direct-io: Implement generic deferred AIO completions
[linux-2.6-block.git] / fs / ext4 / inode.c
CommitLineData
ac27a0ec 1/*
617ba13b 2 * linux/fs/ext4/inode.c
ac27a0ec
DK
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
ac27a0ec
DK
15 * 64-bit file support on 64-bit platforms by Jakub Jelinek
16 * (jj@sunsite.ms.mff.cuni.cz)
17 *
617ba13b 18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
ac27a0ec
DK
19 */
20
ac27a0ec
DK
21#include <linux/fs.h>
22#include <linux/time.h>
dab291af 23#include <linux/jbd2.h>
ac27a0ec
DK
24#include <linux/highuid.h>
25#include <linux/pagemap.h>
26#include <linux/quotaops.h>
27#include <linux/string.h>
28#include <linux/buffer_head.h>
29#include <linux/writeback.h>
64769240 30#include <linux/pagevec.h>
ac27a0ec 31#include <linux/mpage.h>
e83c1397 32#include <linux/namei.h>
ac27a0ec
DK
33#include <linux/uio.h>
34#include <linux/bio.h>
4c0425ff 35#include <linux/workqueue.h>
744692dc 36#include <linux/kernel.h>
6db26ffc 37#include <linux/printk.h>
5a0e3ad6 38#include <linux/slab.h>
a8901d34 39#include <linux/ratelimit.h>
a27bb332 40#include <linux/aio.h>
9bffad1e 41
3dcf5451 42#include "ext4_jbd2.h"
ac27a0ec
DK
43#include "xattr.h"
44#include "acl.h"
9f125d64 45#include "truncate.h"
ac27a0ec 46
9bffad1e
TT
47#include <trace/events/ext4.h>
48
a1d6cc56
AK
49#define MPAGE_DA_EXTENT_TAIL 0x01
50
814525f4
DW
51static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
52 struct ext4_inode_info *ei)
53{
54 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
55 __u16 csum_lo;
56 __u16 csum_hi = 0;
57 __u32 csum;
58
171a7f21 59 csum_lo = le16_to_cpu(raw->i_checksum_lo);
814525f4
DW
60 raw->i_checksum_lo = 0;
61 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
62 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
171a7f21 63 csum_hi = le16_to_cpu(raw->i_checksum_hi);
814525f4
DW
64 raw->i_checksum_hi = 0;
65 }
66
67 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
68 EXT4_INODE_SIZE(inode->i_sb));
69
171a7f21 70 raw->i_checksum_lo = cpu_to_le16(csum_lo);
814525f4
DW
71 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
72 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
171a7f21 73 raw->i_checksum_hi = cpu_to_le16(csum_hi);
814525f4
DW
74
75 return csum;
76}
77
78static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
79 struct ext4_inode_info *ei)
80{
81 __u32 provided, calculated;
82
83 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
84 cpu_to_le32(EXT4_OS_LINUX) ||
85 !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
86 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
87 return 1;
88
89 provided = le16_to_cpu(raw->i_checksum_lo);
90 calculated = ext4_inode_csum(inode, raw, ei);
91 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
92 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
93 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
94 else
95 calculated &= 0xFFFF;
96
97 return provided == calculated;
98}
99
100static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
101 struct ext4_inode_info *ei)
102{
103 __u32 csum;
104
105 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
106 cpu_to_le32(EXT4_OS_LINUX) ||
107 !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
108 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
109 return;
110
111 csum = ext4_inode_csum(inode, raw, ei);
112 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
113 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
114 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
115 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
116}
117
678aaf48
JK
118static inline int ext4_begin_ordered_truncate(struct inode *inode,
119 loff_t new_size)
120{
7ff9c073 121 trace_ext4_begin_ordered_truncate(inode, new_size);
8aefcd55
TT
122 /*
123 * If jinode is zero, then we never opened the file for
124 * writing, so there's no need to call
125 * jbd2_journal_begin_ordered_truncate() since there's no
126 * outstanding writes we need to flush.
127 */
128 if (!EXT4_I(inode)->jinode)
129 return 0;
130 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
131 EXT4_I(inode)->jinode,
132 new_size);
678aaf48
JK
133}
134
d47992f8
LC
135static void ext4_invalidatepage(struct page *page, unsigned int offset,
136 unsigned int length);
cb20d518
TT
137static int __ext4_journalled_writepage(struct page *page, unsigned int len);
138static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
fffb2739
JK
139static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
140 int pextents);
64769240 141
ac27a0ec
DK
142/*
143 * Test whether an inode is a fast symlink.
144 */
617ba13b 145static int ext4_inode_is_fast_symlink(struct inode *inode)
ac27a0ec 146{
617ba13b 147 int ea_blocks = EXT4_I(inode)->i_file_acl ?
ac27a0ec
DK
148 (inode->i_sb->s_blocksize >> 9) : 0;
149
150 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
151}
152
ac27a0ec
DK
153/*
154 * Restart the transaction associated with *handle. This does a commit,
155 * so before we call here everything must be consistently dirtied against
156 * this transaction.
157 */
fa5d1113 158int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
487caeef 159 int nblocks)
ac27a0ec 160{
487caeef
JK
161 int ret;
162
163 /*
e35fd660 164 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
487caeef
JK
165 * moment, get_block can be called only for blocks inside i_size since
166 * page cache has been already dropped and writes are blocked by
167 * i_mutex. So we can safely drop the i_data_sem here.
168 */
0390131b 169 BUG_ON(EXT4_JOURNAL(inode) == NULL);
ac27a0ec 170 jbd_debug(2, "restarting handle %p\n", handle);
487caeef 171 up_write(&EXT4_I(inode)->i_data_sem);
8e8eaabe 172 ret = ext4_journal_restart(handle, nblocks);
487caeef 173 down_write(&EXT4_I(inode)->i_data_sem);
fa5d1113 174 ext4_discard_preallocations(inode);
487caeef
JK
175
176 return ret;
ac27a0ec
DK
177}
178
179/*
180 * Called at the last iput() if i_nlink is zero.
181 */
0930fcc1 182void ext4_evict_inode(struct inode *inode)
ac27a0ec
DK
183{
184 handle_t *handle;
bc965ab3 185 int err;
ac27a0ec 186
7ff9c073 187 trace_ext4_evict_inode(inode);
2581fdc8 188
0930fcc1 189 if (inode->i_nlink) {
2d859db3
JK
190 /*
191 * When journalling data dirty buffers are tracked only in the
192 * journal. So although mm thinks everything is clean and
193 * ready for reaping the inode might still have some pages to
194 * write in the running transaction or waiting to be
195 * checkpointed. Thus calling jbd2_journal_invalidatepage()
196 * (via truncate_inode_pages()) to discard these buffers can
197 * cause data loss. Also even if we did not discard these
198 * buffers, we would have no way to find them after the inode
199 * is reaped and thus user could see stale data if he tries to
200 * read them before the transaction is checkpointed. So be
201 * careful and force everything to disk here... We use
202 * ei->i_datasync_tid to store the newest transaction
203 * containing inode's data.
204 *
205 * Note that directories do not have this problem because they
206 * don't use page cache.
207 */
208 if (ext4_should_journal_data(inode) &&
2b405bfa
TT
209 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
210 inode->i_ino != EXT4_JOURNAL_INO) {
2d859db3
JK
211 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
212 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
213
d76a3a77 214 jbd2_complete_transaction(journal, commit_tid);
2d859db3
JK
215 filemap_write_and_wait(&inode->i_data);
216 }
0930fcc1 217 truncate_inode_pages(&inode->i_data, 0);
5dc23bdd
JK
218
219 WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
0930fcc1
AV
220 goto no_delete;
221 }
222
907f4554 223 if (!is_bad_inode(inode))
871a2931 224 dquot_initialize(inode);
907f4554 225
678aaf48
JK
226 if (ext4_should_order_data(inode))
227 ext4_begin_ordered_truncate(inode, 0);
ac27a0ec
DK
228 truncate_inode_pages(&inode->i_data, 0);
229
5dc23bdd 230 WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
ac27a0ec
DK
231 if (is_bad_inode(inode))
232 goto no_delete;
233
8e8ad8a5
JK
234 /*
235 * Protect us against freezing - iput() caller didn't have to have any
236 * protection against it
237 */
238 sb_start_intwrite(inode->i_sb);
9924a92a
TT
239 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
240 ext4_blocks_for_truncate(inode)+3);
ac27a0ec 241 if (IS_ERR(handle)) {
bc965ab3 242 ext4_std_error(inode->i_sb, PTR_ERR(handle));
ac27a0ec
DK
243 /*
244 * If we're going to skip the normal cleanup, we still need to
245 * make sure that the in-core orphan linked list is properly
246 * cleaned up.
247 */
617ba13b 248 ext4_orphan_del(NULL, inode);
8e8ad8a5 249 sb_end_intwrite(inode->i_sb);
ac27a0ec
DK
250 goto no_delete;
251 }
252
253 if (IS_SYNC(inode))
0390131b 254 ext4_handle_sync(handle);
ac27a0ec 255 inode->i_size = 0;
bc965ab3
TT
256 err = ext4_mark_inode_dirty(handle, inode);
257 if (err) {
12062ddd 258 ext4_warning(inode->i_sb,
bc965ab3
TT
259 "couldn't mark inode dirty (err %d)", err);
260 goto stop_handle;
261 }
ac27a0ec 262 if (inode->i_blocks)
617ba13b 263 ext4_truncate(inode);
bc965ab3
TT
264
265 /*
266 * ext4_ext_truncate() doesn't reserve any slop when it
267 * restarts journal transactions; therefore there may not be
268 * enough credits left in the handle to remove the inode from
269 * the orphan list and set the dtime field.
270 */
0390131b 271 if (!ext4_handle_has_enough_credits(handle, 3)) {
bc965ab3
TT
272 err = ext4_journal_extend(handle, 3);
273 if (err > 0)
274 err = ext4_journal_restart(handle, 3);
275 if (err != 0) {
12062ddd 276 ext4_warning(inode->i_sb,
bc965ab3
TT
277 "couldn't extend journal (err %d)", err);
278 stop_handle:
279 ext4_journal_stop(handle);
45388219 280 ext4_orphan_del(NULL, inode);
8e8ad8a5 281 sb_end_intwrite(inode->i_sb);
bc965ab3
TT
282 goto no_delete;
283 }
284 }
285
ac27a0ec 286 /*
617ba13b 287 * Kill off the orphan record which ext4_truncate created.
ac27a0ec 288 * AKPM: I think this can be inside the above `if'.
617ba13b 289 * Note that ext4_orphan_del() has to be able to cope with the
ac27a0ec 290 * deletion of a non-existent orphan - this is because we don't
617ba13b 291 * know if ext4_truncate() actually created an orphan record.
ac27a0ec
DK
292 * (Well, we could do this if we need to, but heck - it works)
293 */
617ba13b
MC
294 ext4_orphan_del(handle, inode);
295 EXT4_I(inode)->i_dtime = get_seconds();
ac27a0ec
DK
296
297 /*
298 * One subtle ordering requirement: if anything has gone wrong
299 * (transaction abort, IO errors, whatever), then we can still
300 * do these next steps (the fs will already have been marked as
301 * having errors), but we can't free the inode if the mark_dirty
302 * fails.
303 */
617ba13b 304 if (ext4_mark_inode_dirty(handle, inode))
ac27a0ec 305 /* If that failed, just do the required in-core inode clear. */
0930fcc1 306 ext4_clear_inode(inode);
ac27a0ec 307 else
617ba13b
MC
308 ext4_free_inode(handle, inode);
309 ext4_journal_stop(handle);
8e8ad8a5 310 sb_end_intwrite(inode->i_sb);
ac27a0ec
DK
311 return;
312no_delete:
0930fcc1 313 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
ac27a0ec
DK
314}
315
a9e7f447
DM
316#ifdef CONFIG_QUOTA
317qsize_t *ext4_get_reserved_space(struct inode *inode)
60e58e0f 318{
a9e7f447 319 return &EXT4_I(inode)->i_reserved_quota;
60e58e0f 320}
a9e7f447 321#endif
9d0be502 322
12219aea
AK
323/*
324 * Calculate the number of metadata blocks need to reserve
9d0be502 325 * to allocate a block located at @lblock
12219aea 326 */
01f49d0b 327static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
12219aea 328{
12e9b892 329 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
9d0be502 330 return ext4_ext_calc_metadata_amount(inode, lblock);
12219aea 331
8bb2b247 332 return ext4_ind_calc_metadata_amount(inode, lblock);
12219aea
AK
333}
334
0637c6f4
TT
335/*
336 * Called with i_data_sem down, which is important since we can call
337 * ext4_discard_preallocations() from here.
338 */
5f634d06
AK
339void ext4_da_update_reserve_space(struct inode *inode,
340 int used, int quota_claim)
12219aea
AK
341{
342 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 343 struct ext4_inode_info *ei = EXT4_I(inode);
0637c6f4
TT
344
345 spin_lock(&ei->i_block_reservation_lock);
d8990240 346 trace_ext4_da_update_reserve_space(inode, used, quota_claim);
0637c6f4 347 if (unlikely(used > ei->i_reserved_data_blocks)) {
8de5c325 348 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
1084f252 349 "with only %d reserved data blocks",
0637c6f4
TT
350 __func__, inode->i_ino, used,
351 ei->i_reserved_data_blocks);
352 WARN_ON(1);
353 used = ei->i_reserved_data_blocks;
354 }
12219aea 355
97795d2a 356 if (unlikely(ei->i_allocated_meta_blocks > ei->i_reserved_meta_blocks)) {
01a523eb
TT
357 ext4_warning(inode->i_sb, "ino %lu, allocated %d "
358 "with only %d reserved metadata blocks "
359 "(releasing %d blocks with reserved %d data blocks)",
360 inode->i_ino, ei->i_allocated_meta_blocks,
361 ei->i_reserved_meta_blocks, used,
362 ei->i_reserved_data_blocks);
97795d2a
BF
363 WARN_ON(1);
364 ei->i_allocated_meta_blocks = ei->i_reserved_meta_blocks;
365 }
366
0637c6f4
TT
367 /* Update per-inode reservations */
368 ei->i_reserved_data_blocks -= used;
0637c6f4 369 ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
57042651 370 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
72b8ab9d 371 used + ei->i_allocated_meta_blocks);
0637c6f4 372 ei->i_allocated_meta_blocks = 0;
6bc6e63f 373
0637c6f4
TT
374 if (ei->i_reserved_data_blocks == 0) {
375 /*
376 * We can release all of the reserved metadata blocks
377 * only when we have written all of the delayed
378 * allocation blocks.
379 */
57042651 380 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
72b8ab9d 381 ei->i_reserved_meta_blocks);
ee5f4d9c 382 ei->i_reserved_meta_blocks = 0;
9d0be502 383 ei->i_da_metadata_calc_len = 0;
6bc6e63f 384 }
12219aea 385 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f 386
72b8ab9d
ES
387 /* Update quota subsystem for data blocks */
388 if (quota_claim)
7b415bf6 389 dquot_claim_block(inode, EXT4_C2B(sbi, used));
72b8ab9d 390 else {
5f634d06
AK
391 /*
392 * We did fallocate with an offset that is already delayed
393 * allocated. So on delayed allocated writeback we should
72b8ab9d 394 * not re-claim the quota for fallocated blocks.
5f634d06 395 */
7b415bf6 396 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
5f634d06 397 }
d6014301
AK
398
399 /*
400 * If we have done all the pending block allocations and if
401 * there aren't any writers on the inode, we can discard the
402 * inode's preallocations.
403 */
0637c6f4
TT
404 if ((ei->i_reserved_data_blocks == 0) &&
405 (atomic_read(&inode->i_writecount) == 0))
d6014301 406 ext4_discard_preallocations(inode);
12219aea
AK
407}
408
e29136f8 409static int __check_block_validity(struct inode *inode, const char *func,
c398eda0
TT
410 unsigned int line,
411 struct ext4_map_blocks *map)
6fd058f7 412{
24676da4
TT
413 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
414 map->m_len)) {
c398eda0
TT
415 ext4_error_inode(inode, func, line, map->m_pblk,
416 "lblock %lu mapped to illegal pblock "
417 "(length %d)", (unsigned long) map->m_lblk,
418 map->m_len);
6fd058f7
TT
419 return -EIO;
420 }
421 return 0;
422}
423
e29136f8 424#define check_block_validity(inode, map) \
c398eda0 425 __check_block_validity((inode), __func__, __LINE__, (map))
e29136f8 426
921f266b
DM
427#ifdef ES_AGGRESSIVE_TEST
428static void ext4_map_blocks_es_recheck(handle_t *handle,
429 struct inode *inode,
430 struct ext4_map_blocks *es_map,
431 struct ext4_map_blocks *map,
432 int flags)
433{
434 int retval;
435
436 map->m_flags = 0;
437 /*
438 * There is a race window that the result is not the same.
439 * e.g. xfstests #223 when dioread_nolock enables. The reason
440 * is that we lookup a block mapping in extent status tree with
441 * out taking i_data_sem. So at the time the unwritten extent
442 * could be converted.
443 */
444 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
445 down_read((&EXT4_I(inode)->i_data_sem));
446 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
447 retval = ext4_ext_map_blocks(handle, inode, map, flags &
448 EXT4_GET_BLOCKS_KEEP_SIZE);
449 } else {
450 retval = ext4_ind_map_blocks(handle, inode, map, flags &
451 EXT4_GET_BLOCKS_KEEP_SIZE);
452 }
453 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
454 up_read((&EXT4_I(inode)->i_data_sem));
455 /*
456 * Clear EXT4_MAP_FROM_CLUSTER and EXT4_MAP_BOUNDARY flag
457 * because it shouldn't be marked in es_map->m_flags.
458 */
459 map->m_flags &= ~(EXT4_MAP_FROM_CLUSTER | EXT4_MAP_BOUNDARY);
460
461 /*
462 * We don't check m_len because extent will be collpased in status
463 * tree. So the m_len might not equal.
464 */
465 if (es_map->m_lblk != map->m_lblk ||
466 es_map->m_flags != map->m_flags ||
467 es_map->m_pblk != map->m_pblk) {
bdafe42a 468 printk("ES cache assertion failed for inode: %lu "
921f266b
DM
469 "es_cached ex [%d/%d/%llu/%x] != "
470 "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
471 inode->i_ino, es_map->m_lblk, es_map->m_len,
472 es_map->m_pblk, es_map->m_flags, map->m_lblk,
473 map->m_len, map->m_pblk, map->m_flags,
474 retval, flags);
475 }
476}
477#endif /* ES_AGGRESSIVE_TEST */
478
f5ab0d1f 479/*
e35fd660 480 * The ext4_map_blocks() function tries to look up the requested blocks,
2b2d6d01 481 * and returns if the blocks are already mapped.
f5ab0d1f 482 *
f5ab0d1f
MC
483 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
484 * and store the allocated blocks in the result buffer head and mark it
485 * mapped.
486 *
e35fd660
TT
487 * If file type is extents based, it will call ext4_ext_map_blocks(),
488 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
f5ab0d1f
MC
489 * based files
490 *
491 * On success, it returns the number of blocks being mapped or allocate.
492 * if create==0 and the blocks are pre-allocated and uninitialized block,
493 * the result buffer head is unmapped. If the create ==1, it will make sure
494 * the buffer head is mapped.
495 *
496 * It returns 0 if plain look up failed (blocks have not been allocated), in
df3ab170 497 * that case, buffer head is unmapped
f5ab0d1f
MC
498 *
499 * It returns the error in case of allocation failure.
500 */
e35fd660
TT
501int ext4_map_blocks(handle_t *handle, struct inode *inode,
502 struct ext4_map_blocks *map, int flags)
0e855ac8 503{
d100eef2 504 struct extent_status es;
0e855ac8 505 int retval;
921f266b
DM
506#ifdef ES_AGGRESSIVE_TEST
507 struct ext4_map_blocks orig_map;
508
509 memcpy(&orig_map, map, sizeof(*map));
510#endif
f5ab0d1f 511
e35fd660
TT
512 map->m_flags = 0;
513 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
514 "logical block %lu\n", inode->i_ino, flags, map->m_len,
515 (unsigned long) map->m_lblk);
d100eef2
ZL
516
517 /* Lookup extent status tree firstly */
518 if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
63b99968 519 ext4_es_lru_add(inode);
d100eef2
ZL
520 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
521 map->m_pblk = ext4_es_pblock(&es) +
522 map->m_lblk - es.es_lblk;
523 map->m_flags |= ext4_es_is_written(&es) ?
524 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
525 retval = es.es_len - (map->m_lblk - es.es_lblk);
526 if (retval > map->m_len)
527 retval = map->m_len;
528 map->m_len = retval;
529 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
530 retval = 0;
531 } else {
532 BUG_ON(1);
533 }
921f266b
DM
534#ifdef ES_AGGRESSIVE_TEST
535 ext4_map_blocks_es_recheck(handle, inode, map,
536 &orig_map, flags);
537#endif
d100eef2
ZL
538 goto found;
539 }
540
4df3d265 541 /*
b920c755
TT
542 * Try to see if we can get the block without requesting a new
543 * file system block.
4df3d265 544 */
729f52c6
ZL
545 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
546 down_read((&EXT4_I(inode)->i_data_sem));
12e9b892 547 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
a4e5d88b
DM
548 retval = ext4_ext_map_blocks(handle, inode, map, flags &
549 EXT4_GET_BLOCKS_KEEP_SIZE);
0e855ac8 550 } else {
a4e5d88b
DM
551 retval = ext4_ind_map_blocks(handle, inode, map, flags &
552 EXT4_GET_BLOCKS_KEEP_SIZE);
0e855ac8 553 }
f7fec032
ZL
554 if (retval > 0) {
555 int ret;
556 unsigned long long status;
557
44fb851d
ZL
558 if (unlikely(retval != map->m_len)) {
559 ext4_warning(inode->i_sb,
560 "ES len assertion failed for inode "
561 "%lu: retval %d != map->m_len %d",
562 inode->i_ino, retval, map->m_len);
563 WARN_ON(1);
921f266b 564 }
921f266b 565
f7fec032
ZL
566 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
567 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
568 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
569 ext4_find_delalloc_range(inode, map->m_lblk,
570 map->m_lblk + map->m_len - 1))
571 status |= EXTENT_STATUS_DELAYED;
572 ret = ext4_es_insert_extent(inode, map->m_lblk,
573 map->m_len, map->m_pblk, status);
574 if (ret < 0)
575 retval = ret;
576 }
729f52c6
ZL
577 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
578 up_read((&EXT4_I(inode)->i_data_sem));
f5ab0d1f 579
d100eef2 580found:
e35fd660 581 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
f7fec032 582 int ret = check_block_validity(inode, map);
6fd058f7
TT
583 if (ret != 0)
584 return ret;
585 }
586
f5ab0d1f 587 /* If it is only a block(s) look up */
c2177057 588 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
f5ab0d1f
MC
589 return retval;
590
591 /*
592 * Returns if the blocks have already allocated
593 *
594 * Note that if blocks have been preallocated
df3ab170 595 * ext4_ext_get_block() returns the create = 0
f5ab0d1f
MC
596 * with buffer head unmapped.
597 */
e35fd660 598 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
4df3d265
AK
599 return retval;
600
2a8964d6 601 /*
a25a4e1a
ZL
602 * Here we clear m_flags because after allocating an new extent,
603 * it will be set again.
2a8964d6 604 */
a25a4e1a 605 map->m_flags &= ~EXT4_MAP_FLAGS;
2a8964d6 606
4df3d265 607 /*
f5ab0d1f
MC
608 * New blocks allocate and/or writing to uninitialized extent
609 * will possibly result in updating i_data, so we take
610 * the write lock of i_data_sem, and call get_blocks()
611 * with create == 1 flag.
4df3d265
AK
612 */
613 down_write((&EXT4_I(inode)->i_data_sem));
d2a17637
MC
614
615 /*
616 * if the caller is from delayed allocation writeout path
617 * we have already reserved fs blocks for allocation
618 * let the underlying get_block() function know to
619 * avoid double accounting
620 */
c2177057 621 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
f2321097 622 ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
4df3d265
AK
623 /*
624 * We need to check for EXT4 here because migrate
625 * could have changed the inode type in between
626 */
12e9b892 627 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
e35fd660 628 retval = ext4_ext_map_blocks(handle, inode, map, flags);
0e855ac8 629 } else {
e35fd660 630 retval = ext4_ind_map_blocks(handle, inode, map, flags);
267e4db9 631
e35fd660 632 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
267e4db9
AK
633 /*
634 * We allocated new blocks which will result in
635 * i_data's format changing. Force the migrate
636 * to fail by clearing migrate flags
637 */
19f5fb7a 638 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
267e4db9 639 }
d2a17637 640
5f634d06
AK
641 /*
642 * Update reserved blocks/metadata blocks after successful
643 * block allocation which had been deferred till now. We don't
644 * support fallocate for non extent files. So we can update
645 * reserve space here.
