ext4: Fix circular locking dependency with migrate and rm.
[linux-2.6-block.git] / fs / ext4 / inode.c
CommitLineData
ac27a0ec 1/*
617ba13b 2 * linux/fs/ext4/inode.c
ac27a0ec
DK
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * Goal-directed block allocation by Stephen Tweedie
16 * (sct@redhat.com), 1993, 1998
17 * Big-endian to little-endian byte-swapping/bitmaps by
18 * David S. Miller (davem@caip.rutgers.edu), 1995
19 * 64-bit file support on 64-bit platforms by Jakub Jelinek
20 * (jj@sunsite.ms.mff.cuni.cz)
21 *
617ba13b 22 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
ac27a0ec
DK
23 */
24
25#include <linux/module.h>
26#include <linux/fs.h>
27#include <linux/time.h>
dab291af
MC
28#include <linux/ext4_jbd2.h>
29#include <linux/jbd2.h>
ac27a0ec
DK
30#include <linux/highuid.h>
31#include <linux/pagemap.h>
32#include <linux/quotaops.h>
33#include <linux/string.h>
34#include <linux/buffer_head.h>
35#include <linux/writeback.h>
36#include <linux/mpage.h>
37#include <linux/uio.h>
38#include <linux/bio.h>
39#include "xattr.h"
40#include "acl.h"
41
ac27a0ec
DK
42/*
43 * Test whether an inode is a fast symlink.
44 */
617ba13b 45static int ext4_inode_is_fast_symlink(struct inode *inode)
ac27a0ec 46{
617ba13b 47 int ea_blocks = EXT4_I(inode)->i_file_acl ?
ac27a0ec
DK
48 (inode->i_sb->s_blocksize >> 9) : 0;
49
50 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
51}
52
53/*
617ba13b 54 * The ext4 forget function must perform a revoke if we are freeing data
ac27a0ec
DK
55 * which has been journaled. Metadata (eg. indirect blocks) must be
56 * revoked in all cases.
57 *
58 * "bh" may be NULL: a metadata block may have been freed from memory
59 * but there may still be a record of it in the journal, and that record
60 * still needs to be revoked.
61 */
617ba13b
MC
62int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode,
63 struct buffer_head *bh, ext4_fsblk_t blocknr)
ac27a0ec
DK
64{
65 int err;
66
67 might_sleep();
68
69 BUFFER_TRACE(bh, "enter");
70
71 jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
72 "data mode %lx\n",
73 bh, is_metadata, inode->i_mode,
74 test_opt(inode->i_sb, DATA_FLAGS));
75
76 /* Never use the revoke function if we are doing full data
77 * journaling: there is no need to, and a V1 superblock won't
78 * support it. Otherwise, only skip the revoke on un-journaled
79 * data blocks. */
80
617ba13b
MC
81 if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA ||
82 (!is_metadata && !ext4_should_journal_data(inode))) {
ac27a0ec 83 if (bh) {
dab291af 84 BUFFER_TRACE(bh, "call jbd2_journal_forget");
617ba13b 85 return ext4_journal_forget(handle, bh);
ac27a0ec
DK
86 }
87 return 0;
88 }
89
90 /*
91 * data!=journal && (is_metadata || should_journal_data(inode))
92 */
617ba13b
MC
93 BUFFER_TRACE(bh, "call ext4_journal_revoke");
94 err = ext4_journal_revoke(handle, blocknr, bh);
ac27a0ec 95 if (err)
617ba13b 96 ext4_abort(inode->i_sb, __FUNCTION__,
ac27a0ec
DK
97 "error %d when attempting revoke", err);
98 BUFFER_TRACE(bh, "exit");
99 return err;
100}
101
102/*
103 * Work out how many blocks we need to proceed with the next chunk of a
104 * truncate transaction.
105 */
106static unsigned long blocks_for_truncate(struct inode *inode)
107{
725d26d3 108 ext4_lblk_t needed;
ac27a0ec
DK
109
110 needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
111
112 /* Give ourselves just enough room to cope with inodes in which
113 * i_blocks is corrupt: we've seen disk corruptions in the past
114 * which resulted in random data in an inode which looked enough
617ba13b 115 * like a regular file for ext4 to try to delete it. Things
ac27a0ec
DK
116 * will go a bit crazy if that happens, but at least we should
117 * try not to panic the whole kernel. */
118 if (needed < 2)
119 needed = 2;
120
121 /* But we need to bound the transaction so we don't overflow the
122 * journal. */
617ba13b
MC
123 if (needed > EXT4_MAX_TRANS_DATA)
124 needed = EXT4_MAX_TRANS_DATA;
ac27a0ec 125
617ba13b 126 return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
ac27a0ec
DK
127}
128
129/*
130 * Truncate transactions can be complex and absolutely huge. So we need to
131 * be able to restart the transaction at a conventient checkpoint to make
132 * sure we don't overflow the journal.
133 *
134 * start_transaction gets us a new handle for a truncate transaction,
135 * and extend_transaction tries to extend the existing one a bit. If
136 * extend fails, we need to propagate the failure up and restart the
137 * transaction in the top-level truncate loop. --sct
138 */
139static handle_t *start_transaction(struct inode *inode)
140{
141 handle_t *result;
142
617ba13b 143 result = ext4_journal_start(inode, blocks_for_truncate(inode));
ac27a0ec
DK
144 if (!IS_ERR(result))
145 return result;
146
617ba13b 147 ext4_std_error(inode->i_sb, PTR_ERR(result));
ac27a0ec
DK
148 return result;
149}
150
151/*
152 * Try to extend this transaction for the purposes of truncation.
153 *
154 * Returns 0 if we managed to create more room. If we can't create more
155 * room, and the transaction must be restarted we return 1.
156 */
157static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
158{
617ba13b 159 if (handle->h_buffer_credits > EXT4_RESERVE_TRANS_BLOCKS)
ac27a0ec 160 return 0;
617ba13b 161 if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
ac27a0ec
DK
162 return 0;
163 return 1;
164}
165
166/*
167 * Restart the transaction associated with *handle. This does a commit,
168 * so before we call here everything must be consistently dirtied against
169 * this transaction.
170 */
617ba13b 171static int ext4_journal_test_restart(handle_t *handle, struct inode *inode)
ac27a0ec
DK
172{
173 jbd_debug(2, "restarting handle %p\n", handle);
617ba13b 174 return ext4_journal_restart(handle, blocks_for_truncate(inode));
ac27a0ec
DK
175}
176
177/*
178 * Called at the last iput() if i_nlink is zero.
179 */
617ba13b 180void ext4_delete_inode (struct inode * inode)
ac27a0ec
DK
181{
182 handle_t *handle;
183
184 truncate_inode_pages(&inode->i_data, 0);
185
186 if (is_bad_inode(inode))
187 goto no_delete;
188
189 handle = start_transaction(inode);
190 if (IS_ERR(handle)) {
191 /*
192 * If we're going to skip the normal cleanup, we still need to
193 * make sure that the in-core orphan linked list is properly
194 * cleaned up.
195 */
617ba13b 196 ext4_orphan_del(NULL, inode);
ac27a0ec
DK
197 goto no_delete;
198 }
199
200 if (IS_SYNC(inode))
201 handle->h_sync = 1;
202 inode->i_size = 0;
203 if (inode->i_blocks)
617ba13b 204 ext4_truncate(inode);
ac27a0ec 205 /*
617ba13b 206 * Kill off the orphan record which ext4_truncate created.
ac27a0ec 207 * AKPM: I think this can be inside the above `if'.
617ba13b 208 * Note that ext4_orphan_del() has to be able to cope with the
ac27a0ec 209 * deletion of a non-existent orphan - this is because we don't
617ba13b 210 * know if ext4_truncate() actually created an orphan record.
ac27a0ec
DK
211 * (Well, we could do this if we need to, but heck - it works)
212 */
617ba13b
MC
213 ext4_orphan_del(handle, inode);
214 EXT4_I(inode)->i_dtime = get_seconds();
ac27a0ec
DK
215
216 /*
217 * One subtle ordering requirement: if anything has gone wrong
218 * (transaction abort, IO errors, whatever), then we can still
219 * do these next steps (the fs will already have been marked as
220 * having errors), but we can't free the inode if the mark_dirty
221 * fails.
222 */
617ba13b 223 if (ext4_mark_inode_dirty(handle, inode))
ac27a0ec
DK
224 /* If that failed, just do the required in-core inode clear. */
225 clear_inode(inode);
226 else
617ba13b
MC
227 ext4_free_inode(handle, inode);
228 ext4_journal_stop(handle);
ac27a0ec
DK
229 return;
230no_delete:
231 clear_inode(inode); /* We must guarantee clearing of inode... */
232}
233
234typedef struct {
235 __le32 *p;
236 __le32 key;
237 struct buffer_head *bh;
238} Indirect;
239
240static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
241{
242 p->key = *(p->p = v);
243 p->bh = bh;
244}
245
ac27a0ec 246/**
617ba13b 247 * ext4_block_to_path - parse the block number into array of offsets
ac27a0ec
DK
248 * @inode: inode in question (we are only interested in its superblock)
249 * @i_block: block number to be parsed
250 * @offsets: array to store the offsets in
8c55e204
DK
251 * @boundary: set this non-zero if the referred-to block is likely to be
252 * followed (on disk) by an indirect block.
ac27a0ec 253 *
617ba13b 254 * To store the locations of file's data ext4 uses a data structure common
ac27a0ec
DK
255 * for UNIX filesystems - tree of pointers anchored in the inode, with
256 * data blocks at leaves and indirect blocks in intermediate nodes.
257 * This function translates the block number into path in that tree -
258 * return value is the path length and @offsets[n] is the offset of
259 * pointer to (n+1)th node in the nth one. If @block is out of range
260 * (negative or too large) warning is printed and zero returned.
261 *
262 * Note: function doesn't find node addresses, so no IO is needed. All
263 * we need to know is the capacity of indirect blocks (taken from the
264 * inode->i_sb).
265 */
266
267/*
268 * Portability note: the last comparison (check that we fit into triple
269 * indirect block) is spelled differently, because otherwise on an
270 * architecture with 32-bit longs and 8Kb pages we might get into trouble
271 * if our filesystem had 8Kb blocks. We might use long long, but that would
272 * kill us on x86. Oh, well, at least the sign propagation does not matter -
273 * i_block would have to be negative in the very beginning, so we would not
274 * get there at all.
275 */
276
617ba13b 277static int ext4_block_to_path(struct inode *inode,
725d26d3
AK
278 ext4_lblk_t i_block,
279 ext4_lblk_t offsets[4], int *boundary)
ac27a0ec 280{
617ba13b
MC
281 int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
282 int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
283 const long direct_blocks = EXT4_NDIR_BLOCKS,
ac27a0ec
DK
284 indirect_blocks = ptrs,
285 double_blocks = (1 << (ptrs_bits * 2));
286 int n = 0;
287 int final = 0;
288
289 if (i_block < 0) {
617ba13b 290 ext4_warning (inode->i_sb, "ext4_block_to_path", "block < 0");
ac27a0ec
DK
291 } else if (i_block < direct_blocks) {
292 offsets[n++] = i_block;
293 final = direct_blocks;
294 } else if ( (i_block -= direct_blocks) < indirect_blocks) {
617ba13b 295 offsets[n++] = EXT4_IND_BLOCK;
ac27a0ec
DK
296 offsets[n++] = i_block;
297 final = ptrs;
298 } else if ((i_block -= indirect_blocks) < double_blocks) {
617ba13b 299 offsets[n++] = EXT4_DIND_BLOCK;
ac27a0ec
DK
300 offsets[n++] = i_block >> ptrs_bits;
301 offsets[n++] = i_block & (ptrs - 1);
302 final = ptrs;
303 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
617ba13b 304 offsets[n++] = EXT4_TIND_BLOCK;
ac27a0ec
DK
305 offsets[n++] = i_block >> (ptrs_bits * 2);
306 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
307 offsets[n++] = i_block & (ptrs - 1);
308 final = ptrs;
309 } else {
e2b46574 310 ext4_warning(inode->i_sb, "ext4_block_to_path",
0e855ac8 311 "block %lu > max",
e2b46574
ES
312 i_block + direct_blocks +
313 indirect_blocks + double_blocks);
ac27a0ec
DK
314 }
315 if (boundary)
316 *boundary = final - 1 - (i_block & (ptrs - 1));
317 return n;
318}
319
320/**
617ba13b 321 * ext4_get_branch - read the chain of indirect blocks leading to data
ac27a0ec
DK
322 * @inode: inode in question
323 * @depth: depth of the chain (1 - direct pointer, etc.)
324 * @offsets: offsets of pointers in inode/indirect blocks
325 * @chain: place to store the result
326 * @err: here we store the error value
327 *
328 * Function fills the array of triples <key, p, bh> and returns %NULL
329 * if everything went OK or the pointer to the last filled triple
330 * (incomplete one) otherwise. Upon the return chain[i].key contains
331 * the number of (i+1)-th block in the chain (as it is stored in memory,
332 * i.e. little-endian 32-bit), chain[i].p contains the address of that
333 * number (it points into struct inode for i==0 and into the bh->b_data
334 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
335 * block for i>0 and NULL for i==0. In other words, it holds the block
336 * numbers of the chain, addresses they were taken from (and where we can
337 * verify that chain did not change) and buffer_heads hosting these
338 * numbers.
339 *
340 * Function stops when it stumbles upon zero pointer (absent block)
341 * (pointer to last triple returned, *@err == 0)
342 * or when it gets an IO error reading an indirect block
343 * (ditto, *@err == -EIO)
ac27a0ec
DK
344 * or when it reads all @depth-1 indirect blocks successfully and finds
345 * the whole chain, all way to the data (returns %NULL, *err == 0).
c278bfec
AK
346 *
347 * Need to be called with
0e855ac8 348 * down_read(&EXT4_I(inode)->i_data_sem)
ac27a0ec 349 */
725d26d3
AK
350static Indirect *ext4_get_branch(struct inode *inode, int depth,
351 ext4_lblk_t *offsets,
ac27a0ec
DK
352 Indirect chain[4], int *err)
353{
354 struct super_block *sb = inode->i_sb;
355 Indirect *p = chain;
356 struct buffer_head *bh;
357
358 *err = 0;
359 /* i_data is not going away, no lock needed */
617ba13b 360 add_chain (chain, NULL, EXT4_I(inode)->i_data + *offsets);
ac27a0ec
DK
361 if (!p->key)
362 goto no_block;
363 while (--depth) {
364 bh = sb_bread(sb, le32_to_cpu(p->key));
365 if (!bh)
366 goto failure;
ac27a0ec
DK
367 add_chain(++p, bh, (__le32*)bh->b_data + *++offsets);
368 /* Reader: end */
369 if (!p->key)
370 goto no_block;
371 }
372 return NULL;
373
ac27a0ec
DK
374failure:
375 *err = -EIO;
376no_block:
377 return p;
378}
379
380/**
617ba13b 381 * ext4_find_near - find a place for allocation with sufficient locality
ac27a0ec
DK
382 * @inode: owner
383 * @ind: descriptor of indirect block.
384 *
385 * This function returns the prefered place for block allocation.
386 * It is used when heuristic for sequential allocation fails.
387 * Rules are:
388 * + if there is a block to the left of our position - allocate near it.
389 * + if pointer will live in indirect block - allocate near that block.
390 * + if pointer will live in inode - allocate in the same
391 * cylinder group.
392 *
393 * In the latter case we colour the starting block by the callers PID to
394 * prevent it from clashing with concurrent allocations for a different inode
395 * in the same block group. The PID is used here so that functionally related
396 * files will be close-by on-disk.
397 *
398 * Caller must make sure that @ind is valid and will stay that way.
399 */
617ba13b 400static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
ac27a0ec 401{
617ba13b 402 struct ext4_inode_info *ei = EXT4_I(inode);
ac27a0ec
DK
403 __le32 *start = ind->bh ? (__le32*) ind->bh->b_data : ei->i_data;
404 __le32 *p;
617ba13b
MC
405 ext4_fsblk_t bg_start;
406 ext4_grpblk_t colour;
ac27a0ec
DK
407
408 /* Try to find previous block */
409 for (p = ind->p - 1; p >= start; p--) {
410 if (*p)
411 return le32_to_cpu(*p);
412 }
413
414 /* No such thing, so let's try location of indirect block */
415 if (ind->bh)
416 return ind->bh->b_blocknr;
417
418 /*
419 * It is going to be referred to from the inode itself? OK, just put it
420 * into the same cylinder group then.
421 */
617ba13b 422 bg_start = ext4_group_first_block_no(inode->i_sb, ei->i_block_group);
ac27a0ec 423 colour = (current->pid % 16) *
617ba13b 424 (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
ac27a0ec
DK
425 return bg_start + colour;
426}
427
428/**
617ba13b 429 * ext4_find_goal - find a prefered place for allocation.
ac27a0ec
DK
430 * @inode: owner
431 * @block: block we want
ac27a0ec 432 * @partial: pointer to the last triple within a chain
ac27a0ec
DK
433 *
434 * Normally this function find the prefered place for block allocation,
fb01bfda 435 * returns it.
ac27a0ec 436 */
725d26d3 437static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
fb01bfda 438 Indirect *partial)
ac27a0ec 439{
617ba13b 440 struct ext4_block_alloc_info *block_i;
ac27a0ec 441
617ba13b 442 block_i = EXT4_I(inode)->i_block_alloc_info;
ac27a0ec
DK
443
444 /*
445 * try the heuristic for sequential allocation,
446 * failing that at least try to get decent locality.
