ext4: remove do_blk_alloc()
[linux-2.6-block.git] / fs / ext4 / inode.c
CommitLineData
ac27a0ec 1/*
617ba13b 2 * linux/fs/ext4/inode.c
ac27a0ec
DK
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * Goal-directed block allocation by Stephen Tweedie
16 * (sct@redhat.com), 1993, 1998
17 * Big-endian to little-endian byte-swapping/bitmaps by
18 * David S. Miller (davem@caip.rutgers.edu), 1995
19 * 64-bit file support on 64-bit platforms by Jakub Jelinek
20 * (jj@sunsite.ms.mff.cuni.cz)
21 *
617ba13b 22 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
ac27a0ec
DK
23 */
24
25#include <linux/module.h>
26#include <linux/fs.h>
27#include <linux/time.h>
dab291af 28#include <linux/jbd2.h>
ac27a0ec
DK
29#include <linux/highuid.h>
30#include <linux/pagemap.h>
31#include <linux/quotaops.h>
32#include <linux/string.h>
33#include <linux/buffer_head.h>
34#include <linux/writeback.h>
64769240 35#include <linux/pagevec.h>
ac27a0ec 36#include <linux/mpage.h>
e83c1397 37#include <linux/namei.h>
ac27a0ec
DK
38#include <linux/uio.h>
39#include <linux/bio.h>
3dcf5451 40#include "ext4_jbd2.h"
ac27a0ec
DK
41#include "xattr.h"
42#include "acl.h"
d2a17637 43#include "ext4_extents.h"
ac27a0ec 44
a1d6cc56
AK
45#define MPAGE_DA_EXTENT_TAIL 0x01
46
678aaf48
JK
47static inline int ext4_begin_ordered_truncate(struct inode *inode,
48 loff_t new_size)
49{
50 return jbd2_journal_begin_ordered_truncate(&EXT4_I(inode)->jinode,
51 new_size);
52}
53
64769240
AT
54static void ext4_invalidatepage(struct page *page, unsigned long offset);
55
ac27a0ec
DK
56/*
57 * Test whether an inode is a fast symlink.
58 */
617ba13b 59static int ext4_inode_is_fast_symlink(struct inode *inode)
ac27a0ec 60{
617ba13b 61 int ea_blocks = EXT4_I(inode)->i_file_acl ?
ac27a0ec
DK
62 (inode->i_sb->s_blocksize >> 9) : 0;
63
64 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
65}
66
67/*
617ba13b 68 * The ext4 forget function must perform a revoke if we are freeing data
ac27a0ec
DK
69 * which has been journaled. Metadata (eg. indirect blocks) must be
70 * revoked in all cases.
71 *
72 * "bh" may be NULL: a metadata block may have been freed from memory
73 * but there may still be a record of it in the journal, and that record
74 * still needs to be revoked.
75 */
617ba13b
MC
76int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode,
77 struct buffer_head *bh, ext4_fsblk_t blocknr)
ac27a0ec
DK
78{
79 int err;
80
81 might_sleep();
82
83 BUFFER_TRACE(bh, "enter");
84
85 jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
86 "data mode %lx\n",
87 bh, is_metadata, inode->i_mode,
88 test_opt(inode->i_sb, DATA_FLAGS));
89
90 /* Never use the revoke function if we are doing full data
91 * journaling: there is no need to, and a V1 superblock won't
92 * support it. Otherwise, only skip the revoke on un-journaled
93 * data blocks. */
94
617ba13b
MC
95 if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA ||
96 (!is_metadata && !ext4_should_journal_data(inode))) {
ac27a0ec 97 if (bh) {
dab291af 98 BUFFER_TRACE(bh, "call jbd2_journal_forget");
617ba13b 99 return ext4_journal_forget(handle, bh);
ac27a0ec
DK
100 }
101 return 0;
102 }
103
104 /*
105 * data!=journal && (is_metadata || should_journal_data(inode))
106 */
617ba13b
MC
107 BUFFER_TRACE(bh, "call ext4_journal_revoke");
108 err = ext4_journal_revoke(handle, blocknr, bh);
ac27a0ec 109 if (err)
46e665e9 110 ext4_abort(inode->i_sb, __func__,
ac27a0ec
DK
111 "error %d when attempting revoke", err);
112 BUFFER_TRACE(bh, "exit");
113 return err;
114}
115
116/*
117 * Work out how many blocks we need to proceed with the next chunk of a
118 * truncate transaction.
119 */
120static unsigned long blocks_for_truncate(struct inode *inode)
121{
725d26d3 122 ext4_lblk_t needed;
ac27a0ec
DK
123
124 needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
125
126 /* Give ourselves just enough room to cope with inodes in which
127 * i_blocks is corrupt: we've seen disk corruptions in the past
128 * which resulted in random data in an inode which looked enough
617ba13b 129 * like a regular file for ext4 to try to delete it. Things
ac27a0ec
DK
130 * will go a bit crazy if that happens, but at least we should
131 * try not to panic the whole kernel. */
132 if (needed < 2)
133 needed = 2;
134
135 /* But we need to bound the transaction so we don't overflow the
136 * journal. */
617ba13b
MC
137 if (needed > EXT4_MAX_TRANS_DATA)
138 needed = EXT4_MAX_TRANS_DATA;
ac27a0ec 139
617ba13b 140 return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
ac27a0ec
DK
141}
142
143/*
144 * Truncate transactions can be complex and absolutely huge. So we need to
145 * be able to restart the transaction at a conventient checkpoint to make
146 * sure we don't overflow the journal.
147 *
148 * start_transaction gets us a new handle for a truncate transaction,
149 * and extend_transaction tries to extend the existing one a bit. If
150 * extend fails, we need to propagate the failure up and restart the
151 * transaction in the top-level truncate loop. --sct
152 */
153static handle_t *start_transaction(struct inode *inode)
154{
155 handle_t *result;
156
617ba13b 157 result = ext4_journal_start(inode, blocks_for_truncate(inode));
ac27a0ec
DK
158 if (!IS_ERR(result))
159 return result;
160
617ba13b 161 ext4_std_error(inode->i_sb, PTR_ERR(result));
ac27a0ec
DK
162 return result;
163}
164
165/*
166 * Try to extend this transaction for the purposes of truncation.
167 *
168 * Returns 0 if we managed to create more room. If we can't create more
169 * room, and the transaction must be restarted we return 1.
170 */
171static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
172{
617ba13b 173 if (handle->h_buffer_credits > EXT4_RESERVE_TRANS_BLOCKS)
ac27a0ec 174 return 0;
617ba13b 175 if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
ac27a0ec
DK
176 return 0;
177 return 1;
178}
179
180/*
181 * Restart the transaction associated with *handle. This does a commit,
182 * so before we call here everything must be consistently dirtied against
183 * this transaction.
184 */
617ba13b 185static int ext4_journal_test_restart(handle_t *handle, struct inode *inode)
ac27a0ec
DK
186{
187 jbd_debug(2, "restarting handle %p\n", handle);
617ba13b 188 return ext4_journal_restart(handle, blocks_for_truncate(inode));
ac27a0ec
DK
189}
190
191/*
192 * Called at the last iput() if i_nlink is zero.
193 */
af5bc92d 194void ext4_delete_inode(struct inode *inode)
ac27a0ec
DK
195{
196 handle_t *handle;
bc965ab3 197 int err;
ac27a0ec 198
678aaf48
JK
199 if (ext4_should_order_data(inode))
200 ext4_begin_ordered_truncate(inode, 0);
ac27a0ec
DK
201 truncate_inode_pages(&inode->i_data, 0);
202
203 if (is_bad_inode(inode))
204 goto no_delete;
205
bc965ab3 206 handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
ac27a0ec 207 if (IS_ERR(handle)) {
bc965ab3 208 ext4_std_error(inode->i_sb, PTR_ERR(handle));
ac27a0ec
DK
209 /*
210 * If we're going to skip the normal cleanup, we still need to
211 * make sure that the in-core orphan linked list is properly
212 * cleaned up.
213 */
617ba13b 214 ext4_orphan_del(NULL, inode);
ac27a0ec
DK
215 goto no_delete;
216 }
217
218 if (IS_SYNC(inode))
219 handle->h_sync = 1;
220 inode->i_size = 0;
bc965ab3
TT
221 err = ext4_mark_inode_dirty(handle, inode);
222 if (err) {
223 ext4_warning(inode->i_sb, __func__,
224 "couldn't mark inode dirty (err %d)", err);
225 goto stop_handle;
226 }
ac27a0ec 227 if (inode->i_blocks)
617ba13b 228 ext4_truncate(inode);
bc965ab3
TT
229
230 /*
231 * ext4_ext_truncate() doesn't reserve any slop when it
232 * restarts journal transactions; therefore there may not be
233 * enough credits left in the handle to remove the inode from
234 * the orphan list and set the dtime field.
235 */
236 if (handle->h_buffer_credits < 3) {
237 err = ext4_journal_extend(handle, 3);
238 if (err > 0)
239 err = ext4_journal_restart(handle, 3);
240 if (err != 0) {
241 ext4_warning(inode->i_sb, __func__,
242 "couldn't extend journal (err %d)", err);
243 stop_handle:
244 ext4_journal_stop(handle);
245 goto no_delete;
246 }
247 }
248
ac27a0ec 249 /*
617ba13b 250 * Kill off the orphan record which ext4_truncate created.
ac27a0ec 251 * AKPM: I think this can be inside the above `if'.
617ba13b 252 * Note that ext4_orphan_del() has to be able to cope with the
ac27a0ec 253 * deletion of a non-existent orphan - this is because we don't
617ba13b 254 * know if ext4_truncate() actually created an orphan record.
ac27a0ec
DK
255 * (Well, we could do this if we need to, but heck - it works)
256 */
617ba13b
MC
257 ext4_orphan_del(handle, inode);
258 EXT4_I(inode)->i_dtime = get_seconds();
ac27a0ec
DK
259
260 /*
261 * One subtle ordering requirement: if anything has gone wrong
262 * (transaction abort, IO errors, whatever), then we can still
263 * do these next steps (the fs will already have been marked as
264 * having errors), but we can't free the inode if the mark_dirty
265 * fails.
266 */
617ba13b 267 if (ext4_mark_inode_dirty(handle, inode))
ac27a0ec
DK
268 /* If that failed, just do the required in-core inode clear. */
269 clear_inode(inode);
270 else
617ba13b
MC
271 ext4_free_inode(handle, inode);
272 ext4_journal_stop(handle);
ac27a0ec
DK
273 return;
274no_delete:
275 clear_inode(inode); /* We must guarantee clearing of inode... */
276}
277
278typedef struct {
279 __le32 *p;
280 __le32 key;
281 struct buffer_head *bh;
282} Indirect;
283
284static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
285{
286 p->key = *(p->p = v);
287 p->bh = bh;
288}
289
ac27a0ec 290/**
617ba13b 291 * ext4_block_to_path - parse the block number into array of offsets
ac27a0ec
DK
292 * @inode: inode in question (we are only interested in its superblock)
293 * @i_block: block number to be parsed
294 * @offsets: array to store the offsets in
8c55e204
DK
295 * @boundary: set this non-zero if the referred-to block is likely to be
296 * followed (on disk) by an indirect block.
ac27a0ec 297 *
617ba13b 298 * To store the locations of file's data ext4 uses a data structure common
ac27a0ec
DK
299 * for UNIX filesystems - tree of pointers anchored in the inode, with
300 * data blocks at leaves and indirect blocks in intermediate nodes.
301 * This function translates the block number into path in that tree -
302 * return value is the path length and @offsets[n] is the offset of
303 * pointer to (n+1)th node in the nth one. If @block is out of range
304 * (negative or too large) warning is printed and zero returned.
305 *
306 * Note: function doesn't find node addresses, so no IO is needed. All
307 * we need to know is the capacity of indirect blocks (taken from the
308 * inode->i_sb).
309 */
310
311/*
312 * Portability note: the last comparison (check that we fit into triple
313 * indirect block) is spelled differently, because otherwise on an
314 * architecture with 32-bit longs and 8Kb pages we might get into trouble
315 * if our filesystem had 8Kb blocks. We might use long long, but that would
316 * kill us on x86. Oh, well, at least the sign propagation does not matter -
317 * i_block would have to be negative in the very beginning, so we would not
318 * get there at all.
319 */
320
617ba13b 321static int ext4_block_to_path(struct inode *inode,
725d26d3
AK
322 ext4_lblk_t i_block,
323 ext4_lblk_t offsets[4], int *boundary)
ac27a0ec 324{
617ba13b
MC
325 int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
326 int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
327 const long direct_blocks = EXT4_NDIR_BLOCKS,
ac27a0ec
DK
328 indirect_blocks = ptrs,
329 double_blocks = (1 << (ptrs_bits * 2));
330 int n = 0;
331 int final = 0;
332
333 if (i_block < 0) {
af5bc92d 334 ext4_warning(inode->i_sb, "ext4_block_to_path", "block < 0");
ac27a0ec
DK
335 } else if (i_block < direct_blocks) {
336 offsets[n++] = i_block;
337 final = direct_blocks;
af5bc92d 338 } else if ((i_block -= direct_blocks) < indirect_blocks) {
617ba13b 339 offsets[n++] = EXT4_IND_BLOCK;
ac27a0ec
DK
340 offsets[n++] = i_block;
341 final = ptrs;
342 } else if ((i_block -= indirect_blocks) < double_blocks) {
617ba13b 343 offsets[n++] = EXT4_DIND_BLOCK;
ac27a0ec
DK
344 offsets[n++] = i_block >> ptrs_bits;
345 offsets[n++] = i_block & (ptrs - 1);
346 final = ptrs;
347 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
617ba13b 348 offsets[n++] = EXT4_TIND_BLOCK;
ac27a0ec
DK
349 offsets[n++] = i_block >> (ptrs_bits * 2);
350 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
351 offsets[n++] = i_block & (ptrs - 1);
352 final = ptrs;
353 } else {
e2b46574 354 ext4_warning(inode->i_sb, "ext4_block_to_path",
0e855ac8 355 "block %lu > max",
e2b46574
ES
356 i_block + direct_blocks +
357 indirect_blocks + double_blocks);
ac27a0ec
DK
358 }
359 if (boundary)
360 *boundary = final - 1 - (i_block & (ptrs - 1));
361 return n;
362}
363
364/**
617ba13b 365 * ext4_get_branch - read the chain of indirect blocks leading to data
ac27a0ec
DK
366 * @inode: inode in question
367 * @depth: depth of the chain (1 - direct pointer, etc.)
368 * @offsets: offsets of pointers in inode/indirect blocks
369 * @chain: place to store the result
370 * @err: here we store the error value
371 *
372 * Function fills the array of triples <key, p, bh> and returns %NULL
373 * if everything went OK or the pointer to the last filled triple
374 * (incomplete one) otherwise. Upon the return chain[i].key contains
375 * the number of (i+1)-th block in the chain (as it is stored in memory,
376 * i.e. little-endian 32-bit), chain[i].p contains the address of that
377 * number (it points into struct inode for i==0 and into the bh->b_data
378 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
379 * block for i>0 and NULL for i==0. In other words, it holds the block
380 * numbers of the chain, addresses they were taken from (and where we can
381 * verify that chain did not change) and buffer_heads hosting these
382 * numbers.
383 *
384 * Function stops when it stumbles upon zero pointer (absent block)
385 * (pointer to last triple returned, *@err == 0)
386 * or when it gets an IO error reading an indirect block
387 * (ditto, *@err == -EIO)
ac27a0ec
DK
388 * or when it reads all @depth-1 indirect blocks successfully and finds
389 * the whole chain, all way to the data (returns %NULL, *err == 0).
c278bfec
AK
390 *
391 * Need to be called with
0e855ac8 392 * down_read(&EXT4_I(inode)->i_data_sem)
ac27a0ec 393 */
725d26d3
AK
394static Indirect *ext4_get_branch(struct inode *inode, int depth,
395 ext4_lblk_t *offsets,
ac27a0ec
DK
396 Indirect chain[4], int *err)
397{
398 struct super_block *sb = inode->i_sb;
399 Indirect *p = chain;
400 struct buffer_head *bh;
401
402 *err = 0;
403 /* i_data is not going away, no lock needed */
af5bc92d 404 add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
ac27a0ec
DK
405 if (!p->key)
406 goto no_block;
407 while (--depth) {
408 bh = sb_bread(sb, le32_to_cpu(p->key));
409 if (!bh)
410 goto failure;
af5bc92d 411 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
ac27a0ec
DK
412 /* Reader: end */
413 if (!p->key)
414 goto no_block;
415 }
416 return NULL;
417
ac27a0ec
DK
418failure:
419 *err = -EIO;
420no_block:
421 return p;
422}
423
424/**
617ba13b 425 * ext4_find_near - find a place for allocation with sufficient locality
ac27a0ec
DK
426 * @inode: owner
427 * @ind: descriptor of indirect block.
428 *
1cc8dcf5 429 * This function returns the preferred place for block allocation.
ac27a0ec
DK
430 * It is used when heuristic for sequential allocation fails.
431 * Rules are:
432 * + if there is a block to the left of our position - allocate near it.
433 * + if pointer will live in indirect block - allocate near that block.
434 * + if pointer will live in inode - allocate in the same
435 * cylinder group.
436 *
437 * In the latter case we colour the starting block by the callers PID to
438 * prevent it from clashing with concurrent allocations for a different inode
439 * in the same block group. The PID is used here so that functionally related
440 * files will be close-by on-disk.
441 *
442 * Caller must make sure that @ind is valid and will stay that way.
443 */
617ba13b 444static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
ac27a0ec 445{
617ba13b 446 struct ext4_inode_info *ei = EXT4_I(inode);
af5bc92d 447 __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
ac27a0ec 448 __le32 *p;
617ba13b 449 ext4_fsblk_t bg_start;
74d3487f 450 ext4_fsblk_t last_block;
617ba13b 451 ext4_grpblk_t colour;
ac27a0ec
DK
452
453 /* Try to find previous block */
454 for (p = ind->p - 1; p >= start; p--) {
455 if (*p)
456 return le32_to_cpu(*p);
457 }
458
459 /* No such thing, so let's try location of indirect block */
460 if (ind->bh)
461 return ind->bh->b_blocknr;
462
463 /*
464 * It is going to be referred to from the inode itself? OK, just put it
465 * into the same cylinder group then.
466 */
617ba13b 467 bg_start = ext4_group_first_block_no(inode->i_sb, ei->i_block_group);
74d3487f
VC
468 last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
469
470 if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
471 colour = (current->pid % 16) *
617ba13b 472 (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
74d3487f
VC
473 else
474 colour = (current->pid % 16) * ((last_block - bg_start) / 16);
ac27a0ec
DK
475 return bg_start + colour;
476}
477
478/**
1cc8dcf5 479 * ext4_find_goal - find a preferred place for allocation.
ac27a0ec
DK
480 * @inode: owner
481 * @block: block we want
ac27a0ec 482 * @partial: pointer to the last triple within a chain
ac27a0ec 483 *
1cc8dcf5 484 * Normally this function find the preferred place for block allocation,
fb01bfda 485 * returns it.
ac27a0ec 486 */
725d26d3 487static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
fb01bfda 488 Indirect *partial)
ac27a0ec 489{
ac27a0ec 490 /*
c2ea3fde 491 * XXX need to get goal block from mballoc's data structures
ac27a0ec 492 */
ac27a0ec 493
617ba13b 494 return ext4_find_near(inode, partial);
ac27a0ec
DK
495}
496
497/**
617ba13b 498 * ext4_blks_to_allocate: Look up the block map and count the number
ac27a0ec
DK
499 * of direct blocks need to be allocated for the given branch.
500 *
501 * @branch: chain of indirect blocks
502 * @k: number of blocks need for indirect blocks
503 * @blks: number of data blocks to be mapped.
504 * @blocks_to_boundary: the offset in the indirect block
505 *
506 * return the total number of blocks to be allocate, including the
507 * direct and indirect blocks.
508 */
617ba13b 509static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned long blks,
ac27a0ec
DK
510 int blocks_to_boundary)
511{
512 unsigned long count = 0;
513
514 /*
515 * Simple case, [t,d]Indirect block(s) has not allocated yet
516 * then it's clear blocks on that path have not allocated
517 */
518 if (k > 0) {
519 /* right now we don't handle cross boundary allocation */
520 if (blks < blocks_to_boundary + 1)
521 count += blks;
522 else
523 count += blocks_to_boundary + 1;
524 return count;
525 }
526
527 count++;
528 while (count < blks && count <= blocks_to_boundary &&
529 le32_to_cpu(*(branch[0].p + count)) == 0) {
530 count++;
531 }
532 return count;
533}
534
535/**
617ba13b 536 * ext4_alloc_blocks: multiple allocate blocks needed for a branch
ac27a0ec
DK
537 * @indirect_blks: the number of blocks need to allocate for indirect
538 * blocks
539 *
540 * @new_blocks: on return it will store the new block numbers for
541 * the indirect blocks(if needed) and the first direct block,
542 * @blks: on return it will store the total number of allocated
543 * direct blocks
544 */
617ba13b 545static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
7061eba7
AK
546 ext4_lblk_t iblock, ext4_fsblk_t goal,
547 int indirect_blks, int blks,
548 ext4_fsblk_t new_blocks[4], int *err)
ac27a0ec 549{
815a1130 550 struct ext4_allocation_request ar;
ac27a0ec 551 int target, i;
7061eba7 552 unsigned long count = 0, blk_allocated = 0;
ac27a0ec 553 int index = 0;
617ba13b 554 ext4_fsblk_t current_block = 0;
ac27a0ec
DK
555 int ret = 0;
556
557 /*
558 * Here we try to allocate the requested multiple blocks at once,
559 * on a best-effort basis.
560 * To build a branch, we should allocate blocks for
561 * the indirect blocks(if not allocated yet), and at least
562 * the first direct block of this branch. That's the
563 * minimum number of blocks need to allocate(required)
564 */
7061eba7
AK
565 /* first we try to allocate the indirect blocks */
566 target = indirect_blks;
567 while (target > 0) {
ac27a0ec
DK
568 count = target;
569 /* allocating blocks for indirect blocks and direct blocks */
7061eba7
AK
570 current_block = ext4_new_meta_blocks(handle, inode,
571 goal, &count, err);
ac27a0ec
DK
572 if (*err)
573 goto failed_out;
574
575 target -= count;
576 /* allocate blocks for indirect blocks */
577 while (index < indirect_blks && count) {
578 new_blocks[index++] = current_block++;
579 count--;
580 }
7061eba7
AK
581 if (count > 0) {
582 /*
583 * save the new block number
584 * for the first direct block
585 */
586 new_blocks[index] = current_block;
587 printk(KERN_INFO "%s returned more blocks than "
588 "requested\n", __func__);
589 WARN_ON(1);
ac27a0ec 590 break;
7061eba7 591 }
ac27a0ec
DK
592 }
593
7061eba7
AK
594 target = blks - count ;
595 blk_allocated = count;
596 if (!target)
597 goto allocated;
598 /* Now allocate data blocks */
815a1130
TT
599 memset(&ar, 0, sizeof(ar));
600 ar.inode = inode;
601 ar.goal = goal;
602 ar.len = target;
603 ar.logical = iblock;
604 if (S_ISREG(inode->i_mode))
605 /* enable in-core preallocation only for regular files */
606 ar.flags = EXT4_MB_HINT_DATA;
607
608 current_block = ext4_mb_new_blocks(handle, &ar, err);
609
7061eba7
AK
610 if (*err && (target == blks)) {
611 /*
612 * if the allocation failed and we didn't allocate
613 * any blocks before
614 */
615 goto failed_out;
616 }
617 if (!*err) {
618 if (target == blks) {
619 /*
620 * save the new block number
621 * for the first direct block
622 */
623 new_blocks[index] = current_block;
624 }
815a1130 625 blk_allocated += ar.len;
7061eba7
AK
626 }
627allocated:
ac27a0ec 628 /* total number of blocks allocated for direct blocks */
7061eba7 629 ret = blk_allocated;
ac27a0ec
DK
630 *err = 0;
631 return ret;
632failed_out:
af5bc92d 633 for (i = 0; i < index; i++)
c9de560d 634 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
ac27a0ec
DK
635 return ret;
636}
637
638/**
617ba13b 639 * ext4_alloc_branch - allocate and set up a chain of blocks.
ac27a0ec
DK
640 * @inode: owner
641 * @indirect_blks: number of allocated indirect blocks
642 * @blks: number of allocated direct blocks
643 * @offsets: offsets (in the blocks) to store the pointers to next.
644 * @branch: place to store the chain in.
