ext4: delete useless comments about ext4_move_extents
[linux-2.6-block.git] / fs / ext4 / inode.c
CommitLineData
ac27a0ec 1/*
617ba13b 2 * linux/fs/ext4/inode.c
ac27a0ec
DK
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
ac27a0ec
DK
15 * 64-bit file support on 64-bit platforms by Jakub Jelinek
16 * (jj@sunsite.ms.mff.cuni.cz)
17 *
617ba13b 18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
ac27a0ec
DK
19 */
20
ac27a0ec
DK
21#include <linux/fs.h>
22#include <linux/time.h>
dab291af 23#include <linux/jbd2.h>
ac27a0ec
DK
24#include <linux/highuid.h>
25#include <linux/pagemap.h>
26#include <linux/quotaops.h>
27#include <linux/string.h>
28#include <linux/buffer_head.h>
29#include <linux/writeback.h>
64769240 30#include <linux/pagevec.h>
ac27a0ec 31#include <linux/mpage.h>
e83c1397 32#include <linux/namei.h>
ac27a0ec
DK
33#include <linux/uio.h>
34#include <linux/bio.h>
4c0425ff 35#include <linux/workqueue.h>
744692dc 36#include <linux/kernel.h>
6db26ffc 37#include <linux/printk.h>
5a0e3ad6 38#include <linux/slab.h>
a8901d34 39#include <linux/ratelimit.h>
a27bb332 40#include <linux/aio.h>
00a1a053 41#include <linux/bitops.h>
9bffad1e 42
3dcf5451 43#include "ext4_jbd2.h"
ac27a0ec
DK
44#include "xattr.h"
45#include "acl.h"
9f125d64 46#include "truncate.h"
ac27a0ec 47
9bffad1e
TT
48#include <trace/events/ext4.h>
49
a1d6cc56
AK
50#define MPAGE_DA_EXTENT_TAIL 0x01
51
814525f4
DW
52static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
53 struct ext4_inode_info *ei)
54{
55 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
56 __u16 csum_lo;
57 __u16 csum_hi = 0;
58 __u32 csum;
59
171a7f21 60 csum_lo = le16_to_cpu(raw->i_checksum_lo);
814525f4
DW
61 raw->i_checksum_lo = 0;
62 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
63 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
171a7f21 64 csum_hi = le16_to_cpu(raw->i_checksum_hi);
814525f4
DW
65 raw->i_checksum_hi = 0;
66 }
67
68 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
69 EXT4_INODE_SIZE(inode->i_sb));
70
171a7f21 71 raw->i_checksum_lo = cpu_to_le16(csum_lo);
814525f4
DW
72 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
73 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
171a7f21 74 raw->i_checksum_hi = cpu_to_le16(csum_hi);
814525f4
DW
75
76 return csum;
77}
78
79static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
80 struct ext4_inode_info *ei)
81{
82 __u32 provided, calculated;
83
84 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
85 cpu_to_le32(EXT4_OS_LINUX) ||
86 !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
87 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
88 return 1;
89
90 provided = le16_to_cpu(raw->i_checksum_lo);
91 calculated = ext4_inode_csum(inode, raw, ei);
92 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
93 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
94 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
95 else
96 calculated &= 0xFFFF;
97
98 return provided == calculated;
99}
100
101static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
102 struct ext4_inode_info *ei)
103{
104 __u32 csum;
105
106 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
107 cpu_to_le32(EXT4_OS_LINUX) ||
108 !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
109 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
110 return;
111
112 csum = ext4_inode_csum(inode, raw, ei);
113 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
114 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
115 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
116 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
117}
118
678aaf48
JK
119static inline int ext4_begin_ordered_truncate(struct inode *inode,
120 loff_t new_size)
121{
7ff9c073 122 trace_ext4_begin_ordered_truncate(inode, new_size);
8aefcd55
TT
123 /*
124 * If jinode is zero, then we never opened the file for
125 * writing, so there's no need to call
126 * jbd2_journal_begin_ordered_truncate() since there's no
127 * outstanding writes we need to flush.
128 */
129 if (!EXT4_I(inode)->jinode)
130 return 0;
131 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
132 EXT4_I(inode)->jinode,
133 new_size);
678aaf48
JK
134}
135
d47992f8
LC
136static void ext4_invalidatepage(struct page *page, unsigned int offset,
137 unsigned int length);
cb20d518
TT
138static int __ext4_journalled_writepage(struct page *page, unsigned int len);
139static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
fffb2739
JK
140static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
141 int pextents);
64769240 142
ac27a0ec
DK
143/*
144 * Test whether an inode is a fast symlink.
145 */
617ba13b 146static int ext4_inode_is_fast_symlink(struct inode *inode)
ac27a0ec 147{
65eddb56
YY
148 int ea_blocks = EXT4_I(inode)->i_file_acl ?
149 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
ac27a0ec 150
bd9db175
ZL
151 if (ext4_has_inline_data(inode))
152 return 0;
153
ac27a0ec
DK
154 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
155}
156
ac27a0ec
DK
157/*
158 * Restart the transaction associated with *handle. This does a commit,
159 * so before we call here everything must be consistently dirtied against
160 * this transaction.
161 */
fa5d1113 162int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
487caeef 163 int nblocks)
ac27a0ec 164{
487caeef
JK
165 int ret;
166
167 /*
e35fd660 168 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
487caeef
JK
169 * moment, get_block can be called only for blocks inside i_size since
170 * page cache has been already dropped and writes are blocked by
171 * i_mutex. So we can safely drop the i_data_sem here.
172 */
0390131b 173 BUG_ON(EXT4_JOURNAL(inode) == NULL);
ac27a0ec 174 jbd_debug(2, "restarting handle %p\n", handle);
487caeef 175 up_write(&EXT4_I(inode)->i_data_sem);
8e8eaabe 176 ret = ext4_journal_restart(handle, nblocks);
487caeef 177 down_write(&EXT4_I(inode)->i_data_sem);
fa5d1113 178 ext4_discard_preallocations(inode);
487caeef
JK
179
180 return ret;
ac27a0ec
DK
181}
182
183/*
184 * Called at the last iput() if i_nlink is zero.
185 */
0930fcc1 186void ext4_evict_inode(struct inode *inode)
ac27a0ec
DK
187{
188 handle_t *handle;
bc965ab3 189 int err;
ac27a0ec 190
7ff9c073 191 trace_ext4_evict_inode(inode);
2581fdc8 192
0930fcc1 193 if (inode->i_nlink) {
2d859db3
JK
194 /*
195 * When journalling data dirty buffers are tracked only in the
196 * journal. So although mm thinks everything is clean and
197 * ready for reaping the inode might still have some pages to
198 * write in the running transaction or waiting to be
199 * checkpointed. Thus calling jbd2_journal_invalidatepage()
200 * (via truncate_inode_pages()) to discard these buffers can
201 * cause data loss. Also even if we did not discard these
202 * buffers, we would have no way to find them after the inode
203 * is reaped and thus user could see stale data if he tries to
204 * read them before the transaction is checkpointed. So be
205 * careful and force everything to disk here... We use
206 * ei->i_datasync_tid to store the newest transaction
207 * containing inode's data.
208 *
209 * Note that directories do not have this problem because they
210 * don't use page cache.
211 */
212 if (ext4_should_journal_data(inode) &&
2b405bfa
TT
213 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
214 inode->i_ino != EXT4_JOURNAL_INO) {
2d859db3
JK
215 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
216 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
217
d76a3a77 218 jbd2_complete_transaction(journal, commit_tid);
2d859db3
JK
219 filemap_write_and_wait(&inode->i_data);
220 }
91b0abe3 221 truncate_inode_pages_final(&inode->i_data);
5dc23bdd
JK
222
223 WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
0930fcc1
AV
224 goto no_delete;
225 }
226
e2bfb088
TT
227 if (is_bad_inode(inode))
228 goto no_delete;
229 dquot_initialize(inode);
907f4554 230
678aaf48
JK
231 if (ext4_should_order_data(inode))
232 ext4_begin_ordered_truncate(inode, 0);
91b0abe3 233 truncate_inode_pages_final(&inode->i_data);
ac27a0ec 234
5dc23bdd 235 WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
ac27a0ec 236
8e8ad8a5
JK
237 /*
238 * Protect us against freezing - iput() caller didn't have to have any
239 * protection against it
240 */
241 sb_start_intwrite(inode->i_sb);
9924a92a
TT
242 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
243 ext4_blocks_for_truncate(inode)+3);
ac27a0ec 244 if (IS_ERR(handle)) {
bc965ab3 245 ext4_std_error(inode->i_sb, PTR_ERR(handle));
ac27a0ec
DK
246 /*
247 * If we're going to skip the normal cleanup, we still need to
248 * make sure that the in-core orphan linked list is properly
249 * cleaned up.
250 */
617ba13b 251 ext4_orphan_del(NULL, inode);
8e8ad8a5 252 sb_end_intwrite(inode->i_sb);
ac27a0ec
DK
253 goto no_delete;
254 }
255
256 if (IS_SYNC(inode))
0390131b 257 ext4_handle_sync(handle);
ac27a0ec 258 inode->i_size = 0;
bc965ab3
TT
259 err = ext4_mark_inode_dirty(handle, inode);
260 if (err) {
12062ddd 261 ext4_warning(inode->i_sb,
bc965ab3
TT
262 "couldn't mark inode dirty (err %d)", err);
263 goto stop_handle;
264 }
ac27a0ec 265 if (inode->i_blocks)
617ba13b 266 ext4_truncate(inode);
bc965ab3
TT
267
268 /*
269 * ext4_ext_truncate() doesn't reserve any slop when it
270 * restarts journal transactions; therefore there may not be
271 * enough credits left in the handle to remove the inode from
272 * the orphan list and set the dtime field.
273 */
0390131b 274 if (!ext4_handle_has_enough_credits(handle, 3)) {
bc965ab3
TT
275 err = ext4_journal_extend(handle, 3);
276 if (err > 0)
277 err = ext4_journal_restart(handle, 3);
278 if (err != 0) {
12062ddd 279 ext4_warning(inode->i_sb,
bc965ab3
TT
280 "couldn't extend journal (err %d)", err);
281 stop_handle:
282 ext4_journal_stop(handle);
45388219 283 ext4_orphan_del(NULL, inode);
8e8ad8a5 284 sb_end_intwrite(inode->i_sb);
bc965ab3
TT
285 goto no_delete;
286 }
287 }
288
ac27a0ec 289 /*
617ba13b 290 * Kill off the orphan record which ext4_truncate created.
ac27a0ec 291 * AKPM: I think this can be inside the above `if'.
617ba13b 292 * Note that ext4_orphan_del() has to be able to cope with the
ac27a0ec 293 * deletion of a non-existent orphan - this is because we don't
617ba13b 294 * know if ext4_truncate() actually created an orphan record.
ac27a0ec
DK
295 * (Well, we could do this if we need to, but heck - it works)
296 */
617ba13b
MC
297 ext4_orphan_del(handle, inode);
298 EXT4_I(inode)->i_dtime = get_seconds();
ac27a0ec
DK
299
300 /*
301 * One subtle ordering requirement: if anything has gone wrong
302 * (transaction abort, IO errors, whatever), then we can still
303 * do these next steps (the fs will already have been marked as
304 * having errors), but we can't free the inode if the mark_dirty
305 * fails.
