handle partial zero within the single block */
e1be3a92
LC
3474 if (start == end &&
3475 (partial_start || (partial_end != sb->s_blocksize - 1))) {
a87dd18c
LC
3476 err = ext4_block_zero_page_range(handle, mapping,
3477 lstart, length);
3478 return err;
3479 }
3480 /* Handle partial zero out on the start of the range */
e1be3a92 3481 if (partial_start) {
a87dd18c
LC
3482 err = ext4_block_zero_page_range(handle, mapping,
3483 lstart, sb->s_blocksize);
3484 if (err)
3485 return err;
3486 }
3487 /* Handle partial zero out on the end of the range */
e1be3a92 3488 if (partial_end != sb->s_blocksize - 1)
a87dd18c 3489 err = ext4_block_zero_page_range(handle, mapping,
e1be3a92
LC
3490 byte_end - partial_end,
3491 partial_end + 1);
a87dd18c
LC
3492 return err;
3493}
3494
91ef4caf
DG
3495int ext4_can_truncate(struct inode *inode)
3496{
91ef4caf
DG
3497 if (S_ISREG(inode->i_mode))
3498 return 1;
3499 if (S_ISDIR(inode->i_mode))
3500 return 1;
3501 if (S_ISLNK(inode->i_mode))
3502 return !ext4_inode_is_fast_symlink(inode);
3503 return 0;
3504}
3505
a4bb6b64
AH
3506/*
3507 * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3508 * associated with the given offset and length
3509 *
3510 * @inode: File inode
3511 * @offset: The offset where the hole will begin
3512 * @len: The length of the hole
3513 *
4907cb7b 3514 * Returns: 0 on success or negative on failure
a4bb6b64
AH
3515 */
3516
aeb2817a 3517int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
a4bb6b64 3518{
26a4c0c6
TT
3519 struct super_block *sb = inode->i_sb;
3520 ext4_lblk_t first_block, stop_block;
3521 struct address_space *mapping = inode->i_mapping;
a87dd18c 3522 loff_t first_block_offset, last_block_offset;
26a4c0c6
TT
3523 handle_t *handle;
3524 unsigned int credits;
3525 int ret = 0;
3526
a4bb6b64 3527 if (!S_ISREG(inode->i_mode))
73355192 3528 return -EOPNOTSUPP;
a4bb6b64 3529
b8a86845 3530 trace_ext4_punch_hole(inode, offset, length, 0);
aaddea81 3531
26a4c0c6
TT
3532 /*
3533 * Write out all dirty pages to avoid race conditions
3534 * Then release them.
3535 */
3536 if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3537 ret = filemap_write_and_wait_range(mapping, offset,
3538 offset + length - 1);
3539 if (ret)
3540 return ret;
3541 }
3542
3543 mutex_lock(&inode->i_mutex);
9ef06cec 3544
26a4c0c6
TT
3545 /* No need to punch hole beyond i_size */
3546 if (offset >= inode->i_size)
3547 goto out_mutex;
3548
3549 /*
3550 * If the hole extends beyond i_size, set the hole
3551 * to end after the page that contains i_size
3552 */
3553 if (offset + length > inode->i_size) {
3554 length = inode->i_size +
3555 PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
3556 offset;
3557 }
3558
a361293f
JK
3559 if (offset & (sb->s_blocksize - 1) ||
3560 (offset + length) & (sb->s_blocksize - 1)) {
3561 /*
3562 * Attach jinode to inode for jbd2 if we do any zeroing of
3563 * partial block
3564 */
3565 ret = ext4_inode_attach_jinode(inode);
3566 if (ret < 0)
3567 goto out_mutex;
3568
3569 }
3570
a87dd18c
LC
3571 first_block_offset = round_up(offset, sb->s_blocksize);
3572 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
26a4c0c6 3573
a87dd18c
LC
3574 /* Now release the pages and zero block aligned part of pages*/
3575 if (last_block_offset > first_block_offset)
3576 truncate_pagecache_range(inode, first_block_offset,
3577 last_block_offset);
26a4c0c6
TT
3578
3579 /* Wait all existing dio workers, newcomers will block on i_mutex */
3580 ext4_inode_block_unlocked_dio(inode);
26a4c0c6
TT
3581 inode_dio_wait(inode);
3582
3583 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3584 credits = ext4_writepage_trans_blocks(inode);
3585 else
3586 credits = ext4_blocks_for_truncate(inode);
3587 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3588 if (IS_ERR(handle)) {
3589 ret = PTR_ERR(handle);
3590 ext4_std_error(sb, ret);
3591 goto out_dio;
3592 }
3593
a87dd18c
LC
3594 ret = ext4_zero_partial_blocks(handle, inode, offset,
3595 length);
3596 if (ret)
3597 goto out_stop;
26a4c0c6
TT
3598
3599 first_block = (offset + sb->s_blocksize - 1) >>
3600 EXT4_BLOCK_SIZE_BITS(sb);
3601 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
3602
3603 /* If there are no blocks to remove, return now */
3604 if (first_block >= stop_block)
3605 goto out_stop;
3606
3607 down_write(&EXT4_I(inode)->i_data_sem);
3608 ext4_discard_preallocations(inode);
3609
3610 ret = ext4_es_remove_extent(inode, first_block,
3611 stop_block - first_block);
3612 if (ret) {
3613 up_write(&EXT4_I(inode)->i_data_sem);
3614 goto out_stop;
3615 }
3616
3617 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3618 ret = ext4_ext_remove_space(inode, first_block,
3619 stop_block - 1);
3620 else
3621 ret = ext4_free_hole_blocks(handle, inode, first_block,
3622 stop_block);
3623
819c4920 3624 up_write(&EXT4_I(inode)->i_data_sem);
26a4c0c6
TT
3625 if (IS_SYNC(inode))
3626 ext4_handle_sync(handle);
e251f9bc
MP
3627
3628 /* Now release the pages again to reduce race window */
3629 if (last_block_offset > first_block_offset)
3630 truncate_pagecache_range(inode, first_block_offset,
3631 last_block_offset);
3632
26a4c0c6
TT
3633 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3634 ext4_mark_inode_dirty(handle, inode);
3635out_stop:
3636 ext4_journal_stop(handle);
3637out_dio:
3638 ext4_inode_resume_unlocked_dio(inode);
3639out_mutex:
3640 mutex_unlock(&inode->i_mutex);
3641 return ret;
a4bb6b64
AH
3642}
3643
a361293f
JK
3644int ext4_inode_attach_jinode(struct inode *inode)
3645{
3646 struct ext4_inode_info *ei = EXT4_I(inode);
3647 struct jbd2_inode *jinode;
3648
3649 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
3650 return 0;
3651
3652 jinode = jbd2_alloc_inode(GFP_KERNEL);
3653 spin_lock(&inode->i_lock);
3654 if (!ei->jinode) {
3655 if (!jinode) {
3656 spin_unlock(&inode->i_lock);
3657 return -ENOMEM;
3658 }
3659 ei->jinode = jinode;
3660 jbd2_journal_init_jbd_inode(ei->jinode, inode);
3661 jinode = NULL;
3662 }
3663 spin_unlock(&inode->i_lock);
3664 if (unlikely(jinode != NULL))
3665 jbd2_free_inode(jinode);
3666 return 0;
3667}
3668
ac27a0ec 3669/*
617ba13b 3670 * ext4_truncate()
ac27a0ec 3671 *
617ba13b
MC
3672 * We block out ext4_get_block() block instantiations across the entire
3673 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
ac27a0ec
DK
3674 * simultaneously on behalf of the same inode.
3675 *
42b2aa86 3676 * As we work through the truncate and commit bits of it to the journal there
ac27a0ec
DK
3677 * is one core, guiding principle: the file's tree must always be consistent on
3678 * disk. We must be able to restart the truncate after a crash.
3679 *
3680 * The file's tree may be transiently inconsistent in memory (although it
3681 * probably isn't), but whenever we close off and commit a journal transaction,
3682 * the contents of (the filesystem + the journal) must be consistent and
3683 * restartable. It's pretty simple, really: bottom up, right to left (although
3684 * left-to-right works OK too).
3685 *
3686 * Note that at recovery time, journal replay occurs *before* the restart of
3687 * truncate against the orphan inode list.