645 *
646 * This function allocates blocks, zeroes out all but the last one,
647 * links them into chain and (if we are synchronous) writes them to disk.
648 * In other words, it prepares a branch that can be spliced onto the
649 * inode. It stores the information about that chain in the branch[], in
617ba13b 650 * the same format as ext4_get_branch() would do. We are calling it after
ac27a0ec
DK
651 * we had read the existing part of chain and partial points to the last
652 * triple of that (one with zero ->key). Upon the exit we have the same
617ba13b 653 * picture as after the successful ext4_get_block(), except that in one
ac27a0ec
DK
654 * place chain is disconnected - *branch->p is still zero (we did not
655 * set the last link), but branch->key contains the number that should
656 * be placed into *branch->p to fill that gap.
657 *
658 * If allocation fails we free all blocks we've allocated (and forget
659 * their buffer_heads) and return the error value the from failed
617ba13b 660 * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
ac27a0ec
DK
661 * as described above and return 0.
662 */
617ba13b 663static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
7061eba7
AK
664 ext4_lblk_t iblock, int indirect_blks,
665 int *blks, ext4_fsblk_t goal,
666 ext4_lblk_t *offsets, Indirect *branch)
ac27a0ec
DK
667{
668 int blocksize = inode->i_sb->s_blocksize;
669 int i, n = 0;
670 int err = 0;
671 struct buffer_head *bh;
672 int num;
617ba13b
MC
673 ext4_fsblk_t new_blocks[4];
674 ext4_fsblk_t current_block;
ac27a0ec 675
7061eba7 676 num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
ac27a0ec
DK
677 *blks, new_blocks, &err);
678 if (err)
679 return err;
680
681 branch[0].key = cpu_to_le32(new_blocks[0]);
682 /*
683 * metadata blocks and data blocks are allocated.
684 */
685 for (n = 1; n <= indirect_blks; n++) {
686 /*
687 * Get buffer_head for parent block, zero it out
688 * and set the pointer to new one, then send
689 * parent to disk.
690 */
691 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
692 branch[n].bh = bh;
693 lock_buffer(bh);
694 BUFFER_TRACE(bh, "call get_create_access");
617ba13b 695 err = ext4_journal_get_create_access(handle, bh);
ac27a0ec
DK
696 if (err) {
697 unlock_buffer(bh);
698 brelse(bh);
699 goto failed;
700 }
701
702 memset(bh->b_data, 0, blocksize);
703 branch[n].p = (__le32 *) bh->b_data + offsets[n];
704 branch[n].key = cpu_to_le32(new_blocks[n]);
705 *branch[n].p = branch[n].key;
af5bc92d 706 if (n == indirect_blks) {
ac27a0ec
DK
707 current_block = new_blocks[n];
708 /*
709 * End of chain, update the last new metablock of
710 * the chain to point to the new allocated
711 * data blocks numbers
712 */
713 for (i=1; i < num; i++)
714 *(branch[n].p + i) = cpu_to_le32(++current_block);
715 }
716 BUFFER_TRACE(bh, "marking uptodate");
717 set_buffer_uptodate(bh);
718 unlock_buffer(bh);
719
617ba13b
MC
720 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
721 err = ext4_journal_dirty_metadata(handle, bh);
ac27a0ec
DK
722 if (err)
723 goto failed;
724 }
725 *blks = num;
726 return err;
727failed:
728 /* Allocation failed, free what we already allocated */
729 for (i = 1; i <= n ; i++) {
dab291af 730 BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget");
617ba13b 731 ext4_journal_forget(handle, branch[i].bh);
ac27a0ec 732 }
af5bc92d 733 for (i = 0; i < indirect_blks; i++)
c9de560d 734 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
ac27a0ec 735
c9de560d 736 ext4_free_blocks(handle, inode, new_blocks[i], num, 0);
ac27a0ec
DK
737
738 return err;
739}
740
741/**
617ba13b 742 * ext4_splice_branch - splice the allocated branch onto inode.
ac27a0ec
DK
743 * @inode: owner
744 * @block: (logical) number of block we are adding
745 * @chain: chain of indirect blocks (with a missing link - see
617ba13b 746 * ext4_alloc_branch)
ac27a0ec
DK
747 * @where: location of missing link
748 * @num: number of indirect blocks we are adding
749 * @blks: number of direct blocks we are adding
750 *
751 * This function fills the missing link and does all housekeeping needed in
752 * inode (->i_blocks, etc.). In case of success we end up with the full
753 * chain to new block and return 0.
754 */
617ba13b 755static int ext4_splice_branch(handle_t *handle, struct inode *inode,
725d26d3 756 ext4_lblk_t block, Indirect *where, int num, int blks)
ac27a0ec
DK
757{
758 int i;
759 int err = 0;
617ba13b 760 ext4_fsblk_t current_block;
ac27a0ec 761
ac27a0ec
DK
762 /*
763 * If we're splicing into a [td]indirect block (as opposed to the
764 * inode) then we need to get write access to the [td]indirect block
765 * before the splice.
766 */
767 if (where->bh) {
768 BUFFER_TRACE(where->bh, "get_write_access");
617ba13b 769 err = ext4_journal_get_write_access(handle, where->bh);
ac27a0ec
DK
770 if (err)
771 goto err_out;
772 }
773 /* That's it */
774
775 *where->p = where->key;
776
777 /*
778 * Update the host buffer_head or inode to point to more just allocated
779 * direct blocks blocks
780 */
781 if (num == 0 && blks > 1) {
782 current_block = le32_to_cpu(where->key) + 1;
783 for (i = 1; i < blks; i++)
af5bc92d 784 *(where->p + i) = cpu_to_le32(current_block++);
ac27a0ec
DK
785 }
786
ac27a0ec
DK
787 /* We are done with atomic stuff, now do the rest of housekeeping */
788
ef7f3835 789 inode->i_ctime = ext4_current_time(inode);
617ba13b 790 ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
791
792 /* had we spliced it onto indirect block? */
793 if (where->bh) {
794 /*
795 * If we spliced it onto an indirect block, we haven't
796 * altered the inode. Note however that if it is being spliced
797 * onto an indirect block at the very end of the file (the
798 * file is growing) then we *will* alter the inode to reflect
799 * the new i_size. But that is not done here - it is done in
617ba13b 800 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
ac27a0ec
DK
801 */
802 jbd_debug(5, "splicing indirect only\n");
617ba13b
MC
803 BUFFER_TRACE(where->bh, "call ext4_journal_dirty_metadata");
804 err = ext4_journal_dirty_metadata(handle, where->bh);
ac27a0ec
DK
805 if (err)
806 goto err_out;
807 } else {
808 /*
809 * OK, we spliced it into the inode itself on a direct block.
810 * Inode was dirtied above.
811 */
812 jbd_debug(5, "splicing direct\n");
813 }
814 return err;
815
816err_out:
817 for (i = 1; i <= num; i++) {
dab291af 818 BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget");
617ba13b 819 ext4_journal_forget(handle, where[i].bh);
c9de560d
AT
820 ext4_free_blocks(handle, inode,
821 le32_to_cpu(where[i-1].key), 1, 0);
ac27a0ec 822 }
c9de560d 823 ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks, 0);
ac27a0ec
DK
824
825 return err;
826}
827
828/*
829 * Allocation strategy is simple: if we have to allocate something, we will
830 * have to go the whole way to leaf. So let's do it before attaching anything
831 * to tree, set linkage between the newborn blocks, write them if sync is
832 * required, recheck the path, free and repeat if check fails, otherwise
833 * set the last missing link (that will protect us from any truncate-generated
834 * removals - all blocks on the path are immune now) and possibly force the
835 * write on the parent block.
836 * That has a nice additional property: no special recovery from the failed
837 * allocations is needed - we simply release blocks and do not touch anything
838 * reachable from inode.
839 *
840 * `handle' can be NULL if create == 0.
841 *
ac27a0ec
DK
842 * return > 0, # of blocks mapped or allocated.
843 * return = 0, if plain lookup failed.
844 * return < 0, error case.
c278bfec
AK
845 *
846 *
847 * Need to be called with
0e855ac8
AK
848 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
849 * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
ac27a0ec 850 */
617ba13b 851int ext4_get_blocks_handle(handle_t *handle, struct inode *inode,
725d26d3 852 ext4_lblk_t iblock, unsigned long maxblocks,
ac27a0ec
DK
853 struct buffer_head *bh_result,
854 int create, int extend_disksize)
855{
856 int err = -EIO;
725d26d3 857 ext4_lblk_t offsets[4];
ac27a0ec
DK
858 Indirect chain[4];
859 Indirect *partial;
617ba13b 860 ext4_fsblk_t goal;
ac27a0ec
DK
861 int indirect_blks;
862 int blocks_to_boundary = 0;
863 int depth;
617ba13b 864 struct ext4_inode_info *ei = EXT4_I(inode);
ac27a0ec 865 int count = 0;
617ba13b 866 ext4_fsblk_t first_block = 0;
61628a3f 867 loff_t disksize;
ac27a0ec
DK
868
869
a86c6181 870 J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
ac27a0ec 871 J_ASSERT(handle != NULL || create == 0);
725d26d3
AK
872 depth = ext4_block_to_path(inode, iblock, offsets,
873 &blocks_to_boundary);
ac27a0ec
DK
874
875 if (depth == 0)
876 goto out;
877
617ba13b 878 partial = ext4_get_branch(inode, depth, offsets, chain, &err);
ac27a0ec
DK
879
880 /* Simplest case - block found, no allocation needed */
881 if (!partial) {
882 first_block = le32_to_cpu(chain[depth - 1].key);
883 clear_buffer_new(bh_result);
884 count++;
885 /*map more blocks*/
886 while (count < maxblocks && count <= blocks_to_boundary) {
617ba13b 887 ext4_fsblk_t blk;
ac27a0ec 888
ac27a0ec
DK
889 blk = le32_to_cpu(*(chain[depth-1].p + count));
890
891 if (blk == first_block + count)
892 count++;
893 else
894 break;
895 }
c278bfec 896 goto got_it;
ac27a0ec
DK
897 }
898
899 /* Next simple case - plain lookup or failed read of indirect block */
900 if (!create || err == -EIO)
901 goto cleanup;
902
ac27a0ec 903 /*
c2ea3fde 904 * Okay, we need to do block allocation.
ac27a0ec 905 */
fb01bfda 906 goal = ext4_find_goal(inode, iblock, partial);
ac27a0ec
DK
907
908 /* the number of blocks need to allocate for [d,t]indirect blocks */
909 indirect_blks = (chain + depth) - partial - 1;
910
911 /*
912 * Next look up the indirect map to count the totoal number of
913 * direct blocks to allocate for this branch.
914 */
617ba13b 915 count = ext4_blks_to_allocate(partial, indirect_blks,
ac27a0ec
DK
916 maxblocks, blocks_to_boundary);
917 /*
617ba13b 918 * Block out ext4_truncate while we alter the tree
ac27a0ec 919 */
7061eba7
AK
920 err = ext4_alloc_branch(handle, inode, iblock, indirect_blks,
921 &count, goal,
922 offsets + (partial - chain), partial);
ac27a0ec
DK
923
924 /*
617ba13b 925 * The ext4_splice_branch call will free and forget any buffers
ac27a0ec
DK
926 * on the new chain if there is a failure, but that risks using
927 * up transaction credits, especially for bitmaps where the
928 * credits cannot be returned. Can we handle this somehow? We
929 * may need to return -EAGAIN upwards in the worst case. --sct
930 */
931 if (!err)
617ba13b 932 err = ext4_splice_branch(handle, inode, iblock,
ac27a0ec
DK
933 partial, indirect_blks, count);
934 /*
0e855ac8 935 * i_disksize growing is protected by i_data_sem. Don't forget to
ac27a0ec 936 * protect it if you're about to implement concurrent
617ba13b 937 * ext4_get_block() -bzzz
ac27a0ec 938 */
61628a3f
MC
939 if (!err && extend_disksize) {
940 disksize = ((loff_t) iblock + count) << inode->i_blkbits;
941 if (disksize > i_size_read(inode))
942 disksize = i_size_read(inode);
943 if (disksize > ei->i_disksize)
944 ei->i_disksize = disksize;
945 }
ac27a0ec
DK
946 if (err)
947 goto cleanup;
948
949 set_buffer_new(bh_result);
950got_it:
951 map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
952 if (count > blocks_to_boundary)
953 set_buffer_boundary(bh_result);
954 err = count;
955 /* Clean up and exit */
956 partial = chain + depth - 1; /* the whole chain */
957cleanup:
958 while (partial > chain) {
959 BUFFER_TRACE(partial->bh, "call brelse");
960 brelse(partial->bh);
961 partial--;
962 }
963 BUFFER_TRACE(bh_result, "returned");
964out:
965 return err;
966}
967
12219aea
AK
968/*
969 * Calculate the number of metadata blocks need to reserve
970 * to allocate @blocks for non extent file based file
971 */
972static int ext4_indirect_calc_metadata_amount(struct inode *inode, int blocks)
973{
974 int icap = EXT4_ADDR_PER_BLOCK(inode->i_sb);
975 int ind_blks, dind_blks, tind_blks;
976
977 /* number of new indirect blocks needed */
978 ind_blks = (blocks + icap - 1) / icap;
979
980 dind_blks = (ind_blks + icap - 1) / icap;
981
982 tind_blks = 1;
983
984 return ind_blks + dind_blks + tind_blks;
985}
986
987/*
988 * Calculate the number of metadata blocks need to reserve
989 * to allocate given number of blocks
990 */
991static int ext4_calc_metadata_amount(struct inode *inode, int blocks)
992{
cd213226
MC
993 if (!blocks)
994 return 0;
995
12219aea
AK
996 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
997 return ext4_ext_calc_metadata_amount(inode, blocks);
998
999 return ext4_indirect_calc_metadata_amount(inode, blocks);
1000}
1001
1002static void ext4_da_update_reserve_space(struct inode *inode, int used)
1003{
1004 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1005 int total, mdb, mdb_free;
1006
1007 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1008 /* recalculate the number of metablocks still need to be reserved */
1009 total = EXT4_I(inode)->i_reserved_data_blocks - used;
1010 mdb = ext4_calc_metadata_amount(inode, total);
1011
1012 /* figure out how many metablocks to release */
1013 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1014 mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1015
6bc6e63f
AK
1016 if (mdb_free) {
1017 /* Account for allocated meta_blocks */
1018 mdb_free -= EXT4_I(inode)->i_allocated_meta_blocks;
1019
1020 /* update fs dirty blocks counter */
1021 percpu_counter_sub(&sbi->s_dirtyblocks_counter, mdb_free);
1022 EXT4_I(inode)->i_allocated_meta_blocks = 0;
1023 EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1024 }
12219aea
AK
1025
1026 /* update per-inode reservations */
1027 BUG_ON(used > EXT4_I(inode)->i_reserved_data_blocks);
1028 EXT4_I(inode)->i_reserved_data_blocks -= used;
1029
12219aea
AK
1030 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1031}
1032
f5ab0d1f 1033/*
2b2d6d01
TT
1034 * The ext4_get_blocks_wrap() function try to look up the requested blocks,
1035 * and returns if the blocks are already mapped.
f5ab0d1f 1036 *
f5ab0d1f
MC
1037 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
1038 * and store the allocated blocks in the result buffer head and mark it
1039 * mapped.
1040 *
1041 * If file type is extents based, it will call ext4_ext_get_blocks(),
1042 * Otherwise, call with ext4_get_blocks_handle() to handle indirect mapping
1043 * based files
1044 *
1045 * On success, it returns the number of blocks being mapped or allocate.
1046 * if create==0 and the blocks are pre-allocated and uninitialized block,
1047 * the result buffer head is unmapped. If the create ==1, it will make sure
1048 * the buffer head is mapped.
1049 *
1050 * It returns 0 if plain look up failed (blocks have not been allocated), in
1051 * that casem, buffer head is unmapped
1052 *
1053 * It returns the error in case of allocation failure.
1054 */
0e855ac8
AK
1055int ext4_get_blocks_wrap(handle_t *handle, struct inode *inode, sector_t block,
1056 unsigned long max_blocks, struct buffer_head *bh,
d2a17637 1057 int create, int extend_disksize, int flag)
0e855ac8
AK
1058{
1059 int retval;
f5ab0d1f
MC
1060
1061 clear_buffer_mapped(bh);
1062
4df3d265
AK
1063 /*
1064 * Try to see if we can get the block without requesting
1065 * for new file system block.
1066 */
1067 down_read((&EXT4_I(inode)->i_data_sem));
1068 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1069 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks,
1070 bh, 0, 0);
0e855ac8 1071 } else {
4df3d265
AK
1072 retval = ext4_get_blocks_handle(handle,
1073 inode, block, max_blocks, bh, 0, 0);
0e855ac8 1074 }
4df3d265 1075 up_read((&EXT4_I(inode)->i_data_sem));
f5ab0d1f
MC
1076
1077 /* If it is only a block(s) look up */
1078 if (!create)
1079 return retval;
1080
1081 /*
1082 * Returns if the blocks have already allocated
1083 *
1084 * Note that if blocks have been preallocated
1085 * ext4_ext_get_block() returns th create = 0
1086 * with buffer head unmapped.
1087 */
1088 if (retval > 0 && buffer_mapped(bh))
4df3d265
AK
1089 return retval;
1090
1091 /*
f5ab0d1f
MC
1092 * New blocks allocate and/or writing to uninitialized extent
1093 * will possibly result in updating i_data, so we take
1094 * the write lock of i_data_sem, and call get_blocks()
1095 * with create == 1 flag.
4df3d265
AK
1096 */
1097 down_write((&EXT4_I(inode)->i_data_sem));
d2a17637
MC
1098
1099 /*
1100 * if the caller is from delayed allocation writeout path
1101 * we have already reserved fs blocks for allocation
1102 * let the underlying get_block() function know to
1103 * avoid double accounting
1104 */
1105 if (flag)
1106 EXT4_I(inode)->i_delalloc_reserved_flag = 1;
4df3d265
AK
1107 /*
1108 * We need to check for EXT4 here because migrate
1109 * could have changed the inode type in between
1110 */
0e855ac8
AK
1111 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1112 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks,
1113 bh, create, extend_disksize);
1114 } else {
1115 retval = ext4_get_blocks_handle(handle, inode, block,
1116 max_blocks, bh, create, extend_disksize);
267e4db9
AK
1117
1118 if (retval > 0 && buffer_new(bh)) {
1119 /*
1120 * We allocated new blocks which will result in
1121 * i_data's format changing. Force the migrate
1122 * to fail by clearing migrate flags
1123 */
1124 EXT4_I(inode)->i_flags = EXT4_I(inode)->i_flags &
1125 ~EXT4_EXT_MIGRATE;
1126 }
0e855ac8 1127 }
d2a17637
MC
1128
1129 if (flag) {
1130 EXT4_I(inode)->i_delalloc_reserved_flag = 0;
1131 /*
1132 * Update reserved blocks/metadata blocks
1133 * after successful block allocation
1134 * which were deferred till now
1135 */
1136 if ((retval > 0) && buffer_delay(bh))
12219aea 1137 ext4_da_update_reserve_space(inode, retval);
d2a17637
MC
1138 }
1139
4df3d265 1140 up_write((&EXT4_I(inode)->i_data_sem));
0e855ac8
AK
1141 return retval;
1142}
1143
f3bd1f3f
MC
1144/* Maximum number of blocks we map for direct IO at once. */
1145#define DIO_MAX_BLOCKS 4096
1146
6873fa0d
ES
1147int ext4_get_block(struct inode *inode, sector_t iblock,
1148 struct buffer_head *bh_result, int create)
ac27a0ec 1149{
3e4fdaf8 1150 handle_t *handle = ext4_journal_current_handle();
7fb5409d 1151 int ret = 0, started = 0;
ac27a0ec 1152 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
f3bd1f3f 1153 int dio_credits;
ac27a0ec 1154
7fb5409d
JK
1155 if (create && !handle) {
1156 /* Direct IO write... */
1157 if (max_blocks > DIO_MAX_BLOCKS)
1158 max_blocks = DIO_MAX_BLOCKS;
f3bd1f3f
MC
1159 dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
1160 handle = ext4_journal_start(inode, dio_credits);
7fb5409d 1161 if (IS_ERR(handle)) {
ac27a0ec 1162 ret = PTR_ERR(handle);
7fb5409d 1163 goto out;
ac27a0ec 1164 }
7fb5409d 1165 started = 1;
ac27a0ec
DK
1166 }
1167
7fb5409d 1168 ret = ext4_get_blocks_wrap(handle, inode, iblock,
d2a17637 1169 max_blocks, bh_result, create, 0, 0);
7fb5409d
JK
1170 if (ret > 0) {
1171 bh_result->b_size = (ret << inode->i_blkbits);
1172 ret = 0;
ac27a0ec 1173 }
7fb5409d
JK
1174 if (started)
1175 ext4_journal_stop(handle);
1176out:
ac27a0ec
DK
1177 return ret;
1178}
1179
1180/*
1181 * `handle' can be NULL if create is zero
1182 */
617ba13b 1183struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
725d26d3 1184 ext4_lblk_t block, int create, int *errp)
ac27a0ec
DK
1185{
1186 struct buffer_head dummy;
1187 int fatal = 0, err;
1188
1189 J_ASSERT(handle != NULL || create == 0);
1190
1191 dummy.b_state = 0;
1192 dummy.b_blocknr = -1000;
1193 buffer_trace_init(&dummy.b_history);
a86c6181 1194 err = ext4_get_blocks_wrap(handle, inode, block, 1,
d2a17637 1195 &dummy, create, 1, 0);
ac27a0ec 1196 /*
617ba13b 1197 * ext4_get_blocks_handle() returns number of blocks
ac27a0ec
DK
1198 * mapped. 0 in case of a HOLE.
1199 */
1200 if (err > 0) {
1201 if (err > 1)
1202 WARN_ON(1);
1203 err = 0;
1204 }
1205 *errp = err;
1206 if (!err && buffer_mapped(&dummy)) {
1207 struct buffer_head *bh;
1208 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1209 if (!bh) {
1210 *errp = -EIO;
1211 goto err;
1212 }
1213 if (buffer_new(&dummy)) {
1214 J_ASSERT(create != 0);
ac39849d 1215 J_ASSERT(handle != NULL);
ac27a0ec
DK
1216
1217 /*
1218 * Now that we do not always journal data, we should
1219 * keep in mind whether this should always journal the
1220 * new buffer as metadata. For now, regular file
617ba13b 1221 * writes use ext4_get_block instead, so it's not a
ac27a0ec
DK
1222 * problem.
1223 */
1224 lock_buffer(bh);
1225 BUFFER_TRACE(bh, "call get_create_access");
617ba13b 1226 fatal = ext4_journal_get_create_access(handle, bh);
ac27a0ec 1227 if (!fatal && !buffer_uptodate(bh)) {
af5bc92d 1228 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
ac27a0ec
DK
1229 set_buffer_uptodate(bh);
1230 }
1231 unlock_buffer(bh);
617ba13b
MC
1232 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
1233 err = ext4_journal_dirty_metadata(handle, bh);
ac27a0ec
DK
1234 if (!fatal)
1235 fatal = err;
1236 } else {
1237 BUFFER_TRACE(bh, "not a new buffer");
1238 }
1239 if (fatal) {
1240 *errp = fatal;
1241 brelse(bh);
1242 bh = NULL;
1243 }
1244 return bh;
1245 }
1246err:
1247 return NULL;
1248}
1249
617ba13b 1250struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
725d26d3 1251 ext4_lblk_t block, int create, int *err)
ac27a0ec 1252{
af5bc92d 1253 struct buffer_head *bh;
ac27a0ec 1254
617ba13b 1255 bh = ext4_getblk(handle, inode, block, create, err);
ac27a0ec
DK
1256 if (!bh)
1257 return bh;
1258 if (buffer_uptodate(bh))
1259 return bh;
1260 ll_rw_block(READ_META, 1, &bh);
1261 wait_on_buffer(bh);
1262 if (buffer_uptodate(bh))
1263 return bh;
1264 put_bh(bh);
1265 *err = -EIO;
1266 return NULL;
1267}
1268
af5bc92d
TT
1269static int walk_page_buffers(handle_t *handle,
1270 struct buffer_head *head,
1271 unsigned from,
1272 unsigned to,
1273 int *partial,
1274 int (*fn)(handle_t *handle,
1275 struct buffer_head *bh))
ac27a0ec
DK
1276{
1277 struct buffer_head *bh;
1278 unsigned block_start, block_end;
1279 unsigned blocksize = head->b_size;
1280 int err, ret = 0;
1281 struct buffer_head *next;
1282
af5bc92d
TT
1283 for (bh = head, block_start = 0;
1284 ret == 0 && (bh != head || !block_start);
1285 block_start = block_end, bh = next)
ac27a0ec
DK
1286 {
1287 next = bh->b_this_page;
1288 block_end = block_start + blocksize;
1289 if (block_end <= from || block_start >= to) {
1290 if (partial && !buffer_uptodate(bh))
1291 *partial = 1;
1292 continue;
1293 }
1294 err = (*fn)(handle, bh);
1295 if (!ret)
1296 ret = err;
1297 }
1298 return ret;
1299}
1300
1301/*
1302 * To preserve ordering, it is essential that the hole instantiation and
1303 * the data write be encapsulated in a single transaction. We cannot
617ba13b 1304 * close off a transaction and start a new one between the ext4_get_block()
dab291af 1305 * and the commit_write(). So doing the jbd2_journal_start at the start of
ac27a0ec
DK
1306 * prepare_write() is the right place.