306 */
617ba13b 307 if (ext4_mark_inode_dirty(handle, inode))
ac27a0ec 308 /* If that failed, just do the required in-core inode clear. */
0930fcc1 309 ext4_clear_inode(inode);
ac27a0ec 310 else
617ba13b
MC
311 ext4_free_inode(handle, inode);
312 ext4_journal_stop(handle);
8e8ad8a5 313 sb_end_intwrite(inode->i_sb);
ac27a0ec
DK
314 return;
315no_delete:
0930fcc1 316 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
ac27a0ec
DK
317}
318
a9e7f447
DM
319#ifdef CONFIG_QUOTA
320qsize_t *ext4_get_reserved_space(struct inode *inode)
60e58e0f 321{
a9e7f447 322 return &EXT4_I(inode)->i_reserved_quota;
60e58e0f 323}
a9e7f447 324#endif
9d0be502 325
0637c6f4
TT
326/*
327 * Called with i_data_sem down, which is important since we can call
328 * ext4_discard_preallocations() from here.
329 */
5f634d06
AK
330void ext4_da_update_reserve_space(struct inode *inode,
331 int used, int quota_claim)
12219aea
AK
332{
333 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 334 struct ext4_inode_info *ei = EXT4_I(inode);
0637c6f4
TT
335
336 spin_lock(&ei->i_block_reservation_lock);
d8990240 337 trace_ext4_da_update_reserve_space(inode, used, quota_claim);
0637c6f4 338 if (unlikely(used > ei->i_reserved_data_blocks)) {
8de5c325 339 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
1084f252 340 "with only %d reserved data blocks",
0637c6f4
TT
341 __func__, inode->i_ino, used,
342 ei->i_reserved_data_blocks);
343 WARN_ON(1);
344 used = ei->i_reserved_data_blocks;
345 }
12219aea 346
0637c6f4
TT
347 /* Update per-inode reservations */
348 ei->i_reserved_data_blocks -= used;
71d4f7d0 349 percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
6bc6e63f 350
12219aea 351 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f 352
72b8ab9d
ES
353 /* Update quota subsystem for data blocks */
354 if (quota_claim)
7b415bf6 355 dquot_claim_block(inode, EXT4_C2B(sbi, used));
72b8ab9d 356 else {
5f634d06
AK
357 /*
358 * We did fallocate with an offset that is already delayed
359 * allocated. So on delayed allocated writeback we should
72b8ab9d 360 * not re-claim the quota for fallocated blocks.
5f634d06 361 */
7b415bf6 362 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
5f634d06 363 }
d6014301
AK
364
365 /*
366 * If we have done all the pending block allocations and if
367 * there aren't any writers on the inode, we can discard the
368 * inode's preallocations.
369 */
0637c6f4
TT
370 if ((ei->i_reserved_data_blocks == 0) &&
371 (atomic_read(&inode->i_writecount) == 0))
d6014301 372 ext4_discard_preallocations(inode);
12219aea
AK
373}
374
e29136f8 375static int __check_block_validity(struct inode *inode, const char *func,
c398eda0
TT
376 unsigned int line,
377 struct ext4_map_blocks *map)
6fd058f7 378{
24676da4
TT
379 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
380 map->m_len)) {
c398eda0
TT
381 ext4_error_inode(inode, func, line, map->m_pblk,
382 "lblock %lu mapped to illegal pblock "
383 "(length %d)", (unsigned long) map->m_lblk,
384 map->m_len);
6fd058f7
TT
385 return -EIO;
386 }
387 return 0;
388}
389
e29136f8 390#define check_block_validity(inode, map) \
c398eda0 391 __check_block_validity((inode), __func__, __LINE__, (map))
e29136f8 392
921f266b
DM
393#ifdef ES_AGGRESSIVE_TEST
394static void ext4_map_blocks_es_recheck(handle_t *handle,
395 struct inode *inode,
396 struct ext4_map_blocks *es_map,
397 struct ext4_map_blocks *map,
398 int flags)
399{
400 int retval;
401
402 map->m_flags = 0;
403 /*
404 * There is a race window that the result is not the same.
405 * e.g. xfstests #223 when dioread_nolock enables. The reason
406 * is that we lookup a block mapping in extent status tree with
407 * out taking i_data_sem. So at the time the unwritten extent
408 * could be converted.
409 */
410 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
c8b459f4 411 down_read(&EXT4_I(inode)->i_data_sem);
921f266b
DM
412 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
413 retval = ext4_ext_map_blocks(handle, inode, map, flags &
414 EXT4_GET_BLOCKS_KEEP_SIZE);
415 } else {
416 retval = ext4_ind_map_blocks(handle, inode, map, flags &
417 EXT4_GET_BLOCKS_KEEP_SIZE);
418 }
419 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
420 up_read((&EXT4_I(inode)->i_data_sem));
421 /*
422 * Clear EXT4_MAP_FROM_CLUSTER and EXT4_MAP_BOUNDARY flag
423 * because it shouldn't be marked in es_map->m_flags.
424 */
425 map->m_flags &= ~(EXT4_MAP_FROM_CLUSTER | EXT4_MAP_BOUNDARY);
426
427 /*
428 * We don't check m_len because extent will be collpased in status
429 * tree. So the m_len might not equal.
430 */
431 if (es_map->m_lblk != map->m_lblk ||
432 es_map->m_flags != map->m_flags ||
433 es_map->m_pblk != map->m_pblk) {
bdafe42a 434 printk("ES cache assertion failed for inode: %lu "
921f266b
DM
435 "es_cached ex [%d/%d/%llu/%x] != "
436 "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
437 inode->i_ino, es_map->m_lblk, es_map->m_len,
438 es_map->m_pblk, es_map->m_flags, map->m_lblk,
439 map->m_len, map->m_pblk, map->m_flags,
440 retval, flags);
441 }
442}
443#endif /* ES_AGGRESSIVE_TEST */
444
f5ab0d1f 445/*
e35fd660 446 * The ext4_map_blocks() function tries to look up the requested blocks,
2b2d6d01 447 * and returns if the blocks are already mapped.
f5ab0d1f 448 *
f5ab0d1f
MC
449 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
450 * and store the allocated blocks in the result buffer head and mark it
451 * mapped.
452 *
e35fd660
TT
453 * If file type is extents based, it will call ext4_ext_map_blocks(),
454 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
f5ab0d1f
MC
455 * based files
456 *
556615dc
LC
457 * On success, it returns the number of blocks being mapped or allocated.
458 * if create==0 and the blocks are pre-allocated and unwritten block,
f5ab0d1f
MC
459 * the result buffer head is unmapped. If the create ==1, it will make sure
460 * the buffer head is mapped.
461 *
462 * It returns 0 if plain look up failed (blocks have not been allocated), in
df3ab170 463 * that case, buffer head is unmapped
f5ab0d1f
MC
464 *
465 * It returns the error in case of allocation failure.
466 */
e35fd660
TT
467int ext4_map_blocks(handle_t *handle, struct inode *inode,
468 struct ext4_map_blocks *map, int flags)
0e855ac8 469{
d100eef2 470 struct extent_status es;
0e855ac8 471 int retval;
b8a86845 472 int ret = 0;
921f266b
DM
473#ifdef ES_AGGRESSIVE_TEST
474 struct ext4_map_blocks orig_map;
475
476 memcpy(&orig_map, map, sizeof(*map));
477#endif
f5ab0d1f 478
e35fd660
TT
479 map->m_flags = 0;
480 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
481 "logical block %lu\n", inode->i_ino, flags, map->m_len,
482 (unsigned long) map->m_lblk);
d100eef2 483
e861b5e9
TT
484 /*
485 * ext4_map_blocks returns an int, and m_len is an unsigned int
486 */
487 if (unlikely(map->m_len > INT_MAX))
488 map->m_len = INT_MAX;
489
4adb6ab3
KM
490 /* We can handle the block number less than EXT_MAX_BLOCKS */
491 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
492 return -EIO;
493
d100eef2
ZL
494 /* Lookup extent status tree firstly */
495 if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
63b99968 496 ext4_es_lru_add(inode);
d100eef2
ZL
497 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
498 map->m_pblk = ext4_es_pblock(&es) +
499 map->m_lblk - es.es_lblk;
500 map->m_flags |= ext4_es_is_written(&es) ?
501 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
502 retval = es.es_len - (map->m_lblk - es.es_lblk);
503 if (retval > map->m_len)
504 retval = map->m_len;
505 map->m_len = retval;
506 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
507 retval = 0;
508 } else {
509 BUG_ON(1);
510 }
921f266b
DM
511#ifdef ES_AGGRESSIVE_TEST
512 ext4_map_blocks_es_recheck(handle, inode, map,
513 &orig_map, flags);
514#endif
d100eef2
ZL
515 goto found;
516 }
517
4df3d265 518 /*
b920c755
TT
519 * Try to see if we can get the block without requesting a new
520 * file system block.
4df3d265 521 */
729f52c6 522 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
c8b459f4 523 down_read(&EXT4_I(inode)->i_data_sem);
12e9b892 524 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
a4e5d88b
DM
525 retval = ext4_ext_map_blocks(handle, inode, map, flags &
526 EXT4_GET_BLOCKS_KEEP_SIZE);
0e855ac8 527 } else {
a4e5d88b
DM
528 retval = ext4_ind_map_blocks(handle, inode, map, flags &
529 EXT4_GET_BLOCKS_KEEP_SIZE);
0e855ac8 530 }
f7fec032 531 if (retval > 0) {
3be78c73 532 unsigned int status;
f7fec032 533
44fb851d
ZL
534 if (unlikely(retval != map->m_len)) {
535 ext4_warning(inode->i_sb,
536 "ES len assertion failed for inode "
537 "%lu: retval %d != map->m_len %d",
538 inode->i_ino, retval, map->m_len);
539 WARN_ON(1);
921f266b 540 }
921f266b 541
f7fec032
ZL
542 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
543 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
544 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
545 ext4_find_delalloc_range(inode, map->m_lblk,
546 map->m_lblk + map->m_len - 1))
547 status |= EXTENT_STATUS_DELAYED;
548 ret = ext4_es_insert_extent(inode, map->m_lblk,
549 map->m_len, map->m_pblk, status);
550 if (ret < 0)
551 retval = ret;
552 }
729f52c6
ZL
553 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
554 up_read((&EXT4_I(inode)->i_data_sem));
f5ab0d1f 555
d100eef2 556found:
e35fd660 557 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
b8a86845 558 ret = check_block_validity(inode, map);
6fd058f7
TT
559 if (ret != 0)
560 return ret;
561 }
562
f5ab0d1f 563 /* If it is only a block(s) look up */
c2177057 564 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
f5ab0d1f
MC
565 return retval;
566
567 /*
568 * Returns if the blocks have already allocated
569 *
570 * Note that if blocks have been preallocated
df3ab170 571 * ext4_ext_get_block() returns the create = 0
f5ab0d1f
MC
572 * with buffer head unmapped.
573 */
e35fd660 574 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
b8a86845
LC
575 /*
576 * If we need to convert extent to unwritten
577 * we continue and do the actual work in
578 * ext4_ext_map_blocks()
579 */
580 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
581 return retval;
4df3d265 582
2a8964d6 583 /*
a25a4e1a
ZL
584 * Here we clear m_flags because after allocating an new extent,
585 * it will be set again.
2a8964d6 586 */
a25a4e1a 587 map->m_flags &= ~EXT4_MAP_FLAGS;
2a8964d6 588
4df3d265 589 /*
556615dc 590 * New blocks allocate and/or writing to unwritten extent
f5ab0d1f 591 * will possibly result in updating i_data, so we take
d91bd2c1 592 * the write lock of i_data_sem, and call get_block()
f5ab0d1f 593 * with create == 1 flag.