3688 *
3689 * The committed inode has the new, desired i_size (which is the same as
617ba13b 3690 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
ac27a0ec 3691 * that this inode's truncate did not complete and it will again call
617ba13b
MC
3692 * ext4_truncate() to have another go. So there will be instantiated blocks
3693 * to the right of the truncation point in a crashed ext4 filesystem. But
ac27a0ec 3694 * that's fine - as long as they are linked from the inode, the post-crash
617ba13b 3695 * ext4_truncate() run will find them and release them.
ac27a0ec 3696 */
617ba13b 3697void ext4_truncate(struct inode *inode)
ac27a0ec 3698{
819c4920
TT
3699 struct ext4_inode_info *ei = EXT4_I(inode);
3700 unsigned int credits;
3701 handle_t *handle;
3702 struct address_space *mapping = inode->i_mapping;
819c4920 3703
19b5ef61
TT
3704 /*
3705 * There is a possibility that we're either freeing the inode
e04027e8 3706 * or it's a completely new inode. In those cases we might not
19b5ef61
TT
3707 * have i_mutex locked because it's not necessary.
3708 */
3709 if (!(inode->i_state & (I_NEW|I_FREEING)))
3710 WARN_ON(!mutex_is_locked(&inode->i_mutex));
0562e0ba
JZ
3711 trace_ext4_truncate_enter(inode);
3712
91ef4caf 3713 if (!ext4_can_truncate(inode))
ac27a0ec
DK
3714 return;
3715
12e9b892 3716 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
c8d46e41 3717
5534fb5b 3718 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
19f5fb7a 3719 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
7d8f9f7d 3720
aef1c851
TM
3721 if (ext4_has_inline_data(inode)) {
3722 int has_inline = 1;
3723
3724 ext4_inline_data_truncate(inode, &has_inline);
3725 if (has_inline)
3726 return;
3727 }
3728
a361293f
JK
3729 /* If we zero-out tail of the page, we have to create jinode for jbd2 */
3730 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
3731 if (ext4_inode_attach_jinode(inode) < 0)
3732 return;
3733 }
3734
819c4920
TT
3735 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3736 credits = ext4_writepage_trans_blocks(inode);
3737 else
3738 credits = ext4_blocks_for_truncate(inode);
3739
3740 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3741 if (IS_ERR(handle)) {
3742 ext4_std_error(inode->i_sb, PTR_ERR(handle));
3743 return;
3744 }
3745
eb3544c6
LC
3746 if (inode->i_size & (inode->i_sb->s_blocksize - 1))
3747 ext4_block_truncate_page(handle, mapping, inode->i_size);
819c4920
TT
3748
3749 /*
3750 * We add the inode to the orphan list, so that if this
3751 * truncate spans multiple transactions, and we crash, we will
3752 * resume the truncate when the filesystem recovers. It also
3753 * marks the inode dirty, to catch the new size.
3754 *
3755 * Implication: the file must always be in a sane, consistent
3756 * truncatable state while each transaction commits.
3757 */
3758 if (ext4_orphan_add(handle, inode))
3759 goto out_stop;
3760
3761 down_write(&EXT4_I(inode)->i_data_sem);
3762
3763 ext4_discard_preallocations(inode);
3764
ff9893dc 3765 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
819c4920 3766 ext4_ext_truncate(handle, inode);
ff9893dc 3767 else
819c4920
TT
3768 ext4_ind_truncate(handle, inode);
3769
3770 up_write(&ei->i_data_sem);
3771
3772 if (IS_SYNC(inode))
3773 ext4_handle_sync(handle);
3774
3775out_stop:
3776 /*
3777 * If this was a simple ftruncate() and the file will remain alive,
3778 * then we need to clear up the orphan record which we created above.
3779 * However, if this was a real unlink then we were called by
3780 * ext4_delete_inode(), and we allow that function to clean up the
3781 * orphan info for us.
3782 */
3783 if (inode->i_nlink)
3784 ext4_orphan_del(handle, inode);
3785
3786 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3787 ext4_mark_inode_dirty(handle, inode);
3788 ext4_journal_stop(handle);
ac27a0ec 3789
0562e0ba 3790 trace_ext4_truncate_exit(inode);
ac27a0ec
DK
3791}
3792
ac27a0ec 3793/*
617ba13b 3794 * ext4_get_inode_loc returns with an extra refcount against the inode's
ac27a0ec
DK
3795 * underlying buffer_head on success. If 'in_mem' is true, we have all
3796 * data in memory that is needed to recreate the on-disk version of this
3797 * inode.
3798 */
617ba13b
MC
3799static int __ext4_get_inode_loc(struct inode *inode,
3800 struct ext4_iloc *iloc, int in_mem)
ac27a0ec 3801{
240799cd
TT
3802 struct ext4_group_desc *gdp;
3803 struct buffer_head *bh;
3804 struct super_block *sb = inode->i_sb;
3805 ext4_fsblk_t block;
3806 int inodes_per_block, inode_offset;
3807
3a06d778 3808 iloc->bh = NULL;
240799cd
TT
3809 if (!ext4_valid_inum(sb, inode->i_ino))
3810 return -EIO;
ac27a0ec 3811
240799cd
TT
3812 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3813 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3814 if (!gdp)
ac27a0ec
DK
3815 return -EIO;
3816
240799cd
TT
3817 /*
3818 * Figure out the offset within the block group inode table
3819 */
00d09882 3820 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
240799cd
TT
3821 inode_offset = ((inode->i_ino - 1) %
3822 EXT4_INODES_PER_GROUP(sb));
3823 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3824 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3825
3826 bh = sb_getblk(sb, block);
aebf0243 3827 if (unlikely(!bh))
860d21e2 3828 return -ENOMEM;
ac27a0ec
DK
3829 if (!buffer_uptodate(bh)) {
3830 lock_buffer(bh);
9c83a923
HK
3831
3832 /*
3833 * If the buffer has the write error flag, we have failed
3834 * to write out another inode in the same block. In this
3835 * case, we don't have to read the block because we may
3836 * read the old inode data successfully.
3837 */
3838 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3839 set_buffer_uptodate(bh);
3840
ac27a0ec
DK
3841 if (buffer_uptodate(bh)) {
3842 /* someone brought it uptodate while we waited */
3843 unlock_buffer(bh);
3844 goto has_buffer;
3845 }
3846
3847 /*
3848 * If we have all information of the inode in memory and this
3849 * is the only valid inode in the block, we need not read the
3850 * block.
3851 */
3852 if (in_mem) {
3853 struct buffer_head *bitmap_bh;
240799cd 3854 int i, start;
ac27a0ec 3855
240799cd 3856 start = inode_offset & ~(inodes_per_block - 1);
ac27a0ec 3857
240799cd
TT
3858 /* Is the inode bitmap in cache? */
3859 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
aebf0243 3860 if (unlikely(!bitmap_bh))
ac27a0ec
DK
3861 goto make_io;
3862
3863 /*
3864 * If the inode bitmap isn't in cache then the
3865 * optimisation may end up performing two reads instead
3866 * of one, so skip it.
3867 */
3868 if (!buffer_uptodate(bitmap_bh)) {
3869 brelse(bitmap_bh);
3870 goto make_io;
3871 }
240799cd 3872 for (i = start; i < start + inodes_per_block; i++) {
ac27a0ec
DK
3873 if (i == inode_offset)
3874 continue;
617ba13b 3875 if (ext4_test_bit(i, bitmap_bh->b_data))
ac27a0ec
DK
3876 break;
3877 }
3878 brelse(bitmap_bh);
240799cd 3879 if (i == start + inodes_per_block) {
ac27a0ec
DK
3880 /* all other inodes are free, so skip I/O */
3881 memset(bh->b_data, 0, bh->b_size);
3882 set_buffer_uptodate(bh);
3883 unlock_buffer(bh);
3884 goto has_buffer;
3885 }
3886 }
3887
3888make_io:
240799cd
TT
3889 /*
3890 * If we need to do any I/O, try to pre-readahead extra
3891 * blocks from the inode table.
3892 */
3893 if (EXT4_SB(sb)->s_inode_readahead_blks) {
3894 ext4_fsblk_t b, end, table;
3895 unsigned num;
0d606e2c 3896 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
240799cd
TT
3897
3898 table = ext4_inode_table(sb, gdp);
b713a5ec 3899 /* s_inode_readahead_blks is always a power of 2 */
0d606e2c 3900 b = block & ~((ext4_fsblk_t) ra_blks - 1);
240799cd
TT
3901 if (table > b)
3902 b = table;
0d606e2c 3903 end = b + ra_blks;
240799cd 3904 num = EXT4_INODES_PER_GROUP(sb);
feb0ab32 3905 if (ext4_has_group_desc_csum(sb))
560671a0 3906 num -= ext4_itable_unused_count(sb, gdp);
240799cd
TT
3907 table += num / inodes_per_block;
3908 if (end > table)
3909 end = table;
3910 while (b <= end)
3911 sb_breadahead(sb, b++);
3912 }
3913
ac27a0ec
DK
3914 /*
3915 * There are other valid inodes in the buffer, this inode
3916 * has in-inode xattrs, or we don't have this inode in memory.