646 */
647 if ((retval > 0) &&
1296cc85 648 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
5f634d06
AK
649 ext4_da_update_reserve_space(inode, retval, 1);
650 }
f7fec032 651 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
f2321097 652 ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
2ac3b6e0 653
f7fec032
ZL
654 if (retval > 0) {
655 int ret;
656 unsigned long long status;
657
44fb851d
ZL
658 if (unlikely(retval != map->m_len)) {
659 ext4_warning(inode->i_sb,
660 "ES len assertion failed for inode "
661 "%lu: retval %d != map->m_len %d",
662 inode->i_ino, retval, map->m_len);
663 WARN_ON(1);
921f266b 664 }
921f266b 665
adb23551
ZL
666 /*
667 * If the extent has been zeroed out, we don't need to update
668 * extent status tree.
669 */
670 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
671 ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
672 if (ext4_es_is_written(&es))
673 goto has_zeroout;
674 }
f7fec032
ZL
675 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
676 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
677 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
678 ext4_find_delalloc_range(inode, map->m_lblk,
679 map->m_lblk + map->m_len - 1))
680 status |= EXTENT_STATUS_DELAYED;
681 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
682 map->m_pblk, status);
683 if (ret < 0)
684 retval = ret;
5356f261
AK
685 }
686
adb23551 687has_zeroout:
4df3d265 688 up_write((&EXT4_I(inode)->i_data_sem));
e35fd660 689 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
e29136f8 690 int ret = check_block_validity(inode, map);
6fd058f7
TT
691 if (ret != 0)
692 return ret;
693 }
0e855ac8
AK
694 return retval;
695}
696
f3bd1f3f
MC
697/* Maximum number of blocks we map for direct IO at once. */
698#define DIO_MAX_BLOCKS 4096
699
2ed88685
TT
700static int _ext4_get_block(struct inode *inode, sector_t iblock,
701 struct buffer_head *bh, int flags)
ac27a0ec 702{
3e4fdaf8 703 handle_t *handle = ext4_journal_current_handle();
2ed88685 704 struct ext4_map_blocks map;
7fb5409d 705 int ret = 0, started = 0;
f3bd1f3f 706 int dio_credits;
ac27a0ec 707
46c7f254
TM
708 if (ext4_has_inline_data(inode))
709 return -ERANGE;
710
2ed88685
TT
711 map.m_lblk = iblock;
712 map.m_len = bh->b_size >> inode->i_blkbits;
713
8b0f165f 714 if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
7fb5409d 715 /* Direct IO write... */
2ed88685
TT
716 if (map.m_len > DIO_MAX_BLOCKS)
717 map.m_len = DIO_MAX_BLOCKS;
718 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
9924a92a
TT
719 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
720 dio_credits);
7fb5409d 721 if (IS_ERR(handle)) {
ac27a0ec 722 ret = PTR_ERR(handle);
2ed88685 723 return ret;
ac27a0ec 724 }
7fb5409d 725 started = 1;
ac27a0ec
DK
726 }
727
2ed88685 728 ret = ext4_map_blocks(handle, inode, &map, flags);
7fb5409d 729 if (ret > 0) {
7b7a8665
CH
730 ext4_io_end_t *io_end = ext4_inode_aio(inode);
731
2ed88685
TT
732 map_bh(bh, inode->i_sb, map.m_pblk);
733 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
7b7a8665
CH
734 if (io_end && io_end->flag & EXT4_IO_END_UNWRITTEN)
735 set_buffer_defer_completion(bh);
2ed88685 736 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
7fb5409d 737 ret = 0;
ac27a0ec 738 }
7fb5409d
JK
739 if (started)
740 ext4_journal_stop(handle);
ac27a0ec
DK
741 return ret;
742}
743
2ed88685
TT
744int ext4_get_block(struct inode *inode, sector_t iblock,
745 struct buffer_head *bh, int create)
746{
747 return _ext4_get_block(inode, iblock, bh,
748 create ? EXT4_GET_BLOCKS_CREATE : 0);
749}
750
ac27a0ec
DK
751/*
752 * `handle' can be NULL if create is zero
753 */
617ba13b 754struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
725d26d3 755 ext4_lblk_t block, int create, int *errp)
ac27a0ec 756{
2ed88685
TT
757 struct ext4_map_blocks map;
758 struct buffer_head *bh;
ac27a0ec
DK
759 int fatal = 0, err;
760
761 J_ASSERT(handle != NULL || create == 0);
762
2ed88685
TT
763 map.m_lblk = block;
764 map.m_len = 1;
765 err = ext4_map_blocks(handle, inode, &map,
766 create ? EXT4_GET_BLOCKS_CREATE : 0);
ac27a0ec 767
90b0a973
CM
768 /* ensure we send some value back into *errp */
769 *errp = 0;
770
0f70b406
TT
771 if (create && err == 0)
772 err = -ENOSPC; /* should never happen */
2ed88685
TT
773 if (err < 0)
774 *errp = err;
775 if (err <= 0)
776 return NULL;
2ed88685
TT
777
778 bh = sb_getblk(inode->i_sb, map.m_pblk);
aebf0243 779 if (unlikely(!bh)) {
860d21e2 780 *errp = -ENOMEM;
2ed88685 781 return NULL;
ac27a0ec 782 }
2ed88685
TT
783 if (map.m_flags & EXT4_MAP_NEW) {
784 J_ASSERT(create != 0);
785 J_ASSERT(handle != NULL);
ac27a0ec 786
2ed88685
TT
787 /*
788 * Now that we do not always journal data, we should
789 * keep in mind whether this should always journal the
790 * new buffer as metadata. For now, regular file
791 * writes use ext4_get_block instead, so it's not a
792 * problem.
793 */
794 lock_buffer(bh);
795 BUFFER_TRACE(bh, "call get_create_access");
796 fatal = ext4_journal_get_create_access(handle, bh);
797 if (!fatal && !buffer_uptodate(bh)) {
798 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
799 set_buffer_uptodate(bh);
ac27a0ec 800 }
2ed88685
TT
801 unlock_buffer(bh);
802 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
803 err = ext4_handle_dirty_metadata(handle, inode, bh);
804 if (!fatal)
805 fatal = err;
806 } else {
807 BUFFER_TRACE(bh, "not a new buffer");
ac27a0ec 808 }
2ed88685
TT
809 if (fatal) {
810 *errp = fatal;
811 brelse(bh);
812 bh = NULL;
813 }
814 return bh;
ac27a0ec
DK
815}
816
617ba13b 817struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
725d26d3 818 ext4_lblk_t block, int create, int *err)
ac27a0ec 819{
af5bc92d 820 struct buffer_head *bh;
ac27a0ec 821
617ba13b 822 bh = ext4_getblk(handle, inode, block, create, err);
ac27a0ec
DK
823 if (!bh)
824 return bh;
825 if (buffer_uptodate(bh))
826 return bh;
65299a3b 827 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
ac27a0ec
DK
828 wait_on_buffer(bh);
829 if (buffer_uptodate(bh))
830 return bh;
831 put_bh(bh);
832 *err = -EIO;
833 return NULL;
834}
835
f19d5870
TM
836int ext4_walk_page_buffers(handle_t *handle,
837 struct buffer_head *head,
838 unsigned from,
839 unsigned to,
840 int *partial,
841 int (*fn)(handle_t *handle,
842 struct buffer_head *bh))
ac27a0ec
DK
843{
844 struct buffer_head *bh;
845 unsigned block_start, block_end;
846 unsigned blocksize = head->b_size;
847 int err, ret = 0;
848 struct buffer_head *next;
849
af5bc92d
TT
850 for (bh = head, block_start = 0;
851 ret == 0 && (bh != head || !block_start);
de9a55b8 852 block_start = block_end, bh = next) {
ac27a0ec
DK
853 next = bh->b_this_page;
854 block_end = block_start + blocksize;
855 if (block_end <= from || block_start >= to) {
856 if (partial && !buffer_uptodate(bh))
857 *partial = 1;
858 continue;
859 }
860 err = (*fn)(handle, bh);
861 if (!ret)
862 ret = err;
863 }
864 return ret;
865}
866
867/*
868 * To preserve ordering, it is essential that the hole instantiation and
869 * the data write be encapsulated in a single transaction. We cannot
617ba13b 870 * close off a transaction and start a new one between the ext4_get_block()
dab291af 871 * and the commit_write(). So doing the jbd2_journal_start at the start of
ac27a0ec
DK
872 * prepare_write() is the right place.
873 *
36ade451
JK
874 * Also, this function can nest inside ext4_writepage(). In that case, we
875 * *know* that ext4_writepage() has generated enough buffer credits to do the
876 * whole page. So we won't block on the journal in that case, which is good,
877 * because the caller may be PF_MEMALLOC.
ac27a0ec 878 *
617ba13b 879 * By accident, ext4 can be reentered when a transaction is open via
ac27a0ec
DK
880 * quota file writes. If we were to commit the transaction while thus
881 * reentered, there can be a deadlock - we would be holding a quota
882 * lock, and the commit would never complete if another thread had a
883 * transaction open and was blocking on the quota lock - a ranking
884 * violation.
885 *
dab291af 886 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
ac27a0ec
DK
887 * will _not_ run commit under these circumstances because handle->h_ref
888 * is elevated. We'll still have enough credits for the tiny quotafile
889 * write.
890 */
f19d5870
TM
891int do_journal_get_write_access(handle_t *handle,
892 struct buffer_head *bh)
ac27a0ec 893{
56d35a4c
JK
894 int dirty = buffer_dirty(bh);
895 int ret;
896
ac27a0ec
DK
897 if (!buffer_mapped(bh) || buffer_freed(bh))
898 return 0;
56d35a4c 899 /*
ebdec241 900 * __block_write_begin() could have dirtied some buffers. Clean
56d35a4c
JK
901 * the dirty bit as jbd2_journal_get_write_access() could complain
902 * otherwise about fs integrity issues. Setting of the dirty bit
ebdec241 903 * by __block_write_begin() isn't a real problem here as we clear
56d35a4c
JK
904 * the bit before releasing a page lock and thus writeback cannot
905 * ever write the buffer.
906 */
907 if (dirty)
908 clear_buffer_dirty(bh);
909 ret = ext4_journal_get_write_access(handle, bh);
910 if (!ret && dirty)
911 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
912 return ret;
ac27a0ec
DK
913}
914
8b0f165f
AP
915static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
916 struct buffer_head *bh_result, int create);
bfc1af65 917static int ext4_write_begin(struct file *file, struct address_space *mapping,
de9a55b8
TT
918 loff_t pos, unsigned len, unsigned flags,
919 struct page **pagep, void **fsdata)
ac27a0ec 920{
af5bc92d 921 struct inode *inode = mapping->host;
1938a150 922 int ret, needed_blocks;
ac27a0ec
DK
923 handle_t *handle;
924 int retries = 0;
af5bc92d 925 struct page *page;
de9a55b8 926 pgoff_t index;
af5bc92d 927 unsigned from, to;
bfc1af65 928
9bffad1e 929 trace_ext4_write_begin(inode, pos, len, flags);
1938a150
AK
930 /*
931 * Reserve one block more for addition to orphan list in case
932 * we allocate blocks but write fails for some reason
933 */
934 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
de9a55b8 935 index = pos >> PAGE_CACHE_SHIFT;
af5bc92d
TT
936 from = pos & (PAGE_CACHE_SIZE - 1);
937 to = from + len;
ac27a0ec 938
f19d5870
TM
939 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
940 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
941 flags, pagep);
942 if (ret < 0)
47564bfb
TT
943 return ret;
944 if (ret == 1)
945 return 0;
f19d5870
TM
946 }
947
47564bfb
TT
948 /*
949 * grab_cache_page_write_begin() can take a long time if the
950 * system is thrashing due to memory pressure, or if the page
951 * is being written back. So grab it first before we start
952 * the transaction handle. This also allows us to allocate
953 * the page (if needed) without using GFP_NOFS.
954 */
955retry_grab:
956 page = grab_cache_page_write_begin(mapping, index, flags);
957 if (!page)
958 return -ENOMEM;
959 unlock_page(page);
960
961retry_journal:
9924a92a 962 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
af5bc92d 963 if (IS_ERR(handle)) {
47564bfb
TT
964 page_cache_release(page);
965 return PTR_ERR(handle);
7479d2b9 966 }
ac27a0ec 967
47564bfb
TT
968 lock_page(page);
969 if (page->mapping != mapping) {
970 /* The page got truncated from under us */
971 unlock_page(page);
972 page_cache_release(page);
cf108bca 973 ext4_journal_stop(handle);
47564bfb 974 goto retry_grab;
cf108bca 975 }
47564bfb 976 wait_on_page_writeback(page);
cf108bca 977
744692dc 978 if (ext4_should_dioread_nolock(inode))
6e1db88d 979 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
744692dc 980 else
6e1db88d 981 ret = __block_write_begin(page, pos, len, ext4_get_block);
bfc1af65
NP
982
983 if (!ret && ext4_should_journal_data(inode)) {
f19d5870
TM
984 ret = ext4_walk_page_buffers(handle, page_buffers(page),
985 from, to, NULL,
986 do_journal_get_write_access);
ac27a0ec 987 }
bfc1af65
NP
988
989 if (ret) {
af5bc92d 990 unlock_page(page);
ae4d5372 991 /*
6e1db88d 992 * __block_write_begin may have instantiated a few blocks
ae4d5372
AK
993 * outside i_size. Trim these off again. Don't need
994 * i_size_read because we hold i_mutex.
1938a150
AK
995 *
996 * Add inode to orphan list in case we crash before
997 * truncate finishes
ae4d5372 998 */
ffacfa7a 999 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1938a150
AK
1000 ext4_orphan_add(handle, inode);
1001
1002 ext4_journal_stop(handle);
1003 if (pos + len > inode->i_size) {
b9a4207d 1004 ext4_truncate_failed_write(inode);
de9a55b8 1005 /*
ffacfa7a 1006 * If truncate failed early the inode might
1938a150
AK
1007 * still be on the orphan list; we need to
1008 * make sure the inode is removed from the
1009 * orphan list in that case.
1010 */
1011 if (inode->i_nlink)
1012 ext4_orphan_del(NULL, inode);
1013 }
bfc1af65 1014
47564bfb
TT
1015 if (ret == -ENOSPC &&
1016 ext4_should_retry_alloc(inode->i_sb, &retries))
1017 goto retry_journal;
1018 page_cache_release(page);
1019 return ret;
1020 }
1021 *pagep = page;
ac27a0ec
DK
1022 return ret;
1023}
1024
bfc1af65
NP
1025/* For write_end() in data=journal mode */
1026static int write_end_fn(handle_t *handle, struct buffer_head *bh)
ac27a0ec 1027{
13fca323 1028 int ret;
ac27a0ec
DK
1029 if (!buffer_mapped(bh) || buffer_freed(bh))
1030 return 0;
1031 set_buffer_uptodate(bh);
13fca323
TT
1032 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1033 clear_buffer_meta(bh);
1034 clear_buffer_prio(bh);
1035 return ret;
ac27a0ec
DK
1036}
1037
eed4333f
ZL
1038/*
1039 * We need to pick up the new inode size which generic_commit_write gave us
1040 * `file' can be NULL - eg, when called from page_symlink().
1041 *
1042 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1043 * buffers are managed internally.
1044 */
1045static int ext4_write_end(struct file *file,
1046 struct address_space *mapping,
1047 loff_t pos, unsigned len, unsigned copied,
1048 struct page *page, void *fsdata)
f8514083 1049{
f8514083 1050 handle_t *handle = ext4_journal_current_handle();
eed4333f
ZL
1051 struct inode *inode = mapping->host;
1052 int ret = 0, ret2;
1053 int i_size_changed = 0;
1054
1055 trace_ext4_write_end(inode, pos, len, copied);
1056 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) {
1057 ret = ext4_jbd2_file_inode(handle, inode);
1058 if (ret) {
1059 unlock_page(page);
1060 page_cache_release(page);
1061 goto errout;
1062 }
1063 }
f8514083 1064
42c832de
TT
1065 if (ext4_has_inline_data(inode)) {
1066 ret = ext4_write_inline_data_end(inode, pos, len,
1067 copied, page);
1068 if (ret < 0)
1069 goto errout;
1070 copied = ret;
1071 } else
f19d5870
TM
1072 copied = block_write_end(file, mapping, pos,
1073 len, copied, page, fsdata);
f8514083
AK
1074
1075 /*
1076 * No need to use i_size_read() here, the i_size
eed4333f 1077 * cannot change under us because we hole i_mutex.
f8514083
AK
1078 *
1079 * But it's important to update i_size while still holding page lock:
1080 * page writeout could otherwise come in and zero beyond i_size.
1081 */
1082 if (pos + copied > inode->i_size) {
1083 i_size_write(inode, pos + copied);
1084 i_size_changed = 1;
1085 }
1086
eed4333f 1087 if (pos + copied > EXT4_I(inode)->i_disksize) {
f8514083
AK
1088 /* We need to mark inode dirty even if
1089 * new_i_size is less that inode->i_size
eed4333f 1090 * but greater than i_disksize. (hint delalloc)
f8514083
AK
1091 */
1092 ext4_update_i_disksize(inode, (pos + copied));
1093 i_size_changed = 1;
1094 }
1095 unlock_page(page);
1096 page_cache_release(page);
1097
1098 /*
1099 * Don't mark the inode dirty under page lock. First, it unnecessarily
1100 * makes the holding time of page lock longer. Second, it forces lock
1101 * ordering of page lock and transaction start for journaling
1102 * filesystems.
1103 */
1104 if (i_size_changed)
1105 ext4_mark_inode_dirty(handle, inode);
1106
ffacfa7a 1107 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1108 /* if we have allocated more blocks and copied
1109 * less. We will have blocks allocated outside
1110 * inode->i_size. So truncate them
1111 */
1112 ext4_orphan_add(handle, inode);
74d553aa 1113errout:
617ba13b 1114 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1115 if (!ret)
1116 ret = ret2;
bfc1af65 1117
f8514083 1118 if (pos + len > inode->i_size) {
b9a4207d 1119 ext4_truncate_failed_write(inode);
de9a55b8 1120 /*
ffacfa7a 1121 * If truncate failed early the inode might still be
f8514083
AK
1122 * on the orphan list; we need to make sure the inode
1123 * is removed from the orphan list in that case.
1124 */
1125 if (inode->i_nlink)
1126 ext4_orphan_del(NULL, inode);
1127 }
1128
bfc1af65 1129 return ret ? ret : copied;
ac27a0ec
DK
1130}
1131
bfc1af65 1132static int ext4_journalled_write_end(struct file *file,
de9a55b8
TT
1133 struct address_space *mapping,
1134 loff_t pos, unsigned len, unsigned copied,
1135 struct page *page, void *fsdata)
ac27a0ec 1136{
617ba13b 1137 handle_t *handle = ext4_journal_current_handle();
bfc1af65 1138 struct inode *inode = mapping->host;
ac27a0ec
DK
1139 int ret = 0, ret2;
1140 int partial = 0;
bfc1af65 1141 unsigned from, to;
cf17fea6 1142 loff_t new_i_size;
ac27a0ec 1143
9bffad1e 1144 trace_ext4_journalled_write_end(inode, pos, len, copied);
bfc1af65
NP
1145 from = pos & (PAGE_CACHE_SIZE - 1);
1146 to = from + len;
1147
441c8508
CW
1148 BUG_ON(!ext4_handle_valid(handle));
1149
3fdcfb66
TM
1150 if (ext4_has_inline_data(inode))
1151 copied = ext4_write_inline_data_end(inode, pos, len,
1152 copied, page);
1153 else {
1154 if (copied < len) {
1155 if (!PageUptodate(page))
1156 copied = 0;
1157 page_zero_new_buffers(page, from+copied, to);
1158 }
ac27a0ec 1159
3fdcfb66
TM
1160 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1161 to, &partial, write_end_fn);
1162 if (!partial)
1163 SetPageUptodate(page);
1164 }
cf17fea6
AK
1165 new_i_size = pos + copied;
1166 if (new_i_size > inode->i_size)
bfc1af65 1167 i_size_write(inode, pos+copied);
19f5fb7a 1168 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2d859db3 1169 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
cf17fea6
AK
1170 if (new_i_size > EXT4_I(inode)->i_disksize) {
1171 ext4_update_i_disksize(inode, new_i_size);
617ba13b 1172 ret2 = ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
1173 if (!ret)
1174 ret = ret2;
1175 }
bfc1af65 1176
cf108bca 1177 unlock_page(page);
f8514083 1178 page_cache_release(page);
ffacfa7a 1179 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1180 /* if we have allocated more blocks and copied
1181 * less. We will have blocks allocated outside
1182 * inode->i_size. So truncate them
1183 */
1184 ext4_orphan_add(handle, inode);
1185
617ba13b 1186 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1187 if (!ret)
1188 ret = ret2;
f8514083 1189 if (pos + len > inode->i_size) {
b9a4207d 1190 ext4_truncate_failed_write(inode);
de9a55b8 1191 /*
ffacfa7a 1192 * If truncate failed early the inode might still be
f8514083
AK
1193 * on the orphan list; we need to make sure the inode
1194 * is removed from the orphan list in that case.
1195 */
1196 if (inode->i_nlink)
1197 ext4_orphan_del(NULL, inode);
1198 }
bfc1af65
NP
1199
1200 return ret ? ret : copied;
ac27a0ec 1201}
d2a17637 1202
386ad67c
LC
1203/*
1204 * Reserve a metadata for a single block located at lblock
1205 */
1206static int ext4_da_reserve_metadata(struct inode *inode, ext4_lblk_t lblock)
1207{
1208 int retries = 0;
1209 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1210 struct ext4_inode_info *ei = EXT4_I(inode);
1211 unsigned int md_needed;
1212 ext4_lblk_t save_last_lblock;
1213 int save_len;
1214
1215 /*
1216 * recalculate the amount of metadata blocks to reserve
1217 * in order to allocate nrblocks
1218 * worse case is one extent per block
1219 */
1220repeat:
1221 spin_lock(&ei->i_block_reservation_lock);
1222 /*
1223 * ext4_calc_metadata_amount() has side effects, which we have
1224 * to be prepared undo if we fail to claim space.
1225 */
1226 save_len = ei->i_da_metadata_calc_len;
1227 save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1228 md_needed = EXT4_NUM_B2C(sbi,
1229 ext4_calc_metadata_amount(inode, lblock));
1230 trace_ext4_da_reserve_space(inode, md_needed);
1231
1232 /*
1233 * We do still charge estimated metadata to the sb though;
1234 * we cannot afford to run out of free blocks.
1235 */
1236 if (ext4_claim_free_clusters(sbi, md_needed, 0)) {
1237 ei->i_da_metadata_calc_len = save_len;
1238 ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1239 spin_unlock(&ei->i_block_reservation_lock);
1240 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1241 cond_resched();
1242 goto repeat;
1243 }
1244 return -ENOSPC;
1245 }
1246 ei->i_reserved_meta_blocks += md_needed;
1247 spin_unlock(&ei->i_block_reservation_lock);
1248
1249 return 0; /* success */
1250}
1251
9d0be502 1252/*
7b415bf6 1253 * Reserve a single cluster located at lblock
9d0be502 1254 */
01f49d0b 1255static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
d2a17637 1256{
030ba6bc 1257 int retries = 0;
60e58e0f 1258 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 1259 struct ext4_inode_info *ei = EXT4_I(inode);
7b415bf6 1260 unsigned int md_needed;
5dd4056d 1261 int ret;
03179fe9
TT
1262 ext4_lblk_t save_last_lblock;
1263 int save_len;
1264
1265 /*
1266 * We will charge metadata quota at writeout time; this saves
1267 * us from metadata over-estimation, though we may go over by
1268 * a small amount in the end. Here we just reserve for data.
1269 */
1270 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1271 if (ret)
1272 return ret;
d2a17637
MC
1273
1274 /*
1275 * recalculate the amount of metadata blocks to reserve
1276 * in order to allocate nrblocks
1277 * worse case is one extent per block
1278 */
030ba6bc 1279repeat:
0637c6f4 1280 spin_lock(&ei->i_block_reservation_lock);
03179fe9
TT
1281 /*
1282 * ext4_calc_metadata_amount() has side effects, which we have
1283 * to be prepared undo if we fail to claim space.
1284 */
1285 save_len = ei->i_da_metadata_calc_len;
1286 save_last_lblock = ei->i_da_metadata_calc_last_lblock;
7b415bf6
AK
1287 md_needed = EXT4_NUM_B2C(sbi,
1288 ext4_calc_metadata_amount(inode, lblock));
f8ec9d68 1289 trace_ext4_da_reserve_space(inode, md_needed);
d2a17637 1290
72b8ab9d
ES
1291 /*
1292 * We do still charge estimated metadata to the sb though;
1293 * we cannot afford to run out of free blocks.
