ext4: make ext4_block_zero_page_range static
[linux-2.6-block.git] / fs / ext4 / inode.c
CommitLineData
ac27a0ec 1/*
617ba13b 2 * linux/fs/ext4/inode.c
ac27a0ec
DK
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
ac27a0ec
DK
15 * 64-bit file support on 64-bit platforms by Jakub Jelinek
16 * (jj@sunsite.ms.mff.cuni.cz)
17 *
617ba13b 18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
ac27a0ec
DK
19 */
20
ac27a0ec
DK
21#include <linux/fs.h>
22#include <linux/time.h>
dab291af 23#include <linux/jbd2.h>
ac27a0ec
DK
24#include <linux/highuid.h>
25#include <linux/pagemap.h>
26#include <linux/quotaops.h>
27#include <linux/string.h>
28#include <linux/buffer_head.h>
29#include <linux/writeback.h>
64769240 30#include <linux/pagevec.h>
ac27a0ec 31#include <linux/mpage.h>
e83c1397 32#include <linux/namei.h>
ac27a0ec
DK
33#include <linux/uio.h>
34#include <linux/bio.h>
4c0425ff 35#include <linux/workqueue.h>
744692dc 36#include <linux/kernel.h>
6db26ffc 37#include <linux/printk.h>
5a0e3ad6 38#include <linux/slab.h>
a8901d34 39#include <linux/ratelimit.h>
a27bb332 40#include <linux/aio.h>
9bffad1e 41
3dcf5451 42#include "ext4_jbd2.h"
ac27a0ec
DK
43#include "xattr.h"
44#include "acl.h"
9f125d64 45#include "truncate.h"
ac27a0ec 46
9bffad1e
TT
47#include <trace/events/ext4.h>
48
a1d6cc56
AK
49#define MPAGE_DA_EXTENT_TAIL 0x01
50
814525f4
DW
51static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
52 struct ext4_inode_info *ei)
53{
54 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
55 __u16 csum_lo;
56 __u16 csum_hi = 0;
57 __u32 csum;
58
171a7f21 59 csum_lo = le16_to_cpu(raw->i_checksum_lo);
814525f4
DW
60 raw->i_checksum_lo = 0;
61 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
62 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
171a7f21 63 csum_hi = le16_to_cpu(raw->i_checksum_hi);
814525f4
DW
64 raw->i_checksum_hi = 0;
65 }
66
67 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
68 EXT4_INODE_SIZE(inode->i_sb));
69
171a7f21 70 raw->i_checksum_lo = cpu_to_le16(csum_lo);
814525f4
DW
71 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
72 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
171a7f21 73 raw->i_checksum_hi = cpu_to_le16(csum_hi);
814525f4
DW
74
75 return csum;
76}
77
78static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
79 struct ext4_inode_info *ei)
80{
81 __u32 provided, calculated;
82
83 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
84 cpu_to_le32(EXT4_OS_LINUX) ||
85 !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
86 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
87 return 1;
88
89 provided = le16_to_cpu(raw->i_checksum_lo);
90 calculated = ext4_inode_csum(inode, raw, ei);
91 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
92 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
93 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
94 else
95 calculated &= 0xFFFF;
96
97 return provided == calculated;
98}
99
100static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
101 struct ext4_inode_info *ei)
102{
103 __u32 csum;
104
105 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
106 cpu_to_le32(EXT4_OS_LINUX) ||
107 !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
108 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
109 return;
110
111 csum = ext4_inode_csum(inode, raw, ei);
112 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
113 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
114 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
115 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
116}
117
678aaf48
JK
118static inline int ext4_begin_ordered_truncate(struct inode *inode,
119 loff_t new_size)
120{
7ff9c073 121 trace_ext4_begin_ordered_truncate(inode, new_size);
8aefcd55
TT
122 /*
123 * If jinode is zero, then we never opened the file for
124 * writing, so there's no need to call
125 * jbd2_journal_begin_ordered_truncate() since there's no
126 * outstanding writes we need to flush.
127 */
128 if (!EXT4_I(inode)->jinode)
129 return 0;
130 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
131 EXT4_I(inode)->jinode,
132 new_size);
678aaf48
JK
133}
134
d47992f8
LC
135static void ext4_invalidatepage(struct page *page, unsigned int offset,
136 unsigned int length);
cb20d518
TT
137static int __ext4_journalled_writepage(struct page *page, unsigned int len);
138static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
fffb2739
JK
139static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
140 int pextents);
64769240 141
ac27a0ec
DK
142/*
143 * Test whether an inode is a fast symlink.
144 */
617ba13b 145static int ext4_inode_is_fast_symlink(struct inode *inode)
ac27a0ec 146{
65eddb56
YY
147 int ea_blocks = EXT4_I(inode)->i_file_acl ?
148 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
ac27a0ec
DK
149
150 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
151}
152
ac27a0ec
DK
153/*
154 * Restart the transaction associated with *handle. This does a commit,
155 * so before we call here everything must be consistently dirtied against
156 * this transaction.
157 */
fa5d1113 158int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
487caeef 159 int nblocks)
ac27a0ec 160{
487caeef
JK
161 int ret;
162
163 /*
e35fd660 164 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
487caeef
JK
165 * moment, get_block can be called only for blocks inside i_size since
166 * page cache has been already dropped and writes are blocked by
167 * i_mutex. So we can safely drop the i_data_sem here.
168 */
0390131b 169 BUG_ON(EXT4_JOURNAL(inode) == NULL);
ac27a0ec 170 jbd_debug(2, "restarting handle %p\n", handle);
487caeef 171 up_write(&EXT4_I(inode)->i_data_sem);
8e8eaabe 172 ret = ext4_journal_restart(handle, nblocks);
487caeef 173 down_write(&EXT4_I(inode)->i_data_sem);
fa5d1113 174 ext4_discard_preallocations(inode);
487caeef
JK
175
176 return ret;
ac27a0ec
DK
177}
178
179/*
180 * Called at the last iput() if i_nlink is zero.
181 */
0930fcc1 182void ext4_evict_inode(struct inode *inode)
ac27a0ec
DK
183{
184 handle_t *handle;
bc965ab3 185 int err;
ac27a0ec 186
7ff9c073 187 trace_ext4_evict_inode(inode);
2581fdc8 188
0930fcc1 189 if (inode->i_nlink) {
2d859db3
JK
190 /*
191 * When journalling data dirty buffers are tracked only in the
192 * journal. So although mm thinks everything is clean and
193 * ready for reaping the inode might still have some pages to
194 * write in the running transaction or waiting to be
195 * checkpointed. Thus calling jbd2_journal_invalidatepage()
196 * (via truncate_inode_pages()) to discard these buffers can
197 * cause data loss. Also even if we did not discard these
198 * buffers, we would have no way to find them after the inode
199 * is reaped and thus user could see stale data if he tries to
200 * read them before the transaction is checkpointed. So be
201 * careful and force everything to disk here... We use
202 * ei->i_datasync_tid to store the newest transaction
203 * containing inode's data.
204 *
205 * Note that directories do not have this problem because they
206 * don't use page cache.
207 */
208 if (ext4_should_journal_data(inode) &&
2b405bfa
TT
209 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
210 inode->i_ino != EXT4_JOURNAL_INO) {
2d859db3
JK
211 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
212 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
213
d76a3a77 214 jbd2_complete_transaction(journal, commit_tid);
2d859db3
JK
215 filemap_write_and_wait(&inode->i_data);
216 }
0930fcc1 217 truncate_inode_pages(&inode->i_data, 0);
5dc23bdd
JK
218
219 WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
0930fcc1
AV
220 goto no_delete;
221 }
222
907f4554 223 if (!is_bad_inode(inode))
871a2931 224 dquot_initialize(inode);
907f4554 225
678aaf48
JK
226 if (ext4_should_order_data(inode))
227 ext4_begin_ordered_truncate(inode, 0);
ac27a0ec
DK
228 truncate_inode_pages(&inode->i_data, 0);
229
5dc23bdd 230 WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
ac27a0ec
DK
231 if (is_bad_inode(inode))
232 goto no_delete;
233
8e8ad8a5
JK
234 /*
235 * Protect us against freezing - iput() caller didn't have to have any
236 * protection against it
237 */
238 sb_start_intwrite(inode->i_sb);
9924a92a
TT
239 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
240 ext4_blocks_for_truncate(inode)+3);
ac27a0ec 241 if (IS_ERR(handle)) {
bc965ab3 242 ext4_std_error(inode->i_sb, PTR_ERR(handle));
ac27a0ec
DK
243 /*
244 * If we're going to skip the normal cleanup, we still need to
245 * make sure that the in-core orphan linked list is properly
246 * cleaned up.
247 */
617ba13b 248 ext4_orphan_del(NULL, inode);
8e8ad8a5 249 sb_end_intwrite(inode->i_sb);
ac27a0ec
DK
250 goto no_delete;
251 }
252
253 if (IS_SYNC(inode))
0390131b 254 ext4_handle_sync(handle);
ac27a0ec 255 inode->i_size = 0;
bc965ab3
TT
256 err = ext4_mark_inode_dirty(handle, inode);
257 if (err) {
12062ddd 258 ext4_warning(inode->i_sb,
bc965ab3
TT
259 "couldn't mark inode dirty (err %d)", err);
260 goto stop_handle;
261 }
ac27a0ec 262 if (inode->i_blocks)
617ba13b 263 ext4_truncate(inode);
bc965ab3
TT
264
265 /*
266 * ext4_ext_truncate() doesn't reserve any slop when it
267 * restarts journal transactions; therefore there may not be
268 * enough credits left in the handle to remove the inode from
269 * the orphan list and set the dtime field.
270 */
0390131b 271 if (!ext4_handle_has_enough_credits(handle, 3)) {
bc965ab3
TT
272 err = ext4_journal_extend(handle, 3);
273 if (err > 0)
274 err = ext4_journal_restart(handle, 3);
275 if (err != 0) {
12062ddd 276 ext4_warning(inode->i_sb,
bc965ab3
TT
277 "couldn't extend journal (err %d)", err);
278 stop_handle:
279 ext4_journal_stop(handle);
45388219 280 ext4_orphan_del(NULL, inode);
8e8ad8a5 281 sb_end_intwrite(inode->i_sb);
bc965ab3
TT
282 goto no_delete;
283 }
284 }
285
ac27a0ec 286 /*
617ba13b 287 * Kill off the orphan record which ext4_truncate created.
ac27a0ec 288 * AKPM: I think this can be inside the above `if'.
617ba13b 289 * Note that ext4_orphan_del() has to be able to cope with the
ac27a0ec 290 * deletion of a non-existent orphan - this is because we don't
617ba13b 291 * know if ext4_truncate() actually created an orphan record.
ac27a0ec
DK
292 * (Well, we could do this if we need to, but heck - it works)
293 */
617ba13b
MC
294 ext4_orphan_del(handle, inode);
295 EXT4_I(inode)->i_dtime = get_seconds();
ac27a0ec
DK
296
297 /*
298 * One subtle ordering requirement: if anything has gone wrong
299 * (transaction abort, IO errors, whatever), then we can still
300 * do these next steps (the fs will already have been marked as
301 * having errors), but we can't free the inode if the mark_dirty
302 * fails.
303 */
617ba13b 304 if (ext4_mark_inode_dirty(handle, inode))
ac27a0ec 305 /* If that failed, just do the required in-core inode clear. */
0930fcc1 306 ext4_clear_inode(inode);
ac27a0ec 307 else
617ba13b
MC
308 ext4_free_inode(handle, inode);
309 ext4_journal_stop(handle);
8e8ad8a5 310 sb_end_intwrite(inode->i_sb);
ac27a0ec
DK
311 return;
312no_delete:
0930fcc1 313 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
ac27a0ec
DK
314}
315
a9e7f447
DM
316#ifdef CONFIG_QUOTA
317qsize_t *ext4_get_reserved_space(struct inode *inode)
60e58e0f 318{
a9e7f447 319 return &EXT4_I(inode)->i_reserved_quota;
60e58e0f 320}
a9e7f447 321#endif
9d0be502 322
12219aea
AK
323/*
324 * Calculate the number of metadata blocks need to reserve
9d0be502 325 * to allocate a block located at @lblock
12219aea 326 */
01f49d0b 327static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
12219aea 328{
12e9b892 329 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
9d0be502 330 return ext4_ext_calc_metadata_amount(inode, lblock);
12219aea 331
8bb2b247 332 return ext4_ind_calc_metadata_amount(inode, lblock);
12219aea
AK
333}
334
0637c6f4
TT
335/*
336 * Called with i_data_sem down, which is important since we can call
337 * ext4_discard_preallocations() from here.
338 */
5f634d06
AK
339void ext4_da_update_reserve_space(struct inode *inode,
340 int used, int quota_claim)
12219aea
AK
341{
342 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 343 struct ext4_inode_info *ei = EXT4_I(inode);
0637c6f4
TT
344
345 spin_lock(&ei->i_block_reservation_lock);
d8990240 346 trace_ext4_da_update_reserve_space(inode, used, quota_claim);
0637c6f4 347 if (unlikely(used > ei->i_reserved_data_blocks)) {
8de5c325 348 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
1084f252 349 "with only %d reserved data blocks",
0637c6f4
TT
350 __func__, inode->i_ino, used,
351 ei->i_reserved_data_blocks);
352 WARN_ON(1);
353 used = ei->i_reserved_data_blocks;
354 }
12219aea 355
97795d2a 356 if (unlikely(ei->i_allocated_meta_blocks > ei->i_reserved_meta_blocks)) {
01a523eb
TT
357 ext4_warning(inode->i_sb, "ino %lu, allocated %d "
358 "with only %d reserved metadata blocks "
359 "(releasing %d blocks with reserved %d data blocks)",
360 inode->i_ino, ei->i_allocated_meta_blocks,
361 ei->i_reserved_meta_blocks, used,
362 ei->i_reserved_data_blocks);
97795d2a
BF
363 WARN_ON(1);
364 ei->i_allocated_meta_blocks = ei->i_reserved_meta_blocks;
365 }
366
0637c6f4
TT
367 /* Update per-inode reservations */
368 ei->i_reserved_data_blocks -= used;
0637c6f4 369 ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
57042651 370 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
72b8ab9d 371 used + ei->i_allocated_meta_blocks);
0637c6f4 372 ei->i_allocated_meta_blocks = 0;
6bc6e63f 373
0637c6f4
TT
374 if (ei->i_reserved_data_blocks == 0) {
375 /*
376 * We can release all of the reserved metadata blocks
377 * only when we have written all of the delayed
378 * allocation blocks.
379 */
57042651 380 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
72b8ab9d 381 ei->i_reserved_meta_blocks);
ee5f4d9c 382 ei->i_reserved_meta_blocks = 0;
9d0be502 383 ei->i_da_metadata_calc_len = 0;
6bc6e63f 384 }
12219aea 385 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f 386
72b8ab9d
ES
387 /* Update quota subsystem for data blocks */
388 if (quota_claim)
7b415bf6 389 dquot_claim_block(inode, EXT4_C2B(sbi, used));
72b8ab9d 390 else {
5f634d06
AK
391 /*
392 * We did fallocate with an offset that is already delayed
393 * allocated. So on delayed allocated writeback we should
72b8ab9d 394 * not re-claim the quota for fallocated blocks.
5f634d06 395 */
7b415bf6 396 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
5f634d06 397 }
d6014301
AK
398
399 /*
400 * If we have done all the pending block allocations and if
401 * there aren't any writers on the inode, we can discard the
402 * inode's preallocations.
403 */
0637c6f4
TT
404 if ((ei->i_reserved_data_blocks == 0) &&
405 (atomic_read(&inode->i_writecount) == 0))
d6014301 406 ext4_discard_preallocations(inode);
12219aea
AK
407}
408
e29136f8 409static int __check_block_validity(struct inode *inode, const char *func,
c398eda0
TT
410 unsigned int line,
411 struct ext4_map_blocks *map)
6fd058f7 412{
24676da4
TT
413 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
414 map->m_len)) {
c398eda0
TT
415 ext4_error_inode(inode, func, line, map->m_pblk,
416 "lblock %lu mapped to illegal pblock "
417 "(length %d)", (unsigned long) map->m_lblk,
418 map->m_len);
6fd058f7
TT
419 return -EIO;
420 }
421 return 0;
422}
423
e29136f8 424#define check_block_validity(inode, map) \
c398eda0 425 __check_block_validity((inode), __func__, __LINE__, (map))
e29136f8 426
921f266b
DM
427#ifdef ES_AGGRESSIVE_TEST
428static void ext4_map_blocks_es_recheck(handle_t *handle,
429 struct inode *inode,
430 struct ext4_map_blocks *es_map,
431 struct ext4_map_blocks *map,
432 int flags)
433{
434 int retval;
435
436 map->m_flags = 0;
437 /*
438 * There is a race window that the result is not the same.
439 * e.g. xfstests #223 when dioread_nolock enables. The reason
440 * is that we lookup a block mapping in extent status tree with
441 * out taking i_data_sem. So at the time the unwritten extent
442 * could be converted.
443 */
444 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
445 down_read((&EXT4_I(inode)->i_data_sem));
446 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
447 retval = ext4_ext_map_blocks(handle, inode, map, flags &
448 EXT4_GET_BLOCKS_KEEP_SIZE);
449 } else {
450 retval = ext4_ind_map_blocks(handle, inode, map, flags &
451 EXT4_GET_BLOCKS_KEEP_SIZE);
452 }
453 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
454 up_read((&EXT4_I(inode)->i_data_sem));
455 /*
456 * Clear EXT4_MAP_FROM_CLUSTER and EXT4_MAP_BOUNDARY flag
457 * because it shouldn't be marked in es_map->m_flags.
458 */
459 map->m_flags &= ~(EXT4_MAP_FROM_CLUSTER | EXT4_MAP_BOUNDARY);
460
461 /*
462 * We don't check m_len because extent will be collpased in status
463 * tree. So the m_len might not equal.
464 */
465 if (es_map->m_lblk != map->m_lblk ||
466 es_map->m_flags != map->m_flags ||
467 es_map->m_pblk != map->m_pblk) {
bdafe42a 468 printk("ES cache assertion failed for inode: %lu "
921f266b
DM
469 "es_cached ex [%d/%d/%llu/%x] != "
470 "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
471 inode->i_ino, es_map->m_lblk, es_map->m_len,
472 es_map->m_pblk, es_map->m_flags, map->m_lblk,
473 map->m_len, map->m_pblk, map->m_flags,
474 retval, flags);
475 }
476}
477#endif /* ES_AGGRESSIVE_TEST */
478
f5ab0d1f 479/*
e35fd660 480 * The ext4_map_blocks() function tries to look up the requested blocks,
2b2d6d01 481 * and returns if the blocks are already mapped.
f5ab0d1f 482 *
f5ab0d1f
MC
483 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
484 * and store the allocated blocks in the result buffer head and mark it
485 * mapped.
486 *
e35fd660
TT
487 * If file type is extents based, it will call ext4_ext_map_blocks(),
488 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
f5ab0d1f
MC
489 * based files
490 *
491 * On success, it returns the number of blocks being mapped or allocate.
492 * if create==0 and the blocks are pre-allocated and uninitialized block,
493 * the result buffer head is unmapped. If the create ==1, it will make sure
494 * the buffer head is mapped.
495 *
496 * It returns 0 if plain look up failed (blocks have not been allocated), in
df3ab170 497 * that case, buffer head is unmapped
f5ab0d1f
MC
498 *
499 * It returns the error in case of allocation failure.
500 */
e35fd660
TT
501int ext4_map_blocks(handle_t *handle, struct inode *inode,
502 struct ext4_map_blocks *map, int flags)
0e855ac8 503{
d100eef2 504 struct extent_status es;
0e855ac8 505 int retval;
b8a86845 506 int ret = 0;
921f266b
DM
507#ifdef ES_AGGRESSIVE_TEST
508 struct ext4_map_blocks orig_map;
509
510 memcpy(&orig_map, map, sizeof(*map));
511#endif
f5ab0d1f 512
e35fd660
TT
513 map->m_flags = 0;
514 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
515 "logical block %lu\n", inode->i_ino, flags, map->m_len,
516 (unsigned long) map->m_lblk);
d100eef2 517
e861b5e9
TT
518 /*
519 * ext4_map_blocks returns an int, and m_len is an unsigned int
520 */
521 if (unlikely(map->m_len > INT_MAX))
522 map->m_len = INT_MAX;
523
d100eef2
ZL
524 /* Lookup extent status tree firstly */
525 if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
63b99968 526 ext4_es_lru_add(inode);
d100eef2
ZL
527 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
528 map->m_pblk = ext4_es_pblock(&es) +
529 map->m_lblk - es.es_lblk;
530 map->m_flags |= ext4_es_is_written(&es) ?
531 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
532 retval = es.es_len - (map->m_lblk - es.es_lblk);
533 if (retval > map->m_len)
534 retval = map->m_len;
535 map->m_len = retval;
536 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
537 retval = 0;
538 } else {
539 BUG_ON(1);
540 }
921f266b
DM
541#ifdef ES_AGGRESSIVE_TEST
542 ext4_map_blocks_es_recheck(handle, inode, map,
543 &orig_map, flags);
544#endif
d100eef2
ZL
545 goto found;
546 }
547
4df3d265 548 /*
b920c755
TT
549 * Try to see if we can get the block without requesting a new
550 * file system block.
4df3d265 551 */
729f52c6
ZL
552 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
553 down_read((&EXT4_I(inode)->i_data_sem));
12e9b892 554 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
a4e5d88b
DM
555 retval = ext4_ext_map_blocks(handle, inode, map, flags &
556 EXT4_GET_BLOCKS_KEEP_SIZE);
0e855ac8 557 } else {
a4e5d88b
DM
558 retval = ext4_ind_map_blocks(handle, inode, map, flags &
559 EXT4_GET_BLOCKS_KEEP_SIZE);
0e855ac8 560 }
f7fec032 561 if (retval > 0) {
3be78c73 562 unsigned int status;
f7fec032 563
44fb851d
ZL
564 if (unlikely(retval != map->m_len)) {
565 ext4_warning(inode->i_sb,
566 "ES len assertion failed for inode "
567 "%lu: retval %d != map->m_len %d",
568 inode->i_ino, retval, map->m_len);
569 WARN_ON(1);
921f266b 570 }
921f266b 571
f7fec032
ZL
572 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
573 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
574 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
575 ext4_find_delalloc_range(inode, map->m_lblk,
576 map->m_lblk + map->m_len - 1))
577 status |= EXTENT_STATUS_DELAYED;
578 ret = ext4_es_insert_extent(inode, map->m_lblk,
579 map->m_len, map->m_pblk, status);
580 if (ret < 0)
581 retval = ret;
582 }
729f52c6
ZL
583 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
584 up_read((&EXT4_I(inode)->i_data_sem));
f5ab0d1f 585
d100eef2 586found:
e35fd660 587 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
b8a86845 588 ret = check_block_validity(inode, map);
6fd058f7
TT
589 if (ret != 0)
590 return ret;
591 }
592
f5ab0d1f 593 /* If it is only a block(s) look up */
c2177057 594 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
f5ab0d1f
MC
595 return retval;
596
597 /*
598 * Returns if the blocks have already allocated
599 *
600 * Note that if blocks have been preallocated
df3ab170 601 * ext4_ext_get_block() returns the create = 0
f5ab0d1f
MC
602 * with buffer head unmapped.
603 */
e35fd660 604 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
b8a86845
LC
605 /*
606 * If we need to convert extent to unwritten
607 * we continue and do the actual work in
608 * ext4_ext_map_blocks()
609 */
610 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
611 return retval;
4df3d265 612
2a8964d6 613 /*
a25a4e1a
ZL
614 * Here we clear m_flags because after allocating an new extent,
615 * it will be set again.
2a8964d6 616 */
a25a4e1a 617 map->m_flags &= ~EXT4_MAP_FLAGS;
2a8964d6 618
4df3d265 619 /*
f5ab0d1f
MC
620 * New blocks allocate and/or writing to uninitialized extent
621 * will possibly result in updating i_data, so we take
622 * the write lock of i_data_sem, and call get_blocks()
623 * with create == 1 flag.
4df3d265
AK
624 */
625 down_write((&EXT4_I(inode)->i_data_sem));
d2a17637
MC
626
627 /*
628 * if the caller is from delayed allocation writeout path
629 * we have already reserved fs blocks for allocation
630 * let the underlying get_block() function know to
631 * avoid double accounting
632 */
c2177057 633 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
f2321097 634 ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
4df3d265
AK
635 /*
636 * We need to check for EXT4 here because migrate
637 * could have changed the inode type in between
638 */
12e9b892 639 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
e35fd660 640 retval = ext4_ext_map_blocks(handle, inode, map, flags);
0e855ac8 641 } else {
e35fd660 642 retval = ext4_ind_map_blocks(handle, inode, map, flags);
267e4db9 643
e35fd660 644 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
267e4db9
AK
645 /*
646 * We allocated new blocks which will result in
647 * i_data's format changing. Force the migrate
648 * to fail by clearing migrate flags
649 */
19f5fb7a 650 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
267e4db9 651 }
d2a17637 652
5f634d06
AK
653 /*
654 * Update reserved blocks/metadata blocks after successful
655 * block allocation which had been deferred till now. We don't
656 * support fallocate for non extent files. So we can update
657 * reserve space here.