1307 *
617ba13b
MC
1308 * Also, this function can nest inside ext4_writepage() ->
1309 * block_write_full_page(). In that case, we *know* that ext4_writepage()
ac27a0ec
DK
1310 * has generated enough buffer credits to do the whole page. So we won't
1311 * block on the journal in that case, which is good, because the caller may
1312 * be PF_MEMALLOC.
1313 *
617ba13b 1314 * By accident, ext4 can be reentered when a transaction is open via
ac27a0ec
DK
1315 * quota file writes. If we were to commit the transaction while thus
1316 * reentered, there can be a deadlock - we would be holding a quota
1317 * lock, and the commit would never complete if another thread had a
1318 * transaction open and was blocking on the quota lock - a ranking
1319 * violation.
1320 *
dab291af 1321 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
ac27a0ec
DK
1322 * will _not_ run commit under these circumstances because handle->h_ref
1323 * is elevated. We'll still have enough credits for the tiny quotafile
1324 * write.
1325 */
1326static int do_journal_get_write_access(handle_t *handle,
1327 struct buffer_head *bh)
1328{
1329 if (!buffer_mapped(bh) || buffer_freed(bh))
1330 return 0;
617ba13b 1331 return ext4_journal_get_write_access(handle, bh);
ac27a0ec
DK
1332}
1333
bfc1af65
NP
1334static int ext4_write_begin(struct file *file, struct address_space *mapping,
1335 loff_t pos, unsigned len, unsigned flags,
1336 struct page **pagep, void **fsdata)
ac27a0ec 1337{
af5bc92d 1338 struct inode *inode = mapping->host;
7479d2b9 1339 int ret, needed_blocks = ext4_writepage_trans_blocks(inode);
ac27a0ec
DK
1340 handle_t *handle;
1341 int retries = 0;
af5bc92d 1342 struct page *page;
bfc1af65 1343 pgoff_t index;
af5bc92d 1344 unsigned from, to;
bfc1af65
NP
1345
1346 index = pos >> PAGE_CACHE_SHIFT;
af5bc92d
TT
1347 from = pos & (PAGE_CACHE_SIZE - 1);
1348 to = from + len;
ac27a0ec
DK
1349
1350retry:
af5bc92d
TT
1351 handle = ext4_journal_start(inode, needed_blocks);
1352 if (IS_ERR(handle)) {
1353 ret = PTR_ERR(handle);
1354 goto out;
7479d2b9 1355 }
ac27a0ec 1356
54566b2c 1357 page = grab_cache_page_write_begin(mapping, index, flags);
cf108bca
JK
1358 if (!page) {
1359 ext4_journal_stop(handle);
1360 ret = -ENOMEM;
1361 goto out;
1362 }
1363 *pagep = page;
1364
bfc1af65
NP
1365 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
1366 ext4_get_block);
1367
1368 if (!ret && ext4_should_journal_data(inode)) {
ac27a0ec
DK
1369 ret = walk_page_buffers(handle, page_buffers(page),
1370 from, to, NULL, do_journal_get_write_access);
1371 }
bfc1af65
NP
1372
1373 if (ret) {
af5bc92d 1374 unlock_page(page);
cf108bca 1375 ext4_journal_stop(handle);
af5bc92d 1376 page_cache_release(page);
ae4d5372
AK
1377 /*
1378 * block_write_begin may have instantiated a few blocks
1379 * outside i_size. Trim these off again. Don't need
1380 * i_size_read because we hold i_mutex.
1381 */
1382 if (pos + len > inode->i_size)
1383 vmtruncate(inode, inode->i_size);
bfc1af65
NP
1384 }
1385
617ba13b 1386 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
ac27a0ec 1387 goto retry;
7479d2b9 1388out:
ac27a0ec
DK
1389 return ret;
1390}
1391
bfc1af65
NP
1392/* For write_end() in data=journal mode */
1393static int write_end_fn(handle_t *handle, struct buffer_head *bh)
ac27a0ec
DK
1394{
1395 if (!buffer_mapped(bh) || buffer_freed(bh))
1396 return 0;
1397 set_buffer_uptodate(bh);
617ba13b 1398 return ext4_journal_dirty_metadata(handle, bh);
ac27a0ec
DK
1399}
1400
1401/*
1402 * We need to pick up the new inode size which generic_commit_write gave us
1403 * `file' can be NULL - eg, when called from page_symlink().
1404 *
617ba13b 1405 * ext4 never places buffers on inode->i_mapping->private_list. metadata
ac27a0ec
DK
1406 * buffers are managed internally.
1407 */
bfc1af65
NP
1408static int ext4_ordered_write_end(struct file *file,
1409 struct address_space *mapping,
1410 loff_t pos, unsigned len, unsigned copied,
1411 struct page *page, void *fsdata)
ac27a0ec 1412{
617ba13b 1413 handle_t *handle = ext4_journal_current_handle();
cf108bca 1414 struct inode *inode = mapping->host;
ac27a0ec
DK
1415 int ret = 0, ret2;
1416
678aaf48 1417 ret = ext4_jbd2_file_inode(handle, inode);
ac27a0ec
DK
1418
1419 if (ret == 0) {
ac27a0ec
DK
1420 loff_t new_i_size;
1421
bfc1af65 1422 new_i_size = pos + copied;
cf17fea6
AK
1423 if (new_i_size > EXT4_I(inode)->i_disksize) {
1424 ext4_update_i_disksize(inode, new_i_size);
1425 /* We need to mark inode dirty even if
1426 * new_i_size is less that inode->i_size
1427 * bu greater than i_disksize.(hint delalloc)
1428 */
1429 ext4_mark_inode_dirty(handle, inode);
1430 }
1431
cf108bca 1432 ret2 = generic_write_end(file, mapping, pos, len, copied,
bfc1af65 1433 page, fsdata);
f8a87d89
RK
1434 copied = ret2;
1435 if (ret2 < 0)
1436 ret = ret2;
ac27a0ec 1437 }
617ba13b 1438 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1439 if (!ret)
1440 ret = ret2;
bfc1af65
NP
1441
1442 return ret ? ret : copied;
ac27a0ec
DK
1443}
1444
bfc1af65
NP
1445static int ext4_writeback_write_end(struct file *file,
1446 struct address_space *mapping,
1447 loff_t pos, unsigned len, unsigned copied,
1448 struct page *page, void *fsdata)
ac27a0ec 1449{
617ba13b 1450 handle_t *handle = ext4_journal_current_handle();
cf108bca 1451 struct inode *inode = mapping->host;
ac27a0ec
DK
1452 int ret = 0, ret2;
1453 loff_t new_i_size;
1454
bfc1af65 1455 new_i_size = pos + copied;
cf17fea6
AK
1456 if (new_i_size > EXT4_I(inode)->i_disksize) {
1457 ext4_update_i_disksize(inode, new_i_size);
1458 /* We need to mark inode dirty even if
1459 * new_i_size is less that inode->i_size
1460 * bu greater than i_disksize.(hint delalloc)
1461 */
1462 ext4_mark_inode_dirty(handle, inode);
1463 }
ac27a0ec 1464
cf108bca 1465 ret2 = generic_write_end(file, mapping, pos, len, copied,
bfc1af65 1466 page, fsdata);
f8a87d89
RK
1467 copied = ret2;
1468 if (ret2 < 0)
1469 ret = ret2;
ac27a0ec 1470
617ba13b 1471 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1472 if (!ret)
1473 ret = ret2;
bfc1af65
NP
1474
1475 return ret ? ret : copied;
ac27a0ec
DK
1476}
1477
bfc1af65
NP
1478static int ext4_journalled_write_end(struct file *file,
1479 struct address_space *mapping,
1480 loff_t pos, unsigned len, unsigned copied,
1481 struct page *page, void *fsdata)
ac27a0ec 1482{
617ba13b 1483 handle_t *handle = ext4_journal_current_handle();
bfc1af65 1484 struct inode *inode = mapping->host;
ac27a0ec
DK
1485 int ret = 0, ret2;
1486 int partial = 0;
bfc1af65 1487 unsigned from, to;
cf17fea6 1488 loff_t new_i_size;
ac27a0ec 1489
bfc1af65
NP
1490 from = pos & (PAGE_CACHE_SIZE - 1);
1491 to = from + len;
1492
1493 if (copied < len) {
1494 if (!PageUptodate(page))
1495 copied = 0;
1496 page_zero_new_buffers(page, from+copied, to);
1497 }
ac27a0ec
DK
1498
1499 ret = walk_page_buffers(handle, page_buffers(page), from,
bfc1af65 1500 to, &partial, write_end_fn);
ac27a0ec
DK
1501 if (!partial)
1502 SetPageUptodate(page);
cf17fea6
AK
1503 new_i_size = pos + copied;
1504 if (new_i_size > inode->i_size)
bfc1af65 1505 i_size_write(inode, pos+copied);
617ba13b 1506 EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
cf17fea6
AK
1507 if (new_i_size > EXT4_I(inode)->i_disksize) {
1508 ext4_update_i_disksize(inode, new_i_size);
617ba13b 1509 ret2 = ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
1510 if (!ret)
1511 ret = ret2;
1512 }
bfc1af65 1513
cf108bca 1514 unlock_page(page);
617ba13b 1515 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1516 if (!ret)
1517 ret = ret2;
bfc1af65
NP
1518 page_cache_release(page);
1519
1520 return ret ? ret : copied;
ac27a0ec 1521}
d2a17637
MC
1522
1523static int ext4_da_reserve_space(struct inode *inode, int nrblocks)
1524{
030ba6bc 1525 int retries = 0;
d2a17637
MC
1526 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1527 unsigned long md_needed, mdblocks, total = 0;
1528
1529 /*
1530 * recalculate the amount of metadata blocks to reserve
1531 * in order to allocate nrblocks
1532 * worse case is one extent per block
1533 */
030ba6bc 1534repeat:
d2a17637
MC
1535 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1536 total = EXT4_I(inode)->i_reserved_data_blocks + nrblocks;
1537 mdblocks = ext4_calc_metadata_amount(inode, total);
1538 BUG_ON(mdblocks < EXT4_I(inode)->i_reserved_meta_blocks);
1539
1540 md_needed = mdblocks - EXT4_I(inode)->i_reserved_meta_blocks;
1541 total = md_needed + nrblocks;
1542
a30d542a 1543 if (ext4_claim_free_blocks(sbi, total)) {
d2a17637 1544 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
030ba6bc
AK
1545 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1546 yield();
1547 goto repeat;
1548 }
d2a17637
MC
1549 return -ENOSPC;
1550 }
d2a17637
MC
1551 EXT4_I(inode)->i_reserved_data_blocks += nrblocks;
1552 EXT4_I(inode)->i_reserved_meta_blocks = mdblocks;
1553
1554 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1555 return 0; /* success */
1556}
1557
12219aea 1558static void ext4_da_release_space(struct inode *inode, int to_free)
d2a17637
MC
1559{
1560 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1561 int total, mdb, mdb_free, release;
1562
cd213226
MC
1563 if (!to_free)
1564 return; /* Nothing to release, exit */
1565
d2a17637 1566 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
cd213226
MC
1567
1568 if (!EXT4_I(inode)->i_reserved_data_blocks) {
1569 /*
1570 * if there is no reserved blocks, but we try to free some
1571 * then the counter is messed up somewhere.
1572 * but since this function is called from invalidate
1573 * page, it's harmless to return without any action
1574 */
1575 printk(KERN_INFO "ext4 delalloc try to release %d reserved "
1576 "blocks for inode %lu, but there is no reserved "
1577 "data blocks\n", to_free, inode->i_ino);
1578 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1579 return;
1580 }
1581
d2a17637 1582 /* recalculate the number of metablocks still need to be reserved */
12219aea 1583 total = EXT4_I(inode)->i_reserved_data_blocks - to_free;
d2a17637
MC
1584 mdb = ext4_calc_metadata_amount(inode, total);
1585
1586 /* figure out how many metablocks to release */
1587 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1588 mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1589
d2a17637
MC
1590 release = to_free + mdb_free;
1591
6bc6e63f
AK
1592 /* update fs dirty blocks counter for truncate case */
1593 percpu_counter_sub(&sbi->s_dirtyblocks_counter, release);
d2a17637
MC
1594
1595 /* update per-inode reservations */
12219aea
AK
1596 BUG_ON(to_free > EXT4_I(inode)->i_reserved_data_blocks);
1597 EXT4_I(inode)->i_reserved_data_blocks -= to_free;
d2a17637
MC
1598
1599 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1600 EXT4_I(inode)->i_reserved_meta_blocks = mdb;
d2a17637
MC
1601 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1602}
1603
1604static void ext4_da_page_release_reservation(struct page *page,
1605 unsigned long offset)
1606{
1607 int to_release = 0;
1608 struct buffer_head *head, *bh;
1609 unsigned int curr_off = 0;
1610
1611 head = page_buffers(page);
1612 bh = head;
1613 do {
1614 unsigned int next_off = curr_off + bh->b_size;
1615
1616 if ((offset <= curr_off) && (buffer_delay(bh))) {
1617 to_release++;
1618 clear_buffer_delay(bh);
1619 }
1620 curr_off = next_off;
1621 } while ((bh = bh->b_this_page) != head);
12219aea 1622 ext4_da_release_space(page->mapping->host, to_release);
d2a17637 1623}
ac27a0ec 1624
64769240
AT
1625/*
1626 * Delayed allocation stuff
1627 */
1628
1629struct mpage_da_data {
1630 struct inode *inode;
1631 struct buffer_head lbh; /* extent of blocks */
1632 unsigned long first_page, next_page; /* extent of pages */
1633 get_block_t *get_block;
1634 struct writeback_control *wbc;
a1d6cc56
AK
1635 int io_done;
1636 long pages_written;
df22291f 1637 int retval;
64769240
AT
1638};
1639
1640/*
1641 * mpage_da_submit_io - walks through extent of pages and try to write
a1d6cc56 1642 * them with writepage() call back
64769240
AT
1643 *
1644 * @mpd->inode: inode
1645 * @mpd->first_page: first page of the extent
1646 * @mpd->next_page: page after the last page of the extent
1647 * @mpd->get_block: the filesystem's block mapper function
1648 *
1649 * By the time mpage_da_submit_io() is called we expect all blocks
1650 * to be allocated. this may be wrong if allocation failed.
1651 *
1652 * As pages are already locked by write_cache_pages(), we can't use it
1653 */
1654static int mpage_da_submit_io(struct mpage_da_data *mpd)
1655{
1656 struct address_space *mapping = mpd->inode->i_mapping;
64769240
AT
1657 int ret = 0, err, nr_pages, i;
1658 unsigned long index, end;
1659 struct pagevec pvec;
22208ded 1660 long pages_skipped;
64769240
AT
1661
1662 BUG_ON(mpd->next_page <= mpd->first_page);
64769240
AT
1663 pagevec_init(&pvec, 0);
1664 index = mpd->first_page;
1665 end = mpd->next_page - 1;
1666
1667 while (index <= end) {
af6f029d
AK
1668 /*
1669 * We can use PAGECACHE_TAG_DIRTY lookup here because
1670 * even though we have cleared the dirty flag on the page
1671 * We still keep the page in the radix tree with tag
1672 * PAGECACHE_TAG_DIRTY. See clear_page_dirty_for_io.
1673 * The PAGECACHE_TAG_DIRTY is cleared in set_page_writeback
1674 * which is called via the below writepage callback.
1675 */
1676 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
1677 PAGECACHE_TAG_DIRTY,
1678 min(end - index,
1679 (pgoff_t)PAGEVEC_SIZE-1) + 1);
64769240
AT
1680 if (nr_pages == 0)
1681 break;
1682 for (i = 0; i < nr_pages; i++) {
1683 struct page *page = pvec.pages[i];
1684
22208ded 1685 pages_skipped = mpd->wbc->pages_skipped;
a1d6cc56 1686 err = mapping->a_ops->writepage(page, mpd->wbc);
22208ded
AK
1687 if (!err && (pages_skipped == mpd->wbc->pages_skipped))
1688 /*
1689 * have successfully written the page
1690 * without skipping the same
1691 */
a1d6cc56 1692 mpd->pages_written++;
64769240
AT
1693 /*
1694 * In error case, we have to continue because
1695 * remaining pages are still locked
1696 * XXX: unlock and re-dirty them?
1697 */
1698 if (ret == 0)
1699 ret = err;
1700 }
1701 pagevec_release(&pvec);
1702 }
64769240
AT
1703 return ret;
1704}
1705
1706/*
1707 * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
1708 *
1709 * @mpd->inode - inode to walk through
1710 * @exbh->b_blocknr - first block on a disk
1711 * @exbh->b_size - amount of space in bytes
1712 * @logical - first logical block to start assignment with
1713 *
1714 * the function goes through all passed space and put actual disk
1715 * block numbers into buffer heads, dropping BH_Delay
1716 */
1717static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd, sector_t logical,
1718 struct buffer_head *exbh)
1719{
1720 struct inode *inode = mpd->inode;
1721 struct address_space *mapping = inode->i_mapping;
1722 int blocks = exbh->b_size >> inode->i_blkbits;
1723 sector_t pblock = exbh->b_blocknr, cur_logical;
1724 struct buffer_head *head, *bh;
a1d6cc56 1725 pgoff_t index, end;
64769240
AT
1726 struct pagevec pvec;
1727 int nr_pages, i;
1728
1729 index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1730 end = (logical + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1731 cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1732
1733 pagevec_init(&pvec, 0);
1734
1735 while (index <= end) {
1736 /* XXX: optimize tail */
1737 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1738 if (nr_pages == 0)
1739 break;
1740 for (i = 0; i < nr_pages; i++) {
1741 struct page *page = pvec.pages[i];
1742
1743 index = page->index;
1744 if (index > end)
1745 break;
1746 index++;
1747
1748 BUG_ON(!PageLocked(page));
1749 BUG_ON(PageWriteback(page));
1750 BUG_ON(!page_has_buffers(page));
1751
1752 bh = page_buffers(page);
1753 head = bh;
1754
1755 /* skip blocks out of the range */
1756 do {
1757 if (cur_logical >= logical)
1758 break;
1759 cur_logical++;
1760 } while ((bh = bh->b_this_page) != head);
1761
1762 do {
1763 if (cur_logical >= logical + blocks)
1764 break;
64769240
AT
1765 if (buffer_delay(bh)) {
1766 bh->b_blocknr = pblock;
1767 clear_buffer_delay(bh);
bf068ee2
AK
1768 bh->b_bdev = inode->i_sb->s_bdev;
1769 } else if (buffer_unwritten(bh)) {
1770 bh->b_blocknr = pblock;
1771 clear_buffer_unwritten(bh);
1772 set_buffer_mapped(bh);
1773 set_buffer_new(bh);
1774 bh->b_bdev = inode->i_sb->s_bdev;
61628a3f 1775 } else if (buffer_mapped(bh))
64769240 1776 BUG_ON(bh->b_blocknr != pblock);
64769240
AT
1777
1778 cur_logical++;
1779 pblock++;
1780 } while ((bh = bh->b_this_page) != head);
1781 }
1782 pagevec_release(&pvec);
1783 }
1784}
1785
1786
1787/*
1788 * __unmap_underlying_blocks - just a helper function to unmap
1789 * set of blocks described by @bh
1790 */
1791static inline void __unmap_underlying_blocks(struct inode *inode,
1792 struct buffer_head *bh)
1793{
1794 struct block_device *bdev = inode->i_sb->s_bdev;
1795 int blocks, i;
1796
1797 blocks = bh->b_size >> inode->i_blkbits;
1798 for (i = 0; i < blocks; i++)
1799 unmap_underlying_metadata(bdev, bh->b_blocknr + i);
1800}
1801
c4a0c46e
AK
1802static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd,
1803 sector_t logical, long blk_cnt)
1804{
1805 int nr_pages, i;
1806 pgoff_t index, end;
1807 struct pagevec pvec;
1808 struct inode *inode = mpd->inode;
1809 struct address_space *mapping = inode->i_mapping;
1810
1811 index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1812 end = (logical + blk_cnt - 1) >>
1813 (PAGE_CACHE_SHIFT - inode->i_blkbits);
1814 while (index <= end) {
1815 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1816 if (nr_pages == 0)
1817 break;
1818 for (i = 0; i < nr_pages; i++) {
1819 struct page *page = pvec.pages[i];
1820 index = page->index;
1821 if (index > end)
1822 break;
1823 index++;
1824
1825 BUG_ON(!PageLocked(page));
1826 BUG_ON(PageWriteback(page));
1827 block_invalidatepage(page, 0);
1828 ClearPageUptodate(page);
1829 unlock_page(page);
1830 }
1831 }
1832 return;
1833}
1834
df22291f
AK
1835static void ext4_print_free_blocks(struct inode *inode)
1836{
1837 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1838 printk(KERN_EMERG "Total free blocks count %lld\n",
1839 ext4_count_free_blocks(inode->i_sb));
1840 printk(KERN_EMERG "Free/Dirty block details\n");
1841 printk(KERN_EMERG "free_blocks=%lld\n",
8f72fbdf 1842 (long long)percpu_counter_sum(&sbi->s_freeblocks_counter));
df22291f 1843 printk(KERN_EMERG "dirty_blocks=%lld\n",
8f72fbdf 1844 (long long)percpu_counter_sum(&sbi->s_dirtyblocks_counter));
df22291f
AK
1845 printk(KERN_EMERG "Block reservation details\n");
1846 printk(KERN_EMERG "i_reserved_data_blocks=%lu\n",
1847 EXT4_I(inode)->i_reserved_data_blocks);
1848 printk(KERN_EMERG "i_reserved_meta_blocks=%lu\n",
1849 EXT4_I(inode)->i_reserved_meta_blocks);
1850 return;
1851}
1852
64769240
AT
1853/*
1854 * mpage_da_map_blocks - go through given space
1855 *
1856 * @mpd->lbh - bh describing space
1857 * @mpd->get_block - the filesystem's block mapper function
1858 *
1859 * The function skips space we know is already mapped to disk blocks.
1860 *
64769240 1861 */
c4a0c46e 1862static int mpage_da_map_blocks(struct mpage_da_data *mpd)
64769240 1863{
a1d6cc56 1864 int err = 0;
030ba6bc 1865 struct buffer_head new;
64769240 1866 struct buffer_head *lbh = &mpd->lbh;
df22291f 1867 sector_t next;
64769240
AT
1868
1869 /*
1870 * We consider only non-mapped and non-allocated blocks
1871 */
1872 if (buffer_mapped(lbh) && !buffer_delay(lbh))
c4a0c46e 1873 return 0;
a1d6cc56
AK
1874 new.b_state = lbh->b_state;
1875 new.b_blocknr = 0;
1876 new.b_size = lbh->b_size;
df22291f 1877 next = lbh->b_blocknr;
a1d6cc56
AK
1878 /*
1879 * If we didn't accumulate anything
1880 * to write simply return
1881 */
1882 if (!new.b_size)
c4a0c46e 1883 return 0;
a1d6cc56 1884 err = mpd->get_block(mpd->inode, next, &new, 1);
c4a0c46e
AK
1885 if (err) {
1886
1887 /* If get block returns with error
1888 * we simply return. Later writepage
1889 * will redirty the page and writepages
1890 * will find the dirty page again
1891 */
1892 if (err == -EAGAIN)
1893 return 0;
df22291f
AK
1894
1895 if (err == -ENOSPC &&
1896 ext4_count_free_blocks(mpd->inode->i_sb)) {
1897 mpd->retval = err;
1898 return 0;
1899 }
1900
c4a0c46e
AK
1901 /*
1902 * get block failure will cause us
1903 * to loop in writepages. Because
1904 * a_ops->writepage won't be able to
1905 * make progress. The page will be redirtied
1906 * by writepage and writepages will again
1907 * try to write the same.