4df3d265 594 */
c8b459f4 595 down_write(&EXT4_I(inode)->i_data_sem);
d2a17637 596
4df3d265
AK
597 /*
598 * We need to check for EXT4 here because migrate
599 * could have changed the inode type in between
600 */
12e9b892 601 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
e35fd660 602 retval = ext4_ext_map_blocks(handle, inode, map, flags);
0e855ac8 603 } else {
e35fd660 604 retval = ext4_ind_map_blocks(handle, inode, map, flags);
267e4db9 605
e35fd660 606 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
267e4db9
AK
607 /*
608 * We allocated new blocks which will result in
609 * i_data's format changing. Force the migrate
610 * to fail by clearing migrate flags
611 */
19f5fb7a 612 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
267e4db9 613 }
d2a17637 614
5f634d06
AK
615 /*
616 * Update reserved blocks/metadata blocks after successful
617 * block allocation which had been deferred till now. We don't
618 * support fallocate for non extent files. So we can update
619 * reserve space here.
620 */
621 if ((retval > 0) &&
1296cc85 622 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
5f634d06
AK
623 ext4_da_update_reserve_space(inode, retval, 1);
624 }
2ac3b6e0 625
f7fec032 626 if (retval > 0) {
3be78c73 627 unsigned int status;
f7fec032 628
44fb851d
ZL
629 if (unlikely(retval != map->m_len)) {
630 ext4_warning(inode->i_sb,
631 "ES len assertion failed for inode "
632 "%lu: retval %d != map->m_len %d",
633 inode->i_ino, retval, map->m_len);
634 WARN_ON(1);
921f266b 635 }
921f266b 636
adb23551
ZL
637 /*
638 * If the extent has been zeroed out, we don't need to update
639 * extent status tree.
640 */
641 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
642 ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
643 if (ext4_es_is_written(&es))
644 goto has_zeroout;
645 }
f7fec032
ZL
646 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
647 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
648 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
649 ext4_find_delalloc_range(inode, map->m_lblk,
650 map->m_lblk + map->m_len - 1))
651 status |= EXTENT_STATUS_DELAYED;
652 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
653 map->m_pblk, status);
654 if (ret < 0)
655 retval = ret;
5356f261
AK
656 }
657
adb23551 658has_zeroout:
4df3d265 659 up_write((&EXT4_I(inode)->i_data_sem));
e35fd660 660 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
b8a86845 661 ret = check_block_validity(inode, map);
6fd058f7
TT
662 if (ret != 0)
663 return ret;
664 }
0e855ac8
AK
665 return retval;
666}
667
f3bd1f3f
MC
668/* Maximum number of blocks we map for direct IO at once. */
669#define DIO_MAX_BLOCKS 4096
670
2ed88685
TT
671static int _ext4_get_block(struct inode *inode, sector_t iblock,
672 struct buffer_head *bh, int flags)
ac27a0ec 673{
3e4fdaf8 674 handle_t *handle = ext4_journal_current_handle();
2ed88685 675 struct ext4_map_blocks map;
7fb5409d 676 int ret = 0, started = 0;
f3bd1f3f 677 int dio_credits;
ac27a0ec 678
46c7f254
TM
679 if (ext4_has_inline_data(inode))
680 return -ERANGE;
681
2ed88685
TT
682 map.m_lblk = iblock;
683 map.m_len = bh->b_size >> inode->i_blkbits;
684
8b0f165f 685 if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
7fb5409d 686 /* Direct IO write... */
2ed88685
TT
687 if (map.m_len > DIO_MAX_BLOCKS)
688 map.m_len = DIO_MAX_BLOCKS;
689 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
9924a92a
TT
690 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
691 dio_credits);
7fb5409d 692 if (IS_ERR(handle)) {
ac27a0ec 693 ret = PTR_ERR(handle);
2ed88685 694 return ret;
ac27a0ec 695 }
7fb5409d 696 started = 1;
ac27a0ec
DK
697 }
698
2ed88685 699 ret = ext4_map_blocks(handle, inode, &map, flags);
7fb5409d 700 if (ret > 0) {
7b7a8665
CH
701 ext4_io_end_t *io_end = ext4_inode_aio(inode);
702
2ed88685
TT
703 map_bh(bh, inode->i_sb, map.m_pblk);
704 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
7b7a8665
CH
705 if (io_end && io_end->flag & EXT4_IO_END_UNWRITTEN)
706 set_buffer_defer_completion(bh);
2ed88685 707 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
7fb5409d 708 ret = 0;
ac27a0ec 709 }
7fb5409d
JK
710 if (started)
711 ext4_journal_stop(handle);
ac27a0ec
DK
712 return ret;
713}
714
2ed88685
TT
715int ext4_get_block(struct inode *inode, sector_t iblock,
716 struct buffer_head *bh, int create)
717{
718 return _ext4_get_block(inode, iblock, bh,
719 create ? EXT4_GET_BLOCKS_CREATE : 0);
720}
721
ac27a0ec
DK
722/*
723 * `handle' can be NULL if create is zero
724 */
617ba13b 725struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
10560082 726 ext4_lblk_t block, int create)
ac27a0ec 727{
2ed88685
TT
728 struct ext4_map_blocks map;
729 struct buffer_head *bh;
10560082 730 int err;
ac27a0ec
DK
731
732 J_ASSERT(handle != NULL || create == 0);
733
2ed88685
TT
734 map.m_lblk = block;
735 map.m_len = 1;
736 err = ext4_map_blocks(handle, inode, &map,
737 create ? EXT4_GET_BLOCKS_CREATE : 0);
ac27a0ec 738
10560082
TT
739 if (err == 0)
740 return create ? ERR_PTR(-ENOSPC) : NULL;
2ed88685 741 if (err < 0)
10560082 742 return ERR_PTR(err);
2ed88685
TT
743
744 bh = sb_getblk(inode->i_sb, map.m_pblk);
10560082
TT
745 if (unlikely(!bh))
746 return ERR_PTR(-ENOMEM);
2ed88685
TT
747 if (map.m_flags & EXT4_MAP_NEW) {
748 J_ASSERT(create != 0);
749 J_ASSERT(handle != NULL);
ac27a0ec 750
2ed88685
TT
751 /*
752 * Now that we do not always journal data, we should
753 * keep in mind whether this should always journal the
754 * new buffer as metadata. For now, regular file
755 * writes use ext4_get_block instead, so it's not a
756 * problem.
757 */
758 lock_buffer(bh);
759 BUFFER_TRACE(bh, "call get_create_access");
10560082
TT
760 err = ext4_journal_get_create_access(handle, bh);
761 if (unlikely(err)) {
762 unlock_buffer(bh);
763 goto errout;
764 }
765 if (!buffer_uptodate(bh)) {
2ed88685
TT
766 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
767 set_buffer_uptodate(bh);
ac27a0ec 768 }
2ed88685
TT
769 unlock_buffer(bh);
770 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
771 err = ext4_handle_dirty_metadata(handle, inode, bh);
10560082
TT
772 if (unlikely(err))
773 goto errout;
774 } else
2ed88685 775 BUFFER_TRACE(bh, "not a new buffer");
2ed88685 776 return bh;
10560082
TT
777errout:
778 brelse(bh);
779 return ERR_PTR(err);
ac27a0ec
DK
780}
781
617ba13b 782struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1c215028 783 ext4_lblk_t block, int create)
ac27a0ec 784{
af5bc92d 785 struct buffer_head *bh;
ac27a0ec 786
10560082 787 bh = ext4_getblk(handle, inode, block, create);
1c215028 788 if (IS_ERR(bh))
ac27a0ec 789 return bh;
1c215028 790 if (!bh || buffer_uptodate(bh))
ac27a0ec 791 return bh;
65299a3b 792 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
ac27a0ec
DK
793 wait_on_buffer(bh);
794 if (buffer_uptodate(bh))
795 return bh;
796 put_bh(bh);
1c215028 797 return ERR_PTR(-EIO);
ac27a0ec
DK
798}
799
f19d5870
TM
800int ext4_walk_page_buffers(handle_t *handle,
801 struct buffer_head *head,
802 unsigned from,
803 unsigned to,
804 int *partial,
805 int (*fn)(handle_t *handle,
806 struct buffer_head *bh))
ac27a0ec
DK
807{
808 struct buffer_head *bh;
809 unsigned block_start, block_end;
810 unsigned blocksize = head->b_size;
811 int err, ret = 0;
812 struct buffer_head *next;
813
af5bc92d
TT
814 for (bh = head, block_start = 0;
815 ret == 0 && (bh != head || !block_start);
de9a55b8 816 block_start = block_end, bh = next) {
ac27a0ec
DK
817 next = bh->b_this_page;
818 block_end = block_start + blocksize;
819 if (block_end <= from || block_start >= to) {
820 if (partial && !buffer_uptodate(bh))
821 *partial = 1;
822 continue;
823 }
824 err = (*fn)(handle, bh);
825 if (!ret)
826 ret = err;
827 }
828 return ret;
829}
830
831/*
832 * To preserve ordering, it is essential that the hole instantiation and
833 * the data write be encapsulated in a single transaction. We cannot
617ba13b 834 * close off a transaction and start a new one between the ext4_get_block()
dab291af 835 * and the commit_write(). So doing the jbd2_journal_start at the start of
ac27a0ec
DK
836 * prepare_write() is the right place.
837 *
36ade451
JK
838 * Also, this function can nest inside ext4_writepage(). In that case, we
839 * *know* that ext4_writepage() has generated enough buffer credits to do the
840 * whole page. So we won't block on the journal in that case, which is good,
841 * because the caller may be PF_MEMALLOC.
ac27a0ec 842 *
617ba13b 843 * By accident, ext4 can be reentered when a transaction is open via
ac27a0ec
DK
844 * quota file writes. If we were to commit the transaction while thus
845 * reentered, there can be a deadlock - we would be holding a quota
846 * lock, and the commit would never complete if another thread had a
847 * transaction open and was blocking on the quota lock - a ranking
848 * violation.
849 *
dab291af 850 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
ac27a0ec
DK
851 * will _not_ run commit under these circumstances because handle->h_ref
852 * is elevated. We'll still have enough credits for the tiny quotafile
853 * write.
854 */
f19d5870
TM
855int do_journal_get_write_access(handle_t *handle,
856 struct buffer_head *bh)
ac27a0ec 857{
56d35a4c
JK
858 int dirty = buffer_dirty(bh);
859 int ret;
860
ac27a0ec
DK
861 if (!buffer_mapped(bh) || buffer_freed(bh))
862 return 0;
56d35a4c 863 /*
ebdec241 864 * __block_write_begin() could have dirtied some buffers. Clean
56d35a4c
JK
865 * the dirty bit as jbd2_journal_get_write_access() could complain
866 * otherwise about fs integrity issues. Setting of the dirty bit
ebdec241 867 * by __block_write_begin() isn't a real problem here as we clear
56d35a4c
JK
868 * the bit before releasing a page lock and thus writeback cannot
869 * ever write the buffer.