447 */
448 if (block_i && (block == block_i->last_alloc_logical_block + 1)
449 && (block_i->last_alloc_physical_block != 0)) {
450 return block_i->last_alloc_physical_block + 1;
451 }
452
617ba13b 453 return ext4_find_near(inode, partial);
ac27a0ec
DK
454}
455
456/**
617ba13b 457 * ext4_blks_to_allocate: Look up the block map and count the number
ac27a0ec
DK
458 * of direct blocks need to be allocated for the given branch.
459 *
460 * @branch: chain of indirect blocks
461 * @k: number of blocks need for indirect blocks
462 * @blks: number of data blocks to be mapped.
463 * @blocks_to_boundary: the offset in the indirect block
464 *
465 * return the total number of blocks to be allocate, including the
466 * direct and indirect blocks.
467 */
617ba13b 468static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned long blks,
ac27a0ec
DK
469 int blocks_to_boundary)
470{
471 unsigned long count = 0;
472
473 /*
474 * Simple case, [t,d]Indirect block(s) has not allocated yet
475 * then it's clear blocks on that path have not allocated
476 */
477 if (k > 0) {
478 /* right now we don't handle cross boundary allocation */
479 if (blks < blocks_to_boundary + 1)
480 count += blks;
481 else
482 count += blocks_to_boundary + 1;
483 return count;
484 }
485
486 count++;
487 while (count < blks && count <= blocks_to_boundary &&
488 le32_to_cpu(*(branch[0].p + count)) == 0) {
489 count++;
490 }
491 return count;
492}
493
494/**
617ba13b 495 * ext4_alloc_blocks: multiple allocate blocks needed for a branch
ac27a0ec
DK
496 * @indirect_blks: the number of blocks need to allocate for indirect
497 * blocks
498 *
499 * @new_blocks: on return it will store the new block numbers for
500 * the indirect blocks(if needed) and the first direct block,
501 * @blks: on return it will store the total number of allocated
502 * direct blocks
503 */
617ba13b
MC
504static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
505 ext4_fsblk_t goal, int indirect_blks, int blks,
506 ext4_fsblk_t new_blocks[4], int *err)
ac27a0ec
DK
507{
508 int target, i;
509 unsigned long count = 0;
510 int index = 0;
617ba13b 511 ext4_fsblk_t current_block = 0;
ac27a0ec
DK
512 int ret = 0;
513
514 /*
515 * Here we try to allocate the requested multiple blocks at once,
516 * on a best-effort basis.
517 * To build a branch, we should allocate blocks for
518 * the indirect blocks(if not allocated yet), and at least
519 * the first direct block of this branch. That's the
520 * minimum number of blocks need to allocate(required)
521 */
522 target = blks + indirect_blks;
523
524 while (1) {
525 count = target;
526 /* allocating blocks for indirect blocks and direct blocks */
617ba13b 527 current_block = ext4_new_blocks(handle,inode,goal,&count,err);
ac27a0ec
DK
528 if (*err)
529 goto failed_out;
530
531 target -= count;
532 /* allocate blocks for indirect blocks */
533 while (index < indirect_blks && count) {
534 new_blocks[index++] = current_block++;
535 count--;
536 }
537
538 if (count > 0)
539 break;
540 }
541
542 /* save the new block number for the first direct block */
543 new_blocks[index] = current_block;
544
545 /* total number of blocks allocated for direct blocks */
546 ret = count;
547 *err = 0;
548 return ret;
549failed_out:
550 for (i = 0; i <index; i++)
c9de560d 551 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
ac27a0ec
DK
552 return ret;
553}
554
555/**
617ba13b 556 * ext4_alloc_branch - allocate and set up a chain of blocks.
ac27a0ec
DK
557 * @inode: owner
558 * @indirect_blks: number of allocated indirect blocks
559 * @blks: number of allocated direct blocks
560 * @offsets: offsets (in the blocks) to store the pointers to next.
561 * @branch: place to store the chain in.
562 *
563 * This function allocates blocks, zeroes out all but the last one,
564 * links them into chain and (if we are synchronous) writes them to disk.
565 * In other words, it prepares a branch that can be spliced onto the
566 * inode. It stores the information about that chain in the branch[], in
617ba13b 567 * the same format as ext4_get_branch() would do. We are calling it after
ac27a0ec
DK
568 * we had read the existing part of chain and partial points to the last
569 * triple of that (one with zero ->key). Upon the exit we have the same
617ba13b 570 * picture as after the successful ext4_get_block(), except that in one
ac27a0ec
DK
571 * place chain is disconnected - *branch->p is still zero (we did not
572 * set the last link), but branch->key contains the number that should
573 * be placed into *branch->p to fill that gap.
574 *
575 * If allocation fails we free all blocks we've allocated (and forget
576 * their buffer_heads) and return the error value the from failed
617ba13b 577 * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
ac27a0ec
DK
578 * as described above and return 0.
579 */
617ba13b
MC
580static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
581 int indirect_blks, int *blks, ext4_fsblk_t goal,
725d26d3 582 ext4_lblk_t *offsets, Indirect *branch)
ac27a0ec
DK
583{
584 int blocksize = inode->i_sb->s_blocksize;
585 int i, n = 0;
586 int err = 0;
587 struct buffer_head *bh;
588 int num;
617ba13b
MC
589 ext4_fsblk_t new_blocks[4];
590 ext4_fsblk_t current_block;
ac27a0ec 591
617ba13b 592 num = ext4_alloc_blocks(handle, inode, goal, indirect_blks,
ac27a0ec
DK
593 *blks, new_blocks, &err);
594 if (err)
595 return err;
596
597 branch[0].key = cpu_to_le32(new_blocks[0]);
598 /*
599 * metadata blocks and data blocks are allocated.
600 */
601 for (n = 1; n <= indirect_blks; n++) {
602 /*
603 * Get buffer_head for parent block, zero it out
604 * and set the pointer to new one, then send
605 * parent to disk.
606 */
607 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
608 branch[n].bh = bh;
609 lock_buffer(bh);
610 BUFFER_TRACE(bh, "call get_create_access");
617ba13b 611 err = ext4_journal_get_create_access(handle, bh);
ac27a0ec
DK
612 if (err) {
613 unlock_buffer(bh);
614 brelse(bh);
615 goto failed;
616 }
617
618 memset(bh->b_data, 0, blocksize);
619 branch[n].p = (__le32 *) bh->b_data + offsets[n];
620 branch[n].key = cpu_to_le32(new_blocks[n]);
621 *branch[n].p = branch[n].key;
622 if ( n == indirect_blks) {
623 current_block = new_blocks[n];
624 /*
625 * End of chain, update the last new metablock of
626 * the chain to point to the new allocated
627 * data blocks numbers
628 */
629 for (i=1; i < num; i++)
630 *(branch[n].p + i) = cpu_to_le32(++current_block);
631 }
632 BUFFER_TRACE(bh, "marking uptodate");
633 set_buffer_uptodate(bh);
634 unlock_buffer(bh);
635
617ba13b
MC
636 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
637 err = ext4_journal_dirty_metadata(handle, bh);
ac27a0ec
DK
638 if (err)
639 goto failed;
640 }
641 *blks = num;
642 return err;
643failed:
644 /* Allocation failed, free what we already allocated */
645 for (i = 1; i <= n ; i++) {
dab291af 646 BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget");
617ba13b 647 ext4_journal_forget(handle, branch[i].bh);
ac27a0ec
DK
648 }
649 for (i = 0; i <indirect_blks; i++)
c9de560d 650 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
ac27a0ec 651
c9de560d 652 ext4_free_blocks(handle, inode, new_blocks[i], num, 0);
ac27a0ec
DK
653
654 return err;
655}
656
657/**
617ba13b 658 * ext4_splice_branch - splice the allocated branch onto inode.
ac27a0ec
DK
659 * @inode: owner
660 * @block: (logical) number of block we are adding
661 * @chain: chain of indirect blocks (with a missing link - see
617ba13b 662 * ext4_alloc_branch)
ac27a0ec
DK
663 * @where: location of missing link
664 * @num: number of indirect blocks we are adding
665 * @blks: number of direct blocks we are adding
666 *
667 * This function fills the missing link and does all housekeeping needed in
668 * inode (->i_blocks, etc.). In case of success we end up with the full
669 * chain to new block and return 0.
670 */
617ba13b 671static int ext4_splice_branch(handle_t *handle, struct inode *inode,
725d26d3 672 ext4_lblk_t block, Indirect *where, int num, int blks)
ac27a0ec
DK
673{
674 int i;
675 int err = 0;
617ba13b
MC
676 struct ext4_block_alloc_info *block_i;
677 ext4_fsblk_t current_block;
ac27a0ec 678
617ba13b 679 block_i = EXT4_I(inode)->i_block_alloc_info;
ac27a0ec
DK
680 /*
681 * If we're splicing into a [td]indirect block (as opposed to the
682 * inode) then we need to get write access to the [td]indirect block
683 * before the splice.
684 */
685 if (where->bh) {
686 BUFFER_TRACE(where->bh, "get_write_access");
617ba13b 687 err = ext4_journal_get_write_access(handle, where->bh);
ac27a0ec
DK
688 if (err)
689 goto err_out;
690 }
691 /* That's it */
692
693 *where->p = where->key;
694
695 /*
696 * Update the host buffer_head or inode to point to more just allocated
697 * direct blocks blocks
698 */
699 if (num == 0 && blks > 1) {
700 current_block = le32_to_cpu(where->key) + 1;
701 for (i = 1; i < blks; i++)
702 *(where->p + i ) = cpu_to_le32(current_block++);
703 }
704
705 /*
706 * update the most recently allocated logical & physical block
707 * in i_block_alloc_info, to assist find the proper goal block for next
708 * allocation
709 */
710 if (block_i) {
711 block_i->last_alloc_logical_block = block + blks - 1;
712 block_i->last_alloc_physical_block =
713 le32_to_cpu(where[num].key) + blks - 1;
714 }
715
716 /* We are done with atomic stuff, now do the rest of housekeeping */
717
ef7f3835 718 inode->i_ctime = ext4_current_time(inode);
617ba13b 719 ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
720
721 /* had we spliced it onto indirect block? */
722 if (where->bh) {
723 /*
724 * If we spliced it onto an indirect block, we haven't
725 * altered the inode. Note however that if it is being spliced
726 * onto an indirect block at the very end of the file (the
727 * file is growing) then we *will* alter the inode to reflect
728 * the new i_size. But that is not done here - it is done in
617ba13b 729 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
ac27a0ec
DK
730 */
731 jbd_debug(5, "splicing indirect only\n");
617ba13b
MC
732 BUFFER_TRACE(where->bh, "call ext4_journal_dirty_metadata");
733 err = ext4_journal_dirty_metadata(handle, where->bh);
ac27a0ec
DK
734 if (err)
735 goto err_out;
736 } else {
737 /*
738 * OK, we spliced it into the inode itself on a direct block.
739 * Inode was dirtied above.
740 */
741 jbd_debug(5, "splicing direct\n");
742 }
743 return err;
744
745err_out:
746 for (i = 1; i <= num; i++) {
dab291af 747 BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget");
617ba13b 748 ext4_journal_forget(handle, where[i].bh);
c9de560d
AT
749 ext4_free_blocks(handle, inode,
750 le32_to_cpu(where[i-1].key), 1, 0);
ac27a0ec 751 }
c9de560d 752 ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks, 0);
ac27a0ec
DK
753
754 return err;
755}
756
757/*
758 * Allocation strategy is simple: if we have to allocate something, we will
759 * have to go the whole way to leaf. So let's do it before attaching anything
760 * to tree, set linkage between the newborn blocks, write them if sync is
761 * required, recheck the path, free and repeat if check fails, otherwise
762 * set the last missing link (that will protect us from any truncate-generated
763 * removals - all blocks on the path are immune now) and possibly force the
764 * write on the parent block.
765 * That has a nice additional property: no special recovery from the failed
766 * allocations is needed - we simply release blocks and do not touch anything
767 * reachable from inode.
768 *
769 * `handle' can be NULL if create == 0.
770 *
771 * The BKL may not be held on entry here. Be sure to take it early.
772 * return > 0, # of blocks mapped or allocated.
773 * return = 0, if plain lookup failed.
774 * return < 0, error case.
c278bfec
AK
775 *
776 *
777 * Need to be called with
0e855ac8
AK
778 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
779 * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
ac27a0ec 780 */
617ba13b 781int ext4_get_blocks_handle(handle_t *handle, struct inode *inode,
725d26d3 782 ext4_lblk_t iblock, unsigned long maxblocks,
ac27a0ec
DK
783 struct buffer_head *bh_result,
784 int create, int extend_disksize)
785{
786 int err = -EIO;
725d26d3 787 ext4_lblk_t offsets[4];
ac27a0ec
DK
788 Indirect chain[4];
789 Indirect *partial;
617ba13b 790 ext4_fsblk_t goal;
ac27a0ec
DK
791 int indirect_blks;
792 int blocks_to_boundary = 0;
793 int depth;
617ba13b 794 struct ext4_inode_info *ei = EXT4_I(inode);
ac27a0ec 795 int count = 0;
617ba13b 796 ext4_fsblk_t first_block = 0;
ac27a0ec
DK
797
798
a86c6181 799 J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
ac27a0ec 800 J_ASSERT(handle != NULL || create == 0);
725d26d3
AK
801 depth = ext4_block_to_path(inode, iblock, offsets,
802 &blocks_to_boundary);
ac27a0ec
DK
803
804 if (depth == 0)
805 goto out;
806
617ba13b 807 partial = ext4_get_branch(inode, depth, offsets, chain, &err);
ac27a0ec
DK
808
809 /* Simplest case - block found, no allocation needed */
810 if (!partial) {
811 first_block = le32_to_cpu(chain[depth - 1].key);
812 clear_buffer_new(bh_result);
813 count++;
814 /*map more blocks*/
815 while (count < maxblocks && count <= blocks_to_boundary) {
617ba13b 816 ext4_fsblk_t blk;
ac27a0ec 817
ac27a0ec
DK
818 blk = le32_to_cpu(*(chain[depth-1].p + count));
819
820 if (blk == first_block + count)
821 count++;
822 else
823 break;
824 }
c278bfec 825 goto got_it;
ac27a0ec
DK
826 }
827
828 /* Next simple case - plain lookup or failed read of indirect block */
829 if (!create || err == -EIO)
830 goto cleanup;
831
ac27a0ec
DK
832 /*
833 * Okay, we need to do block allocation. Lazily initialize the block
834 * allocation info here if necessary
835 */
836 if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
617ba13b 837 ext4_init_block_alloc_info(inode);
ac27a0ec 838
fb01bfda 839 goal = ext4_find_goal(inode, iblock, partial);
ac27a0ec
DK
840
841 /* the number of blocks need to allocate for [d,t]indirect blocks */
842 indirect_blks = (chain + depth) - partial - 1;
843
844 /*
845 * Next look up the indirect map to count the totoal number of
846 * direct blocks to allocate for this branch.
847 */
617ba13b 848 count = ext4_blks_to_allocate(partial, indirect_blks,
ac27a0ec
DK
849 maxblocks, blocks_to_boundary);
850 /*
617ba13b 851 * Block out ext4_truncate while we alter the tree
ac27a0ec 852 */
617ba13b 853 err = ext4_alloc_branch(handle, inode, indirect_blks, &count, goal,
ac27a0ec
DK
854 offsets + (partial - chain), partial);
855
856 /*
617ba13b 857 * The ext4_splice_branch call will free and forget any buffers
ac27a0ec
DK
858 * on the new chain if there is a failure, but that risks using
859 * up transaction credits, especially for bitmaps where the
860 * credits cannot be returned. Can we handle this somehow? We
861 * may need to return -EAGAIN upwards in the worst case. --sct
862 */
863 if (!err)
617ba13b 864 err = ext4_splice_branch(handle, inode, iblock,
ac27a0ec
DK
865 partial, indirect_blks, count);
866 /*
0e855ac8 867 * i_disksize growing is protected by i_data_sem. Don't forget to
ac27a0ec 868 * protect it if you're about to implement concurrent
617ba13b 869 * ext4_get_block() -bzzz
ac27a0ec
DK
870 */
871 if (!err && extend_disksize && inode->i_size > ei->i_disksize)
872 ei->i_disksize = inode->i_size;
ac27a0ec
DK
873 if (err)
874 goto cleanup;
875
876 set_buffer_new(bh_result);
877got_it:
878 map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
879 if (count > blocks_to_boundary)
880 set_buffer_boundary(bh_result);
881 err = count;
882 /* Clean up and exit */
883 partial = chain + depth - 1; /* the whole chain */
884cleanup:
885 while (partial > chain) {
886 BUFFER_TRACE(partial->bh, "call brelse");
887 brelse(partial->bh);
888 partial--;
889 }
890 BUFFER_TRACE(bh_result, "returned");
891out:
892 return err;
893}
894
617ba13b 895#define DIO_CREDITS (EXT4_RESERVE_TRANS_BLOCKS + 32)
ac27a0ec 896
0e855ac8
AK
897int ext4_get_blocks_wrap(handle_t *handle, struct inode *inode, sector_t block,
898 unsigned long max_blocks, struct buffer_head *bh,
899 int create, int extend_disksize)
900{
901 int retval;
4df3d265
AK
902 /*
903 * Try to see if we can get the block without requesting
904 * for new file system block.