1908 */
1909 printk(KERN_EMERG "%s block allocation failed for inode %lu "
1910 "at logical offset %llu with max blocks "
1911 "%zd with error %d\n",
1912 __func__, mpd->inode->i_ino,
1913 (unsigned long long)next,
1914 lbh->b_size >> mpd->inode->i_blkbits, err);
1915 printk(KERN_EMERG "This should not happen.!! "
1916 "Data will be lost\n");
030ba6bc 1917 if (err == -ENOSPC) {
df22291f 1918 ext4_print_free_blocks(mpd->inode);
030ba6bc 1919 }
c4a0c46e
AK
1920 /* invlaidate all the pages */
1921 ext4_da_block_invalidatepages(mpd, next,
1922 lbh->b_size >> mpd->inode->i_blkbits);
1923 return err;
1924 }
a1d6cc56 1925 BUG_ON(new.b_size == 0);
64769240 1926
a1d6cc56
AK
1927 if (buffer_new(&new))
1928 __unmap_underlying_blocks(mpd->inode, &new);
64769240 1929
a1d6cc56
AK
1930 /*
1931 * If blocks are delayed marked, we need to
1932 * put actual blocknr and drop delayed bit
1933 */
1934 if (buffer_delay(lbh) || buffer_unwritten(lbh))
1935 mpage_put_bnr_to_bhs(mpd, next, &new);
64769240 1936
c4a0c46e 1937 return 0;
64769240
AT
1938}
1939
bf068ee2
AK
1940#define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
1941 (1 << BH_Delay) | (1 << BH_Unwritten))
64769240
AT
1942
1943/*
1944 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
1945 *
1946 * @mpd->lbh - extent of blocks
1947 * @logical - logical number of the block in the file
1948 * @bh - bh of the block (used to access block's state)
1949 *
1950 * the function is used to collect contig. blocks in same state
1951 */
1952static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
1953 sector_t logical, struct buffer_head *bh)
1954{
64769240 1955 sector_t next;
525f4ed8
MC
1956 size_t b_size = bh->b_size;
1957 struct buffer_head *lbh = &mpd->lbh;
1958 int nrblocks = lbh->b_size >> mpd->inode->i_blkbits;
64769240 1959
525f4ed8
MC
1960 /* check if thereserved journal credits might overflow */
1961 if (!(EXT4_I(mpd->inode)->i_flags & EXT4_EXTENTS_FL)) {
1962 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
1963 /*
1964 * With non-extent format we are limited by the journal
1965 * credit available. Total credit needed to insert
1966 * nrblocks contiguous blocks is dependent on the
1967 * nrblocks. So limit nrblocks.
1968 */
1969 goto flush_it;
1970 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
1971 EXT4_MAX_TRANS_DATA) {
1972 /*
1973 * Adding the new buffer_head would make it cross the
1974 * allowed limit for which we have journal credit
1975 * reserved. So limit the new bh->b_size
1976 */
1977 b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
1978 mpd->inode->i_blkbits;
1979 /* we will do mpage_da_submit_io in the next loop */
1980 }
1981 }
64769240
AT
1982 /*
1983 * First block in the extent
1984 */
1985 if (lbh->b_size == 0) {
1986 lbh->b_blocknr = logical;
525f4ed8 1987 lbh->b_size = b_size;
64769240
AT
1988 lbh->b_state = bh->b_state & BH_FLAGS;
1989 return;
1990 }
1991
525f4ed8 1992 next = lbh->b_blocknr + nrblocks;
64769240
AT
1993 /*
1994 * Can we merge the block to our big extent?
1995 */
1996 if (logical == next && (bh->b_state & BH_FLAGS) == lbh->b_state) {
525f4ed8 1997 lbh->b_size += b_size;
64769240
AT
1998 return;
1999 }
2000
525f4ed8 2001flush_it:
64769240
AT
2002 /*
2003 * We couldn't merge the block to our extent, so we
2004 * need to flush current extent and start new one
2005 */
c4a0c46e
AK
2006 if (mpage_da_map_blocks(mpd) == 0)
2007 mpage_da_submit_io(mpd);
a1d6cc56
AK
2008 mpd->io_done = 1;
2009 return;
64769240
AT
2010}
2011
2012/*
2013 * __mpage_da_writepage - finds extent of pages and blocks
2014 *
2015 * @page: page to consider
2016 * @wbc: not used, we just follow rules
2017 * @data: context
2018 *
2019 * The function finds extents of pages and scan them for all blocks.
2020 */
2021static int __mpage_da_writepage(struct page *page,
2022 struct writeback_control *wbc, void *data)
2023{
2024 struct mpage_da_data *mpd = data;
2025 struct inode *inode = mpd->inode;
2026 struct buffer_head *bh, *head, fake;
2027 sector_t logical;
2028
a1d6cc56
AK
2029 if (mpd->io_done) {
2030 /*
2031 * Rest of the page in the page_vec
2032 * redirty then and skip then. We will
2033 * try to to write them again after
2034 * starting a new transaction
2035 */
2036 redirty_page_for_writepage(wbc, page);
2037 unlock_page(page);
2038 return MPAGE_DA_EXTENT_TAIL;
2039 }
64769240
AT
2040 /*
2041 * Can we merge this page to current extent?
2042 */
2043 if (mpd->next_page != page->index) {
2044 /*
2045 * Nope, we can't. So, we map non-allocated blocks
a1d6cc56 2046 * and start IO on them using writepage()
64769240
AT
2047 */
2048 if (mpd->next_page != mpd->first_page) {
c4a0c46e
AK
2049 if (mpage_da_map_blocks(mpd) == 0)
2050 mpage_da_submit_io(mpd);
a1d6cc56
AK
2051 /*
2052 * skip rest of the page in the page_vec
2053 */
2054 mpd->io_done = 1;
2055 redirty_page_for_writepage(wbc, page);
2056 unlock_page(page);
2057 return MPAGE_DA_EXTENT_TAIL;
64769240
AT
2058 }
2059
2060 /*
2061 * Start next extent of pages ...
2062 */
2063 mpd->first_page = page->index;
2064
2065 /*
2066 * ... and blocks
2067 */
2068 mpd->lbh.b_size = 0;
2069 mpd->lbh.b_state = 0;
2070 mpd->lbh.b_blocknr = 0;
2071 }
2072
2073 mpd->next_page = page->index + 1;
2074 logical = (sector_t) page->index <<
2075 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2076
2077 if (!page_has_buffers(page)) {
2078 /*
2079 * There is no attached buffer heads yet (mmap?)
2080 * we treat the page asfull of dirty blocks
2081 */
2082 bh = &fake;
2083 bh->b_size = PAGE_CACHE_SIZE;
2084 bh->b_state = 0;
2085 set_buffer_dirty(bh);
2086 set_buffer_uptodate(bh);
2087 mpage_add_bh_to_extent(mpd, logical, bh);
a1d6cc56
AK
2088 if (mpd->io_done)
2089 return MPAGE_DA_EXTENT_TAIL;
64769240
AT
2090 } else {
2091 /*
2092 * Page with regular buffer heads, just add all dirty ones
2093 */
2094 head = page_buffers(page);
2095 bh = head;
2096 do {
2097 BUG_ON(buffer_locked(bh));
a1d6cc56
AK
2098 if (buffer_dirty(bh) &&
2099 (!buffer_mapped(bh) || buffer_delay(bh))) {
64769240 2100 mpage_add_bh_to_extent(mpd, logical, bh);
a1d6cc56
AK
2101 if (mpd->io_done)
2102 return MPAGE_DA_EXTENT_TAIL;
2103 }
64769240
AT
2104 logical++;
2105 } while ((bh = bh->b_this_page) != head);
2106 }
2107
2108 return 0;
2109}
2110
2111/*
2112 * mpage_da_writepages - walk the list of dirty pages of the given
2113 * address space, allocates non-allocated blocks, maps newly-allocated
2114 * blocks to existing bhs and issue IO them
2115 *
2116 * @mapping: address space structure to write
2117 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2118 * @get_block: the filesystem's block mapper function.
2119 *
2120 * This is a library function, which implements the writepages()
2121 * address_space_operation.
64769240
AT
2122 */
2123static int mpage_da_writepages(struct address_space *mapping,
2124 struct writeback_control *wbc,
df22291f 2125 struct mpage_da_data *mpd)
64769240 2126{
64769240
AT
2127 int ret;
2128
df22291f 2129 if (!mpd->get_block)
64769240
AT
2130 return generic_writepages(mapping, wbc);
2131
df22291f
AK
2132 mpd->lbh.b_size = 0;
2133 mpd->lbh.b_state = 0;
2134 mpd->lbh.b_blocknr = 0;
2135 mpd->first_page = 0;
2136 mpd->next_page = 0;
2137 mpd->io_done = 0;
2138 mpd->pages_written = 0;
2139 mpd->retval = 0;
a1d6cc56 2140
df22291f 2141 ret = write_cache_pages(mapping, wbc, __mpage_da_writepage, mpd);
64769240
AT
2142 /*
2143 * Handle last extent of pages
2144 */
df22291f
AK
2145 if (!mpd->io_done && mpd->next_page != mpd->first_page) {
2146 if (mpage_da_map_blocks(mpd) == 0)
2147 mpage_da_submit_io(mpd);
64769240 2148
22208ded
AK
2149 mpd->io_done = 1;
2150 ret = MPAGE_DA_EXTENT_TAIL;
2151 }
2152 wbc->nr_to_write -= mpd->pages_written;
64769240
AT
2153 return ret;
2154}
2155
2156/*
2157 * this is a special callback for ->write_begin() only
2158 * it's intention is to return mapped block or reserve space
2159 */
2160static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2161 struct buffer_head *bh_result, int create)
2162{
2163 int ret = 0;
2164
2165 BUG_ON(create == 0);
2166 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2167
2168 /*
2169 * first, we need to know whether the block is allocated already
2170 * preallocated blocks are unmapped but should treated
2171 * the same as allocated blocks.
2172 */
d2a17637
MC
2173 ret = ext4_get_blocks_wrap(NULL, inode, iblock, 1, bh_result, 0, 0, 0);
2174 if ((ret == 0) && !buffer_delay(bh_result)) {
2175 /* the block isn't (pre)allocated yet, let's reserve space */
64769240
AT
2176 /*
2177 * XXX: __block_prepare_write() unmaps passed block,
2178 * is it OK?
2179 */
d2a17637
MC
2180 ret = ext4_da_reserve_space(inode, 1);
2181 if (ret)
2182 /* not enough space to reserve */
2183 return ret;
2184
64769240
AT
2185 map_bh(bh_result, inode->i_sb, 0);
2186 set_buffer_new(bh_result);
2187 set_buffer_delay(bh_result);
2188 } else if (ret > 0) {
2189 bh_result->b_size = (ret << inode->i_blkbits);
2190 ret = 0;
2191 }
2192
2193 return ret;
2194}
d2a17637 2195#define EXT4_DELALLOC_RSVED 1
64769240
AT
2196static int ext4_da_get_block_write(struct inode *inode, sector_t iblock,
2197 struct buffer_head *bh_result, int create)
2198{
61628a3f 2199 int ret;
64769240
AT
2200 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2201 loff_t disksize = EXT4_I(inode)->i_disksize;
2202 handle_t *handle = NULL;
2203
61628a3f 2204 handle = ext4_journal_current_handle();
166348dd
AK
2205 BUG_ON(!handle);
2206 ret = ext4_get_blocks_wrap(handle, inode, iblock, max_blocks,
2207 bh_result, create, 0, EXT4_DELALLOC_RSVED);
64769240 2208 if (ret > 0) {
166348dd 2209
64769240
AT
2210 bh_result->b_size = (ret << inode->i_blkbits);
2211
166348dd
AK
2212 if (ext4_should_order_data(inode)) {
2213 int retval;
2214 retval = ext4_jbd2_file_inode(handle, inode);
2215 if (retval)
2216 /*
2217 * Failed to add inode for ordered
2218 * mode. Don't update file size
2219 */
2220 return retval;
2221 }
2222
64769240
AT
2223 /*
2224 * Update on-disk size along with block allocation
2225 * we don't use 'extend_disksize' as size may change
2226 * within already allocated block -bzzz
2227 */
2228 disksize = ((loff_t) iblock + ret) << inode->i_blkbits;
2229 if (disksize > i_size_read(inode))
2230 disksize = i_size_read(inode);
2231 if (disksize > EXT4_I(inode)->i_disksize) {
cf17fea6
AK
2232 ext4_update_i_disksize(inode, disksize);
2233 ret = ext4_mark_inode_dirty(handle, inode);
2234 return ret;
64769240 2235 }
64769240
AT
2236 ret = 0;
2237 }
64769240
AT
2238 return ret;
2239}
61628a3f
MC
2240
2241static int ext4_bh_unmapped_or_delay(handle_t *handle, struct buffer_head *bh)
2242{
f0e6c985
AK
2243 /*
2244 * unmapped buffer is possible for holes.
2245 * delay buffer is possible with delayed allocation
2246 */
2247 return ((!buffer_mapped(bh) || buffer_delay(bh)) && buffer_dirty(bh));
2248}
2249
2250static int ext4_normal_get_block_write(struct inode *inode, sector_t iblock,
2251 struct buffer_head *bh_result, int create)
2252{
2253 int ret = 0;
2254 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2255
2256 /*
2257 * we don't want to do block allocation in writepage
2258 * so call get_block_wrap with create = 0
2259 */
2260 ret = ext4_get_blocks_wrap(NULL, inode, iblock, max_blocks,
2261 bh_result, 0, 0, 0);
2262 if (ret > 0) {
2263 bh_result->b_size = (ret << inode->i_blkbits);
2264 ret = 0;
2265 }
2266 return ret;
61628a3f
MC
2267}
2268
61628a3f 2269/*
f0e6c985
AK
2270 * get called vi ext4_da_writepages after taking page lock (have journal handle)
2271 * get called via journal_submit_inode_data_buffers (no journal handle)
2272 * get called via shrink_page_list via pdflush (no journal handle)
2273 * or grab_page_cache when doing write_begin (have journal handle)
61628a3f 2274 */
64769240
AT
2275static int ext4_da_writepage(struct page *page,
2276 struct writeback_control *wbc)
2277{
64769240 2278 int ret = 0;
61628a3f
MC
2279 loff_t size;
2280 unsigned long len;
61628a3f
MC
2281 struct buffer_head *page_bufs;
2282 struct inode *inode = page->mapping->host;
2283
f0e6c985
AK
2284 size = i_size_read(inode);
2285 if (page->index == size >> PAGE_CACHE_SHIFT)
2286 len = size & ~PAGE_CACHE_MASK;
2287 else
2288 len = PAGE_CACHE_SIZE;
64769240 2289
f0e6c985 2290 if (page_has_buffers(page)) {
61628a3f 2291 page_bufs = page_buffers(page);
f0e6c985
AK
2292 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2293 ext4_bh_unmapped_or_delay)) {
61628a3f 2294 /*
f0e6c985
AK
2295 * We don't want to do block allocation
2296 * So redirty the page and return
cd1aac32
AK
2297 * We may reach here when we do a journal commit
2298 * via journal_submit_inode_data_buffers.
2299 * If we don't have mapping block we just ignore
f0e6c985
AK
2300 * them. We can also reach here via shrink_page_list
2301 */
2302 redirty_page_for_writepage(wbc, page);
2303 unlock_page(page);
2304 return 0;
2305 }
2306 } else {
2307 /*
2308 * The test for page_has_buffers() is subtle:
2309 * We know the page is dirty but it lost buffers. That means
2310 * that at some moment in time after write_begin()/write_end()
2311 * has been called all buffers have been clean and thus they
2312 * must have been written at least once. So they are all
2313 * mapped and we can happily proceed with mapping them
2314 * and writing the page.
2315 *
2316 * Try to initialize the buffer_heads and check whether
2317 * all are mapped and non delay. We don't want to
2318 * do block allocation here.
2319 */
2320 ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
2321 ext4_normal_get_block_write);
2322 if (!ret) {
2323 page_bufs = page_buffers(page);
2324 /* check whether all are mapped and non delay */
2325 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2326 ext4_bh_unmapped_or_delay)) {
2327 redirty_page_for_writepage(wbc, page);
2328 unlock_page(page);
2329 return 0;
2330 }
2331 } else {
2332 /*
2333 * We can't do block allocation here
2334 * so just redity the page and unlock
2335 * and return
61628a3f 2336 */
61628a3f
MC
2337 redirty_page_for_writepage(wbc, page);
2338 unlock_page(page);
2339 return 0;
2340 }
ed9b3e33
AK
2341 /* now mark the buffer_heads as dirty and uptodate */
2342 block_commit_write(page, 0, PAGE_CACHE_SIZE);
64769240
AT
2343 }
2344
2345 if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
f0e6c985 2346 ret = nobh_writepage(page, ext4_normal_get_block_write, wbc);
64769240 2347 else
f0e6c985
AK
2348 ret = block_write_full_page(page,
2349 ext4_normal_get_block_write,
2350 wbc);
64769240 2351
64769240
AT
2352 return ret;
2353}
2354
61628a3f 2355/*
525f4ed8
MC
2356 * This is called via ext4_da_writepages() to
2357 * calulate the total number of credits to reserve to fit
2358 * a single extent allocation into a single transaction,
2359 * ext4_da_writpeages() will loop calling this before
2360 * the block allocation.
61628a3f 2361 */
525f4ed8
MC
2362
2363static int ext4_da_writepages_trans_blocks(struct inode *inode)
2364{
2365 int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2366
2367 /*
2368 * With non-extent format the journal credit needed to
2369 * insert nrblocks contiguous block is dependent on
2370 * number of contiguous block. So we will limit
2371 * number of contiguous block to a sane value
2372 */
2373 if (!(inode->i_flags & EXT4_EXTENTS_FL) &&
2374 (max_blocks > EXT4_MAX_TRANS_DATA))
2375 max_blocks = EXT4_MAX_TRANS_DATA;
2376
2377 return ext4_chunk_trans_blocks(inode, max_blocks);
2378}
61628a3f 2379
64769240 2380static int ext4_da_writepages(struct address_space *mapping,
a1d6cc56 2381 struct writeback_control *wbc)
64769240 2382{
22208ded
AK
2383 pgoff_t index;
2384 int range_whole = 0;
61628a3f 2385 handle_t *handle = NULL;
df22291f 2386 struct mpage_da_data mpd;
5e745b04 2387 struct inode *inode = mapping->host;
22208ded
AK
2388 int no_nrwrite_index_update;
2389 long pages_written = 0, pages_skipped;
5e745b04 2390 int needed_blocks, ret = 0, nr_to_writebump = 0;
5e745b04 2391 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
61628a3f
MC
2392
2393 /*
2394 * No pages to write? This is mainly a kludge to avoid starting
2395 * a transaction for special inodes like journal inode on last iput()
2396 * because that could violate lock ordering on umount
2397 */
a1d6cc56 2398 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
61628a3f 2399 return 0;
5e745b04
AK
2400 /*
2401 * Make sure nr_to_write is >= sbi->s_mb_stream_request
2402 * This make sure small files blocks are allocated in
2403 * single attempt. This ensure that small files
2404 * get less fragmented.
2405 */
2406 if (wbc->nr_to_write < sbi->s_mb_stream_request) {
2407 nr_to_writebump = sbi->s_mb_stream_request - wbc->nr_to_write;
2408 wbc->nr_to_write = sbi->s_mb_stream_request;
2409 }
22208ded
AK
2410 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2411 range_whole = 1;
61628a3f 2412
22208ded
AK
2413 if (wbc->range_cyclic)
2414 index = mapping->writeback_index;
2415 else
2416 index = wbc->range_start >> PAGE_CACHE_SHIFT;
a1d6cc56 2417
df22291f
AK
2418 mpd.wbc = wbc;
2419 mpd.inode = mapping->host;
2420
22208ded
AK
2421 /*
2422 * we don't want write_cache_pages to update
2423 * nr_to_write and writeback_index
2424 */
2425 no_nrwrite_index_update = wbc->no_nrwrite_index_update;
2426 wbc->no_nrwrite_index_update = 1;
2427 pages_skipped = wbc->pages_skipped;
2428
2429 while (!ret && wbc->nr_to_write > 0) {
a1d6cc56
AK
2430
2431 /*
2432 * we insert one extent at a time. So we need
2433 * credit needed for single extent allocation.
2434 * journalled mode is currently not supported
2435 * by delalloc
2436 */
2437 BUG_ON(ext4_should_journal_data(inode));
525f4ed8 2438 needed_blocks = ext4_da_writepages_trans_blocks(inode);
a1d6cc56 2439
61628a3f
MC
2440 /* start a new transaction*/
2441 handle = ext4_journal_start(inode, needed_blocks);
2442 if (IS_ERR(handle)) {
2443 ret = PTR_ERR(handle);
a1d6cc56
AK
2444 printk(KERN_EMERG "%s: jbd2_start: "
2445 "%ld pages, ino %lu; err %d\n", __func__,
2446 wbc->nr_to_write, inode->i_ino, ret);
2447 dump_stack();
61628a3f
MC
2448 goto out_writepages;
2449 }
df22291f
AK
2450 mpd.get_block = ext4_da_get_block_write;
2451 ret = mpage_da_writepages(mapping, wbc, &mpd);
2452
61628a3f 2453 ext4_journal_stop(handle);
df22291f 2454
22208ded
AK
2455 if (mpd.retval == -ENOSPC) {
2456 /* commit the transaction which would
2457 * free blocks released in the transaction
2458 * and try again
2459 */
df22291f 2460 jbd2_journal_force_commit_nested(sbi->s_journal);
22208ded
AK
2461 wbc->pages_skipped = pages_skipped;
2462 ret = 0;
2463 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
a1d6cc56
AK
2464 /*
2465 * got one extent now try with
2466 * rest of the pages
2467 */
22208ded
AK
2468 pages_written += mpd.pages_written;
2469 wbc->pages_skipped = pages_skipped;
a1d6cc56 2470 ret = 0;
22208ded 2471 } else if (wbc->nr_to_write)
61628a3f
MC
2472 /*
2473 * There is no more writeout needed
2474 * or we requested for a noblocking writeout
2475 * and we found the device congested
2476 */
61628a3f 2477 break;
a1d6cc56 2478 }
22208ded
AK
2479 if (pages_skipped != wbc->pages_skipped)
2480 printk(KERN_EMERG "This should not happen leaving %s "
2481 "with nr_to_write = %ld ret = %d\n",
2482 __func__, wbc->nr_to_write, ret);
2483
2484 /* Update index */
2485 index += pages_written;
2486 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2487 /*
2488 * set the writeback_index so that range_cyclic
2489 * mode will write it back later
2490 */
2491 mapping->writeback_index = index;
a1d6cc56 2492
61628a3f 2493out_writepages:
22208ded
AK
2494 if (!no_nrwrite_index_update)
2495 wbc->no_nrwrite_index_update = 0;
2496 wbc->nr_to_write -= nr_to_writebump;
61628a3f 2497 return ret;
64769240
AT
2498}
2499
79f0be8d
AK
2500#define FALL_BACK_TO_NONDELALLOC 1
2501static int ext4_nonda_switch(struct super_block *sb)
2502{
2503 s64 free_blocks, dirty_blocks;
2504 struct ext4_sb_info *sbi = EXT4_SB(sb);
2505
2506 /*
2507 * switch to non delalloc mode if we are running low
2508 * on free block. The free block accounting via percpu
2509 * counters can get slightly wrong with FBC_BATCH getting
2510 * accumulated on each CPU without updating global counters
2511 * Delalloc need an accurate free block accounting. So switch
2512 * to non delalloc when we are near to error range.
2513 */
2514 free_blocks = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
2515 dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
2516 if (2 * free_blocks < 3 * dirty_blocks ||
2517 free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
2518 /*
2519 * free block count is less that 150% of dirty blocks
2520 * or free blocks is less that watermark
2521 */
2522 return 1;
2523 }
2524 return 0;
2525}
2526
64769240
AT
2527static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2528 loff_t pos, unsigned len, unsigned flags,
2529 struct page **pagep, void **fsdata)
2530{
d2a17637 2531 int ret, retries = 0;
64769240
AT
2532 struct page *page;
2533 pgoff_t index;
2534 unsigned from, to;
2535 struct inode *inode = mapping->host;
2536 handle_t *handle;
2537
2538 index = pos >> PAGE_CACHE_SHIFT;
2539 from = pos & (PAGE_CACHE_SIZE - 1);
2540 to = from + len;
79f0be8d
AK
2541
2542 if (ext4_nonda_switch(inode->i_sb)) {
2543 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2544 return ext4_write_begin(file, mapping, pos,
2545 len, flags, pagep, fsdata);
2546 }
2547 *fsdata = (void *)0;
d2a17637 2548retry:
64769240
AT
2549 /*
2550 * With delayed allocation, we don't log the i_disksize update
2551 * if there is delayed block allocation. But we still need
2552 * to journalling the i_disksize update if writes to the end
2553 * of file which has an already mapped buffer.