3917 * Read the block from disk.
3918 */
0562e0ba 3919 trace_ext4_load_inode(inode);
ac27a0ec
DK
3920 get_bh(bh);
3921 bh->b_end_io = end_buffer_read_sync;
65299a3b 3922 submit_bh(READ | REQ_META | REQ_PRIO, bh);
ac27a0ec
DK
3923 wait_on_buffer(bh);
3924 if (!buffer_uptodate(bh)) {
c398eda0
TT
3925 EXT4_ERROR_INODE_BLOCK(inode, block,
3926 "unable to read itable block");
ac27a0ec
DK
3927 brelse(bh);
3928 return -EIO;
3929 }
3930 }
3931has_buffer:
3932 iloc->bh = bh;
3933 return 0;
3934}
3935
617ba13b 3936int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
3937{
3938 /* We have all inode data except xattrs in memory here. */
617ba13b 3939 return __ext4_get_inode_loc(inode, iloc,
19f5fb7a 3940 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
ac27a0ec
DK
3941}
3942
617ba13b 3943void ext4_set_inode_flags(struct inode *inode)
ac27a0ec 3944{
617ba13b 3945 unsigned int flags = EXT4_I(inode)->i_flags;
00a1a053 3946 unsigned int new_fl = 0;
ac27a0ec 3947
617ba13b 3948 if (flags & EXT4_SYNC_FL)
00a1a053 3949 new_fl |= S_SYNC;
617ba13b 3950 if (flags & EXT4_APPEND_FL)
00a1a053 3951 new_fl |= S_APPEND;
617ba13b 3952 if (flags & EXT4_IMMUTABLE_FL)
00a1a053 3953 new_fl |= S_IMMUTABLE;
617ba13b 3954 if (flags & EXT4_NOATIME_FL)
00a1a053 3955 new_fl |= S_NOATIME;
617ba13b 3956 if (flags & EXT4_DIRSYNC_FL)
00a1a053 3957 new_fl |= S_DIRSYNC;
5f16f322
TT
3958 inode_set_flags(inode, new_fl,
3959 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
ac27a0ec
DK
3960}
3961
ff9ddf7e
JK
3962/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3963void ext4_get_inode_flags(struct ext4_inode_info *ei)
3964{
84a8dce2
DM
3965 unsigned int vfs_fl;
3966 unsigned long old_fl, new_fl;
3967
3968 do {
3969 vfs_fl = ei->vfs_inode.i_flags;
3970 old_fl = ei->i_flags;
3971 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3972 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
3973 EXT4_DIRSYNC_FL);
3974 if (vfs_fl & S_SYNC)
3975 new_fl |= EXT4_SYNC_FL;
3976 if (vfs_fl & S_APPEND)
3977 new_fl |= EXT4_APPEND_FL;
3978 if (vfs_fl & S_IMMUTABLE)
3979 new_fl |= EXT4_IMMUTABLE_FL;
3980 if (vfs_fl & S_NOATIME)
3981 new_fl |= EXT4_NOATIME_FL;
3982 if (vfs_fl & S_DIRSYNC)
3983 new_fl |= EXT4_DIRSYNC_FL;
3984 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
ff9ddf7e 3985}
de9a55b8 3986
0fc1b451 3987static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
de9a55b8 3988 struct ext4_inode_info *ei)
0fc1b451
AK
3989{
3990 blkcnt_t i_blocks ;
8180a562
AK
3991 struct inode *inode = &(ei->vfs_inode);
3992 struct super_block *sb = inode->i_sb;
0fc1b451
AK
3993
3994 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3995 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3996 /* we are using combined 48 bit field */
3997 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3998 le32_to_cpu(raw_inode->i_blocks_lo);
07a03824 3999 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
8180a562
AK
4000 /* i_blocks represent file system block size */
4001 return i_blocks << (inode->i_blkbits - 9);
4002 } else {
4003 return i_blocks;
4004 }
0fc1b451
AK
4005 } else {
4006 return le32_to_cpu(raw_inode->i_blocks_lo);
4007 }
4008}
ff9ddf7e 4009
152a7b0a
TM
4010static inline void ext4_iget_extra_inode(struct inode *inode,
4011 struct ext4_inode *raw_inode,
4012 struct ext4_inode_info *ei)
4013{
4014 __le32 *magic = (void *)raw_inode +
4015 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
67cf5b09 4016 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
152a7b0a 4017 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
67cf5b09 4018 ext4_find_inline_data_nolock(inode);
f19d5870
TM
4019 } else
4020 EXT4_I(inode)->i_inline_off = 0;
152a7b0a
TM
4021}
4022
1d1fe1ee 4023struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
ac27a0ec 4024{
617ba13b
MC
4025 struct ext4_iloc iloc;
4026 struct ext4_inode *raw_inode;
1d1fe1ee 4027 struct ext4_inode_info *ei;
1d1fe1ee 4028 struct inode *inode;
b436b9be 4029 journal_t *journal = EXT4_SB(sb)->s_journal;
1d1fe1ee 4030 long ret;
ac27a0ec 4031 int block;
08cefc7a
EB
4032 uid_t i_uid;
4033 gid_t i_gid;
ac27a0ec 4034
1d1fe1ee
DH
4035 inode = iget_locked(sb, ino);
4036 if (!inode)
4037 return ERR_PTR(-ENOMEM);
4038 if (!(inode->i_state & I_NEW))
4039 return inode;
4040
4041 ei = EXT4_I(inode);
7dc57615 4042 iloc.bh = NULL;
ac27a0ec 4043
1d1fe1ee
DH
4044 ret = __ext4_get_inode_loc(inode, &iloc, 0);
4045 if (ret < 0)
ac27a0ec 4046 goto bad_inode;
617ba13b 4047 raw_inode = ext4_raw_inode(&iloc);
814525f4
DW
4048
4049 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4050 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4051 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4052 EXT4_INODE_SIZE(inode->i_sb)) {
4053 EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
4054 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
4055 EXT4_INODE_SIZE(inode->i_sb));
4056 ret = -EIO;
4057 goto bad_inode;
4058 }
4059 } else
4060 ei->i_extra_isize = 0;
4061
4062 /* Precompute checksum seed for inode metadata */
4063 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4064 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
4065 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4066 __u32 csum;
4067 __le32 inum = cpu_to_le32(inode->i_ino);
4068 __le32 gen = raw_inode->i_generation;
4069 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4070 sizeof(inum));
4071 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4072 sizeof(gen));
4073 }
4074
4075 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4076 EXT4_ERROR_INODE(inode, "checksum invalid");
4077 ret = -EIO;
4078 goto bad_inode;
4079 }
4080
ac27a0ec 4081 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
08cefc7a
EB
4082 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4083 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
af5bc92d 4084 if (!(test_opt(inode->i_sb, NO_UID32))) {
08cefc7a
EB
4085 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4086 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
ac27a0ec 4087 }
08cefc7a
EB
4088 i_uid_write(inode, i_uid);
4089 i_gid_write(inode, i_gid);
bfe86848 4090 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
ac27a0ec 4091
353eb83c 4092 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
67cf5b09 4093 ei->i_inline_off = 0;
ac27a0ec
DK
4094 ei->i_dir_start_lookup = 0;
4095 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4096 /* We now have enough fields to check if the inode was active or not.
4097 * This is needed because nfsd might try to access dead inodes
4098 * the test is that same one that e2fsck uses
4099 * NeilBrown 1999oct15
4100 */
4101 if (inode->i_nlink == 0) {
393d1d1d
DTB
4102 if ((inode->i_mode == 0 ||
4103 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4104 ino != EXT4_BOOT_LOADER_INO) {
ac27a0ec 4105 /* this inode is deleted */
1d1fe1ee 4106 ret = -ESTALE;
ac27a0ec
DK
4107 goto bad_inode;
4108 }
4109 /* The only unlinked inodes we let through here have
4110 * valid i_mode and are being read by the orphan
4111 * recovery code: that's fine, we're about to complete
393d1d1d
DTB
4112 * the process of deleting those.
4113 * OR it is the EXT4_BOOT_LOADER_INO which is
4114 * not initialized on a new filesystem. */
ac27a0ec 4115 }
ac27a0ec 4116 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
0fc1b451 4117 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
7973c0c1 4118 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
a9e81742 4119 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
a1ddeb7e
BP
4120 ei->i_file_acl |=
4121 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
a48380f7 4122 inode->i_size = ext4_isize(raw_inode);
ac27a0ec 4123 ei->i_disksize = inode->i_size;
a9e7f447
DM
4124#ifdef CONFIG_QUOTA
4125 ei->i_reserved_quota = 0;
4126#endif
ac27a0ec
DK
4127 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4128 ei->i_block_group = iloc.block_group;
a4912123 4129 ei->i_last_alloc_group = ~0;
ac27a0ec
DK
4130 /*
4131 * NOTE! The in-memory inode i_data array is in little-endian order
4132 * even on big-endian machines: we do NOT byteswap the block numbers!