658 */
659 if ((retval > 0) &&
1296cc85 660 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
5f634d06
AK
661 ext4_da_update_reserve_space(inode, retval, 1);
662 }
f7fec032 663 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
f2321097 664 ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
2ac3b6e0 665
f7fec032 666 if (retval > 0) {
3be78c73 667 unsigned int status;
f7fec032 668
44fb851d
ZL
669 if (unlikely(retval != map->m_len)) {
670 ext4_warning(inode->i_sb,
671 "ES len assertion failed for inode "
672 "%lu: retval %d != map->m_len %d",
673 inode->i_ino, retval, map->m_len);
674 WARN_ON(1);
921f266b 675 }
921f266b 676
adb23551
ZL
677 /*
678 * If the extent has been zeroed out, we don't need to update
679 * extent status tree.
680 */
681 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
682 ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
683 if (ext4_es_is_written(&es))
684 goto has_zeroout;
685 }
f7fec032
ZL
686 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
687 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
688 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
689 ext4_find_delalloc_range(inode, map->m_lblk,
690 map->m_lblk + map->m_len - 1))
691 status |= EXTENT_STATUS_DELAYED;
692 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
693 map->m_pblk, status);
694 if (ret < 0)
695 retval = ret;
5356f261
AK
696 }
697
adb23551 698has_zeroout:
4df3d265 699 up_write((&EXT4_I(inode)->i_data_sem));
e35fd660 700 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
b8a86845 701 ret = check_block_validity(inode, map);
6fd058f7
TT
702 if (ret != 0)
703 return ret;
704 }
0e855ac8
AK
705 return retval;
706}
707
f3bd1f3f
MC
708/* Maximum number of blocks we map for direct IO at once. */
709#define DIO_MAX_BLOCKS 4096
710
2ed88685
TT
711static int _ext4_get_block(struct inode *inode, sector_t iblock,
712 struct buffer_head *bh, int flags)
ac27a0ec 713{
3e4fdaf8 714 handle_t *handle = ext4_journal_current_handle();
2ed88685 715 struct ext4_map_blocks map;
7fb5409d 716 int ret = 0, started = 0;
f3bd1f3f 717 int dio_credits;
ac27a0ec 718
46c7f254
TM
719 if (ext4_has_inline_data(inode))
720 return -ERANGE;
721
2ed88685
TT
722 map.m_lblk = iblock;
723 map.m_len = bh->b_size >> inode->i_blkbits;
724
8b0f165f 725 if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
7fb5409d 726 /* Direct IO write... */
2ed88685
TT
727 if (map.m_len > DIO_MAX_BLOCKS)
728 map.m_len = DIO_MAX_BLOCKS;
729 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
9924a92a
TT
730 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
731 dio_credits);
7fb5409d 732 if (IS_ERR(handle)) {
ac27a0ec 733 ret = PTR_ERR(handle);
2ed88685 734 return ret;
ac27a0ec 735 }
7fb5409d 736 started = 1;
ac27a0ec
DK
737 }
738
2ed88685 739 ret = ext4_map_blocks(handle, inode, &map, flags);
7fb5409d 740 if (ret > 0) {
7b7a8665
CH
741 ext4_io_end_t *io_end = ext4_inode_aio(inode);
742
2ed88685
TT
743 map_bh(bh, inode->i_sb, map.m_pblk);
744 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
7b7a8665
CH
745 if (io_end && io_end->flag & EXT4_IO_END_UNWRITTEN)
746 set_buffer_defer_completion(bh);
2ed88685 747 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
7fb5409d 748 ret = 0;
ac27a0ec 749 }
7fb5409d
JK
750 if (started)
751 ext4_journal_stop(handle);
ac27a0ec
DK
752 return ret;
753}
754
2ed88685
TT
755int ext4_get_block(struct inode *inode, sector_t iblock,
756 struct buffer_head *bh, int create)
757{
758 return _ext4_get_block(inode, iblock, bh,
759 create ? EXT4_GET_BLOCKS_CREATE : 0);
760}
761
ac27a0ec
DK
762/*
763 * `handle' can be NULL if create is zero
764 */
617ba13b 765struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
725d26d3 766 ext4_lblk_t block, int create, int *errp)
ac27a0ec 767{
2ed88685
TT
768 struct ext4_map_blocks map;
769 struct buffer_head *bh;
ac27a0ec
DK
770 int fatal = 0, err;
771
772 J_ASSERT(handle != NULL || create == 0);
773
2ed88685
TT
774 map.m_lblk = block;
775 map.m_len = 1;
776 err = ext4_map_blocks(handle, inode, &map,
777 create ? EXT4_GET_BLOCKS_CREATE : 0);
ac27a0ec 778
90b0a973
CM
779 /* ensure we send some value back into *errp */
780 *errp = 0;
781
0f70b406
TT
782 if (create && err == 0)
783 err = -ENOSPC; /* should never happen */
2ed88685
TT
784 if (err < 0)
785 *errp = err;
786 if (err <= 0)
787 return NULL;
2ed88685
TT
788
789 bh = sb_getblk(inode->i_sb, map.m_pblk);
aebf0243 790 if (unlikely(!bh)) {
860d21e2 791 *errp = -ENOMEM;
2ed88685 792 return NULL;
ac27a0ec 793 }
2ed88685
TT
794 if (map.m_flags & EXT4_MAP_NEW) {
795 J_ASSERT(create != 0);
796 J_ASSERT(handle != NULL);
ac27a0ec 797
2ed88685
TT
798 /*
799 * Now that we do not always journal data, we should
800 * keep in mind whether this should always journal the
801 * new buffer as metadata. For now, regular file
802 * writes use ext4_get_block instead, so it's not a
803 * problem.
804 */
805 lock_buffer(bh);
806 BUFFER_TRACE(bh, "call get_create_access");
807 fatal = ext4_journal_get_create_access(handle, bh);
808 if (!fatal && !buffer_uptodate(bh)) {
809 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
810 set_buffer_uptodate(bh);
ac27a0ec 811 }
2ed88685
TT
812 unlock_buffer(bh);
813 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
814 err = ext4_handle_dirty_metadata(handle, inode, bh);
815 if (!fatal)
816 fatal = err;
817 } else {
818 BUFFER_TRACE(bh, "not a new buffer");
ac27a0ec 819 }
2ed88685
TT
820 if (fatal) {
821 *errp = fatal;
822 brelse(bh);
823 bh = NULL;
824 }
825 return bh;
ac27a0ec
DK
826}
827
617ba13b 828struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
725d26d3 829 ext4_lblk_t block, int create, int *err)
ac27a0ec 830{
af5bc92d 831 struct buffer_head *bh;
ac27a0ec 832
617ba13b 833 bh = ext4_getblk(handle, inode, block, create, err);
ac27a0ec
DK
834 if (!bh)
835 return bh;
836 if (buffer_uptodate(bh))
837 return bh;
65299a3b 838 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
ac27a0ec
DK
839 wait_on_buffer(bh);
840 if (buffer_uptodate(bh))
841 return bh;
842 put_bh(bh);
843 *err = -EIO;
844 return NULL;
845}
846
f19d5870
TM
847int ext4_walk_page_buffers(handle_t *handle,
848 struct buffer_head *head,
849 unsigned from,
850 unsigned to,
851 int *partial,
852 int (*fn)(handle_t *handle,
853 struct buffer_head *bh))
ac27a0ec
DK
854{
855 struct buffer_head *bh;
856 unsigned block_start, block_end;
857 unsigned blocksize = head->b_size;
858 int err, ret = 0;
859 struct buffer_head *next;
860
af5bc92d
TT
861 for (bh = head, block_start = 0;
862 ret == 0 && (bh != head || !block_start);
de9a55b8 863 block_start = block_end, bh = next) {
ac27a0ec
DK
864 next = bh->b_this_page;
865 block_end = block_start + blocksize;
866 if (block_end <= from || block_start >= to) {
867 if (partial && !buffer_uptodate(bh))
868 *partial = 1;
869 continue;
870 }
871 err = (*fn)(handle, bh);
872 if (!ret)
873 ret = err;
874 }
875 return ret;
876}
877
878/*
879 * To preserve ordering, it is essential that the hole instantiation and
880 * the data write be encapsulated in a single transaction. We cannot
617ba13b 881 * close off a transaction and start a new one between the ext4_get_block()
dab291af 882 * and the commit_write(). So doing the jbd2_journal_start at the start of
ac27a0ec
DK
883 * prepare_write() is the right place.
884 *
36ade451
JK
885 * Also, this function can nest inside ext4_writepage(). In that case, we
886 * *know* that ext4_writepage() has generated enough buffer credits to do the
887 * whole page. So we won't block on the journal in that case, which is good,
888 * because the caller may be PF_MEMALLOC.
ac27a0ec 889 *
617ba13b 890 * By accident, ext4 can be reentered when a transaction is open via
ac27a0ec
DK
891 * quota file writes. If we were to commit the transaction while thus
892 * reentered, there can be a deadlock - we would be holding a quota
893 * lock, and the commit would never complete if another thread had a
894 * transaction open and was blocking on the quota lock - a ranking
895 * violation.
896 *
dab291af 897 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
ac27a0ec
DK
898 * will _not_ run commit under these circumstances because handle->h_ref
899 * is elevated. We'll still have enough credits for the tiny quotafile
900 * write.
901 */
f19d5870
TM
902int do_journal_get_write_access(handle_t *handle,
903 struct buffer_head *bh)
ac27a0ec 904{
56d35a4c
JK
905 int dirty = buffer_dirty(bh);
906 int ret;
907
ac27a0ec
DK
908 if (!buffer_mapped(bh) || buffer_freed(bh))
909 return 0;
56d35a4c 910 /*
ebdec241 911 * __block_write_begin() could have dirtied some buffers. Clean
56d35a4c
JK
912 * the dirty bit as jbd2_journal_get_write_access() could complain
913 * otherwise about fs integrity issues. Setting of the dirty bit
ebdec241 914 * by __block_write_begin() isn't a real problem here as we clear
56d35a4c
JK
915 * the bit before releasing a page lock and thus writeback cannot
916 * ever write the buffer.
917 */
918 if (dirty)
919 clear_buffer_dirty(bh);
920 ret = ext4_journal_get_write_access(handle, bh);
921 if (!ret && dirty)
922 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
923 return ret;
ac27a0ec
DK
924}
925
8b0f165f
AP
926static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
927 struct buffer_head *bh_result, int create);
bfc1af65 928static int ext4_write_begin(struct file *file, struct address_space *mapping,
de9a55b8
TT
929 loff_t pos, unsigned len, unsigned flags,
930 struct page **pagep, void **fsdata)
ac27a0ec 931{
af5bc92d 932 struct inode *inode = mapping->host;
1938a150 933 int ret, needed_blocks;
ac27a0ec
DK
934 handle_t *handle;
935 int retries = 0;
af5bc92d 936 struct page *page;
de9a55b8 937 pgoff_t index;
af5bc92d 938 unsigned from, to;
bfc1af65 939
9bffad1e 940 trace_ext4_write_begin(inode, pos, len, flags);
1938a150
AK
941 /*
942 * Reserve one block more for addition to orphan list in case
943 * we allocate blocks but write fails for some reason
944 */
945 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
de9a55b8 946 index = pos >> PAGE_CACHE_SHIFT;
af5bc92d
TT
947 from = pos & (PAGE_CACHE_SIZE - 1);
948 to = from + len;
ac27a0ec 949
f19d5870
TM
950 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
951 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
952 flags, pagep);
953 if (ret < 0)
47564bfb
TT
954 return ret;
955 if (ret == 1)
956 return 0;
f19d5870
TM
957 }
958
47564bfb
TT
959 /*
960 * grab_cache_page_write_begin() can take a long time if the
961 * system is thrashing due to memory pressure, or if the page
962 * is being written back. So grab it first before we start
963 * the transaction handle. This also allows us to allocate
964 * the page (if needed) without using GFP_NOFS.
965 */
966retry_grab:
967 page = grab_cache_page_write_begin(mapping, index, flags);
968 if (!page)
969 return -ENOMEM;
970 unlock_page(page);
971
972retry_journal:
9924a92a 973 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
af5bc92d 974 if (IS_ERR(handle)) {
47564bfb
TT
975 page_cache_release(page);
976 return PTR_ERR(handle);
7479d2b9 977 }
ac27a0ec 978
47564bfb
TT
979 lock_page(page);
980 if (page->mapping != mapping) {
981 /* The page got truncated from under us */
982 unlock_page(page);
983 page_cache_release(page);
cf108bca 984 ext4_journal_stop(handle);
47564bfb 985 goto retry_grab;
cf108bca 986 }
7afe5aa5
DM
987 /* In case writeback began while the page was unlocked */
988 wait_for_stable_page(page);
cf108bca 989
744692dc 990 if (ext4_should_dioread_nolock(inode))
6e1db88d 991 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
744692dc 992 else
6e1db88d 993 ret = __block_write_begin(page, pos, len, ext4_get_block);
bfc1af65
NP
994
995 if (!ret && ext4_should_journal_data(inode)) {
f19d5870
TM
996 ret = ext4_walk_page_buffers(handle, page_buffers(page),
997 from, to, NULL,
998 do_journal_get_write_access);
ac27a0ec 999 }
bfc1af65
NP
1000
1001 if (ret) {
af5bc92d 1002 unlock_page(page);
ae4d5372 1003 /*
6e1db88d 1004 * __block_write_begin may have instantiated a few blocks
ae4d5372
AK
1005 * outside i_size. Trim these off again. Don't need
1006 * i_size_read because we hold i_mutex.
1938a150
AK
1007 *
1008 * Add inode to orphan list in case we crash before
1009 * truncate finishes
ae4d5372 1010 */
ffacfa7a 1011 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1938a150
AK
1012 ext4_orphan_add(handle, inode);
1013
1014 ext4_journal_stop(handle);
1015 if (pos + len > inode->i_size) {
b9a4207d 1016 ext4_truncate_failed_write(inode);
de9a55b8 1017 /*
ffacfa7a 1018 * If truncate failed early the inode might
1938a150
AK
1019 * still be on the orphan list; we need to
1020 * make sure the inode is removed from the
1021 * orphan list in that case.
1022 */
1023 if (inode->i_nlink)
1024 ext4_orphan_del(NULL, inode);
1025 }
bfc1af65 1026
47564bfb
TT
1027 if (ret == -ENOSPC &&
1028 ext4_should_retry_alloc(inode->i_sb, &retries))
1029 goto retry_journal;
1030 page_cache_release(page);
1031 return ret;
1032 }
1033 *pagep = page;
ac27a0ec
DK
1034 return ret;
1035}
1036
bfc1af65
NP
1037/* For write_end() in data=journal mode */
1038static int write_end_fn(handle_t *handle, struct buffer_head *bh)
ac27a0ec 1039{
13fca323 1040 int ret;
ac27a0ec
DK
1041 if (!buffer_mapped(bh) || buffer_freed(bh))
1042 return 0;
1043 set_buffer_uptodate(bh);
13fca323
TT
1044 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1045 clear_buffer_meta(bh);
1046 clear_buffer_prio(bh);
1047 return ret;
ac27a0ec
DK
1048}
1049
eed4333f
ZL
1050/*
1051 * We need to pick up the new inode size which generic_commit_write gave us
1052 * `file' can be NULL - eg, when called from page_symlink().
1053 *
1054 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1055 * buffers are managed internally.
1056 */
1057static int ext4_write_end(struct file *file,
1058 struct address_space *mapping,
1059 loff_t pos, unsigned len, unsigned copied,
1060 struct page *page, void *fsdata)
f8514083 1061{
f8514083 1062 handle_t *handle = ext4_journal_current_handle();
eed4333f
ZL
1063 struct inode *inode = mapping->host;
1064 int ret = 0, ret2;
1065 int i_size_changed = 0;
1066
1067 trace_ext4_write_end(inode, pos, len, copied);
1068 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) {
1069 ret = ext4_jbd2_file_inode(handle, inode);
1070 if (ret) {
1071 unlock_page(page);
1072 page_cache_release(page);
1073 goto errout;
1074 }
1075 }
f8514083 1076
42c832de
TT
1077 if (ext4_has_inline_data(inode)) {
1078 ret = ext4_write_inline_data_end(inode, pos, len,
1079 copied, page);
1080 if (ret < 0)
1081 goto errout;
1082 copied = ret;
1083 } else
f19d5870
TM
1084 copied = block_write_end(file, mapping, pos,
1085 len, copied, page, fsdata);
f8514083
AK
1086
1087 /*
1088 * No need to use i_size_read() here, the i_size
eed4333f 1089 * cannot change under us because we hole i_mutex.
f8514083
AK
1090 *
1091 * But it's important to update i_size while still holding page lock:
1092 * page writeout could otherwise come in and zero beyond i_size.
1093 */
1094 if (pos + copied > inode->i_size) {
1095 i_size_write(inode, pos + copied);
1096 i_size_changed = 1;
1097 }
1098
eed4333f 1099 if (pos + copied > EXT4_I(inode)->i_disksize) {
f8514083
AK
1100 /* We need to mark inode dirty even if
1101 * new_i_size is less that inode->i_size
eed4333f 1102 * but greater than i_disksize. (hint delalloc)
f8514083
AK
1103 */
1104 ext4_update_i_disksize(inode, (pos + copied));
1105 i_size_changed = 1;
1106 }
1107 unlock_page(page);
1108 page_cache_release(page);
1109
1110 /*
1111 * Don't mark the inode dirty under page lock. First, it unnecessarily
1112 * makes the holding time of page lock longer. Second, it forces lock
1113 * ordering of page lock and transaction start for journaling
1114 * filesystems.
1115 */
1116 if (i_size_changed)
1117 ext4_mark_inode_dirty(handle, inode);
1118
ffacfa7a 1119 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1120 /* if we have allocated more blocks and copied
1121 * less. We will have blocks allocated outside
1122 * inode->i_size. So truncate them
1123 */
1124 ext4_orphan_add(handle, inode);
74d553aa 1125errout:
617ba13b 1126 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1127 if (!ret)
1128 ret = ret2;
bfc1af65 1129
f8514083 1130 if (pos + len > inode->i_size) {
b9a4207d 1131 ext4_truncate_failed_write(inode);
de9a55b8 1132 /*
ffacfa7a 1133 * If truncate failed early the inode might still be
f8514083
AK
1134 * on the orphan list; we need to make sure the inode
1135 * is removed from the orphan list in that case.
1136 */
1137 if (inode->i_nlink)
1138 ext4_orphan_del(NULL, inode);
1139 }
1140
bfc1af65 1141 return ret ? ret : copied;
ac27a0ec
DK
1142}
1143
bfc1af65 1144static int ext4_journalled_write_end(struct file *file,
de9a55b8
TT
1145 struct address_space *mapping,
1146 loff_t pos, unsigned len, unsigned copied,
1147 struct page *page, void *fsdata)
ac27a0ec 1148{
617ba13b 1149 handle_t *handle = ext4_journal_current_handle();
bfc1af65 1150 struct inode *inode = mapping->host;
ac27a0ec
DK
1151 int ret = 0, ret2;
1152 int partial = 0;
bfc1af65 1153 unsigned from, to;
cf17fea6 1154 loff_t new_i_size;
ac27a0ec 1155
9bffad1e 1156 trace_ext4_journalled_write_end(inode, pos, len, copied);
bfc1af65
NP
1157 from = pos & (PAGE_CACHE_SIZE - 1);
1158 to = from + len;
1159
441c8508
CW
1160 BUG_ON(!ext4_handle_valid(handle));
1161
3fdcfb66
TM
1162 if (ext4_has_inline_data(inode))
1163 copied = ext4_write_inline_data_end(inode, pos, len,
1164 copied, page);
1165 else {
1166 if (copied < len) {
1167 if (!PageUptodate(page))
1168 copied = 0;
1169 page_zero_new_buffers(page, from+copied, to);
1170 }
ac27a0ec 1171
3fdcfb66
TM
1172 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1173 to, &partial, write_end_fn);
1174 if (!partial)
1175 SetPageUptodate(page);
1176 }
cf17fea6
AK
1177 new_i_size = pos + copied;
1178 if (new_i_size > inode->i_size)
bfc1af65 1179 i_size_write(inode, pos+copied);
19f5fb7a 1180 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2d859db3 1181 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
cf17fea6
AK
1182 if (new_i_size > EXT4_I(inode)->i_disksize) {
1183 ext4_update_i_disksize(inode, new_i_size);
617ba13b 1184 ret2 = ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
1185 if (!ret)
1186 ret = ret2;
1187 }
bfc1af65 1188
cf108bca 1189 unlock_page(page);
f8514083 1190 page_cache_release(page);
ffacfa7a 1191 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1192 /* if we have allocated more blocks and copied
1193 * less. We will have blocks allocated outside
1194 * inode->i_size. So truncate them
1195 */
1196 ext4_orphan_add(handle, inode);
1197
617ba13b 1198 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1199 if (!ret)
1200 ret = ret2;
f8514083 1201 if (pos + len > inode->i_size) {
b9a4207d 1202 ext4_truncate_failed_write(inode);
de9a55b8 1203 /*
ffacfa7a 1204 * If truncate failed early the inode might still be
f8514083
AK
1205 * on the orphan list; we need to make sure the inode
1206 * is removed from the orphan list in that case.
1207 */
1208 if (inode->i_nlink)
1209 ext4_orphan_del(NULL, inode);
1210 }
bfc1af65
NP
1211
1212 return ret ? ret : copied;
ac27a0ec 1213}
d2a17637 1214
386ad67c
LC
1215/*
1216 * Reserve a metadata for a single block located at lblock
1217 */
1218static int ext4_da_reserve_metadata(struct inode *inode, ext4_lblk_t lblock)
1219{
386ad67c
LC
1220 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1221 struct ext4_inode_info *ei = EXT4_I(inode);
1222 unsigned int md_needed;
1223 ext4_lblk_t save_last_lblock;
1224 int save_len;
1225
1226 /*
1227 * recalculate the amount of metadata blocks to reserve
1228 * in order to allocate nrblocks
1229 * worse case is one extent per block
1230 */
386ad67c
LC
1231 spin_lock(&ei->i_block_reservation_lock);
1232 /*
1233 * ext4_calc_metadata_amount() has side effects, which we have
1234 * to be prepared undo if we fail to claim space.
1235 */
1236 save_len = ei->i_da_metadata_calc_len;
1237 save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1238 md_needed = EXT4_NUM_B2C(sbi,
1239 ext4_calc_metadata_amount(inode, lblock));
1240 trace_ext4_da_reserve_space(inode, md_needed);
1241
1242 /*
1243 * We do still charge estimated metadata to the sb though;
1244 * we cannot afford to run out of free blocks.
1245 */
1246 if (ext4_claim_free_clusters(sbi, md_needed, 0)) {
1247 ei->i_da_metadata_calc_len = save_len;
1248 ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1249 spin_unlock(&ei->i_block_reservation_lock);
386ad67c
LC
1250 return -ENOSPC;
1251 }
1252 ei->i_reserved_meta_blocks += md_needed;
1253 spin_unlock(&ei->i_block_reservation_lock);
1254
1255 return 0; /* success */
1256}
1257
9d0be502 1258/*
7b415bf6 1259 * Reserve a single cluster located at lblock
9d0be502 1260 */
01f49d0b 1261static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
d2a17637 1262{
60e58e0f 1263 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 1264 struct ext4_inode_info *ei = EXT4_I(inode);
7b415bf6 1265 unsigned int md_needed;
5dd4056d 1266 int ret;
03179fe9
TT
1267 ext4_lblk_t save_last_lblock;
1268 int save_len;
1269
1270 /*
1271 * We will charge metadata quota at writeout time; this saves
1272 * us from metadata over-estimation, though we may go over by
1273 * a small amount in the end. Here we just reserve for data.
1274 */
1275 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1276 if (ret)
1277 return ret;
d2a17637
MC
1278
1279 /*
1280 * recalculate the amount of metadata blocks to reserve
1281 * in order to allocate nrblocks
1282 * worse case is one extent per block
1283 */
0637c6f4 1284 spin_lock(&ei->i_block_reservation_lock);
03179fe9
TT
1285 /*
1286 * ext4_calc_metadata_amount() has side effects, which we have
1287 * to be prepared undo if we fail to claim space.
1288 */
1289 save_len = ei->i_da_metadata_calc_len;
1290 save_last_lblock = ei->i_da_metadata_calc_last_lblock;
7b415bf6
AK
1291 md_needed = EXT4_NUM_B2C(sbi,
1292 ext4_calc_metadata_amount(inode, lblock));
f8ec9d68 1293 trace_ext4_da_reserve_space(inode, md_needed);
d2a17637 1294
72b8ab9d
ES
1295 /*
1296 * We do still charge estimated metadata to the sb though;
1297 * we cannot afford to run out of free blocks.
1298 */
e7d5f315 1299 if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) {
03179fe9
TT
1300 ei->i_da_metadata_calc_len = save_len;
1301 ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1302 spin_unlock(&ei->i_block_reservation_lock);
03179fe9 1303 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
d2a17637
MC
1304 return -ENOSPC;
1305 }
9d0be502 1306 ei->i_reserved_data_blocks++;
0637c6f4
TT
1307 ei->i_reserved_meta_blocks += md_needed;
1308 spin_unlock(&ei->i_block_reservation_lock);
39bc680a 1309
d2a17637
MC
1310 return 0; /* success */
1311}
1312
12219aea 1313static void ext4_da_release_space(struct inode *inode, int to_free)
d2a17637
MC
1314{
1315 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 1316 struct ext4_inode_info *ei = EXT4_I(inode);
d2a17637 1317
cd213226
MC
1318 if (!to_free)
1319 return; /* Nothing to release, exit */
1320
d2a17637 1321 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
cd213226 1322
5a58ec87 1323 trace_ext4_da_release_space(inode, to_free);
0637c6f4 1324 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
cd213226 1325 /*
0637c6f4
TT
1326 * if there aren't enough reserved blocks, then the
1327 * counter is messed up somewhere. Since this
1328 * function is called from invalidate page, it's
1329 * harmless to return without any action.
cd213226 1330 */
8de5c325 1331 ext4_warning(inode->i_sb, "ext4_da_release_space: "
0637c6f4 1332 "ino %lu, to_free %d with only %d reserved "
1084f252 1333 "data blocks", inode->i_ino, to_free,
0637c6f4
TT
1334 ei->i_reserved_data_blocks);
1335 WARN_ON(1);
1336 to_free = ei->i_reserved_data_blocks;
cd213226 1337 }
0637c6f4 1338 ei->i_reserved_data_blocks -= to_free;
cd213226 1339
0637c6f4
TT
1340 if (ei->i_reserved_data_blocks == 0) {
1341 /*
1342 * We can release all of the reserved metadata blocks
1343 * only when we have written all of the delayed
1344 * allocation blocks.