1294 */
e7d5f315 1295 if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) {
03179fe9
TT
1296 ei->i_da_metadata_calc_len = save_len;
1297 ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1298 spin_unlock(&ei->i_block_reservation_lock);
030ba6bc 1299 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
bb8b20ed 1300 cond_resched();
030ba6bc
AK
1301 goto repeat;
1302 }
03179fe9 1303 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
d2a17637
MC
1304 return -ENOSPC;
1305 }
9d0be502 1306 ei->i_reserved_data_blocks++;
0637c6f4
TT
1307 ei->i_reserved_meta_blocks += md_needed;
1308 spin_unlock(&ei->i_block_reservation_lock);
39bc680a 1309
d2a17637
MC
1310 return 0; /* success */
1311}
1312
12219aea 1313static void ext4_da_release_space(struct inode *inode, int to_free)
d2a17637
MC
1314{
1315 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 1316 struct ext4_inode_info *ei = EXT4_I(inode);
d2a17637 1317
cd213226
MC
1318 if (!to_free)
1319 return; /* Nothing to release, exit */
1320
d2a17637 1321 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
cd213226 1322
5a58ec87 1323 trace_ext4_da_release_space(inode, to_free);
0637c6f4 1324 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
cd213226 1325 /*
0637c6f4
TT
1326 * if there aren't enough reserved blocks, then the
1327 * counter is messed up somewhere. Since this
1328 * function is called from invalidate page, it's
1329 * harmless to return without any action.
cd213226 1330 */
8de5c325 1331 ext4_warning(inode->i_sb, "ext4_da_release_space: "
0637c6f4 1332 "ino %lu, to_free %d with only %d reserved "
1084f252 1333 "data blocks", inode->i_ino, to_free,
0637c6f4
TT
1334 ei->i_reserved_data_blocks);
1335 WARN_ON(1);
1336 to_free = ei->i_reserved_data_blocks;
cd213226 1337 }
0637c6f4 1338 ei->i_reserved_data_blocks -= to_free;
cd213226 1339
0637c6f4
TT
1340 if (ei->i_reserved_data_blocks == 0) {
1341 /*
1342 * We can release all of the reserved metadata blocks
1343 * only when we have written all of the delayed
1344 * allocation blocks.
7b415bf6
AK
1345 * Note that in case of bigalloc, i_reserved_meta_blocks,
1346 * i_reserved_data_blocks, etc. refer to number of clusters.
0637c6f4 1347 */
57042651 1348 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
72b8ab9d 1349 ei->i_reserved_meta_blocks);
ee5f4d9c 1350 ei->i_reserved_meta_blocks = 0;
9d0be502 1351 ei->i_da_metadata_calc_len = 0;
0637c6f4 1352 }
d2a17637 1353
72b8ab9d 1354 /* update fs dirty data blocks counter */
57042651 1355 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
d2a17637 1356
d2a17637 1357 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f 1358
7b415bf6 1359 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
d2a17637
MC
1360}
1361
1362static void ext4_da_page_release_reservation(struct page *page,
ca99fdd2
LC
1363 unsigned int offset,
1364 unsigned int length)
d2a17637
MC
1365{
1366 int to_release = 0;
1367 struct buffer_head *head, *bh;
1368 unsigned int curr_off = 0;
7b415bf6
AK
1369 struct inode *inode = page->mapping->host;
1370 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
ca99fdd2 1371 unsigned int stop = offset + length;
7b415bf6 1372 int num_clusters;
51865fda 1373 ext4_fsblk_t lblk;
d2a17637 1374
ca99fdd2
LC
1375 BUG_ON(stop > PAGE_CACHE_SIZE || stop < length);
1376
d2a17637
MC
1377 head = page_buffers(page);
1378 bh = head;
1379 do {
1380 unsigned int next_off = curr_off + bh->b_size;
1381
ca99fdd2
LC
1382 if (next_off > stop)
1383 break;
1384
d2a17637
MC
1385 if ((offset <= curr_off) && (buffer_delay(bh))) {
1386 to_release++;
1387 clear_buffer_delay(bh);
1388 }
1389 curr_off = next_off;
1390 } while ((bh = bh->b_this_page) != head);
7b415bf6 1391
51865fda
ZL
1392 if (to_release) {
1393 lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1394 ext4_es_remove_extent(inode, lblk, to_release);
1395 }
1396
7b415bf6
AK
1397 /* If we have released all the blocks belonging to a cluster, then we
1398 * need to release the reserved space for that cluster. */
1399 num_clusters = EXT4_NUM_B2C(sbi, to_release);
1400 while (num_clusters > 0) {
7b415bf6
AK
1401 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1402 ((num_clusters - 1) << sbi->s_cluster_bits);
1403 if (sbi->s_cluster_ratio == 1 ||
7d1b1fbc 1404 !ext4_find_delalloc_cluster(inode, lblk))
7b415bf6
AK
1405 ext4_da_release_space(inode, 1);
1406
1407 num_clusters--;
1408 }
d2a17637 1409}
ac27a0ec 1410
64769240
AT
1411/*
1412 * Delayed allocation stuff
1413 */
1414
4e7ea81d
JK
1415struct mpage_da_data {
1416 struct inode *inode;
1417 struct writeback_control *wbc;
6b523df4 1418
4e7ea81d
JK
1419 pgoff_t first_page; /* The first page to write */
1420 pgoff_t next_page; /* Current page to examine */
1421 pgoff_t last_page; /* Last page to examine */
791b7f08 1422 /*
4e7ea81d
JK
1423 * Extent to map - this can be after first_page because that can be
1424 * fully mapped. We somewhat abuse m_flags to store whether the extent
1425 * is delalloc or unwritten.
791b7f08 1426 */
4e7ea81d
JK
1427 struct ext4_map_blocks map;
1428 struct ext4_io_submit io_submit; /* IO submission data */
1429};
64769240 1430
4e7ea81d
JK
1431static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1432 bool invalidate)
c4a0c46e
AK
1433{
1434 int nr_pages, i;
1435 pgoff_t index, end;
1436 struct pagevec pvec;
1437 struct inode *inode = mpd->inode;
1438 struct address_space *mapping = inode->i_mapping;
4e7ea81d
JK
1439
1440 /* This is necessary when next_page == 0. */
1441 if (mpd->first_page >= mpd->next_page)
1442 return;
c4a0c46e 1443
c7f5938a
CW
1444 index = mpd->first_page;
1445 end = mpd->next_page - 1;
4e7ea81d
JK
1446 if (invalidate) {
1447 ext4_lblk_t start, last;
1448 start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1449 last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1450 ext4_es_remove_extent(inode, start, last - start + 1);
1451 }
51865fda 1452
66bea92c 1453 pagevec_init(&pvec, 0);
c4a0c46e
AK
1454 while (index <= end) {
1455 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1456 if (nr_pages == 0)
1457 break;
1458 for (i = 0; i < nr_pages; i++) {
1459 struct page *page = pvec.pages[i];
9b1d0998 1460 if (page->index > end)
c4a0c46e 1461 break;
c4a0c46e
AK
1462 BUG_ON(!PageLocked(page));
1463 BUG_ON(PageWriteback(page));
4e7ea81d
JK
1464 if (invalidate) {
1465 block_invalidatepage(page, 0, PAGE_CACHE_SIZE);
1466 ClearPageUptodate(page);
1467 }
c4a0c46e
AK
1468 unlock_page(page);
1469 }
9b1d0998
JK
1470 index = pvec.pages[nr_pages - 1]->index + 1;
1471 pagevec_release(&pvec);
c4a0c46e 1472 }
c4a0c46e
AK
1473}
1474
df22291f
AK
1475static void ext4_print_free_blocks(struct inode *inode)
1476{
1477 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
92b97816 1478 struct super_block *sb = inode->i_sb;
f78ee70d 1479 struct ext4_inode_info *ei = EXT4_I(inode);
92b97816
TT
1480
1481 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
5dee5437 1482 EXT4_C2B(EXT4_SB(inode->i_sb),
f78ee70d 1483 ext4_count_free_clusters(sb)));
92b97816
TT
1484 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1485 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
f78ee70d 1486 (long long) EXT4_C2B(EXT4_SB(sb),
57042651 1487 percpu_counter_sum(&sbi->s_freeclusters_counter)));
92b97816 1488 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
f78ee70d 1489 (long long) EXT4_C2B(EXT4_SB(sb),
7b415bf6 1490 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
92b97816
TT
1491 ext4_msg(sb, KERN_CRIT, "Block reservation details");
1492 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
f78ee70d 1493 ei->i_reserved_data_blocks);
92b97816 1494 ext4_msg(sb, KERN_CRIT, "i_reserved_meta_blocks=%u",
f78ee70d
LC
1495 ei->i_reserved_meta_blocks);
1496 ext4_msg(sb, KERN_CRIT, "i_allocated_meta_blocks=%u",
1497 ei->i_allocated_meta_blocks);
df22291f
AK
1498 return;
1499}
1500
c364b22c 1501static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
29fa89d0 1502{
c364b22c 1503 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
29fa89d0
AK
1504}
1505
5356f261
AK
1506/*
1507 * This function is grabs code from the very beginning of
1508 * ext4_map_blocks, but assumes that the caller is from delayed write
1509 * time. This function looks up the requested blocks and sets the
1510 * buffer delay bit under the protection of i_data_sem.
1511 */
1512static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1513 struct ext4_map_blocks *map,
1514 struct buffer_head *bh)
1515{
d100eef2 1516 struct extent_status es;
5356f261
AK
1517 int retval;
1518 sector_t invalid_block = ~((sector_t) 0xffff);
921f266b
DM
1519#ifdef ES_AGGRESSIVE_TEST
1520 struct ext4_map_blocks orig_map;
1521
1522 memcpy(&orig_map, map, sizeof(*map));
1523#endif
5356f261
AK
1524
1525 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1526 invalid_block = ~0;
1527
1528 map->m_flags = 0;
1529 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1530 "logical block %lu\n", inode->i_ino, map->m_len,
1531 (unsigned long) map->m_lblk);
d100eef2
ZL
1532
1533 /* Lookup extent status tree firstly */
1534 if (ext4_es_lookup_extent(inode, iblock, &es)) {
63b99968 1535 ext4_es_lru_add(inode);
d100eef2
ZL
1536 if (ext4_es_is_hole(&es)) {
1537 retval = 0;
1538 down_read((&EXT4_I(inode)->i_data_sem));
1539 goto add_delayed;
1540 }
1541
1542 /*
1543 * Delayed extent could be allocated by fallocate.
1544 * So we need to check it.
1545 */
1546 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1547 map_bh(bh, inode->i_sb, invalid_block);
1548 set_buffer_new(bh);
1549 set_buffer_delay(bh);
1550 return 0;
1551 }
1552
1553 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1554 retval = es.es_len - (iblock - es.es_lblk);
1555 if (retval > map->m_len)
1556 retval = map->m_len;
1557 map->m_len = retval;
1558 if (ext4_es_is_written(&es))
1559 map->m_flags |= EXT4_MAP_MAPPED;
1560 else if (ext4_es_is_unwritten(&es))
1561 map->m_flags |= EXT4_MAP_UNWRITTEN;
1562 else
1563 BUG_ON(1);
1564
921f266b
DM
1565#ifdef ES_AGGRESSIVE_TEST
1566 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1567#endif
d100eef2
ZL
1568 return retval;
1569 }
1570
5356f261
AK
1571 /*
1572 * Try to see if we can get the block without requesting a new
1573 * file system block.
1574 */
1575 down_read((&EXT4_I(inode)->i_data_sem));
9c3569b5
TM
1576 if (ext4_has_inline_data(inode)) {
1577 /*
1578 * We will soon create blocks for this page, and let
1579 * us pretend as if the blocks aren't allocated yet.
1580 * In case of clusters, we have to handle the work
1581 * of mapping from cluster so that the reserved space
1582 * is calculated properly.
1583 */
1584 if ((EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) &&
1585 ext4_find_delalloc_cluster(inode, map->m_lblk))
1586 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
1587 retval = 0;
1588 } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
d100eef2
ZL
1589 retval = ext4_ext_map_blocks(NULL, inode, map,
1590 EXT4_GET_BLOCKS_NO_PUT_HOLE);
5356f261 1591 else
d100eef2
ZL
1592 retval = ext4_ind_map_blocks(NULL, inode, map,
1593 EXT4_GET_BLOCKS_NO_PUT_HOLE);
5356f261 1594
d100eef2 1595add_delayed:
5356f261 1596 if (retval == 0) {
f7fec032 1597 int ret;
5356f261
AK
1598 /*
1599 * XXX: __block_prepare_write() unmaps passed block,
1600 * is it OK?
1601 */
386ad67c
LC
1602 /*
1603 * If the block was allocated from previously allocated cluster,
1604 * then we don't need to reserve it again. However we still need
1605 * to reserve metadata for every block we're going to write.
1606 */
5356f261 1607 if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
f7fec032
ZL
1608 ret = ext4_da_reserve_space(inode, iblock);
1609 if (ret) {
5356f261 1610 /* not enough space to reserve */
f7fec032 1611 retval = ret;
5356f261 1612 goto out_unlock;
f7fec032 1613 }
386ad67c
LC
1614 } else {
1615 ret = ext4_da_reserve_metadata(inode, iblock);
1616 if (ret) {
1617 /* not enough space to reserve */
1618 retval = ret;
1619 goto out_unlock;
1620 }
5356f261
AK
1621 }
1622
f7fec032
ZL
1623 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1624 ~0, EXTENT_STATUS_DELAYED);
1625 if (ret) {
1626 retval = ret;
51865fda 1627 goto out_unlock;
f7fec032 1628 }
51865fda 1629
5356f261
AK
1630 /* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
1631 * and it should not appear on the bh->b_state.
1632 */
1633 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
1634
1635 map_bh(bh, inode->i_sb, invalid_block);
1636 set_buffer_new(bh);
1637 set_buffer_delay(bh);
f7fec032
ZL
1638 } else if (retval > 0) {
1639 int ret;
1640 unsigned long long status;
1641
44fb851d
ZL
1642 if (unlikely(retval != map->m_len)) {
1643 ext4_warning(inode->i_sb,
1644 "ES len assertion failed for inode "
1645 "%lu: retval %d != map->m_len %d",
1646 inode->i_ino, retval, map->m_len);
1647 WARN_ON(1);
921f266b 1648 }
921f266b 1649
f7fec032
ZL
1650 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1651 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1652 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1653 map->m_pblk, status);
1654 if (ret != 0)
1655 retval = ret;
5356f261
AK
1656 }
1657
1658out_unlock:
1659 up_read((&EXT4_I(inode)->i_data_sem));
1660
1661 return retval;
1662}
1663
64769240 1664/*
b920c755
TT
1665 * This is a special get_blocks_t callback which is used by
1666 * ext4_da_write_begin(). It will either return mapped block or
1667 * reserve space for a single block.
29fa89d0
AK
1668 *
1669 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1670 * We also have b_blocknr = -1 and b_bdev initialized properly
1671 *
1672 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1673 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1674 * initialized properly.
64769240 1675 */
9c3569b5
TM
1676int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1677 struct buffer_head *bh, int create)
64769240 1678{
2ed88685 1679 struct ext4_map_blocks map;
64769240
AT
1680 int ret = 0;
1681
1682 BUG_ON(create == 0);
2ed88685
TT
1683 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1684
1685 map.m_lblk = iblock;
1686 map.m_len = 1;
64769240
AT
1687
1688 /*
1689 * first, we need to know whether the block is allocated already
1690 * preallocated blocks are unmapped but should treated
1691 * the same as allocated blocks.
1692 */
5356f261
AK
1693 ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1694 if (ret <= 0)
2ed88685 1695 return ret;
64769240 1696
2ed88685
TT
1697 map_bh(bh, inode->i_sb, map.m_pblk);
1698 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1699
1700 if (buffer_unwritten(bh)) {
1701 /* A delayed write to unwritten bh should be marked
1702 * new and mapped. Mapped ensures that we don't do
1703 * get_block multiple times when we write to the same
1704 * offset and new ensures that we do proper zero out
1705 * for partial write.
1706 */
1707 set_buffer_new(bh);
c8205636 1708 set_buffer_mapped(bh);
2ed88685
TT
1709 }
1710 return 0;
64769240 1711}
61628a3f 1712
62e086be
AK
1713static int bget_one(handle_t *handle, struct buffer_head *bh)
1714{
1715 get_bh(bh);
1716 return 0;
1717}
1718
1719static int bput_one(handle_t *handle, struct buffer_head *bh)
1720{
1721 put_bh(bh);
1722 return 0;
1723}
1724
1725static int __ext4_journalled_writepage(struct page *page,
62e086be
AK
1726 unsigned int len)
1727{
1728 struct address_space *mapping = page->mapping;
1729 struct inode *inode = mapping->host;
3fdcfb66 1730 struct buffer_head *page_bufs = NULL;
62e086be 1731 handle_t *handle = NULL;
3fdcfb66
TM
1732 int ret = 0, err = 0;
1733 int inline_data = ext4_has_inline_data(inode);
1734 struct buffer_head *inode_bh = NULL;
62e086be 1735
cb20d518 1736 ClearPageChecked(page);
3fdcfb66
TM
1737
1738 if (inline_data) {
1739 BUG_ON(page->index != 0);
1740 BUG_ON(len > ext4_get_max_inline_size(inode));
1741 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1742 if (inode_bh == NULL)
1743 goto out;
1744 } else {
1745 page_bufs = page_buffers(page);
1746 if (!page_bufs) {
1747 BUG();
1748 goto out;
1749 }
1750 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1751 NULL, bget_one);
1752 }
62e086be
AK
1753 /* As soon as we unlock the page, it can go away, but we have
1754 * references to buffers so we are safe */
1755 unlock_page(page);
1756
9924a92a
TT
1757 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1758 ext4_writepage_trans_blocks(inode));
62e086be
AK
1759 if (IS_ERR(handle)) {
1760 ret = PTR_ERR(handle);
1761 goto out;
1762 }
1763
441c8508
CW
1764 BUG_ON(!ext4_handle_valid(handle));
1765
3fdcfb66
TM
1766 if (inline_data) {
1767 ret = ext4_journal_get_write_access(handle, inode_bh);
62e086be 1768
3fdcfb66
TM
1769 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
1770
1771 } else {
1772 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1773 do_journal_get_write_access);
1774
1775 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1776 write_end_fn);
1777 }
62e086be
AK
1778 if (ret == 0)
1779 ret = err;
2d859db3 1780 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
62e086be
AK
1781 err = ext4_journal_stop(handle);
1782 if (!ret)
1783 ret = err;
1784
3fdcfb66
TM
1785 if (!ext4_has_inline_data(inode))
1786 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1787 NULL, bput_one);
19f5fb7a 1788 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
62e086be 1789out:
3fdcfb66 1790 brelse(inode_bh);
62e086be
AK
1791 return ret;
1792}
1793
61628a3f 1794/*
43ce1d23
AK
1795 * Note that we don't need to start a transaction unless we're journaling data
1796 * because we should have holes filled from ext4_page_mkwrite(). We even don't
1797 * need to file the inode to the transaction's list in ordered mode because if
1798 * we are writing back data added by write(), the inode is already there and if
25985edc 1799 * we are writing back data modified via mmap(), no one guarantees in which
43ce1d23
AK
1800 * transaction the data will hit the disk. In case we are journaling data, we
1801 * cannot start transaction directly because transaction start ranks above page
1802 * lock so we have to do some magic.
1803 *
b920c755 1804 * This function can get called via...
20970ba6 1805 * - ext4_writepages after taking page lock (have journal handle)
b920c755 1806 * - journal_submit_inode_data_buffers (no journal handle)
f6463b0d 1807 * - shrink_page_list via the kswapd/direct reclaim (no journal handle)
b920c755 1808 * - grab_page_cache when doing write_begin (have journal handle)
43ce1d23
AK
1809 *
1810 * We don't do any block allocation in this function. If we have page with
1811 * multiple blocks we need to write those buffer_heads that are mapped. This
1812 * is important for mmaped based write. So if we do with blocksize 1K
1813 * truncate(f, 1024);
1814 * a = mmap(f, 0, 4096);
1815 * a[0] = 'a';
1816 * truncate(f, 4096);
1817 * we have in the page first buffer_head mapped via page_mkwrite call back
90802ed9 1818 * but other buffer_heads would be unmapped but dirty (dirty done via the
43ce1d23
AK
1819 * do_wp_page). So writepage should write the first block. If we modify
1820 * the mmap area beyond 1024 we will again get a page_fault and the
1821 * page_mkwrite callback will do the block allocation and mark the
1822 * buffer_heads mapped.
1823 *
1824 * We redirty the page if we have any buffer_heads that is either delay or
1825 * unwritten in the page.
1826 *
1827 * We can get recursively called as show below.
1828 *
1829 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1830 * ext4_writepage()
1831 *
1832 * But since we don't do any block allocation we should not deadlock.
1833 * Page also have the dirty flag cleared so we don't get recurive page_lock.
61628a3f 1834 */
43ce1d23 1835static int ext4_writepage(struct page *page,
62e086be 1836 struct writeback_control *wbc)
64769240 1837{
f8bec370 1838 int ret = 0;
61628a3f 1839 loff_t size;
498e5f24 1840 unsigned int len;
744692dc 1841 struct buffer_head *page_bufs = NULL;
61628a3f 1842 struct inode *inode = page->mapping->host;
36ade451 1843 struct ext4_io_submit io_submit;
61628a3f 1844
a9c667f8 1845 trace_ext4_writepage(page);
f0e6c985
AK
1846 size = i_size_read(inode);
1847 if (page->index == size >> PAGE_CACHE_SHIFT)
1848 len = size & ~PAGE_CACHE_MASK;
1849 else
1850 len = PAGE_CACHE_SIZE;
64769240 1851
a42afc5f 1852 page_bufs = page_buffers(page);
a42afc5f 1853 /*
fe386132
JK
1854 * We cannot do block allocation or other extent handling in this
1855 * function. If there are buffers needing that, we have to redirty
1856 * the page. But we may reach here when we do a journal commit via
1857 * journal_submit_inode_data_buffers() and in that case we must write
1858 * allocated buffers to achieve data=ordered mode guarantees.
a42afc5f 1859 */
f19d5870
TM
1860 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
1861 ext4_bh_delay_or_unwritten)) {
f8bec370 1862 redirty_page_for_writepage(wbc, page);
fe386132
JK
1863 if (current->flags & PF_MEMALLOC) {
1864 /*
1865 * For memory cleaning there's no point in writing only
1866 * some buffers. So just bail out. Warn if we came here
1867 * from direct reclaim.
1868 */
1869 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
1870 == PF_MEMALLOC);
f0e6c985
AK
1871 unlock_page(page);
1872 return 0;
1873 }
a42afc5f 1874 }
64769240 1875
cb20d518 1876 if (PageChecked(page) && ext4_should_journal_data(inode))
43ce1d23
AK
1877 /*
1878 * It's mmapped pagecache. Add buffers and journal it. There
1879 * doesn't seem much point in redirtying the page here.
1880 */
3f0ca309 1881 return __ext4_journalled_writepage(page, len);
43ce1d23 1882
97a851ed
JK
1883 ext4_io_submit_init(&io_submit, wbc);
1884 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
1885 if (!io_submit.io_end) {
1886 redirty_page_for_writepage(wbc, page);
1887 unlock_page(page);
1888 return -ENOMEM;
1889 }
36ade451
JK
1890 ret = ext4_bio_write_page(&io_submit, page, len, wbc);
1891 ext4_io_submit(&io_submit);
97a851ed
JK
1892 /* Drop io_end reference we got from init */
1893 ext4_put_io_end_defer(io_submit.io_end);
64769240
AT
1894 return ret;
1895}
1896
4e7ea81d
JK
1897#define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
1898
61628a3f 1899/*
fffb2739
JK
1900 * mballoc gives us at most this number of blocks...
1901 * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
1902 * The rest of mballoc seems to handle chunks upto full group size.
61628a3f 1903 */
fffb2739 1904#define MAX_WRITEPAGES_EXTENT_LEN 2048
525f4ed8 1905
4e7ea81d
JK
1906/*
1907 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
1908 *
1909 * @mpd - extent of blocks
1910 * @lblk - logical number of the block in the file
1911 * @b_state - b_state of the buffer head added
1912 *
1913 * the function is used to collect contig. blocks in same state
1914 */
1915static int mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
1916 unsigned long b_state)
1917{
1918 struct ext4_map_blocks *map = &mpd->map;
1919
1920 /* Don't go larger than mballoc is willing to allocate */
1921 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
1922 return 0;
1923
1924 /* First block in the extent? */
1925 if (map->m_len == 0) {
1926 map->m_lblk = lblk;
1927 map->m_len = 1;
1928 map->m_flags = b_state & BH_FLAGS;
1929 return 1;
1930 }
1931
1932 /* Can we merge the block to our big extent? */
1933 if (lblk == map->m_lblk + map->m_len &&
1934 (b_state & BH_FLAGS) == map->m_flags) {
1935 map->m_len++;
1936 return 1;
1937 }
1938 return 0;
1939}
1940
1941static bool add_page_bufs_to_extent(struct mpage_da_data *mpd,
1942 struct buffer_head *head,
1943 struct buffer_head *bh,
1944 ext4_lblk_t lblk)
1945{
1946 struct inode *inode = mpd->inode;
1947 ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1)
1948 >> inode->i_blkbits;
1949
1950 do {
1951 BUG_ON(buffer_locked(bh));
1952
1953 if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
1954 (!buffer_delay(bh) && !buffer_unwritten(bh)) ||
1955 lblk >= blocks) {
1956 /* Found extent to map? */
1957 if (mpd->map.m_len)
1958 return false;
1959 if (lblk >= blocks)
1960 return true;
1961 continue;
1962 }
1963 if (!mpage_add_bh_to_extent(mpd, lblk, bh->b_state))
1964 return false;
1965 } while (lblk++, (bh = bh->b_this_page) != head);
1966 return true;
1967}
1968
1969static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
1970{
1971 int len;
1972 loff_t size = i_size_read(mpd->inode);
1973 int err;
1974
1975 BUG_ON(page->index != mpd->first_page);
1976 if (page->index == size >> PAGE_CACHE_SHIFT)
1977 len = size & ~PAGE_CACHE_MASK;
1978 else
1979 len = PAGE_CACHE_SIZE;
1980 clear_page_dirty_for_io(page);
1981 err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc);
1982 if (!err)
1983 mpd->wbc->nr_to_write--;
1984 mpd->first_page++;
1985
1986 return err;
1987}
1988
1989/*
1990 * mpage_map_buffers - update buffers corresponding to changed extent and
1991 * submit fully mapped pages for IO
1992 *
1993 * @mpd - description of extent to map, on return next extent to map
1994 *
1995 * Scan buffers corresponding to changed extent (we expect corresponding pages
1996 * to be already locked) and update buffer state according to new extent state.