4133 */
617ba13b 4134 for (block = 0; block < EXT4_N_BLOCKS; block++)
ac27a0ec
DK
4135 ei->i_data[block] = raw_inode->i_block[block];
4136 INIT_LIST_HEAD(&ei->i_orphan);
4137
b436b9be
JK
4138 /*
4139 * Set transaction id's of transactions that have to be committed
4140 * to finish f[data]sync. We set them to currently running transaction
4141 * as we cannot be sure that the inode or some of its metadata isn't
4142 * part of the transaction - the inode could have been reclaimed and
4143 * now it is reread from disk.
4144 */
4145 if (journal) {
4146 transaction_t *transaction;
4147 tid_t tid;
4148
a931da6a 4149 read_lock(&journal->j_state_lock);
b436b9be
JK
4150 if (journal->j_running_transaction)
4151 transaction = journal->j_running_transaction;
4152 else
4153 transaction = journal->j_committing_transaction;
4154 if (transaction)
4155 tid = transaction->t_tid;
4156 else
4157 tid = journal->j_commit_sequence;
a931da6a 4158 read_unlock(&journal->j_state_lock);
b436b9be
JK
4159 ei->i_sync_tid = tid;
4160 ei->i_datasync_tid = tid;
4161 }
4162
0040d987 4163 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
ac27a0ec
DK
4164 if (ei->i_extra_isize == 0) {
4165 /* The extra space is currently unused. Use it. */
617ba13b
MC
4166 ei->i_extra_isize = sizeof(struct ext4_inode) -
4167 EXT4_GOOD_OLD_INODE_SIZE;
ac27a0ec 4168 } else {
152a7b0a 4169 ext4_iget_extra_inode(inode, raw_inode, ei);
ac27a0ec 4170 }
814525f4 4171 }
ac27a0ec 4172
ef7f3835
KS
4173 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4174 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4175 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4176 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4177
ed3654eb 4178 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
c4f65706
TT
4179 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4180 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4181 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4182 inode->i_version |=
4183 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4184 }
25ec56b5
JNC
4185 }
4186
c4b5a614 4187 ret = 0;
485c26ec 4188 if (ei->i_file_acl &&
1032988c 4189 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
24676da4
TT
4190 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4191 ei->i_file_acl);
485c26ec
TT
4192 ret = -EIO;
4193 goto bad_inode;
f19d5870
TM
4194 } else if (!ext4_has_inline_data(inode)) {
4195 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4196 if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4197 (S_ISLNK(inode->i_mode) &&
4198 !ext4_inode_is_fast_symlink(inode))))
4199 /* Validate extent which is part of inode */
4200 ret = ext4_ext_check_inode(inode);
4201 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4202 (S_ISLNK(inode->i_mode) &&
4203 !ext4_inode_is_fast_symlink(inode))) {
4204 /* Validate block references which are part of inode */
4205 ret = ext4_ind_check_inode(inode);
4206 }
fe2c8191 4207 }
567f3e9a 4208 if (ret)
de9a55b8 4209 goto bad_inode;
7a262f7c 4210
ac27a0ec 4211 if (S_ISREG(inode->i_mode)) {
617ba13b
MC
4212 inode->i_op = &ext4_file_inode_operations;
4213 inode->i_fop = &ext4_file_operations;
4214 ext4_set_aops(inode);
ac27a0ec 4215 } else if (S_ISDIR(inode->i_mode)) {
617ba13b
MC
4216 inode->i_op = &ext4_dir_inode_operations;
4217 inode->i_fop = &ext4_dir_operations;
ac27a0ec 4218 } else if (S_ISLNK(inode->i_mode)) {
e83c1397 4219 if (ext4_inode_is_fast_symlink(inode)) {
617ba13b 4220 inode->i_op = &ext4_fast_symlink_inode_operations;
e83c1397
DG
4221 nd_terminate_link(ei->i_data, inode->i_size,
4222 sizeof(ei->i_data) - 1);
4223 } else {
617ba13b
MC
4224 inode->i_op = &ext4_symlink_inode_operations;
4225 ext4_set_aops(inode);
ac27a0ec 4226 }
563bdd61
TT
4227 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4228 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
617ba13b 4229 inode->i_op = &ext4_special_inode_operations;
ac27a0ec
DK
4230 if (raw_inode->i_block[0])
4231 init_special_inode(inode, inode->i_mode,
4232 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4233 else
4234 init_special_inode(inode, inode->i_mode,
4235 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
393d1d1d
DTB
4236 } else if (ino == EXT4_BOOT_LOADER_INO) {
4237 make_bad_inode(inode);
563bdd61 4238 } else {
563bdd61 4239 ret = -EIO;
24676da4 4240 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
563bdd61 4241 goto bad_inode;
ac27a0ec 4242 }
af5bc92d 4243 brelse(iloc.bh);
617ba13b 4244 ext4_set_inode_flags(inode);
1d1fe1ee
DH
4245 unlock_new_inode(inode);
4246 return inode;
ac27a0ec
DK
4247
4248bad_inode:
567f3e9a 4249 brelse(iloc.bh);
1d1fe1ee
DH
4250 iget_failed(inode);
4251 return ERR_PTR(ret);
ac27a0ec
DK
4252}
4253
0fc1b451
AK
4254static int ext4_inode_blocks_set(handle_t *handle,
4255 struct ext4_inode *raw_inode,
4256 struct ext4_inode_info *ei)
4257{
4258 struct inode *inode = &(ei->vfs_inode);
4259 u64 i_blocks = inode->i_blocks;
4260 struct super_block *sb = inode->i_sb;
0fc1b451
AK
4261
4262 if (i_blocks <= ~0U) {
4263 /*
4907cb7b 4264 * i_blocks can be represented in a 32 bit variable
0fc1b451
AK
4265 * as multiple of 512 bytes
4266 */
8180a562 4267 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 4268 raw_inode->i_blocks_high = 0;
84a8dce2 4269 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
f287a1a5
TT
4270 return 0;
4271 }
4272 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4273 return -EFBIG;
4274
4275 if (i_blocks <= 0xffffffffffffULL) {
0fc1b451
AK
4276 /*
4277 * i_blocks can be represented in a 48 bit variable
4278 * as multiple of 512 bytes
4279 */
8180a562 4280 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 4281 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
84a8dce2 4282 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
0fc1b451 4283 } else {
84a8dce2 4284 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
8180a562
AK
4285 /* i_block is stored in file system block size */
4286 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4287 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4288 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
0fc1b451 4289 }
f287a1a5 4290 return 0;
0fc1b451
AK
4291}
4292
ac27a0ec
DK
4293/*
4294 * Post the struct inode info into an on-disk inode location in the
4295 * buffer-cache. This gobbles the caller's reference to the
4296 * buffer_head in the inode location struct.
4297 *
4298 * The caller must have write access to iloc->bh.