905 */
906 down_read((&EXT4_I(inode)->i_data_sem));
907 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
908 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks,
909 bh, 0, 0);
0e855ac8 910 } else {
4df3d265
AK
911 retval = ext4_get_blocks_handle(handle,
912 inode, block, max_blocks, bh, 0, 0);
0e855ac8 913 }
4df3d265
AK
914 up_read((&EXT4_I(inode)->i_data_sem));
915 if (!create || (retval > 0))
916 return retval;
917
918 /*
919 * We need to allocate new blocks which will result
920 * in i_data update
921 */
922 down_write((&EXT4_I(inode)->i_data_sem));
923 /*
924 * We need to check for EXT4 here because migrate
925 * could have changed the inode type in between
926 */
0e855ac8
AK
927 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
928 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks,
929 bh, create, extend_disksize);
930 } else {
931 retval = ext4_get_blocks_handle(handle, inode, block,
932 max_blocks, bh, create, extend_disksize);
933 }
4df3d265 934 up_write((&EXT4_I(inode)->i_data_sem));
0e855ac8
AK
935 return retval;
936}
937
617ba13b 938static int ext4_get_block(struct inode *inode, sector_t iblock,
ac27a0ec
DK
939 struct buffer_head *bh_result, int create)
940{
3e4fdaf8 941 handle_t *handle = ext4_journal_current_handle();
ac27a0ec
DK
942 int ret = 0;
943 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
944
945 if (!create)
946 goto get_block; /* A read */
947
948 if (max_blocks == 1)
949 goto get_block; /* A single block get */
950
951 if (handle->h_transaction->t_state == T_LOCKED) {
952 /*
953 * Huge direct-io writes can hold off commits for long
954 * periods of time. Let this commit run.
955 */
617ba13b
MC
956 ext4_journal_stop(handle);
957 handle = ext4_journal_start(inode, DIO_CREDITS);
ac27a0ec
DK
958 if (IS_ERR(handle))
959 ret = PTR_ERR(handle);
960 goto get_block;
961 }
962
617ba13b 963 if (handle->h_buffer_credits <= EXT4_RESERVE_TRANS_BLOCKS) {
ac27a0ec
DK
964 /*
965 * Getting low on buffer credits...
966 */
617ba13b 967 ret = ext4_journal_extend(handle, DIO_CREDITS);
ac27a0ec
DK
968 if (ret > 0) {
969 /*
970 * Couldn't extend the transaction. Start a new one.
971 */
617ba13b 972 ret = ext4_journal_restart(handle, DIO_CREDITS);
ac27a0ec
DK
973 }
974 }
975
976get_block:
977 if (ret == 0) {
a86c6181 978 ret = ext4_get_blocks_wrap(handle, inode, iblock,
ac27a0ec
DK
979 max_blocks, bh_result, create, 0);
980 if (ret > 0) {
981 bh_result->b_size = (ret << inode->i_blkbits);
982 ret = 0;
983 }
984 }
985 return ret;
986}
987
988/*
989 * `handle' can be NULL if create is zero
990 */
617ba13b 991struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
725d26d3 992 ext4_lblk_t block, int create, int *errp)
ac27a0ec
DK
993{
994 struct buffer_head dummy;
995 int fatal = 0, err;
996
997 J_ASSERT(handle != NULL || create == 0);
998
999 dummy.b_state = 0;
1000 dummy.b_blocknr = -1000;
1001 buffer_trace_init(&dummy.b_history);
a86c6181 1002 err = ext4_get_blocks_wrap(handle, inode, block, 1,
ac27a0ec
DK
1003 &dummy, create, 1);
1004 /*
617ba13b 1005 * ext4_get_blocks_handle() returns number of blocks
ac27a0ec
DK
1006 * mapped. 0 in case of a HOLE.
1007 */
1008 if (err > 0) {
1009 if (err > 1)
1010 WARN_ON(1);
1011 err = 0;
1012 }
1013 *errp = err;
1014 if (!err && buffer_mapped(&dummy)) {
1015 struct buffer_head *bh;
1016 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1017 if (!bh) {
1018 *errp = -EIO;
1019 goto err;
1020 }
1021 if (buffer_new(&dummy)) {
1022 J_ASSERT(create != 0);
ac39849d 1023 J_ASSERT(handle != NULL);
ac27a0ec
DK
1024
1025 /*
1026 * Now that we do not always journal data, we should
1027 * keep in mind whether this should always journal the
1028 * new buffer as metadata. For now, regular file
617ba13b 1029 * writes use ext4_get_block instead, so it's not a
ac27a0ec
DK
1030 * problem.
1031 */
1032 lock_buffer(bh);
1033 BUFFER_TRACE(bh, "call get_create_access");
617ba13b 1034 fatal = ext4_journal_get_create_access(handle, bh);
ac27a0ec
DK
1035 if (!fatal && !buffer_uptodate(bh)) {
1036 memset(bh->b_data,0,inode->i_sb->s_blocksize);
1037 set_buffer_uptodate(bh);
1038 }
1039 unlock_buffer(bh);
617ba13b
MC
1040 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
1041 err = ext4_journal_dirty_metadata(handle, bh);
ac27a0ec
DK
1042 if (!fatal)
1043 fatal = err;
1044 } else {
1045 BUFFER_TRACE(bh, "not a new buffer");
1046 }
1047 if (fatal) {
1048 *errp = fatal;
1049 brelse(bh);
1050 bh = NULL;
1051 }
1052 return bh;
1053 }
1054err:
1055 return NULL;
1056}
1057
617ba13b 1058struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
725d26d3 1059 ext4_lblk_t block, int create, int *err)
ac27a0ec
DK
1060{
1061 struct buffer_head * bh;
1062
617ba13b 1063 bh = ext4_getblk(handle, inode, block, create, err);
ac27a0ec
DK
1064 if (!bh)
1065 return bh;
1066 if (buffer_uptodate(bh))
1067 return bh;
1068 ll_rw_block(READ_META, 1, &bh);
1069 wait_on_buffer(bh);
1070 if (buffer_uptodate(bh))
1071 return bh;
1072 put_bh(bh);
1073 *err = -EIO;
1074 return NULL;
1075}
1076
1077static int walk_page_buffers( handle_t *handle,
1078 struct buffer_head *head,
1079 unsigned from,
1080 unsigned to,
1081 int *partial,
1082 int (*fn)( handle_t *handle,
1083 struct buffer_head *bh))
1084{
1085 struct buffer_head *bh;
1086 unsigned block_start, block_end;
1087 unsigned blocksize = head->b_size;
1088 int err, ret = 0;
1089 struct buffer_head *next;
1090
1091 for ( bh = head, block_start = 0;
1092 ret == 0 && (bh != head || !block_start);
1093 block_start = block_end, bh = next)
1094 {
1095 next = bh->b_this_page;
1096 block_end = block_start + blocksize;
1097 if (block_end <= from || block_start >= to) {
1098 if (partial && !buffer_uptodate(bh))
1099 *partial = 1;
1100 continue;
1101 }
1102 err = (*fn)(handle, bh);
1103 if (!ret)
1104 ret = err;
1105 }
1106 return ret;
1107}
1108
1109/*
1110 * To preserve ordering, it is essential that the hole instantiation and
1111 * the data write be encapsulated in a single transaction. We cannot
617ba13b 1112 * close off a transaction and start a new one between the ext4_get_block()
dab291af 1113 * and the commit_write(). So doing the jbd2_journal_start at the start of
ac27a0ec
DK
1114 * prepare_write() is the right place.
1115 *
617ba13b
MC
1116 * Also, this function can nest inside ext4_writepage() ->
1117 * block_write_full_page(). In that case, we *know* that ext4_writepage()
ac27a0ec
DK
1118 * has generated enough buffer credits to do the whole page. So we won't
1119 * block on the journal in that case, which is good, because the caller may
1120 * be PF_MEMALLOC.
1121 *
617ba13b 1122 * By accident, ext4 can be reentered when a transaction is open via
ac27a0ec
DK
1123 * quota file writes. If we were to commit the transaction while thus
1124 * reentered, there can be a deadlock - we would be holding a quota
1125 * lock, and the commit would never complete if another thread had a
1126 * transaction open and was blocking on the quota lock - a ranking
1127 * violation.
1128 *
dab291af 1129 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
ac27a0ec
DK
1130 * will _not_ run commit under these circumstances because handle->h_ref
1131 * is elevated. We'll still have enough credits for the tiny quotafile
1132 * write.
1133 */
1134static int do_journal_get_write_access(handle_t *handle,
1135 struct buffer_head *bh)
1136{
1137 if (!buffer_mapped(bh) || buffer_freed(bh))
1138 return 0;
617ba13b 1139 return ext4_journal_get_write_access(handle, bh);
ac27a0ec
DK
1140}
1141
bfc1af65
NP
1142static int ext4_write_begin(struct file *file, struct address_space *mapping,
1143 loff_t pos, unsigned len, unsigned flags,
1144 struct page **pagep, void **fsdata)
ac27a0ec 1145{
bfc1af65 1146 struct inode *inode = mapping->host;
7479d2b9 1147 int ret, needed_blocks = ext4_writepage_trans_blocks(inode);
ac27a0ec
DK
1148 handle_t *handle;
1149 int retries = 0;
bfc1af65
NP
1150 struct page *page;
1151 pgoff_t index;
1152 unsigned from, to;
1153
1154 index = pos >> PAGE_CACHE_SHIFT;
1155 from = pos & (PAGE_CACHE_SIZE - 1);
1156 to = from + len;
ac27a0ec
DK
1157
1158retry:
bfc1af65
NP
1159 page = __grab_cache_page(mapping, index);
1160 if (!page)
1161 return -ENOMEM;
1162 *pagep = page;
1163
1164 handle = ext4_journal_start(inode, needed_blocks);
1165 if (IS_ERR(handle)) {
1166 unlock_page(page);
1167 page_cache_release(page);
1168 ret = PTR_ERR(handle);
1169 goto out;
7479d2b9 1170 }
ac27a0ec 1171
bfc1af65
NP
1172 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
1173 ext4_get_block);
1174
1175 if (!ret && ext4_should_journal_data(inode)) {
ac27a0ec
DK
1176 ret = walk_page_buffers(handle, page_buffers(page),
1177 from, to, NULL, do_journal_get_write_access);
1178 }
bfc1af65
NP
1179
1180 if (ret) {
7479d2b9 1181 ext4_journal_stop(handle);
bfc1af65
NP
1182 unlock_page(page);
1183 page_cache_release(page);
1184 }
1185
617ba13b 1186 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
ac27a0ec 1187 goto retry;
7479d2b9 1188out:
ac27a0ec
DK
1189 return ret;
1190}
1191
617ba13b 1192int ext4_journal_dirty_data(handle_t *handle, struct buffer_head *bh)
ac27a0ec 1193{
dab291af 1194 int err = jbd2_journal_dirty_data(handle, bh);
ac27a0ec 1195 if (err)
617ba13b 1196 ext4_journal_abort_handle(__FUNCTION__, __FUNCTION__,
bfc1af65 1197 bh, handle, err);
ac27a0ec
DK
1198 return err;
1199}
1200
bfc1af65
NP
1201/* For write_end() in data=journal mode */
1202static int write_end_fn(handle_t *handle, struct buffer_head *bh)
ac27a0ec
DK
1203{
1204 if (!buffer_mapped(bh) || buffer_freed(bh))
1205 return 0;
1206 set_buffer_uptodate(bh);
617ba13b 1207 return ext4_journal_dirty_metadata(handle, bh);
ac27a0ec
DK
1208}
1209
bfc1af65
NP
1210/*
1211 * Generic write_end handler for ordered and writeback ext4 journal modes.
1212 * We can't use generic_write_end, because that unlocks the page and we need to
1213 * unlock the page after ext4_journal_stop, but ext4_journal_stop must run
1214 * after block_write_end.
1215 */
1216static int ext4_generic_write_end(struct file *file,
1217 struct address_space *mapping,
1218 loff_t pos, unsigned len, unsigned copied,
1219 struct page *page, void *fsdata)
1220{
1221 struct inode *inode = file->f_mapping->host;
1222
1223 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1224
1225 if (pos+copied > inode->i_size) {
1226 i_size_write(inode, pos+copied);
1227 mark_inode_dirty(inode);
1228 }
1229
1230 return copied;
1231}
1232
ac27a0ec
DK
1233/*
1234 * We need to pick up the new inode size which generic_commit_write gave us
1235 * `file' can be NULL - eg, when called from page_symlink().
1236 *
617ba13b 1237 * ext4 never places buffers on inode->i_mapping->private_list. metadata
ac27a0ec
DK
1238 * buffers are managed internally.
1239 */
bfc1af65
NP
1240static int ext4_ordered_write_end(struct file *file,
1241 struct address_space *mapping,
1242 loff_t pos, unsigned len, unsigned copied,
1243 struct page *page, void *fsdata)
ac27a0ec 1244{
617ba13b 1245 handle_t *handle = ext4_journal_current_handle();
bfc1af65
NP
1246 struct inode *inode = file->f_mapping->host;
1247 unsigned from, to;
ac27a0ec
DK
1248 int ret = 0, ret2;
1249
bfc1af65
NP
1250 from = pos & (PAGE_CACHE_SIZE - 1);
1251 to = from + len;
1252
ac27a0ec 1253 ret = walk_page_buffers(handle, page_buffers(page),
617ba13b 1254 from, to, NULL, ext4_journal_dirty_data);
ac27a0ec
DK
1255
1256 if (ret == 0) {
1257 /*
bfc1af65 1258 * generic_write_end() will run mark_inode_dirty() if i_size
ac27a0ec
DK
1259 * changes. So let's piggyback the i_disksize mark_inode_dirty
1260 * into that.
1261 */
1262 loff_t new_i_size;
1263
bfc1af65 1264 new_i_size = pos + copied;
617ba13b
MC
1265 if (new_i_size > EXT4_I(inode)->i_disksize)
1266 EXT4_I(inode)->i_disksize = new_i_size;
bfc1af65
NP
1267 copied = ext4_generic_write_end(file, mapping, pos, len, copied,
1268 page, fsdata);
1269 if (copied < 0)
1270 ret = copied;
ac27a0ec 1271 }
617ba13b 1272 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1273 if (!ret)
1274 ret = ret2;
bfc1af65
NP
1275 unlock_page(page);
1276 page_cache_release(page);
1277
1278 return ret ? ret : copied;
ac27a0ec
DK
1279}
1280
bfc1af65
NP
1281static int ext4_writeback_write_end(struct file *file,
1282 struct address_space *mapping,
1283 loff_t pos, unsigned len, unsigned copied,
1284 struct page *page, void *fsdata)
ac27a0ec 1285{
617ba13b 1286 handle_t *handle = ext4_journal_current_handle();
bfc1af65 1287 struct inode *inode = file->f_mapping->host;
ac27a0ec
DK
1288 int ret = 0, ret2;
1289 loff_t new_i_size;
1290
bfc1af65 1291 new_i_size = pos + copied;
617ba13b
MC
1292 if (new_i_size > EXT4_I(inode)->i_disksize)
1293 EXT4_I(inode)->i_disksize = new_i_size;
ac27a0ec 1294
bfc1af65
NP
1295 copied = ext4_generic_write_end(file, mapping, pos, len, copied,
1296 page, fsdata);
1297 if (copied < 0)
1298 ret = copied;
ac27a0ec 1299
617ba13b 1300 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1301 if (!ret)
1302 ret = ret2;
bfc1af65
NP
1303 unlock_page(page);
1304 page_cache_release(page);
1305
1306 return ret ? ret : copied;
ac27a0ec
DK
1307}
1308
bfc1af65
NP
1309static int ext4_journalled_write_end(struct file *file,
1310 struct address_space *mapping,
1311 loff_t pos, unsigned len, unsigned copied,
1312 struct page *page, void *fsdata)
ac27a0ec 1313{
617ba13b 1314 handle_t *handle = ext4_journal_current_handle();
bfc1af65 1315 struct inode *inode = mapping->host;
ac27a0ec
DK
1316 int ret = 0, ret2;
1317 int partial = 0;
bfc1af65 1318 unsigned from, to;
ac27a0ec 1319
bfc1af65
NP
1320 from = pos & (PAGE_CACHE_SIZE - 1);
1321 to = from + len;
1322
1323 if (copied < len) {
1324 if (!PageUptodate(page))
1325 copied = 0;
1326 page_zero_new_buffers(page, from+copied, to);
1327 }
ac27a0ec
DK
1328
1329 ret = walk_page_buffers(handle, page_buffers(page), from,
bfc1af65 1330 to, &partial, write_end_fn);
ac27a0ec
DK
1331 if (!partial)
1332 SetPageUptodate(page);
bfc1af65
NP
1333 if (pos+copied > inode->i_size)
1334 i_size_write(inode, pos+copied);
617ba13b
MC
1335 EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
1336 if (inode->i_size > EXT4_I(inode)->i_disksize) {
1337 EXT4_I(inode)->i_disksize = inode->i_size;
1338 ret2 = ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
1339 if (!ret)
1340 ret = ret2;
1341 }
bfc1af65 1342
617ba13b 1343 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1344 if (!ret)
1345 ret = ret2;
bfc1af65
NP
1346 unlock_page(page);
1347 page_cache_release(page);
1348
1349 return ret ? ret : copied;
ac27a0ec
DK
1350}
1351
1352/*
1353 * bmap() is special. It gets used by applications such as lilo and by
1354 * the swapper to find the on-disk block of a specific piece of data.