7b415bf6
AK
1345 * Note that in case of bigalloc, i_reserved_meta_blocks,
1346 * i_reserved_data_blocks, etc. refer to number of clusters.
0637c6f4 1347 */
57042651 1348 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
72b8ab9d 1349 ei->i_reserved_meta_blocks);
ee5f4d9c 1350 ei->i_reserved_meta_blocks = 0;
9d0be502 1351 ei->i_da_metadata_calc_len = 0;
0637c6f4 1352 }
d2a17637 1353
72b8ab9d 1354 /* update fs dirty data blocks counter */
57042651 1355 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
d2a17637 1356
d2a17637 1357 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f 1358
7b415bf6 1359 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
d2a17637
MC
1360}
1361
1362static void ext4_da_page_release_reservation(struct page *page,
ca99fdd2
LC
1363 unsigned int offset,
1364 unsigned int length)
d2a17637
MC
1365{
1366 int to_release = 0;
1367 struct buffer_head *head, *bh;
1368 unsigned int curr_off = 0;
7b415bf6
AK
1369 struct inode *inode = page->mapping->host;
1370 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
ca99fdd2 1371 unsigned int stop = offset + length;
7b415bf6 1372 int num_clusters;
51865fda 1373 ext4_fsblk_t lblk;
d2a17637 1374
ca99fdd2
LC
1375 BUG_ON(stop > PAGE_CACHE_SIZE || stop < length);
1376
d2a17637
MC
1377 head = page_buffers(page);
1378 bh = head;
1379 do {
1380 unsigned int next_off = curr_off + bh->b_size;
1381
ca99fdd2
LC
1382 if (next_off > stop)
1383 break;
1384
d2a17637
MC
1385 if ((offset <= curr_off) && (buffer_delay(bh))) {
1386 to_release++;
1387 clear_buffer_delay(bh);
1388 }
1389 curr_off = next_off;
1390 } while ((bh = bh->b_this_page) != head);
7b415bf6 1391
51865fda
ZL
1392 if (to_release) {
1393 lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1394 ext4_es_remove_extent(inode, lblk, to_release);
1395 }
1396
7b415bf6
AK
1397 /* If we have released all the blocks belonging to a cluster, then we
1398 * need to release the reserved space for that cluster. */
1399 num_clusters = EXT4_NUM_B2C(sbi, to_release);
1400 while (num_clusters > 0) {
7b415bf6
AK
1401 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1402 ((num_clusters - 1) << sbi->s_cluster_bits);
1403 if (sbi->s_cluster_ratio == 1 ||
7d1b1fbc 1404 !ext4_find_delalloc_cluster(inode, lblk))
7b415bf6
AK
1405 ext4_da_release_space(inode, 1);
1406
1407 num_clusters--;
1408 }
d2a17637 1409}
ac27a0ec 1410
64769240
AT
1411/*
1412 * Delayed allocation stuff
1413 */
1414
4e7ea81d
JK
1415struct mpage_da_data {
1416 struct inode *inode;
1417 struct writeback_control *wbc;
6b523df4 1418
4e7ea81d
JK
1419 pgoff_t first_page; /* The first page to write */
1420 pgoff_t next_page; /* Current page to examine */
1421 pgoff_t last_page; /* Last page to examine */
791b7f08 1422 /*
4e7ea81d
JK
1423 * Extent to map - this can be after first_page because that can be
1424 * fully mapped. We somewhat abuse m_flags to store whether the extent
1425 * is delalloc or unwritten.
791b7f08 1426 */
4e7ea81d
JK
1427 struct ext4_map_blocks map;
1428 struct ext4_io_submit io_submit; /* IO submission data */
1429};
64769240 1430
4e7ea81d
JK
1431static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1432 bool invalidate)
c4a0c46e
AK
1433{
1434 int nr_pages, i;
1435 pgoff_t index, end;
1436 struct pagevec pvec;
1437 struct inode *inode = mpd->inode;
1438 struct address_space *mapping = inode->i_mapping;
4e7ea81d
JK
1439
1440 /* This is necessary when next_page == 0. */
1441 if (mpd->first_page >= mpd->next_page)
1442 return;
c4a0c46e 1443
c7f5938a
CW
1444 index = mpd->first_page;
1445 end = mpd->next_page - 1;
4e7ea81d
JK
1446 if (invalidate) {
1447 ext4_lblk_t start, last;
1448 start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1449 last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1450 ext4_es_remove_extent(inode, start, last - start + 1);
1451 }
51865fda 1452
66bea92c 1453 pagevec_init(&pvec, 0);
c4a0c46e
AK
1454 while (index <= end) {
1455 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1456 if (nr_pages == 0)
1457 break;
1458 for (i = 0; i < nr_pages; i++) {
1459 struct page *page = pvec.pages[i];
9b1d0998 1460 if (page->index > end)
c4a0c46e 1461 break;
c4a0c46e
AK
1462 BUG_ON(!PageLocked(page));
1463 BUG_ON(PageWriteback(page));
4e7ea81d
JK
1464 if (invalidate) {
1465 block_invalidatepage(page, 0, PAGE_CACHE_SIZE);
1466 ClearPageUptodate(page);
1467 }
c4a0c46e
AK
1468 unlock_page(page);
1469 }
9b1d0998
JK
1470 index = pvec.pages[nr_pages - 1]->index + 1;
1471 pagevec_release(&pvec);
c4a0c46e 1472 }
c4a0c46e
AK
1473}
1474
df22291f
AK
1475static void ext4_print_free_blocks(struct inode *inode)
1476{
1477 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
92b97816 1478 struct super_block *sb = inode->i_sb;
f78ee70d 1479 struct ext4_inode_info *ei = EXT4_I(inode);
92b97816
TT
1480
1481 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
5dee5437 1482 EXT4_C2B(EXT4_SB(inode->i_sb),
f78ee70d 1483 ext4_count_free_clusters(sb)));
92b97816
TT
1484 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1485 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
f78ee70d 1486 (long long) EXT4_C2B(EXT4_SB(sb),
57042651 1487 percpu_counter_sum(&sbi->s_freeclusters_counter)));
92b97816 1488 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
f78ee70d 1489 (long long) EXT4_C2B(EXT4_SB(sb),
7b415bf6 1490 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
92b97816
TT
1491 ext4_msg(sb, KERN_CRIT, "Block reservation details");
1492 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
f78ee70d 1493 ei->i_reserved_data_blocks);
92b97816 1494 ext4_msg(sb, KERN_CRIT, "i_reserved_meta_blocks=%u",
f78ee70d
LC
1495 ei->i_reserved_meta_blocks);
1496 ext4_msg(sb, KERN_CRIT, "i_allocated_meta_blocks=%u",
1497 ei->i_allocated_meta_blocks);
df22291f
AK
1498 return;
1499}
1500
c364b22c 1501static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
29fa89d0 1502{
c364b22c 1503 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
29fa89d0
AK
1504}
1505
5356f261
AK
1506/*
1507 * This function is grabs code from the very beginning of
1508 * ext4_map_blocks, but assumes that the caller is from delayed write
1509 * time. This function looks up the requested blocks and sets the
1510 * buffer delay bit under the protection of i_data_sem.
1511 */
1512static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1513 struct ext4_map_blocks *map,
1514 struct buffer_head *bh)
1515{
d100eef2 1516 struct extent_status es;
5356f261
AK
1517 int retval;
1518 sector_t invalid_block = ~((sector_t) 0xffff);
921f266b
DM
1519#ifdef ES_AGGRESSIVE_TEST
1520 struct ext4_map_blocks orig_map;
1521
1522 memcpy(&orig_map, map, sizeof(*map));
1523#endif
5356f261
AK
1524
1525 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1526 invalid_block = ~0;
1527
1528 map->m_flags = 0;
1529 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1530 "logical block %lu\n", inode->i_ino, map->m_len,
1531 (unsigned long) map->m_lblk);
d100eef2
ZL
1532
1533 /* Lookup extent status tree firstly */
1534 if (ext4_es_lookup_extent(inode, iblock, &es)) {
63b99968 1535 ext4_es_lru_add(inode);
d100eef2
ZL
1536 if (ext4_es_is_hole(&es)) {
1537 retval = 0;
1538 down_read((&EXT4_I(inode)->i_data_sem));
1539 goto add_delayed;
1540 }
1541
1542 /*
1543 * Delayed extent could be allocated by fallocate.
1544 * So we need to check it.
1545 */
1546 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1547 map_bh(bh, inode->i_sb, invalid_block);
1548 set_buffer_new(bh);
1549 set_buffer_delay(bh);
1550 return 0;
1551 }
1552
1553 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1554 retval = es.es_len - (iblock - es.es_lblk);
1555 if (retval > map->m_len)
1556 retval = map->m_len;
1557 map->m_len = retval;
1558 if (ext4_es_is_written(&es))
1559 map->m_flags |= EXT4_MAP_MAPPED;
1560 else if (ext4_es_is_unwritten(&es))
1561 map->m_flags |= EXT4_MAP_UNWRITTEN;
1562 else
1563 BUG_ON(1);
1564
921f266b
DM
1565#ifdef ES_AGGRESSIVE_TEST
1566 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1567#endif
d100eef2
ZL
1568 return retval;
1569 }
1570
5356f261
AK
1571 /*
1572 * Try to see if we can get the block without requesting a new
1573 * file system block.
1574 */
1575 down_read((&EXT4_I(inode)->i_data_sem));
9c3569b5
TM
1576 if (ext4_has_inline_data(inode)) {
1577 /*
1578 * We will soon create blocks for this page, and let
1579 * us pretend as if the blocks aren't allocated yet.
1580 * In case of clusters, we have to handle the work
1581 * of mapping from cluster so that the reserved space
1582 * is calculated properly.
1583 */
1584 if ((EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) &&
1585 ext4_find_delalloc_cluster(inode, map->m_lblk))
1586 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
1587 retval = 0;
1588 } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
d100eef2
ZL
1589 retval = ext4_ext_map_blocks(NULL, inode, map,
1590 EXT4_GET_BLOCKS_NO_PUT_HOLE);
5356f261 1591 else
d100eef2
ZL
1592 retval = ext4_ind_map_blocks(NULL, inode, map,
1593 EXT4_GET_BLOCKS_NO_PUT_HOLE);
5356f261 1594
d100eef2 1595add_delayed:
5356f261 1596 if (retval == 0) {
f7fec032 1597 int ret;
5356f261
AK
1598 /*
1599 * XXX: __block_prepare_write() unmaps passed block,
1600 * is it OK?
1601 */
386ad67c
LC
1602 /*
1603 * If the block was allocated from previously allocated cluster,
1604 * then we don't need to reserve it again. However we still need
1605 * to reserve metadata for every block we're going to write.
1606 */
5356f261 1607 if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
f7fec032
ZL
1608 ret = ext4_da_reserve_space(inode, iblock);
1609 if (ret) {
5356f261 1610 /* not enough space to reserve */
f7fec032 1611 retval = ret;
5356f261 1612 goto out_unlock;
f7fec032 1613 }
386ad67c
LC
1614 } else {
1615 ret = ext4_da_reserve_metadata(inode, iblock);
1616 if (ret) {
1617 /* not enough space to reserve */
1618 retval = ret;
1619 goto out_unlock;
1620 }
5356f261
AK
1621 }
1622
f7fec032
ZL
1623 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1624 ~0, EXTENT_STATUS_DELAYED);
1625 if (ret) {
1626 retval = ret;
51865fda 1627 goto out_unlock;
f7fec032 1628 }
51865fda 1629
5356f261
AK
1630 /* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
1631 * and it should not appear on the bh->b_state.
1632 */
1633 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
1634
1635 map_bh(bh, inode->i_sb, invalid_block);
1636 set_buffer_new(bh);
1637 set_buffer_delay(bh);
f7fec032
ZL
1638 } else if (retval > 0) {
1639 int ret;
3be78c73 1640 unsigned int status;
f7fec032 1641
44fb851d
ZL
1642 if (unlikely(retval != map->m_len)) {
1643 ext4_warning(inode->i_sb,
1644 "ES len assertion failed for inode "
1645 "%lu: retval %d != map->m_len %d",
1646 inode->i_ino, retval, map->m_len);
1647 WARN_ON(1);
921f266b 1648 }
921f266b 1649
f7fec032
ZL
1650 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1651 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1652 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1653 map->m_pblk, status);
1654 if (ret != 0)
1655 retval = ret;
5356f261
AK
1656 }
1657
1658out_unlock:
1659 up_read((&EXT4_I(inode)->i_data_sem));
1660
1661 return retval;
1662}
1663
64769240 1664/*
b920c755
TT
1665 * This is a special get_blocks_t callback which is used by
1666 * ext4_da_write_begin(). It will either return mapped block or
1667 * reserve space for a single block.
29fa89d0
AK
1668 *
1669 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1670 * We also have b_blocknr = -1 and b_bdev initialized properly
1671 *
1672 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1673 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1674 * initialized properly.
64769240 1675 */
9c3569b5
TM
1676int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1677 struct buffer_head *bh, int create)
64769240 1678{
2ed88685 1679 struct ext4_map_blocks map;
64769240
AT
1680 int ret = 0;
1681
1682 BUG_ON(create == 0);
2ed88685
TT
1683 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1684
1685 map.m_lblk = iblock;
1686 map.m_len = 1;
64769240
AT
1687
1688 /*
1689 * first, we need to know whether the block is allocated already
1690 * preallocated blocks are unmapped but should treated
1691 * the same as allocated blocks.
1692 */
5356f261
AK
1693 ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1694 if (ret <= 0)
2ed88685 1695 return ret;
64769240 1696
2ed88685
TT
1697 map_bh(bh, inode->i_sb, map.m_pblk);
1698 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1699
1700 if (buffer_unwritten(bh)) {
1701 /* A delayed write to unwritten bh should be marked
1702 * new and mapped. Mapped ensures that we don't do
1703 * get_block multiple times when we write to the same
1704 * offset and new ensures that we do proper zero out
1705 * for partial write.
1706 */
1707 set_buffer_new(bh);
c8205636 1708 set_buffer_mapped(bh);
2ed88685
TT
1709 }
1710 return 0;
64769240 1711}
61628a3f 1712
62e086be
AK
1713static int bget_one(handle_t *handle, struct buffer_head *bh)
1714{
1715 get_bh(bh);
1716 return 0;
1717}
1718
1719static int bput_one(handle_t *handle, struct buffer_head *bh)
1720{
1721 put_bh(bh);
1722 return 0;
1723}
1724
1725static int __ext4_journalled_writepage(struct page *page,
62e086be
AK
1726 unsigned int len)
1727{
1728 struct address_space *mapping = page->mapping;
1729 struct inode *inode = mapping->host;
3fdcfb66 1730 struct buffer_head *page_bufs = NULL;
62e086be 1731 handle_t *handle = NULL;
3fdcfb66
TM
1732 int ret = 0, err = 0;
1733 int inline_data = ext4_has_inline_data(inode);
1734 struct buffer_head *inode_bh = NULL;
62e086be 1735
cb20d518 1736 ClearPageChecked(page);
3fdcfb66
TM
1737
1738 if (inline_data) {
1739 BUG_ON(page->index != 0);
1740 BUG_ON(len > ext4_get_max_inline_size(inode));
1741 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1742 if (inode_bh == NULL)
1743 goto out;
1744 } else {
1745 page_bufs = page_buffers(page);
1746 if (!page_bufs) {
1747 BUG();
1748 goto out;
1749 }
1750 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1751 NULL, bget_one);
1752 }
62e086be
AK
1753 /* As soon as we unlock the page, it can go away, but we have
1754 * references to buffers so we are safe */
1755 unlock_page(page);
1756
9924a92a
TT
1757 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1758 ext4_writepage_trans_blocks(inode));
62e086be
AK
1759 if (IS_ERR(handle)) {
1760 ret = PTR_ERR(handle);
1761 goto out;
1762 }
1763
441c8508
CW
1764 BUG_ON(!ext4_handle_valid(handle));
1765
3fdcfb66
TM
1766 if (inline_data) {
1767 ret = ext4_journal_get_write_access(handle, inode_bh);
62e086be 1768
3fdcfb66
TM
1769 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
1770
1771 } else {
1772 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1773 do_journal_get_write_access);
1774
1775 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1776 write_end_fn);
1777 }
62e086be
AK
1778 if (ret == 0)
1779 ret = err;
2d859db3 1780 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
62e086be
AK
1781 err = ext4_journal_stop(handle);
1782 if (!ret)
1783 ret = err;
1784
3fdcfb66 1785 if (!ext4_has_inline_data(inode))
8c9367fd 1786 ext4_walk_page_buffers(NULL, page_bufs, 0, len,
3fdcfb66 1787 NULL, bput_one);
19f5fb7a 1788 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
62e086be 1789out:
3fdcfb66 1790 brelse(inode_bh);
62e086be
AK
1791 return ret;
1792}
1793
61628a3f 1794/*
43ce1d23
AK
1795 * Note that we don't need to start a transaction unless we're journaling data
1796 * because we should have holes filled from ext4_page_mkwrite(). We even don't
1797 * need to file the inode to the transaction's list in ordered mode because if
1798 * we are writing back data added by write(), the inode is already there and if
25985edc 1799 * we are writing back data modified via mmap(), no one guarantees in which
43ce1d23
AK
1800 * transaction the data will hit the disk. In case we are journaling data, we
1801 * cannot start transaction directly because transaction start ranks above page
1802 * lock so we have to do some magic.
1803 *
b920c755 1804 * This function can get called via...
20970ba6 1805 * - ext4_writepages after taking page lock (have journal handle)
b920c755 1806 * - journal_submit_inode_data_buffers (no journal handle)
f6463b0d 1807 * - shrink_page_list via the kswapd/direct reclaim (no journal handle)
b920c755 1808 * - grab_page_cache when doing write_begin (have journal handle)
43ce1d23
AK
1809 *
1810 * We don't do any block allocation in this function. If we have page with
1811 * multiple blocks we need to write those buffer_heads that are mapped. This
1812 * is important for mmaped based write. So if we do with blocksize 1K
1813 * truncate(f, 1024);
1814 * a = mmap(f, 0, 4096);
1815 * a[0] = 'a';
1816 * truncate(f, 4096);
1817 * we have in the page first buffer_head mapped via page_mkwrite call back
90802ed9 1818 * but other buffer_heads would be unmapped but dirty (dirty done via the
43ce1d23
AK
1819 * do_wp_page). So writepage should write the first block. If we modify
1820 * the mmap area beyond 1024 we will again get a page_fault and the
1821 * page_mkwrite callback will do the block allocation and mark the
1822 * buffer_heads mapped.
1823 *
1824 * We redirty the page if we have any buffer_heads that is either delay or
1825 * unwritten in the page.
1826 *
1827 * We can get recursively called as show below.
1828 *
1829 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1830 * ext4_writepage()
1831 *
1832 * But since we don't do any block allocation we should not deadlock.
1833 * Page also have the dirty flag cleared so we don't get recurive page_lock.
61628a3f 1834 */
43ce1d23 1835static int ext4_writepage(struct page *page,
62e086be 1836 struct writeback_control *wbc)
64769240 1837{
f8bec370 1838 int ret = 0;
61628a3f 1839 loff_t size;
498e5f24 1840 unsigned int len;
744692dc 1841 struct buffer_head *page_bufs = NULL;
61628a3f 1842 struct inode *inode = page->mapping->host;
36ade451 1843 struct ext4_io_submit io_submit;
61628a3f 1844
a9c667f8 1845 trace_ext4_writepage(page);
f0e6c985
AK
1846 size = i_size_read(inode);
1847 if (page->index == size >> PAGE_CACHE_SHIFT)
1848 len = size & ~PAGE_CACHE_MASK;
1849 else
1850 len = PAGE_CACHE_SIZE;
64769240 1851
a42afc5f 1852 page_bufs = page_buffers(page);
a42afc5f 1853 /*
fe386132
JK
1854 * We cannot do block allocation or other extent handling in this
1855 * function. If there are buffers needing that, we have to redirty
1856 * the page. But we may reach here when we do a journal commit via
1857 * journal_submit_inode_data_buffers() and in that case we must write
1858 * allocated buffers to achieve data=ordered mode guarantees.
a42afc5f 1859 */
f19d5870
TM
1860 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
1861 ext4_bh_delay_or_unwritten)) {
f8bec370 1862 redirty_page_for_writepage(wbc, page);
fe386132
JK
1863 if (current->flags & PF_MEMALLOC) {
1864 /*
1865 * For memory cleaning there's no point in writing only
1866 * some buffers. So just bail out. Warn if we came here
1867 * from direct reclaim.
1868 */
1869 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
1870 == PF_MEMALLOC);
f0e6c985
AK
1871 unlock_page(page);
1872 return 0;
1873 }
a42afc5f 1874 }
64769240 1875
cb20d518 1876 if (PageChecked(page) && ext4_should_journal_data(inode))
43ce1d23
AK
1877 /*
1878 * It's mmapped pagecache. Add buffers and journal it. There
1879 * doesn't seem much point in redirtying the page here.
1880 */
3f0ca309 1881 return __ext4_journalled_writepage(page, len);
43ce1d23 1882
97a851ed
JK
1883 ext4_io_submit_init(&io_submit, wbc);
1884 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
1885 if (!io_submit.io_end) {
1886 redirty_page_for_writepage(wbc, page);
1887 unlock_page(page);
1888 return -ENOMEM;
1889 }
36ade451
JK
1890 ret = ext4_bio_write_page(&io_submit, page, len, wbc);
1891 ext4_io_submit(&io_submit);
97a851ed
JK
1892 /* Drop io_end reference we got from init */
1893 ext4_put_io_end_defer(io_submit.io_end);
64769240
AT
1894 return ret;
1895}
1896
5f1132b2
JK
1897static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
1898{
1899 int len;
1900 loff_t size = i_size_read(mpd->inode);
1901 int err;
1902
1903 BUG_ON(page->index != mpd->first_page);
1904 if (page->index == size >> PAGE_CACHE_SHIFT)
1905 len = size & ~PAGE_CACHE_MASK;
1906 else
1907 len = PAGE_CACHE_SIZE;
1908 clear_page_dirty_for_io(page);
1909 err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc);
1910 if (!err)
1911 mpd->wbc->nr_to_write--;
1912 mpd->first_page++;
1913
1914 return err;
1915}
1916
4e7ea81d
JK
1917#define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
1918
61628a3f 1919/*
fffb2739
JK
1920 * mballoc gives us at most this number of blocks...
1921 * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
70261f56 1922 * The rest of mballoc seems to handle chunks up to full group size.
61628a3f 1923 */
fffb2739 1924#define MAX_WRITEPAGES_EXTENT_LEN 2048
525f4ed8 1925
4e7ea81d
JK
1926/*
1927 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
1928 *
1929 * @mpd - extent of blocks
1930 * @lblk - logical number of the block in the file
09930042 1931 * @bh - buffer head we want to add to the extent
4e7ea81d 1932 *
09930042
JK
1933 * The function is used to collect contig. blocks in the same state. If the
1934 * buffer doesn't require mapping for writeback and we haven't started the
1935 * extent of buffers to map yet, the function returns 'true' immediately - the
1936 * caller can write the buffer right away. Otherwise the function returns true
1937 * if the block has been added to the extent, false if the block couldn't be
1938 * added.
4e7ea81d 1939 */
09930042
JK
1940static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
1941 struct buffer_head *bh)
4e7ea81d
JK
1942{
1943 struct ext4_map_blocks *map = &mpd->map;
1944
09930042
JK
1945 /* Buffer that doesn't need mapping for writeback? */
1946 if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
1947 (!buffer_delay(bh) && !buffer_unwritten(bh))) {
1948 /* So far no extent to map => we write the buffer right away */
1949 if (map->m_len == 0)
1950 return true;
1951 return false;
1952 }
4e7ea81d
JK
1953
1954 /* First block in the extent? */
1955 if (map->m_len == 0) {
1956 map->m_lblk = lblk;
1957 map->m_len = 1;
09930042
JK
1958 map->m_flags = bh->b_state & BH_FLAGS;
1959 return true;
4e7ea81d
JK
1960 }
1961
09930042
JK
1962 /* Don't go larger than mballoc is willing to allocate */
1963 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
1964 return false;
1965
4e7ea81d
JK
1966 /* Can we merge the block to our big extent? */
1967 if (lblk == map->m_lblk + map->m_len &&
09930042 1968 (bh->b_state & BH_FLAGS) == map->m_flags) {
4e7ea81d 1969 map->m_len++;
09930042 1970 return true;
4e7ea81d 1971 }
09930042 1972 return false;
4e7ea81d
JK
1973}
1974
5f1132b2
JK
1975/*
1976 * mpage_process_page_bufs - submit page buffers for IO or add them to extent
1977 *
1978 * @mpd - extent of blocks for mapping
1979 * @head - the first buffer in the page
1980 * @bh - buffer we should start processing from
1981 * @lblk - logical number of the block in the file corresponding to @bh
1982 *
1983 * Walk through page buffers from @bh upto @head (exclusive) and either submit
1984 * the page for IO if all buffers in this page were mapped and there's no
1985 * accumulated extent of buffers to map or add buffers in the page to the
1986 * extent of buffers to map. The function returns 1 if the caller can continue
1987 * by processing the next page, 0 if it should stop adding buffers to the
1988 * extent to map because we cannot extend it anymore. It can also return value
1989 * < 0 in case of error during IO submission.