4299 */
617ba13b 4300static int ext4_do_update_inode(handle_t *handle,
ac27a0ec 4301 struct inode *inode,
830156c7 4302 struct ext4_iloc *iloc)
ac27a0ec 4303{
617ba13b
MC
4304 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4305 struct ext4_inode_info *ei = EXT4_I(inode);
ac27a0ec
DK
4306 struct buffer_head *bh = iloc->bh;
4307 int err = 0, rc, block;
b71fc079 4308 int need_datasync = 0;
08cefc7a
EB
4309 uid_t i_uid;
4310 gid_t i_gid;
ac27a0ec
DK
4311
4312 /* For fields not not tracking in the in-memory inode,
4313 * initialise them to zero for new inodes. */
19f5fb7a 4314 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
617ba13b 4315 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
ac27a0ec 4316
ff9ddf7e 4317 ext4_get_inode_flags(ei);
ac27a0ec 4318 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
08cefc7a
EB
4319 i_uid = i_uid_read(inode);
4320 i_gid = i_gid_read(inode);
af5bc92d 4321 if (!(test_opt(inode->i_sb, NO_UID32))) {
08cefc7a
EB
4322 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4323 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
ac27a0ec
DK
4324/*
4325 * Fix up interoperability with old kernels. Otherwise, old inodes get
4326 * re-used with the upper 16 bits of the uid/gid intact
4327 */
af5bc92d 4328 if (!ei->i_dtime) {
ac27a0ec 4329 raw_inode->i_uid_high =
08cefc7a 4330 cpu_to_le16(high_16_bits(i_uid));
ac27a0ec 4331 raw_inode->i_gid_high =
08cefc7a 4332 cpu_to_le16(high_16_bits(i_gid));
ac27a0ec
DK
4333 } else {
4334 raw_inode->i_uid_high = 0;
4335 raw_inode->i_gid_high = 0;
4336 }
4337 } else {
08cefc7a
EB
4338 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4339 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
ac27a0ec
DK
4340 raw_inode->i_uid_high = 0;
4341 raw_inode->i_gid_high = 0;
4342 }
4343 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
ef7f3835
KS
4344
4345 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4346 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4347 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4348 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4349
0fc1b451
AK
4350 if (ext4_inode_blocks_set(handle, raw_inode, ei))
4351 goto out_brelse;
ac27a0ec 4352 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
353eb83c 4353 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
ed3654eb 4354 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
a1ddeb7e
BP
4355 raw_inode->i_file_acl_high =
4356 cpu_to_le16(ei->i_file_acl >> 32);
7973c0c1 4357 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
b71fc079
JK
4358 if (ei->i_disksize != ext4_isize(raw_inode)) {
4359 ext4_isize_set(raw_inode, ei->i_disksize);
4360 need_datasync = 1;
4361 }
a48380f7
AK
4362 if (ei->i_disksize > 0x7fffffffULL) {
4363 struct super_block *sb = inode->i_sb;
4364 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4365 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4366 EXT4_SB(sb)->s_es->s_rev_level ==
4367 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4368 /* If this is the first large file
4369 * created, add a flag to the superblock.
4370 */
4371 err = ext4_journal_get_write_access(handle,
4372 EXT4_SB(sb)->s_sbh);
4373 if (err)
4374 goto out_brelse;
4375 ext4_update_dynamic_rev(sb);
4376 EXT4_SET_RO_COMPAT_FEATURE(sb,
617ba13b 4377 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
0390131b 4378 ext4_handle_sync(handle);
b50924c2 4379 err = ext4_handle_dirty_super(handle, sb);
ac27a0ec
DK
4380 }
4381 }
4382 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4383 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4384 if (old_valid_dev(inode->i_rdev)) {
4385 raw_inode->i_block[0] =
4386 cpu_to_le32(old_encode_dev(inode->i_rdev));
4387 raw_inode->i_block[1] = 0;
4388 } else {
4389 raw_inode->i_block[0] = 0;
4390 raw_inode->i_block[1] =
4391 cpu_to_le32(new_encode_dev(inode->i_rdev));
4392 raw_inode->i_block[2] = 0;
4393 }
f19d5870 4394 } else if (!ext4_has_inline_data(inode)) {
de9a55b8
TT
4395 for (block = 0; block < EXT4_N_BLOCKS; block++)
4396 raw_inode->i_block[block] = ei->i_data[block];
f19d5870 4397 }
ac27a0ec 4398
ed3654eb 4399 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
c4f65706
TT
4400 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4401 if (ei->i_extra_isize) {
4402 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4403 raw_inode->i_version_hi =
4404 cpu_to_le32(inode->i_version >> 32);
4405 raw_inode->i_extra_isize =
4406 cpu_to_le16(ei->i_extra_isize);
4407 }
25ec56b5
JNC
4408 }
4409
814525f4
DW
4410 ext4_inode_csum_set(inode, raw_inode, ei);
4411
830156c7 4412 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
73b50c1c 4413 rc = ext4_handle_dirty_metadata(handle, NULL, bh);
830156c7
FM
4414 if (!err)
4415 err = rc;
19f5fb7a 4416 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
ac27a0ec 4417
b71fc079 4418 ext4_update_inode_fsync_trans(handle, inode, need_datasync);
ac27a0ec 4419out_brelse:
af5bc92d 4420 brelse(bh);
617ba13b 4421 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4422 return err;
4423}
4424
4425/*
617ba13b 4426 * ext4_write_inode()
ac27a0ec
DK
4427 *
4428 * We are called from a few places:
4429 *
87f7e416 4430 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
ac27a0ec 4431 * Here, there will be no transaction running. We wait for any running
4907cb7b 4432 * transaction to commit.
ac27a0ec 4433 *
87f7e416
TT
4434 * - Within flush work (sys_sync(), kupdate and such).
4435 * We wait on commit, if told to.
ac27a0ec 4436 *
87f7e416
TT
4437 * - Within iput_final() -> write_inode_now()
4438 * We wait on commit, if told to.
ac27a0ec
DK
4439 *
4440 * In all cases it is actually safe for us to return without doing anything,
4441 * because the inode has been copied into a raw inode buffer in
87f7e416
TT
4442 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL
4443 * writeback.
ac27a0ec
DK
4444 *
4445 * Note that we are absolutely dependent upon all inode dirtiers doing the
4446 * right thing: they *must* call mark_inode_dirty() after dirtying info in
4447 * which we are interested.
4448 *
4449 * It would be a bug for them to not do this. The code:
4450 *
4451 * mark_inode_dirty(inode)
4452 * stuff();
4453 * inode->i_size = expr;
4454 *
87f7e416
TT
4455 * is in error because write_inode() could occur while `stuff()' is running,
4456 * and the new i_size will be lost. Plus the inode will no longer be on the
4457 * superblock's dirty inode list.
ac27a0ec 4458 */
a9185b41 4459int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
ac27a0ec 4460{
91ac6f43
FM
4461 int err;
4462
87f7e416 4463 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
ac27a0ec
DK
4464 return 0;
4465
91ac6f43
FM
4466 if (EXT4_SB(inode->i_sb)->s_journal) {
4467 if (ext4_journal_current_handle()) {
4468 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4469 dump_stack();
4470 return -EIO;
4471 }
ac27a0ec 4472
10542c22
JK
4473 /*
4474 * No need to force transaction in WB_SYNC_NONE mode. Also
4475 * ext4_sync_fs() will force the commit after everything is
4476 * written.
4477 */
4478 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
91ac6f43
FM
4479 return 0;
4480
4481 err = ext4_force_commit(inode->i_sb);
4482 } else {
4483 struct ext4_iloc iloc;
ac27a0ec 4484
8b472d73 4485 err = __ext4_get_inode_loc(inode, &iloc, 0);
91ac6f43
FM
4486 if (err)
4487 return err;
10542c22
JK
4488 /*
4489 * sync(2) will flush the whole buffer cache. No need to do
4490 * it here separately for each inode.
4491 */
4492 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
830156c7
FM
4493 sync_dirty_buffer(iloc.bh);
4494 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
c398eda0
TT
4495 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4496 "IO error syncing inode");
830156c7
FM
4497 err = -EIO;
4498 }
fd2dd9fb 4499 brelse(iloc.bh);
91ac6f43
FM
4500 }
4501 return err;
ac27a0ec
DK
4502}
4503
53e87268
JK
4504/*
4505 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4506 * buffers that are attached to a page stradding i_size and are undergoing
4507 * commit. In that case we have to wait for commit to finish and try again.
4508 */
4509static void ext4_wait_for_tail_page_commit(struct inode *inode)
4510{
4511 struct page *page;
4512 unsigned offset;
4513 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4514 tid_t commit_tid = 0;
4515 int ret;
4516
4517 offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
4518 /*
4519 * All buffers in the last page remain valid? Then there's nothing to
4520 * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
4521 * blocksize case
4522 */
4523 if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
4524 return;
4525 while (1) {
4526 page = find_lock_page(inode->i_mapping,
4527 inode->i_size >> PAGE_CACHE_SHIFT);
4528 if (!page)
4529 return;
ca99fdd2
LC
4530 ret = __ext4_journalled_invalidatepage(page, offset,
4531 PAGE_CACHE_SIZE - offset);
53e87268
JK
4532 unlock_page(page);
4533 page_cache_release(page);
4534 if (ret != -EBUSY)
4535 return;
4536 commit_tid = 0;
4537 read_lock(&journal->j_state_lock);
4538 if (journal->j_committing_transaction)
4539 commit_tid = journal->j_committing_transaction->t_tid;
4540 read_unlock(&journal->j_state_lock);
4541 if (commit_tid)
4542 jbd2_log_wait_commit(journal, commit_tid);
4543 }
4544}
4545
ac27a0ec 4546/*
617ba13b 4547 * ext4_setattr()
ac27a0ec
DK
4548 *
4549 * Called from notify_change.