2554 */
2555 handle = ext4_journal_start(inode, 1);
2556 if (IS_ERR(handle)) {
2557 ret = PTR_ERR(handle);
2558 goto out;
2559 }
2560
54566b2c 2561 page = grab_cache_page_write_begin(mapping, index, flags);
d5a0d4f7
ES
2562 if (!page) {
2563 ext4_journal_stop(handle);
2564 ret = -ENOMEM;
2565 goto out;
2566 }
64769240
AT
2567 *pagep = page;
2568
2569 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
2570 ext4_da_get_block_prep);
2571 if (ret < 0) {
2572 unlock_page(page);
2573 ext4_journal_stop(handle);
2574 page_cache_release(page);
ae4d5372
AK
2575 /*
2576 * block_write_begin may have instantiated a few blocks
2577 * outside i_size. Trim these off again. Don't need
2578 * i_size_read because we hold i_mutex.
2579 */
2580 if (pos + len > inode->i_size)
2581 vmtruncate(inode, inode->i_size);
64769240
AT
2582 }
2583
d2a17637
MC
2584 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
2585 goto retry;
64769240
AT
2586out:
2587 return ret;
2588}
2589
632eaeab
MC
2590/*
2591 * Check if we should update i_disksize
2592 * when write to the end of file but not require block allocation
2593 */
2594static int ext4_da_should_update_i_disksize(struct page *page,
2595 unsigned long offset)
2596{
2597 struct buffer_head *bh;
2598 struct inode *inode = page->mapping->host;
2599 unsigned int idx;
2600 int i;
2601
2602 bh = page_buffers(page);
2603 idx = offset >> inode->i_blkbits;
2604
af5bc92d 2605 for (i = 0; i < idx; i++)
632eaeab
MC
2606 bh = bh->b_this_page;
2607
2608 if (!buffer_mapped(bh) || (buffer_delay(bh)))
2609 return 0;
2610 return 1;
2611}
2612
64769240
AT
2613static int ext4_da_write_end(struct file *file,
2614 struct address_space *mapping,
2615 loff_t pos, unsigned len, unsigned copied,
2616 struct page *page, void *fsdata)
2617{
2618 struct inode *inode = mapping->host;
2619 int ret = 0, ret2;
2620 handle_t *handle = ext4_journal_current_handle();
2621 loff_t new_i_size;
632eaeab 2622 unsigned long start, end;
79f0be8d
AK
2623 int write_mode = (int)(unsigned long)fsdata;
2624
2625 if (write_mode == FALL_BACK_TO_NONDELALLOC) {
2626 if (ext4_should_order_data(inode)) {
2627 return ext4_ordered_write_end(file, mapping, pos,
2628 len, copied, page, fsdata);
2629 } else if (ext4_should_writeback_data(inode)) {
2630 return ext4_writeback_write_end(file, mapping, pos,
2631 len, copied, page, fsdata);
2632 } else {
2633 BUG();
2634 }
2635 }
632eaeab
MC
2636
2637 start = pos & (PAGE_CACHE_SIZE - 1);
af5bc92d 2638 end = start + copied - 1;
64769240
AT
2639
2640 /*
2641 * generic_write_end() will run mark_inode_dirty() if i_size
2642 * changes. So let's piggyback the i_disksize mark_inode_dirty
2643 * into that.
2644 */
2645
2646 new_i_size = pos + copied;
632eaeab
MC
2647 if (new_i_size > EXT4_I(inode)->i_disksize) {
2648 if (ext4_da_should_update_i_disksize(page, end)) {
2649 down_write(&EXT4_I(inode)->i_data_sem);
2650 if (new_i_size > EXT4_I(inode)->i_disksize) {
2651 /*
2652 * Updating i_disksize when extending file
2653 * without needing block allocation
2654 */
2655 if (ext4_should_order_data(inode))
2656 ret = ext4_jbd2_file_inode(handle,
2657 inode);
64769240 2658
632eaeab
MC
2659 EXT4_I(inode)->i_disksize = new_i_size;
2660 }
2661 up_write(&EXT4_I(inode)->i_data_sem);
cf17fea6
AK
2662 /* We need to mark inode dirty even if
2663 * new_i_size is less that inode->i_size
2664 * bu greater than i_disksize.(hint delalloc)
2665 */
2666 ext4_mark_inode_dirty(handle, inode);
64769240 2667 }
632eaeab 2668 }
64769240
AT
2669 ret2 = generic_write_end(file, mapping, pos, len, copied,
2670 page, fsdata);
2671 copied = ret2;
2672 if (ret2 < 0)
2673 ret = ret2;
2674 ret2 = ext4_journal_stop(handle);
2675 if (!ret)
2676 ret = ret2;
2677
2678 return ret ? ret : copied;
2679}
2680
2681static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
2682{
64769240
AT
2683 /*
2684 * Drop reserved blocks
2685 */
2686 BUG_ON(!PageLocked(page));
2687 if (!page_has_buffers(page))
2688 goto out;
2689
d2a17637 2690 ext4_da_page_release_reservation(page, offset);
64769240
AT
2691
2692out:
2693 ext4_invalidatepage(page, offset);
2694
2695 return;
2696}
2697
2698
ac27a0ec
DK
2699/*
2700 * bmap() is special. It gets used by applications such as lilo and by
2701 * the swapper to find the on-disk block of a specific piece of data.
2702 *
2703 * Naturally, this is dangerous if the block concerned is still in the
617ba13b 2704 * journal. If somebody makes a swapfile on an ext4 data-journaling
ac27a0ec
DK
2705 * filesystem and enables swap, then they may get a nasty shock when the
2706 * data getting swapped to that swapfile suddenly gets overwritten by
2707 * the original zero's written out previously to the journal and
2708 * awaiting writeback in the kernel's buffer cache.
2709 *
2710 * So, if we see any bmap calls here on a modified, data-journaled file,
2711 * take extra steps to flush any blocks which might be in the cache.
2712 */
617ba13b 2713static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
ac27a0ec
DK
2714{
2715 struct inode *inode = mapping->host;
2716 journal_t *journal;
2717 int err;
2718
64769240
AT
2719 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2720 test_opt(inode->i_sb, DELALLOC)) {
2721 /*
2722 * With delalloc we want to sync the file
2723 * so that we can make sure we allocate
2724 * blocks for file
2725 */
2726 filemap_write_and_wait(mapping);
2727 }
2728
617ba13b 2729 if (EXT4_I(inode)->i_state & EXT4_STATE_JDATA) {
ac27a0ec
DK
2730 /*
2731 * This is a REALLY heavyweight approach, but the use of
2732 * bmap on dirty files is expected to be extremely rare:
2733 * only if we run lilo or swapon on a freshly made file
2734 * do we expect this to happen.
2735 *
2736 * (bmap requires CAP_SYS_RAWIO so this does not
2737 * represent an unprivileged user DOS attack --- we'd be
2738 * in trouble if mortal users could trigger this path at
2739 * will.)
2740 *
617ba13b 2741 * NB. EXT4_STATE_JDATA is not set on files other than
ac27a0ec
DK
2742 * regular files. If somebody wants to bmap a directory
2743 * or symlink and gets confused because the buffer
2744 * hasn't yet been flushed to disk, they deserve
2745 * everything they get.
2746 */
2747
617ba13b
MC
2748 EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA;
2749 journal = EXT4_JOURNAL(inode);
dab291af
MC
2750 jbd2_journal_lock_updates(journal);
2751 err = jbd2_journal_flush(journal);
2752 jbd2_journal_unlock_updates(journal);
ac27a0ec
DK
2753
2754 if (err)
2755 return 0;
2756 }
2757
af5bc92d 2758 return generic_block_bmap(mapping, block, ext4_get_block);
ac27a0ec
DK
2759}
2760
2761static int bget_one(handle_t *handle, struct buffer_head *bh)
2762{
2763 get_bh(bh);
2764 return 0;
2765}
2766
2767static int bput_one(handle_t *handle, struct buffer_head *bh)
2768{
2769 put_bh(bh);
2770 return 0;
2771}
2772
ac27a0ec 2773/*
678aaf48
JK
2774 * Note that we don't need to start a transaction unless we're journaling data
2775 * because we should have holes filled from ext4_page_mkwrite(). We even don't
2776 * need to file the inode to the transaction's list in ordered mode because if
2777 * we are writing back data added by write(), the inode is already there and if
2778 * we are writing back data modified via mmap(), noone guarantees in which
2779 * transaction the data will hit the disk. In case we are journaling data, we
2780 * cannot start transaction directly because transaction start ranks above page
2781 * lock so we have to do some magic.
ac27a0ec 2782 *
678aaf48 2783 * In all journaling modes block_write_full_page() will start the I/O.
ac27a0ec
DK
2784 *
2785 * Problem:
2786 *
617ba13b
MC
2787 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2788 * ext4_writepage()
ac27a0ec
DK
2789 *
2790 * Similar for:
2791 *
617ba13b 2792 * ext4_file_write() -> generic_file_write() -> __alloc_pages() -> ...
ac27a0ec 2793 *
617ba13b 2794 * Same applies to ext4_get_block(). We will deadlock on various things like
0e855ac8 2795 * lock_journal and i_data_sem
ac27a0ec
DK
2796 *
2797 * Setting PF_MEMALLOC here doesn't work - too many internal memory
2798 * allocations fail.
2799 *
2800 * 16May01: If we're reentered then journal_current_handle() will be
2801 * non-zero. We simply *return*.
2802 *
2803 * 1 July 2001: @@@ FIXME:
2804 * In journalled data mode, a data buffer may be metadata against the
2805 * current transaction. But the same file is part of a shared mapping
2806 * and someone does a writepage() on it.
2807 *
2808 * We will move the buffer onto the async_data list, but *after* it has
2809 * been dirtied. So there's a small window where we have dirty data on
2810 * BJ_Metadata.
2811 *
2812 * Note that this only applies to the last partial page in the file. The
2813 * bit which block_write_full_page() uses prepare/commit for. (That's
2814 * broken code anyway: it's wrong for msync()).
2815 *
2816 * It's a rare case: affects the final partial page, for journalled data
2817 * where the file is subject to bith write() and writepage() in the same
2818 * transction. To fix it we'll need a custom block_write_full_page().
2819 * We'll probably need that anyway for journalling writepage() output.
2820 *
2821 * We don't honour synchronous mounts for writepage(). That would be
2822 * disastrous. Any write() or metadata operation will sync the fs for
2823 * us.
2824 *
ac27a0ec 2825 */
678aaf48 2826static int __ext4_normal_writepage(struct page *page,
cf108bca
JK
2827 struct writeback_control *wbc)
2828{
2829 struct inode *inode = page->mapping->host;
2830
2831 if (test_opt(inode->i_sb, NOBH))
f0e6c985
AK
2832 return nobh_writepage(page,
2833 ext4_normal_get_block_write, wbc);
cf108bca 2834 else
f0e6c985
AK
2835 return block_write_full_page(page,
2836 ext4_normal_get_block_write,
2837 wbc);
cf108bca
JK
2838}
2839
678aaf48 2840static int ext4_normal_writepage(struct page *page,
ac27a0ec
DK
2841 struct writeback_control *wbc)
2842{
2843 struct inode *inode = page->mapping->host;
cf108bca
JK
2844 loff_t size = i_size_read(inode);
2845 loff_t len;
2846
2847 J_ASSERT(PageLocked(page));
cf108bca
JK
2848 if (page->index == size >> PAGE_CACHE_SHIFT)
2849 len = size & ~PAGE_CACHE_MASK;
2850 else
2851 len = PAGE_CACHE_SIZE;
f0e6c985
AK
2852
2853 if (page_has_buffers(page)) {
2854 /* if page has buffers it should all be mapped
2855 * and allocated. If there are not buffers attached
2856 * to the page we know the page is dirty but it lost
2857 * buffers. That means that at some moment in time
2858 * after write_begin() / write_end() has been called
2859 * all buffers have been clean and thus they must have been
2860 * written at least once. So they are all mapped and we can
2861 * happily proceed with mapping them and writing the page.
2862 */
2863 BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
2864 ext4_bh_unmapped_or_delay));
2865 }
cf108bca
JK
2866
2867 if (!ext4_journal_current_handle())
678aaf48 2868 return __ext4_normal_writepage(page, wbc);
cf108bca
JK
2869
2870 redirty_page_for_writepage(wbc, page);
2871 unlock_page(page);
2872 return 0;
2873}
2874
2875static int __ext4_journalled_writepage(struct page *page,
2876 struct writeback_control *wbc)
2877{
2878 struct address_space *mapping = page->mapping;
2879 struct inode *inode = mapping->host;
2880 struct buffer_head *page_bufs;
ac27a0ec
DK
2881 handle_t *handle = NULL;
2882 int ret = 0;
2883 int err;
2884
f0e6c985
AK
2885 ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
2886 ext4_normal_get_block_write);
cf108bca
JK
2887 if (ret != 0)
2888 goto out_unlock;
2889
2890 page_bufs = page_buffers(page);
2891 walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE, NULL,
2892 bget_one);
2893 /* As soon as we unlock the page, it can go away, but we have
2894 * references to buffers so we are safe */
2895 unlock_page(page);
ac27a0ec 2896
617ba13b 2897 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
ac27a0ec
DK
2898 if (IS_ERR(handle)) {
2899 ret = PTR_ERR(handle);
cf108bca 2900 goto out;
ac27a0ec
DK
2901 }
2902
cf108bca
JK
2903 ret = walk_page_buffers(handle, page_bufs, 0,
2904 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
ac27a0ec 2905
cf108bca
JK
2906 err = walk_page_buffers(handle, page_bufs, 0,
2907 PAGE_CACHE_SIZE, NULL, write_end_fn);
2908 if (ret == 0)
2909 ret = err;
617ba13b 2910 err = ext4_journal_stop(handle);
ac27a0ec
DK
2911 if (!ret)
2912 ret = err;
ac27a0ec 2913
cf108bca
JK
2914 walk_page_buffers(handle, page_bufs, 0,
2915 PAGE_CACHE_SIZE, NULL, bput_one);
2916 EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
2917 goto out;
2918
2919out_unlock:
ac27a0ec 2920 unlock_page(page);
cf108bca 2921out:
ac27a0ec
DK
2922 return ret;
2923}
2924
617ba13b 2925static int ext4_journalled_writepage(struct page *page,
ac27a0ec
DK
2926 struct writeback_control *wbc)
2927{
2928 struct inode *inode = page->mapping->host;
cf108bca
JK
2929 loff_t size = i_size_read(inode);
2930 loff_t len;
ac27a0ec 2931
cf108bca 2932 J_ASSERT(PageLocked(page));
cf108bca
JK
2933 if (page->index == size >> PAGE_CACHE_SHIFT)
2934 len = size & ~PAGE_CACHE_MASK;
2935 else
2936 len = PAGE_CACHE_SIZE;
f0e6c985
AK
2937
2938 if (page_has_buffers(page)) {
2939 /* if page has buffers it should all be mapped
2940 * and allocated. If there are not buffers attached
2941 * to the page we know the page is dirty but it lost
2942 * buffers. That means that at some moment in time
2943 * after write_begin() / write_end() has been called
2944 * all buffers have been clean and thus they must have been
2945 * written at least once. So they are all mapped and we can
2946 * happily proceed with mapping them and writing the page.
2947 */
2948 BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
2949 ext4_bh_unmapped_or_delay));
2950 }
ac27a0ec 2951
cf108bca 2952 if (ext4_journal_current_handle())
ac27a0ec 2953 goto no_write;
ac27a0ec 2954
cf108bca 2955 if (PageChecked(page)) {
ac27a0ec
DK
2956 /*
2957 * It's mmapped pagecache. Add buffers and journal it. There
2958 * doesn't seem much point in redirtying the page here.
2959 */
2960 ClearPageChecked(page);
cf108bca 2961 return __ext4_journalled_writepage(page, wbc);
ac27a0ec
DK
2962 } else {
2963 /*
2964 * It may be a page full of checkpoint-mode buffers. We don't
2965 * really know unless we go poke around in the buffer_heads.
2966 * But block_write_full_page will do the right thing.
2967 */
f0e6c985
AK
2968 return block_write_full_page(page,
2969 ext4_normal_get_block_write,
2970 wbc);
ac27a0ec 2971 }
ac27a0ec
DK
2972no_write:
2973 redirty_page_for_writepage(wbc, page);
ac27a0ec 2974 unlock_page(page);
cf108bca 2975 return 0;
ac27a0ec
DK
2976}
2977
617ba13b 2978static int ext4_readpage(struct file *file, struct page *page)
ac27a0ec 2979{
617ba13b 2980 return mpage_readpage(page, ext4_get_block);
ac27a0ec
DK
2981}
2982
2983static int
617ba13b 2984ext4_readpages(struct file *file, struct address_space *mapping,
ac27a0ec
DK
2985 struct list_head *pages, unsigned nr_pages)
2986{
617ba13b 2987 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
ac27a0ec
DK
2988}
2989
617ba13b 2990static void ext4_invalidatepage(struct page *page, unsigned long offset)
ac27a0ec 2991{
617ba13b 2992 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
ac27a0ec
DK
2993
2994 /*
2995 * If it's a full truncate we just forget about the pending dirtying
2996 */
2997 if (offset == 0)
2998 ClearPageChecked(page);
2999
dab291af 3000 jbd2_journal_invalidatepage(journal, page, offset);
ac27a0ec
DK
3001}
3002
617ba13b 3003static int ext4_releasepage(struct page *page, gfp_t wait)
ac27a0ec 3004{
617ba13b 3005 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
ac27a0ec
DK
3006
3007 WARN_ON(PageChecked(page));
3008 if (!page_has_buffers(page))
3009 return 0;
dab291af 3010 return jbd2_journal_try_to_free_buffers(journal, page, wait);
ac27a0ec
DK
3011}
3012
3013/*
3014 * If the O_DIRECT write will extend the file then add this inode to the
3015 * orphan list. So recovery will truncate it back to the original size
3016 * if the machine crashes during the write.
3017 *
3018 * If the O_DIRECT write is intantiating holes inside i_size and the machine
7fb5409d
JK
3019 * crashes then stale disk data _may_ be exposed inside the file. But current
3020 * VFS code falls back into buffered path in that case so we are safe.
ac27a0ec 3021 */
617ba13b 3022static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
ac27a0ec
DK
3023 const struct iovec *iov, loff_t offset,
3024 unsigned long nr_segs)
3025{
3026 struct file *file = iocb->ki_filp;
3027 struct inode *inode = file->f_mapping->host;
617ba13b 3028 struct ext4_inode_info *ei = EXT4_I(inode);
7fb5409d 3029 handle_t *handle;
ac27a0ec
DK
3030 ssize_t ret;
3031 int orphan = 0;
3032 size_t count = iov_length(iov, nr_segs);
3033
3034 if (rw == WRITE) {
3035 loff_t final_size = offset + count;
3036
ac27a0ec 3037 if (final_size > inode->i_size) {
7fb5409d
JK
3038 /* Credits for sb + inode write */
3039 handle = ext4_journal_start(inode, 2);
3040 if (IS_ERR(handle)) {
3041 ret = PTR_ERR(handle);
3042 goto out;
3043 }
617ba13b 3044 ret = ext4_orphan_add(handle, inode);
7fb5409d
JK
3045 if (ret) {
3046 ext4_journal_stop(handle);
3047 goto out;
3048 }
ac27a0ec
DK
3049 orphan = 1;
3050 ei->i_disksize = inode->i_size;
7fb5409d 3051 ext4_journal_stop(handle);
ac27a0ec
DK
3052 }
3053 }
3054
3055 ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
3056 offset, nr_segs,
617ba13b 3057 ext4_get_block, NULL);
ac27a0ec 3058
7fb5409d 3059 if (orphan) {
ac27a0ec
DK
3060 int err;
3061
7fb5409d
JK
3062 /* Credits for sb + inode write */
3063 handle = ext4_journal_start(inode, 2);
3064 if (IS_ERR(handle)) {
3065 /* This is really bad luck. We've written the data
3066 * but cannot extend i_size. Bail out and pretend
3067 * the write failed... */
3068 ret = PTR_ERR(handle);
3069 goto out;
3070 }
3071 if (inode->i_nlink)
617ba13b 3072 ext4_orphan_del(handle, inode);
7fb5409d 3073 if (ret > 0) {
ac27a0ec
DK
3074 loff_t end = offset + ret;
3075 if (end > inode->i_size) {
3076 ei->i_disksize = end;
3077 i_size_write(inode, end);
3078 /*
3079 * We're going to return a positive `ret'
3080 * here due to non-zero-length I/O, so there's
3081 * no way of reporting error returns from
617ba13b 3082 * ext4_mark_inode_dirty() to userspace. So
ac27a0ec
DK
3083 * ignore it.
3084 */
617ba13b 3085 ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
3086 }
3087 }
617ba13b 3088 err = ext4_journal_stop(handle);
ac27a0ec
DK
3089 if (ret == 0)
3090 ret = err;
3091 }
3092out:
3093 return ret;
3094}
3095
3096/*
617ba13b 3097 * Pages can be marked dirty completely asynchronously from ext4's journalling
ac27a0ec
DK
3098 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3099 * much here because ->set_page_dirty is called under VFS locks. The page is
3100 * not necessarily locked.
3101 *
3102 * We cannot just dirty the page and leave attached buffers clean, because the
3103 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3104 * or jbddirty because all the journalling code will explode.
3105 *
3106 * So what we do is to mark the page "pending dirty" and next time writepage
3107 * is called, propagate that into the buffers appropriately.
3108 */
617ba13b 3109static int ext4_journalled_set_page_dirty(struct page *page)
ac27a0ec
DK
3110{
3111 SetPageChecked(page);
3112 return __set_page_dirty_nobuffers(page);
3113}
3114
617ba13b 3115static const struct address_space_operations ext4_ordered_aops = {
8ab22b9a
HH
3116 .readpage = ext4_readpage,
3117 .readpages = ext4_readpages,
3118 .writepage = ext4_normal_writepage,
3119 .sync_page = block_sync_page,
3120 .write_begin = ext4_write_begin,
3121 .write_end = ext4_ordered_write_end,
3122 .bmap = ext4_bmap,
3123 .invalidatepage = ext4_invalidatepage,
3124 .releasepage = ext4_releasepage,
3125 .direct_IO = ext4_direct_IO,
3126 .migratepage = buffer_migrate_page,
3127 .is_partially_uptodate = block_is_partially_uptodate,
ac27a0ec
DK
3128};
3129
617ba13b 3130static const struct address_space_operations ext4_writeback_aops = {
8ab22b9a
HH
3131 .readpage = ext4_readpage,
3132 .readpages = ext4_readpages,
3133 .writepage = ext4_normal_writepage,
3134 .sync_page = block_sync_page,
3135 .write_begin = ext4_write_begin,
3136 .write_end = ext4_writeback_write_end,
3137 .bmap = ext4_bmap,
3138 .invalidatepage = ext4_invalidatepage,
3139 .releasepage = ext4_releasepage,
3140 .direct_IO = ext4_direct_IO,
3141 .migratepage = buffer_migrate_page,
3142 .is_partially_uptodate = block_is_partially_uptodate,
ac27a0ec
DK
3143};
3144
617ba13b 3145static const struct address_space_operations ext4_journalled_aops = {
8ab22b9a
HH
3146 .readpage = ext4_readpage,
3147 .readpages = ext4_readpages,
3148 .writepage = ext4_journalled_writepage,
3149 .sync_page = block_sync_page,
3150 .write_begin = ext4_write_begin,
3151 .write_end = ext4_journalled_write_end,
3152 .set_page_dirty = ext4_journalled_set_page_dirty,
3153 .bmap = ext4_bmap,
3154 .invalidatepage = ext4_invalidatepage,
3155 .releasepage = ext4_releasepage,
3156 .is_partially_uptodate = block_is_partially_uptodate,
ac27a0ec
DK
3157};
3158
64769240 3159static const struct address_space_operations ext4_da_aops = {
8ab22b9a
HH
3160 .readpage = ext4_readpage,
3161 .readpages = ext4_readpages,
3162 .writepage = ext4_da_writepage,
3163 .writepages = ext4_da_writepages,
3164 .sync_page = block_sync_page,
3165 .write_begin = ext4_da_write_begin,
3166 .write_end = ext4_da_write_end,
3167 .bmap = ext4_bmap,
3168 .invalidatepage = ext4_da_invalidatepage,
3169 .releasepage = ext4_releasepage,
3170 .direct_IO = ext4_direct_IO,
3171 .migratepage = buffer_migrate_page,
3172 .is_partially_uptodate = block_is_partially_uptodate,
64769240
AT
3173};
3174
617ba13b 3175void ext4_set_aops(struct inode *inode)
ac27a0ec 3176{
cd1aac32
AK
3177 if (ext4_should_order_data(inode) &&
3178 test_opt(inode->i_sb, DELALLOC))
3179 inode->i_mapping->a_ops = &ext4_da_aops;
3180 else if (ext4_should_order_data(inode))
617ba13b 3181 inode->i_mapping->a_ops = &ext4_ordered_aops;
64769240
AT
3182 else if (ext4_should_writeback_data(inode) &&
3183 test_opt(inode->i_sb, DELALLOC))
3184 inode->i_mapping->a_ops = &ext4_da_aops;
617ba13b
MC
3185 else if (ext4_should_writeback_data(inode))
3186 inode->i_mapping->a_ops = &ext4_writeback_aops;
ac27a0ec 3187 else
617ba13b 3188 inode->i_mapping->a_ops = &ext4_journalled_aops;
ac27a0ec
DK
3189}
3190
3191/*
617ba13b 3192 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
ac27a0ec
DK
3193 * up to the end of the block which corresponds to `from'.