1355 *
1356 * Naturally, this is dangerous if the block concerned is still in the
617ba13b 1357 * journal. If somebody makes a swapfile on an ext4 data-journaling
ac27a0ec
DK
1358 * filesystem and enables swap, then they may get a nasty shock when the
1359 * data getting swapped to that swapfile suddenly gets overwritten by
1360 * the original zero's written out previously to the journal and
1361 * awaiting writeback in the kernel's buffer cache.
1362 *
1363 * So, if we see any bmap calls here on a modified, data-journaled file,
1364 * take extra steps to flush any blocks which might be in the cache.
1365 */
617ba13b 1366static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
ac27a0ec
DK
1367{
1368 struct inode *inode = mapping->host;
1369 journal_t *journal;
1370 int err;
1371
617ba13b 1372 if (EXT4_I(inode)->i_state & EXT4_STATE_JDATA) {
ac27a0ec
DK
1373 /*
1374 * This is a REALLY heavyweight approach, but the use of
1375 * bmap on dirty files is expected to be extremely rare:
1376 * only if we run lilo or swapon on a freshly made file
1377 * do we expect this to happen.
1378 *
1379 * (bmap requires CAP_SYS_RAWIO so this does not
1380 * represent an unprivileged user DOS attack --- we'd be
1381 * in trouble if mortal users could trigger this path at
1382 * will.)
1383 *
617ba13b 1384 * NB. EXT4_STATE_JDATA is not set on files other than
ac27a0ec
DK
1385 * regular files. If somebody wants to bmap a directory
1386 * or symlink and gets confused because the buffer
1387 * hasn't yet been flushed to disk, they deserve
1388 * everything they get.
1389 */
1390
617ba13b
MC
1391 EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA;
1392 journal = EXT4_JOURNAL(inode);
dab291af
MC
1393 jbd2_journal_lock_updates(journal);
1394 err = jbd2_journal_flush(journal);
1395 jbd2_journal_unlock_updates(journal);
ac27a0ec
DK
1396
1397 if (err)
1398 return 0;
1399 }
1400
617ba13b 1401 return generic_block_bmap(mapping,block,ext4_get_block);
ac27a0ec
DK
1402}
1403
1404static int bget_one(handle_t *handle, struct buffer_head *bh)
1405{
1406 get_bh(bh);
1407 return 0;
1408}
1409
1410static int bput_one(handle_t *handle, struct buffer_head *bh)
1411{
1412 put_bh(bh);
1413 return 0;
1414}
1415
dab291af 1416static int jbd2_journal_dirty_data_fn(handle_t *handle, struct buffer_head *bh)
ac27a0ec
DK
1417{
1418 if (buffer_mapped(bh))
617ba13b 1419 return ext4_journal_dirty_data(handle, bh);
ac27a0ec
DK
1420 return 0;
1421}
1422
1423/*
1424 * Note that we always start a transaction even if we're not journalling
1425 * data. This is to preserve ordering: any hole instantiation within
617ba13b 1426 * __block_write_full_page -> ext4_get_block() should be journalled
ac27a0ec
DK
1427 * along with the data so we don't crash and then get metadata which
1428 * refers to old data.
1429 *
1430 * In all journalling modes block_write_full_page() will start the I/O.
1431 *
1432 * Problem:
1433 *
617ba13b
MC
1434 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1435 * ext4_writepage()
ac27a0ec
DK
1436 *
1437 * Similar for:
1438 *
617ba13b 1439 * ext4_file_write() -> generic_file_write() -> __alloc_pages() -> ...
ac27a0ec 1440 *
617ba13b 1441 * Same applies to ext4_get_block(). We will deadlock on various things like
0e855ac8 1442 * lock_journal and i_data_sem
ac27a0ec
DK
1443 *
1444 * Setting PF_MEMALLOC here doesn't work - too many internal memory
1445 * allocations fail.
1446 *
1447 * 16May01: If we're reentered then journal_current_handle() will be
1448 * non-zero. We simply *return*.
1449 *
1450 * 1 July 2001: @@@ FIXME:
1451 * In journalled data mode, a data buffer may be metadata against the
1452 * current transaction. But the same file is part of a shared mapping
1453 * and someone does a writepage() on it.
1454 *
1455 * We will move the buffer onto the async_data list, but *after* it has
1456 * been dirtied. So there's a small window where we have dirty data on
1457 * BJ_Metadata.
1458 *
1459 * Note that this only applies to the last partial page in the file. The
1460 * bit which block_write_full_page() uses prepare/commit for. (That's
1461 * broken code anyway: it's wrong for msync()).
1462 *
1463 * It's a rare case: affects the final partial page, for journalled data
1464 * where the file is subject to bith write() and writepage() in the same
1465 * transction. To fix it we'll need a custom block_write_full_page().
1466 * We'll probably need that anyway for journalling writepage() output.
1467 *
1468 * We don't honour synchronous mounts for writepage(). That would be
1469 * disastrous. Any write() or metadata operation will sync the fs for
1470 * us.
1471 *
1472 * AKPM2: if all the page's buffers are mapped to disk and !data=journal,
1473 * we don't need to open a transaction here.
1474 */
617ba13b 1475static int ext4_ordered_writepage(struct page *page,
ac27a0ec
DK
1476 struct writeback_control *wbc)
1477{
1478 struct inode *inode = page->mapping->host;
1479 struct buffer_head *page_bufs;
1480 handle_t *handle = NULL;
1481 int ret = 0;
1482 int err;
1483
1484 J_ASSERT(PageLocked(page));
1485
1486 /*
1487 * We give up here if we're reentered, because it might be for a
1488 * different filesystem.
1489 */
617ba13b 1490 if (ext4_journal_current_handle())
ac27a0ec
DK
1491 goto out_fail;
1492
617ba13b 1493 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
ac27a0ec
DK
1494
1495 if (IS_ERR(handle)) {
1496 ret = PTR_ERR(handle);
1497 goto out_fail;
1498 }
1499
1500 if (!page_has_buffers(page)) {
1501 create_empty_buffers(page, inode->i_sb->s_blocksize,
1502 (1 << BH_Dirty)|(1 << BH_Uptodate));
1503 }
1504 page_bufs = page_buffers(page);
1505 walk_page_buffers(handle, page_bufs, 0,
1506 PAGE_CACHE_SIZE, NULL, bget_one);
1507
617ba13b 1508 ret = block_write_full_page(page, ext4_get_block, wbc);
ac27a0ec
DK
1509
1510 /*
1511 * The page can become unlocked at any point now, and
1512 * truncate can then come in and change things. So we
1513 * can't touch *page from now on. But *page_bufs is
1514 * safe due to elevated refcount.
1515 */
1516
1517 /*
1518 * And attach them to the current transaction. But only if
1519 * block_write_full_page() succeeded. Otherwise they are unmapped,
1520 * and generally junk.
1521 */
1522 if (ret == 0) {
1523 err = walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE,
dab291af 1524 NULL, jbd2_journal_dirty_data_fn);
ac27a0ec
DK
1525 if (!ret)
1526 ret = err;
1527 }
1528 walk_page_buffers(handle, page_bufs, 0,
1529 PAGE_CACHE_SIZE, NULL, bput_one);
617ba13b 1530 err = ext4_journal_stop(handle);
ac27a0ec
DK
1531 if (!ret)
1532 ret = err;
1533 return ret;
1534
1535out_fail:
1536 redirty_page_for_writepage(wbc, page);
1537 unlock_page(page);
1538 return ret;
1539}
1540
617ba13b 1541static int ext4_writeback_writepage(struct page *page,
ac27a0ec
DK
1542 struct writeback_control *wbc)
1543{
1544 struct inode *inode = page->mapping->host;
1545 handle_t *handle = NULL;
1546 int ret = 0;
1547 int err;
1548
617ba13b 1549 if (ext4_journal_current_handle())
ac27a0ec
DK
1550 goto out_fail;
1551
617ba13b 1552 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
ac27a0ec
DK
1553 if (IS_ERR(handle)) {
1554 ret = PTR_ERR(handle);
1555 goto out_fail;
1556 }
1557
617ba13b
MC
1558 if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
1559 ret = nobh_writepage(page, ext4_get_block, wbc);
ac27a0ec 1560 else
617ba13b 1561 ret = block_write_full_page(page, ext4_get_block, wbc);
ac27a0ec 1562
617ba13b 1563 err = ext4_journal_stop(handle);
ac27a0ec
DK
1564 if (!ret)
1565 ret = err;
1566 return ret;
1567
1568out_fail:
1569 redirty_page_for_writepage(wbc, page);
1570 unlock_page(page);
1571 return ret;
1572}
1573
617ba13b 1574static int ext4_journalled_writepage(struct page *page,
ac27a0ec
DK
1575 struct writeback_control *wbc)
1576{
1577 struct inode *inode = page->mapping->host;
1578 handle_t *handle = NULL;
1579 int ret = 0;
1580 int err;
1581
617ba13b 1582 if (ext4_journal_current_handle())
ac27a0ec
DK
1583 goto no_write;
1584
617ba13b 1585 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
ac27a0ec
DK
1586 if (IS_ERR(handle)) {
1587 ret = PTR_ERR(handle);
1588 goto no_write;
1589 }
1590
1591 if (!page_has_buffers(page) || PageChecked(page)) {
1592 /*
1593 * It's mmapped pagecache. Add buffers and journal it. There
1594 * doesn't seem much point in redirtying the page here.
1595 */
1596 ClearPageChecked(page);
1597 ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
617ba13b 1598 ext4_get_block);
ac27a0ec 1599 if (ret != 0) {
617ba13b 1600 ext4_journal_stop(handle);
ac27a0ec
DK
1601 goto out_unlock;
1602 }
1603 ret = walk_page_buffers(handle, page_buffers(page), 0,
1604 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
1605
1606 err = walk_page_buffers(handle, page_buffers(page), 0,
bfc1af65 1607 PAGE_CACHE_SIZE, NULL, write_end_fn);
ac27a0ec
DK
1608 if (ret == 0)
1609 ret = err;
617ba13b 1610 EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
ac27a0ec
DK
1611 unlock_page(page);
1612 } else {
1613 /*
1614 * It may be a page full of checkpoint-mode buffers. We don't
1615 * really know unless we go poke around in the buffer_heads.
1616 * But block_write_full_page will do the right thing.
1617 */
617ba13b 1618 ret = block_write_full_page(page, ext4_get_block, wbc);
ac27a0ec 1619 }
617ba13b 1620 err = ext4_journal_stop(handle);
ac27a0ec
DK
1621 if (!ret)
1622 ret = err;
1623out:
1624 return ret;
1625
1626no_write:
1627 redirty_page_for_writepage(wbc, page);
1628out_unlock:
1629 unlock_page(page);
1630 goto out;
1631}
1632
617ba13b 1633static int ext4_readpage(struct file *file, struct page *page)
ac27a0ec 1634{
617ba13b 1635 return mpage_readpage(page, ext4_get_block);
ac27a0ec
DK
1636}
1637
1638static int
617ba13b 1639ext4_readpages(struct file *file, struct address_space *mapping,
ac27a0ec
DK
1640 struct list_head *pages, unsigned nr_pages)
1641{
617ba13b 1642 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
ac27a0ec
DK
1643}
1644
617ba13b 1645static void ext4_invalidatepage(struct page *page, unsigned long offset)
ac27a0ec 1646{
617ba13b 1647 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
ac27a0ec
DK
1648
1649 /*
1650 * If it's a full truncate we just forget about the pending dirtying
1651 */
1652 if (offset == 0)
1653 ClearPageChecked(page);
1654
dab291af 1655 jbd2_journal_invalidatepage(journal, page, offset);
ac27a0ec
DK
1656}
1657
617ba13b 1658static int ext4_releasepage(struct page *page, gfp_t wait)
ac27a0ec 1659{
617ba13b 1660 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
ac27a0ec
DK
1661
1662 WARN_ON(PageChecked(page));
1663 if (!page_has_buffers(page))
1664 return 0;
dab291af 1665 return jbd2_journal_try_to_free_buffers(journal, page, wait);
ac27a0ec
DK
1666}
1667
1668/*
1669 * If the O_DIRECT write will extend the file then add this inode to the
1670 * orphan list. So recovery will truncate it back to the original size
1671 * if the machine crashes during the write.
1672 *
1673 * If the O_DIRECT write is intantiating holes inside i_size and the machine
1674 * crashes then stale disk data _may_ be exposed inside the file.
1675 */
617ba13b 1676static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
ac27a0ec
DK
1677 const struct iovec *iov, loff_t offset,
1678 unsigned long nr_segs)
1679{
1680 struct file *file = iocb->ki_filp;
1681 struct inode *inode = file->f_mapping->host;
617ba13b 1682 struct ext4_inode_info *ei = EXT4_I(inode);
ac27a0ec
DK
1683 handle_t *handle = NULL;
1684 ssize_t ret;
1685 int orphan = 0;
1686 size_t count = iov_length(iov, nr_segs);
1687
1688 if (rw == WRITE) {
1689 loff_t final_size = offset + count;
1690
617ba13b 1691 handle = ext4_journal_start(inode, DIO_CREDITS);
ac27a0ec
DK
1692 if (IS_ERR(handle)) {
1693 ret = PTR_ERR(handle);
1694 goto out;
1695 }
1696 if (final_size > inode->i_size) {
617ba13b 1697 ret = ext4_orphan_add(handle, inode);
ac27a0ec
DK
1698 if (ret)
1699 goto out_stop;
1700 orphan = 1;
1701 ei->i_disksize = inode->i_size;
1702 }
1703 }
1704
1705 ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
1706 offset, nr_segs,
617ba13b 1707 ext4_get_block, NULL);
ac27a0ec
DK
1708
1709 /*
617ba13b 1710 * Reacquire the handle: ext4_get_block() can restart the transaction
ac27a0ec 1711 */
3e4fdaf8 1712 handle = ext4_journal_current_handle();
ac27a0ec
DK
1713
1714out_stop:
1715 if (handle) {
1716 int err;
1717
1718 if (orphan && inode->i_nlink)
617ba13b 1719 ext4_orphan_del(handle, inode);
ac27a0ec
DK
1720 if (orphan && ret > 0) {
1721 loff_t end = offset + ret;
1722 if (end > inode->i_size) {
1723 ei->i_disksize = end;
1724 i_size_write(inode, end);
1725 /*
1726 * We're going to return a positive `ret'
1727 * here due to non-zero-length I/O, so there's
1728 * no way of reporting error returns from
617ba13b 1729 * ext4_mark_inode_dirty() to userspace. So
ac27a0ec
DK
1730 * ignore it.
1731 */
617ba13b 1732 ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
1733 }
1734 }
617ba13b 1735 err = ext4_journal_stop(handle);
ac27a0ec
DK
1736 if (ret == 0)
1737 ret = err;
1738 }
1739out:
1740 return ret;
1741}
1742
1743/*
617ba13b 1744 * Pages can be marked dirty completely asynchronously from ext4's journalling
ac27a0ec
DK
1745 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
1746 * much here because ->set_page_dirty is called under VFS locks. The page is
1747 * not necessarily locked.
1748 *
1749 * We cannot just dirty the page and leave attached buffers clean, because the
1750 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
1751 * or jbddirty because all the journalling code will explode.
1752 *
1753 * So what we do is to mark the page "pending dirty" and next time writepage
1754 * is called, propagate that into the buffers appropriately.