1997 * We map delalloc buffers to their physical location, clear unwritten bits,
1998 * and mark buffers as uninit when we perform writes to uninitialized extents
1999 * and do extent conversion after IO is finished. If the last page is not fully
2000 * mapped, we update @map to the next extent in the last page that needs
2001 * mapping. Otherwise we submit the page for IO.
2002 */
2003static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2004{
2005 struct pagevec pvec;
2006 int nr_pages, i;
2007 struct inode *inode = mpd->inode;
2008 struct buffer_head *head, *bh;
2009 int bpp_bits = PAGE_CACHE_SHIFT - inode->i_blkbits;
2010 ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1)
2011 >> inode->i_blkbits;
2012 pgoff_t start, end;
2013 ext4_lblk_t lblk;
2014 sector_t pblock;
2015 int err;
2016
2017 start = mpd->map.m_lblk >> bpp_bits;
2018 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2019 lblk = start << bpp_bits;
2020 pblock = mpd->map.m_pblk;
2021
2022 pagevec_init(&pvec, 0);
2023 while (start <= end) {
2024 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start,
2025 PAGEVEC_SIZE);
2026 if (nr_pages == 0)
2027 break;
2028 for (i = 0; i < nr_pages; i++) {
2029 struct page *page = pvec.pages[i];
2030
2031 if (page->index > end)
2032 break;
2033 /* Upto 'end' pages must be contiguous */
2034 BUG_ON(page->index != start);
2035 bh = head = page_buffers(page);
2036 do {
2037 if (lblk < mpd->map.m_lblk)
2038 continue;
2039 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2040 /*
2041 * Buffer after end of mapped extent.
2042 * Find next buffer in the page to map.
2043 */
2044 mpd->map.m_len = 0;
2045 mpd->map.m_flags = 0;
2046 add_page_bufs_to_extent(mpd, head, bh,
2047 lblk);
2048 pagevec_release(&pvec);
2049 return 0;
2050 }
2051 if (buffer_delay(bh)) {
2052 clear_buffer_delay(bh);
2053 bh->b_blocknr = pblock++;
2054 }
4e7ea81d
JK
2055 clear_buffer_unwritten(bh);
2056 } while (++lblk < blocks &&
2057 (bh = bh->b_this_page) != head);
2058
2059 /*
2060 * FIXME: This is going to break if dioread_nolock
2061 * supports blocksize < pagesize as we will try to
2062 * convert potentially unmapped parts of inode.
2063 */
2064 mpd->io_submit.io_end->size += PAGE_CACHE_SIZE;
2065 /* Page fully mapped - let IO run! */
2066 err = mpage_submit_page(mpd, page);
2067 if (err < 0) {
2068 pagevec_release(&pvec);
2069 return err;
2070 }
2071 start++;
2072 }
2073 pagevec_release(&pvec);
2074 }
2075 /* Extent fully mapped and matches with page boundary. We are done. */
2076 mpd->map.m_len = 0;
2077 mpd->map.m_flags = 0;
2078 return 0;
2079}
2080
2081static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2082{
2083 struct inode *inode = mpd->inode;
2084 struct ext4_map_blocks *map = &mpd->map;
2085 int get_blocks_flags;
2086 int err;
2087
2088 trace_ext4_da_write_pages_extent(inode, map);
2089 /*
2090 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2091 * to convert an uninitialized extent to be initialized (in the case
2092 * where we have written into one or more preallocated blocks). It is
2093 * possible that we're going to need more metadata blocks than
2094 * previously reserved. However we must not fail because we're in
2095 * writeback and there is nothing we can do about it so it might result
2096 * in data loss. So use reserved blocks to allocate metadata if
2097 * possible.
2098 *
2099 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if the blocks
2100 * in question are delalloc blocks. This affects functions in many
2101 * different parts of the allocation call path. This flag exists
2102 * primarily because we don't want to change *many* call functions, so
2103 * ext4_map_blocks() will set the EXT4_STATE_DELALLOC_RESERVED flag
2104 * once the inode's allocation semaphore is taken.
2105 */
2106 get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2107 EXT4_GET_BLOCKS_METADATA_NOFAIL;
2108 if (ext4_should_dioread_nolock(inode))
2109 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2110 if (map->m_flags & (1 << BH_Delay))
2111 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2112
2113 err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2114 if (err < 0)
2115 return err;
6b523df4
JK
2116 if (map->m_flags & EXT4_MAP_UNINIT) {
2117 if (!mpd->io_submit.io_end->handle &&
2118 ext4_handle_valid(handle)) {
2119 mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2120 handle->h_rsv_handle = NULL;
2121 }
3613d228 2122 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
6b523df4 2123 }
4e7ea81d
JK
2124
2125 BUG_ON(map->m_len == 0);
2126 if (map->m_flags & EXT4_MAP_NEW) {
2127 struct block_device *bdev = inode->i_sb->s_bdev;
2128 int i;
2129
2130 for (i = 0; i < map->m_len; i++)
2131 unmap_underlying_metadata(bdev, map->m_pblk + i);
2132 }
2133 return 0;
2134}
2135
2136/*
2137 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2138 * mpd->len and submit pages underlying it for IO
2139 *
2140 * @handle - handle for journal operations
2141 * @mpd - extent to map
2142 *
2143 * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2144 * delayed, blocks are allocated, if it is unwritten, we may need to convert
2145 * them to initialized or split the described range from larger unwritten
2146 * extent. Note that we need not map all the described range since allocation
2147 * can return less blocks or the range is covered by more unwritten extents. We
2148 * cannot map more because we are limited by reserved transaction credits. On
2149 * the other hand we always make sure that the last touched page is fully
2150 * mapped so that it can be written out (and thus forward progress is
2151 * guaranteed). After mapping we submit all mapped pages for IO.
2152 */
2153static int mpage_map_and_submit_extent(handle_t *handle,
cb530541
TT
2154 struct mpage_da_data *mpd,
2155 bool *give_up_on_write)
4e7ea81d
JK
2156{
2157 struct inode *inode = mpd->inode;
2158 struct ext4_map_blocks *map = &mpd->map;
2159 int err;
2160 loff_t disksize;
2161
2162 mpd->io_submit.io_end->offset =
2163 ((loff_t)map->m_lblk) << inode->i_blkbits;
27d7c4ed 2164 do {
4e7ea81d
JK
2165 err = mpage_map_one_extent(handle, mpd);
2166 if (err < 0) {
2167 struct super_block *sb = inode->i_sb;
2168
cb530541
TT
2169 if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2170 goto invalidate_dirty_pages;
4e7ea81d 2171 /*
cb530541
TT
2172 * Let the uper layers retry transient errors.
2173 * In the case of ENOSPC, if ext4_count_free_blocks()
2174 * is non-zero, a commit should free up blocks.
4e7ea81d 2175 */
cb530541
TT
2176 if ((err == -ENOMEM) ||
2177 (err == -ENOSPC && ext4_count_free_clusters(sb)))
2178 return err;
2179 ext4_msg(sb, KERN_CRIT,
2180 "Delayed block allocation failed for "
2181 "inode %lu at logical offset %llu with"
2182 " max blocks %u with error %d",
2183 inode->i_ino,
2184 (unsigned long long)map->m_lblk,
2185 (unsigned)map->m_len, -err);
2186 ext4_msg(sb, KERN_CRIT,
2187 "This should not happen!! Data will "
2188 "be lost\n");
2189 if (err == -ENOSPC)
2190 ext4_print_free_blocks(inode);
2191 invalidate_dirty_pages:
2192 *give_up_on_write = true;
4e7ea81d
JK
2193 return err;
2194 }
2195 /*
2196 * Update buffer state, submit mapped pages, and get us new
2197 * extent to map
2198 */
2199 err = mpage_map_and_submit_buffers(mpd);
2200 if (err < 0)
2201 return err;
27d7c4ed 2202 } while (map->m_len);
4e7ea81d
JK
2203
2204 /* Update on-disk size after IO is submitted */
2205 disksize = ((loff_t)mpd->first_page) << PAGE_CACHE_SHIFT;
2206 if (disksize > i_size_read(inode))
2207 disksize = i_size_read(inode);
2208 if (disksize > EXT4_I(inode)->i_disksize) {
2209 int err2;
2210
2211 ext4_update_i_disksize(inode, disksize);
2212 err2 = ext4_mark_inode_dirty(handle, inode);
2213 if (err2)
2214 ext4_error(inode->i_sb,
2215 "Failed to mark inode %lu dirty",
2216 inode->i_ino);
2217 if (!err)
2218 err = err2;
2219 }
2220 return err;
2221}
2222
fffb2739
JK
2223/*
2224 * Calculate the total number of credits to reserve for one writepages
20970ba6 2225 * iteration. This is called from ext4_writepages(). We map an extent of
fffb2739
JK
2226 * upto MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2227 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2228 * bpp - 1 blocks in bpp different extents.
2229 */
525f4ed8
MC
2230static int ext4_da_writepages_trans_blocks(struct inode *inode)
2231{
fffb2739 2232 int bpp = ext4_journal_blocks_per_page(inode);
525f4ed8 2233
fffb2739
JK
2234 return ext4_meta_trans_blocks(inode,
2235 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
525f4ed8 2236}
61628a3f 2237
8e48dcfb 2238/*
4e7ea81d
JK
2239 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2240 * and underlying extent to map
2241 *
2242 * @mpd - where to look for pages
2243 *
2244 * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2245 * IO immediately. When we find a page which isn't mapped we start accumulating
2246 * extent of buffers underlying these pages that needs mapping (formed by
2247 * either delayed or unwritten buffers). We also lock the pages containing
2248 * these buffers. The extent found is returned in @mpd structure (starting at
2249 * mpd->lblk with length mpd->len blocks).
2250 *
2251 * Note that this function can attach bios to one io_end structure which are
2252 * neither logically nor physically contiguous. Although it may seem as an
2253 * unnecessary complication, it is actually inevitable in blocksize < pagesize
2254 * case as we need to track IO to all buffers underlying a page in one io_end.
8e48dcfb 2255 */
4e7ea81d 2256static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
8e48dcfb 2257{
4e7ea81d
JK
2258 struct address_space *mapping = mpd->inode->i_mapping;
2259 struct pagevec pvec;
2260 unsigned int nr_pages;
2261 pgoff_t index = mpd->first_page;
2262 pgoff_t end = mpd->last_page;
2263 int tag;
2264 int i, err = 0;
2265 int blkbits = mpd->inode->i_blkbits;
2266 ext4_lblk_t lblk;
2267 struct buffer_head *head;
8e48dcfb 2268
4e7ea81d 2269 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
5b41d924
ES
2270 tag = PAGECACHE_TAG_TOWRITE;
2271 else
2272 tag = PAGECACHE_TAG_DIRTY;
2273
4e7ea81d
JK
2274 pagevec_init(&pvec, 0);
2275 mpd->map.m_len = 0;
2276 mpd->next_page = index;
4f01b02c 2277 while (index <= end) {
5b41d924 2278 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
8e48dcfb
TT
2279 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2280 if (nr_pages == 0)
4e7ea81d 2281 goto out;
8e48dcfb
TT
2282
2283 for (i = 0; i < nr_pages; i++) {
2284 struct page *page = pvec.pages[i];
2285
2286 /*
2287 * At this point, the page may be truncated or
2288 * invalidated (changing page->mapping to NULL), or
2289 * even swizzled back from swapper_space to tmpfs file
2290 * mapping. However, page->index will not change
2291 * because we have a reference on the page.
2292 */
4f01b02c
TT
2293 if (page->index > end)
2294 goto out;
8e48dcfb 2295
4e7ea81d
JK
2296 /* If we can't merge this page, we are done. */
2297 if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2298 goto out;
78aaced3 2299
8e48dcfb 2300 lock_page(page);
8e48dcfb 2301 /*
4e7ea81d
JK
2302 * If the page is no longer dirty, or its mapping no
2303 * longer corresponds to inode we are writing (which
2304 * means it has been truncated or invalidated), or the
2305 * page is already under writeback and we are not doing
2306 * a data integrity writeback, skip the page
8e48dcfb 2307 */
4f01b02c
TT
2308 if (!PageDirty(page) ||
2309 (PageWriteback(page) &&
4e7ea81d 2310 (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
4f01b02c 2311 unlikely(page->mapping != mapping)) {
8e48dcfb
TT
2312 unlock_page(page);
2313 continue;
2314 }
2315
7cb1a535 2316 wait_on_page_writeback(page);
8e48dcfb 2317 BUG_ON(PageWriteback(page));
8e48dcfb 2318
4e7ea81d 2319 if (mpd->map.m_len == 0)
8eb9e5ce 2320 mpd->first_page = page->index;
8eb9e5ce 2321 mpd->next_page = page->index + 1;
f8bec370 2322 /* Add all dirty buffers to mpd */
4e7ea81d
JK
2323 lblk = ((ext4_lblk_t)page->index) <<
2324 (PAGE_CACHE_SHIFT - blkbits);
f8bec370 2325 head = page_buffers(page);
4e7ea81d
JK
2326 if (!add_page_bufs_to_extent(mpd, head, head, lblk))
2327 goto out;
2328 /* So far everything mapped? Submit the page for IO. */
2329 if (mpd->map.m_len == 0) {
2330 err = mpage_submit_page(mpd, page);
2331 if (err < 0)
4f01b02c 2332 goto out;
8e48dcfb 2333 }
4e7ea81d
JK
2334
2335 /*
2336 * Accumulated enough dirty pages? This doesn't apply
2337 * to WB_SYNC_ALL mode. For integrity sync we have to
2338 * keep going because someone may be concurrently
2339 * dirtying pages, and we might have synced a lot of
2340 * newly appeared dirty pages, but have not synced all
2341 * of the old dirty pages.
2342 */
2343 if (mpd->wbc->sync_mode == WB_SYNC_NONE &&
2344 mpd->next_page - mpd->first_page >=
2345 mpd->wbc->nr_to_write)
2346 goto out;
8e48dcfb
TT
2347 }
2348 pagevec_release(&pvec);
2349 cond_resched();
2350 }
4f01b02c 2351 return 0;
8eb9e5ce
TT
2352out:
2353 pagevec_release(&pvec);
4e7ea81d 2354 return err;
8e48dcfb
TT
2355}
2356
20970ba6
TT
2357static int __writepage(struct page *page, struct writeback_control *wbc,
2358 void *data)
2359{
2360 struct address_space *mapping = data;
2361 int ret = ext4_writepage(page, wbc);
2362 mapping_set_error(mapping, ret);
2363 return ret;
2364}
2365
2366static int ext4_writepages(struct address_space *mapping,
2367 struct writeback_control *wbc)
64769240 2368{
4e7ea81d
JK
2369 pgoff_t writeback_index = 0;
2370 long nr_to_write = wbc->nr_to_write;
22208ded 2371 int range_whole = 0;
4e7ea81d 2372 int cycled = 1;
61628a3f 2373 handle_t *handle = NULL;
df22291f 2374 struct mpage_da_data mpd;
5e745b04 2375 struct inode *inode = mapping->host;
6b523df4 2376 int needed_blocks, rsv_blocks = 0, ret = 0;
5e745b04 2377 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
4e7ea81d 2378 bool done;
1bce63d1 2379 struct blk_plug plug;
cb530541 2380 bool give_up_on_write = false;
61628a3f 2381
20970ba6 2382 trace_ext4_writepages(inode, wbc);
ba80b101 2383
61628a3f
MC
2384 /*
2385 * No pages to write? This is mainly a kludge to avoid starting
2386 * a transaction for special inodes like journal inode on last iput()
2387 * because that could violate lock ordering on umount
2388 */
a1d6cc56 2389 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
61628a3f 2390 return 0;
2a21e37e 2391
20970ba6
TT
2392 if (ext4_should_journal_data(inode)) {
2393 struct blk_plug plug;
2394 int ret;
2395
2396 blk_start_plug(&plug);
2397 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2398 blk_finish_plug(&plug);
2399 return ret;
2400 }
2401
2a21e37e
TT
2402 /*
2403 * If the filesystem has aborted, it is read-only, so return
2404 * right away instead of dumping stack traces later on that
2405 * will obscure the real source of the problem. We test
4ab2f15b 2406 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2a21e37e 2407 * the latter could be true if the filesystem is mounted
20970ba6 2408 * read-only, and in that case, ext4_writepages should
2a21e37e
TT
2409 * *never* be called, so if that ever happens, we would want
2410 * the stack trace.
2411 */
4ab2f15b 2412 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2a21e37e
TT
2413 return -EROFS;
2414
6b523df4
JK
2415 if (ext4_should_dioread_nolock(inode)) {
2416 /*
2417 * We may need to convert upto one extent per block in
2418 * the page and we may dirty the inode.
2419 */
2420 rsv_blocks = 1 + (PAGE_CACHE_SIZE >> inode->i_blkbits);
2421 }
2422
4e7ea81d
JK
2423 /*
2424 * If we have inline data and arrive here, it means that
2425 * we will soon create the block for the 1st page, so
2426 * we'd better clear the inline data here.
2427 */
2428 if (ext4_has_inline_data(inode)) {
2429 /* Just inode will be modified... */
2430 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2431 if (IS_ERR(handle)) {
2432 ret = PTR_ERR(handle);
2433 goto out_writepages;
2434 }
2435 BUG_ON(ext4_test_inode_state(inode,
2436 EXT4_STATE_MAY_INLINE_DATA));
2437 ext4_destroy_inline_data(handle, inode);
2438 ext4_journal_stop(handle);
2439 }
2440
22208ded
AK
2441 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2442 range_whole = 1;
61628a3f 2443
2acf2c26 2444 if (wbc->range_cyclic) {
4e7ea81d
JK
2445 writeback_index = mapping->writeback_index;
2446 if (writeback_index)
2acf2c26 2447 cycled = 0;
4e7ea81d
JK
2448 mpd.first_page = writeback_index;
2449 mpd.last_page = -1;
5b41d924 2450 } else {
4e7ea81d
JK
2451 mpd.first_page = wbc->range_start >> PAGE_CACHE_SHIFT;
2452 mpd.last_page = wbc->range_end >> PAGE_CACHE_SHIFT;
5b41d924 2453 }
a1d6cc56 2454
4e7ea81d
JK
2455 mpd.inode = inode;
2456 mpd.wbc = wbc;
2457 ext4_io_submit_init(&mpd.io_submit, wbc);
2acf2c26 2458retry:
6e6938b6 2459 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
4e7ea81d
JK
2460 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2461 done = false;
1bce63d1 2462 blk_start_plug(&plug);
4e7ea81d
JK
2463 while (!done && mpd.first_page <= mpd.last_page) {
2464 /* For each extent of pages we use new io_end */
2465 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2466 if (!mpd.io_submit.io_end) {
2467 ret = -ENOMEM;
2468 break;
2469 }
a1d6cc56
AK
2470
2471 /*
4e7ea81d
JK
2472 * We have two constraints: We find one extent to map and we
2473 * must always write out whole page (makes a difference when
2474 * blocksize < pagesize) so that we don't block on IO when we
2475 * try to write out the rest of the page. Journalled mode is
2476 * not supported by delalloc.
a1d6cc56
AK
2477 */
2478 BUG_ON(ext4_should_journal_data(inode));
525f4ed8 2479 needed_blocks = ext4_da_writepages_trans_blocks(inode);
a1d6cc56 2480
4e7ea81d 2481 /* start a new transaction */
6b523df4
JK
2482 handle = ext4_journal_start_with_reserve(inode,
2483 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
61628a3f
MC
2484 if (IS_ERR(handle)) {
2485 ret = PTR_ERR(handle);
1693918e 2486 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
fbe845dd 2487 "%ld pages, ino %lu; err %d", __func__,
a1d6cc56 2488 wbc->nr_to_write, inode->i_ino, ret);
4e7ea81d
JK
2489 /* Release allocated io_end */
2490 ext4_put_io_end(mpd.io_submit.io_end);
2491 break;
61628a3f 2492 }
f63e6005 2493
4e7ea81d
JK
2494 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2495 ret = mpage_prepare_extent_to_map(&mpd);
2496 if (!ret) {
2497 if (mpd.map.m_len)
cb530541
TT
2498 ret = mpage_map_and_submit_extent(handle, &mpd,
2499 &give_up_on_write);
4e7ea81d
JK
2500 else {
2501 /*
2502 * We scanned the whole range (or exhausted
2503 * nr_to_write), submitted what was mapped and
2504 * didn't find anything needing mapping. We are
2505 * done.
2506 */
2507 done = true;
2508 }
f63e6005 2509 }
61628a3f 2510 ext4_journal_stop(handle);
4e7ea81d
JK
2511 /* Submit prepared bio */
2512 ext4_io_submit(&mpd.io_submit);
2513 /* Unlock pages we didn't use */
cb530541 2514 mpage_release_unused_pages(&mpd, give_up_on_write);
4e7ea81d
JK
2515 /* Drop our io_end reference we got from init */
2516 ext4_put_io_end(mpd.io_submit.io_end);
2517
2518 if (ret == -ENOSPC && sbi->s_journal) {
2519 /*
2520 * Commit the transaction which would
22208ded
AK
2521 * free blocks released in the transaction
2522 * and try again
2523 */
df22291f 2524 jbd2_journal_force_commit_nested(sbi->s_journal);
22208ded 2525 ret = 0;
4e7ea81d
JK
2526 continue;
2527 }
2528 /* Fatal error - ENOMEM, EIO... */
2529 if (ret)
61628a3f 2530 break;
a1d6cc56 2531 }
1bce63d1 2532 blk_finish_plug(&plug);
4e7ea81d 2533 if (!ret && !cycled) {
2acf2c26 2534 cycled = 1;
4e7ea81d
JK
2535 mpd.last_page = writeback_index - 1;
2536 mpd.first_page = 0;
2acf2c26
AK
2537 goto retry;
2538 }
22208ded
AK
2539
2540 /* Update index */
22208ded
AK
2541 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2542 /*
4e7ea81d 2543 * Set the writeback_index so that range_cyclic
22208ded
AK
2544 * mode will write it back later
2545 */
4e7ea81d 2546 mapping->writeback_index = mpd.first_page;
a1d6cc56 2547
61628a3f 2548out_writepages:
20970ba6
TT
2549 trace_ext4_writepages_result(inode, wbc, ret,
2550 nr_to_write - wbc->nr_to_write);
61628a3f 2551 return ret;
64769240
AT
2552}
2553
79f0be8d
AK
2554static int ext4_nonda_switch(struct super_block *sb)
2555{
5c1ff336 2556 s64 free_clusters, dirty_clusters;
79f0be8d
AK
2557 struct ext4_sb_info *sbi = EXT4_SB(sb);
2558
2559 /*
2560 * switch to non delalloc mode if we are running low
2561 * on free block. The free block accounting via percpu
179f7ebf 2562 * counters can get slightly wrong with percpu_counter_batch getting
79f0be8d
AK
2563 * accumulated on each CPU without updating global counters
2564 * Delalloc need an accurate free block accounting. So switch
2565 * to non delalloc when we are near to error range.
2566 */
5c1ff336
EW
2567 free_clusters =
2568 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2569 dirty_clusters =
2570 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
00d4e736
TT
2571 /*
2572 * Start pushing delalloc when 1/2 of free blocks are dirty.