870 */
871 if (dirty)
872 clear_buffer_dirty(bh);
5d601255 873 BUFFER_TRACE(bh, "get write access");
56d35a4c
JK
874 ret = ext4_journal_get_write_access(handle, bh);
875 if (!ret && dirty)
876 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
877 return ret;
ac27a0ec
DK
878}
879
8b0f165f
AP
880static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
881 struct buffer_head *bh_result, int create);
bfc1af65 882static int ext4_write_begin(struct file *file, struct address_space *mapping,
de9a55b8
TT
883 loff_t pos, unsigned len, unsigned flags,
884 struct page **pagep, void **fsdata)
ac27a0ec 885{
af5bc92d 886 struct inode *inode = mapping->host;
1938a150 887 int ret, needed_blocks;
ac27a0ec
DK
888 handle_t *handle;
889 int retries = 0;
af5bc92d 890 struct page *page;
de9a55b8 891 pgoff_t index;
af5bc92d 892 unsigned from, to;
bfc1af65 893
9bffad1e 894 trace_ext4_write_begin(inode, pos, len, flags);
1938a150
AK
895 /*
896 * Reserve one block more for addition to orphan list in case
897 * we allocate blocks but write fails for some reason
898 */
899 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
de9a55b8 900 index = pos >> PAGE_CACHE_SHIFT;
af5bc92d
TT
901 from = pos & (PAGE_CACHE_SIZE - 1);
902 to = from + len;
ac27a0ec 903
f19d5870
TM
904 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
905 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
906 flags, pagep);
907 if (ret < 0)
47564bfb
TT
908 return ret;
909 if (ret == 1)
910 return 0;
f19d5870
TM
911 }
912
47564bfb
TT
913 /*
914 * grab_cache_page_write_begin() can take a long time if the
915 * system is thrashing due to memory pressure, or if the page
916 * is being written back. So grab it first before we start
917 * the transaction handle. This also allows us to allocate
918 * the page (if needed) without using GFP_NOFS.
919 */
920retry_grab:
921 page = grab_cache_page_write_begin(mapping, index, flags);
922 if (!page)
923 return -ENOMEM;
924 unlock_page(page);
925
926retry_journal:
9924a92a 927 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
af5bc92d 928 if (IS_ERR(handle)) {
47564bfb
TT
929 page_cache_release(page);
930 return PTR_ERR(handle);
7479d2b9 931 }
ac27a0ec 932
47564bfb
TT
933 lock_page(page);
934 if (page->mapping != mapping) {
935 /* The page got truncated from under us */
936 unlock_page(page);
937 page_cache_release(page);
cf108bca 938 ext4_journal_stop(handle);
47564bfb 939 goto retry_grab;
cf108bca 940 }
7afe5aa5
DM
941 /* In case writeback began while the page was unlocked */
942 wait_for_stable_page(page);
cf108bca 943
744692dc 944 if (ext4_should_dioread_nolock(inode))
6e1db88d 945 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
744692dc 946 else
6e1db88d 947 ret = __block_write_begin(page, pos, len, ext4_get_block);
bfc1af65
NP
948
949 if (!ret && ext4_should_journal_data(inode)) {
f19d5870
TM
950 ret = ext4_walk_page_buffers(handle, page_buffers(page),
951 from, to, NULL,
952 do_journal_get_write_access);
ac27a0ec 953 }
bfc1af65
NP
954
955 if (ret) {
af5bc92d 956 unlock_page(page);
ae4d5372 957 /*
6e1db88d 958 * __block_write_begin may have instantiated a few blocks
ae4d5372
AK
959 * outside i_size. Trim these off again. Don't need
960 * i_size_read because we hold i_mutex.
1938a150
AK
961 *
962 * Add inode to orphan list in case we crash before
963 * truncate finishes
ae4d5372 964 */
ffacfa7a 965 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1938a150
AK
966 ext4_orphan_add(handle, inode);
967
968 ext4_journal_stop(handle);
969 if (pos + len > inode->i_size) {
b9a4207d 970 ext4_truncate_failed_write(inode);
de9a55b8 971 /*
ffacfa7a 972 * If truncate failed early the inode might
1938a150
AK
973 * still be on the orphan list; we need to
974 * make sure the inode is removed from the
975 * orphan list in that case.
976 */
977 if (inode->i_nlink)
978 ext4_orphan_del(NULL, inode);
979 }
bfc1af65 980
47564bfb
TT
981 if (ret == -ENOSPC &&
982 ext4_should_retry_alloc(inode->i_sb, &retries))
983 goto retry_journal;
984 page_cache_release(page);
985 return ret;
986 }
987 *pagep = page;
ac27a0ec
DK
988 return ret;
989}
990
bfc1af65
NP
991/* For write_end() in data=journal mode */
992static int write_end_fn(handle_t *handle, struct buffer_head *bh)
ac27a0ec 993{
13fca323 994 int ret;
ac27a0ec
DK
995 if (!buffer_mapped(bh) || buffer_freed(bh))
996 return 0;
997 set_buffer_uptodate(bh);
13fca323
TT
998 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
999 clear_buffer_meta(bh);
1000 clear_buffer_prio(bh);
1001 return ret;
ac27a0ec
DK
1002}
1003
eed4333f
ZL
1004/*
1005 * We need to pick up the new inode size which generic_commit_write gave us
1006 * `file' can be NULL - eg, when called from page_symlink().
1007 *
1008 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1009 * buffers are managed internally.
1010 */
1011static int ext4_write_end(struct file *file,
1012 struct address_space *mapping,
1013 loff_t pos, unsigned len, unsigned copied,
1014 struct page *page, void *fsdata)
f8514083 1015{
f8514083 1016 handle_t *handle = ext4_journal_current_handle();
eed4333f
ZL
1017 struct inode *inode = mapping->host;
1018 int ret = 0, ret2;
1019 int i_size_changed = 0;
1020
1021 trace_ext4_write_end(inode, pos, len, copied);
1022 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) {
1023 ret = ext4_jbd2_file_inode(handle, inode);
1024 if (ret) {
1025 unlock_page(page);
1026 page_cache_release(page);
1027 goto errout;
1028 }
1029 }
f8514083 1030
42c832de
TT
1031 if (ext4_has_inline_data(inode)) {
1032 ret = ext4_write_inline_data_end(inode, pos, len,
1033 copied, page);
1034 if (ret < 0)
1035 goto errout;
1036 copied = ret;
1037 } else
f19d5870
TM
1038 copied = block_write_end(file, mapping, pos,
1039 len, copied, page, fsdata);
f8514083 1040 /*
4631dbf6 1041 * it's important to update i_size while still holding page lock:
f8514083
AK
1042 * page writeout could otherwise come in and zero beyond i_size.
1043 */
4631dbf6 1044 i_size_changed = ext4_update_inode_size(inode, pos + copied);
f8514083
AK
1045 unlock_page(page);
1046 page_cache_release(page);
1047
1048 /*
1049 * Don't mark the inode dirty under page lock. First, it unnecessarily
1050 * makes the holding time of page lock longer. Second, it forces lock
1051 * ordering of page lock and transaction start for journaling
1052 * filesystems.
1053 */
1054 if (i_size_changed)
1055 ext4_mark_inode_dirty(handle, inode);
1056
ffacfa7a 1057 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1058 /* if we have allocated more blocks and copied
1059 * less. We will have blocks allocated outside
1060 * inode->i_size. So truncate them
1061 */
1062 ext4_orphan_add(handle, inode);
74d553aa 1063errout:
617ba13b 1064 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1065 if (!ret)
1066 ret = ret2;
bfc1af65 1067
f8514083 1068 if (pos + len > inode->i_size) {
b9a4207d 1069 ext4_truncate_failed_write(inode);
de9a55b8 1070 /*
ffacfa7a 1071 * If truncate failed early the inode might still be
f8514083
AK
1072 * on the orphan list; we need to make sure the inode
1073 * is removed from the orphan list in that case.
1074 */
1075 if (inode->i_nlink)
1076 ext4_orphan_del(NULL, inode);
1077 }
1078
bfc1af65 1079 return ret ? ret : copied;
ac27a0ec
DK
1080}
1081
bfc1af65 1082static int ext4_journalled_write_end(struct file *file,
de9a55b8
TT
1083 struct address_space *mapping,
1084 loff_t pos, unsigned len, unsigned copied,
1085 struct page *page, void *fsdata)
ac27a0ec 1086{
617ba13b 1087 handle_t *handle = ext4_journal_current_handle();
bfc1af65 1088 struct inode *inode = mapping->host;
ac27a0ec
DK
1089 int ret = 0, ret2;
1090 int partial = 0;
bfc1af65 1091 unsigned from, to;
4631dbf6 1092 int size_changed = 0;
ac27a0ec 1093
9bffad1e 1094 trace_ext4_journalled_write_end(inode, pos, len, copied);
bfc1af65
NP
1095 from = pos & (PAGE_CACHE_SIZE - 1);
1096 to = from + len;
1097
441c8508
CW
1098 BUG_ON(!ext4_handle_valid(handle));
1099
3fdcfb66
TM
1100 if (ext4_has_inline_data(inode))
1101 copied = ext4_write_inline_data_end(inode, pos, len,
1102 copied, page);
1103 else {
1104 if (copied < len) {
1105 if (!PageUptodate(page))
1106 copied = 0;
1107 page_zero_new_buffers(page, from+copied, to);
1108 }
ac27a0ec 1109
3fdcfb66
TM
1110 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1111 to, &partial, write_end_fn);
1112 if (!partial)
1113 SetPageUptodate(page);
1114 }
4631dbf6 1115 size_changed = ext4_update_inode_size(inode, pos + copied);
19f5fb7a 1116 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2d859db3 1117 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
4631dbf6
DM
1118 unlock_page(page);
1119 page_cache_release(page);
1120
1121 if (size_changed) {
617ba13b 1122 ret2 = ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
1123 if (!ret)
1124 ret = ret2;
1125 }
bfc1af65 1126
ffacfa7a 1127 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1128 /* if we have allocated more blocks and copied
1129 * less. We will have blocks allocated outside
1130 * inode->i_size. So truncate them
1131 */
1132 ext4_orphan_add(handle, inode);
1133
617ba13b 1134 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1135 if (!ret)
1136 ret = ret2;
f8514083 1137 if (pos + len > inode->i_size) {
b9a4207d 1138 ext4_truncate_failed_write(inode);
de9a55b8 1139 /*
ffacfa7a 1140 * If truncate failed early the inode might still be
f8514083
AK
1141 * on the orphan list; we need to make sure the inode
1142 * is removed from the orphan list in that case.
1143 */
1144 if (inode->i_nlink)
1145 ext4_orphan_del(NULL, inode);
1146 }
bfc1af65
NP
1147
1148 return ret ? ret : copied;
ac27a0ec 1149}
d2a17637 1150
9d0be502 1151/*
7b415bf6 1152 * Reserve a single cluster located at lblock
9d0be502 1153 */
01f49d0b 1154static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
d2a17637 1155{
60e58e0f 1156 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 1157 struct ext4_inode_info *ei = EXT4_I(inode);
7b415bf6 1158 unsigned int md_needed;
5dd4056d 1159 int ret;
03179fe9
TT
1160
1161 /*
1162 * We will charge metadata quota at writeout time; this saves
1163 * us from metadata over-estimation, though we may go over by
1164 * a small amount in the end. Here we just reserve for data.
1165 */
1166 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1167 if (ret)
1168 return ret;
d2a17637
MC
1169
1170 /*
1171 * recalculate the amount of metadata blocks to reserve
1172 * in order to allocate nrblocks
1173 * worse case is one extent per block
1174 */
0637c6f4 1175 spin_lock(&ei->i_block_reservation_lock);
03179fe9
TT
1176 /*
1177 * ext4_calc_metadata_amount() has side effects, which we have
1178 * to be prepared undo if we fail to claim space.