1755 */
617ba13b 1756static int ext4_journalled_set_page_dirty(struct page *page)
ac27a0ec
DK
1757{
1758 SetPageChecked(page);
1759 return __set_page_dirty_nobuffers(page);
1760}
1761
617ba13b
MC
1762static const struct address_space_operations ext4_ordered_aops = {
1763 .readpage = ext4_readpage,
1764 .readpages = ext4_readpages,
1765 .writepage = ext4_ordered_writepage,
ac27a0ec 1766 .sync_page = block_sync_page,
bfc1af65
NP
1767 .write_begin = ext4_write_begin,
1768 .write_end = ext4_ordered_write_end,
617ba13b
MC
1769 .bmap = ext4_bmap,
1770 .invalidatepage = ext4_invalidatepage,
1771 .releasepage = ext4_releasepage,
1772 .direct_IO = ext4_direct_IO,
ac27a0ec
DK
1773 .migratepage = buffer_migrate_page,
1774};
1775
617ba13b
MC
1776static const struct address_space_operations ext4_writeback_aops = {
1777 .readpage = ext4_readpage,
1778 .readpages = ext4_readpages,
1779 .writepage = ext4_writeback_writepage,
ac27a0ec 1780 .sync_page = block_sync_page,
bfc1af65
NP
1781 .write_begin = ext4_write_begin,
1782 .write_end = ext4_writeback_write_end,
617ba13b
MC
1783 .bmap = ext4_bmap,
1784 .invalidatepage = ext4_invalidatepage,
1785 .releasepage = ext4_releasepage,
1786 .direct_IO = ext4_direct_IO,
ac27a0ec
DK
1787 .migratepage = buffer_migrate_page,
1788};
1789
617ba13b
MC
1790static const struct address_space_operations ext4_journalled_aops = {
1791 .readpage = ext4_readpage,
1792 .readpages = ext4_readpages,
1793 .writepage = ext4_journalled_writepage,
ac27a0ec 1794 .sync_page = block_sync_page,
bfc1af65
NP
1795 .write_begin = ext4_write_begin,
1796 .write_end = ext4_journalled_write_end,
617ba13b
MC
1797 .set_page_dirty = ext4_journalled_set_page_dirty,
1798 .bmap = ext4_bmap,
1799 .invalidatepage = ext4_invalidatepage,
1800 .releasepage = ext4_releasepage,
ac27a0ec
DK
1801};
1802
617ba13b 1803void ext4_set_aops(struct inode *inode)
ac27a0ec 1804{
617ba13b
MC
1805 if (ext4_should_order_data(inode))
1806 inode->i_mapping->a_ops = &ext4_ordered_aops;
1807 else if (ext4_should_writeback_data(inode))
1808 inode->i_mapping->a_ops = &ext4_writeback_aops;
ac27a0ec 1809 else
617ba13b 1810 inode->i_mapping->a_ops = &ext4_journalled_aops;
ac27a0ec
DK
1811}
1812
1813/*
617ba13b 1814 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
ac27a0ec
DK
1815 * up to the end of the block which corresponds to `from'.
1816 * This required during truncate. We need to physically zero the tail end
1817 * of that block so it doesn't yield old data if the file is later grown.
1818 */
a86c6181 1819int ext4_block_truncate_page(handle_t *handle, struct page *page,
ac27a0ec
DK
1820 struct address_space *mapping, loff_t from)
1821{
617ba13b 1822 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
ac27a0ec 1823 unsigned offset = from & (PAGE_CACHE_SIZE-1);
725d26d3
AK
1824 unsigned blocksize, length, pos;
1825 ext4_lblk_t iblock;
ac27a0ec
DK
1826 struct inode *inode = mapping->host;
1827 struct buffer_head *bh;
1828 int err = 0;
ac27a0ec
DK
1829
1830 blocksize = inode->i_sb->s_blocksize;
1831 length = blocksize - (offset & (blocksize - 1));
1832 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
1833
1834 /*
1835 * For "nobh" option, we can only work if we don't need to
1836 * read-in the page - otherwise we create buffers to do the IO.
1837 */
1838 if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
617ba13b 1839 ext4_should_writeback_data(inode) && PageUptodate(page)) {
eebd2aa3 1840 zero_user(page, offset, length);
ac27a0ec
DK
1841 set_page_dirty(page);
1842 goto unlock;
1843 }
1844
1845 if (!page_has_buffers(page))
1846 create_empty_buffers(page, blocksize, 0);
1847
1848 /* Find the buffer that contains "offset" */
1849 bh = page_buffers(page);
1850 pos = blocksize;
1851 while (offset >= pos) {
1852 bh = bh->b_this_page;
1853 iblock++;
1854 pos += blocksize;
1855 }
1856
1857 err = 0;
1858 if (buffer_freed(bh)) {
1859 BUFFER_TRACE(bh, "freed: skip");
1860 goto unlock;
1861 }
1862
1863 if (!buffer_mapped(bh)) {
1864 BUFFER_TRACE(bh, "unmapped");
617ba13b 1865 ext4_get_block(inode, iblock, bh, 0);
ac27a0ec
DK
1866 /* unmapped? It's a hole - nothing to do */
1867 if (!buffer_mapped(bh)) {
1868 BUFFER_TRACE(bh, "still unmapped");
1869 goto unlock;
1870 }
1871 }
1872
1873 /* Ok, it's mapped. Make sure it's up-to-date */
1874 if (PageUptodate(page))
1875 set_buffer_uptodate(bh);
1876
1877 if (!buffer_uptodate(bh)) {
1878 err = -EIO;
1879 ll_rw_block(READ, 1, &bh);
1880 wait_on_buffer(bh);
1881 /* Uhhuh. Read error. Complain and punt. */
1882 if (!buffer_uptodate(bh))
1883 goto unlock;
1884 }
1885
617ba13b 1886 if (ext4_should_journal_data(inode)) {
ac27a0ec 1887 BUFFER_TRACE(bh, "get write access");
617ba13b 1888 err = ext4_journal_get_write_access(handle, bh);
ac27a0ec
DK
1889 if (err)
1890 goto unlock;
1891 }
1892
eebd2aa3 1893 zero_user(page, offset, length);
ac27a0ec
DK
1894
1895 BUFFER_TRACE(bh, "zeroed end of block");
1896
1897 err = 0;
617ba13b
MC
1898 if (ext4_should_journal_data(inode)) {
1899 err = ext4_journal_dirty_metadata(handle, bh);
ac27a0ec 1900 } else {
617ba13b
MC
1901 if (ext4_should_order_data(inode))
1902 err = ext4_journal_dirty_data(handle, bh);
ac27a0ec
DK
1903 mark_buffer_dirty(bh);
1904 }
1905
1906unlock:
1907 unlock_page(page);
1908 page_cache_release(page);
1909 return err;
1910}
1911
1912/*
1913 * Probably it should be a library function... search for first non-zero word
1914 * or memcmp with zero_page, whatever is better for particular architecture.
1915 * Linus?
1916 */
1917static inline int all_zeroes(__le32 *p, __le32 *q)
1918{
1919 while (p < q)
1920 if (*p++)
1921 return 0;
1922 return 1;
1923}
1924
1925/**
617ba13b 1926 * ext4_find_shared - find the indirect blocks for partial truncation.
ac27a0ec
DK
1927 * @inode: inode in question
1928 * @depth: depth of the affected branch
617ba13b 1929 * @offsets: offsets of pointers in that branch (see ext4_block_to_path)
ac27a0ec
DK
1930 * @chain: place to store the pointers to partial indirect blocks
1931 * @top: place to the (detached) top of branch
1932 *
617ba13b 1933 * This is a helper function used by ext4_truncate().
ac27a0ec
DK
1934 *
1935 * When we do truncate() we may have to clean the ends of several
1936 * indirect blocks but leave the blocks themselves alive. Block is
1937 * partially truncated if some data below the new i_size is refered
1938 * from it (and it is on the path to the first completely truncated
1939 * data block, indeed). We have to free the top of that path along
1940 * with everything to the right of the path. Since no allocation
617ba13b 1941 * past the truncation point is possible until ext4_truncate()
ac27a0ec
DK
1942 * finishes, we may safely do the latter, but top of branch may
1943 * require special attention - pageout below the truncation point
1944 * might try to populate it.
1945 *
1946 * We atomically detach the top of branch from the tree, store the
1947 * block number of its root in *@top, pointers to buffer_heads of
1948 * partially truncated blocks - in @chain[].bh and pointers to
1949 * their last elements that should not be removed - in
1950 * @chain[].p. Return value is the pointer to last filled element
1951 * of @chain.
1952 *
1953 * The work left to caller to do the actual freeing of subtrees:
1954 * a) free the subtree starting from *@top
1955 * b) free the subtrees whose roots are stored in
1956 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
1957 * c) free the subtrees growing from the inode past the @chain[0].
1958 * (no partially truncated stuff there). */
1959
617ba13b 1960static Indirect *ext4_find_shared(struct inode *inode, int depth,
725d26d3 1961 ext4_lblk_t offsets[4], Indirect chain[4], __le32 *top)
ac27a0ec
DK
1962{
1963 Indirect *partial, *p;
1964 int k, err;
1965
1966 *top = 0;
1967 /* Make k index the deepest non-null offest + 1 */
1968 for (k = depth; k > 1 && !offsets[k-1]; k--)
1969 ;
617ba13b 1970 partial = ext4_get_branch(inode, k, offsets, chain, &err);
ac27a0ec
DK
1971 /* Writer: pointers */
1972 if (!partial)
1973 partial = chain + k-1;
1974 /*
1975 * If the branch acquired continuation since we've looked at it -
1976 * fine, it should all survive and (new) top doesn't belong to us.
1977 */
1978 if (!partial->key && *partial->p)
1979 /* Writer: end */
1980 goto no_top;
1981 for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--)
1982 ;
1983 /*
1984 * OK, we've found the last block that must survive. The rest of our
1985 * branch should be detached before unlocking. However, if that rest
1986 * of branch is all ours and does not grow immediately from the inode
1987 * it's easier to cheat and just decrement partial->p.
1988 */
1989 if (p == chain + k - 1 && p > chain) {
1990 p->p--;
1991 } else {
1992 *top = *p->p;
617ba13b 1993 /* Nope, don't do this in ext4. Must leave the tree intact */
ac27a0ec
DK
1994#if 0
1995 *p->p = 0;
1996#endif
1997 }
1998 /* Writer: end */
1999
2000 while(partial > p) {
2001 brelse(partial->bh);
2002 partial--;
2003 }
2004no_top:
2005 return partial;
2006}
2007
2008/*
2009 * Zero a number of block pointers in either an inode or an indirect block.
2010 * If we restart the transaction we must again get write access to the
2011 * indirect block for further modification.
2012 *
2013 * We release `count' blocks on disk, but (last - first) may be greater
2014 * than `count' because there can be holes in there.
2015 */
617ba13b
MC
2016static void ext4_clear_blocks(handle_t *handle, struct inode *inode,
2017 struct buffer_head *bh, ext4_fsblk_t block_to_free,
ac27a0ec
DK
2018 unsigned long count, __le32 *first, __le32 *last)
2019{
2020 __le32 *p;
2021 if (try_to_extend_transaction(handle, inode)) {
2022 if (bh) {
617ba13b
MC
2023 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
2024 ext4_journal_dirty_metadata(handle, bh);
ac27a0ec 2025 }
617ba13b
MC
2026 ext4_mark_inode_dirty(handle, inode);
2027 ext4_journal_test_restart(handle, inode);
ac27a0ec
DK
2028 if (bh) {
2029 BUFFER_TRACE(bh, "retaking write access");
617ba13b 2030 ext4_journal_get_write_access(handle, bh);
ac27a0ec
DK
2031 }
2032 }
2033
2034 /*
2035 * Any buffers which are on the journal will be in memory. We find
dab291af 2036 * them on the hash table so jbd2_journal_revoke() will run jbd2_journal_forget()
ac27a0ec 2037 * on them. We've already detached each block from the file, so
dab291af 2038 * bforget() in jbd2_journal_forget() should be safe.
ac27a0ec 2039 *
dab291af 2040 * AKPM: turn on bforget in jbd2_journal_forget()!!!
ac27a0ec
DK
2041 */
2042 for (p = first; p < last; p++) {
2043 u32 nr = le32_to_cpu(*p);
2044 if (nr) {
1d03ec98 2045 struct buffer_head *tbh;
ac27a0ec
DK
2046
2047 *p = 0;
1d03ec98
AK
2048 tbh = sb_find_get_block(inode->i_sb, nr);
2049 ext4_forget(handle, 0, inode, tbh, nr);
ac27a0ec
DK
2050 }
2051 }
2052
c9de560d 2053 ext4_free_blocks(handle, inode, block_to_free, count, 0);
ac27a0ec
DK
2054}
2055
2056/**
617ba13b 2057 * ext4_free_data - free a list of data blocks
ac27a0ec
DK
2058 * @handle: handle for this transaction
2059 * @inode: inode we are dealing with
2060 * @this_bh: indirect buffer_head which contains *@first and *@last
2061 * @first: array of block numbers
2062 * @last: points immediately past the end of array
2063 *
2064 * We are freeing all blocks refered from that array (numbers are stored as
2065 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
2066 *
2067 * We accumulate contiguous runs of blocks to free. Conveniently, if these
2068 * blocks are contiguous then releasing them at one time will only affect one
2069 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
2070 * actually use a lot of journal space.
2071 *
2072 * @this_bh will be %NULL if @first and @last point into the inode's direct
2073 * block pointers.
2074 */
617ba13b 2075static void ext4_free_data(handle_t *handle, struct inode *inode,
ac27a0ec
DK
2076 struct buffer_head *this_bh,
2077 __le32 *first, __le32 *last)
2078{
617ba13b 2079 ext4_fsblk_t block_to_free = 0; /* Starting block # of a run */
ac27a0ec
DK
2080 unsigned long count = 0; /* Number of blocks in the run */
2081 __le32 *block_to_free_p = NULL; /* Pointer into inode/ind
2082 corresponding to
2083 block_to_free */
617ba13b 2084 ext4_fsblk_t nr; /* Current block # */
ac27a0ec
DK
2085 __le32 *p; /* Pointer into inode/ind
2086 for current block */
2087 int err;
2088
2089 if (this_bh) { /* For indirect block */
2090 BUFFER_TRACE(this_bh, "get_write_access");
617ba13b 2091 err = ext4_journal_get_write_access(handle, this_bh);
ac27a0ec
DK
2092 /* Important: if we can't update the indirect pointers
2093 * to the blocks, we can't free them. */
2094 if (err)
2095 return;
2096 }
2097
2098 for (p = first; p < last; p++) {
2099 nr = le32_to_cpu(*p);
2100 if (nr) {
2101 /* accumulate blocks to free if they're contiguous */
2102 if (count == 0) {
2103 block_to_free = nr;
2104 block_to_free_p = p;
2105 count = 1;
2106 } else if (nr == block_to_free + count) {
2107 count++;
2108 } else {
617ba13b 2109 ext4_clear_blocks(handle, inode, this_bh,
ac27a0ec
DK
2110 block_to_free,
2111 count, block_to_free_p, p);
2112 block_to_free = nr;
2113 block_to_free_p = p;
2114 count = 1;
2115 }
2116 }
2117 }
2118
2119 if (count > 0)
617ba13b 2120 ext4_clear_blocks(handle, inode, this_bh, block_to_free,
ac27a0ec
DK
2121 count, block_to_free_p, p);
2122
2123 if (this_bh) {
617ba13b
MC
2124 BUFFER_TRACE(this_bh, "call ext4_journal_dirty_metadata");
2125 ext4_journal_dirty_metadata(handle, this_bh);
ac27a0ec
DK
2126 }
2127}
2128
2129/**
617ba13b 2130 * ext4_free_branches - free an array of branches
ac27a0ec
DK
2131 * @handle: JBD handle for this transaction
2132 * @inode: inode we are dealing with
2133 * @parent_bh: the buffer_head which contains *@first and *@last
2134 * @first: array of block numbers
2135 * @last: pointer immediately past the end of array
2136 * @depth: depth of the branches to free
2137 *
2138 * We are freeing all blocks refered from these branches (numbers are
2139 * stored as little-endian 32-bit) and updating @inode->i_blocks
2140 * appropriately.
2141 */
617ba13b 2142static void ext4_free_branches(handle_t *handle, struct inode *inode,
ac27a0ec
DK
2143 struct buffer_head *parent_bh,
2144 __le32 *first, __le32 *last, int depth)
2145{
617ba13b 2146 ext4_fsblk_t nr;
ac27a0ec
DK
2147 __le32 *p;
2148
2149 if (is_handle_aborted(handle))
2150 return;
2151
2152 if (depth--) {
2153 struct buffer_head *bh;
617ba13b 2154 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
ac27a0ec
DK
2155 p = last;
2156 while (--p >= first) {
2157 nr = le32_to_cpu(*p);
2158 if (!nr)
2159 continue; /* A hole */
2160
2161 /* Go read the buffer for the next level down */
2162 bh = sb_bread(inode->i_sb, nr);
2163
2164 /*
2165 * A read failure? Report error and clear slot
2166 * (should be rare).
2167 */
2168 if (!bh) {
617ba13b 2169 ext4_error(inode->i_sb, "ext4_free_branches",
2ae02107 2170 "Read failure, inode=%lu, block=%llu",
ac27a0ec
DK
2171 inode->i_ino, nr);
2172 continue;
2173 }
2174
2175 /* This zaps the entire block. Bottom up. */
2176 BUFFER_TRACE(bh, "free child branches");
617ba13b 2177 ext4_free_branches(handle, inode, bh,
ac27a0ec
DK
2178 (__le32*)bh->b_data,
2179 (__le32*)bh->b_data + addr_per_block,
2180 depth);
2181
2182 /*
2183 * We've probably journalled the indirect block several
2184 * times during the truncate. But it's no longer
2185 * needed and we now drop it from the transaction via
dab291af 2186 * jbd2_journal_revoke().
ac27a0ec
DK
2187 *
2188 * That's easy if it's exclusively part of this
2189 * transaction. But if it's part of the committing
dab291af 2190 * transaction then jbd2_journal_forget() will simply
ac27a0ec 2191 * brelse() it. That means that if the underlying
617ba13b 2192 * block is reallocated in ext4_get_block(),
ac27a0ec
DK
2193 * unmap_underlying_metadata() will find this block
2194 * and will try to get rid of it. damn, damn.
2195 *
2196 * If this block has already been committed to the
2197 * journal, a revoke record will be written. And
2198 * revoke records must be emitted *before* clearing
2199 * this block's bit in the bitmaps.
2200 */
617ba13b 2201 ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
ac27a0ec
DK
2202
2203 /*
2204 * Everything below this this pointer has been
2205 * released. Now let this top-of-subtree go.