3194 * This required during truncate. We need to physically zero the tail end
3195 * of that block so it doesn't yield old data if the file is later grown.
3196 */
cf108bca 3197int ext4_block_truncate_page(handle_t *handle,
ac27a0ec
DK
3198 struct address_space *mapping, loff_t from)
3199{
617ba13b 3200 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
ac27a0ec 3201 unsigned offset = from & (PAGE_CACHE_SIZE-1);
725d26d3
AK
3202 unsigned blocksize, length, pos;
3203 ext4_lblk_t iblock;
ac27a0ec
DK
3204 struct inode *inode = mapping->host;
3205 struct buffer_head *bh;
cf108bca 3206 struct page *page;
ac27a0ec 3207 int err = 0;
ac27a0ec 3208
cf108bca
JK
3209 page = grab_cache_page(mapping, from >> PAGE_CACHE_SHIFT);
3210 if (!page)
3211 return -EINVAL;
3212
ac27a0ec
DK
3213 blocksize = inode->i_sb->s_blocksize;
3214 length = blocksize - (offset & (blocksize - 1));
3215 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3216
3217 /*
3218 * For "nobh" option, we can only work if we don't need to
3219 * read-in the page - otherwise we create buffers to do the IO.
3220 */
3221 if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
617ba13b 3222 ext4_should_writeback_data(inode) && PageUptodate(page)) {
eebd2aa3 3223 zero_user(page, offset, length);
ac27a0ec
DK
3224 set_page_dirty(page);
3225 goto unlock;
3226 }
3227
3228 if (!page_has_buffers(page))
3229 create_empty_buffers(page, blocksize, 0);
3230
3231 /* Find the buffer that contains "offset" */
3232 bh = page_buffers(page);
3233 pos = blocksize;
3234 while (offset >= pos) {
3235 bh = bh->b_this_page;
3236 iblock++;
3237 pos += blocksize;
3238 }
3239
3240 err = 0;
3241 if (buffer_freed(bh)) {
3242 BUFFER_TRACE(bh, "freed: skip");
3243 goto unlock;
3244 }
3245
3246 if (!buffer_mapped(bh)) {
3247 BUFFER_TRACE(bh, "unmapped");
617ba13b 3248 ext4_get_block(inode, iblock, bh, 0);
ac27a0ec
DK
3249 /* unmapped? It's a hole - nothing to do */
3250 if (!buffer_mapped(bh)) {
3251 BUFFER_TRACE(bh, "still unmapped");
3252 goto unlock;
3253 }
3254 }
3255
3256 /* Ok, it's mapped. Make sure it's up-to-date */
3257 if (PageUptodate(page))
3258 set_buffer_uptodate(bh);
3259
3260 if (!buffer_uptodate(bh)) {
3261 err = -EIO;
3262 ll_rw_block(READ, 1, &bh);
3263 wait_on_buffer(bh);
3264 /* Uhhuh. Read error. Complain and punt. */
3265 if (!buffer_uptodate(bh))
3266 goto unlock;
3267 }
3268
617ba13b 3269 if (ext4_should_journal_data(inode)) {
ac27a0ec 3270 BUFFER_TRACE(bh, "get write access");
617ba13b 3271 err = ext4_journal_get_write_access(handle, bh);
ac27a0ec
DK
3272 if (err)
3273 goto unlock;
3274 }
3275
eebd2aa3 3276 zero_user(page, offset, length);
ac27a0ec
DK
3277
3278 BUFFER_TRACE(bh, "zeroed end of block");
3279
3280 err = 0;
617ba13b
MC
3281 if (ext4_should_journal_data(inode)) {
3282 err = ext4_journal_dirty_metadata(handle, bh);
ac27a0ec 3283 } else {
617ba13b 3284 if (ext4_should_order_data(inode))
678aaf48 3285 err = ext4_jbd2_file_inode(handle, inode);
ac27a0ec
DK
3286 mark_buffer_dirty(bh);
3287 }
3288
3289unlock:
3290 unlock_page(page);
3291 page_cache_release(page);
3292 return err;
3293}
3294
3295/*
3296 * Probably it should be a library function... search for first non-zero word
3297 * or memcmp with zero_page, whatever is better for particular architecture.
3298 * Linus?
3299 */
3300static inline int all_zeroes(__le32 *p, __le32 *q)
3301{
3302 while (p < q)
3303 if (*p++)
3304 return 0;
3305 return 1;
3306}
3307
3308/**
617ba13b 3309 * ext4_find_shared - find the indirect blocks for partial truncation.
ac27a0ec
DK
3310 * @inode: inode in question
3311 * @depth: depth of the affected branch
617ba13b 3312 * @offsets: offsets of pointers in that branch (see ext4_block_to_path)
ac27a0ec
DK
3313 * @chain: place to store the pointers to partial indirect blocks
3314 * @top: place to the (detached) top of branch
3315 *
617ba13b 3316 * This is a helper function used by ext4_truncate().
ac27a0ec
DK
3317 *
3318 * When we do truncate() we may have to clean the ends of several
3319 * indirect blocks but leave the blocks themselves alive. Block is
3320 * partially truncated if some data below the new i_size is refered
3321 * from it (and it is on the path to the first completely truncated
3322 * data block, indeed). We have to free the top of that path along
3323 * with everything to the right of the path. Since no allocation
617ba13b 3324 * past the truncation point is possible until ext4_truncate()
ac27a0ec
DK
3325 * finishes, we may safely do the latter, but top of branch may
3326 * require special attention - pageout below the truncation point
3327 * might try to populate it.
3328 *
3329 * We atomically detach the top of branch from the tree, store the
3330 * block number of its root in *@top, pointers to buffer_heads of
3331 * partially truncated blocks - in @chain[].bh and pointers to
3332 * their last elements that should not be removed - in
3333 * @chain[].p. Return value is the pointer to last filled element
3334 * of @chain.
3335 *
3336 * The work left to caller to do the actual freeing of subtrees:
3337 * a) free the subtree starting from *@top
3338 * b) free the subtrees whose roots are stored in
3339 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
3340 * c) free the subtrees growing from the inode past the @chain[0].
3341 * (no partially truncated stuff there). */
3342
617ba13b 3343static Indirect *ext4_find_shared(struct inode *inode, int depth,
725d26d3 3344 ext4_lblk_t offsets[4], Indirect chain[4], __le32 *top)
ac27a0ec
DK
3345{
3346 Indirect *partial, *p;
3347 int k, err;
3348
3349 *top = 0;
3350 /* Make k index the deepest non-null offest + 1 */
3351 for (k = depth; k > 1 && !offsets[k-1]; k--)
3352 ;
617ba13b 3353 partial = ext4_get_branch(inode, k, offsets, chain, &err);
ac27a0ec
DK
3354 /* Writer: pointers */
3355 if (!partial)
3356 partial = chain + k-1;
3357 /*
3358 * If the branch acquired continuation since we've looked at it -
3359 * fine, it should all survive and (new) top doesn't belong to us.
3360 */
3361 if (!partial->key && *partial->p)
3362 /* Writer: end */
3363 goto no_top;
af5bc92d 3364 for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
ac27a0ec
DK
3365 ;
3366 /*
3367 * OK, we've found the last block that must survive. The rest of our
3368 * branch should be detached before unlocking. However, if that rest
3369 * of branch is all ours and does not grow immediately from the inode
3370 * it's easier to cheat and just decrement partial->p.
3371 */
3372 if (p == chain + k - 1 && p > chain) {
3373 p->p--;
3374 } else {
3375 *top = *p->p;
617ba13b 3376 /* Nope, don't do this in ext4. Must leave the tree intact */
ac27a0ec
DK
3377#if 0
3378 *p->p = 0;
3379#endif
3380 }
3381 /* Writer: end */
3382
af5bc92d 3383 while (partial > p) {
ac27a0ec
DK
3384 brelse(partial->bh);
3385 partial--;
3386 }
3387no_top:
3388 return partial;
3389}
3390
3391/*
3392 * Zero a number of block pointers in either an inode or an indirect block.
3393 * If we restart the transaction we must again get write access to the
3394 * indirect block for further modification.
3395 *
3396 * We release `count' blocks on disk, but (last - first) may be greater
3397 * than `count' because there can be holes in there.
3398 */
617ba13b
MC
3399static void ext4_clear_blocks(handle_t *handle, struct inode *inode,
3400 struct buffer_head *bh, ext4_fsblk_t block_to_free,
ac27a0ec
DK
3401 unsigned long count, __le32 *first, __le32 *last)
3402{
3403 __le32 *p;
3404 if (try_to_extend_transaction(handle, inode)) {
3405 if (bh) {
617ba13b
MC
3406 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
3407 ext4_journal_dirty_metadata(handle, bh);
ac27a0ec 3408 }
617ba13b
MC
3409 ext4_mark_inode_dirty(handle, inode);
3410 ext4_journal_test_restart(handle, inode);
ac27a0ec
DK
3411 if (bh) {
3412 BUFFER_TRACE(bh, "retaking write access");
617ba13b 3413 ext4_journal_get_write_access(handle, bh);
ac27a0ec
DK
3414 }
3415 }
3416
3417 /*
3418 * Any buffers which are on the journal will be in memory. We find
dab291af 3419 * them on the hash table so jbd2_journal_revoke() will run jbd2_journal_forget()
ac27a0ec 3420 * on them. We've already detached each block from the file, so
dab291af 3421 * bforget() in jbd2_journal_forget() should be safe.
ac27a0ec 3422 *
dab291af 3423 * AKPM: turn on bforget in jbd2_journal_forget()!!!
ac27a0ec
DK
3424 */
3425 for (p = first; p < last; p++) {
3426 u32 nr = le32_to_cpu(*p);
3427 if (nr) {
1d03ec98 3428 struct buffer_head *tbh;
ac27a0ec
DK
3429
3430 *p = 0;
1d03ec98
AK
3431 tbh = sb_find_get_block(inode->i_sb, nr);
3432 ext4_forget(handle, 0, inode, tbh, nr);
ac27a0ec
DK
3433 }
3434 }
3435
c9de560d 3436 ext4_free_blocks(handle, inode, block_to_free, count, 0);
ac27a0ec
DK
3437}
3438
3439/**
617ba13b 3440 * ext4_free_data - free a list of data blocks
ac27a0ec
DK
3441 * @handle: handle for this transaction
3442 * @inode: inode we are dealing with
3443 * @this_bh: indirect buffer_head which contains *@first and *@last
3444 * @first: array of block numbers
3445 * @last: points immediately past the end of array
3446 *
3447 * We are freeing all blocks refered from that array (numbers are stored as
3448 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
3449 *
3450 * We accumulate contiguous runs of blocks to free. Conveniently, if these
3451 * blocks are contiguous then releasing them at one time will only affect one
3452 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
3453 * actually use a lot of journal space.
3454 *
3455 * @this_bh will be %NULL if @first and @last point into the inode's direct
3456 * block pointers.
3457 */
617ba13b 3458static void ext4_free_data(handle_t *handle, struct inode *inode,
ac27a0ec
DK
3459 struct buffer_head *this_bh,
3460 __le32 *first, __le32 *last)
3461{
617ba13b 3462 ext4_fsblk_t block_to_free = 0; /* Starting block # of a run */
ac27a0ec
DK
3463 unsigned long count = 0; /* Number of blocks in the run */
3464 __le32 *block_to_free_p = NULL; /* Pointer into inode/ind
3465 corresponding to
3466 block_to_free */
617ba13b 3467 ext4_fsblk_t nr; /* Current block # */
ac27a0ec
DK
3468 __le32 *p; /* Pointer into inode/ind
3469 for current block */
3470 int err;
3471
3472 if (this_bh) { /* For indirect block */
3473 BUFFER_TRACE(this_bh, "get_write_access");
617ba13b 3474 err = ext4_journal_get_write_access(handle, this_bh);
ac27a0ec
DK
3475 /* Important: if we can't update the indirect pointers
3476 * to the blocks, we can't free them. */
3477 if (err)
3478 return;
3479 }
3480
3481 for (p = first; p < last; p++) {
3482 nr = le32_to_cpu(*p);
3483 if (nr) {
3484 /* accumulate blocks to free if they're contiguous */
3485 if (count == 0) {
3486 block_to_free = nr;
3487 block_to_free_p = p;
3488 count = 1;
3489 } else if (nr == block_to_free + count) {
3490 count++;
3491 } else {
617ba13b 3492 ext4_clear_blocks(handle, inode, this_bh,
ac27a0ec
DK
3493 block_to_free,
3494 count, block_to_free_p, p);
3495 block_to_free = nr;
3496 block_to_free_p = p;
3497 count = 1;
3498 }
3499 }
3500 }
3501
3502 if (count > 0)
617ba13b 3503 ext4_clear_blocks(handle, inode, this_bh, block_to_free,
ac27a0ec
DK
3504 count, block_to_free_p, p);
3505
3506 if (this_bh) {
617ba13b 3507 BUFFER_TRACE(this_bh, "call ext4_journal_dirty_metadata");
71dc8fbc
DG
3508
3509 /*
3510 * The buffer head should have an attached journal head at this
3511 * point. However, if the data is corrupted and an indirect
3512 * block pointed to itself, it would have been detached when
3513 * the block was cleared. Check for this instead of OOPSing.
3514 */
3515 if (bh2jh(this_bh))
3516 ext4_journal_dirty_metadata(handle, this_bh);
3517 else
3518 ext4_error(inode->i_sb, __func__,
3519 "circular indirect block detected, "
3520 "inode=%lu, block=%llu",
3521 inode->i_ino,
3522 (unsigned long long) this_bh->b_blocknr);
ac27a0ec
DK
3523 }
3524}
3525
3526/**
617ba13b 3527 * ext4_free_branches - free an array of branches
ac27a0ec
DK
3528 * @handle: JBD handle for this transaction
3529 * @inode: inode we are dealing with
3530 * @parent_bh: the buffer_head which contains *@first and *@last
3531 * @first: array of block numbers
3532 * @last: pointer immediately past the end of array
3533 * @depth: depth of the branches to free
3534 *
3535 * We are freeing all blocks refered from these branches (numbers are
3536 * stored as little-endian 32-bit) and updating @inode->i_blocks
3537 * appropriately.
3538 */
617ba13b 3539static void ext4_free_branches(handle_t *handle, struct inode *inode,
ac27a0ec
DK
3540 struct buffer_head *parent_bh,
3541 __le32 *first, __le32 *last, int depth)
3542{
617ba13b 3543 ext4_fsblk_t nr;
ac27a0ec
DK
3544 __le32 *p;
3545
3546 if (is_handle_aborted(handle))
3547 return;
3548
3549 if (depth--) {
3550 struct buffer_head *bh;
617ba13b 3551 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
ac27a0ec
DK
3552 p = last;
3553 while (--p >= first) {
3554 nr = le32_to_cpu(*p);
3555 if (!nr)
3556 continue; /* A hole */
3557
3558 /* Go read the buffer for the next level down */
3559 bh = sb_bread(inode->i_sb, nr);
3560
3561 /*
3562 * A read failure? Report error and clear slot
3563 * (should be rare).
3564 */
3565 if (!bh) {
617ba13b 3566 ext4_error(inode->i_sb, "ext4_free_branches",
2ae02107 3567 "Read failure, inode=%lu, block=%llu",
ac27a0ec
DK
3568 inode->i_ino, nr);
3569 continue;
3570 }
3571
3572 /* This zaps the entire block. Bottom up. */
3573 BUFFER_TRACE(bh, "free child branches");
617ba13b 3574 ext4_free_branches(handle, inode, bh,
af5bc92d
TT
3575 (__le32 *) bh->b_data,
3576 (__le32 *) bh->b_data + addr_per_block,
3577 depth);
ac27a0ec
DK
3578
3579 /*
3580 * We've probably journalled the indirect block several
3581 * times during the truncate. But it's no longer
3582 * needed and we now drop it from the transaction via
dab291af 3583 * jbd2_journal_revoke().
ac27a0ec
DK
3584 *
3585 * That's easy if it's exclusively part of this
3586 * transaction. But if it's part of the committing
dab291af 3587 * transaction then jbd2_journal_forget() will simply
ac27a0ec 3588 * brelse() it. That means that if the underlying
617ba13b 3589 * block is reallocated in ext4_get_block(),
ac27a0ec
DK
3590 * unmap_underlying_metadata() will find this block
3591 * and will try to get rid of it. damn, damn.
3592 *
3593 * If this block has already been committed to the
3594 * journal, a revoke record will be written. And
3595 * revoke records must be emitted *before* clearing
3596 * this block's bit in the bitmaps.
3597 */
617ba13b 3598 ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
ac27a0ec
DK
3599
3600 /*
3601 * Everything below this this pointer has been
3602 * released. Now let this top-of-subtree go.
3603 *
3604 * We want the freeing of this indirect block to be
3605 * atomic in the journal with the updating of the
3606 * bitmap block which owns it. So make some room in
3607 * the journal.
3608 *
3609 * We zero the parent pointer *after* freeing its
3610 * pointee in the bitmaps, so if extend_transaction()
3611 * for some reason fails to put the bitmap changes and
3612 * the release into the same transaction, recovery
3613 * will merely complain about releasing a free block,
3614 * rather than leaking blocks.
3615 */
3616 if (is_handle_aborted(handle))
3617 return;
3618 if (try_to_extend_transaction(handle, inode)) {
617ba13b
MC
3619 ext4_mark_inode_dirty(handle, inode);
3620 ext4_journal_test_restart(handle, inode);
ac27a0ec
DK
3621 }
3622
c9de560d 3623 ext4_free_blocks(handle, inode, nr, 1, 1);
ac27a0ec
DK
3624
3625 if (parent_bh) {
3626 /*
3627 * The block which we have just freed is
3628 * pointed to by an indirect block: journal it
3629 */
3630 BUFFER_TRACE(parent_bh, "get_write_access");
617ba13b 3631 if (!ext4_journal_get_write_access(handle,
ac27a0ec
DK
3632 parent_bh)){
3633 *p = 0;
3634 BUFFER_TRACE(parent_bh,
617ba13b
MC
3635 "call ext4_journal_dirty_metadata");
3636 ext4_journal_dirty_metadata(handle,
ac27a0ec
DK
3637 parent_bh);
3638 }
3639 }
3640 }
3641 } else {
3642 /* We have reached the bottom of the tree. */
3643 BUFFER_TRACE(parent_bh, "free data blocks");
617ba13b 3644 ext4_free_data(handle, inode, parent_bh, first, last);
ac27a0ec
DK
3645 }
3646}
3647
91ef4caf
DG
3648int ext4_can_truncate(struct inode *inode)
3649{
3650 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3651 return 0;
3652 if (S_ISREG(inode->i_mode))
3653 return 1;
3654 if (S_ISDIR(inode->i_mode))
3655 return 1;
3656 if (S_ISLNK(inode->i_mode))
3657 return !ext4_inode_is_fast_symlink(inode);
3658 return 0;
3659}
3660
ac27a0ec 3661/*
617ba13b 3662 * ext4_truncate()
ac27a0ec 3663 *
617ba13b
MC
3664 * We block out ext4_get_block() block instantiations across the entire
3665 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
ac27a0ec
DK
3666 * simultaneously on behalf of the same inode.
3667 *
3668 * As we work through the truncate and commmit bits of it to the journal there
3669 * is one core, guiding principle: the file's tree must always be consistent on
3670 * disk. We must be able to restart the truncate after a crash.
3671 *
3672 * The file's tree may be transiently inconsistent in memory (although it
3673 * probably isn't), but whenever we close off and commit a journal transaction,
3674 * the contents of (the filesystem + the journal) must be consistent and
3675 * restartable. It's pretty simple, really: bottom up, right to left (although
3676 * left-to-right works OK too).
3677 *
3678 * Note that at recovery time, journal replay occurs *before* the restart of
3679 * truncate against the orphan inode list.
3680 *
3681 * The committed inode has the new, desired i_size (which is the same as
617ba13b 3682 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
ac27a0ec 3683 * that this inode's truncate did not complete and it will again call
617ba13b
MC
3684 * ext4_truncate() to have another go. So there will be instantiated blocks
3685 * to the right of the truncation point in a crashed ext4 filesystem. But
ac27a0ec 3686 * that's fine - as long as they are linked from the inode, the post-crash
617ba13b 3687 * ext4_truncate() run will find them and release them.
ac27a0ec 3688 */
617ba13b 3689void ext4_truncate(struct inode *inode)
ac27a0ec
DK
3690{
3691 handle_t *handle;
617ba13b 3692 struct ext4_inode_info *ei = EXT4_I(inode);
ac27a0ec 3693 __le32 *i_data = ei->i_data;
617ba13b 3694 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
ac27a0ec 3695 struct address_space *mapping = inode->i_mapping;
725d26d3 3696 ext4_lblk_t offsets[4];
ac27a0ec
DK
3697 Indirect chain[4];
3698 Indirect *partial;
3699 __le32 nr = 0;
3700 int n;
725d26d3 3701 ext4_lblk_t last_block;
ac27a0ec 3702 unsigned blocksize = inode->i_sb->s_blocksize;
ac27a0ec 3703
91ef4caf 3704 if (!ext4_can_truncate(inode))
ac27a0ec
DK
3705 return;
3706
1d03ec98 3707 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
cf108bca 3708 ext4_ext_truncate(inode);
1d03ec98
AK
3709 return;
3710 }
a86c6181 3711
ac27a0ec 3712 handle = start_transaction(inode);
cf108bca 3713 if (IS_ERR(handle))
ac27a0ec 3714 return; /* AKPM: return what? */
ac27a0ec
DK
3715
3716 last_block = (inode->i_size + blocksize-1)
617ba13b 3717 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
ac27a0ec 3718
cf108bca
JK
3719 if (inode->i_size & (blocksize - 1))
3720 if (ext4_block_truncate_page(handle, mapping, inode->i_size))
3721 goto out_stop;
ac27a0ec 3722
617ba13b 3723 n = ext4_block_to_path(inode, last_block, offsets, NULL);
ac27a0ec
DK
3724 if (n == 0)
3725 goto out_stop; /* error */
3726
3727 /*
3728 * OK. This truncate is going to happen. We add the inode to the
3729 * orphan list, so that if this truncate spans multiple transactions,
3730 * and we crash, we will resume the truncate when the filesystem
3731 * recovers. It also marks the inode dirty, to catch the new size.
3732 *
3733 * Implication: the file must always be in a sane, consistent
3734 * truncatable state while each transaction commits.
3735 */
617ba13b 3736 if (ext4_orphan_add(handle, inode))
ac27a0ec
DK
3737 goto out_stop;
3738
632eaeab
MC
3739 /*
3740 * From here we block out all ext4_get_block() callers who want to
3741 * modify the block allocation tree.