1179 */
71d4f7d0
TT
1180 md_needed = 0;
1181 trace_ext4_da_reserve_space(inode, 0);
d2a17637 1182
71d4f7d0 1183 if (ext4_claim_free_clusters(sbi, 1, 0)) {
03179fe9 1184 spin_unlock(&ei->i_block_reservation_lock);
03179fe9 1185 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
d2a17637
MC
1186 return -ENOSPC;
1187 }
9d0be502 1188 ei->i_reserved_data_blocks++;
0637c6f4 1189 spin_unlock(&ei->i_block_reservation_lock);
39bc680a 1190
d2a17637
MC
1191 return 0; /* success */
1192}
1193
12219aea 1194static void ext4_da_release_space(struct inode *inode, int to_free)
d2a17637
MC
1195{
1196 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 1197 struct ext4_inode_info *ei = EXT4_I(inode);
d2a17637 1198
cd213226
MC
1199 if (!to_free)
1200 return; /* Nothing to release, exit */
1201
d2a17637 1202 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
cd213226 1203
5a58ec87 1204 trace_ext4_da_release_space(inode, to_free);
0637c6f4 1205 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
cd213226 1206 /*
0637c6f4
TT
1207 * if there aren't enough reserved blocks, then the
1208 * counter is messed up somewhere. Since this
1209 * function is called from invalidate page, it's
1210 * harmless to return without any action.
cd213226 1211 */
8de5c325 1212 ext4_warning(inode->i_sb, "ext4_da_release_space: "
0637c6f4 1213 "ino %lu, to_free %d with only %d reserved "
1084f252 1214 "data blocks", inode->i_ino, to_free,
0637c6f4
TT
1215 ei->i_reserved_data_blocks);
1216 WARN_ON(1);
1217 to_free = ei->i_reserved_data_blocks;
cd213226 1218 }
0637c6f4 1219 ei->i_reserved_data_blocks -= to_free;
cd213226 1220
72b8ab9d 1221 /* update fs dirty data blocks counter */
57042651 1222 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
d2a17637 1223
d2a17637 1224 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f 1225
7b415bf6 1226 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
d2a17637
MC
1227}
1228
1229static void ext4_da_page_release_reservation(struct page *page,
ca99fdd2
LC
1230 unsigned int offset,
1231 unsigned int length)
d2a17637
MC
1232{
1233 int to_release = 0;
1234 struct buffer_head *head, *bh;
1235 unsigned int curr_off = 0;
7b415bf6
AK
1236 struct inode *inode = page->mapping->host;
1237 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
ca99fdd2 1238 unsigned int stop = offset + length;
7b415bf6 1239 int num_clusters;
51865fda 1240 ext4_fsblk_t lblk;
d2a17637 1241
ca99fdd2
LC
1242 BUG_ON(stop > PAGE_CACHE_SIZE || stop < length);
1243
d2a17637
MC
1244 head = page_buffers(page);
1245 bh = head;
1246 do {
1247 unsigned int next_off = curr_off + bh->b_size;
1248
ca99fdd2
LC
1249 if (next_off > stop)
1250 break;
1251
d2a17637
MC
1252 if ((offset <= curr_off) && (buffer_delay(bh))) {
1253 to_release++;
1254 clear_buffer_delay(bh);
1255 }
1256 curr_off = next_off;
1257 } while ((bh = bh->b_this_page) != head);
7b415bf6 1258
51865fda
ZL
1259 if (to_release) {
1260 lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1261 ext4_es_remove_extent(inode, lblk, to_release);
1262 }
1263
7b415bf6
AK
1264 /* If we have released all the blocks belonging to a cluster, then we
1265 * need to release the reserved space for that cluster. */
1266 num_clusters = EXT4_NUM_B2C(sbi, to_release);
1267 while (num_clusters > 0) {
7b415bf6
AK
1268 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1269 ((num_clusters - 1) << sbi->s_cluster_bits);
1270 if (sbi->s_cluster_ratio == 1 ||
7d1b1fbc 1271 !ext4_find_delalloc_cluster(inode, lblk))
7b415bf6
AK
1272 ext4_da_release_space(inode, 1);
1273
1274 num_clusters--;
1275 }
d2a17637 1276}
ac27a0ec 1277
64769240
AT
1278/*
1279 * Delayed allocation stuff
1280 */
1281
4e7ea81d
JK
1282struct mpage_da_data {
1283 struct inode *inode;
1284 struct writeback_control *wbc;
6b523df4 1285
4e7ea81d
JK
1286 pgoff_t first_page; /* The first page to write */
1287 pgoff_t next_page; /* Current page to examine */
1288 pgoff_t last_page; /* Last page to examine */
791b7f08 1289 /*
4e7ea81d
JK
1290 * Extent to map - this can be after first_page because that can be
1291 * fully mapped. We somewhat abuse m_flags to store whether the extent
1292 * is delalloc or unwritten.
791b7f08 1293 */
4e7ea81d
JK
1294 struct ext4_map_blocks map;
1295 struct ext4_io_submit io_submit; /* IO submission data */
1296};
64769240 1297
4e7ea81d
JK
1298static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1299 bool invalidate)
c4a0c46e
AK
1300{
1301 int nr_pages, i;
1302 pgoff_t index, end;
1303 struct pagevec pvec;
1304 struct inode *inode = mpd->inode;
1305 struct address_space *mapping = inode->i_mapping;
4e7ea81d
JK
1306
1307 /* This is necessary when next_page == 0. */
1308 if (mpd->first_page >= mpd->next_page)
1309 return;
c4a0c46e 1310
c7f5938a
CW
1311 index = mpd->first_page;
1312 end = mpd->next_page - 1;
4e7ea81d
JK
1313 if (invalidate) {
1314 ext4_lblk_t start, last;
1315 start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1316 last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1317 ext4_es_remove_extent(inode, start, last - start + 1);
1318 }
51865fda 1319
66bea92c 1320 pagevec_init(&pvec, 0);
c4a0c46e
AK
1321 while (index <= end) {
1322 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1323 if (nr_pages == 0)
1324 break;
1325 for (i = 0; i < nr_pages; i++) {
1326 struct page *page = pvec.pages[i];
9b1d0998 1327 if (page->index > end)
c4a0c46e 1328 break;
c4a0c46e
AK
1329 BUG_ON(!PageLocked(page));
1330 BUG_ON(PageWriteback(page));
4e7ea81d
JK
1331 if (invalidate) {
1332 block_invalidatepage(page, 0, PAGE_CACHE_SIZE);
1333 ClearPageUptodate(page);
1334 }
c4a0c46e
AK
1335 unlock_page(page);
1336 }
9b1d0998
JK
1337 index = pvec.pages[nr_pages - 1]->index + 1;
1338 pagevec_release(&pvec);
c4a0c46e 1339 }
c4a0c46e
AK
1340}
1341
df22291f
AK
1342static void ext4_print_free_blocks(struct inode *inode)
1343{
1344 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
92b97816 1345 struct super_block *sb = inode->i_sb;
f78ee70d 1346 struct ext4_inode_info *ei = EXT4_I(inode);
92b97816
TT
1347
1348 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
5dee5437 1349 EXT4_C2B(EXT4_SB(inode->i_sb),
f78ee70d 1350 ext4_count_free_clusters(sb)));
92b97816
TT
1351 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1352 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
f78ee70d 1353 (long long) EXT4_C2B(EXT4_SB(sb),
57042651 1354 percpu_counter_sum(&sbi->s_freeclusters_counter)));
92b97816 1355 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
f78ee70d 1356 (long long) EXT4_C2B(EXT4_SB(sb),
7b415bf6 1357 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
92b97816
TT
1358 ext4_msg(sb, KERN_CRIT, "Block reservation details");
1359 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
f78ee70d 1360 ei->i_reserved_data_blocks);
df22291f
AK
1361 return;
1362}
1363
c364b22c 1364static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
29fa89d0 1365{
c364b22c 1366 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
29fa89d0
AK
1367}
1368
5356f261
AK
1369/*
1370 * This function is grabs code from the very beginning of
1371 * ext4_map_blocks, but assumes that the caller is from delayed write
1372 * time. This function looks up the requested blocks and sets the
1373 * buffer delay bit under the protection of i_data_sem.
1374 */
1375static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1376 struct ext4_map_blocks *map,
1377 struct buffer_head *bh)
1378{
d100eef2 1379 struct extent_status es;
5356f261
AK
1380 int retval;
1381 sector_t invalid_block = ~((sector_t) 0xffff);
921f266b
DM
1382#ifdef ES_AGGRESSIVE_TEST
1383 struct ext4_map_blocks orig_map;
1384
1385 memcpy(&orig_map, map, sizeof(*map));
1386#endif
5356f261
AK
1387
1388 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1389 invalid_block = ~0;
1390
1391 map->m_flags = 0;
1392 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1393 "logical block %lu\n", inode->i_ino, map->m_len,
1394 (unsigned long) map->m_lblk);
d100eef2
ZL
1395
1396 /* Lookup extent status tree firstly */
1397 if (ext4_es_lookup_extent(inode, iblock, &es)) {
63b99968 1398 ext4_es_lru_add(inode);
d100eef2
ZL
1399 if (ext4_es_is_hole(&es)) {
1400 retval = 0;
c8b459f4 1401 down_read(&EXT4_I(inode)->i_data_sem);
d100eef2
ZL
1402 goto add_delayed;
1403 }
1404
1405 /*
1406 * Delayed extent could be allocated by fallocate.
1407 * So we need to check it.
1408 */
1409 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1410 map_bh(bh, inode->i_sb, invalid_block);
1411 set_buffer_new(bh);
1412 set_buffer_delay(bh);
1413 return 0;
1414 }
1415
1416 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1417 retval = es.es_len - (iblock - es.es_lblk);
1418 if (retval > map->m_len)
1419 retval = map->m_len;
1420 map->m_len = retval;
1421 if (ext4_es_is_written(&es))
1422 map->m_flags |= EXT4_MAP_MAPPED;
1423 else if (ext4_es_is_unwritten(&es))
1424 map->m_flags |= EXT4_MAP_UNWRITTEN;
1425 else
1426 BUG_ON(1);
1427
921f266b
DM
1428#ifdef ES_AGGRESSIVE_TEST
1429 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1430#endif
d100eef2
ZL
1431 return retval;
1432 }
1433
5356f261
AK
1434 /*
1435 * Try to see if we can get the block without requesting a new
1436 * file system block.
1437 */
c8b459f4 1438 down_read(&EXT4_I(inode)->i_data_sem);
9c3569b5
TM
1439 if (ext4_has_inline_data(inode)) {
1440 /*
1441 * We will soon create blocks for this page, and let
1442 * us pretend as if the blocks aren't allocated yet.
1443 * In case of clusters, we have to handle the work
1444 * of mapping from cluster so that the reserved space
1445 * is calculated properly.
1446 */
1447 if ((EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) &&
1448 ext4_find_delalloc_cluster(inode, map->m_lblk))
1449 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
1450 retval = 0;
1451 } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
d100eef2
ZL
1452 retval = ext4_ext_map_blocks(NULL, inode, map,
1453 EXT4_GET_BLOCKS_NO_PUT_HOLE);
5356f261 1454 else
d100eef2
ZL
1455 retval = ext4_ind_map_blocks(NULL, inode, map,
1456 EXT4_GET_BLOCKS_NO_PUT_HOLE);
5356f261 1457
d100eef2 1458add_delayed:
5356f261 1459 if (retval == 0) {
f7fec032 1460 int ret;
5356f261
AK
1461 /*
1462 * XXX: __block_prepare_write() unmaps passed block,
1463 * is it OK?