2573 */
5c1ff336 2574 if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
10ee27a0 2575 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
00d4e736 2576
5c1ff336
EW
2577 if (2 * free_clusters < 3 * dirty_clusters ||
2578 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
79f0be8d 2579 /*
c8afb446
ES
2580 * free block count is less than 150% of dirty blocks
2581 * or free blocks is less than watermark
79f0be8d
AK
2582 */
2583 return 1;
2584 }
2585 return 0;
2586}
2587
64769240 2588static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
de9a55b8
TT
2589 loff_t pos, unsigned len, unsigned flags,
2590 struct page **pagep, void **fsdata)
64769240 2591{
72b8ab9d 2592 int ret, retries = 0;
64769240
AT
2593 struct page *page;
2594 pgoff_t index;
64769240
AT
2595 struct inode *inode = mapping->host;
2596 handle_t *handle;
2597
2598 index = pos >> PAGE_CACHE_SHIFT;
79f0be8d
AK
2599
2600 if (ext4_nonda_switch(inode->i_sb)) {
2601 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2602 return ext4_write_begin(file, mapping, pos,
2603 len, flags, pagep, fsdata);
2604 }
2605 *fsdata = (void *)0;
9bffad1e 2606 trace_ext4_da_write_begin(inode, pos, len, flags);
9c3569b5
TM
2607
2608 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2609 ret = ext4_da_write_inline_data_begin(mapping, inode,
2610 pos, len, flags,
2611 pagep, fsdata);
2612 if (ret < 0)
47564bfb
TT
2613 return ret;
2614 if (ret == 1)
2615 return 0;
9c3569b5
TM
2616 }
2617
47564bfb
TT
2618 /*
2619 * grab_cache_page_write_begin() can take a long time if the
2620 * system is thrashing due to memory pressure, or if the page
2621 * is being written back. So grab it first before we start
2622 * the transaction handle. This also allows us to allocate
2623 * the page (if needed) without using GFP_NOFS.
2624 */
2625retry_grab:
2626 page = grab_cache_page_write_begin(mapping, index, flags);
2627 if (!page)
2628 return -ENOMEM;
2629 unlock_page(page);
2630
64769240
AT
2631 /*
2632 * With delayed allocation, we don't log the i_disksize update
2633 * if there is delayed block allocation. But we still need
2634 * to journalling the i_disksize update if writes to the end
2635 * of file which has an already mapped buffer.
2636 */
47564bfb 2637retry_journal:
9924a92a 2638 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 1);
64769240 2639 if (IS_ERR(handle)) {
47564bfb
TT
2640 page_cache_release(page);
2641 return PTR_ERR(handle);
64769240
AT
2642 }
2643
47564bfb
TT
2644 lock_page(page);
2645 if (page->mapping != mapping) {
2646 /* The page got truncated from under us */
2647 unlock_page(page);
2648 page_cache_release(page);
d5a0d4f7 2649 ext4_journal_stop(handle);
47564bfb 2650 goto retry_grab;
d5a0d4f7 2651 }
47564bfb
TT
2652 /* In case writeback began while the page was unlocked */
2653 wait_on_page_writeback(page);
64769240 2654
6e1db88d 2655 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
64769240
AT
2656 if (ret < 0) {
2657 unlock_page(page);
2658 ext4_journal_stop(handle);
ae4d5372
AK
2659 /*
2660 * block_write_begin may have instantiated a few blocks
2661 * outside i_size. Trim these off again. Don't need
2662 * i_size_read because we hold i_mutex.
2663 */
2664 if (pos + len > inode->i_size)
b9a4207d 2665 ext4_truncate_failed_write(inode);
47564bfb
TT
2666
2667 if (ret == -ENOSPC &&
2668 ext4_should_retry_alloc(inode->i_sb, &retries))
2669 goto retry_journal;
2670
2671 page_cache_release(page);
2672 return ret;
64769240
AT
2673 }
2674
47564bfb 2675 *pagep = page;
64769240
AT
2676 return ret;
2677}
2678
632eaeab
MC
2679/*
2680 * Check if we should update i_disksize
2681 * when write to the end of file but not require block allocation
2682 */
2683static int ext4_da_should_update_i_disksize(struct page *page,
de9a55b8 2684 unsigned long offset)
632eaeab
MC
2685{
2686 struct buffer_head *bh;
2687 struct inode *inode = page->mapping->host;
2688 unsigned int idx;
2689 int i;
2690
2691 bh = page_buffers(page);
2692 idx = offset >> inode->i_blkbits;
2693
af5bc92d 2694 for (i = 0; i < idx; i++)
632eaeab
MC
2695 bh = bh->b_this_page;
2696
29fa89d0 2697 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
632eaeab
MC
2698 return 0;
2699 return 1;
2700}
2701
64769240 2702static int ext4_da_write_end(struct file *file,
de9a55b8
TT
2703 struct address_space *mapping,
2704 loff_t pos, unsigned len, unsigned copied,
2705 struct page *page, void *fsdata)
64769240
AT
2706{
2707 struct inode *inode = mapping->host;
2708 int ret = 0, ret2;
2709 handle_t *handle = ext4_journal_current_handle();
2710 loff_t new_i_size;
632eaeab 2711 unsigned long start, end;
79f0be8d
AK
2712 int write_mode = (int)(unsigned long)fsdata;
2713
74d553aa
TT
2714 if (write_mode == FALL_BACK_TO_NONDELALLOC)
2715 return ext4_write_end(file, mapping, pos,
2716 len, copied, page, fsdata);
632eaeab 2717
9bffad1e 2718 trace_ext4_da_write_end(inode, pos, len, copied);
632eaeab 2719 start = pos & (PAGE_CACHE_SIZE - 1);
af5bc92d 2720 end = start + copied - 1;
64769240
AT
2721
2722 /*
2723 * generic_write_end() will run mark_inode_dirty() if i_size
2724 * changes. So let's piggyback the i_disksize mark_inode_dirty
2725 * into that.
2726 */
64769240 2727 new_i_size = pos + copied;
ea51d132 2728 if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
9c3569b5
TM
2729 if (ext4_has_inline_data(inode) ||
2730 ext4_da_should_update_i_disksize(page, end)) {
632eaeab 2731 down_write(&EXT4_I(inode)->i_data_sem);
f3b59291 2732 if (new_i_size > EXT4_I(inode)->i_disksize)
632eaeab 2733 EXT4_I(inode)->i_disksize = new_i_size;
632eaeab 2734 up_write(&EXT4_I(inode)->i_data_sem);
cf17fea6
AK
2735 /* We need to mark inode dirty even if
2736 * new_i_size is less that inode->i_size
2737 * bu greater than i_disksize.(hint delalloc)
2738 */
2739 ext4_mark_inode_dirty(handle, inode);
64769240 2740 }
632eaeab 2741 }
9c3569b5
TM
2742
2743 if (write_mode != CONVERT_INLINE_DATA &&
2744 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2745 ext4_has_inline_data(inode))
2746 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
2747 page);
2748 else
2749 ret2 = generic_write_end(file, mapping, pos, len, copied,
64769240 2750 page, fsdata);
9c3569b5 2751
64769240
AT
2752 copied = ret2;
2753 if (ret2 < 0)
2754 ret = ret2;
2755 ret2 = ext4_journal_stop(handle);
2756 if (!ret)
2757 ret = ret2;
2758
2759 return ret ? ret : copied;
2760}
2761
d47992f8
LC
2762static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
2763 unsigned int length)
64769240 2764{
64769240
AT
2765 /*
2766 * Drop reserved blocks
2767 */
2768 BUG_ON(!PageLocked(page));
2769 if (!page_has_buffers(page))
2770 goto out;
2771
ca99fdd2 2772 ext4_da_page_release_reservation(page, offset, length);
64769240
AT
2773
2774out:
d47992f8 2775 ext4_invalidatepage(page, offset, length);
64769240
AT
2776
2777 return;
2778}
2779
ccd2506b
TT
2780/*
2781 * Force all delayed allocation blocks to be allocated for a given inode.
2782 */
2783int ext4_alloc_da_blocks(struct inode *inode)
2784{
fb40ba0d
TT
2785 trace_ext4_alloc_da_blocks(inode);
2786
ccd2506b
TT
2787 if (!EXT4_I(inode)->i_reserved_data_blocks &&
2788 !EXT4_I(inode)->i_reserved_meta_blocks)
2789 return 0;
2790
2791 /*
2792 * We do something simple for now. The filemap_flush() will
2793 * also start triggering a write of the data blocks, which is
2794 * not strictly speaking necessary (and for users of
2795 * laptop_mode, not even desirable). However, to do otherwise
2796 * would require replicating code paths in:
de9a55b8 2797 *
20970ba6 2798 * ext4_writepages() ->
ccd2506b
TT
2799 * write_cache_pages() ---> (via passed in callback function)
2800 * __mpage_da_writepage() -->
2801 * mpage_add_bh_to_extent()
2802 * mpage_da_map_blocks()
2803 *
2804 * The problem is that write_cache_pages(), located in
2805 * mm/page-writeback.c, marks pages clean in preparation for
2806 * doing I/O, which is not desirable if we're not planning on
2807 * doing I/O at all.
2808 *
2809 * We could call write_cache_pages(), and then redirty all of
380cf090 2810 * the pages by calling redirty_page_for_writepage() but that
ccd2506b
TT
2811 * would be ugly in the extreme. So instead we would need to
2812 * replicate parts of the code in the above functions,
25985edc 2813 * simplifying them because we wouldn't actually intend to
ccd2506b
TT
2814 * write out the pages, but rather only collect contiguous
2815 * logical block extents, call the multi-block allocator, and
2816 * then update the buffer heads with the block allocations.
de9a55b8 2817 *
ccd2506b
TT
2818 * For now, though, we'll cheat by calling filemap_flush(),
2819 * which will map the blocks, and start the I/O, but not
2820 * actually wait for the I/O to complete.
2821 */
2822 return filemap_flush(inode->i_mapping);
2823}
64769240 2824
ac27a0ec
DK
2825/*
2826 * bmap() is special. It gets used by applications such as lilo and by
2827 * the swapper to find the on-disk block of a specific piece of data.
2828 *
2829 * Naturally, this is dangerous if the block concerned is still in the
617ba13b 2830 * journal. If somebody makes a swapfile on an ext4 data-journaling
ac27a0ec
DK
2831 * filesystem and enables swap, then they may get a nasty shock when the
2832 * data getting swapped to that swapfile suddenly gets overwritten by
2833 * the original zero's written out previously to the journal and
2834 * awaiting writeback in the kernel's buffer cache.
2835 *
2836 * So, if we see any bmap calls here on a modified, data-journaled file,
2837 * take extra steps to flush any blocks which might be in the cache.
2838 */
617ba13b 2839static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
ac27a0ec
DK
2840{
2841 struct inode *inode = mapping->host;
2842 journal_t *journal;
2843 int err;
2844
46c7f254
TM
2845 /*
2846 * We can get here for an inline file via the FIBMAP ioctl
2847 */
2848 if (ext4_has_inline_data(inode))
2849 return 0;
2850
64769240
AT
2851 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2852 test_opt(inode->i_sb, DELALLOC)) {
2853 /*
2854 * With delalloc we want to sync the file
2855 * so that we can make sure we allocate
2856 * blocks for file
2857 */
2858 filemap_write_and_wait(mapping);
2859 }
2860
19f5fb7a
TT
2861 if (EXT4_JOURNAL(inode) &&
2862 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
ac27a0ec
DK
2863 /*
2864 * This is a REALLY heavyweight approach, but the use of
2865 * bmap on dirty files is expected to be extremely rare:
2866 * only if we run lilo or swapon on a freshly made file
2867 * do we expect this to happen.
2868 *
2869 * (bmap requires CAP_SYS_RAWIO so this does not
2870 * represent an unprivileged user DOS attack --- we'd be
2871 * in trouble if mortal users could trigger this path at
2872 * will.)
2873 *
617ba13b 2874 * NB. EXT4_STATE_JDATA is not set on files other than
ac27a0ec
DK
2875 * regular files. If somebody wants to bmap a directory
2876 * or symlink and gets confused because the buffer
2877 * hasn't yet been flushed to disk, they deserve
2878 * everything they get.
2879 */
2880
19f5fb7a 2881 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
617ba13b 2882 journal = EXT4_JOURNAL(inode);
dab291af
MC
2883 jbd2_journal_lock_updates(journal);
2884 err = jbd2_journal_flush(journal);
2885 jbd2_journal_unlock_updates(journal);
ac27a0ec
DK
2886
2887 if (err)
2888 return 0;
2889 }
2890
af5bc92d 2891 return generic_block_bmap(mapping, block, ext4_get_block);
ac27a0ec
DK
2892}
2893
617ba13b 2894static int ext4_readpage(struct file *file, struct page *page)
ac27a0ec 2895{
46c7f254
TM
2896 int ret = -EAGAIN;
2897 struct inode *inode = page->mapping->host;
2898
0562e0ba 2899 trace_ext4_readpage(page);
46c7f254
TM
2900
2901 if (ext4_has_inline_data(inode))
2902 ret = ext4_readpage_inline(inode, page);
2903
2904 if (ret == -EAGAIN)
2905 return mpage_readpage(page, ext4_get_block);
2906
2907 return ret;
ac27a0ec
DK
2908}
2909
2910static int
617ba13b 2911ext4_readpages(struct file *file, struct address_space *mapping,
ac27a0ec
DK
2912 struct list_head *pages, unsigned nr_pages)
2913{
46c7f254
TM
2914 struct inode *inode = mapping->host;
2915
2916 /* If the file has inline data, no need to do readpages. */
2917 if (ext4_has_inline_data(inode))
2918 return 0;
2919
617ba13b 2920 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
ac27a0ec
DK
2921}
2922
d47992f8
LC
2923static void ext4_invalidatepage(struct page *page, unsigned int offset,
2924 unsigned int length)
ac27a0ec 2925{
ca99fdd2 2926 trace_ext4_invalidatepage(page, offset, length);
0562e0ba 2927
4520fb3c
JK
2928 /* No journalling happens on data buffers when this function is used */
2929 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
2930
ca99fdd2 2931 block_invalidatepage(page, offset, length);
4520fb3c
JK
2932}
2933
53e87268 2934static int __ext4_journalled_invalidatepage(struct page *page,
ca99fdd2
LC
2935 unsigned int offset,
2936 unsigned int length)
4520fb3c
JK
2937{
2938 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2939
ca99fdd2 2940 trace_ext4_journalled_invalidatepage(page, offset, length);
4520fb3c 2941
ac27a0ec
DK
2942 /*
2943 * If it's a full truncate we just forget about the pending dirtying
2944 */
ca99fdd2 2945 if (offset == 0 && length == PAGE_CACHE_SIZE)
ac27a0ec
DK
2946 ClearPageChecked(page);
2947
ca99fdd2 2948 return jbd2_journal_invalidatepage(journal, page, offset, length);
53e87268
JK
2949}
2950
2951/* Wrapper for aops... */
2952static void ext4_journalled_invalidatepage(struct page *page,
d47992f8
LC
2953 unsigned int offset,
2954 unsigned int length)
53e87268 2955{
ca99fdd2 2956 WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
ac27a0ec
DK
2957}
2958
617ba13b 2959static int ext4_releasepage(struct page *page, gfp_t wait)
ac27a0ec 2960{
617ba13b 2961 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
ac27a0ec 2962
0562e0ba
JZ
2963 trace_ext4_releasepage(page);
2964
e1c36595
JK
2965 /* Page has dirty journalled data -> cannot release */
2966 if (PageChecked(page))
ac27a0ec 2967 return 0;
0390131b
FM
2968 if (journal)
2969 return jbd2_journal_try_to_free_buffers(journal, page, wait);
2970 else
2971 return try_to_free_buffers(page);
ac27a0ec
DK
2972}
2973
2ed88685
TT
2974/*
2975 * ext4_get_block used when preparing for a DIO write or buffer write.
2976 * We allocate an uinitialized extent if blocks haven't been allocated.
2977 * The extent will be converted to initialized after the IO is complete.
2978 */
f19d5870 2979int ext4_get_block_write(struct inode *inode, sector_t iblock,
4c0425ff
MC
2980 struct buffer_head *bh_result, int create)
2981{
c7064ef1 2982 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
8d5d02e6 2983 inode->i_ino, create);
2ed88685
TT
2984 return _ext4_get_block(inode, iblock, bh_result,
2985 EXT4_GET_BLOCKS_IO_CREATE_EXT);
4c0425ff
MC
2986}
2987
729f52c6 2988static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
8b0f165f 2989 struct buffer_head *bh_result, int create)
729f52c6 2990{
8b0f165f
AP
2991 ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
2992 inode->i_ino, create);
2993 return _ext4_get_block(inode, iblock, bh_result,
2994 EXT4_GET_BLOCKS_NO_LOCK);
729f52c6
ZL
2995}
2996
4c0425ff 2997static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
7b7a8665 2998 ssize_t size, void *private)
4c0425ff
MC
2999{
3000 ext4_io_end_t *io_end = iocb->private;
4c0425ff 3001
97a851ed 3002 /* if not async direct IO just return */
7b7a8665 3003 if (!io_end)
97a851ed 3004 return;
4b70df18 3005
88635ca2 3006 ext_debug("ext4_end_io_dio(): io_end 0x%p "
ace36ad4 3007 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
8d5d02e6
MC
3008 iocb->private, io_end->inode->i_ino, iocb, offset,
3009 size);
8d5d02e6 3010
b5a7e970 3011 iocb->private = NULL;
4c0425ff
MC
3012 io_end->offset = offset;
3013 io_end->size = size;
7b7a8665 3014 ext4_put_io_end(io_end);
4c0425ff 3015}
c7064ef1 3016
4c0425ff
MC
3017/*
3018 * For ext4 extent files, ext4 will do direct-io write to holes,
3019 * preallocated extents, and those write extend the file, no need to
3020 * fall back to buffered IO.
3021 *
b595076a 3022 * For holes, we fallocate those blocks, mark them as uninitialized
69c499d1 3023 * If those blocks were preallocated, we mark sure they are split, but
b595076a 3024 * still keep the range to write as uninitialized.
4c0425ff 3025 *
69c499d1 3026 * The unwritten extents will be converted to written when DIO is completed.
8d5d02e6 3027 * For async direct IO, since the IO may still pending when return, we
25985edc 3028 * set up an end_io call back function, which will do the conversion
8d5d02e6 3029 * when async direct IO completed.
4c0425ff
MC
3030 *
3031 * If the O_DIRECT write will extend the file then add this inode to the
3032 * orphan list. So recovery will truncate it back to the original size
3033 * if the machine crashes during the write.
3034 *
3035 */
3036static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
3037 const struct iovec *iov, loff_t offset,
3038 unsigned long nr_segs)
3039{
3040 struct file *file = iocb->ki_filp;
3041 struct inode *inode = file->f_mapping->host;
3042 ssize_t ret;
3043 size_t count = iov_length(iov, nr_segs);
69c499d1
TT
3044 int overwrite = 0;
3045 get_block_t *get_block_func = NULL;
3046 int dio_flags = 0;
4c0425ff 3047 loff_t final_size = offset + count;
97a851ed 3048 ext4_io_end_t *io_end = NULL;
729f52c6 3049
69c499d1
TT
3050 /* Use the old path for reads and writes beyond i_size. */
3051 if (rw != WRITE || final_size > inode->i_size)
3052 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
4bd809db 3053
69c499d1 3054 BUG_ON(iocb->private == NULL);
4bd809db 3055
e8340395
JK
3056 /*
3057 * Make all waiters for direct IO properly wait also for extent
3058 * conversion. This also disallows race between truncate() and
3059 * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3060 */
3061 if (rw == WRITE)
3062 atomic_inc(&inode->i_dio_count);
3063
69c499d1
TT
3064 /* If we do a overwrite dio, i_mutex locking can be released */
3065 overwrite = *((int *)iocb->private);
4bd809db 3066
69c499d1 3067 if (overwrite) {
69c499d1
TT
3068 down_read(&EXT4_I(inode)->i_data_sem);
3069 mutex_unlock(&inode->i_mutex);
3070 }
8d5d02e6 3071
69c499d1
TT
3072 /*
3073 * We could direct write to holes and fallocate.
3074 *
3075 * Allocated blocks to fill the hole are marked as
3076 * uninitialized to prevent parallel buffered read to expose
3077 * the stale data before DIO complete the data IO.
3078 *
3079 * As to previously fallocated extents, ext4 get_block will
3080 * just simply mark the buffer mapped but still keep the
3081 * extents uninitialized.
3082 *
3083 * For non AIO case, we will convert those unwritten extents
3084 * to written after return back from blockdev_direct_IO.
3085 *
3086 * For async DIO, the conversion needs to be deferred when the
3087 * IO is completed. The ext4 end_io callback function will be
3088 * called to take care of the conversion work. Here for async
3089 * case, we allocate an io_end structure to hook to the iocb.
3090 */
3091 iocb->private = NULL;
3092 ext4_inode_aio_set(inode, NULL);
3093 if (!is_sync_kiocb(iocb)) {
97a851ed 3094 io_end = ext4_init_io_end(inode, GFP_NOFS);
69c499d1
TT
3095 if (!io_end) {
3096 ret = -ENOMEM;
3097 goto retake_lock;
8b0f165f 3098 }
97a851ed
JK
3099 /*
3100 * Grab reference for DIO. Will be dropped in ext4_end_io_dio()
3101 */
3102 iocb->private = ext4_get_io_end(io_end);
8d5d02e6 3103 /*
69c499d1
TT
3104 * we save the io structure for current async direct
3105 * IO, so that later ext4_map_blocks() could flag the
3106 * io structure whether there is a unwritten extents
3107 * needs to be converted when IO is completed.
8d5d02e6 3108 */
69c499d1
TT
3109 ext4_inode_aio_set(inode, io_end);
3110 }
4bd809db 3111
69c499d1
TT
3112 if (overwrite) {
3113 get_block_func = ext4_get_block_write_nolock;
3114 } else {
3115 get_block_func = ext4_get_block_write;
3116 dio_flags = DIO_LOCKING;
3117 }
3118 ret = __blockdev_direct_IO(rw, iocb, inode,
3119 inode->i_sb->s_bdev, iov,
3120 offset, nr_segs,
3121 get_block_func,
3122 ext4_end_io_dio,
3123 NULL,
3124 dio_flags);
3125
69c499d1 3126 /*
97a851ed
JK
3127 * Put our reference to io_end. This can free the io_end structure e.g.
3128 * in sync IO case or in case of error. It can even perform extent
3129 * conversion if all bios we submitted finished before we got here.
3130 * Note that in that case iocb->private can be already set to NULL
3131 * here.
69c499d1 3132 */
97a851ed
JK
3133 if (io_end) {
3134 ext4_inode_aio_set(inode, NULL);
3135 ext4_put_io_end(io_end);
3136 /*
3137 * When no IO was submitted ext4_end_io_dio() was not
3138 * called so we have to put iocb's reference.
3139 */
3140 if (ret <= 0 && ret != -EIOCBQUEUED && iocb->private) {
3141 WARN_ON(iocb->private != io_end);
3142 WARN_ON(io_end->flag & EXT4_IO_END_UNWRITTEN);
97a851ed
JK
3143 ext4_put_io_end(io_end);
3144 iocb->private = NULL;
3145 }
3146 }
3147 if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
69c499d1
TT
3148 EXT4_STATE_DIO_UNWRITTEN)) {
3149 int err;
3150 /*
3151 * for non AIO case, since the IO is already
3152 * completed, we could do the conversion right here
3153 */
6b523df4 3154 err = ext4_convert_unwritten_extents(NULL, inode,
69c499d1
TT
3155 offset, ret);
3156 if (err < 0)
3157 ret = err;
3158 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3159 }
4bd809db 3160
69c499d1 3161retake_lock:
e8340395
JK
3162 if (rw == WRITE)
3163 inode_dio_done(inode);
69c499d1
TT
3164 /* take i_mutex locking again if we do a ovewrite dio */
3165 if (overwrite) {
69c499d1
TT
3166 up_read(&EXT4_I(inode)->i_data_sem);
3167 mutex_lock(&inode->i_mutex);
4c0425ff 3168 }
8d5d02e6 3169
69c499d1 3170 return ret;
4c0425ff
MC
3171}
3172
3173static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3174 const struct iovec *iov, loff_t offset,
3175 unsigned long nr_segs)
3176{
3177 struct file *file = iocb->ki_filp;
3178 struct inode *inode = file->f_mapping->host;
0562e0ba 3179 ssize_t ret;
4c0425ff 3180
84ebd795
TT
3181 /*
3182 * If we are doing data journalling we don't support O_DIRECT
3183 */
3184 if (ext4_should_journal_data(inode))
3185 return 0;
3186
46c7f254
TM
3187 /* Let buffer I/O handle the inline data case. */
3188 if (ext4_has_inline_data(inode))
3189 return 0;
3190
0562e0ba 3191 trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
12e9b892 3192 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
0562e0ba
JZ
3193 ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3194 else
3195 ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3196 trace_ext4_direct_IO_exit(inode, offset,
3197 iov_length(iov, nr_segs), rw, ret);
3198 return ret;
4c0425ff
MC
3199}
3200
ac27a0ec 3201/*
617ba13b 3202 * Pages can be marked dirty completely asynchronously from ext4's journalling
ac27a0ec
DK
3203 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3204 * much here because ->set_page_dirty is called under VFS locks. The page is
3205 * not necessarily locked.
3206 *
3207 * We cannot just dirty the page and leave attached buffers clean, because the
3208 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3209 * or jbddirty because all the journalling code will explode.
3210 *
3211 * So what we do is to mark the page "pending dirty" and next time writepage
3212 * is called, propagate that into the buffers appropriately.