1990 */
1991static int mpage_process_page_bufs(struct mpage_da_data *mpd,
1992 struct buffer_head *head,
1993 struct buffer_head *bh,
1994 ext4_lblk_t lblk)
4e7ea81d
JK
1995{
1996 struct inode *inode = mpd->inode;
5f1132b2 1997 int err;
4e7ea81d
JK
1998 ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1)
1999 >> inode->i_blkbits;
2000
2001 do {
2002 BUG_ON(buffer_locked(bh));
2003
09930042 2004 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
4e7ea81d
JK
2005 /* Found extent to map? */
2006 if (mpd->map.m_len)
5f1132b2 2007 return 0;
09930042 2008 /* Everything mapped so far and we hit EOF */
5f1132b2 2009 break;
4e7ea81d 2010 }
4e7ea81d 2011 } while (lblk++, (bh = bh->b_this_page) != head);
5f1132b2
JK
2012 /* So far everything mapped? Submit the page for IO. */
2013 if (mpd->map.m_len == 0) {
2014 err = mpage_submit_page(mpd, head->b_page);
2015 if (err < 0)
2016 return err;
2017 }
2018 return lblk < blocks;
4e7ea81d
JK
2019}
2020
2021/*
2022 * mpage_map_buffers - update buffers corresponding to changed extent and
2023 * submit fully mapped pages for IO
2024 *
2025 * @mpd - description of extent to map, on return next extent to map
2026 *
2027 * Scan buffers corresponding to changed extent (we expect corresponding pages
2028 * to be already locked) and update buffer state according to new extent state.
2029 * We map delalloc buffers to their physical location, clear unwritten bits,
2030 * and mark buffers as uninit when we perform writes to uninitialized extents
2031 * and do extent conversion after IO is finished. If the last page is not fully
2032 * mapped, we update @map to the next extent in the last page that needs
2033 * mapping. Otherwise we submit the page for IO.
2034 */
2035static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2036{
2037 struct pagevec pvec;
2038 int nr_pages, i;
2039 struct inode *inode = mpd->inode;
2040 struct buffer_head *head, *bh;
2041 int bpp_bits = PAGE_CACHE_SHIFT - inode->i_blkbits;
4e7ea81d
JK
2042 pgoff_t start, end;
2043 ext4_lblk_t lblk;
2044 sector_t pblock;
2045 int err;
2046
2047 start = mpd->map.m_lblk >> bpp_bits;
2048 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2049 lblk = start << bpp_bits;
2050 pblock = mpd->map.m_pblk;
2051
2052 pagevec_init(&pvec, 0);
2053 while (start <= end) {
2054 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start,
2055 PAGEVEC_SIZE);
2056 if (nr_pages == 0)
2057 break;
2058 for (i = 0; i < nr_pages; i++) {
2059 struct page *page = pvec.pages[i];
2060
2061 if (page->index > end)
2062 break;
70261f56 2063 /* Up to 'end' pages must be contiguous */
4e7ea81d
JK
2064 BUG_ON(page->index != start);
2065 bh = head = page_buffers(page);
2066 do {
2067 if (lblk < mpd->map.m_lblk)
2068 continue;
2069 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2070 /*
2071 * Buffer after end of mapped extent.
2072 * Find next buffer in the page to map.
2073 */
2074 mpd->map.m_len = 0;
2075 mpd->map.m_flags = 0;
5f1132b2
JK
2076 /*
2077 * FIXME: If dioread_nolock supports
2078 * blocksize < pagesize, we need to make
2079 * sure we add size mapped so far to
2080 * io_end->size as the following call
2081 * can submit the page for IO.
2082 */
2083 err = mpage_process_page_bufs(mpd, head,
2084 bh, lblk);
4e7ea81d 2085 pagevec_release(&pvec);
5f1132b2
JK
2086 if (err > 0)
2087 err = 0;
2088 return err;
4e7ea81d
JK
2089 }
2090 if (buffer_delay(bh)) {
2091 clear_buffer_delay(bh);
2092 bh->b_blocknr = pblock++;
2093 }
4e7ea81d 2094 clear_buffer_unwritten(bh);
5f1132b2 2095 } while (lblk++, (bh = bh->b_this_page) != head);
4e7ea81d
JK
2096
2097 /*
2098 * FIXME: This is going to break if dioread_nolock
2099 * supports blocksize < pagesize as we will try to
2100 * convert potentially unmapped parts of inode.
2101 */
2102 mpd->io_submit.io_end->size += PAGE_CACHE_SIZE;
2103 /* Page fully mapped - let IO run! */
2104 err = mpage_submit_page(mpd, page);
2105 if (err < 0) {
2106 pagevec_release(&pvec);
2107 return err;
2108 }
2109 start++;
2110 }
2111 pagevec_release(&pvec);
2112 }
2113 /* Extent fully mapped and matches with page boundary. We are done. */
2114 mpd->map.m_len = 0;
2115 mpd->map.m_flags = 0;
2116 return 0;
2117}
2118
2119static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2120{
2121 struct inode *inode = mpd->inode;
2122 struct ext4_map_blocks *map = &mpd->map;
2123 int get_blocks_flags;
2124 int err;
2125
2126 trace_ext4_da_write_pages_extent(inode, map);
2127 /*
2128 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2129 * to convert an uninitialized extent to be initialized (in the case
2130 * where we have written into one or more preallocated blocks). It is
2131 * possible that we're going to need more metadata blocks than
2132 * previously reserved. However we must not fail because we're in
2133 * writeback and there is nothing we can do about it so it might result
2134 * in data loss. So use reserved blocks to allocate metadata if
2135 * possible.
2136 *
2137 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if the blocks
2138 * in question are delalloc blocks. This affects functions in many
2139 * different parts of the allocation call path. This flag exists
2140 * primarily because we don't want to change *many* call functions, so
2141 * ext4_map_blocks() will set the EXT4_STATE_DELALLOC_RESERVED flag
2142 * once the inode's allocation semaphore is taken.
2143 */
2144 get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2145 EXT4_GET_BLOCKS_METADATA_NOFAIL;
2146 if (ext4_should_dioread_nolock(inode))
2147 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2148 if (map->m_flags & (1 << BH_Delay))
2149 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2150
2151 err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2152 if (err < 0)
2153 return err;
6b523df4
JK
2154 if (map->m_flags & EXT4_MAP_UNINIT) {
2155 if (!mpd->io_submit.io_end->handle &&
2156 ext4_handle_valid(handle)) {
2157 mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2158 handle->h_rsv_handle = NULL;
2159 }
3613d228 2160 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
6b523df4 2161 }
4e7ea81d
JK
2162
2163 BUG_ON(map->m_len == 0);
2164 if (map->m_flags & EXT4_MAP_NEW) {
2165 struct block_device *bdev = inode->i_sb->s_bdev;
2166 int i;
2167
2168 for (i = 0; i < map->m_len; i++)
2169 unmap_underlying_metadata(bdev, map->m_pblk + i);
2170 }
2171 return 0;
2172}
2173
2174/*
2175 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2176 * mpd->len and submit pages underlying it for IO
2177 *
2178 * @handle - handle for journal operations
2179 * @mpd - extent to map
7534e854
JK
2180 * @give_up_on_write - we set this to true iff there is a fatal error and there
2181 * is no hope of writing the data. The caller should discard
2182 * dirty pages to avoid infinite loops.
4e7ea81d
JK
2183 *
2184 * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2185 * delayed, blocks are allocated, if it is unwritten, we may need to convert
2186 * them to initialized or split the described range from larger unwritten
2187 * extent. Note that we need not map all the described range since allocation
2188 * can return less blocks or the range is covered by more unwritten extents. We
2189 * cannot map more because we are limited by reserved transaction credits. On
2190 * the other hand we always make sure that the last touched page is fully
2191 * mapped so that it can be written out (and thus forward progress is
2192 * guaranteed). After mapping we submit all mapped pages for IO.
2193 */
2194static int mpage_map_and_submit_extent(handle_t *handle,
cb530541
TT
2195 struct mpage_da_data *mpd,
2196 bool *give_up_on_write)
4e7ea81d
JK
2197{
2198 struct inode *inode = mpd->inode;
2199 struct ext4_map_blocks *map = &mpd->map;
2200 int err;
2201 loff_t disksize;
2202
2203 mpd->io_submit.io_end->offset =
2204 ((loff_t)map->m_lblk) << inode->i_blkbits;
27d7c4ed 2205 do {
4e7ea81d
JK
2206 err = mpage_map_one_extent(handle, mpd);
2207 if (err < 0) {
2208 struct super_block *sb = inode->i_sb;
2209
cb530541
TT
2210 if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2211 goto invalidate_dirty_pages;
4e7ea81d 2212 /*
cb530541
TT
2213 * Let the uper layers retry transient errors.
2214 * In the case of ENOSPC, if ext4_count_free_blocks()
2215 * is non-zero, a commit should free up blocks.
4e7ea81d 2216 */
cb530541
TT
2217 if ((err == -ENOMEM) ||
2218 (err == -ENOSPC && ext4_count_free_clusters(sb)))
2219 return err;
2220 ext4_msg(sb, KERN_CRIT,
2221 "Delayed block allocation failed for "
2222 "inode %lu at logical offset %llu with"
2223 " max blocks %u with error %d",
2224 inode->i_ino,
2225 (unsigned long long)map->m_lblk,
2226 (unsigned)map->m_len, -err);
2227 ext4_msg(sb, KERN_CRIT,
2228 "This should not happen!! Data will "
2229 "be lost\n");
2230 if (err == -ENOSPC)
2231 ext4_print_free_blocks(inode);
2232 invalidate_dirty_pages:
2233 *give_up_on_write = true;
4e7ea81d
JK
2234 return err;
2235 }
2236 /*
2237 * Update buffer state, submit mapped pages, and get us new
2238 * extent to map
2239 */
2240 err = mpage_map_and_submit_buffers(mpd);
2241 if (err < 0)
2242 return err;
27d7c4ed 2243 } while (map->m_len);
4e7ea81d
JK
2244
2245 /* Update on-disk size after IO is submitted */
2246 disksize = ((loff_t)mpd->first_page) << PAGE_CACHE_SHIFT;
4e7ea81d
JK
2247 if (disksize > EXT4_I(inode)->i_disksize) {
2248 int err2;
2249
90e775b7 2250 ext4_wb_update_i_disksize(inode, disksize);
4e7ea81d
JK
2251 err2 = ext4_mark_inode_dirty(handle, inode);
2252 if (err2)
2253 ext4_error(inode->i_sb,
2254 "Failed to mark inode %lu dirty",
2255 inode->i_ino);
2256 if (!err)
2257 err = err2;
2258 }
2259 return err;
2260}
2261
fffb2739
JK
2262/*
2263 * Calculate the total number of credits to reserve for one writepages
20970ba6 2264 * iteration. This is called from ext4_writepages(). We map an extent of
70261f56 2265 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
fffb2739
JK
2266 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2267 * bpp - 1 blocks in bpp different extents.
2268 */
525f4ed8
MC
2269static int ext4_da_writepages_trans_blocks(struct inode *inode)
2270{
fffb2739 2271 int bpp = ext4_journal_blocks_per_page(inode);
525f4ed8 2272
fffb2739
JK
2273 return ext4_meta_trans_blocks(inode,
2274 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
525f4ed8 2275}
61628a3f 2276
8e48dcfb 2277/*
4e7ea81d
JK
2278 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2279 * and underlying extent to map
2280 *
2281 * @mpd - where to look for pages
2282 *
2283 * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2284 * IO immediately. When we find a page which isn't mapped we start accumulating
2285 * extent of buffers underlying these pages that needs mapping (formed by
2286 * either delayed or unwritten buffers). We also lock the pages containing
2287 * these buffers. The extent found is returned in @mpd structure (starting at
2288 * mpd->lblk with length mpd->len blocks).
2289 *
2290 * Note that this function can attach bios to one io_end structure which are
2291 * neither logically nor physically contiguous. Although it may seem as an
2292 * unnecessary complication, it is actually inevitable in blocksize < pagesize
2293 * case as we need to track IO to all buffers underlying a page in one io_end.
8e48dcfb 2294 */
4e7ea81d 2295static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
8e48dcfb 2296{
4e7ea81d
JK
2297 struct address_space *mapping = mpd->inode->i_mapping;
2298 struct pagevec pvec;
2299 unsigned int nr_pages;
aeac589a 2300 long left = mpd->wbc->nr_to_write;
4e7ea81d
JK
2301 pgoff_t index = mpd->first_page;
2302 pgoff_t end = mpd->last_page;
2303 int tag;
2304 int i, err = 0;
2305 int blkbits = mpd->inode->i_blkbits;
2306 ext4_lblk_t lblk;
2307 struct buffer_head *head;
8e48dcfb 2308
4e7ea81d 2309 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
5b41d924
ES
2310 tag = PAGECACHE_TAG_TOWRITE;
2311 else
2312 tag = PAGECACHE_TAG_DIRTY;
2313
4e7ea81d
JK
2314 pagevec_init(&pvec, 0);
2315 mpd->map.m_len = 0;
2316 mpd->next_page = index;
4f01b02c 2317 while (index <= end) {
5b41d924 2318 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
8e48dcfb
TT
2319 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2320 if (nr_pages == 0)
4e7ea81d 2321 goto out;
8e48dcfb
TT
2322
2323 for (i = 0; i < nr_pages; i++) {
2324 struct page *page = pvec.pages[i];
2325
2326 /*
2327 * At this point, the page may be truncated or
2328 * invalidated (changing page->mapping to NULL), or
2329 * even swizzled back from swapper_space to tmpfs file
2330 * mapping. However, page->index will not change
2331 * because we have a reference on the page.
2332 */
4f01b02c
TT
2333 if (page->index > end)
2334 goto out;
8e48dcfb 2335
aeac589a
ML
2336 /*
2337 * Accumulated enough dirty pages? This doesn't apply
2338 * to WB_SYNC_ALL mode. For integrity sync we have to
2339 * keep going because someone may be concurrently
2340 * dirtying pages, and we might have synced a lot of
2341 * newly appeared dirty pages, but have not synced all
2342 * of the old dirty pages.
2343 */
2344 if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2345 goto out;
2346
4e7ea81d
JK
2347 /* If we can't merge this page, we are done. */
2348 if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2349 goto out;
78aaced3 2350
8e48dcfb 2351 lock_page(page);
8e48dcfb 2352 /*
4e7ea81d
JK
2353 * If the page is no longer dirty, or its mapping no
2354 * longer corresponds to inode we are writing (which
2355 * means it has been truncated or invalidated), or the
2356 * page is already under writeback and we are not doing
2357 * a data integrity writeback, skip the page
8e48dcfb 2358 */
4f01b02c
TT
2359 if (!PageDirty(page) ||
2360 (PageWriteback(page) &&
4e7ea81d 2361 (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
4f01b02c 2362 unlikely(page->mapping != mapping)) {
8e48dcfb
TT
2363 unlock_page(page);
2364 continue;
2365 }
2366
7cb1a535 2367 wait_on_page_writeback(page);
8e48dcfb 2368 BUG_ON(PageWriteback(page));
8e48dcfb 2369
4e7ea81d 2370 if (mpd->map.m_len == 0)
8eb9e5ce 2371 mpd->first_page = page->index;
8eb9e5ce 2372 mpd->next_page = page->index + 1;
f8bec370 2373 /* Add all dirty buffers to mpd */
4e7ea81d
JK
2374 lblk = ((ext4_lblk_t)page->index) <<
2375 (PAGE_CACHE_SHIFT - blkbits);
f8bec370 2376 head = page_buffers(page);
5f1132b2
JK
2377 err = mpage_process_page_bufs(mpd, head, head, lblk);
2378 if (err <= 0)
4e7ea81d 2379 goto out;
5f1132b2 2380 err = 0;
aeac589a 2381 left--;
8e48dcfb
TT
2382 }
2383 pagevec_release(&pvec);
2384 cond_resched();
2385 }
4f01b02c 2386 return 0;
8eb9e5ce
TT
2387out:
2388 pagevec_release(&pvec);
4e7ea81d 2389 return err;
8e48dcfb
TT
2390}
2391
20970ba6
TT
2392static int __writepage(struct page *page, struct writeback_control *wbc,
2393 void *data)
2394{
2395 struct address_space *mapping = data;
2396 int ret = ext4_writepage(page, wbc);
2397 mapping_set_error(mapping, ret);
2398 return ret;
2399}
2400
2401static int ext4_writepages(struct address_space *mapping,
2402 struct writeback_control *wbc)
64769240 2403{
4e7ea81d
JK
2404 pgoff_t writeback_index = 0;
2405 long nr_to_write = wbc->nr_to_write;
22208ded 2406 int range_whole = 0;
4e7ea81d 2407 int cycled = 1;
61628a3f 2408 handle_t *handle = NULL;
df22291f 2409 struct mpage_da_data mpd;
5e745b04 2410 struct inode *inode = mapping->host;
6b523df4 2411 int needed_blocks, rsv_blocks = 0, ret = 0;
5e745b04 2412 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
4e7ea81d 2413 bool done;
1bce63d1 2414 struct blk_plug plug;
cb530541 2415 bool give_up_on_write = false;
61628a3f 2416
20970ba6 2417 trace_ext4_writepages(inode, wbc);
ba80b101 2418
61628a3f
MC
2419 /*
2420 * No pages to write? This is mainly a kludge to avoid starting
2421 * a transaction for special inodes like journal inode on last iput()
2422 * because that could violate lock ordering on umount
2423 */
a1d6cc56 2424 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
bbf023c7 2425 goto out_writepages;
2a21e37e 2426
20970ba6
TT
2427 if (ext4_should_journal_data(inode)) {
2428 struct blk_plug plug;
20970ba6
TT
2429
2430 blk_start_plug(&plug);
2431 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2432 blk_finish_plug(&plug);
bbf023c7 2433 goto out_writepages;
20970ba6
TT
2434 }
2435
2a21e37e
TT
2436 /*
2437 * If the filesystem has aborted, it is read-only, so return
2438 * right away instead of dumping stack traces later on that
2439 * will obscure the real source of the problem. We test
4ab2f15b 2440 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2a21e37e 2441 * the latter could be true if the filesystem is mounted
20970ba6 2442 * read-only, and in that case, ext4_writepages should
2a21e37e
TT
2443 * *never* be called, so if that ever happens, we would want
2444 * the stack trace.
2445 */
bbf023c7
ML
2446 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2447 ret = -EROFS;
2448 goto out_writepages;
2449 }
2a21e37e 2450
6b523df4
JK
2451 if (ext4_should_dioread_nolock(inode)) {
2452 /*
70261f56 2453 * We may need to convert up to one extent per block in
6b523df4
JK
2454 * the page and we may dirty the inode.
2455 */
2456 rsv_blocks = 1 + (PAGE_CACHE_SIZE >> inode->i_blkbits);
2457 }
2458
4e7ea81d
JK
2459 /*
2460 * If we have inline data and arrive here, it means that
2461 * we will soon create the block for the 1st page, so
2462 * we'd better clear the inline data here.
2463 */
2464 if (ext4_has_inline_data(inode)) {
2465 /* Just inode will be modified... */
2466 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2467 if (IS_ERR(handle)) {
2468 ret = PTR_ERR(handle);
2469 goto out_writepages;
2470 }
2471 BUG_ON(ext4_test_inode_state(inode,
2472 EXT4_STATE_MAY_INLINE_DATA));
2473 ext4_destroy_inline_data(handle, inode);
2474 ext4_journal_stop(handle);
2475 }
2476
22208ded
AK
2477 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2478 range_whole = 1;
61628a3f 2479
2acf2c26 2480 if (wbc->range_cyclic) {
4e7ea81d
JK
2481 writeback_index = mapping->writeback_index;
2482 if (writeback_index)
2acf2c26 2483 cycled = 0;
4e7ea81d
JK
2484 mpd.first_page = writeback_index;
2485 mpd.last_page = -1;
5b41d924 2486 } else {
4e7ea81d
JK
2487 mpd.first_page = wbc->range_start >> PAGE_CACHE_SHIFT;
2488 mpd.last_page = wbc->range_end >> PAGE_CACHE_SHIFT;
5b41d924 2489 }
a1d6cc56 2490
4e7ea81d
JK
2491 mpd.inode = inode;
2492 mpd.wbc = wbc;
2493 ext4_io_submit_init(&mpd.io_submit, wbc);
2acf2c26 2494retry:
6e6938b6 2495 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
4e7ea81d
JK
2496 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2497 done = false;
1bce63d1 2498 blk_start_plug(&plug);
4e7ea81d
JK
2499 while (!done && mpd.first_page <= mpd.last_page) {
2500 /* For each extent of pages we use new io_end */
2501 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2502 if (!mpd.io_submit.io_end) {
2503 ret = -ENOMEM;
2504 break;
2505 }
a1d6cc56
AK
2506
2507 /*
4e7ea81d
JK
2508 * We have two constraints: We find one extent to map and we
2509 * must always write out whole page (makes a difference when
2510 * blocksize < pagesize) so that we don't block on IO when we
2511 * try to write out the rest of the page. Journalled mode is
2512 * not supported by delalloc.
a1d6cc56
AK
2513 */
2514 BUG_ON(ext4_should_journal_data(inode));
525f4ed8 2515 needed_blocks = ext4_da_writepages_trans_blocks(inode);
a1d6cc56 2516
4e7ea81d 2517 /* start a new transaction */
6b523df4
JK
2518 handle = ext4_journal_start_with_reserve(inode,
2519 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
61628a3f
MC
2520 if (IS_ERR(handle)) {
2521 ret = PTR_ERR(handle);
1693918e 2522 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
fbe845dd 2523 "%ld pages, ino %lu; err %d", __func__,
a1d6cc56 2524 wbc->nr_to_write, inode->i_ino, ret);
4e7ea81d
JK
2525 /* Release allocated io_end */
2526 ext4_put_io_end(mpd.io_submit.io_end);
2527 break;
61628a3f 2528 }
f63e6005 2529
4e7ea81d
JK
2530 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2531 ret = mpage_prepare_extent_to_map(&mpd);
2532 if (!ret) {
2533 if (mpd.map.m_len)
cb530541
TT
2534 ret = mpage_map_and_submit_extent(handle, &mpd,
2535 &give_up_on_write);
4e7ea81d
JK
2536 else {
2537 /*
2538 * We scanned the whole range (or exhausted
2539 * nr_to_write), submitted what was mapped and
2540 * didn't find anything needing mapping. We are
2541 * done.
2542 */
2543 done = true;
2544 }
f63e6005 2545 }
61628a3f 2546 ext4_journal_stop(handle);
4e7ea81d
JK
2547 /* Submit prepared bio */
2548 ext4_io_submit(&mpd.io_submit);
2549 /* Unlock pages we didn't use */
cb530541 2550 mpage_release_unused_pages(&mpd, give_up_on_write);
4e7ea81d
JK
2551 /* Drop our io_end reference we got from init */
2552 ext4_put_io_end(mpd.io_submit.io_end);
2553
2554 if (ret == -ENOSPC && sbi->s_journal) {
2555 /*
2556 * Commit the transaction which would
22208ded
AK
2557 * free blocks released in the transaction
2558 * and try again
2559 */
df22291f 2560 jbd2_journal_force_commit_nested(sbi->s_journal);
22208ded 2561 ret = 0;
4e7ea81d
JK
2562 continue;
2563 }
2564 /* Fatal error - ENOMEM, EIO... */
2565 if (ret)
61628a3f 2566 break;
a1d6cc56 2567 }
1bce63d1 2568 blk_finish_plug(&plug);
9c12a831 2569 if (!ret && !cycled && wbc->nr_to_write > 0) {
2acf2c26 2570 cycled = 1;
4e7ea81d
JK
2571 mpd.last_page = writeback_index - 1;
2572 mpd.first_page = 0;
2acf2c26
AK
2573 goto retry;
2574 }
22208ded
AK
2575
2576 /* Update index */
22208ded
AK
2577 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2578 /*
4e7ea81d 2579 * Set the writeback_index so that range_cyclic
22208ded
AK
2580 * mode will write it back later
2581 */
4e7ea81d 2582 mapping->writeback_index = mpd.first_page;
a1d6cc56 2583
61628a3f 2584out_writepages:
20970ba6
TT
2585 trace_ext4_writepages_result(inode, wbc, ret,
2586 nr_to_write - wbc->nr_to_write);
61628a3f 2587 return ret;
64769240
AT
2588}
2589
79f0be8d
AK
2590static int ext4_nonda_switch(struct super_block *sb)
2591{
5c1ff336 2592 s64 free_clusters, dirty_clusters;
79f0be8d
AK
2593 struct ext4_sb_info *sbi = EXT4_SB(sb);
2594
2595 /*
2596 * switch to non delalloc mode if we are running low
2597 * on free block. The free block accounting via percpu
179f7ebf 2598 * counters can get slightly wrong with percpu_counter_batch getting
79f0be8d
AK
2599 * accumulated on each CPU without updating global counters
2600 * Delalloc need an accurate free block accounting. So switch
2601 * to non delalloc when we are near to error range.