1464 */
386ad67c
LC
1465 /*
1466 * If the block was allocated from previously allocated cluster,
1467 * then we don't need to reserve it again. However we still need
1468 * to reserve metadata for every block we're going to write.
1469 */
5356f261 1470 if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
f7fec032
ZL
1471 ret = ext4_da_reserve_space(inode, iblock);
1472 if (ret) {
5356f261 1473 /* not enough space to reserve */
f7fec032 1474 retval = ret;
5356f261 1475 goto out_unlock;
f7fec032 1476 }
5356f261
AK
1477 }
1478
f7fec032
ZL
1479 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1480 ~0, EXTENT_STATUS_DELAYED);
1481 if (ret) {
1482 retval = ret;
51865fda 1483 goto out_unlock;
f7fec032 1484 }
51865fda 1485
5356f261
AK
1486 /* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
1487 * and it should not appear on the bh->b_state.
1488 */
1489 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
1490
1491 map_bh(bh, inode->i_sb, invalid_block);
1492 set_buffer_new(bh);
1493 set_buffer_delay(bh);
f7fec032
ZL
1494 } else if (retval > 0) {
1495 int ret;
3be78c73 1496 unsigned int status;
f7fec032 1497
44fb851d
ZL
1498 if (unlikely(retval != map->m_len)) {
1499 ext4_warning(inode->i_sb,
1500 "ES len assertion failed for inode "
1501 "%lu: retval %d != map->m_len %d",
1502 inode->i_ino, retval, map->m_len);
1503 WARN_ON(1);
921f266b 1504 }
921f266b 1505
f7fec032
ZL
1506 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1507 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1508 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1509 map->m_pblk, status);
1510 if (ret != 0)
1511 retval = ret;
5356f261
AK
1512 }
1513
1514out_unlock:
1515 up_read((&EXT4_I(inode)->i_data_sem));
1516
1517 return retval;
1518}
1519
64769240 1520/*
d91bd2c1 1521 * This is a special get_block_t callback which is used by
b920c755
TT
1522 * ext4_da_write_begin(). It will either return mapped block or
1523 * reserve space for a single block.
29fa89d0
AK
1524 *
1525 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1526 * We also have b_blocknr = -1 and b_bdev initialized properly
1527 *
1528 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1529 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1530 * initialized properly.
64769240 1531 */
9c3569b5
TM
1532int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1533 struct buffer_head *bh, int create)
64769240 1534{
2ed88685 1535 struct ext4_map_blocks map;
64769240
AT
1536 int ret = 0;
1537
1538 BUG_ON(create == 0);
2ed88685
TT
1539 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1540
1541 map.m_lblk = iblock;
1542 map.m_len = 1;
64769240
AT
1543
1544 /*
1545 * first, we need to know whether the block is allocated already
1546 * preallocated blocks are unmapped but should treated
1547 * the same as allocated blocks.
1548 */
5356f261
AK
1549 ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1550 if (ret <= 0)
2ed88685 1551 return ret;
64769240 1552
2ed88685
TT
1553 map_bh(bh, inode->i_sb, map.m_pblk);
1554 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1555
1556 if (buffer_unwritten(bh)) {
1557 /* A delayed write to unwritten bh should be marked
1558 * new and mapped. Mapped ensures that we don't do
1559 * get_block multiple times when we write to the same
1560 * offset and new ensures that we do proper zero out
1561 * for partial write.
1562 */
1563 set_buffer_new(bh);
c8205636 1564 set_buffer_mapped(bh);
2ed88685
TT
1565 }
1566 return 0;
64769240 1567}
61628a3f 1568
62e086be
AK
1569static int bget_one(handle_t *handle, struct buffer_head *bh)
1570{
1571 get_bh(bh);
1572 return 0;
1573}
1574
1575static int bput_one(handle_t *handle, struct buffer_head *bh)
1576{
1577 put_bh(bh);
1578 return 0;
1579}
1580
1581static int __ext4_journalled_writepage(struct page *page,
62e086be
AK
1582 unsigned int len)
1583{
1584 struct address_space *mapping = page->mapping;
1585 struct inode *inode = mapping->host;
3fdcfb66 1586 struct buffer_head *page_bufs = NULL;
62e086be 1587 handle_t *handle = NULL;
3fdcfb66
TM
1588 int ret = 0, err = 0;
1589 int inline_data = ext4_has_inline_data(inode);
1590 struct buffer_head *inode_bh = NULL;
62e086be 1591
cb20d518 1592 ClearPageChecked(page);
3fdcfb66
TM
1593
1594 if (inline_data) {
1595 BUG_ON(page->index != 0);
1596 BUG_ON(len > ext4_get_max_inline_size(inode));
1597 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1598 if (inode_bh == NULL)
1599 goto out;
1600 } else {
1601 page_bufs = page_buffers(page);
1602 if (!page_bufs) {
1603 BUG();
1604 goto out;
1605 }
1606 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1607 NULL, bget_one);
1608 }
62e086be
AK
1609 /* As soon as we unlock the page, it can go away, but we have
1610 * references to buffers so we are safe */
1611 unlock_page(page);
1612
9924a92a
TT
1613 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1614 ext4_writepage_trans_blocks(inode));
62e086be
AK
1615 if (IS_ERR(handle)) {
1616 ret = PTR_ERR(handle);
1617 goto out;
1618 }
1619
441c8508
CW
1620 BUG_ON(!ext4_handle_valid(handle));
1621
3fdcfb66 1622 if (inline_data) {
5d601255 1623 BUFFER_TRACE(inode_bh, "get write access");
3fdcfb66 1624 ret = ext4_journal_get_write_access(handle, inode_bh);
62e086be 1625
3fdcfb66
TM
1626 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
1627
1628 } else {
1629 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1630 do_journal_get_write_access);
1631
1632 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1633 write_end_fn);
1634 }
62e086be
AK
1635 if (ret == 0)
1636 ret = err;
2d859db3 1637 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
62e086be
AK
1638 err = ext4_journal_stop(handle);
1639 if (!ret)
1640 ret = err;
1641
3fdcfb66 1642 if (!ext4_has_inline_data(inode))
8c9367fd 1643 ext4_walk_page_buffers(NULL, page_bufs, 0, len,
3fdcfb66 1644 NULL, bput_one);
19f5fb7a 1645 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
62e086be 1646out:
3fdcfb66 1647 brelse(inode_bh);
62e086be
AK
1648 return ret;
1649}
1650
61628a3f 1651/*
43ce1d23
AK
1652 * Note that we don't need to start a transaction unless we're journaling data
1653 * because we should have holes filled from ext4_page_mkwrite(). We even don't
1654 * need to file the inode to the transaction's list in ordered mode because if
1655 * we are writing back data added by write(), the inode is already there and if
25985edc 1656 * we are writing back data modified via mmap(), no one guarantees in which
43ce1d23
AK
1657 * transaction the data will hit the disk. In case we are journaling data, we
1658 * cannot start transaction directly because transaction start ranks above page
1659 * lock so we have to do some magic.
1660 *
b920c755 1661 * This function can get called via...
20970ba6 1662 * - ext4_writepages after taking page lock (have journal handle)
b920c755 1663 * - journal_submit_inode_data_buffers (no journal handle)
f6463b0d 1664 * - shrink_page_list via the kswapd/direct reclaim (no journal handle)
b920c755 1665 * - grab_page_cache when doing write_begin (have journal handle)
43ce1d23
AK
1666 *
1667 * We don't do any block allocation in this function. If we have page with
1668 * multiple blocks we need to write those buffer_heads that are mapped. This
1669 * is important for mmaped based write. So if we do with blocksize 1K
1670 * truncate(f, 1024);
1671 * a = mmap(f, 0, 4096);
1672 * a[0] = 'a';
1673 * truncate(f, 4096);
1674 * we have in the page first buffer_head mapped via page_mkwrite call back
90802ed9 1675 * but other buffer_heads would be unmapped but dirty (dirty done via the
43ce1d23
AK
1676 * do_wp_page). So writepage should write the first block. If we modify
1677 * the mmap area beyond 1024 we will again get a page_fault and the
1678 * page_mkwrite callback will do the block allocation and mark the
1679 * buffer_heads mapped.
1680 *
1681 * We redirty the page if we have any buffer_heads that is either delay or
1682 * unwritten in the page.
1683 *
1684 * We can get recursively called as show below.
1685 *
1686 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1687 * ext4_writepage()
1688 *
1689 * But since we don't do any block allocation we should not deadlock.
1690 * Page also have the dirty flag cleared so we don't get recurive page_lock.
61628a3f 1691 */
43ce1d23 1692static int ext4_writepage(struct page *page,
62e086be 1693 struct writeback_control *wbc)
64769240 1694{
f8bec370 1695 int ret = 0;
61628a3f 1696 loff_t size;
498e5f24 1697 unsigned int len;
744692dc 1698 struct buffer_head *page_bufs = NULL;
61628a3f 1699 struct inode *inode = page->mapping->host;
36ade451 1700 struct ext4_io_submit io_submit;
1c8349a1 1701 bool keep_towrite = false;
61628a3f 1702
a9c667f8 1703 trace_ext4_writepage(page);
f0e6c985
AK
1704 size = i_size_read(inode);
1705 if (page->index == size >> PAGE_CACHE_SHIFT)
1706 len = size & ~PAGE_CACHE_MASK;
1707 else
1708 len = PAGE_CACHE_SIZE;
64769240 1709
a42afc5f 1710 page_bufs = page_buffers(page);
a42afc5f 1711 /*
fe386132
JK
1712 * We cannot do block allocation or other extent handling in this
1713 * function. If there are buffers needing that, we have to redirty
1714 * the page. But we may reach here when we do a journal commit via
1715 * journal_submit_inode_data_buffers() and in that case we must write
1716 * allocated buffers to achieve data=ordered mode guarantees.
a42afc5f 1717 */
f19d5870
TM
1718 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
1719 ext4_bh_delay_or_unwritten)) {
f8bec370 1720 redirty_page_for_writepage(wbc, page);
fe386132
JK
1721 if (current->flags & PF_MEMALLOC) {
1722 /*
1723 * For memory cleaning there's no point in writing only
1724 * some buffers. So just bail out. Warn if we came here
1725 * from direct reclaim.
1726 */
1727 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
1728 == PF_MEMALLOC);
f0e6c985
AK
1729 unlock_page(page);
1730 return 0;
1731 }
1c8349a1 1732 keep_towrite = true;
a42afc5f 1733 }
64769240 1734
cb20d518 1735 if (PageChecked(page) && ext4_should_journal_data(inode))
43ce1d23
AK
1736 /*
1737 * It's mmapped pagecache. Add buffers and journal it. There
1738 * doesn't seem much point in redirtying the page here.