4550 *
4551 * We want to trap VFS attempts to truncate the file as soon as
4552 * possible. In particular, we want to make sure that when the VFS
4553 * shrinks i_size, we put the inode on the orphan list and modify
4554 * i_disksize immediately, so that during the subsequent flushing of
4555 * dirty pages and freeing of disk blocks, we can guarantee that any
4556 * commit will leave the blocks being flushed in an unused state on
4557 * disk. (On recovery, the inode will get truncated and the blocks will
4558 * be freed, so we have a strong guarantee that no future commit will
4559 * leave these blocks visible to the user.)
4560 *
678aaf48
JK
4561 * Another thing we have to assure is that if we are in ordered mode
4562 * and inode is still attached to the committing transaction, we must
4563 * we start writeout of all the dirty pages which are being truncated.
4564 * This way we are sure that all the data written in the previous
4565 * transaction are already on disk (truncate waits for pages under
4566 * writeback).
4567 *
4568 * Called with inode->i_mutex down.
ac27a0ec 4569 */
617ba13b 4570int ext4_setattr(struct dentry *dentry, struct iattr *attr)
ac27a0ec
DK
4571{
4572 struct inode *inode = dentry->d_inode;
4573 int error, rc = 0;
3d287de3 4574 int orphan = 0;
ac27a0ec
DK
4575 const unsigned int ia_valid = attr->ia_valid;
4576
4577 error = inode_change_ok(inode, attr);
4578 if (error)
4579 return error;
4580
12755627 4581 if (is_quota_modification(inode, attr))
871a2931 4582 dquot_initialize(inode);
08cefc7a
EB
4583 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4584 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
ac27a0ec
DK
4585 handle_t *handle;
4586
4587 /* (user+group)*(old+new) structure, inode write (sb,
4588 * inode block, ? - but truncate inode update has it) */
9924a92a
TT
4589 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4590 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
4591 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
ac27a0ec
DK
4592 if (IS_ERR(handle)) {
4593 error = PTR_ERR(handle);
4594 goto err_out;
4595 }
b43fa828 4596 error = dquot_transfer(inode, attr);
ac27a0ec 4597 if (error) {
617ba13b 4598 ext4_journal_stop(handle);
ac27a0ec
DK
4599 return error;
4600 }
4601 /* Update corresponding info in inode so that everything is in
4602 * one transaction */
4603 if (attr->ia_valid & ATTR_UID)
4604 inode->i_uid = attr->ia_uid;
4605 if (attr->ia_valid & ATTR_GID)
4606 inode->i_gid = attr->ia_gid;
617ba13b
MC
4607 error = ext4_mark_inode_dirty(handle, inode);
4608 ext4_journal_stop(handle);
ac27a0ec
DK
4609 }
4610
5208386c
JK
4611 if (attr->ia_valid & ATTR_SIZE && attr->ia_size != inode->i_size) {
4612 handle_t *handle;
562c72aa 4613
12e9b892 4614 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
e2b46574
ES
4615 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4616
0c095c7f
TT
4617 if (attr->ia_size > sbi->s_bitmap_maxbytes)
4618 return -EFBIG;
e2b46574 4619 }
dff6efc3
CH
4620
4621 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
4622 inode_inc_iversion(inode);
4623
5208386c
JK
4624 if (S_ISREG(inode->i_mode) &&
4625 (attr->ia_size < inode->i_size)) {
4626 if (ext4_should_order_data(inode)) {
4627 error = ext4_begin_ordered_truncate(inode,
678aaf48 4628 attr->ia_size);
5208386c 4629 if (error)
678aaf48 4630 goto err_out;
5208386c
JK
4631 }
4632 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
4633 if (IS_ERR(handle)) {
4634 error = PTR_ERR(handle);
4635 goto err_out;
4636 }
4637 if (ext4_handle_valid(handle)) {
4638 error = ext4_orphan_add(handle, inode);
4639 orphan = 1;
4640 }
90e775b7 4641 down_write(&EXT4_I(inode)->i_data_sem);
5208386c
JK
4642 EXT4_I(inode)->i_disksize = attr->ia_size;
4643 rc = ext4_mark_inode_dirty(handle, inode);
4644 if (!error)
4645 error = rc;
90e775b7
JK
4646 /*
4647 * We have to update i_size under i_data_sem together
4648 * with i_disksize to avoid races with writeback code
4649 * running ext4_wb_update_i_disksize().
4650 */
4651 if (!error)
4652 i_size_write(inode, attr->ia_size);
4653 up_write(&EXT4_I(inode)->i_data_sem);
5208386c
JK
4654 ext4_journal_stop(handle);
4655 if (error) {
4656 ext4_orphan_del(NULL, inode);
678aaf48
JK
4657 goto err_out;
4658 }
90e775b7
JK
4659 } else
4660 i_size_write(inode, attr->ia_size);
53e87268 4661
5208386c
JK
4662 /*
4663 * Blocks are going to be removed from the inode. Wait
4664 * for dio in flight. Temporarily disable
4665 * dioread_nolock to prevent livelock.
4666 */
4667 if (orphan) {
4668 if (!ext4_should_journal_data(inode)) {
4669 ext4_inode_block_unlocked_dio(inode);
4670 inode_dio_wait(inode);
4671 ext4_inode_resume_unlocked_dio(inode);
4672 } else
4673 ext4_wait_for_tail_page_commit(inode);
1c9114f9 4674 }
5208386c
JK
4675 /*
4676 * Truncate pagecache after we've waited for commit
4677 * in data=journal mode to make pages freeable.
4678 */
7caef267 4679 truncate_pagecache(inode, inode->i_size);
072bd7ea 4680 }
5208386c
JK
4681 /*
4682 * We want to call ext4_truncate() even if attr->ia_size ==
4683 * inode->i_size for cases like truncation of fallocated space
4684 */
4685 if (attr->ia_valid & ATTR_SIZE)
4686 ext4_truncate(inode);
ac27a0ec 4687
1025774c
CH
4688 if (!rc) {
4689 setattr_copy(inode, attr);
4690 mark_inode_dirty(inode);
4691 }
4692
4693 /*
4694 * If the call to ext4_truncate failed to get a transaction handle at
4695 * all, we need to clean up the in-core orphan list manually.
4696 */
3d287de3 4697 if (orphan && inode->i_nlink)
617ba13b 4698 ext4_orphan_del(NULL, inode);
ac27a0ec
DK
4699
4700 if (!rc && (ia_valid & ATTR_MODE))
64e178a7 4701 rc = posix_acl_chmod(inode, inode->i_mode);
ac27a0ec
DK
4702
4703err_out:
617ba13b 4704 ext4_std_error(inode->i_sb, error);
ac27a0ec
DK
4705 if (!error)
4706 error = rc;
4707 return error;
4708}
4709
3e3398a0
MC
4710int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4711 struct kstat *stat)
4712{
4713 struct inode *inode;
8af8eecc 4714 unsigned long long delalloc_blocks;
3e3398a0
MC
4715
4716 inode = dentry->d_inode;
4717 generic_fillattr(inode, stat);
4718
9206c561
AD
4719 /*
4720 * If there is inline data in the inode, the inode will normally not
4721 * have data blocks allocated (it may have an external xattr block).
4722 * Report at least one sector for such files, so tools like tar, rsync,
4723 * others doen't incorrectly think the file is completely sparse.
4724 */
4725 if (unlikely(ext4_has_inline_data(inode)))
4726 stat->blocks += (stat->size + 511) >> 9;
4727
3e3398a0
MC
4728 /*
4729 * We can't update i_blocks if the block allocation is delayed
4730 * otherwise in the case of system crash before the real block
4731 * allocation is done, we will have i_blocks inconsistent with
4732 * on-disk file blocks.
4733 * We always keep i_blocks updated together with real
4734 * allocation. But to not confuse with user, stat
4735 * will return the blocks that include the delayed allocation
4736 * blocks for this file.