3742 */
3743 down_write(&ei->i_data_sem);
b4df2030 3744
c2ea3fde 3745 ext4_discard_preallocations(inode);
b4df2030 3746
ac27a0ec
DK
3747 /*
3748 * The orphan list entry will now protect us from any crash which
3749 * occurs before the truncate completes, so it is now safe to propagate
3750 * the new, shorter inode size (held for now in i_size) into the
3751 * on-disk inode. We do this via i_disksize, which is the value which
617ba13b 3752 * ext4 *really* writes onto the disk inode.
ac27a0ec
DK
3753 */
3754 ei->i_disksize = inode->i_size;
3755
ac27a0ec 3756 if (n == 1) { /* direct blocks */
617ba13b
MC
3757 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
3758 i_data + EXT4_NDIR_BLOCKS);
ac27a0ec
DK
3759 goto do_indirects;
3760 }
3761
617ba13b 3762 partial = ext4_find_shared(inode, n, offsets, chain, &nr);
ac27a0ec
DK
3763 /* Kill the top of shared branch (not detached) */
3764 if (nr) {
3765 if (partial == chain) {
3766 /* Shared branch grows from the inode */
617ba13b 3767 ext4_free_branches(handle, inode, NULL,
ac27a0ec
DK
3768 &nr, &nr+1, (chain+n-1) - partial);
3769 *partial->p = 0;
3770 /*
3771 * We mark the inode dirty prior to restart,
3772 * and prior to stop. No need for it here.
3773 */
3774 } else {
3775 /* Shared branch grows from an indirect block */
3776 BUFFER_TRACE(partial->bh, "get_write_access");
617ba13b 3777 ext4_free_branches(handle, inode, partial->bh,
ac27a0ec
DK
3778 partial->p,
3779 partial->p+1, (chain+n-1) - partial);
3780 }
3781 }
3782 /* Clear the ends of indirect blocks on the shared branch */
3783 while (partial > chain) {
617ba13b 3784 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
ac27a0ec
DK
3785 (__le32*)partial->bh->b_data+addr_per_block,
3786 (chain+n-1) - partial);
3787 BUFFER_TRACE(partial->bh, "call brelse");
3788 brelse (partial->bh);
3789 partial--;
3790 }
3791do_indirects:
3792 /* Kill the remaining (whole) subtrees */
3793 switch (offsets[0]) {
3794 default:
617ba13b 3795 nr = i_data[EXT4_IND_BLOCK];
ac27a0ec 3796 if (nr) {
617ba13b
MC
3797 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
3798 i_data[EXT4_IND_BLOCK] = 0;
ac27a0ec 3799 }
617ba13b
MC
3800 case EXT4_IND_BLOCK:
3801 nr = i_data[EXT4_DIND_BLOCK];
ac27a0ec 3802 if (nr) {
617ba13b
MC
3803 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
3804 i_data[EXT4_DIND_BLOCK] = 0;
ac27a0ec 3805 }
617ba13b
MC
3806 case EXT4_DIND_BLOCK:
3807 nr = i_data[EXT4_TIND_BLOCK];
ac27a0ec 3808 if (nr) {
617ba13b
MC
3809 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
3810 i_data[EXT4_TIND_BLOCK] = 0;
ac27a0ec 3811 }
617ba13b 3812 case EXT4_TIND_BLOCK:
ac27a0ec
DK
3813 ;
3814 }
3815
0e855ac8 3816 up_write(&ei->i_data_sem);
ef7f3835 3817 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
617ba13b 3818 ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
3819
3820 /*
3821 * In a multi-transaction truncate, we only make the final transaction
3822 * synchronous
3823 */
3824 if (IS_SYNC(inode))
3825 handle->h_sync = 1;
3826out_stop:
3827 /*
3828 * If this was a simple ftruncate(), and the file will remain alive
3829 * then we need to clear up the orphan record which we created above.
3830 * However, if this was a real unlink then we were called by
617ba13b 3831 * ext4_delete_inode(), and we allow that function to clean up the
ac27a0ec
DK
3832 * orphan info for us.
3833 */
3834 if (inode->i_nlink)
617ba13b 3835 ext4_orphan_del(handle, inode);
ac27a0ec 3836
617ba13b 3837 ext4_journal_stop(handle);
ac27a0ec
DK
3838}
3839
ac27a0ec 3840/*
617ba13b 3841 * ext4_get_inode_loc returns with an extra refcount against the inode's
ac27a0ec
DK
3842 * underlying buffer_head on success. If 'in_mem' is true, we have all
3843 * data in memory that is needed to recreate the on-disk version of this
3844 * inode.
3845 */
617ba13b
MC
3846static int __ext4_get_inode_loc(struct inode *inode,
3847 struct ext4_iloc *iloc, int in_mem)
ac27a0ec 3848{
240799cd
TT
3849 struct ext4_group_desc *gdp;
3850 struct buffer_head *bh;
3851 struct super_block *sb = inode->i_sb;
3852 ext4_fsblk_t block;
3853 int inodes_per_block, inode_offset;
3854
3855 iloc->bh = 0;
3856 if (!ext4_valid_inum(sb, inode->i_ino))
3857 return -EIO;
ac27a0ec 3858
240799cd
TT
3859 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3860 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3861 if (!gdp)
ac27a0ec
DK
3862 return -EIO;
3863
240799cd
TT
3864 /*
3865 * Figure out the offset within the block group inode table
3866 */
3867 inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb));
3868 inode_offset = ((inode->i_ino - 1) %
3869 EXT4_INODES_PER_GROUP(sb));
3870 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3871 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3872
3873 bh = sb_getblk(sb, block);
ac27a0ec 3874 if (!bh) {
240799cd
TT
3875 ext4_error(sb, "ext4_get_inode_loc", "unable to read "
3876 "inode block - inode=%lu, block=%llu",
3877 inode->i_ino, block);
ac27a0ec
DK
3878 return -EIO;
3879 }
3880 if (!buffer_uptodate(bh)) {
3881 lock_buffer(bh);
9c83a923
HK
3882
3883 /*
3884 * If the buffer has the write error flag, we have failed
3885 * to write out another inode in the same block. In this
3886 * case, we don't have to read the block because we may
3887 * read the old inode data successfully.
3888 */
3889 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3890 set_buffer_uptodate(bh);
3891
ac27a0ec
DK
3892 if (buffer_uptodate(bh)) {
3893 /* someone brought it uptodate while we waited */
3894 unlock_buffer(bh);
3895 goto has_buffer;
3896 }
3897
3898 /*
3899 * If we have all information of the inode in memory and this
3900 * is the only valid inode in the block, we need not read the
3901 * block.
3902 */
3903 if (in_mem) {
3904 struct buffer_head *bitmap_bh;
240799cd 3905 int i, start;
ac27a0ec 3906
240799cd 3907 start = inode_offset & ~(inodes_per_block - 1);
ac27a0ec 3908
240799cd
TT
3909 /* Is the inode bitmap in cache? */
3910 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
ac27a0ec
DK
3911 if (!bitmap_bh)
3912 goto make_io;
3913
3914 /*
3915 * If the inode bitmap isn't in cache then the
3916 * optimisation may end up performing two reads instead
3917 * of one, so skip it.
3918 */
3919 if (!buffer_uptodate(bitmap_bh)) {
3920 brelse(bitmap_bh);
3921 goto make_io;
3922 }
240799cd 3923 for (i = start; i < start + inodes_per_block; i++) {
ac27a0ec
DK
3924 if (i == inode_offset)
3925 continue;
617ba13b 3926 if (ext4_test_bit(i, bitmap_bh->b_data))
ac27a0ec
DK
3927 break;
3928 }
3929 brelse(bitmap_bh);
240799cd 3930 if (i == start + inodes_per_block) {
ac27a0ec
DK
3931 /* all other inodes are free, so skip I/O */
3932 memset(bh->b_data, 0, bh->b_size);
3933 set_buffer_uptodate(bh);
3934 unlock_buffer(bh);
3935 goto has_buffer;
3936 }
3937 }
3938
3939make_io:
240799cd
TT
3940 /*
3941 * If we need to do any I/O, try to pre-readahead extra
3942 * blocks from the inode table.
3943 */
3944 if (EXT4_SB(sb)->s_inode_readahead_blks) {
3945 ext4_fsblk_t b, end, table;
3946 unsigned num;
3947
3948 table = ext4_inode_table(sb, gdp);
3949 /* Make sure s_inode_readahead_blks is a power of 2 */
3950 while (EXT4_SB(sb)->s_inode_readahead_blks &
3951 (EXT4_SB(sb)->s_inode_readahead_blks-1))
3952 EXT4_SB(sb)->s_inode_readahead_blks =
3953 (EXT4_SB(sb)->s_inode_readahead_blks &
3954 (EXT4_SB(sb)->s_inode_readahead_blks-1));
3955 b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
3956 if (table > b)
3957 b = table;
3958 end = b + EXT4_SB(sb)->s_inode_readahead_blks;
3959 num = EXT4_INODES_PER_GROUP(sb);
3960 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3961 EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
3962 num -= le16_to_cpu(gdp->bg_itable_unused);
3963 table += num / inodes_per_block;
3964 if (end > table)
3965 end = table;
3966 while (b <= end)
3967 sb_breadahead(sb, b++);
3968 }
3969
ac27a0ec
DK
3970 /*
3971 * There are other valid inodes in the buffer, this inode
3972 * has in-inode xattrs, or we don't have this inode in memory.
3973 * Read the block from disk.
3974 */
3975 get_bh(bh);
3976 bh->b_end_io = end_buffer_read_sync;
3977 submit_bh(READ_META, bh);
3978 wait_on_buffer(bh);
3979 if (!buffer_uptodate(bh)) {
240799cd
TT
3980 ext4_error(sb, __func__,
3981 "unable to read inode block - inode=%lu, "
3982 "block=%llu", inode->i_ino, block);
ac27a0ec
DK
3983 brelse(bh);
3984 return -EIO;
3985 }
3986 }
3987has_buffer:
3988 iloc->bh = bh;
3989 return 0;
3990}
3991
617ba13b 3992int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
3993{
3994 /* We have all inode data except xattrs in memory here. */
617ba13b
MC
3995 return __ext4_get_inode_loc(inode, iloc,
3996 !(EXT4_I(inode)->i_state & EXT4_STATE_XATTR));
ac27a0ec
DK
3997}
3998
617ba13b 3999void ext4_set_inode_flags(struct inode *inode)
ac27a0ec 4000{
617ba13b 4001 unsigned int flags = EXT4_I(inode)->i_flags;
ac27a0ec
DK
4002
4003 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
617ba13b 4004 if (flags & EXT4_SYNC_FL)
ac27a0ec 4005 inode->i_flags |= S_SYNC;
617ba13b 4006 if (flags & EXT4_APPEND_FL)
ac27a0ec 4007 inode->i_flags |= S_APPEND;
617ba13b 4008 if (flags & EXT4_IMMUTABLE_FL)
ac27a0ec 4009 inode->i_flags |= S_IMMUTABLE;
617ba13b 4010 if (flags & EXT4_NOATIME_FL)
ac27a0ec 4011 inode->i_flags |= S_NOATIME;
617ba13b 4012 if (flags & EXT4_DIRSYNC_FL)
ac27a0ec
DK
4013 inode->i_flags |= S_DIRSYNC;
4014}
4015
ff9ddf7e
JK
4016/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4017void ext4_get_inode_flags(struct ext4_inode_info *ei)
4018{
4019 unsigned int flags = ei->vfs_inode.i_flags;
4020
4021 ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4022 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
4023 if (flags & S_SYNC)
4024 ei->i_flags |= EXT4_SYNC_FL;
4025 if (flags & S_APPEND)
4026 ei->i_flags |= EXT4_APPEND_FL;
4027 if (flags & S_IMMUTABLE)
4028 ei->i_flags |= EXT4_IMMUTABLE_FL;
4029 if (flags & S_NOATIME)
4030 ei->i_flags |= EXT4_NOATIME_FL;
4031 if (flags & S_DIRSYNC)
4032 ei->i_flags |= EXT4_DIRSYNC_FL;
4033}
0fc1b451
AK
4034static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4035 struct ext4_inode_info *ei)
4036{
4037 blkcnt_t i_blocks ;
8180a562
AK
4038 struct inode *inode = &(ei->vfs_inode);
4039 struct super_block *sb = inode->i_sb;
0fc1b451
AK
4040
4041 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4042 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
4043 /* we are using combined 48 bit field */
4044 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4045 le32_to_cpu(raw_inode->i_blocks_lo);
8180a562
AK
4046 if (ei->i_flags & EXT4_HUGE_FILE_FL) {
4047 /* i_blocks represent file system block size */
4048 return i_blocks << (inode->i_blkbits - 9);
4049 } else {
4050 return i_blocks;
4051 }
0fc1b451
AK
4052 } else {
4053 return le32_to_cpu(raw_inode->i_blocks_lo);
4054 }
4055}
ff9ddf7e 4056
1d1fe1ee 4057struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
ac27a0ec 4058{
617ba13b
MC
4059 struct ext4_iloc iloc;
4060 struct ext4_inode *raw_inode;
1d1fe1ee 4061 struct ext4_inode_info *ei;
ac27a0ec 4062 struct buffer_head *bh;
1d1fe1ee
DH
4063 struct inode *inode;
4064 long ret;
ac27a0ec
DK
4065 int block;
4066
1d1fe1ee
DH
4067 inode = iget_locked(sb, ino);
4068 if (!inode)
4069 return ERR_PTR(-ENOMEM);
4070 if (!(inode->i_state & I_NEW))
4071 return inode;
4072
4073 ei = EXT4_I(inode);
03010a33 4074#ifdef CONFIG_EXT4_FS_POSIX_ACL
617ba13b
MC
4075 ei->i_acl = EXT4_ACL_NOT_CACHED;
4076 ei->i_default_acl = EXT4_ACL_NOT_CACHED;
ac27a0ec 4077#endif
ac27a0ec 4078
1d1fe1ee
DH
4079 ret = __ext4_get_inode_loc(inode, &iloc, 0);
4080 if (ret < 0)
ac27a0ec
DK
4081 goto bad_inode;
4082 bh = iloc.bh;
617ba13b 4083 raw_inode = ext4_raw_inode(&iloc);
ac27a0ec
DK
4084 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4085 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4086 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
af5bc92d 4087 if (!(test_opt(inode->i_sb, NO_UID32))) {
ac27a0ec
DK
4088 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4089 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4090 }
4091 inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
ac27a0ec
DK
4092
4093 ei->i_state = 0;
4094 ei->i_dir_start_lookup = 0;
4095 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4096 /* We now have enough fields to check if the inode was active or not.
4097 * This is needed because nfsd might try to access dead inodes
4098 * the test is that same one that e2fsck uses
4099 * NeilBrown 1999oct15
4100 */
4101 if (inode->i_nlink == 0) {
4102 if (inode->i_mode == 0 ||
617ba13b 4103 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
ac27a0ec 4104 /* this inode is deleted */
af5bc92d 4105 brelse(bh);
1d1fe1ee 4106 ret = -ESTALE;
ac27a0ec
DK
4107 goto bad_inode;
4108 }
4109 /* The only unlinked inodes we let through here have
4110 * valid i_mode and are being read by the orphan
4111 * recovery code: that's fine, we're about to complete
4112 * the process of deleting those. */
4113 }
ac27a0ec 4114 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
0fc1b451 4115 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
7973c0c1 4116 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
9b8f1f01 4117 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
a48380f7 4118 cpu_to_le32(EXT4_OS_HURD)) {
a1ddeb7e
BP
4119 ei->i_file_acl |=
4120 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
ac27a0ec 4121 }
a48380f7 4122 inode->i_size = ext4_isize(raw_inode);
ac27a0ec
DK
4123 ei->i_disksize = inode->i_size;
4124 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4125 ei->i_block_group = iloc.block_group;
4126 /*
4127 * NOTE! The in-memory inode i_data array is in little-endian order
4128 * even on big-endian machines: we do NOT byteswap the block numbers!
4129 */
617ba13b 4130 for (block = 0; block < EXT4_N_BLOCKS; block++)
ac27a0ec
DK
4131 ei->i_data[block] = raw_inode->i_block[block];
4132 INIT_LIST_HEAD(&ei->i_orphan);
4133
0040d987 4134 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
ac27a0ec 4135 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
617ba13b 4136 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
e5d2861f 4137 EXT4_INODE_SIZE(inode->i_sb)) {
af5bc92d 4138 brelse(bh);
1d1fe1ee 4139 ret = -EIO;
ac27a0ec 4140 goto bad_inode;
e5d2861f 4141 }
ac27a0ec
DK
4142 if (ei->i_extra_isize == 0) {
4143 /* The extra space is currently unused. Use it. */
617ba13b
MC
4144 ei->i_extra_isize = sizeof(struct ext4_inode) -
4145 EXT4_GOOD_OLD_INODE_SIZE;
ac27a0ec
DK
4146 } else {
4147 __le32 *magic = (void *)raw_inode +
617ba13b 4148 EXT4_GOOD_OLD_INODE_SIZE +
ac27a0ec 4149 ei->i_extra_isize;
617ba13b
MC
4150 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
4151 ei->i_state |= EXT4_STATE_XATTR;
ac27a0ec
DK
4152 }
4153 } else
4154 ei->i_extra_isize = 0;
4155
ef7f3835
KS
4156 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4157 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4158 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4159 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4160
25ec56b5
JNC
4161 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4162 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4163 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4164 inode->i_version |=
4165 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4166 }
4167
ac27a0ec 4168 if (S_ISREG(inode->i_mode)) {
617ba13b
MC
4169 inode->i_op = &ext4_file_inode_operations;
4170 inode->i_fop = &ext4_file_operations;
4171 ext4_set_aops(inode);
ac27a0ec 4172 } else if (S_ISDIR(inode->i_mode)) {
617ba13b
MC
4173 inode->i_op = &ext4_dir_inode_operations;
4174 inode->i_fop = &ext4_dir_operations;
ac27a0ec 4175 } else if (S_ISLNK(inode->i_mode)) {
e83c1397 4176 if (ext4_inode_is_fast_symlink(inode)) {
617ba13b 4177 inode->i_op = &ext4_fast_symlink_inode_operations;
e83c1397
DG
4178 nd_terminate_link(ei->i_data, inode->i_size,
4179 sizeof(ei->i_data) - 1);
4180 } else {
617ba13b
MC
4181 inode->i_op = &ext4_symlink_inode_operations;
4182 ext4_set_aops(inode);
ac27a0ec
DK
4183 }
4184 } else {
617ba13b 4185 inode->i_op = &ext4_special_inode_operations;
ac27a0ec
DK
4186 if (raw_inode->i_block[0])
4187 init_special_inode(inode, inode->i_mode,
4188 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4189 else
4190 init_special_inode(inode, inode->i_mode,
4191 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4192 }
af5bc92d 4193 brelse(iloc.bh);
617ba13b 4194 ext4_set_inode_flags(inode);
1d1fe1ee
DH
4195 unlock_new_inode(inode);
4196 return inode;
ac27a0ec
DK
4197
4198bad_inode:
1d1fe1ee
DH
4199 iget_failed(inode);
4200 return ERR_PTR(ret);
ac27a0ec
DK
4201}
4202
0fc1b451
AK
4203static int ext4_inode_blocks_set(handle_t *handle,
4204 struct ext4_inode *raw_inode,
4205 struct ext4_inode_info *ei)
4206{
4207 struct inode *inode = &(ei->vfs_inode);
4208 u64 i_blocks = inode->i_blocks;
4209 struct super_block *sb = inode->i_sb;
0fc1b451
AK
4210
4211 if (i_blocks <= ~0U) {
4212 /*
4213 * i_blocks can be represnted in a 32 bit variable
4214 * as multiple of 512 bytes
4215 */
8180a562 4216 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 4217 raw_inode->i_blocks_high = 0;
8180a562 4218 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
f287a1a5
TT
4219 return 0;
4220 }
4221 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4222 return -EFBIG;
4223
4224 if (i_blocks <= 0xffffffffffffULL) {
0fc1b451
AK
4225 /*
4226 * i_blocks can be represented in a 48 bit variable
4227 * as multiple of 512 bytes
4228 */
8180a562 4229 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 4230 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
8180a562 4231 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
0fc1b451 4232 } else {
8180a562
AK
4233 ei->i_flags |= EXT4_HUGE_FILE_FL;
4234 /* i_block is stored in file system block size */
4235 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4236 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4237 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
0fc1b451 4238 }
f287a1a5 4239 return 0;
0fc1b451
AK
4240}
4241
ac27a0ec
DK
4242/*
4243 * Post the struct inode info into an on-disk inode location in the
4244 * buffer-cache. This gobbles the caller's reference to the
4245 * buffer_head in the inode location struct.
4246 *
4247 * The caller must have write access to iloc->bh.
4248 */
617ba13b 4249static int ext4_do_update_inode(handle_t *handle,
ac27a0ec 4250 struct inode *inode,
617ba13b 4251 struct ext4_iloc *iloc)
ac27a0ec 4252{
617ba13b
MC
4253 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4254 struct ext4_inode_info *ei = EXT4_I(inode);
ac27a0ec
DK
4255 struct buffer_head *bh = iloc->bh;
4256 int err = 0, rc, block;
4257
4258 /* For fields not not tracking in the in-memory inode,
4259 * initialise them to zero for new inodes. */
617ba13b
MC
4260 if (ei->i_state & EXT4_STATE_NEW)
4261 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
ac27a0ec 4262
ff9ddf7e 4263 ext4_get_inode_flags(ei);
ac27a0ec 4264 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
af5bc92d 4265 if (!(test_opt(inode->i_sb, NO_UID32))) {
ac27a0ec
DK
4266 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
4267 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
4268/*
4269 * Fix up interoperability with old kernels. Otherwise, old inodes get
4270 * re-used with the upper 16 bits of the uid/gid intact
4271 */
af5bc92d 4272 if (!ei->i_dtime) {
ac27a0ec
DK
4273 raw_inode->i_uid_high =
4274 cpu_to_le16(high_16_bits(inode->i_uid));
4275 raw_inode->i_gid_high =
4276 cpu_to_le16(high_16_bits(inode->i_gid));
4277 } else {
4278 raw_inode->i_uid_high = 0;
4279 raw_inode->i_gid_high = 0;
4280 }
4281 } else {
4282 raw_inode->i_uid_low =
4283 cpu_to_le16(fs_high2lowuid(inode->i_uid));
4284 raw_inode->i_gid_low =
4285 cpu_to_le16(fs_high2lowgid(inode->i_gid));
4286 raw_inode->i_uid_high = 0;
4287 raw_inode->i_gid_high = 0;
4288 }
4289 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
ef7f3835
KS
4290
4291 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4292 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4293 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4294 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4295
0fc1b451
AK
4296 if (ext4_inode_blocks_set(handle, raw_inode, ei))
4297 goto out_brelse;
ac27a0ec 4298 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
267e4db9
AK
4299 /* clear the migrate flag in the raw_inode */
4300 raw_inode->i_flags = cpu_to_le32(ei->i_flags & ~EXT4_EXT_MIGRATE);
9b8f1f01
MC
4301 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4302 cpu_to_le32(EXT4_OS_HURD))
a1ddeb7e
BP
4303 raw_inode->i_file_acl_high =
4304 cpu_to_le16(ei->i_file_acl >> 32);
7973c0c1 4305 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
a48380f7
AK
4306 ext4_isize_set(raw_inode, ei->i_disksize);
4307 if (ei->i_disksize > 0x7fffffffULL) {
4308 struct super_block *sb = inode->i_sb;
4309 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4310 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4311 EXT4_SB(sb)->s_es->s_rev_level ==
4312 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4313 /* If this is the first large file
4314 * created, add a flag to the superblock.
4315 */
4316 err = ext4_journal_get_write_access(handle,
4317 EXT4_SB(sb)->s_sbh);
4318 if (err)
4319 goto out_brelse;
4320 ext4_update_dynamic_rev(sb);
4321 EXT4_SET_RO_COMPAT_FEATURE(sb,
617ba13b 4322 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
a48380f7
AK
4323 sb->s_dirt = 1;
4324 handle->h_sync = 1;
4325 err = ext4_journal_dirty_metadata(handle,
4326 EXT4_SB(sb)->s_sbh);
ac27a0ec
DK
4327 }
4328 }
4329 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4330 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4331 if (old_valid_dev(inode->i_rdev)) {
4332 raw_inode->i_block[0] =
4333 cpu_to_le32(old_encode_dev(inode->i_rdev));
4334 raw_inode->i_block[1] = 0;
4335 } else {
4336 raw_inode->i_block[0] = 0;
4337 raw_inode->i_block[1] =
4338 cpu_to_le32(new_encode_dev(inode->i_rdev));
4339 raw_inode->i_block[2] = 0;
4340 }
617ba13b 4341 } else for (block = 0; block < EXT4_N_BLOCKS; block++)
ac27a0ec
DK
4342 raw_inode->i_block[block] = ei->i_data[block];
4343
25ec56b5
JNC
4344 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4345 if (ei->i_extra_isize) {
4346 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4347 raw_inode->i_version_hi =
4348 cpu_to_le32(inode->i_version >> 32);
ac27a0ec 4349 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
25ec56b5
JNC
4350 }
4351
ac27a0ec 4352
617ba13b
MC
4353 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
4354 rc = ext4_journal_dirty_metadata(handle, bh);
ac27a0ec
DK
4355 if (!err)
4356 err = rc;
617ba13b 4357 ei->i_state &= ~EXT4_STATE_NEW;
ac27a0ec
DK
4358
4359out_brelse:
af5bc92d 4360 brelse(bh);
617ba13b 4361 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4362 return err;
4363}
4364
4365/*
617ba13b 4366 * ext4_write_inode()
ac27a0ec
DK
4367 *
4368 * We are called from a few places:
4369 *
4370 * - Within generic_file_write() for O_SYNC files.