2206 *
2207 * We want the freeing of this indirect block to be
2208 * atomic in the journal with the updating of the
2209 * bitmap block which owns it. So make some room in
2210 * the journal.
2211 *
2212 * We zero the parent pointer *after* freeing its
2213 * pointee in the bitmaps, so if extend_transaction()
2214 * for some reason fails to put the bitmap changes and
2215 * the release into the same transaction, recovery
2216 * will merely complain about releasing a free block,
2217 * rather than leaking blocks.
2218 */
2219 if (is_handle_aborted(handle))
2220 return;
2221 if (try_to_extend_transaction(handle, inode)) {
617ba13b
MC
2222 ext4_mark_inode_dirty(handle, inode);
2223 ext4_journal_test_restart(handle, inode);
ac27a0ec
DK
2224 }
2225
c9de560d 2226 ext4_free_blocks(handle, inode, nr, 1, 1);
ac27a0ec
DK
2227
2228 if (parent_bh) {
2229 /*
2230 * The block which we have just freed is
2231 * pointed to by an indirect block: journal it
2232 */
2233 BUFFER_TRACE(parent_bh, "get_write_access");
617ba13b 2234 if (!ext4_journal_get_write_access(handle,
ac27a0ec
DK
2235 parent_bh)){
2236 *p = 0;
2237 BUFFER_TRACE(parent_bh,
617ba13b
MC
2238 "call ext4_journal_dirty_metadata");
2239 ext4_journal_dirty_metadata(handle,
ac27a0ec
DK
2240 parent_bh);
2241 }
2242 }
2243 }
2244 } else {
2245 /* We have reached the bottom of the tree. */
2246 BUFFER_TRACE(parent_bh, "free data blocks");
617ba13b 2247 ext4_free_data(handle, inode, parent_bh, first, last);
ac27a0ec
DK
2248 }
2249}
2250
2251/*
617ba13b 2252 * ext4_truncate()
ac27a0ec 2253 *
617ba13b
MC
2254 * We block out ext4_get_block() block instantiations across the entire
2255 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
ac27a0ec
DK
2256 * simultaneously on behalf of the same inode.
2257 *
2258 * As we work through the truncate and commmit bits of it to the journal there
2259 * is one core, guiding principle: the file's tree must always be consistent on
2260 * disk. We must be able to restart the truncate after a crash.
2261 *
2262 * The file's tree may be transiently inconsistent in memory (although it
2263 * probably isn't), but whenever we close off and commit a journal transaction,
2264 * the contents of (the filesystem + the journal) must be consistent and
2265 * restartable. It's pretty simple, really: bottom up, right to left (although
2266 * left-to-right works OK too).
2267 *
2268 * Note that at recovery time, journal replay occurs *before* the restart of
2269 * truncate against the orphan inode list.
2270 *
2271 * The committed inode has the new, desired i_size (which is the same as
617ba13b 2272 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
ac27a0ec 2273 * that this inode's truncate did not complete and it will again call
617ba13b
MC
2274 * ext4_truncate() to have another go. So there will be instantiated blocks
2275 * to the right of the truncation point in a crashed ext4 filesystem. But
ac27a0ec 2276 * that's fine - as long as they are linked from the inode, the post-crash
617ba13b 2277 * ext4_truncate() run will find them and release them.
ac27a0ec 2278 */
617ba13b 2279void ext4_truncate(struct inode *inode)
ac27a0ec
DK
2280{
2281 handle_t *handle;
617ba13b 2282 struct ext4_inode_info *ei = EXT4_I(inode);
ac27a0ec 2283 __le32 *i_data = ei->i_data;
617ba13b 2284 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
ac27a0ec 2285 struct address_space *mapping = inode->i_mapping;
725d26d3 2286 ext4_lblk_t offsets[4];
ac27a0ec
DK
2287 Indirect chain[4];
2288 Indirect *partial;
2289 __le32 nr = 0;
2290 int n;
725d26d3 2291 ext4_lblk_t last_block;
ac27a0ec
DK
2292 unsigned blocksize = inode->i_sb->s_blocksize;
2293 struct page *page;
2294
2295 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
2296 S_ISLNK(inode->i_mode)))
2297 return;
617ba13b 2298 if (ext4_inode_is_fast_symlink(inode))
ac27a0ec
DK
2299 return;
2300 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
2301 return;
2302
2303 /*
2304 * We have to lock the EOF page here, because lock_page() nests
dab291af 2305 * outside jbd2_journal_start().
ac27a0ec
DK
2306 */
2307 if ((inode->i_size & (blocksize - 1)) == 0) {
2308 /* Block boundary? Nothing to do */
2309 page = NULL;
2310 } else {
2311 page = grab_cache_page(mapping,
2312 inode->i_size >> PAGE_CACHE_SHIFT);
2313 if (!page)
2314 return;
2315 }
2316
1d03ec98
AK
2317 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
2318 ext4_ext_truncate(inode, page);
2319 return;
2320 }
a86c6181 2321
ac27a0ec
DK
2322 handle = start_transaction(inode);
2323 if (IS_ERR(handle)) {
2324 if (page) {
2325 clear_highpage(page);
2326 flush_dcache_page(page);
2327 unlock_page(page);
2328 page_cache_release(page);
2329 }
2330 return; /* AKPM: return what? */
2331 }
2332
2333 last_block = (inode->i_size + blocksize-1)
617ba13b 2334 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
ac27a0ec
DK
2335
2336 if (page)
617ba13b 2337 ext4_block_truncate_page(handle, page, mapping, inode->i_size);
ac27a0ec 2338
617ba13b 2339 n = ext4_block_to_path(inode, last_block, offsets, NULL);
ac27a0ec
DK
2340 if (n == 0)
2341 goto out_stop; /* error */
2342
2343 /*
2344 * OK. This truncate is going to happen. We add the inode to the
2345 * orphan list, so that if this truncate spans multiple transactions,
2346 * and we crash, we will resume the truncate when the filesystem
2347 * recovers. It also marks the inode dirty, to catch the new size.
2348 *
2349 * Implication: the file must always be in a sane, consistent
2350 * truncatable state while each transaction commits.
2351 */
617ba13b 2352 if (ext4_orphan_add(handle, inode))
ac27a0ec
DK
2353 goto out_stop;
2354
2355 /*
2356 * The orphan list entry will now protect us from any crash which
2357 * occurs before the truncate completes, so it is now safe to propagate
2358 * the new, shorter inode size (held for now in i_size) into the
2359 * on-disk inode. We do this via i_disksize, which is the value which
617ba13b 2360 * ext4 *really* writes onto the disk inode.
ac27a0ec
DK
2361 */
2362 ei->i_disksize = inode->i_size;
2363
2364 /*
617ba13b 2365 * From here we block out all ext4_get_block() callers who want to
ac27a0ec
DK
2366 * modify the block allocation tree.
2367 */
0e855ac8 2368 down_write(&ei->i_data_sem);
ac27a0ec
DK
2369
2370 if (n == 1) { /* direct blocks */
617ba13b
MC
2371 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
2372 i_data + EXT4_NDIR_BLOCKS);
ac27a0ec
DK
2373 goto do_indirects;
2374 }
2375
617ba13b 2376 partial = ext4_find_shared(inode, n, offsets, chain, &nr);
ac27a0ec
DK
2377 /* Kill the top of shared branch (not detached) */
2378 if (nr) {
2379 if (partial == chain) {
2380 /* Shared branch grows from the inode */
617ba13b 2381 ext4_free_branches(handle, inode, NULL,
ac27a0ec
DK
2382 &nr, &nr+1, (chain+n-1) - partial);
2383 *partial->p = 0;
2384 /*
2385 * We mark the inode dirty prior to restart,
2386 * and prior to stop. No need for it here.
2387 */
2388 } else {
2389 /* Shared branch grows from an indirect block */
2390 BUFFER_TRACE(partial->bh, "get_write_access");
617ba13b 2391 ext4_free_branches(handle, inode, partial->bh,
ac27a0ec
DK
2392 partial->p,
2393 partial->p+1, (chain+n-1) - partial);
2394 }
2395 }
2396 /* Clear the ends of indirect blocks on the shared branch */
2397 while (partial > chain) {
617ba13b 2398 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
ac27a0ec
DK
2399 (__le32*)partial->bh->b_data+addr_per_block,
2400 (chain+n-1) - partial);
2401 BUFFER_TRACE(partial->bh, "call brelse");
2402 brelse (partial->bh);
2403 partial--;
2404 }
2405do_indirects:
2406 /* Kill the remaining (whole) subtrees */
2407 switch (offsets[0]) {
2408 default:
617ba13b 2409 nr = i_data[EXT4_IND_BLOCK];
ac27a0ec 2410 if (nr) {
617ba13b
MC
2411 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
2412 i_data[EXT4_IND_BLOCK] = 0;
ac27a0ec 2413 }
617ba13b
MC
2414 case EXT4_IND_BLOCK:
2415 nr = i_data[EXT4_DIND_BLOCK];
ac27a0ec 2416 if (nr) {
617ba13b
MC
2417 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
2418 i_data[EXT4_DIND_BLOCK] = 0;
ac27a0ec 2419 }
617ba13b
MC
2420 case EXT4_DIND_BLOCK:
2421 nr = i_data[EXT4_TIND_BLOCK];
ac27a0ec 2422 if (nr) {
617ba13b
MC
2423 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
2424 i_data[EXT4_TIND_BLOCK] = 0;
ac27a0ec 2425 }
617ba13b 2426 case EXT4_TIND_BLOCK:
ac27a0ec
DK
2427 ;
2428 }
2429
617ba13b 2430 ext4_discard_reservation(inode);
ac27a0ec 2431
0e855ac8 2432 up_write(&ei->i_data_sem);
ef7f3835 2433 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
617ba13b 2434 ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
2435
2436 /*
2437 * In a multi-transaction truncate, we only make the final transaction
2438 * synchronous
2439 */
2440 if (IS_SYNC(inode))
2441 handle->h_sync = 1;
2442out_stop:
2443 /*
2444 * If this was a simple ftruncate(), and the file will remain alive
2445 * then we need to clear up the orphan record which we created above.
2446 * However, if this was a real unlink then we were called by
617ba13b 2447 * ext4_delete_inode(), and we allow that function to clean up the
ac27a0ec
DK
2448 * orphan info for us.
2449 */
2450 if (inode->i_nlink)
617ba13b 2451 ext4_orphan_del(handle, inode);
ac27a0ec 2452
617ba13b 2453 ext4_journal_stop(handle);
ac27a0ec
DK
2454}
2455
617ba13b
MC
2456static ext4_fsblk_t ext4_get_inode_block(struct super_block *sb,
2457 unsigned long ino, struct ext4_iloc *iloc)
ac27a0ec 2458{
fd2d4291
AM
2459 unsigned long desc, group_desc;
2460 ext4_group_t block_group;
ac27a0ec 2461 unsigned long offset;
617ba13b 2462 ext4_fsblk_t block;
ac27a0ec 2463 struct buffer_head *bh;
617ba13b 2464 struct ext4_group_desc * gdp;
ac27a0ec 2465
617ba13b 2466 if (!ext4_valid_inum(sb, ino)) {
ac27a0ec
DK
2467 /*
2468 * This error is already checked for in namei.c unless we are
2469 * looking at an NFS filehandle, in which case no error
2470 * report is needed
2471 */
2472 return 0;
2473 }
2474
617ba13b
MC
2475 block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
2476 if (block_group >= EXT4_SB(sb)->s_groups_count) {
2477 ext4_error(sb,"ext4_get_inode_block","group >= groups count");
ac27a0ec
DK
2478 return 0;
2479 }
2480 smp_rmb();
617ba13b
MC
2481 group_desc = block_group >> EXT4_DESC_PER_BLOCK_BITS(sb);
2482 desc = block_group & (EXT4_DESC_PER_BLOCK(sb) - 1);
2483 bh = EXT4_SB(sb)->s_group_desc[group_desc];
ac27a0ec 2484 if (!bh) {
617ba13b 2485 ext4_error (sb, "ext4_get_inode_block",
ac27a0ec
DK
2486 "Descriptor not loaded");
2487 return 0;
2488 }
2489
0d1ee42f
AR
2490 gdp = (struct ext4_group_desc *)((__u8 *)bh->b_data +
2491 desc * EXT4_DESC_SIZE(sb));
ac27a0ec
DK
2492 /*
2493 * Figure out the offset within the block group inode table
2494 */
617ba13b
MC
2495 offset = ((ino - 1) % EXT4_INODES_PER_GROUP(sb)) *
2496 EXT4_INODE_SIZE(sb);
8fadc143
AR
2497 block = ext4_inode_table(sb, gdp) +
2498 (offset >> EXT4_BLOCK_SIZE_BITS(sb));
ac27a0ec
DK
2499
2500 iloc->block_group = block_group;
617ba13b 2501 iloc->offset = offset & (EXT4_BLOCK_SIZE(sb) - 1);
ac27a0ec
DK
2502 return block;
2503}
2504
2505/*
617ba13b 2506 * ext4_get_inode_loc returns with an extra refcount against the inode's
ac27a0ec
DK
2507 * underlying buffer_head on success. If 'in_mem' is true, we have all
2508 * data in memory that is needed to recreate the on-disk version of this
2509 * inode.
2510 */
617ba13b
MC
2511static int __ext4_get_inode_loc(struct inode *inode,
2512 struct ext4_iloc *iloc, int in_mem)
ac27a0ec 2513{
617ba13b 2514 ext4_fsblk_t block;
ac27a0ec
DK
2515 struct buffer_head *bh;
2516
617ba13b 2517 block = ext4_get_inode_block(inode->i_sb, inode->i_ino, iloc);
ac27a0ec
DK
2518 if (!block)
2519 return -EIO;
2520
2521 bh = sb_getblk(inode->i_sb, block);
2522 if (!bh) {
617ba13b 2523 ext4_error (inode->i_sb, "ext4_get_inode_loc",
ac27a0ec 2524 "unable to read inode block - "
2ae02107 2525 "inode=%lu, block=%llu",
ac27a0ec
DK
2526 inode->i_ino, block);
2527 return -EIO;
2528 }
2529 if (!buffer_uptodate(bh)) {
2530 lock_buffer(bh);
2531 if (buffer_uptodate(bh)) {
2532 /* someone brought it uptodate while we waited */
2533 unlock_buffer(bh);
2534 goto has_buffer;
2535 }
2536
2537 /*
2538 * If we have all information of the inode in memory and this
2539 * is the only valid inode in the block, we need not read the
2540 * block.
2541 */
2542 if (in_mem) {
2543 struct buffer_head *bitmap_bh;
617ba13b 2544 struct ext4_group_desc *desc;
ac27a0ec
DK
2545 int inodes_per_buffer;
2546 int inode_offset, i;
fd2d4291 2547 ext4_group_t block_group;
ac27a0ec
DK
2548 int start;
2549
2550 block_group = (inode->i_ino - 1) /
617ba13b 2551 EXT4_INODES_PER_GROUP(inode->i_sb);
ac27a0ec 2552 inodes_per_buffer = bh->b_size /
617ba13b 2553 EXT4_INODE_SIZE(inode->i_sb);
ac27a0ec 2554 inode_offset = ((inode->i_ino - 1) %
617ba13b 2555 EXT4_INODES_PER_GROUP(inode->i_sb));
ac27a0ec
DK
2556 start = inode_offset & ~(inodes_per_buffer - 1);
2557
2558 /* Is the inode bitmap in cache? */
617ba13b 2559 desc = ext4_get_group_desc(inode->i_sb,
ac27a0ec
DK
2560 block_group, NULL);
2561 if (!desc)
2562 goto make_io;
2563
2564 bitmap_bh = sb_getblk(inode->i_sb,
8fadc143 2565 ext4_inode_bitmap(inode->i_sb, desc));
ac27a0ec
DK
2566 if (!bitmap_bh)
2567 goto make_io;
2568
2569 /*
2570 * If the inode bitmap isn't in cache then the
2571 * optimisation may end up performing two reads instead
2572 * of one, so skip it.
2573 */
2574 if (!buffer_uptodate(bitmap_bh)) {
2575 brelse(bitmap_bh);
2576 goto make_io;
2577 }
2578 for (i = start; i < start + inodes_per_buffer; i++) {
2579 if (i == inode_offset)
2580 continue;
617ba13b 2581 if (ext4_test_bit(i, bitmap_bh->b_data))
ac27a0ec
DK
2582 break;
2583 }
2584 brelse(bitmap_bh);
2585 if (i == start + inodes_per_buffer) {
2586 /* all other inodes are free, so skip I/O */
2587 memset(bh->b_data, 0, bh->b_size);
2588 set_buffer_uptodate(bh);
2589 unlock_buffer(bh);
2590 goto has_buffer;
2591 }
2592 }
2593
2594make_io:
2595 /*
2596 * There are other valid inodes in the buffer, this inode
2597 * has in-inode xattrs, or we don't have this inode in memory.
2598 * Read the block from disk.