4737 */
96607551 4738 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
9206c561
AD
4739 EXT4_I(inode)->i_reserved_data_blocks);
4740 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
3e3398a0
MC
4741 return 0;
4742}
ac27a0ec 4743
fffb2739
JK
4744static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
4745 int pextents)
a02908f1 4746{
12e9b892 4747 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
fffb2739
JK
4748 return ext4_ind_trans_blocks(inode, lblocks);
4749 return ext4_ext_index_trans_blocks(inode, pextents);
a02908f1 4750}
ac51d837 4751
ac27a0ec 4752/*
a02908f1
MC
4753 * Account for index blocks, block groups bitmaps and block group
4754 * descriptor blocks if modify datablocks and index blocks
4755 * worse case, the indexs blocks spread over different block groups
ac27a0ec 4756 *
a02908f1 4757 * If datablocks are discontiguous, they are possible to spread over
4907cb7b 4758 * different block groups too. If they are contiguous, with flexbg,
a02908f1 4759 * they could still across block group boundary.
ac27a0ec 4760 *
a02908f1
MC
4761 * Also account for superblock, inode, quota and xattr blocks
4762 */
fffb2739
JK
4763static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
4764 int pextents)
a02908f1 4765{
8df9675f
TT
4766 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4767 int gdpblocks;
a02908f1
MC
4768 int idxblocks;
4769 int ret = 0;
4770
4771 /*
fffb2739
JK
4772 * How many index blocks need to touch to map @lblocks logical blocks
4773 * to @pextents physical extents?
a02908f1 4774 */
fffb2739 4775 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
a02908f1
MC
4776
4777 ret = idxblocks;
4778
4779 /*
4780 * Now let's see how many group bitmaps and group descriptors need
4781 * to account
4782 */
fffb2739 4783 groups = idxblocks + pextents;
a02908f1 4784 gdpblocks = groups;
8df9675f
TT
4785 if (groups > ngroups)
4786 groups = ngroups;
a02908f1
MC
4787 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4788 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4789
4790 /* bitmaps and block group descriptor blocks */
4791 ret += groups + gdpblocks;
4792
4793 /* Blocks for super block, inode, quota and xattr blocks */
4794 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4795
4796 return ret;
4797}
4798
4799/*
25985edc 4800 * Calculate the total number of credits to reserve to fit
f3bd1f3f
MC
4801 * the modification of a single pages into a single transaction,
4802 * which may include multiple chunks of block allocations.
ac27a0ec 4803 *
525f4ed8 4804 * This could be called via ext4_write_begin()
ac27a0ec 4805 *
525f4ed8 4806 * We need to consider the worse case, when
a02908f1 4807 * one new block per extent.
ac27a0ec 4808 */
a86c6181 4809int ext4_writepage_trans_blocks(struct inode *inode)
ac27a0ec 4810{
617ba13b 4811 int bpp = ext4_journal_blocks_per_page(inode);
ac27a0ec
DK
4812 int ret;
4813
fffb2739 4814 ret = ext4_meta_trans_blocks(inode, bpp, bpp);
a86c6181 4815
a02908f1 4816 /* Account for data blocks for journalled mode */
617ba13b 4817 if (ext4_should_journal_data(inode))
a02908f1 4818 ret += bpp;
ac27a0ec
DK
4819 return ret;
4820}
f3bd1f3f
MC
4821
4822/*
4823 * Calculate the journal credits for a chunk of data modification.
4824 *
4825 * This is called from DIO, fallocate or whoever calling
79e83036 4826 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
f3bd1f3f
MC
4827 *
4828 * journal buffers for data blocks are not included here, as DIO
4829 * and fallocate do no need to journal data buffers.
4830 */
4831int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4832{
4833 return ext4_meta_trans_blocks(inode, nrblocks, 1);
4834}
4835
ac27a0ec 4836/*
617ba13b 4837 * The caller must have previously called ext4_reserve_inode_write().
ac27a0ec
DK
4838 * Give this, we know that the caller already has write access to iloc->bh.
4839 */
617ba13b 4840int ext4_mark_iloc_dirty(handle_t *handle,
de9a55b8 4841 struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
4842{
4843 int err = 0;
4844
c64db50e 4845 if (IS_I_VERSION(inode))
25ec56b5
JNC
4846 inode_inc_iversion(inode);
4847
ac27a0ec
DK
4848 /* the do_update_inode consumes one bh->b_count */
4849 get_bh(iloc->bh);
4850
dab291af 4851 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
830156c7 4852 err = ext4_do_update_inode(handle, inode, iloc);
ac27a0ec
DK
4853 put_bh(iloc->bh);
4854 return err;
4855}
4856
4857/*
4858 * On success, We end up with an outstanding reference count against
4859 * iloc->bh. This _must_ be cleaned up later.
4860 */
4861
4862int
617ba13b
MC
4863ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4864 struct ext4_iloc *iloc)
ac27a0ec 4865{
0390131b
FM
4866 int err;
4867
4868 err = ext4_get_inode_loc(inode, iloc);
4869 if (!err) {
4870 BUFFER_TRACE(iloc->bh, "get_write_access");
4871 err = ext4_journal_get_write_access(handle, iloc->bh);
4872 if (err) {
4873 brelse(iloc->bh);
4874 iloc->bh = NULL;
ac27a0ec
DK
4875 }
4876 }
617ba13b 4877 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4878 return err;
4879}
4880
6dd4ee7c
KS
4881/*
4882 * Expand an inode by new_extra_isize bytes.
4883 * Returns 0 on success or negative error number on failure.
4884 */
1d03ec98
AK
4885static int ext4_expand_extra_isize(struct inode *inode,
4886 unsigned int new_extra_isize,
4887 struct ext4_iloc iloc,
4888 handle_t *handle)
6dd4ee7c
KS
4889{
4890 struct ext4_inode *raw_inode;
4891 struct ext4_xattr_ibody_header *header;
6dd4ee7c
KS
4892
4893 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4894 return 0;
4895
4896 raw_inode = ext4_raw_inode(&iloc);
4897
4898 header = IHDR(inode, raw_inode);
6dd4ee7c
KS
4899
4900 /* No extended attributes present */
19f5fb7a
TT
4901 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4902 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
6dd4ee7c
KS
4903 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4904 new_extra_isize);
4905 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4906 return 0;
4907 }
4908
4909 /* try to expand with EAs present */
4910 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4911 raw_inode, handle);
4912}
4913
ac27a0ec
DK
4914/*
4915 * What we do here is to mark the in-core inode as clean with respect to inode
4916 * dirtiness (it may still be data-dirty).
4917 * This means that the in-core inode may be reaped by prune_icache
4918 * without having to perform any I/O. This is a very good thing,
4919 * because *any* task may call prune_icache - even ones which
4920 * have a transaction open against a different journal.
4921 *
4922 * Is this cheating? Not really. Sure, we haven't written the
4923 * inode out, but prune_icache isn't a user-visible syncing function.
4924 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4925 * we start and wait on commits.
ac27a0ec 4926 */
617ba13b 4927int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
ac27a0ec 4928{
617ba13b 4929 struct ext4_iloc iloc;
6dd4ee7c
KS
4930 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4931 static unsigned int mnt_count;
4932 int err, ret;
ac27a0ec
DK
4933
4934 might_sleep();
7ff9c073 4935 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
617ba13b 4936 err = ext4_reserve_inode_write(handle, inode, &iloc);
0390131b
FM
4937 if (ext4_handle_valid(handle) &&
4938 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
19f5fb7a 4939 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
6dd4ee7c
KS
4940 /*
4941 * We need extra buffer credits since we may write into EA block
4942 * with this same handle. If journal_extend fails, then it will
4943 * only result in a minor loss of functionality for that inode.
4944 * If this is felt to be critical, then e2fsck should be run to
4945 * force a large enough s_min_extra_isize.
4946 */
4947 if ((jbd2_journal_extend(handle,
4948 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4949 ret = ext4_expand_extra_isize(inode,
4950 sbi->s_want_extra_isize,
4951 iloc, handle);
4952 if (ret) {
19f5fb7a
TT
4953 ext4_set_inode_state(inode,
4954 EXT4_STATE_NO_EXPAND);
c1bddad9
AK
4955 if (mnt_count !=
4956 le16_to_cpu(sbi->s_es->s_mnt_count)) {
12062ddd 4957 ext4_warning(inode->i_sb,
6dd4ee7c
KS
4958 "Unable to expand inode %lu. Delete"
4959 " some EAs or run e2fsck.",
4960 inode->i_ino);
c1bddad9
AK
4961 mnt_count =
4962 le16_to_cpu(sbi->s_es->s_mnt_count);
6dd4ee7c
KS
4963 }
4964 }
4965 }
4966 }
ac27a0ec 4967 if (!err)
617ba13b 4968 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
ac27a0ec
DK
4969 return err;
4970}
4971
4972/*
617ba13b 4973 * ext4_dirty_inode() is called from __mark_inode_dirty()
ac27a0ec
DK
4974 *
4975 * We're really interested in the case where a file is being extended.
4976 * i_size has been changed by generic_commit_write() and we thus need
4977 * to include the updated inode in the current transaction.
4978 *
5dd4056d 4979 * Also, dquot_alloc_block() will always dirty the inode when blocks
ac27a0ec
DK
4980 * are allocated to the file.
4981 *
4982 * If the inode is marked synchronous, we don't honour that here - doing
4983 * so would cause a commit on atime updates, which we don't bother doing.
4984 * We handle synchronous inodes at the highest possible level.