2602 */
5c1ff336
EW
2603 free_clusters =
2604 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2605 dirty_clusters =
2606 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
00d4e736
TT
2607 /*
2608 * Start pushing delalloc when 1/2 of free blocks are dirty.
2609 */
5c1ff336 2610 if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
10ee27a0 2611 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
00d4e736 2612
5c1ff336
EW
2613 if (2 * free_clusters < 3 * dirty_clusters ||
2614 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
79f0be8d 2615 /*
c8afb446
ES
2616 * free block count is less than 150% of dirty blocks
2617 * or free blocks is less than watermark
79f0be8d
AK
2618 */
2619 return 1;
2620 }
2621 return 0;
2622}
2623
64769240 2624static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
de9a55b8
TT
2625 loff_t pos, unsigned len, unsigned flags,
2626 struct page **pagep, void **fsdata)
64769240 2627{
72b8ab9d 2628 int ret, retries = 0;
64769240
AT
2629 struct page *page;
2630 pgoff_t index;
64769240
AT
2631 struct inode *inode = mapping->host;
2632 handle_t *handle;
2633
2634 index = pos >> PAGE_CACHE_SHIFT;
79f0be8d
AK
2635
2636 if (ext4_nonda_switch(inode->i_sb)) {
2637 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2638 return ext4_write_begin(file, mapping, pos,
2639 len, flags, pagep, fsdata);
2640 }
2641 *fsdata = (void *)0;
9bffad1e 2642 trace_ext4_da_write_begin(inode, pos, len, flags);
9c3569b5
TM
2643
2644 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2645 ret = ext4_da_write_inline_data_begin(mapping, inode,
2646 pos, len, flags,
2647 pagep, fsdata);
2648 if (ret < 0)
47564bfb
TT
2649 return ret;
2650 if (ret == 1)
2651 return 0;
9c3569b5
TM
2652 }
2653
47564bfb
TT
2654 /*
2655 * grab_cache_page_write_begin() can take a long time if the
2656 * system is thrashing due to memory pressure, or if the page
2657 * is being written back. So grab it first before we start
2658 * the transaction handle. This also allows us to allocate
2659 * the page (if needed) without using GFP_NOFS.
2660 */
2661retry_grab:
2662 page = grab_cache_page_write_begin(mapping, index, flags);
2663 if (!page)
2664 return -ENOMEM;
2665 unlock_page(page);
2666
64769240
AT
2667 /*
2668 * With delayed allocation, we don't log the i_disksize update
2669 * if there is delayed block allocation. But we still need
2670 * to journalling the i_disksize update if writes to the end
2671 * of file which has an already mapped buffer.
2672 */
47564bfb 2673retry_journal:
9924a92a 2674 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 1);
64769240 2675 if (IS_ERR(handle)) {
47564bfb
TT
2676 page_cache_release(page);
2677 return PTR_ERR(handle);
64769240
AT
2678 }
2679
47564bfb
TT
2680 lock_page(page);
2681 if (page->mapping != mapping) {
2682 /* The page got truncated from under us */
2683 unlock_page(page);
2684 page_cache_release(page);
d5a0d4f7 2685 ext4_journal_stop(handle);
47564bfb 2686 goto retry_grab;
d5a0d4f7 2687 }
47564bfb 2688 /* In case writeback began while the page was unlocked */
7afe5aa5 2689 wait_for_stable_page(page);
64769240 2690
6e1db88d 2691 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
64769240
AT
2692 if (ret < 0) {
2693 unlock_page(page);
2694 ext4_journal_stop(handle);
ae4d5372
AK
2695 /*
2696 * block_write_begin may have instantiated a few blocks
2697 * outside i_size. Trim these off again. Don't need
2698 * i_size_read because we hold i_mutex.
2699 */
2700 if (pos + len > inode->i_size)
b9a4207d 2701 ext4_truncate_failed_write(inode);
47564bfb
TT
2702
2703 if (ret == -ENOSPC &&
2704 ext4_should_retry_alloc(inode->i_sb, &retries))
2705 goto retry_journal;
2706
2707 page_cache_release(page);
2708 return ret;
64769240
AT
2709 }
2710
47564bfb 2711 *pagep = page;
64769240
AT
2712 return ret;
2713}
2714
632eaeab
MC
2715/*
2716 * Check if we should update i_disksize
2717 * when write to the end of file but not require block allocation
2718 */
2719static int ext4_da_should_update_i_disksize(struct page *page,
de9a55b8 2720 unsigned long offset)
632eaeab
MC
2721{
2722 struct buffer_head *bh;
2723 struct inode *inode = page->mapping->host;
2724 unsigned int idx;
2725 int i;
2726
2727 bh = page_buffers(page);
2728 idx = offset >> inode->i_blkbits;
2729
af5bc92d 2730 for (i = 0; i < idx; i++)
632eaeab
MC
2731 bh = bh->b_this_page;
2732
29fa89d0 2733 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
632eaeab
MC
2734 return 0;
2735 return 1;
2736}
2737
64769240 2738static int ext4_da_write_end(struct file *file,
de9a55b8
TT
2739 struct address_space *mapping,
2740 loff_t pos, unsigned len, unsigned copied,
2741 struct page *page, void *fsdata)
64769240
AT
2742{
2743 struct inode *inode = mapping->host;
2744 int ret = 0, ret2;
2745 handle_t *handle = ext4_journal_current_handle();
2746 loff_t new_i_size;
632eaeab 2747 unsigned long start, end;
79f0be8d
AK
2748 int write_mode = (int)(unsigned long)fsdata;
2749
74d553aa
TT
2750 if (write_mode == FALL_BACK_TO_NONDELALLOC)
2751 return ext4_write_end(file, mapping, pos,
2752 len, copied, page, fsdata);
632eaeab 2753
9bffad1e 2754 trace_ext4_da_write_end(inode, pos, len, copied);
632eaeab 2755 start = pos & (PAGE_CACHE_SIZE - 1);
af5bc92d 2756 end = start + copied - 1;
64769240
AT
2757
2758 /*
2759 * generic_write_end() will run mark_inode_dirty() if i_size
2760 * changes. So let's piggyback the i_disksize mark_inode_dirty
2761 * into that.
2762 */
64769240 2763 new_i_size = pos + copied;
ea51d132 2764 if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
9c3569b5
TM
2765 if (ext4_has_inline_data(inode) ||
2766 ext4_da_should_update_i_disksize(page, end)) {
632eaeab 2767 down_write(&EXT4_I(inode)->i_data_sem);
f3b59291 2768 if (new_i_size > EXT4_I(inode)->i_disksize)
632eaeab 2769 EXT4_I(inode)->i_disksize = new_i_size;
632eaeab 2770 up_write(&EXT4_I(inode)->i_data_sem);
cf17fea6
AK
2771 /* We need to mark inode dirty even if
2772 * new_i_size is less that inode->i_size
2773 * bu greater than i_disksize.(hint delalloc)
2774 */
2775 ext4_mark_inode_dirty(handle, inode);
64769240 2776 }
632eaeab 2777 }
9c3569b5
TM
2778
2779 if (write_mode != CONVERT_INLINE_DATA &&
2780 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2781 ext4_has_inline_data(inode))
2782 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
2783 page);
2784 else
2785 ret2 = generic_write_end(file, mapping, pos, len, copied,
64769240 2786 page, fsdata);
9c3569b5 2787
64769240
AT
2788 copied = ret2;
2789 if (ret2 < 0)
2790 ret = ret2;
2791 ret2 = ext4_journal_stop(handle);
2792 if (!ret)
2793 ret = ret2;
2794
2795 return ret ? ret : copied;
2796}
2797
d47992f8
LC
2798static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
2799 unsigned int length)
64769240 2800{
64769240
AT
2801 /*
2802 * Drop reserved blocks
2803 */
2804 BUG_ON(!PageLocked(page));
2805 if (!page_has_buffers(page))
2806 goto out;
2807
ca99fdd2 2808 ext4_da_page_release_reservation(page, offset, length);
64769240
AT
2809
2810out:
d47992f8 2811 ext4_invalidatepage(page, offset, length);
64769240
AT
2812
2813 return;
2814}
2815
ccd2506b
TT
2816/*
2817 * Force all delayed allocation blocks to be allocated for a given inode.
2818 */
2819int ext4_alloc_da_blocks(struct inode *inode)
2820{
fb40ba0d
TT
2821 trace_ext4_alloc_da_blocks(inode);
2822
ccd2506b
TT
2823 if (!EXT4_I(inode)->i_reserved_data_blocks &&
2824 !EXT4_I(inode)->i_reserved_meta_blocks)
2825 return 0;
2826
2827 /*
2828 * We do something simple for now. The filemap_flush() will
2829 * also start triggering a write of the data blocks, which is
2830 * not strictly speaking necessary (and for users of
2831 * laptop_mode, not even desirable). However, to do otherwise
2832 * would require replicating code paths in:
de9a55b8 2833 *
20970ba6 2834 * ext4_writepages() ->
ccd2506b
TT
2835 * write_cache_pages() ---> (via passed in callback function)
2836 * __mpage_da_writepage() -->
2837 * mpage_add_bh_to_extent()
2838 * mpage_da_map_blocks()
2839 *
2840 * The problem is that write_cache_pages(), located in
2841 * mm/page-writeback.c, marks pages clean in preparation for
2842 * doing I/O, which is not desirable if we're not planning on
2843 * doing I/O at all.
2844 *
2845 * We could call write_cache_pages(), and then redirty all of
380cf090 2846 * the pages by calling redirty_page_for_writepage() but that
ccd2506b
TT
2847 * would be ugly in the extreme. So instead we would need to
2848 * replicate parts of the code in the above functions,
25985edc 2849 * simplifying them because we wouldn't actually intend to
ccd2506b
TT
2850 * write out the pages, but rather only collect contiguous
2851 * logical block extents, call the multi-block allocator, and
2852 * then update the buffer heads with the block allocations.
de9a55b8 2853 *
ccd2506b
TT
2854 * For now, though, we'll cheat by calling filemap_flush(),
2855 * which will map the blocks, and start the I/O, but not
2856 * actually wait for the I/O to complete.
2857 */
2858 return filemap_flush(inode->i_mapping);
2859}
64769240 2860
ac27a0ec
DK
2861/*
2862 * bmap() is special. It gets used by applications such as lilo and by
2863 * the swapper to find the on-disk block of a specific piece of data.
2864 *
2865 * Naturally, this is dangerous if the block concerned is still in the
617ba13b 2866 * journal. If somebody makes a swapfile on an ext4 data-journaling
ac27a0ec
DK
2867 * filesystem and enables swap, then they may get a nasty shock when the
2868 * data getting swapped to that swapfile suddenly gets overwritten by
2869 * the original zero's written out previously to the journal and
2870 * awaiting writeback in the kernel's buffer cache.
2871 *
2872 * So, if we see any bmap calls here on a modified, data-journaled file,
2873 * take extra steps to flush any blocks which might be in the cache.
2874 */
617ba13b 2875static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
ac27a0ec
DK
2876{
2877 struct inode *inode = mapping->host;
2878 journal_t *journal;
2879 int err;
2880
46c7f254
TM
2881 /*
2882 * We can get here for an inline file via the FIBMAP ioctl
2883 */
2884 if (ext4_has_inline_data(inode))
2885 return 0;
2886
64769240
AT
2887 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2888 test_opt(inode->i_sb, DELALLOC)) {
2889 /*
2890 * With delalloc we want to sync the file
2891 * so that we can make sure we allocate
2892 * blocks for file
2893 */
2894 filemap_write_and_wait(mapping);
2895 }
2896
19f5fb7a
TT
2897 if (EXT4_JOURNAL(inode) &&
2898 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
ac27a0ec
DK
2899 /*
2900 * This is a REALLY heavyweight approach, but the use of
2901 * bmap on dirty files is expected to be extremely rare:
2902 * only if we run lilo or swapon on a freshly made file
2903 * do we expect this to happen.
2904 *
2905 * (bmap requires CAP_SYS_RAWIO so this does not
2906 * represent an unprivileged user DOS attack --- we'd be
2907 * in trouble if mortal users could trigger this path at
2908 * will.)
2909 *
617ba13b 2910 * NB. EXT4_STATE_JDATA is not set on files other than
ac27a0ec
DK
2911 * regular files. If somebody wants to bmap a directory
2912 * or symlink and gets confused because the buffer
2913 * hasn't yet been flushed to disk, they deserve
2914 * everything they get.
2915 */
2916
19f5fb7a 2917 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
617ba13b 2918 journal = EXT4_JOURNAL(inode);
dab291af
MC
2919 jbd2_journal_lock_updates(journal);
2920 err = jbd2_journal_flush(journal);
2921 jbd2_journal_unlock_updates(journal);
ac27a0ec
DK
2922
2923 if (err)
2924 return 0;
2925 }
2926
af5bc92d 2927 return generic_block_bmap(mapping, block, ext4_get_block);
ac27a0ec
DK
2928}
2929
617ba13b 2930static int ext4_readpage(struct file *file, struct page *page)
ac27a0ec 2931{
46c7f254
TM
2932 int ret = -EAGAIN;
2933 struct inode *inode = page->mapping->host;
2934
0562e0ba 2935 trace_ext4_readpage(page);
46c7f254
TM
2936
2937 if (ext4_has_inline_data(inode))
2938 ret = ext4_readpage_inline(inode, page);
2939
2940 if (ret == -EAGAIN)
2941 return mpage_readpage(page, ext4_get_block);
2942
2943 return ret;
ac27a0ec
DK
2944}
2945
2946static int
617ba13b 2947ext4_readpages(struct file *file, struct address_space *mapping,
ac27a0ec
DK
2948 struct list_head *pages, unsigned nr_pages)
2949{
46c7f254
TM
2950 struct inode *inode = mapping->host;
2951
2952 /* If the file has inline data, no need to do readpages. */
2953 if (ext4_has_inline_data(inode))
2954 return 0;
2955
617ba13b 2956 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
ac27a0ec
DK
2957}
2958
d47992f8
LC
2959static void ext4_invalidatepage(struct page *page, unsigned int offset,
2960 unsigned int length)
ac27a0ec 2961{
ca99fdd2 2962 trace_ext4_invalidatepage(page, offset, length);
0562e0ba 2963
4520fb3c
JK
2964 /* No journalling happens on data buffers when this function is used */
2965 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
2966
ca99fdd2 2967 block_invalidatepage(page, offset, length);
4520fb3c
JK
2968}
2969
53e87268 2970static int __ext4_journalled_invalidatepage(struct page *page,
ca99fdd2
LC
2971 unsigned int offset,
2972 unsigned int length)
4520fb3c
JK
2973{
2974 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2975
ca99fdd2 2976 trace_ext4_journalled_invalidatepage(page, offset, length);
4520fb3c 2977
ac27a0ec
DK
2978 /*
2979 * If it's a full truncate we just forget about the pending dirtying
2980 */
ca99fdd2 2981 if (offset == 0 && length == PAGE_CACHE_SIZE)
ac27a0ec
DK
2982 ClearPageChecked(page);
2983
ca99fdd2 2984 return jbd2_journal_invalidatepage(journal, page, offset, length);
53e87268
JK
2985}
2986
2987/* Wrapper for aops... */
2988static void ext4_journalled_invalidatepage(struct page *page,
d47992f8
LC
2989 unsigned int offset,
2990 unsigned int length)
53e87268 2991{
ca99fdd2 2992 WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
ac27a0ec
DK
2993}
2994
617ba13b 2995static int ext4_releasepage(struct page *page, gfp_t wait)
ac27a0ec 2996{
617ba13b 2997 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
ac27a0ec 2998
0562e0ba
JZ
2999 trace_ext4_releasepage(page);
3000
e1c36595
JK
3001 /* Page has dirty journalled data -> cannot release */
3002 if (PageChecked(page))
ac27a0ec 3003 return 0;
0390131b
FM
3004 if (journal)
3005 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3006 else
3007 return try_to_free_buffers(page);
ac27a0ec
DK
3008}
3009
2ed88685
TT
3010/*
3011 * ext4_get_block used when preparing for a DIO write or buffer write.
3012 * We allocate an uinitialized extent if blocks haven't been allocated.
3013 * The extent will be converted to initialized after the IO is complete.
3014 */
f19d5870 3015int ext4_get_block_write(struct inode *inode, sector_t iblock,
4c0425ff
MC
3016 struct buffer_head *bh_result, int create)
3017{
c7064ef1 3018 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
8d5d02e6 3019 inode->i_ino, create);
2ed88685
TT
3020 return _ext4_get_block(inode, iblock, bh_result,
3021 EXT4_GET_BLOCKS_IO_CREATE_EXT);
4c0425ff
MC
3022}
3023
729f52c6 3024static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
8b0f165f 3025 struct buffer_head *bh_result, int create)
729f52c6 3026{
8b0f165f
AP
3027 ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
3028 inode->i_ino, create);
3029 return _ext4_get_block(inode, iblock, bh_result,
3030 EXT4_GET_BLOCKS_NO_LOCK);
729f52c6
ZL
3031}
3032
4c0425ff 3033static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
7b7a8665 3034 ssize_t size, void *private)
4c0425ff
MC
3035{
3036 ext4_io_end_t *io_end = iocb->private;
4c0425ff 3037
97a851ed 3038 /* if not async direct IO just return */
7b7a8665 3039 if (!io_end)
97a851ed 3040 return;
4b70df18 3041
88635ca2 3042 ext_debug("ext4_end_io_dio(): io_end 0x%p "
ace36ad4 3043 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
8d5d02e6
MC
3044 iocb->private, io_end->inode->i_ino, iocb, offset,
3045 size);
8d5d02e6 3046
b5a7e970 3047 iocb->private = NULL;
4c0425ff
MC
3048 io_end->offset = offset;
3049 io_end->size = size;
7b7a8665 3050 ext4_put_io_end(io_end);
4c0425ff 3051}
c7064ef1 3052
4c0425ff
MC
3053/*
3054 * For ext4 extent files, ext4 will do direct-io write to holes,
3055 * preallocated extents, and those write extend the file, no need to
3056 * fall back to buffered IO.
3057 *
b595076a 3058 * For holes, we fallocate those blocks, mark them as uninitialized
69c499d1 3059 * If those blocks were preallocated, we mark sure they are split, but
b595076a 3060 * still keep the range to write as uninitialized.
4c0425ff 3061 *
69c499d1 3062 * The unwritten extents will be converted to written when DIO is completed.
8d5d02e6 3063 * For async direct IO, since the IO may still pending when return, we
25985edc 3064 * set up an end_io call back function, which will do the conversion
8d5d02e6 3065 * when async direct IO completed.
4c0425ff
MC
3066 *
3067 * If the O_DIRECT write will extend the file then add this inode to the
3068 * orphan list. So recovery will truncate it back to the original size
3069 * if the machine crashes during the write.
3070 *
3071 */
3072static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
3073 const struct iovec *iov, loff_t offset,
3074 unsigned long nr_segs)
3075{
3076 struct file *file = iocb->ki_filp;
3077 struct inode *inode = file->f_mapping->host;
3078 ssize_t ret;
3079 size_t count = iov_length(iov, nr_segs);
69c499d1
TT
3080 int overwrite = 0;
3081 get_block_t *get_block_func = NULL;
3082 int dio_flags = 0;
4c0425ff 3083 loff_t final_size = offset + count;
97a851ed 3084 ext4_io_end_t *io_end = NULL;
729f52c6 3085
69c499d1
TT
3086 /* Use the old path for reads and writes beyond i_size. */
3087 if (rw != WRITE || final_size > inode->i_size)
3088 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
4bd809db 3089
69c499d1 3090 BUG_ON(iocb->private == NULL);
4bd809db 3091
e8340395
JK
3092 /*
3093 * Make all waiters for direct IO properly wait also for extent
3094 * conversion. This also disallows race between truncate() and
3095 * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3096 */
3097 if (rw == WRITE)
3098 atomic_inc(&inode->i_dio_count);
3099
69c499d1
TT
3100 /* If we do a overwrite dio, i_mutex locking can be released */
3101 overwrite = *((int *)iocb->private);
4bd809db 3102
69c499d1 3103 if (overwrite) {
69c499d1
TT
3104 down_read(&EXT4_I(inode)->i_data_sem);
3105 mutex_unlock(&inode->i_mutex);
3106 }
8d5d02e6 3107
69c499d1
TT
3108 /*
3109 * We could direct write to holes and fallocate.
3110 *
3111 * Allocated blocks to fill the hole are marked as
3112 * uninitialized to prevent parallel buffered read to expose
3113 * the stale data before DIO complete the data IO.
3114 *
3115 * As to previously fallocated extents, ext4 get_block will
3116 * just simply mark the buffer mapped but still keep the
3117 * extents uninitialized.
3118 *
3119 * For non AIO case, we will convert those unwritten extents
3120 * to written after return back from blockdev_direct_IO.
3121 *
3122 * For async DIO, the conversion needs to be deferred when the
3123 * IO is completed. The ext4 end_io callback function will be
3124 * called to take care of the conversion work. Here for async
3125 * case, we allocate an io_end structure to hook to the iocb.
3126 */
3127 iocb->private = NULL;
3128 ext4_inode_aio_set(inode, NULL);
3129 if (!is_sync_kiocb(iocb)) {
97a851ed 3130 io_end = ext4_init_io_end(inode, GFP_NOFS);
69c499d1
TT
3131 if (!io_end) {
3132 ret = -ENOMEM;
3133 goto retake_lock;
8b0f165f 3134 }
97a851ed
JK
3135 /*
3136 * Grab reference for DIO. Will be dropped in ext4_end_io_dio()
3137 */
3138 iocb->private = ext4_get_io_end(io_end);
8d5d02e6 3139 /*
69c499d1
TT
3140 * we save the io structure for current async direct
3141 * IO, so that later ext4_map_blocks() could flag the
3142 * io structure whether there is a unwritten extents
3143 * needs to be converted when IO is completed.
8d5d02e6 3144 */
69c499d1
TT
3145 ext4_inode_aio_set(inode, io_end);
3146 }
4bd809db 3147
69c499d1
TT
3148 if (overwrite) {
3149 get_block_func = ext4_get_block_write_nolock;
3150 } else {
3151 get_block_func = ext4_get_block_write;
3152 dio_flags = DIO_LOCKING;
3153 }
3154 ret = __blockdev_direct_IO(rw, iocb, inode,
3155 inode->i_sb->s_bdev, iov,
3156 offset, nr_segs,
3157 get_block_func,
3158 ext4_end_io_dio,
3159 NULL,
3160 dio_flags);
3161
69c499d1 3162 /*
97a851ed
JK
3163 * Put our reference to io_end. This can free the io_end structure e.g.
3164 * in sync IO case or in case of error. It can even perform extent
3165 * conversion if all bios we submitted finished before we got here.
3166 * Note that in that case iocb->private can be already set to NULL
3167 * here.
69c499d1 3168 */
97a851ed
JK
3169 if (io_end) {
3170 ext4_inode_aio_set(inode, NULL);
3171 ext4_put_io_end(io_end);
3172 /*
3173 * When no IO was submitted ext4_end_io_dio() was not
3174 * called so we have to put iocb's reference.
3175 */
3176 if (ret <= 0 && ret != -EIOCBQUEUED && iocb->private) {
3177 WARN_ON(iocb->private != io_end);
3178 WARN_ON(io_end->flag & EXT4_IO_END_UNWRITTEN);
97a851ed
JK
3179 ext4_put_io_end(io_end);
3180 iocb->private = NULL;
3181 }
3182 }
3183 if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
69c499d1
TT
3184 EXT4_STATE_DIO_UNWRITTEN)) {
3185 int err;
3186 /*
3187 * for non AIO case, since the IO is already
3188 * completed, we could do the conversion right here
3189 */
6b523df4 3190 err = ext4_convert_unwritten_extents(NULL, inode,
69c499d1
TT
3191 offset, ret);
3192 if (err < 0)
3193 ret = err;
3194 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3195 }
4bd809db 3196
69c499d1 3197retake_lock:
e8340395
JK
3198 if (rw == WRITE)
3199 inode_dio_done(inode);
69c499d1
TT
3200 /* take i_mutex locking again if we do a ovewrite dio */
3201 if (overwrite) {
69c499d1
TT
3202 up_read(&EXT4_I(inode)->i_data_sem);
3203 mutex_lock(&inode->i_mutex);
4c0425ff 3204 }
8d5d02e6 3205
69c499d1 3206 return ret;
4c0425ff
MC
3207}
3208
3209static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3210 const struct iovec *iov, loff_t offset,
3211 unsigned long nr_segs)
3212{
3213 struct file *file = iocb->ki_filp;
3214 struct inode *inode = file->f_mapping->host;
0562e0ba 3215 ssize_t ret;
4c0425ff 3216
84ebd795
TT
3217 /*
3218 * If we are doing data journalling we don't support O_DIRECT
3219 */
3220 if (ext4_should_journal_data(inode))
3221 return 0;
3222
46c7f254
TM
3223 /* Let buffer I/O handle the inline data case. */
3224 if (ext4_has_inline_data(inode))
3225 return 0;
3226
0562e0ba 3227 trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
12e9b892 3228 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
0562e0ba
JZ
3229 ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3230 else
3231 ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3232 trace_ext4_direct_IO_exit(inode, offset,
3233 iov_length(iov, nr_segs), rw, ret);
3234 return ret;
4c0425ff
MC
3235}
3236
ac27a0ec 3237/*
617ba13b 3238 * Pages can be marked dirty completely asynchronously from ext4's journalling
ac27a0ec
DK
3239 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3240 * much here because ->set_page_dirty is called under VFS locks. The page is
3241 * not necessarily locked.