2599 */
2600 get_bh(bh);
2601 bh->b_end_io = end_buffer_read_sync;
2602 submit_bh(READ_META, bh);
2603 wait_on_buffer(bh);
2604 if (!buffer_uptodate(bh)) {
617ba13b 2605 ext4_error(inode->i_sb, "ext4_get_inode_loc",
ac27a0ec 2606 "unable to read inode block - "
2ae02107 2607 "inode=%lu, block=%llu",
ac27a0ec
DK
2608 inode->i_ino, block);
2609 brelse(bh);
2610 return -EIO;
2611 }
2612 }
2613has_buffer:
2614 iloc->bh = bh;
2615 return 0;
2616}
2617
617ba13b 2618int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
2619{
2620 /* We have all inode data except xattrs in memory here. */
617ba13b
MC
2621 return __ext4_get_inode_loc(inode, iloc,
2622 !(EXT4_I(inode)->i_state & EXT4_STATE_XATTR));
ac27a0ec
DK
2623}
2624
617ba13b 2625void ext4_set_inode_flags(struct inode *inode)
ac27a0ec 2626{
617ba13b 2627 unsigned int flags = EXT4_I(inode)->i_flags;
ac27a0ec
DK
2628
2629 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
617ba13b 2630 if (flags & EXT4_SYNC_FL)
ac27a0ec 2631 inode->i_flags |= S_SYNC;
617ba13b 2632 if (flags & EXT4_APPEND_FL)
ac27a0ec 2633 inode->i_flags |= S_APPEND;
617ba13b 2634 if (flags & EXT4_IMMUTABLE_FL)
ac27a0ec 2635 inode->i_flags |= S_IMMUTABLE;
617ba13b 2636 if (flags & EXT4_NOATIME_FL)
ac27a0ec 2637 inode->i_flags |= S_NOATIME;
617ba13b 2638 if (flags & EXT4_DIRSYNC_FL)
ac27a0ec
DK
2639 inode->i_flags |= S_DIRSYNC;
2640}
2641
ff9ddf7e
JK
2642/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
2643void ext4_get_inode_flags(struct ext4_inode_info *ei)
2644{
2645 unsigned int flags = ei->vfs_inode.i_flags;
2646
2647 ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
2648 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
2649 if (flags & S_SYNC)
2650 ei->i_flags |= EXT4_SYNC_FL;
2651 if (flags & S_APPEND)
2652 ei->i_flags |= EXT4_APPEND_FL;
2653 if (flags & S_IMMUTABLE)
2654 ei->i_flags |= EXT4_IMMUTABLE_FL;
2655 if (flags & S_NOATIME)
2656 ei->i_flags |= EXT4_NOATIME_FL;
2657 if (flags & S_DIRSYNC)
2658 ei->i_flags |= EXT4_DIRSYNC_FL;
2659}
0fc1b451
AK
2660static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
2661 struct ext4_inode_info *ei)
2662{
2663 blkcnt_t i_blocks ;
8180a562
AK
2664 struct inode *inode = &(ei->vfs_inode);
2665 struct super_block *sb = inode->i_sb;
0fc1b451
AK
2666
2667 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
2668 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
2669 /* we are using combined 48 bit field */
2670 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
2671 le32_to_cpu(raw_inode->i_blocks_lo);
8180a562
AK
2672 if (ei->i_flags & EXT4_HUGE_FILE_FL) {
2673 /* i_blocks represent file system block size */
2674 return i_blocks << (inode->i_blkbits - 9);
2675 } else {
2676 return i_blocks;
2677 }
0fc1b451
AK
2678 } else {
2679 return le32_to_cpu(raw_inode->i_blocks_lo);
2680 }
2681}
ff9ddf7e 2682
1d1fe1ee 2683struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
ac27a0ec 2684{
617ba13b
MC
2685 struct ext4_iloc iloc;
2686 struct ext4_inode *raw_inode;
1d1fe1ee 2687 struct ext4_inode_info *ei;
ac27a0ec 2688 struct buffer_head *bh;
1d1fe1ee
DH
2689 struct inode *inode;
2690 long ret;
ac27a0ec
DK
2691 int block;
2692
1d1fe1ee
DH
2693 inode = iget_locked(sb, ino);
2694 if (!inode)
2695 return ERR_PTR(-ENOMEM);
2696 if (!(inode->i_state & I_NEW))
2697 return inode;
2698
2699 ei = EXT4_I(inode);
617ba13b
MC
2700#ifdef CONFIG_EXT4DEV_FS_POSIX_ACL
2701 ei->i_acl = EXT4_ACL_NOT_CACHED;
2702 ei->i_default_acl = EXT4_ACL_NOT_CACHED;
ac27a0ec
DK
2703#endif
2704 ei->i_block_alloc_info = NULL;
2705
1d1fe1ee
DH
2706 ret = __ext4_get_inode_loc(inode, &iloc, 0);
2707 if (ret < 0)
ac27a0ec
DK
2708 goto bad_inode;
2709 bh = iloc.bh;
617ba13b 2710 raw_inode = ext4_raw_inode(&iloc);
ac27a0ec
DK
2711 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
2712 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
2713 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
2714 if(!(test_opt (inode->i_sb, NO_UID32))) {
2715 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
2716 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
2717 }
2718 inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
ac27a0ec
DK
2719
2720 ei->i_state = 0;
2721 ei->i_dir_start_lookup = 0;
2722 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
2723 /* We now have enough fields to check if the inode was active or not.
2724 * This is needed because nfsd might try to access dead inodes
2725 * the test is that same one that e2fsck uses
2726 * NeilBrown 1999oct15
2727 */
2728 if (inode->i_nlink == 0) {
2729 if (inode->i_mode == 0 ||
617ba13b 2730 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
ac27a0ec
DK
2731 /* this inode is deleted */
2732 brelse (bh);
1d1fe1ee 2733 ret = -ESTALE;
ac27a0ec
DK
2734 goto bad_inode;
2735 }
2736 /* The only unlinked inodes we let through here have
2737 * valid i_mode and are being read by the orphan
2738 * recovery code: that's fine, we're about to complete
2739 * the process of deleting those. */
2740 }
ac27a0ec 2741 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
0fc1b451 2742 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
7973c0c1 2743 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
9b8f1f01 2744 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
a48380f7 2745 cpu_to_le32(EXT4_OS_HURD)) {
a1ddeb7e
BP
2746 ei->i_file_acl |=
2747 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
ac27a0ec 2748 }
a48380f7 2749 inode->i_size = ext4_isize(raw_inode);
ac27a0ec
DK
2750 ei->i_disksize = inode->i_size;
2751 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
2752 ei->i_block_group = iloc.block_group;
2753 /*
2754 * NOTE! The in-memory inode i_data array is in little-endian order
2755 * even on big-endian machines: we do NOT byteswap the block numbers!
2756 */
617ba13b 2757 for (block = 0; block < EXT4_N_BLOCKS; block++)
ac27a0ec
DK
2758 ei->i_data[block] = raw_inode->i_block[block];
2759 INIT_LIST_HEAD(&ei->i_orphan);
2760
0040d987 2761 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
ac27a0ec 2762 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
617ba13b 2763 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
e5d2861f
KK
2764 EXT4_INODE_SIZE(inode->i_sb)) {
2765 brelse (bh);
1d1fe1ee 2766 ret = -EIO;
ac27a0ec 2767 goto bad_inode;
e5d2861f 2768 }
ac27a0ec
DK
2769 if (ei->i_extra_isize == 0) {
2770 /* The extra space is currently unused. Use it. */
617ba13b
MC
2771 ei->i_extra_isize = sizeof(struct ext4_inode) -
2772 EXT4_GOOD_OLD_INODE_SIZE;
ac27a0ec
DK
2773 } else {
2774 __le32 *magic = (void *)raw_inode +
617ba13b 2775 EXT4_GOOD_OLD_INODE_SIZE +
ac27a0ec 2776 ei->i_extra_isize;
617ba13b
MC
2777 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
2778 ei->i_state |= EXT4_STATE_XATTR;
ac27a0ec
DK
2779 }
2780 } else
2781 ei->i_extra_isize = 0;
2782
ef7f3835
KS
2783 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
2784 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
2785 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
2786 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
2787
25ec56b5
JNC
2788 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
2789 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
2790 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
2791 inode->i_version |=
2792 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
2793 }
2794
ac27a0ec 2795 if (S_ISREG(inode->i_mode)) {
617ba13b
MC
2796 inode->i_op = &ext4_file_inode_operations;
2797 inode->i_fop = &ext4_file_operations;
2798 ext4_set_aops(inode);
ac27a0ec 2799 } else if (S_ISDIR(inode->i_mode)) {
617ba13b
MC
2800 inode->i_op = &ext4_dir_inode_operations;
2801 inode->i_fop = &ext4_dir_operations;
ac27a0ec 2802 } else if (S_ISLNK(inode->i_mode)) {
617ba13b
MC
2803 if (ext4_inode_is_fast_symlink(inode))
2804 inode->i_op = &ext4_fast_symlink_inode_operations;
ac27a0ec 2805 else {
617ba13b
MC
2806 inode->i_op = &ext4_symlink_inode_operations;
2807 ext4_set_aops(inode);
ac27a0ec
DK
2808 }
2809 } else {
617ba13b 2810 inode->i_op = &ext4_special_inode_operations;
ac27a0ec
DK
2811 if (raw_inode->i_block[0])
2812 init_special_inode(inode, inode->i_mode,
2813 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
2814 else
2815 init_special_inode(inode, inode->i_mode,
2816 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
2817 }
2818 brelse (iloc.bh);
617ba13b 2819 ext4_set_inode_flags(inode);
1d1fe1ee
DH
2820 unlock_new_inode(inode);
2821 return inode;
ac27a0ec
DK
2822
2823bad_inode:
1d1fe1ee
DH
2824 iget_failed(inode);
2825 return ERR_PTR(ret);
ac27a0ec
DK
2826}
2827
0fc1b451
AK
2828static int ext4_inode_blocks_set(handle_t *handle,
2829 struct ext4_inode *raw_inode,
2830 struct ext4_inode_info *ei)
2831{
2832 struct inode *inode = &(ei->vfs_inode);
2833 u64 i_blocks = inode->i_blocks;
2834 struct super_block *sb = inode->i_sb;
2835 int err = 0;
2836
2837 if (i_blocks <= ~0U) {
2838 /*
2839 * i_blocks can be represnted in a 32 bit variable
2840 * as multiple of 512 bytes
2841 */
8180a562 2842 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 2843 raw_inode->i_blocks_high = 0;
8180a562 2844 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
0fc1b451
AK
2845 } else if (i_blocks <= 0xffffffffffffULL) {
2846 /*
2847 * i_blocks can be represented in a 48 bit variable
2848 * as multiple of 512 bytes
2849 */
2850 err = ext4_update_rocompat_feature(handle, sb,
2851 EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
2852 if (err)
2853 goto err_out;
2854 /* i_block is stored in the split 48 bit fields */
8180a562 2855 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 2856 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
8180a562 2857 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
0fc1b451 2858 } else {
8180a562
AK
2859 /*
2860 * i_blocks should be represented in a 48 bit variable
2861 * as multiple of file system block size
2862 */
2863 err = ext4_update_rocompat_feature(handle, sb,
2864 EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
2865 if (err)
2866 goto err_out;
2867 ei->i_flags |= EXT4_HUGE_FILE_FL;
2868 /* i_block is stored in file system block size */
2869 i_blocks = i_blocks >> (inode->i_blkbits - 9);
2870 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
2871 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
0fc1b451
AK
2872 }
2873err_out:
2874 return err;
2875}
2876
ac27a0ec
DK
2877/*
2878 * Post the struct inode info into an on-disk inode location in the
2879 * buffer-cache. This gobbles the caller's reference to the
2880 * buffer_head in the inode location struct.
2881 *
2882 * The caller must have write access to iloc->bh.
2883 */
617ba13b 2884static int ext4_do_update_inode(handle_t *handle,
ac27a0ec 2885 struct inode *inode,
617ba13b 2886 struct ext4_iloc *iloc)
ac27a0ec 2887{
617ba13b
MC
2888 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
2889 struct ext4_inode_info *ei = EXT4_I(inode);
ac27a0ec
DK
2890 struct buffer_head *bh = iloc->bh;
2891 int err = 0, rc, block;
2892
2893 /* For fields not not tracking in the in-memory inode,
2894 * initialise them to zero for new inodes. */
617ba13b
MC
2895 if (ei->i_state & EXT4_STATE_NEW)
2896 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
ac27a0ec 2897
ff9ddf7e 2898 ext4_get_inode_flags(ei);
ac27a0ec
DK
2899 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
2900 if(!(test_opt(inode->i_sb, NO_UID32))) {
2901 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
2902 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
2903/*
2904 * Fix up interoperability with old kernels. Otherwise, old inodes get
2905 * re-used with the upper 16 bits of the uid/gid intact
2906 */
2907 if(!ei->i_dtime) {
2908 raw_inode->i_uid_high =
2909 cpu_to_le16(high_16_bits(inode->i_uid));
2910 raw_inode->i_gid_high =
2911 cpu_to_le16(high_16_bits(inode->i_gid));
2912 } else {
2913 raw_inode->i_uid_high = 0;
2914 raw_inode->i_gid_high = 0;
2915 }
2916 } else {
2917 raw_inode->i_uid_low =
2918 cpu_to_le16(fs_high2lowuid(inode->i_uid));
2919 raw_inode->i_gid_low =
2920 cpu_to_le16(fs_high2lowgid(inode->i_gid));
2921 raw_inode->i_uid_high = 0;
2922 raw_inode->i_gid_high = 0;
2923 }
2924 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
ef7f3835
KS
2925
2926 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
2927 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
2928 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
2929 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
2930
0fc1b451
AK
2931 if (ext4_inode_blocks_set(handle, raw_inode, ei))
2932 goto out_brelse;
ac27a0ec
DK
2933 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
2934 raw_inode->i_flags = cpu_to_le32(ei->i_flags);
9b8f1f01
MC
2935 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
2936 cpu_to_le32(EXT4_OS_HURD))
a1ddeb7e
BP
2937 raw_inode->i_file_acl_high =
2938 cpu_to_le16(ei->i_file_acl >> 32);
7973c0c1 2939 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
a48380f7
AK
2940 ext4_isize_set(raw_inode, ei->i_disksize);
2941 if (ei->i_disksize > 0x7fffffffULL) {
2942 struct super_block *sb = inode->i_sb;
2943 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
2944 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
2945 EXT4_SB(sb)->s_es->s_rev_level ==
2946 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
2947 /* If this is the first large file
2948 * created, add a flag to the superblock.
2949 */
2950 err = ext4_journal_get_write_access(handle,
2951 EXT4_SB(sb)->s_sbh);
2952 if (err)
2953 goto out_brelse;
2954 ext4_update_dynamic_rev(sb);
2955 EXT4_SET_RO_COMPAT_FEATURE(sb,
617ba13b 2956 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
a48380f7
AK
2957 sb->s_dirt = 1;
2958 handle->h_sync = 1;
2959 err = ext4_journal_dirty_metadata(handle,
2960 EXT4_SB(sb)->s_sbh);
ac27a0ec
DK
2961 }
2962 }
2963 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
2964 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
2965 if (old_valid_dev(inode->i_rdev)) {
2966 raw_inode->i_block[0] =
2967 cpu_to_le32(old_encode_dev(inode->i_rdev));
2968 raw_inode->i_block[1] = 0;
2969 } else {
2970 raw_inode->i_block[0] = 0;
2971 raw_inode->i_block[1] =
2972 cpu_to_le32(new_encode_dev(inode->i_rdev));
2973 raw_inode->i_block[2] = 0;
2974 }
617ba13b 2975 } else for (block = 0; block < EXT4_N_BLOCKS; block++)
ac27a0ec
DK
2976 raw_inode->i_block[block] = ei->i_data[block];
2977
25ec56b5
JNC
2978 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
2979 if (ei->i_extra_isize) {
2980 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
2981 raw_inode->i_version_hi =
2982 cpu_to_le32(inode->i_version >> 32);
ac27a0ec 2983 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
25ec56b5
JNC
2984 }
2985
ac27a0ec 2986
617ba13b
MC
2987 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
2988 rc = ext4_journal_dirty_metadata(handle, bh);
ac27a0ec
DK
2989 if (!err)
2990 err = rc;
617ba13b 2991 ei->i_state &= ~EXT4_STATE_NEW;
ac27a0ec
DK
2992
2993out_brelse:
2994 brelse (bh);
617ba13b 2995 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
2996 return err;
2997}
2998
2999/*
617ba13b 3000 * ext4_write_inode()
ac27a0ec
DK
3001 *
3002 * We are called from a few places:
3003 *
3004 * - Within generic_file_write() for O_SYNC files.
3005 * Here, there will be no transaction running. We wait for any running
3006 * trasnaction to commit.
3007 *
3008 * - Within sys_sync(), kupdate and such.
3009 * We wait on commit, if tol to.
3010 *
3011 * - Within prune_icache() (PF_MEMALLOC == true)
3012 * Here we simply return. We can't afford to block kswapd on the
3013 * journal commit.
3014 *
3015 * In all cases it is actually safe for us to return without doing anything,
3016 * because the inode has been copied into a raw inode buffer in
617ba13b 3017 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
ac27a0ec
DK
3018 * knfsd.
3019 *
3020 * Note that we are absolutely dependent upon all inode dirtiers doing the
3021 * right thing: they *must* call mark_inode_dirty() after dirtying info in
3022 * which we are interested.