1739 */
3f0ca309 1740 return __ext4_journalled_writepage(page, len);
43ce1d23 1741
97a851ed
JK
1742 ext4_io_submit_init(&io_submit, wbc);
1743 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
1744 if (!io_submit.io_end) {
1745 redirty_page_for_writepage(wbc, page);
1746 unlock_page(page);
1747 return -ENOMEM;
1748 }
1c8349a1 1749 ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
36ade451 1750 ext4_io_submit(&io_submit);
97a851ed
JK
1751 /* Drop io_end reference we got from init */
1752 ext4_put_io_end_defer(io_submit.io_end);
64769240
AT
1753 return ret;
1754}
1755
5f1132b2
JK
1756static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
1757{
1758 int len;
1759 loff_t size = i_size_read(mpd->inode);
1760 int err;
1761
1762 BUG_ON(page->index != mpd->first_page);
1763 if (page->index == size >> PAGE_CACHE_SHIFT)
1764 len = size & ~PAGE_CACHE_MASK;
1765 else
1766 len = PAGE_CACHE_SIZE;
1767 clear_page_dirty_for_io(page);
1c8349a1 1768 err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
5f1132b2
JK
1769 if (!err)
1770 mpd->wbc->nr_to_write--;
1771 mpd->first_page++;
1772
1773 return err;
1774}
1775
4e7ea81d
JK
1776#define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
1777
61628a3f 1778/*
fffb2739
JK
1779 * mballoc gives us at most this number of blocks...
1780 * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
70261f56 1781 * The rest of mballoc seems to handle chunks up to full group size.
61628a3f 1782 */
fffb2739 1783#define MAX_WRITEPAGES_EXTENT_LEN 2048
525f4ed8 1784
4e7ea81d
JK
1785/*
1786 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
1787 *
1788 * @mpd - extent of blocks
1789 * @lblk - logical number of the block in the file
09930042 1790 * @bh - buffer head we want to add to the extent
4e7ea81d 1791 *
09930042
JK
1792 * The function is used to collect contig. blocks in the same state. If the
1793 * buffer doesn't require mapping for writeback and we haven't started the
1794 * extent of buffers to map yet, the function returns 'true' immediately - the
1795 * caller can write the buffer right away. Otherwise the function returns true
1796 * if the block has been added to the extent, false if the block couldn't be
1797 * added.
4e7ea81d 1798 */
09930042
JK
1799static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
1800 struct buffer_head *bh)
4e7ea81d
JK
1801{
1802 struct ext4_map_blocks *map = &mpd->map;
1803
09930042
JK
1804 /* Buffer that doesn't need mapping for writeback? */
1805 if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
1806 (!buffer_delay(bh) && !buffer_unwritten(bh))) {
1807 /* So far no extent to map => we write the buffer right away */
1808 if (map->m_len == 0)
1809 return true;
1810 return false;
1811 }
4e7ea81d
JK
1812
1813 /* First block in the extent? */
1814 if (map->m_len == 0) {
1815 map->m_lblk = lblk;
1816 map->m_len = 1;
09930042
JK
1817 map->m_flags = bh->b_state & BH_FLAGS;
1818 return true;
4e7ea81d
JK
1819 }
1820
09930042
JK
1821 /* Don't go larger than mballoc is willing to allocate */
1822 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
1823 return false;
1824
4e7ea81d
JK
1825 /* Can we merge the block to our big extent? */
1826 if (lblk == map->m_lblk + map->m_len &&
09930042 1827 (bh->b_state & BH_FLAGS) == map->m_flags) {
4e7ea81d 1828 map->m_len++;
09930042 1829 return true;
4e7ea81d 1830 }
09930042 1831 return false;
4e7ea81d
JK
1832}
1833
5f1132b2
JK
1834/*
1835 * mpage_process_page_bufs - submit page buffers for IO or add them to extent
1836 *
1837 * @mpd - extent of blocks for mapping
1838 * @head - the first buffer in the page
1839 * @bh - buffer we should start processing from
1840 * @lblk - logical number of the block in the file corresponding to @bh
1841 *
1842 * Walk through page buffers from @bh upto @head (exclusive) and either submit
1843 * the page for IO if all buffers in this page were mapped and there's no
1844 * accumulated extent of buffers to map or add buffers in the page to the
1845 * extent of buffers to map. The function returns 1 if the caller can continue
1846 * by processing the next page, 0 if it should stop adding buffers to the
1847 * extent to map because we cannot extend it anymore. It can also return value
1848 * < 0 in case of error during IO submission.
1849 */
1850static int mpage_process_page_bufs(struct mpage_da_data *mpd,
1851 struct buffer_head *head,
1852 struct buffer_head *bh,
1853 ext4_lblk_t lblk)
4e7ea81d
JK
1854{
1855 struct inode *inode = mpd->inode;
5f1132b2 1856 int err;
4e7ea81d
JK
1857 ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1)
1858 >> inode->i_blkbits;
1859
1860 do {
1861 BUG_ON(buffer_locked(bh));
1862
09930042 1863 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
4e7ea81d
JK
1864 /* Found extent to map? */
1865 if (mpd->map.m_len)
5f1132b2 1866 return 0;
09930042 1867 /* Everything mapped so far and we hit EOF */
5f1132b2 1868 break;
4e7ea81d 1869 }
4e7ea81d 1870 } while (lblk++, (bh = bh->b_this_page) != head);
5f1132b2
JK
1871 /* So far everything mapped? Submit the page for IO. */
1872 if (mpd->map.m_len == 0) {
1873 err = mpage_submit_page(mpd, head->b_page);
1874 if (err < 0)
1875 return err;
1876 }
1877 return lblk < blocks;
4e7ea81d
JK
1878}
1879
1880/*
1881 * mpage_map_buffers - update buffers corresponding to changed extent and
1882 * submit fully mapped pages for IO
1883 *
1884 * @mpd - description of extent to map, on return next extent to map
1885 *
1886 * Scan buffers corresponding to changed extent (we expect corresponding pages
1887 * to be already locked) and update buffer state according to new extent state.
1888 * We map delalloc buffers to their physical location, clear unwritten bits,
556615dc 1889 * and mark buffers as uninit when we perform writes to unwritten extents
4e7ea81d
JK
1890 * and do extent conversion after IO is finished. If the last page is not fully
1891 * mapped, we update @map to the next extent in the last page that needs
1892 * mapping. Otherwise we submit the page for IO.
1893 */
1894static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
1895{
1896 struct pagevec pvec;
1897 int nr_pages, i;
1898 struct inode *inode = mpd->inode;
1899 struct buffer_head *head, *bh;
1900 int bpp_bits = PAGE_CACHE_SHIFT - inode->i_blkbits;
4e7ea81d
JK
1901 pgoff_t start, end;
1902 ext4_lblk_t lblk;
1903 sector_t pblock;
1904 int err;
1905
1906 start = mpd->map.m_lblk >> bpp_bits;
1907 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
1908 lblk = start << bpp_bits;
1909 pblock = mpd->map.m_pblk;
1910
1911 pagevec_init(&pvec, 0);
1912 while (start <= end) {
1913 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start,
1914 PAGEVEC_SIZE);
1915 if (nr_pages == 0)
1916 break;
1917 for (i = 0; i < nr_pages; i++) {
1918 struct page *page = pvec.pages[i];
1919
1920 if (page->index > end)
1921 break;
70261f56 1922 /* Up to 'end' pages must be contiguous */
4e7ea81d
JK
1923 BUG_ON(page->index != start);
1924 bh = head = page_buffers(page);
1925 do {
1926 if (lblk < mpd->map.m_lblk)
1927 continue;
1928 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
1929 /*
1930 * Buffer after end of mapped extent.
1931 * Find next buffer in the page to map.
1932 */
1933 mpd->map.m_len = 0;
1934 mpd->map.m_flags = 0;
5f1132b2
JK
1935 /*
1936 * FIXME: If dioread_nolock supports
1937 * blocksize < pagesize, we need to make
1938 * sure we add size mapped so far to
1939 * io_end->size as the following call
1940 * can submit the page for IO.
1941 */
1942 err = mpage_process_page_bufs(mpd, head,
1943 bh, lblk);
4e7ea81d 1944 pagevec_release(&pvec);
5f1132b2
JK
1945 if (err > 0)
1946 err = 0;
1947 return err;
4e7ea81d
JK
1948 }
1949 if (buffer_delay(bh)) {
1950 clear_buffer_delay(bh);
1951 bh->b_blocknr = pblock++;
1952 }
4e7ea81d 1953 clear_buffer_unwritten(bh);
5f1132b2 1954 } while (lblk++, (bh = bh->b_this_page) != head);
4e7ea81d
JK
1955
1956 /*
1957 * FIXME: This is going to break if dioread_nolock
1958 * supports blocksize < pagesize as we will try to
1959 * convert potentially unmapped parts of inode.
1960 */
1961 mpd->io_submit.io_end->size += PAGE_CACHE_SIZE;
1962 /* Page fully mapped - let IO run! */
1963 err = mpage_submit_page(mpd, page);
1964 if (err < 0) {
1965 pagevec_release(&pvec);
1966 return err;
1967 }
1968 start++;
1969 }
1970 pagevec_release(&pvec);
1971 }
1972 /* Extent fully mapped and matches with page boundary. We are done. */
1973 mpd->map.m_len = 0;
1974 mpd->map.m_flags = 0;
1975 return 0;
1976}
1977
1978static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
1979{
1980 struct inode *inode = mpd->inode;
1981 struct ext4_map_blocks *map = &mpd->map;
1982 int get_blocks_flags;
090f32ee 1983 int err, dioread_nolock;
4e7ea81d
JK
1984
1985 trace_ext4_da_write_pages_extent(inode, map);
1986 /*
1987 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
556615dc 1988 * to convert an unwritten extent to be initialized (in the case
4e7ea81d
JK
1989 * where we have written into one or more preallocated blocks). It is
1990 * possible that we're going to need more metadata blocks than
1991 * previously reserved. However we must not fail because we're in
1992 * writeback and there is nothing we can do about it so it might result
1993 * in data loss. So use reserved blocks to allocate metadata if
1994 * possible.
1995 *
754cfed6
TT
1996 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
1997 * the blocks in question are delalloc blocks. This indicates
1998 * that the blocks and quotas has already been checked when
1999 * the data was copied into the page cache.
4e7ea81d
JK
2000 */
2001 get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2002 EXT4_GET_BLOCKS_METADATA_NOFAIL;
090f32ee
LC
2003 dioread_nolock = ext4_should_dioread_nolock(inode);
2004 if (dioread_nolock)
4e7ea81d
JK
2005 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2006 if (map->m_flags & (1 << BH_Delay))
2007 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2008
2009 err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2010 if (err < 0)
2011 return err;
090f32ee 2012 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
6b523df4
JK
2013 if (!mpd->io_submit.io_end->handle &&
2014 ext4_handle_valid(handle)) {
2015 mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2016 handle->h_rsv_handle = NULL;
2017 }
3613d228 2018 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
6b523df4 2019 }
4e7ea81d
JK
2020
2021 BUG_ON(map->m_len == 0);
2022 if (map->m_flags & EXT4_MAP_NEW) {
2023 struct block_device *bdev = inode->i_sb->s_bdev;
2024 int i;
2025
2026 for (i = 0; i < map->m_len; i++)
2027 unmap_underlying_metadata(bdev, map->m_pblk + i);
2028 }
2029 return 0;
2030}
2031
2032/*
2033 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2034 * mpd->len and submit pages underlying it for IO
2035 *
2036 * @handle - handle for journal operations
2037 * @mpd - extent to map
7534e854
JK
2038 * @give_up_on_write - we set this to true iff there is a fatal error and there
2039 * is no hope of writing the data. The caller should discard
2040 * dirty pages to avoid infinite loops.