3242 *
3243 * We cannot just dirty the page and leave attached buffers clean, because the
3244 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3245 * or jbddirty because all the journalling code will explode.
3246 *
3247 * So what we do is to mark the page "pending dirty" and next time writepage
3248 * is called, propagate that into the buffers appropriately.
3249 */
617ba13b 3250static int ext4_journalled_set_page_dirty(struct page *page)
ac27a0ec
DK
3251{
3252 SetPageChecked(page);
3253 return __set_page_dirty_nobuffers(page);
3254}
3255
74d553aa 3256static const struct address_space_operations ext4_aops = {
8ab22b9a
HH
3257 .readpage = ext4_readpage,
3258 .readpages = ext4_readpages,
43ce1d23 3259 .writepage = ext4_writepage,
20970ba6 3260 .writepages = ext4_writepages,
8ab22b9a 3261 .write_begin = ext4_write_begin,
74d553aa 3262 .write_end = ext4_write_end,
8ab22b9a
HH
3263 .bmap = ext4_bmap,
3264 .invalidatepage = ext4_invalidatepage,
3265 .releasepage = ext4_releasepage,
3266 .direct_IO = ext4_direct_IO,
3267 .migratepage = buffer_migrate_page,
3268 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3269 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
3270};
3271
617ba13b 3272static const struct address_space_operations ext4_journalled_aops = {
8ab22b9a
HH
3273 .readpage = ext4_readpage,
3274 .readpages = ext4_readpages,
43ce1d23 3275 .writepage = ext4_writepage,
20970ba6 3276 .writepages = ext4_writepages,
8ab22b9a
HH
3277 .write_begin = ext4_write_begin,
3278 .write_end = ext4_journalled_write_end,
3279 .set_page_dirty = ext4_journalled_set_page_dirty,
3280 .bmap = ext4_bmap,
4520fb3c 3281 .invalidatepage = ext4_journalled_invalidatepage,
8ab22b9a 3282 .releasepage = ext4_releasepage,
84ebd795 3283 .direct_IO = ext4_direct_IO,
8ab22b9a 3284 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3285 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
3286};
3287
64769240 3288static const struct address_space_operations ext4_da_aops = {
8ab22b9a
HH
3289 .readpage = ext4_readpage,
3290 .readpages = ext4_readpages,
43ce1d23 3291 .writepage = ext4_writepage,
20970ba6 3292 .writepages = ext4_writepages,
8ab22b9a
HH
3293 .write_begin = ext4_da_write_begin,
3294 .write_end = ext4_da_write_end,
3295 .bmap = ext4_bmap,
3296 .invalidatepage = ext4_da_invalidatepage,
3297 .releasepage = ext4_releasepage,
3298 .direct_IO = ext4_direct_IO,
3299 .migratepage = buffer_migrate_page,
3300 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3301 .error_remove_page = generic_error_remove_page,
64769240
AT
3302};
3303
617ba13b 3304void ext4_set_aops(struct inode *inode)
ac27a0ec 3305{
3d2b1582
LC
3306 switch (ext4_inode_journal_mode(inode)) {
3307 case EXT4_INODE_ORDERED_DATA_MODE:
74d553aa 3308 ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3d2b1582
LC
3309 break;
3310 case EXT4_INODE_WRITEBACK_DATA_MODE:
74d553aa 3311 ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3d2b1582
LC
3312 break;
3313 case EXT4_INODE_JOURNAL_DATA_MODE:
617ba13b 3314 inode->i_mapping->a_ops = &ext4_journalled_aops;
74d553aa 3315 return;
3d2b1582
LC
3316 default:
3317 BUG();
3318 }
74d553aa
TT
3319 if (test_opt(inode->i_sb, DELALLOC))
3320 inode->i_mapping->a_ops = &ext4_da_aops;
3321 else
3322 inode->i_mapping->a_ops = &ext4_aops;
ac27a0ec
DK
3323}
3324
d863dc36
LC
3325/*
3326 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3327 * starting from file offset 'from'. The range to be zero'd must
3328 * be contained with in one block. If the specified range exceeds
3329 * the end of the block it will be shortened to end of the block
3330 * that cooresponds to 'from'
3331 */
94350ab5 3332static int ext4_block_zero_page_range(handle_t *handle,
d863dc36
LC
3333 struct address_space *mapping, loff_t from, loff_t length)
3334{
3335 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3336 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3337 unsigned blocksize, max, pos;
3338 ext4_lblk_t iblock;
3339 struct inode *inode = mapping->host;
3340 struct buffer_head *bh;
3341 struct page *page;
3342 int err = 0;
3343
3344 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3345 mapping_gfp_mask(mapping) & ~__GFP_FS);
3346 if (!page)
3347 return -ENOMEM;
3348
3349 blocksize = inode->i_sb->s_blocksize;
3350 max = blocksize - (offset & (blocksize - 1));
3351
3352 /*
3353 * correct length if it does not fall between
3354 * 'from' and the end of the block
3355 */
3356 if (length > max || length < 0)
3357 length = max;
3358
3359 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3360
3361 if (!page_has_buffers(page))
3362 create_empty_buffers(page, blocksize, 0);
3363
3364 /* Find the buffer that contains "offset" */
3365 bh = page_buffers(page);
3366 pos = blocksize;
3367 while (offset >= pos) {
3368 bh = bh->b_this_page;
3369 iblock++;
3370 pos += blocksize;
3371 }
d863dc36
LC
3372 if (buffer_freed(bh)) {
3373 BUFFER_TRACE(bh, "freed: skip");
3374 goto unlock;
3375 }
d863dc36
LC
3376 if (!buffer_mapped(bh)) {
3377 BUFFER_TRACE(bh, "unmapped");
3378 ext4_get_block(inode, iblock, bh, 0);
3379 /* unmapped? It's a hole - nothing to do */
3380 if (!buffer_mapped(bh)) {
3381 BUFFER_TRACE(bh, "still unmapped");
3382 goto unlock;
3383 }
3384 }
3385
3386 /* Ok, it's mapped. Make sure it's up-to-date */
3387 if (PageUptodate(page))
3388 set_buffer_uptodate(bh);
3389
3390 if (!buffer_uptodate(bh)) {
3391 err = -EIO;
3392 ll_rw_block(READ, 1, &bh);
3393 wait_on_buffer(bh);
3394 /* Uhhuh. Read error. Complain and punt. */
3395 if (!buffer_uptodate(bh))
3396 goto unlock;
3397 }
d863dc36
LC
3398 if (ext4_should_journal_data(inode)) {
3399 BUFFER_TRACE(bh, "get write access");
3400 err = ext4_journal_get_write_access(handle, bh);
3401 if (err)
3402 goto unlock;
3403 }
d863dc36 3404 zero_user(page, offset, length);
d863dc36
LC
3405 BUFFER_TRACE(bh, "zeroed end of block");
3406
d863dc36
LC
3407 if (ext4_should_journal_data(inode)) {
3408 err = ext4_handle_dirty_metadata(handle, inode, bh);
0713ed0c 3409 } else {
353eefd3 3410 err = 0;
d863dc36 3411 mark_buffer_dirty(bh);
0713ed0c
LC
3412 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE))
3413 err = ext4_jbd2_file_inode(handle, inode);
3414 }
d863dc36
LC
3415
3416unlock:
3417 unlock_page(page);
3418 page_cache_release(page);
3419 return err;
3420}
3421
94350ab5
MW
3422/*
3423 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3424 * up to the end of the block which corresponds to `from'.
3425 * This required during truncate. We need to physically zero the tail end
3426 * of that block so it doesn't yield old data if the file is later grown.
3427 */
3428int ext4_block_truncate_page(handle_t *handle,
3429 struct address_space *mapping, loff_t from)
3430{
3431 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3432 unsigned length;
3433 unsigned blocksize;
3434 struct inode *inode = mapping->host;
3435
3436 blocksize = inode->i_sb->s_blocksize;
3437 length = blocksize - (offset & (blocksize - 1));
3438
3439 return ext4_block_zero_page_range(handle, mapping, from, length);
3440}
3441
a87dd18c
LC
3442int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3443 loff_t lstart, loff_t length)
3444{
3445 struct super_block *sb = inode->i_sb;
3446 struct address_space *mapping = inode->i_mapping;
e1be3a92 3447 unsigned partial_start, partial_end;
a87dd18c
LC
3448 ext4_fsblk_t start, end;
3449 loff_t byte_end = (lstart + length - 1);
3450 int err = 0;
3451
e1be3a92
LC
3452 partial_start = lstart & (sb->s_blocksize - 1);
3453 partial_end = byte_end & (sb->s_blocksize - 1);
3454
a87dd18c
LC
3455 start = lstart >> sb->s_blocksize_bits;
3456 end = byte_end >> sb->s_blocksize_bits;
3457
3458 /* Handle partial zero within the single block */
e1be3a92
LC
3459 if (start == end &&
3460 (partial_start || (partial_end != sb->s_blocksize - 1))) {
a87dd18c
LC
3461 err = ext4_block_zero_page_range(handle, mapping,
3462 lstart, length);
3463 return err;
3464 }
3465 /* Handle partial zero out on the start of the range */
e1be3a92 3466 if (partial_start) {
a87dd18c
LC
3467 err = ext4_block_zero_page_range(handle, mapping,
3468 lstart, sb->s_blocksize);
3469 if (err)
3470 return err;
3471 }
3472 /* Handle partial zero out on the end of the range */
e1be3a92 3473 if (partial_end != sb->s_blocksize - 1)
a87dd18c 3474 err = ext4_block_zero_page_range(handle, mapping,
e1be3a92
LC
3475 byte_end - partial_end,
3476 partial_end + 1);
a87dd18c
LC
3477 return err;
3478}
3479
91ef4caf
DG
3480int ext4_can_truncate(struct inode *inode)
3481{
91ef4caf
DG
3482 if (S_ISREG(inode->i_mode))
3483 return 1;
3484 if (S_ISDIR(inode->i_mode))
3485 return 1;
3486 if (S_ISLNK(inode->i_mode))
3487 return !ext4_inode_is_fast_symlink(inode);
3488 return 0;
3489}
3490
a4bb6b64
AH
3491/*
3492 * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3493 * associated with the given offset and length
3494 *
3495 * @inode: File inode
3496 * @offset: The offset where the hole will begin
3497 * @len: The length of the hole
3498 *
4907cb7b 3499 * Returns: 0 on success or negative on failure
a4bb6b64
AH
3500 */
3501
aeb2817a 3502int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
a4bb6b64 3503{
26a4c0c6
TT
3504 struct super_block *sb = inode->i_sb;
3505 ext4_lblk_t first_block, stop_block;
3506 struct address_space *mapping = inode->i_mapping;
a87dd18c 3507 loff_t first_block_offset, last_block_offset;
26a4c0c6
TT
3508 handle_t *handle;
3509 unsigned int credits;
3510 int ret = 0;
3511
a4bb6b64 3512 if (!S_ISREG(inode->i_mode))
73355192 3513 return -EOPNOTSUPP;
a4bb6b64 3514
b8a86845 3515 trace_ext4_punch_hole(inode, offset, length, 0);
aaddea81 3516
26a4c0c6
TT
3517 /*
3518 * Write out all dirty pages to avoid race conditions
3519 * Then release them.
3520 */
3521 if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3522 ret = filemap_write_and_wait_range(mapping, offset,
3523 offset + length - 1);
3524 if (ret)
3525 return ret;
3526 }
3527
3528 mutex_lock(&inode->i_mutex);
3529 /* It's not possible punch hole on append only file */
3530 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
3531 ret = -EPERM;
3532 goto out_mutex;
3533 }
3534 if (IS_SWAPFILE(inode)) {
3535 ret = -ETXTBSY;
3536 goto out_mutex;
3537 }
3538
3539 /* No need to punch hole beyond i_size */
3540 if (offset >= inode->i_size)
3541 goto out_mutex;
3542
3543 /*
3544 * If the hole extends beyond i_size, set the hole
3545 * to end after the page that contains i_size
3546 */
3547 if (offset + length > inode->i_size) {
3548 length = inode->i_size +
3549 PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
3550 offset;
3551 }
3552
a361293f
JK
3553 if (offset & (sb->s_blocksize - 1) ||
3554 (offset + length) & (sb->s_blocksize - 1)) {
3555 /*
3556 * Attach jinode to inode for jbd2 if we do any zeroing of
3557 * partial block
3558 */
3559 ret = ext4_inode_attach_jinode(inode);
3560 if (ret < 0)
3561 goto out_mutex;
3562
3563 }
3564
a87dd18c
LC
3565 first_block_offset = round_up(offset, sb->s_blocksize);
3566 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
26a4c0c6 3567
a87dd18c
LC
3568 /* Now release the pages and zero block aligned part of pages*/
3569 if (last_block_offset > first_block_offset)
3570 truncate_pagecache_range(inode, first_block_offset,
3571 last_block_offset);
26a4c0c6
TT
3572
3573 /* Wait all existing dio workers, newcomers will block on i_mutex */
3574 ext4_inode_block_unlocked_dio(inode);
26a4c0c6
TT
3575 inode_dio_wait(inode);
3576
3577 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3578 credits = ext4_writepage_trans_blocks(inode);
3579 else
3580 credits = ext4_blocks_for_truncate(inode);
3581 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3582 if (IS_ERR(handle)) {
3583 ret = PTR_ERR(handle);
3584 ext4_std_error(sb, ret);
3585 goto out_dio;
3586 }
3587
a87dd18c
LC
3588 ret = ext4_zero_partial_blocks(handle, inode, offset,
3589 length);
3590 if (ret)
3591 goto out_stop;
26a4c0c6
TT
3592
3593 first_block = (offset + sb->s_blocksize - 1) >>
3594 EXT4_BLOCK_SIZE_BITS(sb);
3595 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
3596
3597 /* If there are no blocks to remove, return now */
3598 if (first_block >= stop_block)
3599 goto out_stop;
3600
3601 down_write(&EXT4_I(inode)->i_data_sem);
3602 ext4_discard_preallocations(inode);
3603
3604 ret = ext4_es_remove_extent(inode, first_block,
3605 stop_block - first_block);
3606 if (ret) {
3607 up_write(&EXT4_I(inode)->i_data_sem);
3608 goto out_stop;
3609 }
3610
3611 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3612 ret = ext4_ext_remove_space(inode, first_block,
3613 stop_block - 1);
3614 else
3615 ret = ext4_free_hole_blocks(handle, inode, first_block,
3616 stop_block);
3617
3618 ext4_discard_preallocations(inode);
819c4920 3619 up_write(&EXT4_I(inode)->i_data_sem);
26a4c0c6
TT
3620 if (IS_SYNC(inode))
3621 ext4_handle_sync(handle);
e251f9bc
MP
3622
3623 /* Now release the pages again to reduce race window */
3624 if (last_block_offset > first_block_offset)
3625 truncate_pagecache_range(inode, first_block_offset,
3626 last_block_offset);
3627
26a4c0c6
TT
3628 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3629 ext4_mark_inode_dirty(handle, inode);
3630out_stop:
3631 ext4_journal_stop(handle);
3632out_dio:
3633 ext4_inode_resume_unlocked_dio(inode);
3634out_mutex:
3635 mutex_unlock(&inode->i_mutex);
3636 return ret;
a4bb6b64
AH
3637}
3638
a361293f
JK
3639int ext4_inode_attach_jinode(struct inode *inode)
3640{
3641 struct ext4_inode_info *ei = EXT4_I(inode);
3642 struct jbd2_inode *jinode;
3643
3644 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
3645 return 0;
3646
3647 jinode = jbd2_alloc_inode(GFP_KERNEL);
3648 spin_lock(&inode->i_lock);
3649 if (!ei->jinode) {
3650 if (!jinode) {
3651 spin_unlock(&inode->i_lock);
3652 return -ENOMEM;
3653 }
3654 ei->jinode = jinode;
3655 jbd2_journal_init_jbd_inode(ei->jinode, inode);
3656 jinode = NULL;
3657 }
3658 spin_unlock(&inode->i_lock);
3659 if (unlikely(jinode != NULL))
3660 jbd2_free_inode(jinode);
3661 return 0;
3662}
3663
ac27a0ec 3664/*
617ba13b 3665 * ext4_truncate()
ac27a0ec 3666 *
617ba13b
MC
3667 * We block out ext4_get_block() block instantiations across the entire
3668 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
ac27a0ec
DK
3669 * simultaneously on behalf of the same inode.
3670 *
42b2aa86 3671 * As we work through the truncate and commit bits of it to the journal there
ac27a0ec
DK
3672 * is one core, guiding principle: the file's tree must always be consistent on
3673 * disk. We must be able to restart the truncate after a crash.
3674 *
3675 * The file's tree may be transiently inconsistent in memory (although it
3676 * probably isn't), but whenever we close off and commit a journal transaction,
3677 * the contents of (the filesystem + the journal) must be consistent and
3678 * restartable. It's pretty simple, really: bottom up, right to left (although
3679 * left-to-right works OK too).
3680 *
3681 * Note that at recovery time, journal replay occurs *before* the restart of
3682 * truncate against the orphan inode list.
3683 *
3684 * The committed inode has the new, desired i_size (which is the same as
617ba13b 3685 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
ac27a0ec 3686 * that this inode's truncate did not complete and it will again call
617ba13b
MC
3687 * ext4_truncate() to have another go. So there will be instantiated blocks
3688 * to the right of the truncation point in a crashed ext4 filesystem. But
ac27a0ec 3689 * that's fine - as long as they are linked from the inode, the post-crash
617ba13b 3690 * ext4_truncate() run will find them and release them.
ac27a0ec 3691 */
617ba13b 3692void ext4_truncate(struct inode *inode)
ac27a0ec 3693{
819c4920
TT
3694 struct ext4_inode_info *ei = EXT4_I(inode);
3695 unsigned int credits;
3696 handle_t *handle;
3697 struct address_space *mapping = inode->i_mapping;
819c4920 3698
19b5ef61
TT
3699 /*
3700 * There is a possibility that we're either freeing the inode
3701 * or it completely new indode. In those cases we might not
3702 * have i_mutex locked because it's not necessary.
3703 */
3704 if (!(inode->i_state & (I_NEW|I_FREEING)))
3705 WARN_ON(!mutex_is_locked(&inode->i_mutex));
0562e0ba
JZ
3706 trace_ext4_truncate_enter(inode);
3707
91ef4caf 3708 if (!ext4_can_truncate(inode))
ac27a0ec
DK
3709 return;
3710
12e9b892 3711 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
c8d46e41 3712
5534fb5b 3713 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
19f5fb7a 3714 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
7d8f9f7d 3715
aef1c851
TM
3716 if (ext4_has_inline_data(inode)) {
3717 int has_inline = 1;
3718
3719 ext4_inline_data_truncate(inode, &has_inline);
3720 if (has_inline)
3721 return;
3722 }
3723
a361293f
JK
3724 /* If we zero-out tail of the page, we have to create jinode for jbd2 */
3725 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
3726 if (ext4_inode_attach_jinode(inode) < 0)
3727 return;
3728 }
3729
819c4920
TT
3730 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3731 credits = ext4_writepage_trans_blocks(inode);
3732 else
3733 credits = ext4_blocks_for_truncate(inode);
3734
3735 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3736 if (IS_ERR(handle)) {
3737 ext4_std_error(inode->i_sb, PTR_ERR(handle));
3738 return;
3739 }
3740
eb3544c6
LC
3741 if (inode->i_size & (inode->i_sb->s_blocksize - 1))
3742 ext4_block_truncate_page(handle, mapping, inode->i_size);
819c4920
TT
3743
3744 /*
3745 * We add the inode to the orphan list, so that if this
3746 * truncate spans multiple transactions, and we crash, we will
3747 * resume the truncate when the filesystem recovers. It also
3748 * marks the inode dirty, to catch the new size.
3749 *
3750 * Implication: the file must always be in a sane, consistent
3751 * truncatable state while each transaction commits.
3752 */
3753 if (ext4_orphan_add(handle, inode))
3754 goto out_stop;
3755
3756 down_write(&EXT4_I(inode)->i_data_sem);
3757
3758 ext4_discard_preallocations(inode);
3759
ff9893dc 3760 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
819c4920 3761 ext4_ext_truncate(handle, inode);
ff9893dc 3762 else
819c4920
TT
3763 ext4_ind_truncate(handle, inode);
3764
3765 up_write(&ei->i_data_sem);
3766
3767 if (IS_SYNC(inode))
3768 ext4_handle_sync(handle);
3769
3770out_stop:
3771 /*
3772 * If this was a simple ftruncate() and the file will remain alive,
3773 * then we need to clear up the orphan record which we created above.
3774 * However, if this was a real unlink then we were called by
3775 * ext4_delete_inode(), and we allow that function to clean up the
3776 * orphan info for us.
3777 */
3778 if (inode->i_nlink)
3779 ext4_orphan_del(handle, inode);
3780
3781 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3782 ext4_mark_inode_dirty(handle, inode);
3783 ext4_journal_stop(handle);
ac27a0ec 3784
0562e0ba 3785 trace_ext4_truncate_exit(inode);
ac27a0ec
DK
3786}
3787
ac27a0ec 3788/*
617ba13b 3789 * ext4_get_inode_loc returns with an extra refcount against the inode's
ac27a0ec
DK
3790 * underlying buffer_head on success. If 'in_mem' is true, we have all
3791 * data in memory that is needed to recreate the on-disk version of this
3792 * inode.
3793 */
617ba13b
MC
3794static int __ext4_get_inode_loc(struct inode *inode,
3795 struct ext4_iloc *iloc, int in_mem)
ac27a0ec 3796{
240799cd
TT
3797 struct ext4_group_desc *gdp;
3798 struct buffer_head *bh;
3799 struct super_block *sb = inode->i_sb;
3800 ext4_fsblk_t block;
3801 int inodes_per_block, inode_offset;
3802
3a06d778 3803 iloc->bh = NULL;
240799cd
TT
3804 if (!ext4_valid_inum(sb, inode->i_ino))
3805 return -EIO;
ac27a0ec 3806
240799cd
TT
3807 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3808 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3809 if (!gdp)
ac27a0ec
DK
3810 return -EIO;
3811
240799cd
TT
3812 /*
3813 * Figure out the offset within the block group inode table
3814 */
00d09882 3815 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
240799cd
TT
3816 inode_offset = ((inode->i_ino - 1) %
3817 EXT4_INODES_PER_GROUP(sb));
3818 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3819 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3820
3821 bh = sb_getblk(sb, block);
aebf0243 3822 if (unlikely(!bh))
860d21e2 3823 return -ENOMEM;
ac27a0ec
DK
3824 if (!buffer_uptodate(bh)) {
3825 lock_buffer(bh);
9c83a923
HK
3826
3827 /*
3828 * If the buffer has the write error flag, we have failed
3829 * to write out another inode in the same block. In this
3830 * case, we don't have to read the block because we may
3831 * read the old inode data successfully.
3832 */
3833 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3834 set_buffer_uptodate(bh);
3835
ac27a0ec
DK
3836 if (buffer_uptodate(bh)) {
3837 /* someone brought it uptodate while we waited */
3838 unlock_buffer(bh);
3839 goto has_buffer;
3840 }
3841
3842 /*
3843 * If we have all information of the inode in memory and this
3844 * is the only valid inode in the block, we need not read the
3845 * block.
3846 */
3847 if (in_mem) {
3848 struct buffer_head *bitmap_bh;
240799cd 3849 int i, start;
ac27a0ec 3850
240799cd 3851 start = inode_offset & ~(inodes_per_block - 1);
ac27a0ec 3852
240799cd
TT
3853 /* Is the inode bitmap in cache? */
3854 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
aebf0243 3855 if (unlikely(!bitmap_bh))
ac27a0ec
DK
3856 goto make_io;
3857
3858 /*
3859 * If the inode bitmap isn't in cache then the
3860 * optimisation may end up performing two reads instead
3861 * of one, so skip it.
3862 */
3863 if (!buffer_uptodate(bitmap_bh)) {
3864 brelse(bitmap_bh);
3865 goto make_io;
3866 }
240799cd 3867 for (i = start; i < start + inodes_per_block; i++) {
ac27a0ec
DK
3868 if (i == inode_offset)
3869 continue;
617ba13b 3870 if (ext4_test_bit(i, bitmap_bh->b_data))
ac27a0ec
DK
3871 break;
3872 }
3873 brelse(bitmap_bh);
240799cd 3874 if (i == start + inodes_per_block) {
ac27a0ec
DK
3875 /* all other inodes are free, so skip I/O */
3876 memset(bh->b_data, 0, bh->b_size);
3877 set_buffer_uptodate(bh);
3878 unlock_buffer(bh);
3879 goto has_buffer;
3880 }
3881 }
3882
3883make_io:
240799cd
TT
3884 /*
3885 * If we need to do any I/O, try to pre-readahead extra
3886 * blocks from the inode table.
3887 */
3888 if (EXT4_SB(sb)->s_inode_readahead_blks) {
3889 ext4_fsblk_t b, end, table;
3890 unsigned num;
0d606e2c 3891 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
240799cd
TT
3892
3893 table = ext4_inode_table(sb, gdp);
b713a5ec 3894 /* s_inode_readahead_blks is always a power of 2 */
0d606e2c 3895 b = block & ~((ext4_fsblk_t) ra_blks - 1);
240799cd
TT
3896 if (table > b)
3897 b = table;
0d606e2c 3898 end = b + ra_blks;
240799cd 3899 num = EXT4_INODES_PER_GROUP(sb);
feb0ab32 3900 if (ext4_has_group_desc_csum(sb))
560671a0 3901 num -= ext4_itable_unused_count(sb, gdp);
240799cd
TT
3902 table += num / inodes_per_block;
3903 if (end > table)
3904 end = table;
3905 while (b <= end)
3906 sb_breadahead(sb, b++);
3907 }
3908
ac27a0ec
DK
3909 /*
3910 * There are other valid inodes in the buffer, this inode
3911 * has in-inode xattrs, or we don't have this inode in memory.