4985 */
aa385729 4986void ext4_dirty_inode(struct inode *inode, int flags)
ac27a0ec 4987{
ac27a0ec
DK
4988 handle_t *handle;
4989
9924a92a 4990 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
ac27a0ec
DK
4991 if (IS_ERR(handle))
4992 goto out;
f3dc272f 4993
f3dc272f
CW
4994 ext4_mark_inode_dirty(handle, inode);
4995
617ba13b 4996 ext4_journal_stop(handle);
ac27a0ec
DK
4997out:
4998 return;
4999}
5000
5001#if 0
5002/*
5003 * Bind an inode's backing buffer_head into this transaction, to prevent
5004 * it from being flushed to disk early. Unlike
617ba13b 5005 * ext4_reserve_inode_write, this leaves behind no bh reference and
ac27a0ec
DK
5006 * returns no iloc structure, so the caller needs to repeat the iloc
5007 * lookup to mark the inode dirty later.
5008 */
617ba13b 5009static int ext4_pin_inode(handle_t *handle, struct inode *inode)
ac27a0ec 5010{
617ba13b 5011 struct ext4_iloc iloc;
ac27a0ec
DK
5012
5013 int err = 0;
5014 if (handle) {
617ba13b 5015 err = ext4_get_inode_loc(inode, &iloc);
ac27a0ec
DK
5016 if (!err) {
5017 BUFFER_TRACE(iloc.bh, "get_write_access");
dab291af 5018 err = jbd2_journal_get_write_access(handle, iloc.bh);
ac27a0ec 5019 if (!err)
0390131b 5020 err = ext4_handle_dirty_metadata(handle,
73b50c1c 5021 NULL,
0390131b 5022 iloc.bh);
ac27a0ec
DK
5023 brelse(iloc.bh);
5024 }
5025 }
617ba13b 5026 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5027 return err;
5028}
5029#endif
5030
617ba13b 5031int ext4_change_inode_journal_flag(struct inode *inode, int val)
ac27a0ec
DK
5032{
5033 journal_t *journal;
5034 handle_t *handle;
5035 int err;
5036
5037 /*
5038 * We have to be very careful here: changing a data block's
5039 * journaling status dynamically is dangerous. If we write a
5040 * data block to the journal, change the status and then delete
5041 * that block, we risk forgetting to revoke the old log record
5042 * from the journal and so a subsequent replay can corrupt data.
5043 * So, first we make sure that the journal is empty and that
5044 * nobody is changing anything.
5045 */
5046
617ba13b 5047 journal = EXT4_JOURNAL(inode);
0390131b
FM
5048 if (!journal)
5049 return 0;
d699594d 5050 if (is_journal_aborted(journal))
ac27a0ec 5051 return -EROFS;
2aff57b0
YY
5052 /* We have to allocate physical blocks for delalloc blocks
5053 * before flushing journal. otherwise delalloc blocks can not
5054 * be allocated any more. even more truncate on delalloc blocks
5055 * could trigger BUG by flushing delalloc blocks in journal.
5056 * There is no delalloc block in non-journal data mode.
5057 */
5058 if (val && test_opt(inode->i_sb, DELALLOC)) {
5059 err = ext4_alloc_da_blocks(inode);
5060 if (err < 0)
5061 return err;
5062 }
ac27a0ec 5063
17335dcc
DM
5064 /* Wait for all existing dio workers */
5065 ext4_inode_block_unlocked_dio(inode);
5066 inode_dio_wait(inode);
5067
dab291af 5068 jbd2_journal_lock_updates(journal);
ac27a0ec
DK
5069
5070 /*
5071 * OK, there are no updates running now, and all cached data is
5072 * synced to disk. We are now in a completely consistent state
5073 * which doesn't have anything in the journal, and we know that
5074 * no filesystem updates are running, so it is safe to modify
5075 * the inode's in-core data-journaling state flag now.
5076 */
5077
5078 if (val)
12e9b892 5079 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5872ddaa
YY
5080 else {
5081 jbd2_journal_flush(journal);
12e9b892 5082 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5872ddaa 5083 }
617ba13b 5084 ext4_set_aops(inode);
ac27a0ec 5085
dab291af 5086 jbd2_journal_unlock_updates(journal);
17335dcc 5087 ext4_inode_resume_unlocked_dio(inode);
ac27a0ec
DK
5088
5089 /* Finally we can mark the inode as dirty. */
5090
9924a92a 5091 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
ac27a0ec
DK
5092 if (IS_ERR(handle))
5093 return PTR_ERR(handle);
5094
617ba13b 5095 err = ext4_mark_inode_dirty(handle, inode);
0390131b 5096 ext4_handle_sync(handle);
617ba13b
MC
5097 ext4_journal_stop(handle);
5098 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5099
5100 return err;
5101}
2e9ee850
AK
5102
5103static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5104{
5105 return !buffer_mapped(bh);
5106}
5107
c2ec175c 5108int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2e9ee850 5109{
c2ec175c 5110 struct page *page = vmf->page;
2e9ee850
AK
5111 loff_t size;
5112 unsigned long len;
9ea7df53 5113 int ret;
2e9ee850 5114 struct file *file = vma->vm_file;
496ad9aa 5115 struct inode *inode = file_inode(file);
2e9ee850 5116 struct address_space *mapping = inode->i_mapping;
9ea7df53
JK
5117 handle_t *handle;
5118 get_block_t *get_block;
5119 int retries = 0;
2e9ee850 5120
8e8ad8a5 5121 sb_start_pagefault(inode->i_sb);
041bbb6d 5122 file_update_time(vma->vm_file);
9ea7df53
JK
5123 /* Delalloc case is easy... */
5124 if (test_opt(inode->i_sb, DELALLOC) &&
5125 !ext4_should_journal_data(inode) &&
5126 !ext4_nonda_switch(inode->i_sb)) {
5127 do {
5128 ret = __block_page_mkwrite(vma, vmf,
5129 ext4_da_get_block_prep);
5130 } while (ret == -ENOSPC &&
5131 ext4_should_retry_alloc(inode->i_sb, &retries));
5132 goto out_ret;
2e9ee850 5133 }
0e499890
DW
5134
5135 lock_page(page);
9ea7df53
JK
5136 size = i_size_read(inode);
5137 /* Page got truncated from under us? */
5138 if (page->mapping != mapping || page_offset(page) > size) {
5139 unlock_page(page);
5140 ret = VM_FAULT_NOPAGE;
5141 goto out;
0e499890 5142 }
2e9ee850
AK
5143
5144 if (page->index == size >> PAGE_CACHE_SHIFT)
5145 len = size & ~PAGE_CACHE_MASK;
5146 else
5147 len = PAGE_CACHE_SIZE;
a827eaff 5148 /*
9ea7df53
JK
5149 * Return if we have all the buffers mapped. This avoids the need to do
5150 * journal_start/journal_stop which can block and take a long time
a827eaff 5151 */
2e9ee850 5152 if (page_has_buffers(page)) {
f19d5870
TM
5153 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5154 0, len, NULL,
5155 ext4_bh_unmapped)) {
9ea7df53 5156 /* Wait so that we don't change page under IO */
1d1d1a76 5157 wait_for_stable_page(page);
9ea7df53
JK
5158 ret = VM_FAULT_LOCKED;
5159 goto out;
a827eaff 5160 }
2e9ee850 5161 }
a827eaff 5162 unlock_page(page);
9ea7df53
JK
5163 /* OK, we need to fill the hole... */
5164 if (ext4_should_dioread_nolock(inode))
5165 get_block = ext4_get_block_write;
5166 else
5167 get_block = ext4_get_block;
5168retry_alloc:
9924a92a
TT
5169 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5170 ext4_writepage_trans_blocks(inode));
9ea7df53 5171 if (IS_ERR(handle)) {
c2ec175c 5172 ret = VM_FAULT_SIGBUS;
9ea7df53
JK
5173 goto out;
5174 }
5175 ret = __block_page_mkwrite(vma, vmf, get_block);
5176 if (!ret && ext4_should_journal_data(inode)) {
f19d5870 5177 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
9ea7df53
JK
5178 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
5179 unlock_page(page);
5180 ret = VM_FAULT_SIGBUS;
fcbb5515 5181 ext4_journal_stop(handle);
9ea7df53
JK
5182 goto out;
5183 }
5184 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5185 }
5186 ext4_journal_stop(handle);
5187 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5188 goto retry_alloc;
5189out_ret:
5190 ret = block_page_mkwrite_return(ret);
5191out:
8e8ad8a5 5192 sb_end_pagefault(inode->i_sb);
2e9ee850
AK
5193 return ret;
5194}