4371 * Here, there will be no transaction running. We wait for any running
4372 * trasnaction to commit.
4373 *
4374 * - Within sys_sync(), kupdate and such.
4375 * We wait on commit, if tol to.
4376 *
4377 * - Within prune_icache() (PF_MEMALLOC == true)
4378 * Here we simply return. We can't afford to block kswapd on the
4379 * journal commit.
4380 *
4381 * In all cases it is actually safe for us to return without doing anything,
4382 * because the inode has been copied into a raw inode buffer in
617ba13b 4383 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
ac27a0ec
DK
4384 * knfsd.
4385 *
4386 * Note that we are absolutely dependent upon all inode dirtiers doing the
4387 * right thing: they *must* call mark_inode_dirty() after dirtying info in
4388 * which we are interested.
4389 *
4390 * It would be a bug for them to not do this. The code:
4391 *
4392 * mark_inode_dirty(inode)
4393 * stuff();
4394 * inode->i_size = expr;
4395 *
4396 * is in error because a kswapd-driven write_inode() could occur while
4397 * `stuff()' is running, and the new i_size will be lost. Plus the inode
4398 * will no longer be on the superblock's dirty inode list.
4399 */
617ba13b 4400int ext4_write_inode(struct inode *inode, int wait)
ac27a0ec
DK
4401{
4402 if (current->flags & PF_MEMALLOC)
4403 return 0;
4404
617ba13b 4405 if (ext4_journal_current_handle()) {
b38bd33a 4406 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
ac27a0ec
DK
4407 dump_stack();
4408 return -EIO;
4409 }
4410
4411 if (!wait)
4412 return 0;
4413
617ba13b 4414 return ext4_force_commit(inode->i_sb);
ac27a0ec
DK
4415}
4416
4417/*
617ba13b 4418 * ext4_setattr()
ac27a0ec
DK
4419 *
4420 * Called from notify_change.
4421 *
4422 * We want to trap VFS attempts to truncate the file as soon as
4423 * possible. In particular, we want to make sure that when the VFS
4424 * shrinks i_size, we put the inode on the orphan list and modify
4425 * i_disksize immediately, so that during the subsequent flushing of
4426 * dirty pages and freeing of disk blocks, we can guarantee that any
4427 * commit will leave the blocks being flushed in an unused state on
4428 * disk. (On recovery, the inode will get truncated and the blocks will
4429 * be freed, so we have a strong guarantee that no future commit will
4430 * leave these blocks visible to the user.)
4431 *
678aaf48
JK
4432 * Another thing we have to assure is that if we are in ordered mode
4433 * and inode is still attached to the committing transaction, we must
4434 * we start writeout of all the dirty pages which are being truncated.
4435 * This way we are sure that all the data written in the previous
4436 * transaction are already on disk (truncate waits for pages under
4437 * writeback).
4438 *
4439 * Called with inode->i_mutex down.
ac27a0ec 4440 */
617ba13b 4441int ext4_setattr(struct dentry *dentry, struct iattr *attr)
ac27a0ec
DK
4442{
4443 struct inode *inode = dentry->d_inode;
4444 int error, rc = 0;
4445 const unsigned int ia_valid = attr->ia_valid;
4446
4447 error = inode_change_ok(inode, attr);
4448 if (error)
4449 return error;
4450
4451 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
4452 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
4453 handle_t *handle;
4454
4455 /* (user+group)*(old+new) structure, inode write (sb,
4456 * inode block, ? - but truncate inode update has it) */
617ba13b
MC
4457 handle = ext4_journal_start(inode, 2*(EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)+
4458 EXT4_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
ac27a0ec
DK
4459 if (IS_ERR(handle)) {
4460 error = PTR_ERR(handle);
4461 goto err_out;
4462 }
4463 error = DQUOT_TRANSFER(inode, attr) ? -EDQUOT : 0;
4464 if (error) {
617ba13b 4465 ext4_journal_stop(handle);
ac27a0ec
DK
4466 return error;
4467 }
4468 /* Update corresponding info in inode so that everything is in
4469 * one transaction */
4470 if (attr->ia_valid & ATTR_UID)
4471 inode->i_uid = attr->ia_uid;
4472 if (attr->ia_valid & ATTR_GID)
4473 inode->i_gid = attr->ia_gid;
617ba13b
MC
4474 error = ext4_mark_inode_dirty(handle, inode);
4475 ext4_journal_stop(handle);
ac27a0ec
DK
4476 }
4477
e2b46574
ES
4478 if (attr->ia_valid & ATTR_SIZE) {
4479 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
4480 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4481
4482 if (attr->ia_size > sbi->s_bitmap_maxbytes) {
4483 error = -EFBIG;
4484 goto err_out;
4485 }
4486 }
4487 }
4488
ac27a0ec
DK
4489 if (S_ISREG(inode->i_mode) &&
4490 attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
4491 handle_t *handle;
4492
617ba13b 4493 handle = ext4_journal_start(inode, 3);
ac27a0ec
DK
4494 if (IS_ERR(handle)) {
4495 error = PTR_ERR(handle);
4496 goto err_out;
4497 }
4498
617ba13b
MC
4499 error = ext4_orphan_add(handle, inode);
4500 EXT4_I(inode)->i_disksize = attr->ia_size;
4501 rc = ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
4502 if (!error)
4503 error = rc;
617ba13b 4504 ext4_journal_stop(handle);
678aaf48
JK
4505
4506 if (ext4_should_order_data(inode)) {
4507 error = ext4_begin_ordered_truncate(inode,
4508 attr->ia_size);
4509 if (error) {
4510 /* Do as much error cleanup as possible */
4511 handle = ext4_journal_start(inode, 3);
4512 if (IS_ERR(handle)) {
4513 ext4_orphan_del(NULL, inode);
4514 goto err_out;
4515 }
4516 ext4_orphan_del(handle, inode);
4517 ext4_journal_stop(handle);
4518 goto err_out;
4519 }
4520 }
ac27a0ec
DK
4521 }
4522
4523 rc = inode_setattr(inode, attr);
4524
617ba13b 4525 /* If inode_setattr's call to ext4_truncate failed to get a
ac27a0ec
DK
4526 * transaction handle at all, we need to clean up the in-core
4527 * orphan list manually. */
4528 if (inode->i_nlink)
617ba13b 4529 ext4_orphan_del(NULL, inode);
ac27a0ec
DK
4530
4531 if (!rc && (ia_valid & ATTR_MODE))
617ba13b 4532 rc = ext4_acl_chmod(inode);
ac27a0ec
DK
4533
4534err_out:
617ba13b 4535 ext4_std_error(inode->i_sb, error);
ac27a0ec
DK
4536 if (!error)
4537 error = rc;
4538 return error;
4539}
4540
3e3398a0
MC
4541int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4542 struct kstat *stat)
4543{
4544 struct inode *inode;
4545 unsigned long delalloc_blocks;
4546
4547 inode = dentry->d_inode;
4548 generic_fillattr(inode, stat);
4549
4550 /*
4551 * We can't update i_blocks if the block allocation is delayed
4552 * otherwise in the case of system crash before the real block
4553 * allocation is done, we will have i_blocks inconsistent with
4554 * on-disk file blocks.
4555 * We always keep i_blocks updated together with real
4556 * allocation. But to not confuse with user, stat
4557 * will return the blocks that include the delayed allocation
4558 * blocks for this file.
4559 */
4560 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
4561 delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
4562 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
4563
4564 stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
4565 return 0;
4566}
ac27a0ec 4567
a02908f1
MC
4568static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
4569 int chunk)
4570{
4571 int indirects;
4572
4573 /* if nrblocks are contiguous */
4574 if (chunk) {
4575 /*
4576 * With N contiguous data blocks, it need at most
4577 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
4578 * 2 dindirect blocks
4579 * 1 tindirect block
4580 */
4581 indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
4582 return indirects + 3;
4583 }
4584 /*
4585 * if nrblocks are not contiguous, worse case, each block touch
4586 * a indirect block, and each indirect block touch a double indirect
4587 * block, plus a triple indirect block
4588 */
4589 indirects = nrblocks * 2 + 1;
4590 return indirects;
4591}
4592
4593static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4594{
4595 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL))
ac51d837
TT
4596 return ext4_indirect_trans_blocks(inode, nrblocks, chunk);
4597 return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
a02908f1 4598}
ac51d837 4599
ac27a0ec 4600/*
a02908f1
MC
4601 * Account for index blocks, block groups bitmaps and block group
4602 * descriptor blocks if modify datablocks and index blocks
4603 * worse case, the indexs blocks spread over different block groups
ac27a0ec 4604 *
a02908f1
MC
4605 * If datablocks are discontiguous, they are possible to spread over
4606 * different block groups too. If they are contiugous, with flexbg,
4607 * they could still across block group boundary.
ac27a0ec 4608 *
a02908f1
MC
4609 * Also account for superblock, inode, quota and xattr blocks
4610 */
4611int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4612{
4613 int groups, gdpblocks;
4614 int idxblocks;
4615 int ret = 0;
4616
4617 /*
4618 * How many index blocks need to touch to modify nrblocks?
4619 * The "Chunk" flag indicating whether the nrblocks is
4620 * physically contiguous on disk
4621 *
4622 * For Direct IO and fallocate, they calls get_block to allocate
4623 * one single extent at a time, so they could set the "Chunk" flag
4624 */
4625 idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4626
4627 ret = idxblocks;
4628
4629 /*
4630 * Now let's see how many group bitmaps and group descriptors need
4631 * to account
4632 */
4633 groups = idxblocks;
4634 if (chunk)
4635 groups += 1;
4636 else
4637 groups += nrblocks;
4638
4639 gdpblocks = groups;
4640 if (groups > EXT4_SB(inode->i_sb)->s_groups_count)
4641 groups = EXT4_SB(inode->i_sb)->s_groups_count;
4642 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4643 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4644
4645 /* bitmaps and block group descriptor blocks */
4646 ret += groups + gdpblocks;
4647
4648 /* Blocks for super block, inode, quota and xattr blocks */
4649 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4650
4651 return ret;
4652}
4653
4654/*
4655 * Calulate the total number of credits to reserve to fit
f3bd1f3f
MC
4656 * the modification of a single pages into a single transaction,
4657 * which may include multiple chunks of block allocations.
ac27a0ec 4658 *
525f4ed8 4659 * This could be called via ext4_write_begin()
ac27a0ec 4660 *
525f4ed8 4661 * We need to consider the worse case, when
a02908f1 4662 * one new block per extent.
ac27a0ec 4663 */
a86c6181 4664int ext4_writepage_trans_blocks(struct inode *inode)
ac27a0ec 4665{
617ba13b 4666 int bpp = ext4_journal_blocks_per_page(inode);
ac27a0ec
DK
4667 int ret;
4668
a02908f1 4669 ret = ext4_meta_trans_blocks(inode, bpp, 0);
a86c6181 4670
a02908f1 4671 /* Account for data blocks for journalled mode */
617ba13b 4672 if (ext4_should_journal_data(inode))
a02908f1 4673 ret += bpp;
ac27a0ec
DK
4674 return ret;
4675}
f3bd1f3f
MC
4676
4677/*
4678 * Calculate the journal credits for a chunk of data modification.
4679 *
4680 * This is called from DIO, fallocate or whoever calling
4681 * ext4_get_blocks_wrap() to map/allocate a chunk of contigous disk blocks.
4682 *
4683 * journal buffers for data blocks are not included here, as DIO
4684 * and fallocate do no need to journal data buffers.
4685 */
4686int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4687{
4688 return ext4_meta_trans_blocks(inode, nrblocks, 1);
4689}
4690
ac27a0ec 4691/*
617ba13b 4692 * The caller must have previously called ext4_reserve_inode_write().
ac27a0ec
DK
4693 * Give this, we know that the caller already has write access to iloc->bh.
4694 */
617ba13b
MC
4695int ext4_mark_iloc_dirty(handle_t *handle,
4696 struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
4697{
4698 int err = 0;
4699
25ec56b5
JNC
4700 if (test_opt(inode->i_sb, I_VERSION))
4701 inode_inc_iversion(inode);
4702
ac27a0ec
DK
4703 /* the do_update_inode consumes one bh->b_count */
4704 get_bh(iloc->bh);
4705
dab291af 4706 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
617ba13b 4707 err = ext4_do_update_inode(handle, inode, iloc);
ac27a0ec
DK
4708 put_bh(iloc->bh);
4709 return err;
4710}
4711
4712/*
4713 * On success, We end up with an outstanding reference count against
4714 * iloc->bh. This _must_ be cleaned up later.
4715 */
4716
4717int
617ba13b
MC
4718ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4719 struct ext4_iloc *iloc)
ac27a0ec
DK
4720{
4721 int err = 0;
4722 if (handle) {
617ba13b 4723 err = ext4_get_inode_loc(inode, iloc);
ac27a0ec
DK
4724 if (!err) {
4725 BUFFER_TRACE(iloc->bh, "get_write_access");
617ba13b 4726 err = ext4_journal_get_write_access(handle, iloc->bh);
ac27a0ec
DK
4727 if (err) {
4728 brelse(iloc->bh);
4729 iloc->bh = NULL;
4730 }
4731 }
4732 }
617ba13b 4733 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4734 return err;
4735}
4736
6dd4ee7c
KS
4737/*
4738 * Expand an inode by new_extra_isize bytes.
4739 * Returns 0 on success or negative error number on failure.
4740 */
1d03ec98
AK
4741static int ext4_expand_extra_isize(struct inode *inode,
4742 unsigned int new_extra_isize,
4743 struct ext4_iloc iloc,
4744 handle_t *handle)
6dd4ee7c
KS
4745{
4746 struct ext4_inode *raw_inode;
4747 struct ext4_xattr_ibody_header *header;
4748 struct ext4_xattr_entry *entry;
4749
4750 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4751 return 0;
4752
4753 raw_inode = ext4_raw_inode(&iloc);
4754
4755 header = IHDR(inode, raw_inode);
4756 entry = IFIRST(header);
4757
4758 /* No extended attributes present */
4759 if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) ||
4760 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4761 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4762 new_extra_isize);
4763 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4764 return 0;
4765 }
4766
4767 /* try to expand with EAs present */
4768 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4769 raw_inode, handle);
4770}
4771
ac27a0ec
DK
4772/*
4773 * What we do here is to mark the in-core inode as clean with respect to inode
4774 * dirtiness (it may still be data-dirty).
4775 * This means that the in-core inode may be reaped by prune_icache
4776 * without having to perform any I/O. This is a very good thing,
4777 * because *any* task may call prune_icache - even ones which
4778 * have a transaction open against a different journal.
4779 *
4780 * Is this cheating? Not really. Sure, we haven't written the
4781 * inode out, but prune_icache isn't a user-visible syncing function.
4782 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4783 * we start and wait on commits.
4784 *
4785 * Is this efficient/effective? Well, we're being nice to the system
4786 * by cleaning up our inodes proactively so they can be reaped
4787 * without I/O. But we are potentially leaving up to five seconds'
4788 * worth of inodes floating about which prune_icache wants us to
4789 * write out. One way to fix that would be to get prune_icache()
4790 * to do a write_super() to free up some memory. It has the desired
4791 * effect.
4792 */
617ba13b 4793int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
ac27a0ec 4794{
617ba13b 4795 struct ext4_iloc iloc;
6dd4ee7c
KS
4796 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4797 static unsigned int mnt_count;
4798 int err, ret;
ac27a0ec
DK
4799
4800 might_sleep();
617ba13b 4801 err = ext4_reserve_inode_write(handle, inode, &iloc);
6dd4ee7c
KS
4802 if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4803 !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) {
4804 /*
4805 * We need extra buffer credits since we may write into EA block
4806 * with this same handle. If journal_extend fails, then it will
4807 * only result in a minor loss of functionality for that inode.
4808 * If this is felt to be critical, then e2fsck should be run to
4809 * force a large enough s_min_extra_isize.
4810 */
4811 if ((jbd2_journal_extend(handle,
4812 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4813 ret = ext4_expand_extra_isize(inode,
4814 sbi->s_want_extra_isize,
4815 iloc, handle);
4816 if (ret) {
4817 EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND;
c1bddad9
AK
4818 if (mnt_count !=
4819 le16_to_cpu(sbi->s_es->s_mnt_count)) {
46e665e9 4820 ext4_warning(inode->i_sb, __func__,
6dd4ee7c
KS
4821 "Unable to expand inode %lu. Delete"
4822 " some EAs or run e2fsck.",
4823 inode->i_ino);
c1bddad9
AK
4824 mnt_count =
4825 le16_to_cpu(sbi->s_es->s_mnt_count);
6dd4ee7c
KS
4826 }
4827 }
4828 }
4829 }
ac27a0ec 4830 if (!err)
617ba13b 4831 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
ac27a0ec
DK
4832 return err;
4833}
4834
4835/*
617ba13b 4836 * ext4_dirty_inode() is called from __mark_inode_dirty()
ac27a0ec
DK
4837 *
4838 * We're really interested in the case where a file is being extended.
4839 * i_size has been changed by generic_commit_write() and we thus need
4840 * to include the updated inode in the current transaction.
4841 *
4842 * Also, DQUOT_ALLOC_SPACE() will always dirty the inode when blocks
4843 * are allocated to the file.
4844 *
4845 * If the inode is marked synchronous, we don't honour that here - doing
4846 * so would cause a commit on atime updates, which we don't bother doing.
4847 * We handle synchronous inodes at the highest possible level.
4848 */
617ba13b 4849void ext4_dirty_inode(struct inode *inode)
ac27a0ec 4850{
617ba13b 4851 handle_t *current_handle = ext4_journal_current_handle();
ac27a0ec
DK
4852 handle_t *handle;
4853
617ba13b 4854 handle = ext4_journal_start(inode, 2);
ac27a0ec
DK
4855 if (IS_ERR(handle))
4856 goto out;
4857 if (current_handle &&
4858 current_handle->h_transaction != handle->h_transaction) {
4859 /* This task has a transaction open against a different fs */
4860 printk(KERN_EMERG "%s: transactions do not match!\n",
46e665e9 4861 __func__);
ac27a0ec
DK
4862 } else {
4863 jbd_debug(5, "marking dirty. outer handle=%p\n",
4864 current_handle);
617ba13b 4865 ext4_mark_inode_dirty(handle, inode);
ac27a0ec 4866 }
617ba13b 4867 ext4_journal_stop(handle);
ac27a0ec
DK
4868out:
4869 return;
4870}
4871
4872#if 0
4873/*
4874 * Bind an inode's backing buffer_head into this transaction, to prevent
4875 * it from being flushed to disk early. Unlike
617ba13b 4876 * ext4_reserve_inode_write, this leaves behind no bh reference and
ac27a0ec
DK
4877 * returns no iloc structure, so the caller needs to repeat the iloc
4878 * lookup to mark the inode dirty later.
4879 */
617ba13b 4880static int ext4_pin_inode(handle_t *handle, struct inode *inode)
ac27a0ec 4881{
617ba13b 4882 struct ext4_iloc iloc;
ac27a0ec
DK
4883
4884 int err = 0;
4885 if (handle) {
617ba13b 4886 err = ext4_get_inode_loc(inode, &iloc);
ac27a0ec
DK
4887 if (!err) {
4888 BUFFER_TRACE(iloc.bh, "get_write_access");
dab291af 4889 err = jbd2_journal_get_write_access(handle, iloc.bh);
ac27a0ec 4890 if (!err)
617ba13b 4891 err = ext4_journal_dirty_metadata(handle,
ac27a0ec
DK
4892 iloc.bh);
4893 brelse(iloc.bh);
4894 }
4895 }
617ba13b 4896 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4897 return err;
4898}
4899#endif
4900
617ba13b 4901int ext4_change_inode_journal_flag(struct inode *inode, int val)
ac27a0ec
DK
4902{
4903 journal_t *journal;
4904 handle_t *handle;
4905 int err;
4906
4907 /*
4908 * We have to be very careful here: changing a data block's
4909 * journaling status dynamically is dangerous. If we write a
4910 * data block to the journal, change the status and then delete
4911 * that block, we risk forgetting to revoke the old log record
4912 * from the journal and so a subsequent replay can corrupt data.
4913 * So, first we make sure that the journal is empty and that
4914 * nobody is changing anything.
4915 */
4916
617ba13b 4917 journal = EXT4_JOURNAL(inode);
d699594d 4918 if (is_journal_aborted(journal))
ac27a0ec
DK
4919 return -EROFS;
4920
dab291af
MC
4921 jbd2_journal_lock_updates(journal);
4922 jbd2_journal_flush(journal);
ac27a0ec
DK
4923
4924 /*
4925 * OK, there are no updates running now, and all cached data is
4926 * synced to disk. We are now in a completely consistent state
4927 * which doesn't have anything in the journal, and we know that
4928 * no filesystem updates are running, so it is safe to modify
4929 * the inode's in-core data-journaling state flag now.
4930 */
4931
4932 if (val)
617ba13b 4933 EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
ac27a0ec 4934 else
617ba13b
MC
4935 EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
4936 ext4_set_aops(inode);
ac27a0ec 4937
dab291af 4938 jbd2_journal_unlock_updates(journal);
ac27a0ec
DK
4939
4940 /* Finally we can mark the inode as dirty. */
4941
617ba13b 4942 handle = ext4_journal_start(inode, 1);
ac27a0ec
DK
4943 if (IS_ERR(handle))
4944 return PTR_ERR(handle);
4945
617ba13b 4946 err = ext4_mark_inode_dirty(handle, inode);
ac27a0ec 4947 handle->h_sync = 1;
617ba13b
MC
4948 ext4_journal_stop(handle);
4949 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4950
4951 return err;
4952}
2e9ee850
AK
4953
4954static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
4955{
4956 return !buffer_mapped(bh);
4957}
4958
4959int ext4_page_mkwrite(struct vm_area_struct *vma, struct page *page)
4960{
4961 loff_t size;
4962 unsigned long len;
4963 int ret = -EINVAL;
79f0be8d 4964 void *fsdata;
2e9ee850
AK
4965 struct file *file = vma->vm_file;
4966 struct inode *inode = file->f_path.dentry->d_inode;
4967 struct address_space *mapping = inode->i_mapping;
4968
4969 /*
4970 * Get i_alloc_sem to stop truncates messing with the inode. We cannot
4971 * get i_mutex because we are already holding mmap_sem.
4972 */
4973 down_read(&inode->i_alloc_sem);
4974 size = i_size_read(inode);
4975 if (page->mapping != mapping || size <= page_offset(page)
4976 || !PageUptodate(page)) {
4977 /* page got truncated from under us? */
4978 goto out_unlock;
4979 }
4980 ret = 0;
4981 if (PageMappedToDisk(page))
4982 goto out_unlock;
4983
4984 if (page->index == size >> PAGE_CACHE_SHIFT)
4985 len = size & ~PAGE_CACHE_MASK;
4986 else
4987 len = PAGE_CACHE_SIZE;
4988
4989 if (page_has_buffers(page)) {
4990 /* return if we have all the buffers mapped */
4991 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
4992 ext4_bh_unmapped))
4993 goto out_unlock;
4994 }
4995 /*
4996 * OK, we need to fill the hole... Do write_begin write_end
4997 * to do block allocation/reservation.We are not holding
4998 * inode.i__mutex here. That allow * parallel write_begin,
4999 * write_end call. lock_page prevent this from happening
5000 * on the same page though
5001 */
5002 ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
79f0be8d 5003 len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
2e9ee850
AK
5004 if (ret < 0)
5005 goto out_unlock;
5006 ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
79f0be8d 5007 len, len, page, fsdata);
2e9ee850
AK
5008 if (ret < 0)
5009 goto out_unlock;
5010 ret = 0;
5011out_unlock:
5012 up_read(&inode->i_alloc_sem);
5013 return ret;
5014}