3023 *
3024 * It would be a bug for them to not do this. The code:
3025 *
3026 * mark_inode_dirty(inode)
3027 * stuff();
3028 * inode->i_size = expr;
3029 *
3030 * is in error because a kswapd-driven write_inode() could occur while
3031 * `stuff()' is running, and the new i_size will be lost. Plus the inode
3032 * will no longer be on the superblock's dirty inode list.
3033 */
617ba13b 3034int ext4_write_inode(struct inode *inode, int wait)
ac27a0ec
DK
3035{
3036 if (current->flags & PF_MEMALLOC)
3037 return 0;
3038
617ba13b 3039 if (ext4_journal_current_handle()) {
b38bd33a 3040 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
ac27a0ec
DK
3041 dump_stack();
3042 return -EIO;
3043 }
3044
3045 if (!wait)
3046 return 0;
3047
617ba13b 3048 return ext4_force_commit(inode->i_sb);
ac27a0ec
DK
3049}
3050
3051/*
617ba13b 3052 * ext4_setattr()
ac27a0ec
DK
3053 *
3054 * Called from notify_change.
3055 *
3056 * We want to trap VFS attempts to truncate the file as soon as
3057 * possible. In particular, we want to make sure that when the VFS
3058 * shrinks i_size, we put the inode on the orphan list and modify
3059 * i_disksize immediately, so that during the subsequent flushing of
3060 * dirty pages and freeing of disk blocks, we can guarantee that any
3061 * commit will leave the blocks being flushed in an unused state on
3062 * disk. (On recovery, the inode will get truncated and the blocks will
3063 * be freed, so we have a strong guarantee that no future commit will
3064 * leave these blocks visible to the user.)
3065 *
3066 * Called with inode->sem down.
3067 */
617ba13b 3068int ext4_setattr(struct dentry *dentry, struct iattr *attr)
ac27a0ec
DK
3069{
3070 struct inode *inode = dentry->d_inode;
3071 int error, rc = 0;
3072 const unsigned int ia_valid = attr->ia_valid;
3073
3074 error = inode_change_ok(inode, attr);
3075 if (error)
3076 return error;
3077
3078 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
3079 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
3080 handle_t *handle;
3081
3082 /* (user+group)*(old+new) structure, inode write (sb,
3083 * inode block, ? - but truncate inode update has it) */
617ba13b
MC
3084 handle = ext4_journal_start(inode, 2*(EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)+
3085 EXT4_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
ac27a0ec
DK
3086 if (IS_ERR(handle)) {
3087 error = PTR_ERR(handle);
3088 goto err_out;
3089 }
3090 error = DQUOT_TRANSFER(inode, attr) ? -EDQUOT : 0;
3091 if (error) {
617ba13b 3092 ext4_journal_stop(handle);
ac27a0ec
DK
3093 return error;
3094 }
3095 /* Update corresponding info in inode so that everything is in
3096 * one transaction */
3097 if (attr->ia_valid & ATTR_UID)
3098 inode->i_uid = attr->ia_uid;
3099 if (attr->ia_valid & ATTR_GID)
3100 inode->i_gid = attr->ia_gid;
617ba13b
MC
3101 error = ext4_mark_inode_dirty(handle, inode);
3102 ext4_journal_stop(handle);
ac27a0ec
DK
3103 }
3104
e2b46574
ES
3105 if (attr->ia_valid & ATTR_SIZE) {
3106 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
3107 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3108
3109 if (attr->ia_size > sbi->s_bitmap_maxbytes) {
3110 error = -EFBIG;
3111 goto err_out;
3112 }
3113 }
3114 }
3115
ac27a0ec
DK
3116 if (S_ISREG(inode->i_mode) &&
3117 attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
3118 handle_t *handle;
3119
617ba13b 3120 handle = ext4_journal_start(inode, 3);
ac27a0ec
DK
3121 if (IS_ERR(handle)) {
3122 error = PTR_ERR(handle);
3123 goto err_out;
3124 }
3125
617ba13b
MC
3126 error = ext4_orphan_add(handle, inode);
3127 EXT4_I(inode)->i_disksize = attr->ia_size;
3128 rc = ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
3129 if (!error)
3130 error = rc;
617ba13b 3131 ext4_journal_stop(handle);
ac27a0ec
DK
3132 }
3133
3134 rc = inode_setattr(inode, attr);
3135
617ba13b 3136 /* If inode_setattr's call to ext4_truncate failed to get a
ac27a0ec
DK
3137 * transaction handle at all, we need to clean up the in-core
3138 * orphan list manually. */
3139 if (inode->i_nlink)
617ba13b 3140 ext4_orphan_del(NULL, inode);
ac27a0ec
DK
3141
3142 if (!rc && (ia_valid & ATTR_MODE))
617ba13b 3143 rc = ext4_acl_chmod(inode);
ac27a0ec
DK
3144
3145err_out:
617ba13b 3146 ext4_std_error(inode->i_sb, error);
ac27a0ec
DK
3147 if (!error)
3148 error = rc;
3149 return error;
3150}
3151
3152
3153/*
3154 * How many blocks doth make a writepage()?
3155 *
3156 * With N blocks per page, it may be:
3157 * N data blocks
3158 * 2 indirect block
3159 * 2 dindirect
3160 * 1 tindirect
3161 * N+5 bitmap blocks (from the above)
3162 * N+5 group descriptor summary blocks
3163 * 1 inode block
3164 * 1 superblock.
617ba13b 3165 * 2 * EXT4_SINGLEDATA_TRANS_BLOCKS for the quote files
ac27a0ec 3166 *
617ba13b 3167 * 3 * (N + 5) + 2 + 2 * EXT4_SINGLEDATA_TRANS_BLOCKS
ac27a0ec
DK
3168 *
3169 * With ordered or writeback data it's the same, less the N data blocks.
3170 *
3171 * If the inode's direct blocks can hold an integral number of pages then a
3172 * page cannot straddle two indirect blocks, and we can only touch one indirect
3173 * and dindirect block, and the "5" above becomes "3".
3174 *
3175 * This still overestimates under most circumstances. If we were to pass the
3176 * start and end offsets in here as well we could do block_to_path() on each
3177 * block and work out the exact number of indirects which are touched. Pah.
3178 */
3179
a86c6181 3180int ext4_writepage_trans_blocks(struct inode *inode)
ac27a0ec 3181{
617ba13b
MC
3182 int bpp = ext4_journal_blocks_per_page(inode);
3183 int indirects = (EXT4_NDIR_BLOCKS % bpp) ? 5 : 3;
ac27a0ec
DK
3184 int ret;
3185
a86c6181
AT
3186 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
3187 return ext4_ext_writepage_trans_blocks(inode, bpp);
3188
617ba13b 3189 if (ext4_should_journal_data(inode))
ac27a0ec
DK
3190 ret = 3 * (bpp + indirects) + 2;
3191 else
3192 ret = 2 * (bpp + indirects) + 2;
3193
3194#ifdef CONFIG_QUOTA
3195 /* We know that structure was already allocated during DQUOT_INIT so
3196 * we will be updating only the data blocks + inodes */
617ba13b 3197 ret += 2*EXT4_QUOTA_TRANS_BLOCKS(inode->i_sb);
ac27a0ec
DK
3198#endif
3199
3200 return ret;
3201}
3202
3203/*
617ba13b 3204 * The caller must have previously called ext4_reserve_inode_write().
ac27a0ec
DK
3205 * Give this, we know that the caller already has write access to iloc->bh.
3206 */
617ba13b
MC
3207int ext4_mark_iloc_dirty(handle_t *handle,
3208 struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
3209{
3210 int err = 0;
3211
25ec56b5
JNC
3212 if (test_opt(inode->i_sb, I_VERSION))
3213 inode_inc_iversion(inode);
3214
ac27a0ec
DK
3215 /* the do_update_inode consumes one bh->b_count */
3216 get_bh(iloc->bh);
3217
dab291af 3218 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
617ba13b 3219 err = ext4_do_update_inode(handle, inode, iloc);
ac27a0ec
DK
3220 put_bh(iloc->bh);
3221 return err;
3222}
3223
3224/*
3225 * On success, We end up with an outstanding reference count against
3226 * iloc->bh. This _must_ be cleaned up later.
3227 */
3228
3229int
617ba13b
MC
3230ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
3231 struct ext4_iloc *iloc)
ac27a0ec
DK
3232{
3233 int err = 0;
3234 if (handle) {
617ba13b 3235 err = ext4_get_inode_loc(inode, iloc);
ac27a0ec
DK
3236 if (!err) {
3237 BUFFER_TRACE(iloc->bh, "get_write_access");
617ba13b 3238 err = ext4_journal_get_write_access(handle, iloc->bh);
ac27a0ec
DK
3239 if (err) {
3240 brelse(iloc->bh);
3241 iloc->bh = NULL;
3242 }
3243 }
3244 }
617ba13b 3245 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
3246 return err;
3247}
3248
6dd4ee7c
KS
3249/*
3250 * Expand an inode by new_extra_isize bytes.
3251 * Returns 0 on success or negative error number on failure.
3252 */
1d03ec98
AK
3253static int ext4_expand_extra_isize(struct inode *inode,
3254 unsigned int new_extra_isize,
3255 struct ext4_iloc iloc,
3256 handle_t *handle)
6dd4ee7c
KS
3257{
3258 struct ext4_inode *raw_inode;
3259 struct ext4_xattr_ibody_header *header;
3260 struct ext4_xattr_entry *entry;
3261
3262 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
3263 return 0;
3264
3265 raw_inode = ext4_raw_inode(&iloc);
3266
3267 header = IHDR(inode, raw_inode);
3268 entry = IFIRST(header);
3269
3270 /* No extended attributes present */
3271 if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) ||
3272 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
3273 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
3274 new_extra_isize);
3275 EXT4_I(inode)->i_extra_isize = new_extra_isize;
3276 return 0;
3277 }
3278
3279 /* try to expand with EAs present */
3280 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
3281 raw_inode, handle);
3282}
3283
ac27a0ec
DK
3284/*
3285 * What we do here is to mark the in-core inode as clean with respect to inode
3286 * dirtiness (it may still be data-dirty).
3287 * This means that the in-core inode may be reaped by prune_icache
3288 * without having to perform any I/O. This is a very good thing,
3289 * because *any* task may call prune_icache - even ones which
3290 * have a transaction open against a different journal.
3291 *
3292 * Is this cheating? Not really. Sure, we haven't written the
3293 * inode out, but prune_icache isn't a user-visible syncing function.
3294 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
3295 * we start and wait on commits.
3296 *
3297 * Is this efficient/effective? Well, we're being nice to the system
3298 * by cleaning up our inodes proactively so they can be reaped
3299 * without I/O. But we are potentially leaving up to five seconds'
3300 * worth of inodes floating about which prune_icache wants us to
3301 * write out. One way to fix that would be to get prune_icache()
3302 * to do a write_super() to free up some memory. It has the desired
3303 * effect.
3304 */
617ba13b 3305int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
ac27a0ec 3306{
617ba13b 3307 struct ext4_iloc iloc;
6dd4ee7c
KS
3308 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3309 static unsigned int mnt_count;
3310 int err, ret;
ac27a0ec
DK
3311
3312 might_sleep();
617ba13b 3313 err = ext4_reserve_inode_write(handle, inode, &iloc);
6dd4ee7c
KS
3314 if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
3315 !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) {
3316 /*
3317 * We need extra buffer credits since we may write into EA block
3318 * with this same handle. If journal_extend fails, then it will
3319 * only result in a minor loss of functionality for that inode.
3320 * If this is felt to be critical, then e2fsck should be run to
3321 * force a large enough s_min_extra_isize.
3322 */
3323 if ((jbd2_journal_extend(handle,
3324 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
3325 ret = ext4_expand_extra_isize(inode,
3326 sbi->s_want_extra_isize,
3327 iloc, handle);
3328 if (ret) {
3329 EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND;
c1bddad9
AK
3330 if (mnt_count !=
3331 le16_to_cpu(sbi->s_es->s_mnt_count)) {
6dd4ee7c
KS
3332 ext4_warning(inode->i_sb, __FUNCTION__,
3333 "Unable to expand inode %lu. Delete"
3334 " some EAs or run e2fsck.",
3335 inode->i_ino);
c1bddad9
AK
3336 mnt_count =
3337 le16_to_cpu(sbi->s_es->s_mnt_count);
6dd4ee7c
KS
3338 }
3339 }
3340 }
3341 }
ac27a0ec 3342 if (!err)
617ba13b 3343 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
ac27a0ec
DK
3344 return err;
3345}
3346
3347/*
617ba13b 3348 * ext4_dirty_inode() is called from __mark_inode_dirty()
ac27a0ec
DK
3349 *
3350 * We're really interested in the case where a file is being extended.
3351 * i_size has been changed by generic_commit_write() and we thus need
3352 * to include the updated inode in the current transaction.
3353 *
3354 * Also, DQUOT_ALLOC_SPACE() will always dirty the inode when blocks
3355 * are allocated to the file.
3356 *
3357 * If the inode is marked synchronous, we don't honour that here - doing
3358 * so would cause a commit on atime updates, which we don't bother doing.
3359 * We handle synchronous inodes at the highest possible level.
3360 */
617ba13b 3361void ext4_dirty_inode(struct inode *inode)
ac27a0ec 3362{
617ba13b 3363 handle_t *current_handle = ext4_journal_current_handle();
ac27a0ec
DK
3364 handle_t *handle;
3365
617ba13b 3366 handle = ext4_journal_start(inode, 2);
ac27a0ec
DK
3367 if (IS_ERR(handle))
3368 goto out;
3369 if (current_handle &&
3370 current_handle->h_transaction != handle->h_transaction) {
3371 /* This task has a transaction open against a different fs */
3372 printk(KERN_EMERG "%s: transactions do not match!\n",
3373 __FUNCTION__);
3374 } else {
3375 jbd_debug(5, "marking dirty. outer handle=%p\n",
3376 current_handle);
617ba13b 3377 ext4_mark_inode_dirty(handle, inode);
ac27a0ec 3378 }
617ba13b 3379 ext4_journal_stop(handle);
ac27a0ec
DK
3380out:
3381 return;
3382}
3383
3384#if 0
3385/*
3386 * Bind an inode's backing buffer_head into this transaction, to prevent
3387 * it from being flushed to disk early. Unlike
617ba13b 3388 * ext4_reserve_inode_write, this leaves behind no bh reference and
ac27a0ec
DK
3389 * returns no iloc structure, so the caller needs to repeat the iloc
3390 * lookup to mark the inode dirty later.
3391 */
617ba13b 3392static int ext4_pin_inode(handle_t *handle, struct inode *inode)
ac27a0ec 3393{
617ba13b 3394 struct ext4_iloc iloc;
ac27a0ec
DK
3395
3396 int err = 0;
3397 if (handle) {
617ba13b 3398 err = ext4_get_inode_loc(inode, &iloc);
ac27a0ec
DK
3399 if (!err) {
3400 BUFFER_TRACE(iloc.bh, "get_write_access");
dab291af 3401 err = jbd2_journal_get_write_access(handle, iloc.bh);
ac27a0ec 3402 if (!err)
617ba13b 3403 err = ext4_journal_dirty_metadata(handle,
ac27a0ec
DK
3404 iloc.bh);
3405 brelse(iloc.bh);
3406 }
3407 }
617ba13b 3408 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
3409 return err;
3410}
3411#endif
3412
617ba13b 3413int ext4_change_inode_journal_flag(struct inode *inode, int val)
ac27a0ec
DK
3414{
3415 journal_t *journal;
3416 handle_t *handle;
3417 int err;
3418
3419 /*
3420 * We have to be very careful here: changing a data block's
3421 * journaling status dynamically is dangerous. If we write a
3422 * data block to the journal, change the status and then delete
3423 * that block, we risk forgetting to revoke the old log record
3424 * from the journal and so a subsequent replay can corrupt data.
3425 * So, first we make sure that the journal is empty and that
3426 * nobody is changing anything.
3427 */
3428
617ba13b 3429 journal = EXT4_JOURNAL(inode);
d699594d 3430 if (is_journal_aborted(journal))
ac27a0ec
DK
3431 return -EROFS;
3432
dab291af
MC
3433 jbd2_journal_lock_updates(journal);
3434 jbd2_journal_flush(journal);
ac27a0ec
DK
3435
3436 /*
3437 * OK, there are no updates running now, and all cached data is
3438 * synced to disk. We are now in a completely consistent state
3439 * which doesn't have anything in the journal, and we know that
3440 * no filesystem updates are running, so it is safe to modify
3441 * the inode's in-core data-journaling state flag now.
3442 */
3443
3444 if (val)
617ba13b 3445 EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
ac27a0ec 3446 else
617ba13b
MC
3447 EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
3448 ext4_set_aops(inode);
ac27a0ec 3449
dab291af 3450 jbd2_journal_unlock_updates(journal);
ac27a0ec
DK
3451
3452 /* Finally we can mark the inode as dirty. */
3453
617ba13b 3454 handle = ext4_journal_start(inode, 1);
ac27a0ec
DK
3455 if (IS_ERR(handle))
3456 return PTR_ERR(handle);
3457
617ba13b 3458 err = ext4_mark_inode_dirty(handle, inode);
ac27a0ec 3459 handle->h_sync = 1;
617ba13b
MC
3460 ext4_journal_stop(handle);
3461 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
3462
3463 return err;
3464}