3213 */
617ba13b 3214static int ext4_journalled_set_page_dirty(struct page *page)
ac27a0ec
DK
3215{
3216 SetPageChecked(page);
3217 return __set_page_dirty_nobuffers(page);
3218}
3219
74d553aa 3220static const struct address_space_operations ext4_aops = {
8ab22b9a
HH
3221 .readpage = ext4_readpage,
3222 .readpages = ext4_readpages,
43ce1d23 3223 .writepage = ext4_writepage,
20970ba6 3224 .writepages = ext4_writepages,
8ab22b9a 3225 .write_begin = ext4_write_begin,
74d553aa 3226 .write_end = ext4_write_end,
8ab22b9a
HH
3227 .bmap = ext4_bmap,
3228 .invalidatepage = ext4_invalidatepage,
3229 .releasepage = ext4_releasepage,
3230 .direct_IO = ext4_direct_IO,
3231 .migratepage = buffer_migrate_page,
3232 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3233 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
3234};
3235
617ba13b 3236static const struct address_space_operations ext4_journalled_aops = {
8ab22b9a
HH
3237 .readpage = ext4_readpage,
3238 .readpages = ext4_readpages,
43ce1d23 3239 .writepage = ext4_writepage,
20970ba6 3240 .writepages = ext4_writepages,
8ab22b9a
HH
3241 .write_begin = ext4_write_begin,
3242 .write_end = ext4_journalled_write_end,
3243 .set_page_dirty = ext4_journalled_set_page_dirty,
3244 .bmap = ext4_bmap,
4520fb3c 3245 .invalidatepage = ext4_journalled_invalidatepage,
8ab22b9a 3246 .releasepage = ext4_releasepage,
84ebd795 3247 .direct_IO = ext4_direct_IO,
8ab22b9a 3248 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3249 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
3250};
3251
64769240 3252static const struct address_space_operations ext4_da_aops = {
8ab22b9a
HH
3253 .readpage = ext4_readpage,
3254 .readpages = ext4_readpages,
43ce1d23 3255 .writepage = ext4_writepage,
20970ba6 3256 .writepages = ext4_writepages,
8ab22b9a
HH
3257 .write_begin = ext4_da_write_begin,
3258 .write_end = ext4_da_write_end,
3259 .bmap = ext4_bmap,
3260 .invalidatepage = ext4_da_invalidatepage,
3261 .releasepage = ext4_releasepage,
3262 .direct_IO = ext4_direct_IO,
3263 .migratepage = buffer_migrate_page,
3264 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3265 .error_remove_page = generic_error_remove_page,
64769240
AT
3266};
3267
617ba13b 3268void ext4_set_aops(struct inode *inode)
ac27a0ec 3269{
3d2b1582
LC
3270 switch (ext4_inode_journal_mode(inode)) {
3271 case EXT4_INODE_ORDERED_DATA_MODE:
74d553aa 3272 ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3d2b1582
LC
3273 break;
3274 case EXT4_INODE_WRITEBACK_DATA_MODE:
74d553aa 3275 ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3d2b1582
LC
3276 break;
3277 case EXT4_INODE_JOURNAL_DATA_MODE:
617ba13b 3278 inode->i_mapping->a_ops = &ext4_journalled_aops;
74d553aa 3279 return;
3d2b1582
LC
3280 default:
3281 BUG();
3282 }
74d553aa
TT
3283 if (test_opt(inode->i_sb, DELALLOC))
3284 inode->i_mapping->a_ops = &ext4_da_aops;
3285 else
3286 inode->i_mapping->a_ops = &ext4_aops;
ac27a0ec
DK
3287}
3288
d863dc36
LC
3289/*
3290 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3291 * up to the end of the block which corresponds to `from'.
3292 * This required during truncate. We need to physically zero the tail end
3293 * of that block so it doesn't yield old data if the file is later grown.
3294 */
3295int ext4_block_truncate_page(handle_t *handle,
3296 struct address_space *mapping, loff_t from)
3297{
3298 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3299 unsigned length;
3300 unsigned blocksize;
3301 struct inode *inode = mapping->host;
3302
3303 blocksize = inode->i_sb->s_blocksize;
3304 length = blocksize - (offset & (blocksize - 1));
3305
3306 return ext4_block_zero_page_range(handle, mapping, from, length);
3307}
3308
3309/*
3310 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3311 * starting from file offset 'from'. The range to be zero'd must
3312 * be contained with in one block. If the specified range exceeds
3313 * the end of the block it will be shortened to end of the block
3314 * that cooresponds to 'from'
3315 */
3316int ext4_block_zero_page_range(handle_t *handle,
3317 struct address_space *mapping, loff_t from, loff_t length)
3318{
3319 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3320 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3321 unsigned blocksize, max, pos;
3322 ext4_lblk_t iblock;
3323 struct inode *inode = mapping->host;
3324 struct buffer_head *bh;
3325 struct page *page;
3326 int err = 0;
3327
3328 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3329 mapping_gfp_mask(mapping) & ~__GFP_FS);
3330 if (!page)
3331 return -ENOMEM;
3332
3333 blocksize = inode->i_sb->s_blocksize;
3334 max = blocksize - (offset & (blocksize - 1));
3335
3336 /*
3337 * correct length if it does not fall between
3338 * 'from' and the end of the block
3339 */
3340 if (length > max || length < 0)
3341 length = max;
3342
3343 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3344
3345 if (!page_has_buffers(page))
3346 create_empty_buffers(page, blocksize, 0);
3347
3348 /* Find the buffer that contains "offset" */
3349 bh = page_buffers(page);
3350 pos = blocksize;
3351 while (offset >= pos) {
3352 bh = bh->b_this_page;
3353 iblock++;
3354 pos += blocksize;
3355 }
d863dc36
LC
3356 if (buffer_freed(bh)) {
3357 BUFFER_TRACE(bh, "freed: skip");
3358 goto unlock;
3359 }
d863dc36
LC
3360 if (!buffer_mapped(bh)) {
3361 BUFFER_TRACE(bh, "unmapped");
3362 ext4_get_block(inode, iblock, bh, 0);
3363 /* unmapped? It's a hole - nothing to do */
3364 if (!buffer_mapped(bh)) {
3365 BUFFER_TRACE(bh, "still unmapped");
3366 goto unlock;
3367 }
3368 }
3369
3370 /* Ok, it's mapped. Make sure it's up-to-date */
3371 if (PageUptodate(page))
3372 set_buffer_uptodate(bh);
3373
3374 if (!buffer_uptodate(bh)) {
3375 err = -EIO;
3376 ll_rw_block(READ, 1, &bh);
3377 wait_on_buffer(bh);
3378 /* Uhhuh. Read error. Complain and punt. */
3379 if (!buffer_uptodate(bh))
3380 goto unlock;
3381 }
d863dc36
LC
3382 if (ext4_should_journal_data(inode)) {
3383 BUFFER_TRACE(bh, "get write access");
3384 err = ext4_journal_get_write_access(handle, bh);
3385 if (err)
3386 goto unlock;
3387 }
d863dc36 3388 zero_user(page, offset, length);
d863dc36
LC
3389 BUFFER_TRACE(bh, "zeroed end of block");
3390
d863dc36
LC
3391 if (ext4_should_journal_data(inode)) {
3392 err = ext4_handle_dirty_metadata(handle, inode, bh);
0713ed0c 3393 } else {
353eefd3 3394 err = 0;
d863dc36 3395 mark_buffer_dirty(bh);
0713ed0c
LC
3396 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE))
3397 err = ext4_jbd2_file_inode(handle, inode);
3398 }
d863dc36
LC
3399
3400unlock:
3401 unlock_page(page);
3402 page_cache_release(page);
3403 return err;
3404}
3405
a87dd18c
LC
3406int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3407 loff_t lstart, loff_t length)
3408{
3409 struct super_block *sb = inode->i_sb;
3410 struct address_space *mapping = inode->i_mapping;
e1be3a92 3411 unsigned partial_start, partial_end;
a87dd18c
LC
3412 ext4_fsblk_t start, end;
3413 loff_t byte_end = (lstart + length - 1);
3414 int err = 0;
3415
e1be3a92
LC
3416 partial_start = lstart & (sb->s_blocksize - 1);
3417 partial_end = byte_end & (sb->s_blocksize - 1);
3418
a87dd18c
LC
3419 start = lstart >> sb->s_blocksize_bits;
3420 end = byte_end >> sb->s_blocksize_bits;
3421
3422 /* Handle partial zero within the single block */
e1be3a92
LC
3423 if (start == end &&
3424 (partial_start || (partial_end != sb->s_blocksize - 1))) {
a87dd18c
LC
3425 err = ext4_block_zero_page_range(handle, mapping,
3426 lstart, length);
3427 return err;
3428 }
3429 /* Handle partial zero out on the start of the range */
e1be3a92 3430 if (partial_start) {
a87dd18c
LC
3431 err = ext4_block_zero_page_range(handle, mapping,
3432 lstart, sb->s_blocksize);
3433 if (err)
3434 return err;
3435 }
3436 /* Handle partial zero out on the end of the range */
e1be3a92 3437 if (partial_end != sb->s_blocksize - 1)
a87dd18c 3438 err = ext4_block_zero_page_range(handle, mapping,
e1be3a92
LC
3439 byte_end - partial_end,
3440 partial_end + 1);
a87dd18c
LC
3441 return err;
3442}
3443
91ef4caf
DG
3444int ext4_can_truncate(struct inode *inode)
3445{
91ef4caf
DG
3446 if (S_ISREG(inode->i_mode))
3447 return 1;
3448 if (S_ISDIR(inode->i_mode))
3449 return 1;
3450 if (S_ISLNK(inode->i_mode))
3451 return !ext4_inode_is_fast_symlink(inode);
3452 return 0;
3453}
3454
a4bb6b64
AH
3455/*
3456 * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3457 * associated with the given offset and length
3458 *
3459 * @inode: File inode
3460 * @offset: The offset where the hole will begin
3461 * @len: The length of the hole
3462 *
4907cb7b 3463 * Returns: 0 on success or negative on failure
a4bb6b64
AH
3464 */
3465
aeb2817a 3466int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
a4bb6b64 3467{
26a4c0c6
TT
3468 struct super_block *sb = inode->i_sb;
3469 ext4_lblk_t first_block, stop_block;
3470 struct address_space *mapping = inode->i_mapping;
a87dd18c 3471 loff_t first_block_offset, last_block_offset;
26a4c0c6
TT
3472 handle_t *handle;
3473 unsigned int credits;
3474 int ret = 0;
3475
a4bb6b64 3476 if (!S_ISREG(inode->i_mode))
73355192 3477 return -EOPNOTSUPP;
a4bb6b64 3478
26a4c0c6 3479 if (EXT4_SB(sb)->s_cluster_ratio > 1) {
bab08ab9 3480 /* TODO: Add support for bigalloc file systems */
73355192 3481 return -EOPNOTSUPP;
bab08ab9
TT
3482 }
3483
aaddea81
ZL
3484 trace_ext4_punch_hole(inode, offset, length);
3485
26a4c0c6
TT
3486 /*
3487 * Write out all dirty pages to avoid race conditions
3488 * Then release them.
3489 */
3490 if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3491 ret = filemap_write_and_wait_range(mapping, offset,
3492 offset + length - 1);
3493 if (ret)
3494 return ret;
3495 }
3496
3497 mutex_lock(&inode->i_mutex);
3498 /* It's not possible punch hole on append only file */
3499 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
3500 ret = -EPERM;
3501 goto out_mutex;
3502 }
3503 if (IS_SWAPFILE(inode)) {
3504 ret = -ETXTBSY;
3505 goto out_mutex;
3506 }
3507
3508 /* No need to punch hole beyond i_size */
3509 if (offset >= inode->i_size)
3510 goto out_mutex;
3511
3512 /*
3513 * If the hole extends beyond i_size, set the hole
3514 * to end after the page that contains i_size
3515 */
3516 if (offset + length > inode->i_size) {
3517 length = inode->i_size +
3518 PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
3519 offset;
3520 }
3521
a361293f
JK
3522 if (offset & (sb->s_blocksize - 1) ||
3523 (offset + length) & (sb->s_blocksize - 1)) {
3524 /*
3525 * Attach jinode to inode for jbd2 if we do any zeroing of
3526 * partial block
3527 */
3528 ret = ext4_inode_attach_jinode(inode);
3529 if (ret < 0)
3530 goto out_mutex;
3531
3532 }
3533
a87dd18c
LC
3534 first_block_offset = round_up(offset, sb->s_blocksize);
3535 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
26a4c0c6 3536
a87dd18c
LC
3537 /* Now release the pages and zero block aligned part of pages*/
3538 if (last_block_offset > first_block_offset)
3539 truncate_pagecache_range(inode, first_block_offset,
3540 last_block_offset);
26a4c0c6
TT
3541
3542 /* Wait all existing dio workers, newcomers will block on i_mutex */
3543 ext4_inode_block_unlocked_dio(inode);
26a4c0c6
TT
3544 inode_dio_wait(inode);
3545
3546 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3547 credits = ext4_writepage_trans_blocks(inode);
3548 else
3549 credits = ext4_blocks_for_truncate(inode);
3550 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3551 if (IS_ERR(handle)) {
3552 ret = PTR_ERR(handle);
3553 ext4_std_error(sb, ret);
3554 goto out_dio;
3555 }
3556
a87dd18c
LC
3557 ret = ext4_zero_partial_blocks(handle, inode, offset,
3558 length);
3559 if (ret)
3560 goto out_stop;
26a4c0c6
TT
3561
3562 first_block = (offset + sb->s_blocksize - 1) >>
3563 EXT4_BLOCK_SIZE_BITS(sb);
3564 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
3565
3566 /* If there are no blocks to remove, return now */
3567 if (first_block >= stop_block)
3568 goto out_stop;
3569
3570 down_write(&EXT4_I(inode)->i_data_sem);
3571 ext4_discard_preallocations(inode);
3572
3573 ret = ext4_es_remove_extent(inode, first_block,
3574 stop_block - first_block);
3575 if (ret) {
3576 up_write(&EXT4_I(inode)->i_data_sem);
3577 goto out_stop;
3578 }
3579
3580 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3581 ret = ext4_ext_remove_space(inode, first_block,
3582 stop_block - 1);
3583 else
3584 ret = ext4_free_hole_blocks(handle, inode, first_block,
3585 stop_block);
3586
3587 ext4_discard_preallocations(inode);
819c4920 3588 up_write(&EXT4_I(inode)->i_data_sem);
26a4c0c6
TT
3589 if (IS_SYNC(inode))
3590 ext4_handle_sync(handle);
26a4c0c6
TT
3591 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3592 ext4_mark_inode_dirty(handle, inode);
3593out_stop:
3594 ext4_journal_stop(handle);
3595out_dio:
3596 ext4_inode_resume_unlocked_dio(inode);
3597out_mutex:
3598 mutex_unlock(&inode->i_mutex);
3599 return ret;
a4bb6b64
AH
3600}
3601
a361293f
JK
3602int ext4_inode_attach_jinode(struct inode *inode)
3603{
3604 struct ext4_inode_info *ei = EXT4_I(inode);
3605 struct jbd2_inode *jinode;
3606
3607 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
3608 return 0;
3609
3610 jinode = jbd2_alloc_inode(GFP_KERNEL);
3611 spin_lock(&inode->i_lock);
3612 if (!ei->jinode) {
3613 if (!jinode) {
3614 spin_unlock(&inode->i_lock);
3615 return -ENOMEM;
3616 }
3617 ei->jinode = jinode;
3618 jbd2_journal_init_jbd_inode(ei->jinode, inode);
3619 jinode = NULL;
3620 }
3621 spin_unlock(&inode->i_lock);
3622 if (unlikely(jinode != NULL))
3623 jbd2_free_inode(jinode);
3624 return 0;
3625}
3626
ac27a0ec 3627/*
617ba13b 3628 * ext4_truncate()
ac27a0ec 3629 *
617ba13b
MC
3630 * We block out ext4_get_block() block instantiations across the entire
3631 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
ac27a0ec
DK
3632 * simultaneously on behalf of the same inode.
3633 *
42b2aa86 3634 * As we work through the truncate and commit bits of it to the journal there
ac27a0ec
DK
3635 * is one core, guiding principle: the file's tree must always be consistent on
3636 * disk. We must be able to restart the truncate after a crash.
3637 *
3638 * The file's tree may be transiently inconsistent in memory (although it
3639 * probably isn't), but whenever we close off and commit a journal transaction,
3640 * the contents of (the filesystem + the journal) must be consistent and
3641 * restartable. It's pretty simple, really: bottom up, right to left (although
3642 * left-to-right works OK too).
3643 *
3644 * Note that at recovery time, journal replay occurs *before* the restart of
3645 * truncate against the orphan inode list.
3646 *
3647 * The committed inode has the new, desired i_size (which is the same as
617ba13b 3648 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
ac27a0ec 3649 * that this inode's truncate did not complete and it will again call
617ba13b
MC
3650 * ext4_truncate() to have another go. So there will be instantiated blocks
3651 * to the right of the truncation point in a crashed ext4 filesystem. But
ac27a0ec 3652 * that's fine - as long as they are linked from the inode, the post-crash
617ba13b 3653 * ext4_truncate() run will find them and release them.
ac27a0ec 3654 */
617ba13b 3655void ext4_truncate(struct inode *inode)
ac27a0ec 3656{
819c4920
TT
3657 struct ext4_inode_info *ei = EXT4_I(inode);
3658 unsigned int credits;
3659 handle_t *handle;
3660 struct address_space *mapping = inode->i_mapping;
819c4920 3661
19b5ef61
TT
3662 /*
3663 * There is a possibility that we're either freeing the inode
3664 * or it completely new indode. In those cases we might not
3665 * have i_mutex locked because it's not necessary.
3666 */
3667 if (!(inode->i_state & (I_NEW|I_FREEING)))
3668 WARN_ON(!mutex_is_locked(&inode->i_mutex));
0562e0ba
JZ
3669 trace_ext4_truncate_enter(inode);
3670
91ef4caf 3671 if (!ext4_can_truncate(inode))
ac27a0ec
DK
3672 return;
3673
12e9b892 3674 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
c8d46e41 3675
5534fb5b 3676 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
19f5fb7a 3677 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
7d8f9f7d 3678
aef1c851
TM
3679 if (ext4_has_inline_data(inode)) {
3680 int has_inline = 1;
3681
3682 ext4_inline_data_truncate(inode, &has_inline);
3683 if (has_inline)
3684 return;
3685 }
3686
a361293f
JK
3687 /* If we zero-out tail of the page, we have to create jinode for jbd2 */
3688 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
3689 if (ext4_inode_attach_jinode(inode) < 0)
3690 return;
3691 }
3692
819c4920
TT
3693 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3694 credits = ext4_writepage_trans_blocks(inode);
3695 else
3696 credits = ext4_blocks_for_truncate(inode);
3697
3698 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3699 if (IS_ERR(handle)) {
3700 ext4_std_error(inode->i_sb, PTR_ERR(handle));
3701 return;
3702 }
3703
eb3544c6
LC
3704 if (inode->i_size & (inode->i_sb->s_blocksize - 1))
3705 ext4_block_truncate_page(handle, mapping, inode->i_size);
819c4920
TT
3706
3707 /*
3708 * We add the inode to the orphan list, so that if this
3709 * truncate spans multiple transactions, and we crash, we will
3710 * resume the truncate when the filesystem recovers. It also
3711 * marks the inode dirty, to catch the new size.
3712 *
3713 * Implication: the file must always be in a sane, consistent
3714 * truncatable state while each transaction commits.
3715 */
3716 if (ext4_orphan_add(handle, inode))
3717 goto out_stop;
3718
3719 down_write(&EXT4_I(inode)->i_data_sem);
3720
3721 ext4_discard_preallocations(inode);
3722
ff9893dc 3723 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
819c4920 3724 ext4_ext_truncate(handle, inode);
ff9893dc 3725 else
819c4920
TT
3726 ext4_ind_truncate(handle, inode);
3727
3728 up_write(&ei->i_data_sem);
3729
3730 if (IS_SYNC(inode))
3731 ext4_handle_sync(handle);
3732
3733out_stop:
3734 /*
3735 * If this was a simple ftruncate() and the file will remain alive,
3736 * then we need to clear up the orphan record which we created above.
3737 * However, if this was a real unlink then we were called by
3738 * ext4_delete_inode(), and we allow that function to clean up the
3739 * orphan info for us.
3740 */
3741 if (inode->i_nlink)
3742 ext4_orphan_del(handle, inode);
3743
3744 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3745 ext4_mark_inode_dirty(handle, inode);
3746 ext4_journal_stop(handle);
ac27a0ec 3747
0562e0ba 3748 trace_ext4_truncate_exit(inode);
ac27a0ec
DK
3749}
3750
ac27a0ec 3751/*
617ba13b 3752 * ext4_get_inode_loc returns with an extra refcount against the inode's
ac27a0ec
DK
3753 * underlying buffer_head on success. If 'in_mem' is true, we have all
3754 * data in memory that is needed to recreate the on-disk version of this
3755 * inode.
3756 */
617ba13b
MC
3757static int __ext4_get_inode_loc(struct inode *inode,
3758 struct ext4_iloc *iloc, int in_mem)
ac27a0ec 3759{
240799cd
TT
3760 struct ext4_group_desc *gdp;
3761 struct buffer_head *bh;
3762 struct super_block *sb = inode->i_sb;
3763 ext4_fsblk_t block;
3764 int inodes_per_block, inode_offset;
3765
3a06d778 3766 iloc->bh = NULL;
240799cd
TT
3767 if (!ext4_valid_inum(sb, inode->i_ino))
3768 return -EIO;
ac27a0ec 3769
240799cd
TT
3770 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3771 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3772 if (!gdp)
ac27a0ec
DK
3773 return -EIO;
3774
240799cd
TT
3775 /*
3776 * Figure out the offset within the block group inode table
3777 */
00d09882 3778 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
240799cd
TT
3779 inode_offset = ((inode->i_ino - 1) %
3780 EXT4_INODES_PER_GROUP(sb));
3781 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3782 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3783
3784 bh = sb_getblk(sb, block);
aebf0243 3785 if (unlikely(!bh))
860d21e2 3786 return -ENOMEM;
ac27a0ec
DK
3787 if (!buffer_uptodate(bh)) {
3788 lock_buffer(bh);
9c83a923
HK
3789
3790 /*
3791 * If the buffer has the write error flag, we have failed
3792 * to write out another inode in the same block. In this
3793 * case, we don't have to read the block because we may
3794 * read the old inode data successfully.
3795 */
3796 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3797 set_buffer_uptodate(bh);
3798
ac27a0ec
DK
3799 if (buffer_uptodate(bh)) {
3800 /* someone brought it uptodate while we waited */
3801 unlock_buffer(bh);
3802 goto has_buffer;
3803 }
3804
3805 /*
3806 * If we have all information of the inode in memory and this
3807 * is the only valid inode in the block, we need not read the
3808 * block.
3809 */
3810 if (in_mem) {
3811 struct buffer_head *bitmap_bh;
240799cd 3812 int i, start;
ac27a0ec 3813
240799cd 3814 start = inode_offset & ~(inodes_per_block - 1);
ac27a0ec 3815
240799cd
TT
3816 /* Is the inode bitmap in cache? */
3817 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
aebf0243 3818 if (unlikely(!bitmap_bh))
ac27a0ec
DK
3819 goto make_io;
3820
3821 /*
3822 * If the inode bitmap isn't in cache then the
3823 * optimisation may end up performing two reads instead
3824 * of one, so skip it.
3825 */
3826 if (!buffer_uptodate(bitmap_bh)) {
3827 brelse(bitmap_bh);
3828 goto make_io;
3829 }
240799cd 3830 for (i = start; i < start + inodes_per_block; i++) {
ac27a0ec
DK
3831 if (i == inode_offset)
3832 continue;
617ba13b 3833 if (ext4_test_bit(i, bitmap_bh->b_data))
ac27a0ec
DK
3834 break;
3835 }
3836 brelse(bitmap_bh);
240799cd 3837 if (i == start + inodes_per_block) {
ac27a0ec
DK
3838 /* all other inodes are free, so skip I/O */
3839 memset(bh->b_data, 0, bh->b_size);
3840 set_buffer_uptodate(bh);
3841 unlock_buffer(bh);
3842 goto has_buffer;
3843 }
3844 }
3845
3846make_io:
240799cd
TT
3847 /*
3848 * If we need to do any I/O, try to pre-readahead extra
3849 * blocks from the inode table.
3850 */
3851 if (EXT4_SB(sb)->s_inode_readahead_blks) {
3852 ext4_fsblk_t b, end, table;
3853 unsigned num;
0d606e2c 3854 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
240799cd
TT
3855
3856 table = ext4_inode_table(sb, gdp);
b713a5ec 3857 /* s_inode_readahead_blks is always a power of 2 */
0d606e2c 3858 b = block & ~((ext4_fsblk_t) ra_blks - 1);
240799cd
TT
3859 if (table > b)
3860 b = table;
0d606e2c 3861 end = b + ra_blks;
240799cd 3862 num = EXT4_INODES_PER_GROUP(sb);
feb0ab32 3863 if (ext4_has_group_desc_csum(sb))
560671a0 3864 num -= ext4_itable_unused_count(sb, gdp);
240799cd
TT
3865 table += num / inodes_per_block;
3866 if (end > table)
3867 end = table;
3868 while (b <= end)
3869 sb_breadahead(sb, b++);
3870 }
3871
ac27a0ec
DK
3872 /*
3873 * There are other valid inodes in the buffer, this inode
3874 * has in-inode xattrs, or we don't have this inode in memory.