3912 * Read the block from disk.
3913 */
0562e0ba 3914 trace_ext4_load_inode(inode);
ac27a0ec
DK
3915 get_bh(bh);
3916 bh->b_end_io = end_buffer_read_sync;
65299a3b 3917 submit_bh(READ | REQ_META | REQ_PRIO, bh);
ac27a0ec
DK
3918 wait_on_buffer(bh);
3919 if (!buffer_uptodate(bh)) {
c398eda0
TT
3920 EXT4_ERROR_INODE_BLOCK(inode, block,
3921 "unable to read itable block");
ac27a0ec
DK
3922 brelse(bh);
3923 return -EIO;
3924 }
3925 }
3926has_buffer:
3927 iloc->bh = bh;
3928 return 0;
3929}
3930
617ba13b 3931int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
3932{
3933 /* We have all inode data except xattrs in memory here. */
617ba13b 3934 return __ext4_get_inode_loc(inode, iloc,
19f5fb7a 3935 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
ac27a0ec
DK
3936}
3937
617ba13b 3938void ext4_set_inode_flags(struct inode *inode)
ac27a0ec 3939{
617ba13b 3940 unsigned int flags = EXT4_I(inode)->i_flags;
5f16f322 3941 unsigned int new_fl = 0;
ac27a0ec 3942
617ba13b 3943 if (flags & EXT4_SYNC_FL)
5f16f322 3944 new_fl |= S_SYNC;
617ba13b 3945 if (flags & EXT4_APPEND_FL)
5f16f322 3946 new_fl |= S_APPEND;
617ba13b 3947 if (flags & EXT4_IMMUTABLE_FL)
5f16f322 3948 new_fl |= S_IMMUTABLE;
617ba13b 3949 if (flags & EXT4_NOATIME_FL)
5f16f322 3950 new_fl |= S_NOATIME;
617ba13b 3951 if (flags & EXT4_DIRSYNC_FL)
5f16f322
TT
3952 new_fl |= S_DIRSYNC;
3953 inode_set_flags(inode, new_fl,
3954 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
ac27a0ec
DK
3955}
3956
ff9ddf7e
JK
3957/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3958void ext4_get_inode_flags(struct ext4_inode_info *ei)
3959{
84a8dce2
DM
3960 unsigned int vfs_fl;
3961 unsigned long old_fl, new_fl;
3962
3963 do {
3964 vfs_fl = ei->vfs_inode.i_flags;
3965 old_fl = ei->i_flags;
3966 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3967 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
3968 EXT4_DIRSYNC_FL);
3969 if (vfs_fl & S_SYNC)
3970 new_fl |= EXT4_SYNC_FL;
3971 if (vfs_fl & S_APPEND)
3972 new_fl |= EXT4_APPEND_FL;
3973 if (vfs_fl & S_IMMUTABLE)
3974 new_fl |= EXT4_IMMUTABLE_FL;
3975 if (vfs_fl & S_NOATIME)
3976 new_fl |= EXT4_NOATIME_FL;
3977 if (vfs_fl & S_DIRSYNC)
3978 new_fl |= EXT4_DIRSYNC_FL;
3979 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
ff9ddf7e 3980}
de9a55b8 3981
0fc1b451 3982static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
de9a55b8 3983 struct ext4_inode_info *ei)
0fc1b451
AK
3984{
3985 blkcnt_t i_blocks ;
8180a562
AK
3986 struct inode *inode = &(ei->vfs_inode);
3987 struct super_block *sb = inode->i_sb;
0fc1b451
AK
3988
3989 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3990 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3991 /* we are using combined 48 bit field */
3992 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3993 le32_to_cpu(raw_inode->i_blocks_lo);
07a03824 3994 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
8180a562
AK
3995 /* i_blocks represent file system block size */
3996 return i_blocks << (inode->i_blkbits - 9);
3997 } else {
3998 return i_blocks;
3999 }
0fc1b451
AK
4000 } else {
4001 return le32_to_cpu(raw_inode->i_blocks_lo);
4002 }
4003}
ff9ddf7e 4004
152a7b0a
TM
4005static inline void ext4_iget_extra_inode(struct inode *inode,
4006 struct ext4_inode *raw_inode,
4007 struct ext4_inode_info *ei)
4008{
4009 __le32 *magic = (void *)raw_inode +
4010 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
67cf5b09 4011 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
152a7b0a 4012 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
67cf5b09 4013 ext4_find_inline_data_nolock(inode);
f19d5870
TM
4014 } else
4015 EXT4_I(inode)->i_inline_off = 0;
152a7b0a
TM
4016}
4017
1d1fe1ee 4018struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
ac27a0ec 4019{
617ba13b
MC
4020 struct ext4_iloc iloc;
4021 struct ext4_inode *raw_inode;
1d1fe1ee 4022 struct ext4_inode_info *ei;
1d1fe1ee 4023 struct inode *inode;
b436b9be 4024 journal_t *journal = EXT4_SB(sb)->s_journal;
1d1fe1ee 4025 long ret;
ac27a0ec 4026 int block;
08cefc7a
EB
4027 uid_t i_uid;
4028 gid_t i_gid;
ac27a0ec 4029
1d1fe1ee
DH
4030 inode = iget_locked(sb, ino);
4031 if (!inode)
4032 return ERR_PTR(-ENOMEM);
4033 if (!(inode->i_state & I_NEW))
4034 return inode;
4035
4036 ei = EXT4_I(inode);
7dc57615 4037 iloc.bh = NULL;
ac27a0ec 4038
1d1fe1ee
DH
4039 ret = __ext4_get_inode_loc(inode, &iloc, 0);
4040 if (ret < 0)
ac27a0ec 4041 goto bad_inode;
617ba13b 4042 raw_inode = ext4_raw_inode(&iloc);
814525f4
DW
4043
4044 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4045 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4046 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4047 EXT4_INODE_SIZE(inode->i_sb)) {
4048 EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
4049 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
4050 EXT4_INODE_SIZE(inode->i_sb));
4051 ret = -EIO;
4052 goto bad_inode;
4053 }
4054 } else
4055 ei->i_extra_isize = 0;
4056
4057 /* Precompute checksum seed for inode metadata */
4058 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4059 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
4060 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4061 __u32 csum;
4062 __le32 inum = cpu_to_le32(inode->i_ino);
4063 __le32 gen = raw_inode->i_generation;
4064 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4065 sizeof(inum));
4066 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4067 sizeof(gen));
4068 }
4069
4070 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4071 EXT4_ERROR_INODE(inode, "checksum invalid");
4072 ret = -EIO;
4073 goto bad_inode;
4074 }
4075
ac27a0ec 4076 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
08cefc7a
EB
4077 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4078 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
af5bc92d 4079 if (!(test_opt(inode->i_sb, NO_UID32))) {
08cefc7a
EB
4080 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4081 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
ac27a0ec 4082 }
08cefc7a
EB
4083 i_uid_write(inode, i_uid);
4084 i_gid_write(inode, i_gid);
bfe86848 4085 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
ac27a0ec 4086
353eb83c 4087 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
67cf5b09 4088 ei->i_inline_off = 0;
ac27a0ec
DK
4089 ei->i_dir_start_lookup = 0;
4090 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4091 /* We now have enough fields to check if the inode was active or not.
4092 * This is needed because nfsd might try to access dead inodes
4093 * the test is that same one that e2fsck uses
4094 * NeilBrown 1999oct15
4095 */
4096 if (inode->i_nlink == 0) {
393d1d1d
DTB
4097 if ((inode->i_mode == 0 ||
4098 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4099 ino != EXT4_BOOT_LOADER_INO) {
ac27a0ec 4100 /* this inode is deleted */
1d1fe1ee 4101 ret = -ESTALE;
ac27a0ec
DK
4102 goto bad_inode;
4103 }
4104 /* The only unlinked inodes we let through here have
4105 * valid i_mode and are being read by the orphan
4106 * recovery code: that's fine, we're about to complete
393d1d1d
DTB
4107 * the process of deleting those.
4108 * OR it is the EXT4_BOOT_LOADER_INO which is
4109 * not initialized on a new filesystem. */
ac27a0ec 4110 }
ac27a0ec 4111 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
0fc1b451 4112 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
7973c0c1 4113 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
a9e81742 4114 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
a1ddeb7e
BP
4115 ei->i_file_acl |=
4116 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
a48380f7 4117 inode->i_size = ext4_isize(raw_inode);
ac27a0ec 4118 ei->i_disksize = inode->i_size;
a9e7f447
DM
4119#ifdef CONFIG_QUOTA
4120 ei->i_reserved_quota = 0;
4121#endif
ac27a0ec
DK
4122 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4123 ei->i_block_group = iloc.block_group;
a4912123 4124 ei->i_last_alloc_group = ~0;
ac27a0ec
DK
4125 /*
4126 * NOTE! The in-memory inode i_data array is in little-endian order
4127 * even on big-endian machines: we do NOT byteswap the block numbers!
4128 */
617ba13b 4129 for (block = 0; block < EXT4_N_BLOCKS; block++)
ac27a0ec
DK
4130 ei->i_data[block] = raw_inode->i_block[block];
4131 INIT_LIST_HEAD(&ei->i_orphan);
4132
b436b9be
JK
4133 /*
4134 * Set transaction id's of transactions that have to be committed
4135 * to finish f[data]sync. We set them to currently running transaction
4136 * as we cannot be sure that the inode or some of its metadata isn't
4137 * part of the transaction - the inode could have been reclaimed and
4138 * now it is reread from disk.
4139 */
4140 if (journal) {
4141 transaction_t *transaction;
4142 tid_t tid;
4143
a931da6a 4144 read_lock(&journal->j_state_lock);
b436b9be
JK
4145 if (journal->j_running_transaction)
4146 transaction = journal->j_running_transaction;
4147 else
4148 transaction = journal->j_committing_transaction;
4149 if (transaction)
4150 tid = transaction->t_tid;
4151 else
4152 tid = journal->j_commit_sequence;
a931da6a 4153 read_unlock(&journal->j_state_lock);
b436b9be
JK
4154 ei->i_sync_tid = tid;
4155 ei->i_datasync_tid = tid;
4156 }
4157
0040d987 4158 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
ac27a0ec
DK
4159 if (ei->i_extra_isize == 0) {
4160 /* The extra space is currently unused. Use it. */
617ba13b
MC
4161 ei->i_extra_isize = sizeof(struct ext4_inode) -
4162 EXT4_GOOD_OLD_INODE_SIZE;
ac27a0ec 4163 } else {
152a7b0a 4164 ext4_iget_extra_inode(inode, raw_inode, ei);
ac27a0ec 4165 }
814525f4 4166 }
ac27a0ec 4167
ef7f3835
KS
4168 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4169 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4170 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4171 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4172
ed3654eb 4173 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
c4f65706
TT
4174 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4175 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4176 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4177 inode->i_version |=
4178 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4179 }
25ec56b5
JNC
4180 }
4181
c4b5a614 4182 ret = 0;
485c26ec 4183 if (ei->i_file_acl &&
1032988c 4184 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
24676da4
TT
4185 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4186 ei->i_file_acl);
485c26ec
TT
4187 ret = -EIO;
4188 goto bad_inode;
f19d5870
TM
4189 } else if (!ext4_has_inline_data(inode)) {
4190 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4191 if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4192 (S_ISLNK(inode->i_mode) &&
4193 !ext4_inode_is_fast_symlink(inode))))
4194 /* Validate extent which is part of inode */
4195 ret = ext4_ext_check_inode(inode);
4196 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4197 (S_ISLNK(inode->i_mode) &&
4198 !ext4_inode_is_fast_symlink(inode))) {
4199 /* Validate block references which are part of inode */
4200 ret = ext4_ind_check_inode(inode);
4201 }
fe2c8191 4202 }
567f3e9a 4203 if (ret)
de9a55b8 4204 goto bad_inode;
7a262f7c 4205
ac27a0ec 4206 if (S_ISREG(inode->i_mode)) {
617ba13b
MC
4207 inode->i_op = &ext4_file_inode_operations;
4208 inode->i_fop = &ext4_file_operations;
4209 ext4_set_aops(inode);
ac27a0ec 4210 } else if (S_ISDIR(inode->i_mode)) {
617ba13b
MC
4211 inode->i_op = &ext4_dir_inode_operations;
4212 inode->i_fop = &ext4_dir_operations;
ac27a0ec 4213 } else if (S_ISLNK(inode->i_mode)) {
e83c1397 4214 if (ext4_inode_is_fast_symlink(inode)) {
617ba13b 4215 inode->i_op = &ext4_fast_symlink_inode_operations;
e83c1397
DG
4216 nd_terminate_link(ei->i_data, inode->i_size,
4217 sizeof(ei->i_data) - 1);
4218 } else {
617ba13b
MC
4219 inode->i_op = &ext4_symlink_inode_operations;
4220 ext4_set_aops(inode);
ac27a0ec 4221 }
563bdd61
TT
4222 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4223 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
617ba13b 4224 inode->i_op = &ext4_special_inode_operations;
ac27a0ec
DK
4225 if (raw_inode->i_block[0])
4226 init_special_inode(inode, inode->i_mode,
4227 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4228 else
4229 init_special_inode(inode, inode->i_mode,
4230 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
393d1d1d
DTB
4231 } else if (ino == EXT4_BOOT_LOADER_INO) {
4232 make_bad_inode(inode);
563bdd61 4233 } else {
563bdd61 4234 ret = -EIO;
24676da4 4235 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
563bdd61 4236 goto bad_inode;
ac27a0ec 4237 }
af5bc92d 4238 brelse(iloc.bh);
617ba13b 4239 ext4_set_inode_flags(inode);
1d1fe1ee
DH
4240 unlock_new_inode(inode);
4241 return inode;
ac27a0ec
DK
4242
4243bad_inode:
567f3e9a 4244 brelse(iloc.bh);
1d1fe1ee
DH
4245 iget_failed(inode);
4246 return ERR_PTR(ret);
ac27a0ec
DK
4247}
4248
0fc1b451
AK
4249static int ext4_inode_blocks_set(handle_t *handle,
4250 struct ext4_inode *raw_inode,
4251 struct ext4_inode_info *ei)
4252{
4253 struct inode *inode = &(ei->vfs_inode);
4254 u64 i_blocks = inode->i_blocks;
4255 struct super_block *sb = inode->i_sb;
0fc1b451
AK
4256
4257 if (i_blocks <= ~0U) {
4258 /*
4907cb7b 4259 * i_blocks can be represented in a 32 bit variable
0fc1b451
AK
4260 * as multiple of 512 bytes
4261 */
8180a562 4262 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 4263 raw_inode->i_blocks_high = 0;
84a8dce2 4264 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
f287a1a5
TT
4265 return 0;
4266 }
4267 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4268 return -EFBIG;
4269
4270 if (i_blocks <= 0xffffffffffffULL) {
0fc1b451
AK
4271 /*
4272 * i_blocks can be represented in a 48 bit variable
4273 * as multiple of 512 bytes
4274 */
8180a562 4275 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 4276 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
84a8dce2 4277 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
0fc1b451 4278 } else {
84a8dce2 4279 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
8180a562
AK
4280 /* i_block is stored in file system block size */
4281 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4282 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4283 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
0fc1b451 4284 }
f287a1a5 4285 return 0;
0fc1b451
AK
4286}
4287
ac27a0ec
DK
4288/*
4289 * Post the struct inode info into an on-disk inode location in the
4290 * buffer-cache. This gobbles the caller's reference to the
4291 * buffer_head in the inode location struct.
4292 *
4293 * The caller must have write access to iloc->bh.
4294 */
617ba13b 4295static int ext4_do_update_inode(handle_t *handle,
ac27a0ec 4296 struct inode *inode,
830156c7 4297 struct ext4_iloc *iloc)
ac27a0ec 4298{
617ba13b
MC
4299 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4300 struct ext4_inode_info *ei = EXT4_I(inode);
ac27a0ec
DK
4301 struct buffer_head *bh = iloc->bh;
4302 int err = 0, rc, block;
b71fc079 4303 int need_datasync = 0;
08cefc7a
EB
4304 uid_t i_uid;
4305 gid_t i_gid;
ac27a0ec
DK
4306
4307 /* For fields not not tracking in the in-memory inode,
4308 * initialise them to zero for new inodes. */
19f5fb7a 4309 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
617ba13b 4310 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
ac27a0ec 4311
ff9ddf7e 4312 ext4_get_inode_flags(ei);
ac27a0ec 4313 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
08cefc7a
EB
4314 i_uid = i_uid_read(inode);
4315 i_gid = i_gid_read(inode);
af5bc92d 4316 if (!(test_opt(inode->i_sb, NO_UID32))) {
08cefc7a
EB
4317 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4318 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
ac27a0ec
DK
4319/*
4320 * Fix up interoperability with old kernels. Otherwise, old inodes get
4321 * re-used with the upper 16 bits of the uid/gid intact
4322 */
af5bc92d 4323 if (!ei->i_dtime) {
ac27a0ec 4324 raw_inode->i_uid_high =
08cefc7a 4325 cpu_to_le16(high_16_bits(i_uid));
ac27a0ec 4326 raw_inode->i_gid_high =
08cefc7a 4327 cpu_to_le16(high_16_bits(i_gid));
ac27a0ec
DK
4328 } else {
4329 raw_inode->i_uid_high = 0;
4330 raw_inode->i_gid_high = 0;
4331 }
4332 } else {
08cefc7a
EB
4333 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4334 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
ac27a0ec
DK
4335 raw_inode->i_uid_high = 0;
4336 raw_inode->i_gid_high = 0;
4337 }
4338 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
ef7f3835
KS
4339
4340 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4341 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4342 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4343 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4344
0fc1b451
AK
4345 if (ext4_inode_blocks_set(handle, raw_inode, ei))
4346 goto out_brelse;
ac27a0ec 4347 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
353eb83c 4348 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
ed3654eb 4349 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
a1ddeb7e
BP
4350 raw_inode->i_file_acl_high =
4351 cpu_to_le16(ei->i_file_acl >> 32);
7973c0c1 4352 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
b71fc079
JK
4353 if (ei->i_disksize != ext4_isize(raw_inode)) {
4354 ext4_isize_set(raw_inode, ei->i_disksize);
4355 need_datasync = 1;
4356 }
a48380f7
AK
4357 if (ei->i_disksize > 0x7fffffffULL) {
4358 struct super_block *sb = inode->i_sb;
4359 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4360 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4361 EXT4_SB(sb)->s_es->s_rev_level ==
4362 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4363 /* If this is the first large file
4364 * created, add a flag to the superblock.
4365 */
4366 err = ext4_journal_get_write_access(handle,
4367 EXT4_SB(sb)->s_sbh);
4368 if (err)
4369 goto out_brelse;
4370 ext4_update_dynamic_rev(sb);
4371 EXT4_SET_RO_COMPAT_FEATURE(sb,
617ba13b 4372 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
0390131b 4373 ext4_handle_sync(handle);
b50924c2 4374 err = ext4_handle_dirty_super(handle, sb);
ac27a0ec
DK
4375 }
4376 }
4377 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4378 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4379 if (old_valid_dev(inode->i_rdev)) {
4380 raw_inode->i_block[0] =
4381 cpu_to_le32(old_encode_dev(inode->i_rdev));
4382 raw_inode->i_block[1] = 0;
4383 } else {
4384 raw_inode->i_block[0] = 0;
4385 raw_inode->i_block[1] =
4386 cpu_to_le32(new_encode_dev(inode->i_rdev));
4387 raw_inode->i_block[2] = 0;
4388 }
f19d5870 4389 } else if (!ext4_has_inline_data(inode)) {
de9a55b8
TT
4390 for (block = 0; block < EXT4_N_BLOCKS; block++)
4391 raw_inode->i_block[block] = ei->i_data[block];
f19d5870 4392 }
ac27a0ec 4393
ed3654eb 4394 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
c4f65706
TT
4395 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4396 if (ei->i_extra_isize) {
4397 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4398 raw_inode->i_version_hi =
4399 cpu_to_le32(inode->i_version >> 32);
4400 raw_inode->i_extra_isize =
4401 cpu_to_le16(ei->i_extra_isize);
4402 }
25ec56b5
JNC
4403 }
4404
814525f4
DW
4405 ext4_inode_csum_set(inode, raw_inode, ei);
4406
830156c7 4407 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
73b50c1c 4408 rc = ext4_handle_dirty_metadata(handle, NULL, bh);
830156c7
FM
4409 if (!err)
4410 err = rc;
19f5fb7a 4411 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
ac27a0ec 4412
b71fc079 4413 ext4_update_inode_fsync_trans(handle, inode, need_datasync);
ac27a0ec 4414out_brelse:
af5bc92d 4415 brelse(bh);
617ba13b 4416 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4417 return err;
4418}
4419
4420/*
617ba13b 4421 * ext4_write_inode()
ac27a0ec
DK
4422 *
4423 * We are called from a few places:
4424 *
4425 * - Within generic_file_write() for O_SYNC files.
4426 * Here, there will be no transaction running. We wait for any running
4907cb7b 4427 * transaction to commit.
ac27a0ec
DK
4428 *
4429 * - Within sys_sync(), kupdate and such.
4430 * We wait on commit, if tol to.
4431 *
4432 * - Within prune_icache() (PF_MEMALLOC == true)
4433 * Here we simply return. We can't afford to block kswapd on the
4434 * journal commit.
4435 *
4436 * In all cases it is actually safe for us to return without doing anything,
4437 * because the inode has been copied into a raw inode buffer in
617ba13b 4438 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
ac27a0ec
DK
4439 * knfsd.
4440 *
4441 * Note that we are absolutely dependent upon all inode dirtiers doing the
4442 * right thing: they *must* call mark_inode_dirty() after dirtying info in
4443 * which we are interested.
4444 *
4445 * It would be a bug for them to not do this. The code:
4446 *
4447 * mark_inode_dirty(inode)
4448 * stuff();
4449 * inode->i_size = expr;
4450 *
4451 * is in error because a kswapd-driven write_inode() could occur while
4452 * `stuff()' is running, and the new i_size will be lost. Plus the inode
4453 * will no longer be on the superblock's dirty inode list.
4454 */
a9185b41 4455int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
ac27a0ec 4456{
91ac6f43
FM
4457 int err;
4458
ac27a0ec
DK
4459 if (current->flags & PF_MEMALLOC)
4460 return 0;
4461
91ac6f43
FM
4462 if (EXT4_SB(inode->i_sb)->s_journal) {
4463 if (ext4_journal_current_handle()) {
4464 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4465 dump_stack();
4466 return -EIO;
4467 }
ac27a0ec 4468
10542c22
JK
4469 /*
4470 * No need to force transaction in WB_SYNC_NONE mode. Also
4471 * ext4_sync_fs() will force the commit after everything is
4472 * written.
4473 */
4474 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
91ac6f43
FM
4475 return 0;
4476
4477 err = ext4_force_commit(inode->i_sb);
4478 } else {
4479 struct ext4_iloc iloc;
ac27a0ec 4480
8b472d73 4481 err = __ext4_get_inode_loc(inode, &iloc, 0);
91ac6f43
FM
4482 if (err)
4483 return err;
10542c22
JK
4484 /*
4485 * sync(2) will flush the whole buffer cache. No need to do
4486 * it here separately for each inode.
4487 */
4488 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
830156c7
FM
4489 sync_dirty_buffer(iloc.bh);
4490 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
c398eda0
TT
4491 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4492 "IO error syncing inode");
830156c7
FM
4493 err = -EIO;
4494 }
fd2dd9fb 4495 brelse(iloc.bh);
91ac6f43
FM
4496 }
4497 return err;
ac27a0ec
DK
4498}
4499
53e87268
JK
4500/*
4501 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4502 * buffers that are attached to a page stradding i_size and are undergoing
4503 * commit. In that case we have to wait for commit to finish and try again.
4504 */
4505static void ext4_wait_for_tail_page_commit(struct inode *inode)
4506{
4507 struct page *page;
4508 unsigned offset;
4509 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4510 tid_t commit_tid = 0;
4511 int ret;
4512
4513 offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
4514 /*
4515 * All buffers in the last page remain valid? Then there's nothing to
4516 * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
4517 * blocksize case
4518 */
4519 if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
4520 return;
4521 while (1) {
4522 page = find_lock_page(inode->i_mapping,
4523 inode->i_size >> PAGE_CACHE_SHIFT);
4524 if (!page)
4525 return;
ca99fdd2
LC
4526 ret = __ext4_journalled_invalidatepage(page, offset,
4527 PAGE_CACHE_SIZE - offset);
53e87268
JK
4528 unlock_page(page);
4529 page_cache_release(page);
4530 if (ret != -EBUSY)
4531 return;
4532 commit_tid = 0;
4533 read_lock(&journal->j_state_lock);
4534 if (journal->j_committing_transaction)
4535 commit_tid = journal->j_committing_transaction->t_tid;
4536 read_unlock(&journal->j_state_lock);
4537 if (commit_tid)
4538 jbd2_log_wait_commit(journal, commit_tid);
4539 }
4540}
4541
ac27a0ec 4542/*
617ba13b 4543 * ext4_setattr()
ac27a0ec
DK
4544 *
4545 * Called from notify_change.