3875 * Read the block from disk.
3876 */
0562e0ba 3877 trace_ext4_load_inode(inode);
ac27a0ec
DK
3878 get_bh(bh);
3879 bh->b_end_io = end_buffer_read_sync;
65299a3b 3880 submit_bh(READ | REQ_META | REQ_PRIO, bh);
ac27a0ec
DK
3881 wait_on_buffer(bh);
3882 if (!buffer_uptodate(bh)) {
c398eda0
TT
3883 EXT4_ERROR_INODE_BLOCK(inode, block,
3884 "unable to read itable block");
ac27a0ec
DK
3885 brelse(bh);
3886 return -EIO;
3887 }
3888 }
3889has_buffer:
3890 iloc->bh = bh;
3891 return 0;
3892}
3893
617ba13b 3894int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
3895{
3896 /* We have all inode data except xattrs in memory here. */
617ba13b 3897 return __ext4_get_inode_loc(inode, iloc,
19f5fb7a 3898 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
ac27a0ec
DK
3899}
3900
617ba13b 3901void ext4_set_inode_flags(struct inode *inode)
ac27a0ec 3902{
617ba13b 3903 unsigned int flags = EXT4_I(inode)->i_flags;
ac27a0ec
DK
3904
3905 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
617ba13b 3906 if (flags & EXT4_SYNC_FL)
ac27a0ec 3907 inode->i_flags |= S_SYNC;
617ba13b 3908 if (flags & EXT4_APPEND_FL)
ac27a0ec 3909 inode->i_flags |= S_APPEND;
617ba13b 3910 if (flags & EXT4_IMMUTABLE_FL)
ac27a0ec 3911 inode->i_flags |= S_IMMUTABLE;
617ba13b 3912 if (flags & EXT4_NOATIME_FL)
ac27a0ec 3913 inode->i_flags |= S_NOATIME;
617ba13b 3914 if (flags & EXT4_DIRSYNC_FL)
ac27a0ec
DK
3915 inode->i_flags |= S_DIRSYNC;
3916}
3917
ff9ddf7e
JK
3918/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3919void ext4_get_inode_flags(struct ext4_inode_info *ei)
3920{
84a8dce2
DM
3921 unsigned int vfs_fl;
3922 unsigned long old_fl, new_fl;
3923
3924 do {
3925 vfs_fl = ei->vfs_inode.i_flags;
3926 old_fl = ei->i_flags;
3927 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3928 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
3929 EXT4_DIRSYNC_FL);
3930 if (vfs_fl & S_SYNC)
3931 new_fl |= EXT4_SYNC_FL;
3932 if (vfs_fl & S_APPEND)
3933 new_fl |= EXT4_APPEND_FL;
3934 if (vfs_fl & S_IMMUTABLE)
3935 new_fl |= EXT4_IMMUTABLE_FL;
3936 if (vfs_fl & S_NOATIME)
3937 new_fl |= EXT4_NOATIME_FL;
3938 if (vfs_fl & S_DIRSYNC)
3939 new_fl |= EXT4_DIRSYNC_FL;
3940 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
ff9ddf7e 3941}
de9a55b8 3942
0fc1b451 3943static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
de9a55b8 3944 struct ext4_inode_info *ei)
0fc1b451
AK
3945{
3946 blkcnt_t i_blocks ;
8180a562
AK
3947 struct inode *inode = &(ei->vfs_inode);
3948 struct super_block *sb = inode->i_sb;
0fc1b451
AK
3949
3950 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3951 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3952 /* we are using combined 48 bit field */
3953 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3954 le32_to_cpu(raw_inode->i_blocks_lo);
07a03824 3955 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
8180a562
AK
3956 /* i_blocks represent file system block size */
3957 return i_blocks << (inode->i_blkbits - 9);
3958 } else {
3959 return i_blocks;
3960 }
0fc1b451
AK
3961 } else {
3962 return le32_to_cpu(raw_inode->i_blocks_lo);
3963 }
3964}
ff9ddf7e 3965
152a7b0a
TM
3966static inline void ext4_iget_extra_inode(struct inode *inode,
3967 struct ext4_inode *raw_inode,
3968 struct ext4_inode_info *ei)
3969{
3970 __le32 *magic = (void *)raw_inode +
3971 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
67cf5b09 3972 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
152a7b0a 3973 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
67cf5b09 3974 ext4_find_inline_data_nolock(inode);
f19d5870
TM
3975 } else
3976 EXT4_I(inode)->i_inline_off = 0;
152a7b0a
TM
3977}
3978
1d1fe1ee 3979struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
ac27a0ec 3980{
617ba13b
MC
3981 struct ext4_iloc iloc;
3982 struct ext4_inode *raw_inode;
1d1fe1ee 3983 struct ext4_inode_info *ei;
1d1fe1ee 3984 struct inode *inode;
b436b9be 3985 journal_t *journal = EXT4_SB(sb)->s_journal;
1d1fe1ee 3986 long ret;
ac27a0ec 3987 int block;
08cefc7a
EB
3988 uid_t i_uid;
3989 gid_t i_gid;
ac27a0ec 3990
1d1fe1ee
DH
3991 inode = iget_locked(sb, ino);
3992 if (!inode)
3993 return ERR_PTR(-ENOMEM);
3994 if (!(inode->i_state & I_NEW))
3995 return inode;
3996
3997 ei = EXT4_I(inode);
7dc57615 3998 iloc.bh = NULL;
ac27a0ec 3999
1d1fe1ee
DH
4000 ret = __ext4_get_inode_loc(inode, &iloc, 0);
4001 if (ret < 0)
ac27a0ec 4002 goto bad_inode;
617ba13b 4003 raw_inode = ext4_raw_inode(&iloc);
814525f4
DW
4004
4005 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4006 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4007 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4008 EXT4_INODE_SIZE(inode->i_sb)) {
4009 EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
4010 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
4011 EXT4_INODE_SIZE(inode->i_sb));
4012 ret = -EIO;
4013 goto bad_inode;
4014 }
4015 } else
4016 ei->i_extra_isize = 0;
4017
4018 /* Precompute checksum seed for inode metadata */
4019 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4020 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
4021 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4022 __u32 csum;
4023 __le32 inum = cpu_to_le32(inode->i_ino);
4024 __le32 gen = raw_inode->i_generation;
4025 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4026 sizeof(inum));
4027 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4028 sizeof(gen));
4029 }
4030
4031 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4032 EXT4_ERROR_INODE(inode, "checksum invalid");
4033 ret = -EIO;
4034 goto bad_inode;
4035 }
4036
ac27a0ec 4037 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
08cefc7a
EB
4038 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4039 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
af5bc92d 4040 if (!(test_opt(inode->i_sb, NO_UID32))) {
08cefc7a
EB
4041 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4042 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
ac27a0ec 4043 }
08cefc7a
EB
4044 i_uid_write(inode, i_uid);
4045 i_gid_write(inode, i_gid);
bfe86848 4046 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
ac27a0ec 4047
353eb83c 4048 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
67cf5b09 4049 ei->i_inline_off = 0;
ac27a0ec
DK
4050 ei->i_dir_start_lookup = 0;
4051 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4052 /* We now have enough fields to check if the inode was active or not.
4053 * This is needed because nfsd might try to access dead inodes
4054 * the test is that same one that e2fsck uses
4055 * NeilBrown 1999oct15
4056 */
4057 if (inode->i_nlink == 0) {
393d1d1d
DTB
4058 if ((inode->i_mode == 0 ||
4059 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4060 ino != EXT4_BOOT_LOADER_INO) {
ac27a0ec 4061 /* this inode is deleted */
1d1fe1ee 4062 ret = -ESTALE;
ac27a0ec
DK
4063 goto bad_inode;
4064 }
4065 /* The only unlinked inodes we let through here have
4066 * valid i_mode and are being read by the orphan
4067 * recovery code: that's fine, we're about to complete
393d1d1d
DTB
4068 * the process of deleting those.
4069 * OR it is the EXT4_BOOT_LOADER_INO which is
4070 * not initialized on a new filesystem. */
ac27a0ec 4071 }
ac27a0ec 4072 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
0fc1b451 4073 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
7973c0c1 4074 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
a9e81742 4075 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
a1ddeb7e
BP
4076 ei->i_file_acl |=
4077 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
a48380f7 4078 inode->i_size = ext4_isize(raw_inode);
ac27a0ec 4079 ei->i_disksize = inode->i_size;
a9e7f447
DM
4080#ifdef CONFIG_QUOTA
4081 ei->i_reserved_quota = 0;
4082#endif
ac27a0ec
DK
4083 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4084 ei->i_block_group = iloc.block_group;
a4912123 4085 ei->i_last_alloc_group = ~0;
ac27a0ec
DK
4086 /*
4087 * NOTE! The in-memory inode i_data array is in little-endian order
4088 * even on big-endian machines: we do NOT byteswap the block numbers!
4089 */
617ba13b 4090 for (block = 0; block < EXT4_N_BLOCKS; block++)
ac27a0ec
DK
4091 ei->i_data[block] = raw_inode->i_block[block];
4092 INIT_LIST_HEAD(&ei->i_orphan);
4093
b436b9be
JK
4094 /*
4095 * Set transaction id's of transactions that have to be committed
4096 * to finish f[data]sync. We set them to currently running transaction
4097 * as we cannot be sure that the inode or some of its metadata isn't
4098 * part of the transaction - the inode could have been reclaimed and
4099 * now it is reread from disk.
4100 */
4101 if (journal) {
4102 transaction_t *transaction;
4103 tid_t tid;
4104
a931da6a 4105 read_lock(&journal->j_state_lock);
b436b9be
JK
4106 if (journal->j_running_transaction)
4107 transaction = journal->j_running_transaction;
4108 else
4109 transaction = journal->j_committing_transaction;
4110 if (transaction)
4111 tid = transaction->t_tid;
4112 else
4113 tid = journal->j_commit_sequence;
a931da6a 4114 read_unlock(&journal->j_state_lock);
b436b9be
JK
4115 ei->i_sync_tid = tid;
4116 ei->i_datasync_tid = tid;
4117 }
4118
0040d987 4119 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
ac27a0ec
DK
4120 if (ei->i_extra_isize == 0) {
4121 /* The extra space is currently unused. Use it. */
617ba13b
MC
4122 ei->i_extra_isize = sizeof(struct ext4_inode) -
4123 EXT4_GOOD_OLD_INODE_SIZE;
ac27a0ec 4124 } else {
152a7b0a 4125 ext4_iget_extra_inode(inode, raw_inode, ei);
ac27a0ec 4126 }
814525f4 4127 }
ac27a0ec 4128
ef7f3835
KS
4129 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4130 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4131 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4132 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4133
25ec56b5
JNC
4134 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4135 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4136 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4137 inode->i_version |=
4138 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4139 }
4140
c4b5a614 4141 ret = 0;
485c26ec 4142 if (ei->i_file_acl &&
1032988c 4143 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
24676da4
TT
4144 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4145 ei->i_file_acl);
485c26ec
TT
4146 ret = -EIO;
4147 goto bad_inode;
f19d5870
TM
4148 } else if (!ext4_has_inline_data(inode)) {
4149 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4150 if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4151 (S_ISLNK(inode->i_mode) &&
4152 !ext4_inode_is_fast_symlink(inode))))
4153 /* Validate extent which is part of inode */
4154 ret = ext4_ext_check_inode(inode);
4155 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4156 (S_ISLNK(inode->i_mode) &&
4157 !ext4_inode_is_fast_symlink(inode))) {
4158 /* Validate block references which are part of inode */
4159 ret = ext4_ind_check_inode(inode);
4160 }
fe2c8191 4161 }
567f3e9a 4162 if (ret)
de9a55b8 4163 goto bad_inode;
7a262f7c 4164
ac27a0ec 4165 if (S_ISREG(inode->i_mode)) {
617ba13b
MC
4166 inode->i_op = &ext4_file_inode_operations;
4167 inode->i_fop = &ext4_file_operations;
4168 ext4_set_aops(inode);
ac27a0ec 4169 } else if (S_ISDIR(inode->i_mode)) {
617ba13b
MC
4170 inode->i_op = &ext4_dir_inode_operations;
4171 inode->i_fop = &ext4_dir_operations;
ac27a0ec 4172 } else if (S_ISLNK(inode->i_mode)) {
e83c1397 4173 if (ext4_inode_is_fast_symlink(inode)) {
617ba13b 4174 inode->i_op = &ext4_fast_symlink_inode_operations;
e83c1397
DG
4175 nd_terminate_link(ei->i_data, inode->i_size,
4176 sizeof(ei->i_data) - 1);
4177 } else {
617ba13b
MC
4178 inode->i_op = &ext4_symlink_inode_operations;
4179 ext4_set_aops(inode);
ac27a0ec 4180 }
563bdd61
TT
4181 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4182 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
617ba13b 4183 inode->i_op = &ext4_special_inode_operations;
ac27a0ec
DK
4184 if (raw_inode->i_block[0])
4185 init_special_inode(inode, inode->i_mode,
4186 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4187 else
4188 init_special_inode(inode, inode->i_mode,
4189 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
393d1d1d
DTB
4190 } else if (ino == EXT4_BOOT_LOADER_INO) {
4191 make_bad_inode(inode);
563bdd61 4192 } else {
563bdd61 4193 ret = -EIO;
24676da4 4194 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
563bdd61 4195 goto bad_inode;
ac27a0ec 4196 }
af5bc92d 4197 brelse(iloc.bh);
617ba13b 4198 ext4_set_inode_flags(inode);
1d1fe1ee
DH
4199 unlock_new_inode(inode);
4200 return inode;
ac27a0ec
DK
4201
4202bad_inode:
567f3e9a 4203 brelse(iloc.bh);
1d1fe1ee
DH
4204 iget_failed(inode);
4205 return ERR_PTR(ret);
ac27a0ec
DK
4206}
4207
0fc1b451
AK
4208static int ext4_inode_blocks_set(handle_t *handle,
4209 struct ext4_inode *raw_inode,
4210 struct ext4_inode_info *ei)
4211{
4212 struct inode *inode = &(ei->vfs_inode);
4213 u64 i_blocks = inode->i_blocks;
4214 struct super_block *sb = inode->i_sb;
0fc1b451
AK
4215
4216 if (i_blocks <= ~0U) {
4217 /*
4907cb7b 4218 * i_blocks can be represented in a 32 bit variable
0fc1b451
AK
4219 * as multiple of 512 bytes
4220 */
8180a562 4221 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 4222 raw_inode->i_blocks_high = 0;
84a8dce2 4223 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
f287a1a5
TT
4224 return 0;
4225 }
4226 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4227 return -EFBIG;
4228
4229 if (i_blocks <= 0xffffffffffffULL) {
0fc1b451
AK
4230 /*
4231 * i_blocks can be represented in a 48 bit variable
4232 * as multiple of 512 bytes
4233 */
8180a562 4234 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 4235 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
84a8dce2 4236 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
0fc1b451 4237 } else {
84a8dce2 4238 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
8180a562
AK
4239 /* i_block is stored in file system block size */
4240 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4241 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4242 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
0fc1b451 4243 }
f287a1a5 4244 return 0;
0fc1b451
AK
4245}
4246
ac27a0ec
DK
4247/*
4248 * Post the struct inode info into an on-disk inode location in the
4249 * buffer-cache. This gobbles the caller's reference to the
4250 * buffer_head in the inode location struct.
4251 *
4252 * The caller must have write access to iloc->bh.
4253 */
617ba13b 4254static int ext4_do_update_inode(handle_t *handle,
ac27a0ec 4255 struct inode *inode,
830156c7 4256 struct ext4_iloc *iloc)
ac27a0ec 4257{
617ba13b
MC
4258 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4259 struct ext4_inode_info *ei = EXT4_I(inode);
ac27a0ec
DK
4260 struct buffer_head *bh = iloc->bh;
4261 int err = 0, rc, block;
b71fc079 4262 int need_datasync = 0;
08cefc7a
EB
4263 uid_t i_uid;
4264 gid_t i_gid;
ac27a0ec
DK
4265
4266 /* For fields not not tracking in the in-memory inode,
4267 * initialise them to zero for new inodes. */
19f5fb7a 4268 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
617ba13b 4269 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
ac27a0ec 4270
ff9ddf7e 4271 ext4_get_inode_flags(ei);
ac27a0ec 4272 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
08cefc7a
EB
4273 i_uid = i_uid_read(inode);
4274 i_gid = i_gid_read(inode);
af5bc92d 4275 if (!(test_opt(inode->i_sb, NO_UID32))) {
08cefc7a
EB
4276 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4277 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
ac27a0ec
DK
4278/*
4279 * Fix up interoperability with old kernels. Otherwise, old inodes get
4280 * re-used with the upper 16 bits of the uid/gid intact
4281 */
af5bc92d 4282 if (!ei->i_dtime) {
ac27a0ec 4283 raw_inode->i_uid_high =
08cefc7a 4284 cpu_to_le16(high_16_bits(i_uid));
ac27a0ec 4285 raw_inode->i_gid_high =
08cefc7a 4286 cpu_to_le16(high_16_bits(i_gid));
ac27a0ec
DK
4287 } else {
4288 raw_inode->i_uid_high = 0;
4289 raw_inode->i_gid_high = 0;
4290 }
4291 } else {
08cefc7a
EB
4292 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4293 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
ac27a0ec
DK
4294 raw_inode->i_uid_high = 0;
4295 raw_inode->i_gid_high = 0;
4296 }
4297 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
ef7f3835
KS
4298
4299 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4300 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4301 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4302 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4303
0fc1b451
AK
4304 if (ext4_inode_blocks_set(handle, raw_inode, ei))
4305 goto out_brelse;
ac27a0ec 4306 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
353eb83c 4307 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
9b8f1f01
MC
4308 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4309 cpu_to_le32(EXT4_OS_HURD))
a1ddeb7e
BP
4310 raw_inode->i_file_acl_high =
4311 cpu_to_le16(ei->i_file_acl >> 32);
7973c0c1 4312 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
b71fc079
JK
4313 if (ei->i_disksize != ext4_isize(raw_inode)) {
4314 ext4_isize_set(raw_inode, ei->i_disksize);
4315 need_datasync = 1;
4316 }
a48380f7
AK
4317 if (ei->i_disksize > 0x7fffffffULL) {
4318 struct super_block *sb = inode->i_sb;
4319 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4320 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4321 EXT4_SB(sb)->s_es->s_rev_level ==
4322 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4323 /* If this is the first large file
4324 * created, add a flag to the superblock.
4325 */
4326 err = ext4_journal_get_write_access(handle,
4327 EXT4_SB(sb)->s_sbh);
4328 if (err)
4329 goto out_brelse;
4330 ext4_update_dynamic_rev(sb);
4331 EXT4_SET_RO_COMPAT_FEATURE(sb,
617ba13b 4332 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
0390131b 4333 ext4_handle_sync(handle);
b50924c2 4334 err = ext4_handle_dirty_super(handle, sb);
ac27a0ec
DK
4335 }
4336 }
4337 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4338 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4339 if (old_valid_dev(inode->i_rdev)) {
4340 raw_inode->i_block[0] =
4341 cpu_to_le32(old_encode_dev(inode->i_rdev));
4342 raw_inode->i_block[1] = 0;
4343 } else {
4344 raw_inode->i_block[0] = 0;
4345 raw_inode->i_block[1] =
4346 cpu_to_le32(new_encode_dev(inode->i_rdev));
4347 raw_inode->i_block[2] = 0;
4348 }
f19d5870 4349 } else if (!ext4_has_inline_data(inode)) {
de9a55b8
TT
4350 for (block = 0; block < EXT4_N_BLOCKS; block++)
4351 raw_inode->i_block[block] = ei->i_data[block];
f19d5870 4352 }
ac27a0ec 4353
25ec56b5
JNC
4354 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4355 if (ei->i_extra_isize) {
4356 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4357 raw_inode->i_version_hi =
4358 cpu_to_le32(inode->i_version >> 32);
ac27a0ec 4359 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
25ec56b5
JNC
4360 }
4361
814525f4
DW
4362 ext4_inode_csum_set(inode, raw_inode, ei);
4363
830156c7 4364 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
73b50c1c 4365 rc = ext4_handle_dirty_metadata(handle, NULL, bh);
830156c7
FM
4366 if (!err)
4367 err = rc;
19f5fb7a 4368 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
ac27a0ec 4369
b71fc079 4370 ext4_update_inode_fsync_trans(handle, inode, need_datasync);
ac27a0ec 4371out_brelse:
af5bc92d 4372 brelse(bh);
617ba13b 4373 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4374 return err;
4375}
4376
4377/*
617ba13b 4378 * ext4_write_inode()
ac27a0ec
DK
4379 *
4380 * We are called from a few places:
4381 *
4382 * - Within generic_file_write() for O_SYNC files.
4383 * Here, there will be no transaction running. We wait for any running
4907cb7b 4384 * transaction to commit.
ac27a0ec
DK
4385 *
4386 * - Within sys_sync(), kupdate and such.
4387 * We wait on commit, if tol to.
4388 *
4389 * - Within prune_icache() (PF_MEMALLOC == true)
4390 * Here we simply return. We can't afford to block kswapd on the
4391 * journal commit.
4392 *
4393 * In all cases it is actually safe for us to return without doing anything,
4394 * because the inode has been copied into a raw inode buffer in
617ba13b 4395 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
ac27a0ec
DK
4396 * knfsd.
4397 *
4398 * Note that we are absolutely dependent upon all inode dirtiers doing the
4399 * right thing: they *must* call mark_inode_dirty() after dirtying info in
4400 * which we are interested.
4401 *
4402 * It would be a bug for them to not do this. The code:
4403 *
4404 * mark_inode_dirty(inode)
4405 * stuff();
4406 * inode->i_size = expr;
4407 *
4408 * is in error because a kswapd-driven write_inode() could occur while
4409 * `stuff()' is running, and the new i_size will be lost. Plus the inode
4410 * will no longer be on the superblock's dirty inode list.
4411 */
a9185b41 4412int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
ac27a0ec 4413{
91ac6f43
FM
4414 int err;
4415
ac27a0ec
DK
4416 if (current->flags & PF_MEMALLOC)
4417 return 0;
4418
91ac6f43
FM
4419 if (EXT4_SB(inode->i_sb)->s_journal) {
4420 if (ext4_journal_current_handle()) {
4421 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4422 dump_stack();
4423 return -EIO;
4424 }
ac27a0ec 4425
a9185b41 4426 if (wbc->sync_mode != WB_SYNC_ALL)
91ac6f43
FM
4427 return 0;
4428
4429 err = ext4_force_commit(inode->i_sb);
4430 } else {
4431 struct ext4_iloc iloc;
ac27a0ec 4432
8b472d73 4433 err = __ext4_get_inode_loc(inode, &iloc, 0);
91ac6f43
FM
4434 if (err)
4435 return err;
a9185b41 4436 if (wbc->sync_mode == WB_SYNC_ALL)
830156c7
FM
4437 sync_dirty_buffer(iloc.bh);
4438 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
c398eda0
TT
4439 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4440 "IO error syncing inode");
830156c7
FM
4441 err = -EIO;
4442 }
fd2dd9fb 4443 brelse(iloc.bh);
91ac6f43
FM
4444 }
4445 return err;
ac27a0ec
DK
4446}
4447
53e87268
JK
4448/*
4449 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4450 * buffers that are attached to a page stradding i_size and are undergoing
4451 * commit. In that case we have to wait for commit to finish and try again.
4452 */
4453static void ext4_wait_for_tail_page_commit(struct inode *inode)
4454{
4455 struct page *page;
4456 unsigned offset;
4457 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4458 tid_t commit_tid = 0;
4459 int ret;
4460
4461 offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
4462 /*
4463 * All buffers in the last page remain valid? Then there's nothing to
4464 * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
4465 * blocksize case
4466 */
4467 if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
4468 return;
4469 while (1) {
4470 page = find_lock_page(inode->i_mapping,
4471 inode->i_size >> PAGE_CACHE_SHIFT);
4472 if (!page)
4473 return;
ca99fdd2
LC
4474 ret = __ext4_journalled_invalidatepage(page, offset,
4475 PAGE_CACHE_SIZE - offset);
53e87268
JK
4476 unlock_page(page);
4477 page_cache_release(page);
4478 if (ret != -EBUSY)
4479 return;
4480 commit_tid = 0;
4481 read_lock(&journal->j_state_lock);
4482 if (journal->j_committing_transaction)
4483 commit_tid = journal->j_committing_transaction->t_tid;
4484 read_unlock(&journal->j_state_lock);
4485 if (commit_tid)
4486 jbd2_log_wait_commit(journal, commit_tid);
4487 }
4488}
4489
ac27a0ec 4490/*
617ba13b 4491 * ext4_setattr()
ac27a0ec
DK
4492 *
4493 * Called from notify_change.
4494 *
4495 * We want to trap VFS attempts to truncate the file as soon as
4496 * possible. In particular, we want to make sure that when the VFS
4497 * shrinks i_size, we put the inode on the orphan list and modify
4498 * i_disksize immediately, so that during the subsequent flushing of
4499 * dirty pages and freeing of disk blocks, we can guarantee that any
4500 * commit will leave the blocks being flushed in an unused state on
4501 * disk. (On recovery, the inode will get truncated and the blocks will
4502 * be freed, so we have a strong guarantee that no future commit will
4503 * leave these blocks visible to the user.)
4504 *
678aaf48
JK
4505 * Another thing we have to assure is that if we are in ordered mode
4506 * and inode is still attached to the committing transaction, we must
4507 * we start writeout of all the dirty pages which are being truncated.
4508 * This way we are sure that all the data written in the previous
4509 * transaction are already on disk (truncate waits for pages under
4510 * writeback).
4511 *
4512 * Called with inode->i_mutex down.
ac27a0ec 4513 */
617ba13b 4514int ext4_setattr(struct dentry *dentry, struct iattr *attr)
ac27a0ec
DK
4515{
4516 struct inode *inode = dentry->d_inode;
4517 int error, rc = 0;
3d287de3 4518 int orphan = 0;
ac27a0ec
DK
4519 const unsigned int ia_valid = attr->ia_valid;
4520
4521 error = inode_change_ok(inode, attr);
4522 if (error)
4523 return error;
4524
12755627 4525 if (is_quota_modification(inode, attr))
871a2931 4526 dquot_initialize(inode);
08cefc7a
EB
4527 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4528 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
ac27a0ec
DK
4529 handle_t *handle;
4530
4531 /* (user+group)*(old+new) structure, inode write (sb,
4532 * inode block, ? - but truncate inode update has it) */
9924a92a
TT
4533 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4534 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
4535 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
ac27a0ec
DK
4536 if (IS_ERR(handle)) {
4537 error = PTR_ERR(handle);
4538 goto err_out;
4539 }
b43fa828 4540 error = dquot_transfer(inode, attr);
ac27a0ec 4541 if (error) {
617ba13b 4542 ext4_journal_stop(handle);
ac27a0ec
DK
4543 return error;
4544 }
4545 /* Update corresponding info in inode so that everything is in
4546 * one transaction */
4547 if (attr->ia_valid & ATTR_UID)
4548 inode->i_uid = attr->ia_uid;
4549 if (attr->ia_valid & ATTR_GID)
4550 inode->i_gid = attr->ia_gid;
617ba13b
MC
4551 error = ext4_mark_inode_dirty(handle, inode);
4552 ext4_journal_stop(handle);
ac27a0ec
DK
4553 }
4554
e2b46574 4555 if (attr->ia_valid & ATTR_SIZE) {
562c72aa 4556
12e9b892 4557 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
e2b46574
ES
4558 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4559
0c095c7f
TT
4560 if (attr->ia_size > sbi->s_bitmap_maxbytes)
4561 return -EFBIG;
e2b46574
ES
4562 }
4563 }
4564
ac27a0ec 4565 if (S_ISREG(inode->i_mode) &&
c8d46e41 4566 attr->ia_valid & ATTR_SIZE &&
072bd7ea 4567 (attr->ia_size < inode->i_size)) {
ac27a0ec
DK
4568 handle_t *handle;
4569
9924a92a 4570 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
ac27a0ec
DK
4571 if (IS_ERR(handle)) {
4572 error = PTR_ERR(handle);
4573 goto err_out;
4574 }
3d287de3
DM
4575 if (ext4_handle_valid(handle)) {
4576 error = ext4_orphan_add(handle, inode);
4577 orphan = 1;
4578 }
617ba13b
MC
4579 EXT4_I(inode)->i_disksize = attr->ia_size;
4580 rc = ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
4581 if (!error)
4582 error = rc;
617ba13b 4583 ext4_journal_stop(handle);
678aaf48
JK
4584
4585 if (ext4_should_order_data(inode)) {
4586 error = ext4_begin_ordered_truncate(inode,
4587 attr->ia_size);
4588 if (error) {
4589 /* Do as much error cleanup as possible */
9924a92a
TT
4590 handle = ext4_journal_start(inode,
4591 EXT4_HT_INODE, 3);
678aaf48
JK
4592 if (IS_ERR(handle)) {
4593 ext4_orphan_del(NULL, inode);
4594 goto err_out;
4595 }
4596 ext4_orphan_del(handle, inode);
3d287de3 4597 orphan = 0;
678aaf48
JK
4598 ext4_journal_stop(handle);
4599 goto err_out;
4600 }
4601 }
ac27a0ec
DK
4602 }
4603
072bd7ea 4604 if (attr->ia_valid & ATTR_SIZE) {
53e87268
JK
4605 if (attr->ia_size != inode->i_size) {
4606 loff_t oldsize = inode->i_size;
4607
4608 i_size_write(inode, attr->ia_size);
4609 /*
4610 * Blocks are going to be removed from the inode. Wait
4611 * for dio in flight. Temporarily disable
4612 * dioread_nolock to prevent livelock.
4613 */
1b65007e 4614 if (orphan) {
53e87268
JK
4615 if (!ext4_should_journal_data(inode)) {
4616 ext4_inode_block_unlocked_dio(inode);
4617 inode_dio_wait(inode);
4618 ext4_inode_resume_unlocked_dio(inode);
4619 } else
4620 ext4_wait_for_tail_page_commit(inode);
1b65007e 4621 }
53e87268
JK
4622 /*
4623 * Truncate pagecache after we've waited for commit
4624 * in data=journal mode to make pages freeable.
4625 */
4626 truncate_pagecache(inode, oldsize, inode->i_size);
1c9114f9 4627 }
afcff5d8 4628 ext4_truncate(inode);
072bd7ea 4629 }
ac27a0ec 4630
1025774c
CH
4631 if (!rc) {
4632 setattr_copy(inode, attr);
4633 mark_inode_dirty(inode);
4634 }
4635
4636 /*
4637 * If the call to ext4_truncate failed to get a transaction handle at
4638 * all, we need to clean up the in-core orphan list manually.
4639 */
3d287de3 4640 if (orphan && inode->i_nlink)
617ba13b 4641 ext4_orphan_del(NULL, inode);
ac27a0ec
DK
4642
4643 if (!rc && (ia_valid & ATTR_MODE))
617ba13b 4644 rc = ext4_acl_chmod(inode);
ac27a0ec
DK
4645
4646err_out:
617ba13b 4647 ext4_std_error(inode->i_sb, error);
ac27a0ec
DK
4648 if (!error)
4649 error = rc;
4650 return error;
4651}
4652
3e3398a0
MC
4653int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4654 struct kstat *stat)
4655{
4656 struct inode *inode;
8af8eecc 4657 unsigned long long delalloc_blocks;
3e3398a0
MC
4658
4659 inode = dentry->d_inode;
4660 generic_fillattr(inode, stat);
4661
4662 /*
4663 * We can't update i_blocks if the block allocation is delayed
4664 * otherwise in the case of system crash before the real block
4665 * allocation is done, we will have i_blocks inconsistent with
4666 * on-disk file blocks.
4667 * We always keep i_blocks updated together with real
4668 * allocation. But to not confuse with user, stat
4669 * will return the blocks that include the delayed allocation
4670 * blocks for this file.
4671 */
96607551
TM
4672 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
4673 EXT4_I(inode)->i_reserved_data_blocks);
3e3398a0 4674
8af8eecc 4675 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits-9);
3e3398a0
MC
4676 return 0;
4677}
ac27a0ec 4678
fffb2739
JK
4679static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
4680 int pextents)
a02908f1 4681{
12e9b892 4682 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
fffb2739
JK
4683 return ext4_ind_trans_blocks(inode, lblocks);
4684 return ext4_ext_index_trans_blocks(inode, pextents);
a02908f1 4685}
ac51d837 4686
ac27a0ec 4687/*
a02908f1
MC
4688 * Account for index blocks, block groups bitmaps and block group
4689 * descriptor blocks if modify datablocks and index blocks
4690 * worse case, the indexs blocks spread over different block groups
ac27a0ec 4691 *
a02908f1 4692 * If datablocks are discontiguous, they are possible to spread over
4907cb7b 4693 * different block groups too. If they are contiguous, with flexbg,
a02908f1 4694 * they could still across block group boundary.
ac27a0ec 4695 *
a02908f1
MC
4696 * Also account for superblock, inode, quota and xattr blocks
4697 */
fffb2739
JK
4698static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
4699 int pextents)
a02908f1 4700{
8df9675f
TT
4701 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4702 int gdpblocks;
a02908f1
MC
4703 int idxblocks;
4704 int ret = 0;
4705
4706 /*
fffb2739
JK
4707 * How many index blocks need to touch to map @lblocks logical blocks
4708 * to @pextents physical extents?
a02908f1 4709 */
fffb2739 4710 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
a02908f1
MC
4711
4712 ret = idxblocks;
4713
4714 /*
4715 * Now let's see how many group bitmaps and group descriptors need
4716 * to account
4717 */
fffb2739 4718 groups = idxblocks + pextents;
a02908f1 4719 gdpblocks = groups;
8df9675f
TT
4720 if (groups > ngroups)
4721 groups = ngroups;
a02908f1
MC
4722 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4723 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4724
4725 /* bitmaps and block group descriptor blocks */
4726 ret += groups + gdpblocks;
4727
4728 /* Blocks for super block, inode, quota and xattr blocks */
4729 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4730
4731 return ret;
4732}
4733
4734/*
25985edc 4735 * Calculate the total number of credits to reserve to fit
f3bd1f3f
MC
4736 * the modification of a single pages into a single transaction,
4737 * which may include multiple chunks of block allocations.
ac27a0ec 4738 *
525f4ed8 4739 * This could be called via ext4_write_begin()
ac27a0ec 4740 *
525f4ed8 4741 * We need to consider the worse case, when
a02908f1 4742 * one new block per extent.
ac27a0ec 4743 */
a86c6181 4744int ext4_writepage_trans_blocks(struct inode *inode)
ac27a0ec 4745{
617ba13b 4746 int bpp = ext4_journal_blocks_per_page(inode);
ac27a0ec
DK
4747 int ret;
4748
fffb2739 4749 ret = ext4_meta_trans_blocks(inode, bpp, bpp);
a86c6181 4750
a02908f1 4751 /* Account for data blocks for journalled mode */
617ba13b 4752 if (ext4_should_journal_data(inode))
a02908f1 4753 ret += bpp;
ac27a0ec
DK
4754 return ret;
4755}
f3bd1f3f
MC
4756
4757/*
4758 * Calculate the journal credits for a chunk of data modification.
4759 *
4760 * This is called from DIO, fallocate or whoever calling
79e83036 4761 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
f3bd1f3f
MC
4762 *
4763 * journal buffers for data blocks are not included here, as DIO
4764 * and fallocate do no need to journal data buffers.
4765 */
4766int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4767{
4768 return ext4_meta_trans_blocks(inode, nrblocks, 1);
4769}
4770
ac27a0ec 4771/*
617ba13b 4772 * The caller must have previously called ext4_reserve_inode_write().
ac27a0ec
DK
4773 * Give this, we know that the caller already has write access to iloc->bh.
4774 */
617ba13b 4775int ext4_mark_iloc_dirty(handle_t *handle,
de9a55b8 4776 struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
4777{
4778 int err = 0;
4779
c64db50e 4780 if (IS_I_VERSION(inode))
25ec56b5
JNC
4781 inode_inc_iversion(inode);
4782
ac27a0ec
DK
4783 /* the do_update_inode consumes one bh->b_count */
4784 get_bh(iloc->bh);
4785
dab291af 4786 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
830156c7 4787 err = ext4_do_update_inode(handle, inode, iloc);
ac27a0ec
DK
4788 put_bh(iloc->bh);
4789 return err;
4790}
4791
4792/*
4793 * On success, We end up with an outstanding reference count against
4794 * iloc->bh. This _must_ be cleaned up later.
4795 */
4796
4797int
617ba13b
MC
4798ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4799 struct ext4_iloc *iloc)
ac27a0ec 4800{
0390131b
FM
4801 int err;
4802
4803 err = ext4_get_inode_loc(inode, iloc);
4804 if (!err) {
4805 BUFFER_TRACE(iloc->bh, "get_write_access");
4806 err = ext4_journal_get_write_access(handle, iloc->bh);
4807 if (err) {
4808 brelse(iloc->bh);
4809 iloc->bh = NULL;
ac27a0ec
DK
4810 }
4811 }
617ba13b 4812 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4813 return err;
4814}
4815
6dd4ee7c
KS
4816/*
4817 * Expand an inode by new_extra_isize bytes.
4818 * Returns 0 on success or negative error number on failure.
4819 */
1d03ec98
AK
4820static int ext4_expand_extra_isize(struct inode *inode,
4821 unsigned int new_extra_isize,
4822 struct ext4_iloc iloc,
4823 handle_t *handle)
6dd4ee7c
KS
4824{
4825 struct ext4_inode *raw_inode;
4826 struct ext4_xattr_ibody_header *header;
6dd4ee7c
KS
4827
4828 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4829 return 0;
4830
4831 raw_inode = ext4_raw_inode(&iloc);
4832
4833 header = IHDR(inode, raw_inode);
6dd4ee7c
KS
4834
4835 /* No extended attributes present */
19f5fb7a
TT
4836 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4837 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
6dd4ee7c
KS
4838 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4839 new_extra_isize);
4840 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4841 return 0;
4842 }
4843
4844 /* try to expand with EAs present */
4845 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4846 raw_inode, handle);
4847}
4848
ac27a0ec
DK
4849/*
4850 * What we do here is to mark the in-core inode as clean with respect to inode
4851 * dirtiness (it may still be data-dirty).
4852 * This means that the in-core inode may be reaped by prune_icache
4853 * without having to perform any I/O. This is a very good thing,
4854 * because *any* task may call prune_icache - even ones which
4855 * have a transaction open against a different journal.
4856 *
4857 * Is this cheating? Not really. Sure, we haven't written the
4858 * inode out, but prune_icache isn't a user-visible syncing function.
4859 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4860 * we start and wait on commits.
ac27a0ec 4861 */
617ba13b 4862int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
ac27a0ec 4863{
617ba13b 4864 struct ext4_iloc iloc;
6dd4ee7c
KS
4865 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4866 static unsigned int mnt_count;
4867 int err, ret;
ac27a0ec
DK
4868
4869 might_sleep();
7ff9c073 4870 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
617ba13b 4871 err = ext4_reserve_inode_write(handle, inode, &iloc);
0390131b
FM
4872 if (ext4_handle_valid(handle) &&
4873 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
19f5fb7a 4874 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
6dd4ee7c
KS
4875 /*
4876 * We need extra buffer credits since we may write into EA block
4877 * with this same handle. If journal_extend fails, then it will
4878 * only result in a minor loss of functionality for that inode.
4879 * If this is felt to be critical, then e2fsck should be run to
4880 * force a large enough s_min_extra_isize.
4881 */
4882 if ((jbd2_journal_extend(handle,
4883 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4884 ret = ext4_expand_extra_isize(inode,
4885 sbi->s_want_extra_isize,
4886 iloc, handle);
4887 if (ret) {
19f5fb7a
TT
4888 ext4_set_inode_state(inode,
4889 EXT4_STATE_NO_EXPAND);
c1bddad9
AK
4890 if (mnt_count !=
4891 le16_to_cpu(sbi->s_es->s_mnt_count)) {
12062ddd 4892 ext4_warning(inode->i_sb,
6dd4ee7c
KS
4893 "Unable to expand inode %lu. Delete"
4894 " some EAs or run e2fsck.",
4895 inode->i_ino);
c1bddad9
AK
4896 mnt_count =
4897 le16_to_cpu(sbi->s_es->s_mnt_count);
6dd4ee7c
KS
4898 }
4899 }
4900 }
4901 }
ac27a0ec 4902 if (!err)
617ba13b 4903 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
ac27a0ec
DK
4904 return err;
4905}
4906
4907/*
617ba13b 4908 * ext4_dirty_inode() is called from __mark_inode_dirty()
ac27a0ec
DK
4909 *
4910 * We're really interested in the case where a file is being extended.
4911 * i_size has been changed by generic_commit_write() and we thus need
4912 * to include the updated inode in the current transaction.
4913 *
5dd4056d 4914 * Also, dquot_alloc_block() will always dirty the inode when blocks
ac27a0ec
DK
4915 * are allocated to the file.
4916 *
4917 * If the inode is marked synchronous, we don't honour that here - doing
4918 * so would cause a commit on atime updates, which we don't bother doing.
4919 * We handle synchronous inodes at the highest possible level.
4920 */
aa385729 4921void ext4_dirty_inode(struct inode *inode, int flags)
ac27a0ec 4922{
ac27a0ec
DK
4923 handle_t *handle;
4924
9924a92a 4925 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
ac27a0ec
DK
4926 if (IS_ERR(handle))
4927 goto out;
f3dc272f 4928
f3dc272f
CW
4929 ext4_mark_inode_dirty(handle, inode);
4930
617ba13b 4931 ext4_journal_stop(handle);
ac27a0ec
DK
4932out:
4933 return;
4934}
4935
4936#if 0
4937/*
4938 * Bind an inode's backing buffer_head into this transaction, to prevent
4939 * it from being flushed to disk early. Unlike
617ba13b 4940 * ext4_reserve_inode_write, this leaves behind no bh reference and
ac27a0ec
DK
4941 * returns no iloc structure, so the caller needs to repeat the iloc
4942 * lookup to mark the inode dirty later.
4943 */
617ba13b 4944static int ext4_pin_inode(handle_t *handle, struct inode *inode)
ac27a0ec 4945{
617ba13b 4946 struct ext4_iloc iloc;
ac27a0ec
DK
4947
4948 int err = 0;
4949 if (handle) {
617ba13b 4950 err = ext4_get_inode_loc(inode, &iloc);
ac27a0ec
DK
4951 if (!err) {
4952 BUFFER_TRACE(iloc.bh, "get_write_access");
dab291af 4953 err = jbd2_journal_get_write_access(handle, iloc.bh);
ac27a0ec 4954 if (!err)
0390131b 4955 err = ext4_handle_dirty_metadata(handle,
73b50c1c 4956 NULL,
0390131b 4957 iloc.bh);
ac27a0ec
DK
4958 brelse(iloc.bh);
4959 }
4960 }
617ba13b 4961 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4962 return err;
4963}
4964#endif
4965
617ba13b 4966int ext4_change_inode_journal_flag(struct inode *inode, int val)
ac27a0ec
DK
4967{
4968 journal_t *journal;
4969 handle_t *handle;
4970 int err;
4971
4972 /*
4973 * We have to be very careful here: changing a data block's
4974 * journaling status dynamically is dangerous. If we write a
4975 * data block to the journal, change the status and then delete
4976 * that block, we risk forgetting to revoke the old log record
4977 * from the journal and so a subsequent replay can corrupt data.
4978 * So, first we make sure that the journal is empty and that
4979 * nobody is changing anything.
4980 */
4981
617ba13b 4982 journal = EXT4_JOURNAL(inode);
0390131b
FM
4983 if (!journal)
4984 return 0;
d699594d 4985 if (is_journal_aborted(journal))
ac27a0ec 4986 return -EROFS;
2aff57b0
YY
4987 /* We have to allocate physical blocks for delalloc blocks
4988 * before flushing journal. otherwise delalloc blocks can not
4989 * be allocated any more. even more truncate on delalloc blocks
4990 * could trigger BUG by flushing delalloc blocks in journal.
4991 * There is no delalloc block in non-journal data mode.
4992 */
4993 if (val && test_opt(inode->i_sb, DELALLOC)) {
4994 err = ext4_alloc_da_blocks(inode);
4995 if (err < 0)
4996 return err;
4997 }
ac27a0ec 4998
17335dcc
DM
4999 /* Wait for all existing dio workers */
5000 ext4_inode_block_unlocked_dio(inode);
5001 inode_dio_wait(inode);
5002
dab291af 5003 jbd2_journal_lock_updates(journal);
ac27a0ec
DK
5004
5005 /*
5006 * OK, there are no updates running now, and all cached data is
5007 * synced to disk. We are now in a completely consistent state
5008 * which doesn't have anything in the journal, and we know that
5009 * no filesystem updates are running, so it is safe to modify
5010 * the inode's in-core data-journaling state flag now.
5011 */
5012
5013 if (val)
12e9b892 5014 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5872ddaa
YY
5015 else {
5016 jbd2_journal_flush(journal);
12e9b892 5017 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5872ddaa 5018 }
617ba13b 5019 ext4_set_aops(inode);
ac27a0ec 5020
dab291af 5021 jbd2_journal_unlock_updates(journal);
17335dcc 5022 ext4_inode_resume_unlocked_dio(inode);
ac27a0ec
DK
5023
5024 /* Finally we can mark the inode as dirty. */
5025
9924a92a 5026 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
ac27a0ec
DK
5027 if (IS_ERR(handle))
5028 return PTR_ERR(handle);
5029
617ba13b 5030 err = ext4_mark_inode_dirty(handle, inode);
0390131b 5031 ext4_handle_sync(handle);
617ba13b
MC
5032 ext4_journal_stop(handle);
5033 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5034
5035 return err;
5036}
2e9ee850
AK
5037
5038static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5039{
5040 return !buffer_mapped(bh);
5041}
5042
c2ec175c 5043int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2e9ee850 5044{
c2ec175c 5045 struct page *page = vmf->page;
2e9ee850
AK
5046 loff_t size;
5047 unsigned long len;
9ea7df53 5048 int ret;
2e9ee850 5049 struct file *file = vma->vm_file;
496ad9aa 5050 struct inode *inode = file_inode(file);
2e9ee850 5051 struct address_space *mapping = inode->i_mapping;
9ea7df53
JK
5052 handle_t *handle;
5053 get_block_t *get_block;
5054 int retries = 0;
2e9ee850 5055
8e8ad8a5 5056 sb_start_pagefault(inode->i_sb);
041bbb6d 5057 file_update_time(vma->vm_file);
9ea7df53
JK
5058 /* Delalloc case is easy... */
5059 if (test_opt(inode->i_sb, DELALLOC) &&
5060 !ext4_should_journal_data(inode) &&
5061 !ext4_nonda_switch(inode->i_sb)) {
5062 do {
5063 ret = __block_page_mkwrite(vma, vmf,
5064 ext4_da_get_block_prep);
5065 } while (ret == -ENOSPC &&
5066 ext4_should_retry_alloc(inode->i_sb, &retries));
5067 goto out_ret;
2e9ee850 5068 }
0e499890
DW
5069
5070 lock_page(page);
9ea7df53
JK
5071 size = i_size_read(inode);
5072 /* Page got truncated from under us? */
5073 if (page->mapping != mapping || page_offset(page) > size) {
5074 unlock_page(page);
5075 ret = VM_FAULT_NOPAGE;
5076 goto out;
0e499890 5077 }
2e9ee850
AK
5078
5079 if (page->index == size >> PAGE_CACHE_SHIFT)
5080 len = size & ~PAGE_CACHE_MASK;
5081 else
5082 len = PAGE_CACHE_SIZE;
a827eaff 5083 /*
9ea7df53
JK
5084 * Return if we have all the buffers mapped. This avoids the need to do
5085 * journal_start/journal_stop which can block and take a long time
a827eaff 5086 */
2e9ee850 5087 if (page_has_buffers(page)) {
f19d5870
TM
5088 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5089 0, len, NULL,
5090 ext4_bh_unmapped)) {
9ea7df53 5091 /* Wait so that we don't change page under IO */
1d1d1a76 5092 wait_for_stable_page(page);
9ea7df53
JK
5093 ret = VM_FAULT_LOCKED;
5094 goto out;
a827eaff 5095 }
2e9ee850 5096 }
a827eaff 5097 unlock_page(page);
9ea7df53
JK
5098 /* OK, we need to fill the hole... */
5099 if (ext4_should_dioread_nolock(inode))
5100 get_block = ext4_get_block_write;
5101 else
5102 get_block = ext4_get_block;
5103retry_alloc:
9924a92a
TT
5104 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5105 ext4_writepage_trans_blocks(inode));
9ea7df53 5106 if (IS_ERR(handle)) {
c2ec175c 5107 ret = VM_FAULT_SIGBUS;
9ea7df53
JK
5108 goto out;
5109 }
5110 ret = __block_page_mkwrite(vma, vmf, get_block);
5111 if (!ret && ext4_should_journal_data(inode)) {
f19d5870 5112 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
9ea7df53
JK
5113 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
5114 unlock_page(page);
5115 ret = VM_FAULT_SIGBUS;
fcbb5515 5116 ext4_journal_stop(handle);
9ea7df53
JK
5117 goto out;
5118 }
5119 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5120 }
5121 ext4_journal_stop(handle);
5122 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5123 goto retry_alloc;
5124out_ret:
5125 ret = block_page_mkwrite_return(ret);
5126out:
8e8ad8a5 5127 sb_end_pagefault(inode->i_sb);
2e9ee850
AK
5128 return ret;
5129}