4546 *
4547 * We want to trap VFS attempts to truncate the file as soon as
4548 * possible. In particular, we want to make sure that when the VFS
4549 * shrinks i_size, we put the inode on the orphan list and modify
4550 * i_disksize immediately, so that during the subsequent flushing of
4551 * dirty pages and freeing of disk blocks, we can guarantee that any
4552 * commit will leave the blocks being flushed in an unused state on
4553 * disk. (On recovery, the inode will get truncated and the blocks will
4554 * be freed, so we have a strong guarantee that no future commit will
4555 * leave these blocks visible to the user.)
4556 *
678aaf48
JK
4557 * Another thing we have to assure is that if we are in ordered mode
4558 * and inode is still attached to the committing transaction, we must
4559 * we start writeout of all the dirty pages which are being truncated.
4560 * This way we are sure that all the data written in the previous
4561 * transaction are already on disk (truncate waits for pages under
4562 * writeback).
4563 *
4564 * Called with inode->i_mutex down.
ac27a0ec 4565 */
617ba13b 4566int ext4_setattr(struct dentry *dentry, struct iattr *attr)
ac27a0ec
DK
4567{
4568 struct inode *inode = dentry->d_inode;
4569 int error, rc = 0;
3d287de3 4570 int orphan = 0;
ac27a0ec
DK
4571 const unsigned int ia_valid = attr->ia_valid;
4572
4573 error = inode_change_ok(inode, attr);
4574 if (error)
4575 return error;
4576
12755627 4577 if (is_quota_modification(inode, attr))
871a2931 4578 dquot_initialize(inode);
08cefc7a
EB
4579 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4580 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
ac27a0ec
DK
4581 handle_t *handle;
4582
4583 /* (user+group)*(old+new) structure, inode write (sb,
4584 * inode block, ? - but truncate inode update has it) */
9924a92a
TT
4585 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4586 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
4587 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
ac27a0ec
DK
4588 if (IS_ERR(handle)) {
4589 error = PTR_ERR(handle);
4590 goto err_out;
4591 }
b43fa828 4592 error = dquot_transfer(inode, attr);
ac27a0ec 4593 if (error) {
617ba13b 4594 ext4_journal_stop(handle);
ac27a0ec
DK
4595 return error;
4596 }
4597 /* Update corresponding info in inode so that everything is in
4598 * one transaction */
4599 if (attr->ia_valid & ATTR_UID)
4600 inode->i_uid = attr->ia_uid;
4601 if (attr->ia_valid & ATTR_GID)
4602 inode->i_gid = attr->ia_gid;
617ba13b
MC
4603 error = ext4_mark_inode_dirty(handle, inode);
4604 ext4_journal_stop(handle);
ac27a0ec
DK
4605 }
4606
5208386c
JK
4607 if (attr->ia_valid & ATTR_SIZE && attr->ia_size != inode->i_size) {
4608 handle_t *handle;
562c72aa 4609
12e9b892 4610 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
e2b46574
ES
4611 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4612
0c095c7f
TT
4613 if (attr->ia_size > sbi->s_bitmap_maxbytes)
4614 return -EFBIG;
e2b46574 4615 }
dff6efc3
CH
4616
4617 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
4618 inode_inc_iversion(inode);
4619
5208386c
JK
4620 if (S_ISREG(inode->i_mode) &&
4621 (attr->ia_size < inode->i_size)) {
4622 if (ext4_should_order_data(inode)) {
4623 error = ext4_begin_ordered_truncate(inode,
678aaf48 4624 attr->ia_size);
5208386c 4625 if (error)
678aaf48 4626 goto err_out;
5208386c
JK
4627 }
4628 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
4629 if (IS_ERR(handle)) {
4630 error = PTR_ERR(handle);
4631 goto err_out;
4632 }
4633 if (ext4_handle_valid(handle)) {
4634 error = ext4_orphan_add(handle, inode);
4635 orphan = 1;
4636 }
90e775b7 4637 down_write(&EXT4_I(inode)->i_data_sem);
5208386c
JK
4638 EXT4_I(inode)->i_disksize = attr->ia_size;
4639 rc = ext4_mark_inode_dirty(handle, inode);
4640 if (!error)
4641 error = rc;
90e775b7
JK
4642 /*
4643 * We have to update i_size under i_data_sem together
4644 * with i_disksize to avoid races with writeback code
4645 * running ext4_wb_update_i_disksize().
4646 */
4647 if (!error)
4648 i_size_write(inode, attr->ia_size);
4649 up_write(&EXT4_I(inode)->i_data_sem);
5208386c
JK
4650 ext4_journal_stop(handle);
4651 if (error) {
4652 ext4_orphan_del(NULL, inode);
678aaf48
JK
4653 goto err_out;
4654 }
90e775b7
JK
4655 } else
4656 i_size_write(inode, attr->ia_size);
53e87268 4657
5208386c
JK
4658 /*
4659 * Blocks are going to be removed from the inode. Wait
4660 * for dio in flight. Temporarily disable
4661 * dioread_nolock to prevent livelock.
4662 */
4663 if (orphan) {
4664 if (!ext4_should_journal_data(inode)) {
4665 ext4_inode_block_unlocked_dio(inode);
4666 inode_dio_wait(inode);
4667 ext4_inode_resume_unlocked_dio(inode);
4668 } else
4669 ext4_wait_for_tail_page_commit(inode);
1c9114f9 4670 }
5208386c
JK
4671 /*
4672 * Truncate pagecache after we've waited for commit
4673 * in data=journal mode to make pages freeable.
4674 */
7caef267 4675 truncate_pagecache(inode, inode->i_size);
072bd7ea 4676 }
5208386c
JK
4677 /*
4678 * We want to call ext4_truncate() even if attr->ia_size ==
4679 * inode->i_size for cases like truncation of fallocated space
4680 */
4681 if (attr->ia_valid & ATTR_SIZE)
4682 ext4_truncate(inode);
ac27a0ec 4683
1025774c
CH
4684 if (!rc) {
4685 setattr_copy(inode, attr);
4686 mark_inode_dirty(inode);
4687 }
4688
4689 /*
4690 * If the call to ext4_truncate failed to get a transaction handle at
4691 * all, we need to clean up the in-core orphan list manually.
4692 */
3d287de3 4693 if (orphan && inode->i_nlink)
617ba13b 4694 ext4_orphan_del(NULL, inode);
ac27a0ec
DK
4695
4696 if (!rc && (ia_valid & ATTR_MODE))
64e178a7 4697 rc = posix_acl_chmod(inode, inode->i_mode);
ac27a0ec
DK
4698
4699err_out:
617ba13b 4700 ext4_std_error(inode->i_sb, error);
ac27a0ec
DK
4701 if (!error)
4702 error = rc;
4703 return error;
4704}
4705
3e3398a0
MC
4706int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4707 struct kstat *stat)
4708{
4709 struct inode *inode;
8af8eecc 4710 unsigned long long delalloc_blocks;
3e3398a0
MC
4711
4712 inode = dentry->d_inode;
4713 generic_fillattr(inode, stat);
4714
9206c561
AD
4715 /*
4716 * If there is inline data in the inode, the inode will normally not
4717 * have data blocks allocated (it may have an external xattr block).
4718 * Report at least one sector for such files, so tools like tar, rsync,
4719 * others doen't incorrectly think the file is completely sparse.
4720 */
4721 if (unlikely(ext4_has_inline_data(inode)))
4722 stat->blocks += (stat->size + 511) >> 9;
4723
3e3398a0
MC
4724 /*
4725 * We can't update i_blocks if the block allocation is delayed
4726 * otherwise in the case of system crash before the real block
4727 * allocation is done, we will have i_blocks inconsistent with
4728 * on-disk file blocks.
4729 * We always keep i_blocks updated together with real
4730 * allocation. But to not confuse with user, stat
4731 * will return the blocks that include the delayed allocation
4732 * blocks for this file.
4733 */
96607551 4734 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
9206c561
AD
4735 EXT4_I(inode)->i_reserved_data_blocks);
4736 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
3e3398a0
MC
4737 return 0;
4738}
ac27a0ec 4739
fffb2739
JK
4740static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
4741 int pextents)
a02908f1 4742{
12e9b892 4743 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
fffb2739
JK
4744 return ext4_ind_trans_blocks(inode, lblocks);
4745 return ext4_ext_index_trans_blocks(inode, pextents);
a02908f1 4746}
ac51d837 4747
ac27a0ec 4748/*
a02908f1
MC
4749 * Account for index blocks, block groups bitmaps and block group
4750 * descriptor blocks if modify datablocks and index blocks
4751 * worse case, the indexs blocks spread over different block groups
ac27a0ec 4752 *
a02908f1 4753 * If datablocks are discontiguous, they are possible to spread over
4907cb7b 4754 * different block groups too. If they are contiguous, with flexbg,
a02908f1 4755 * they could still across block group boundary.
ac27a0ec 4756 *
a02908f1
MC
4757 * Also account for superblock, inode, quota and xattr blocks
4758 */
fffb2739
JK
4759static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
4760 int pextents)
a02908f1 4761{
8df9675f
TT
4762 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4763 int gdpblocks;
a02908f1
MC
4764 int idxblocks;
4765 int ret = 0;
4766
4767 /*
fffb2739
JK
4768 * How many index blocks need to touch to map @lblocks logical blocks
4769 * to @pextents physical extents?
a02908f1 4770 */
fffb2739 4771 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
a02908f1
MC
4772
4773 ret = idxblocks;
4774
4775 /*
4776 * Now let's see how many group bitmaps and group descriptors need
4777 * to account
4778 */
fffb2739 4779 groups = idxblocks + pextents;
a02908f1 4780 gdpblocks = groups;
8df9675f
TT
4781 if (groups > ngroups)
4782 groups = ngroups;
a02908f1
MC
4783 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4784 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4785
4786 /* bitmaps and block group descriptor blocks */
4787 ret += groups + gdpblocks;
4788
4789 /* Blocks for super block, inode, quota and xattr blocks */
4790 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4791
4792 return ret;
4793}
4794
4795/*
25985edc 4796 * Calculate the total number of credits to reserve to fit
f3bd1f3f
MC
4797 * the modification of a single pages into a single transaction,
4798 * which may include multiple chunks of block allocations.
ac27a0ec 4799 *
525f4ed8 4800 * This could be called via ext4_write_begin()
ac27a0ec 4801 *
525f4ed8 4802 * We need to consider the worse case, when
a02908f1 4803 * one new block per extent.
ac27a0ec 4804 */
a86c6181 4805int ext4_writepage_trans_blocks(struct inode *inode)
ac27a0ec 4806{
617ba13b 4807 int bpp = ext4_journal_blocks_per_page(inode);
ac27a0ec
DK
4808 int ret;
4809
fffb2739 4810 ret = ext4_meta_trans_blocks(inode, bpp, bpp);
a86c6181 4811
a02908f1 4812 /* Account for data blocks for journalled mode */
617ba13b 4813 if (ext4_should_journal_data(inode))
a02908f1 4814 ret += bpp;
ac27a0ec
DK
4815 return ret;
4816}
f3bd1f3f
MC
4817
4818/*
4819 * Calculate the journal credits for a chunk of data modification.
4820 *
4821 * This is called from DIO, fallocate or whoever calling
79e83036 4822 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
f3bd1f3f
MC
4823 *
4824 * journal buffers for data blocks are not included here, as DIO
4825 * and fallocate do no need to journal data buffers.
4826 */
4827int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4828{
4829 return ext4_meta_trans_blocks(inode, nrblocks, 1);
4830}
4831
ac27a0ec 4832/*
617ba13b 4833 * The caller must have previously called ext4_reserve_inode_write().
ac27a0ec
DK
4834 * Give this, we know that the caller already has write access to iloc->bh.
4835 */
617ba13b 4836int ext4_mark_iloc_dirty(handle_t *handle,
de9a55b8 4837 struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
4838{
4839 int err = 0;
4840
c64db50e 4841 if (IS_I_VERSION(inode))
25ec56b5
JNC
4842 inode_inc_iversion(inode);
4843
ac27a0ec
DK
4844 /* the do_update_inode consumes one bh->b_count */
4845 get_bh(iloc->bh);
4846
dab291af 4847 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
830156c7 4848 err = ext4_do_update_inode(handle, inode, iloc);
ac27a0ec
DK
4849 put_bh(iloc->bh);
4850 return err;
4851}
4852
4853/*
4854 * On success, We end up with an outstanding reference count against
4855 * iloc->bh. This _must_ be cleaned up later.
4856 */
4857
4858int
617ba13b
MC
4859ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4860 struct ext4_iloc *iloc)
ac27a0ec 4861{
0390131b
FM
4862 int err;
4863
4864 err = ext4_get_inode_loc(inode, iloc);
4865 if (!err) {
4866 BUFFER_TRACE(iloc->bh, "get_write_access");
4867 err = ext4_journal_get_write_access(handle, iloc->bh);
4868 if (err) {
4869 brelse(iloc->bh);
4870 iloc->bh = NULL;
ac27a0ec
DK
4871 }
4872 }
617ba13b 4873 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4874 return err;
4875}
4876
6dd4ee7c
KS
4877/*
4878 * Expand an inode by new_extra_isize bytes.
4879 * Returns 0 on success or negative error number on failure.
4880 */
1d03ec98
AK
4881static int ext4_expand_extra_isize(struct inode *inode,
4882 unsigned int new_extra_isize,
4883 struct ext4_iloc iloc,
4884 handle_t *handle)
6dd4ee7c
KS
4885{
4886 struct ext4_inode *raw_inode;
4887 struct ext4_xattr_ibody_header *header;
6dd4ee7c
KS
4888
4889 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4890 return 0;
4891
4892 raw_inode = ext4_raw_inode(&iloc);
4893
4894 header = IHDR(inode, raw_inode);
6dd4ee7c
KS
4895
4896 /* No extended attributes present */
19f5fb7a
TT
4897 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4898 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
6dd4ee7c
KS
4899 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4900 new_extra_isize);
4901 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4902 return 0;
4903 }
4904
4905 /* try to expand with EAs present */
4906 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4907 raw_inode, handle);
4908}
4909
ac27a0ec
DK
4910/*
4911 * What we do here is to mark the in-core inode as clean with respect to inode
4912 * dirtiness (it may still be data-dirty).
4913 * This means that the in-core inode may be reaped by prune_icache
4914 * without having to perform any I/O. This is a very good thing,
4915 * because *any* task may call prune_icache - even ones which
4916 * have a transaction open against a different journal.
4917 *
4918 * Is this cheating? Not really. Sure, we haven't written the
4919 * inode out, but prune_icache isn't a user-visible syncing function.
4920 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4921 * we start and wait on commits.
ac27a0ec 4922 */
617ba13b 4923int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
ac27a0ec 4924{
617ba13b 4925 struct ext4_iloc iloc;
6dd4ee7c
KS
4926 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4927 static unsigned int mnt_count;
4928 int err, ret;
ac27a0ec
DK
4929
4930 might_sleep();
7ff9c073 4931 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
617ba13b 4932 err = ext4_reserve_inode_write(handle, inode, &iloc);
0390131b
FM
4933 if (ext4_handle_valid(handle) &&
4934 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
19f5fb7a 4935 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
6dd4ee7c
KS
4936 /*
4937 * We need extra buffer credits since we may write into EA block
4938 * with this same handle. If journal_extend fails, then it will
4939 * only result in a minor loss of functionality for that inode.
4940 * If this is felt to be critical, then e2fsck should be run to
4941 * force a large enough s_min_extra_isize.
4942 */
4943 if ((jbd2_journal_extend(handle,
4944 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4945 ret = ext4_expand_extra_isize(inode,
4946 sbi->s_want_extra_isize,
4947 iloc, handle);
4948 if (ret) {
19f5fb7a
TT
4949 ext4_set_inode_state(inode,
4950 EXT4_STATE_NO_EXPAND);
c1bddad9
AK
4951 if (mnt_count !=
4952 le16_to_cpu(sbi->s_es->s_mnt_count)) {
12062ddd 4953 ext4_warning(inode->i_sb,
6dd4ee7c
KS
4954 "Unable to expand inode %lu. Delete"
4955 " some EAs or run e2fsck.",
4956 inode->i_ino);
c1bddad9
AK
4957 mnt_count =
4958 le16_to_cpu(sbi->s_es->s_mnt_count);
6dd4ee7c
KS
4959 }
4960 }
4961 }
4962 }
ac27a0ec 4963 if (!err)
617ba13b 4964 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
ac27a0ec
DK
4965 return err;
4966}
4967
4968/*
617ba13b 4969 * ext4_dirty_inode() is called from __mark_inode_dirty()
ac27a0ec
DK
4970 *
4971 * We're really interested in the case where a file is being extended.
4972 * i_size has been changed by generic_commit_write() and we thus need
4973 * to include the updated inode in the current transaction.
4974 *
5dd4056d 4975 * Also, dquot_alloc_block() will always dirty the inode when blocks
ac27a0ec
DK
4976 * are allocated to the file.
4977 *
4978 * If the inode is marked synchronous, we don't honour that here - doing
4979 * so would cause a commit on atime updates, which we don't bother doing.
4980 * We handle synchronous inodes at the highest possible level.
4981 */
aa385729 4982void ext4_dirty_inode(struct inode *inode, int flags)
ac27a0ec 4983{
ac27a0ec
DK
4984 handle_t *handle;
4985
9924a92a 4986 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
ac27a0ec
DK
4987 if (IS_ERR(handle))
4988 goto out;
f3dc272f 4989
f3dc272f
CW
4990 ext4_mark_inode_dirty(handle, inode);
4991
617ba13b 4992 ext4_journal_stop(handle);
ac27a0ec
DK
4993out:
4994 return;
4995}
4996
4997#if 0
4998/*
4999 * Bind an inode's backing buffer_head into this transaction, to prevent
5000 * it from being flushed to disk early. Unlike
617ba13b 5001 * ext4_reserve_inode_write, this leaves behind no bh reference and
ac27a0ec
DK
5002 * returns no iloc structure, so the caller needs to repeat the iloc
5003 * lookup to mark the inode dirty later.
5004 */
617ba13b 5005static int ext4_pin_inode(handle_t *handle, struct inode *inode)
ac27a0ec 5006{
617ba13b 5007 struct ext4_iloc iloc;
ac27a0ec
DK
5008
5009 int err = 0;
5010 if (handle) {
617ba13b 5011 err = ext4_get_inode_loc(inode, &iloc);
ac27a0ec
DK
5012 if (!err) {
5013 BUFFER_TRACE(iloc.bh, "get_write_access");
dab291af 5014 err = jbd2_journal_get_write_access(handle, iloc.bh);
ac27a0ec 5015 if (!err)
0390131b 5016 err = ext4_handle_dirty_metadata(handle,
73b50c1c 5017 NULL,
0390131b 5018 iloc.bh);
ac27a0ec
DK
5019 brelse(iloc.bh);
5020 }
5021 }
617ba13b 5022 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5023 return err;
5024}
5025#endif
5026
617ba13b 5027int ext4_change_inode_journal_flag(struct inode *inode, int val)
ac27a0ec
DK
5028{
5029 journal_t *journal;
5030 handle_t *handle;
5031 int err;
5032
5033 /*
5034 * We have to be very careful here: changing a data block's
5035 * journaling status dynamically is dangerous. If we write a
5036 * data block to the journal, change the status and then delete
5037 * that block, we risk forgetting to revoke the old log record
5038 * from the journal and so a subsequent replay can corrupt data.
5039 * So, first we make sure that the journal is empty and that
5040 * nobody is changing anything.
5041 */
5042
617ba13b 5043 journal = EXT4_JOURNAL(inode);
0390131b
FM
5044 if (!journal)
5045 return 0;
d699594d 5046 if (is_journal_aborted(journal))
ac27a0ec 5047 return -EROFS;
2aff57b0
YY
5048 /* We have to allocate physical blocks for delalloc blocks
5049 * before flushing journal. otherwise delalloc blocks can not
5050 * be allocated any more. even more truncate on delalloc blocks
5051 * could trigger BUG by flushing delalloc blocks in journal.
5052 * There is no delalloc block in non-journal data mode.
5053 */
5054 if (val && test_opt(inode->i_sb, DELALLOC)) {
5055 err = ext4_alloc_da_blocks(inode);
5056 if (err < 0)
5057 return err;
5058 }
ac27a0ec 5059
17335dcc
DM
5060 /* Wait for all existing dio workers */
5061 ext4_inode_block_unlocked_dio(inode);
5062 inode_dio_wait(inode);
5063
dab291af 5064 jbd2_journal_lock_updates(journal);
ac27a0ec
DK
5065
5066 /*
5067 * OK, there are no updates running now, and all cached data is
5068 * synced to disk. We are now in a completely consistent state
5069 * which doesn't have anything in the journal, and we know that
5070 * no filesystem updates are running, so it is safe to modify
5071 * the inode's in-core data-journaling state flag now.
5072 */
5073
5074 if (val)
12e9b892 5075 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5872ddaa
YY
5076 else {
5077 jbd2_journal_flush(journal);
12e9b892 5078 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5872ddaa 5079 }
617ba13b 5080 ext4_set_aops(inode);
ac27a0ec 5081
dab291af 5082 jbd2_journal_unlock_updates(journal);
17335dcc 5083 ext4_inode_resume_unlocked_dio(inode);
ac27a0ec
DK
5084
5085 /* Finally we can mark the inode as dirty. */
5086
9924a92a 5087 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
ac27a0ec
DK
5088 if (IS_ERR(handle))
5089 return PTR_ERR(handle);
5090
617ba13b 5091 err = ext4_mark_inode_dirty(handle, inode);
0390131b 5092 ext4_handle_sync(handle);
617ba13b
MC
5093 ext4_journal_stop(handle);
5094 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5095
5096 return err;
5097}
2e9ee850
AK
5098
5099static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5100{
5101 return !buffer_mapped(bh);
5102}
5103
c2ec175c 5104int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2e9ee850 5105{
c2ec175c 5106 struct page *page = vmf->page;
2e9ee850
AK
5107 loff_t size;
5108 unsigned long len;
9ea7df53 5109 int ret;
2e9ee850 5110 struct file *file = vma->vm_file;
496ad9aa 5111 struct inode *inode = file_inode(file);
2e9ee850 5112 struct address_space *mapping = inode->i_mapping;
9ea7df53
JK
5113 handle_t *handle;
5114 get_block_t *get_block;
5115 int retries = 0;
2e9ee850 5116
8e8ad8a5 5117 sb_start_pagefault(inode->i_sb);
041bbb6d 5118 file_update_time(vma->vm_file);
9ea7df53
JK
5119 /* Delalloc case is easy... */
5120 if (test_opt(inode->i_sb, DELALLOC) &&
5121 !ext4_should_journal_data(inode) &&
5122 !ext4_nonda_switch(inode->i_sb)) {
5123 do {
5124 ret = __block_page_mkwrite(vma, vmf,
5125 ext4_da_get_block_prep);
5126 } while (ret == -ENOSPC &&
5127 ext4_should_retry_alloc(inode->i_sb, &retries));
5128 goto out_ret;
2e9ee850 5129 }
0e499890
DW
5130
5131 lock_page(page);
9ea7df53
JK
5132 size = i_size_read(inode);
5133 /* Page got truncated from under us? */
5134 if (page->mapping != mapping || page_offset(page) > size) {
5135 unlock_page(page);
5136 ret = VM_FAULT_NOPAGE;
5137 goto out;
0e499890 5138 }
2e9ee850
AK
5139
5140 if (page->index == size >> PAGE_CACHE_SHIFT)
5141 len = size & ~PAGE_CACHE_MASK;
5142 else
5143 len = PAGE_CACHE_SIZE;
a827eaff 5144 /*
9ea7df53
JK
5145 * Return if we have all the buffers mapped. This avoids the need to do
5146 * journal_start/journal_stop which can block and take a long time
a827eaff 5147 */
2e9ee850 5148 if (page_has_buffers(page)) {
f19d5870
TM
5149 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5150 0, len, NULL,
5151 ext4_bh_unmapped)) {
9ea7df53 5152 /* Wait so that we don't change page under IO */
1d1d1a76 5153 wait_for_stable_page(page);
9ea7df53
JK
5154 ret = VM_FAULT_LOCKED;
5155 goto out;
a827eaff 5156 }
2e9ee850 5157 }
a827eaff 5158 unlock_page(page);
9ea7df53
JK
5159 /* OK, we need to fill the hole... */
5160 if (ext4_should_dioread_nolock(inode))
5161 get_block = ext4_get_block_write;
5162 else
5163 get_block = ext4_get_block;
5164retry_alloc:
9924a92a
TT
5165 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5166 ext4_writepage_trans_blocks(inode));
9ea7df53 5167 if (IS_ERR(handle)) {
c2ec175c 5168 ret = VM_FAULT_SIGBUS;
9ea7df53
JK
5169 goto out;
5170 }
5171 ret = __block_page_mkwrite(vma, vmf, get_block);
5172 if (!ret && ext4_should_journal_data(inode)) {
f19d5870 5173 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
9ea7df53
JK
5174 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
5175 unlock_page(page);
5176 ret = VM_FAULT_SIGBUS;
fcbb5515 5177 ext4_journal_stop(handle);
9ea7df53
JK
5178 goto out;
5179 }
5180 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5181 }
5182 ext4_journal_stop(handle);
5183 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5184 goto retry_alloc;
5185out_ret:
5186 ret = block_page_mkwrite_return(ret);
5187out:
8e8ad8a5 5188 sb_end_pagefault(inode->i_sb);
2e9ee850
AK
5189 return ret;
5190}