4e7ea81d
JK
2041 *
2042 * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2043 * delayed, blocks are allocated, if it is unwritten, we may need to convert
2044 * them to initialized or split the described range from larger unwritten
2045 * extent. Note that we need not map all the described range since allocation
2046 * can return less blocks or the range is covered by more unwritten extents. We
2047 * cannot map more because we are limited by reserved transaction credits. On
2048 * the other hand we always make sure that the last touched page is fully
2049 * mapped so that it can be written out (and thus forward progress is
2050 * guaranteed). After mapping we submit all mapped pages for IO.
2051 */
2052static int mpage_map_and_submit_extent(handle_t *handle,
cb530541
TT
2053 struct mpage_da_data *mpd,
2054 bool *give_up_on_write)
4e7ea81d
JK
2055{
2056 struct inode *inode = mpd->inode;
2057 struct ext4_map_blocks *map = &mpd->map;
2058 int err;
2059 loff_t disksize;
6603120e 2060 int progress = 0;
4e7ea81d
JK
2061
2062 mpd->io_submit.io_end->offset =
2063 ((loff_t)map->m_lblk) << inode->i_blkbits;
27d7c4ed 2064 do {
4e7ea81d
JK
2065 err = mpage_map_one_extent(handle, mpd);
2066 if (err < 0) {
2067 struct super_block *sb = inode->i_sb;
2068
cb530541
TT
2069 if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2070 goto invalidate_dirty_pages;
4e7ea81d 2071 /*
cb530541
TT
2072 * Let the uper layers retry transient errors.
2073 * In the case of ENOSPC, if ext4_count_free_blocks()
2074 * is non-zero, a commit should free up blocks.
4e7ea81d 2075 */
cb530541 2076 if ((err == -ENOMEM) ||
6603120e
DM
2077 (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2078 if (progress)
2079 goto update_disksize;
cb530541 2080 return err;
6603120e 2081 }
cb530541
TT
2082 ext4_msg(sb, KERN_CRIT,
2083 "Delayed block allocation failed for "
2084 "inode %lu at logical offset %llu with"
2085 " max blocks %u with error %d",
2086 inode->i_ino,
2087 (unsigned long long)map->m_lblk,
2088 (unsigned)map->m_len, -err);
2089 ext4_msg(sb, KERN_CRIT,
2090 "This should not happen!! Data will "
2091 "be lost\n");
2092 if (err == -ENOSPC)
2093 ext4_print_free_blocks(inode);
2094 invalidate_dirty_pages:
2095 *give_up_on_write = true;
4e7ea81d
JK
2096 return err;
2097 }
6603120e 2098 progress = 1;
4e7ea81d
JK
2099 /*
2100 * Update buffer state, submit mapped pages, and get us new
2101 * extent to map
2102 */
2103 err = mpage_map_and_submit_buffers(mpd);
2104 if (err < 0)
6603120e 2105 goto update_disksize;
27d7c4ed 2106 } while (map->m_len);
4e7ea81d 2107
6603120e 2108update_disksize:
622cad13
TT
2109 /*
2110 * Update on-disk size after IO is submitted. Races with
2111 * truncate are avoided by checking i_size under i_data_sem.
2112 */
4e7ea81d 2113 disksize = ((loff_t)mpd->first_page) << PAGE_CACHE_SHIFT;
4e7ea81d
JK
2114 if (disksize > EXT4_I(inode)->i_disksize) {
2115 int err2;
622cad13
TT
2116 loff_t i_size;
2117
2118 down_write(&EXT4_I(inode)->i_data_sem);
2119 i_size = i_size_read(inode);
2120 if (disksize > i_size)
2121 disksize = i_size;
2122 if (disksize > EXT4_I(inode)->i_disksize)
2123 EXT4_I(inode)->i_disksize = disksize;
4e7ea81d 2124 err2 = ext4_mark_inode_dirty(handle, inode);
622cad13 2125 up_write(&EXT4_I(inode)->i_data_sem);
4e7ea81d
JK
2126 if (err2)
2127 ext4_error(inode->i_sb,
2128 "Failed to mark inode %lu dirty",
2129 inode->i_ino);
2130 if (!err)
2131 err = err2;
2132 }
2133 return err;
2134}
2135
fffb2739
JK
2136/*
2137 * Calculate the total number of credits to reserve for one writepages
20970ba6 2138 * iteration. This is called from ext4_writepages(). We map an extent of
70261f56 2139 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
fffb2739
JK
2140 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2141 * bpp - 1 blocks in bpp different extents.
2142 */
525f4ed8
MC
2143static int ext4_da_writepages_trans_blocks(struct inode *inode)
2144{
fffb2739 2145 int bpp = ext4_journal_blocks_per_page(inode);
525f4ed8 2146
fffb2739
JK
2147 return ext4_meta_trans_blocks(inode,
2148 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
525f4ed8 2149}
61628a3f 2150
8e48dcfb 2151/*
4e7ea81d
JK
2152 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2153 * and underlying extent to map
2154 *
2155 * @mpd - where to look for pages
2156 *
2157 * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2158 * IO immediately. When we find a page which isn't mapped we start accumulating
2159 * extent of buffers underlying these pages that needs mapping (formed by
2160 * either delayed or unwritten buffers). We also lock the pages containing
2161 * these buffers. The extent found is returned in @mpd structure (starting at
2162 * mpd->lblk with length mpd->len blocks).
2163 *
2164 * Note that this function can attach bios to one io_end structure which are
2165 * neither logically nor physically contiguous. Although it may seem as an
2166 * unnecessary complication, it is actually inevitable in blocksize < pagesize
2167 * case as we need to track IO to all buffers underlying a page in one io_end.
8e48dcfb 2168 */
4e7ea81d 2169static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
8e48dcfb 2170{
4e7ea81d
JK
2171 struct address_space *mapping = mpd->inode->i_mapping;
2172 struct pagevec pvec;
2173 unsigned int nr_pages;
aeac589a 2174 long left = mpd->wbc->nr_to_write;
4e7ea81d
JK
2175 pgoff_t index = mpd->first_page;
2176 pgoff_t end = mpd->last_page;
2177 int tag;
2178 int i, err = 0;
2179 int blkbits = mpd->inode->i_blkbits;
2180 ext4_lblk_t lblk;
2181 struct buffer_head *head;
8e48dcfb 2182
4e7ea81d 2183 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
5b41d924
ES
2184 tag = PAGECACHE_TAG_TOWRITE;
2185 else
2186 tag = PAGECACHE_TAG_DIRTY;
2187
4e7ea81d
JK
2188 pagevec_init(&pvec, 0);
2189 mpd->map.m_len = 0;
2190 mpd->next_page = index;
4f01b02c 2191 while (index <= end) {
5b41d924 2192 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
8e48dcfb
TT
2193 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2194 if (nr_pages == 0)
4e7ea81d 2195 goto out;
8e48dcfb
TT
2196
2197 for (i = 0; i < nr_pages; i++) {
2198 struct page *page = pvec.pages[i];
2199
2200 /*
2201 * At this point, the page may be truncated or
2202 * invalidated (changing page->mapping to NULL), or
2203 * even swizzled back from swapper_space to tmpfs file
2204 * mapping. However, page->index will not change
2205 * because we have a reference on the page.
2206 */
4f01b02c
TT
2207 if (page->index > end)
2208 goto out;
8e48dcfb 2209
aeac589a
ML
2210 /*
2211 * Accumulated enough dirty pages? This doesn't apply
2212 * to WB_SYNC_ALL mode. For integrity sync we have to
2213 * keep going because someone may be concurrently
2214 * dirtying pages, and we might have synced a lot of
2215 * newly appeared dirty pages, but have not synced all
2216 * of the old dirty pages.
2217 */
2218 if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2219 goto out;
2220
4e7ea81d
JK
2221 /* If we can't merge this page, we are done. */
2222 if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2223 goto out;
78aaced3 2224
8e48dcfb 2225 lock_page(page);
8e48dcfb 2226 /*
4e7ea81d
JK
2227 * If the page is no longer dirty, or its mapping no
2228 * longer corresponds to inode we are writing (which
2229 * means it has been truncated or invalidated), or the
2230 * page is already under writeback and we are not doing
2231 * a data integrity writeback, skip the page
8e48dcfb 2232 */
4f01b02c
TT
2233 if (!PageDirty(page) ||
2234 (PageWriteback(page) &&
4e7ea81d 2235 (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
4f01b02c 2236 unlikely(page->mapping != mapping)) {
8e48dcfb
TT
2237 unlock_page(page);
2238 continue;
2239 }
2240
7cb1a535 2241 wait_on_page_writeback(page);
8e48dcfb 2242 BUG_ON(PageWriteback(page));
8e48dcfb 2243
4e7ea81d 2244 if (mpd->map.m_len == 0)
8eb9e5ce 2245 mpd->first_page = page->index;
8eb9e5ce 2246 mpd->next_page = page->index + 1;
f8bec370 2247 /* Add all dirty buffers to mpd */
4e7ea81d
JK
2248 lblk = ((ext4_lblk_t)page->index) <<
2249 (PAGE_CACHE_SHIFT - blkbits);
f8bec370 2250 head = page_buffers(page);
5f1132b2
JK
2251 err = mpage_process_page_bufs(mpd, head, head, lblk);
2252 if (err <= 0)
4e7ea81d 2253 goto out;
5f1132b2 2254 err = 0;
aeac589a 2255 left--;
8e48dcfb
TT
2256 }
2257 pagevec_release(&pvec);
2258 cond_resched();
2259 }
4f01b02c 2260 return 0;
8eb9e5ce
TT
2261out:
2262 pagevec_release(&pvec);
4e7ea81d 2263 return err;
8e48dcfb
TT
2264}
2265
20970ba6
TT
2266static int __writepage(struct page *page, struct writeback_control *wbc,
2267 void *data)
2268{
2269 struct address_space *mapping = data;
2270 int ret = ext4_writepage(page, wbc);
2271 mapping_set_error(mapping, ret);
2272 return ret;
2273}
2274
2275static int ext4_writepages(struct address_space *mapping,
2276 struct writeback_control *wbc)
64769240 2277{
4e7ea81d
JK
2278 pgoff_t writeback_index = 0;
2279 long nr_to_write = wbc->nr_to_write;
22208ded 2280 int range_whole = 0;
4e7ea81d 2281 int cycled = 1;
61628a3f 2282 handle_t *handle = NULL;
df22291f 2283 struct mpage_da_data mpd;
5e745b04 2284 struct inode *inode = mapping->host;
6b523df4 2285 int needed_blocks, rsv_blocks = 0, ret = 0;
5e745b04 2286 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
4e7ea81d 2287 bool done;
1bce63d1 2288 struct blk_plug plug;
cb530541 2289 bool give_up_on_write = false;
61628a3f 2290
20970ba6 2291 trace_ext4_writepages(inode, wbc);
ba80b101 2292
61628a3f
MC
2293 /*
2294 * No pages to write? This is mainly a kludge to avoid starting
2295 * a transaction for special inodes like journal inode on last iput()
2296 * because that could violate lock ordering on umount
2297 */
a1d6cc56 2298 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
bbf023c7 2299 goto out_writepages;
2a21e37e 2300
20970ba6
TT
2301 if (ext4_should_journal_data(inode)) {
2302 struct blk_plug plug;
20970ba6
TT
2303
2304 blk_start_plug(&plug);
2305 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2306 blk_finish_plug(&plug);
bbf023c7 2307 goto out_writepages;
20970ba6
TT
2308 }
2309
2a21e37e
TT
2310 /*
2311 * If the filesystem has aborted, it is read-only, so return
2312 * right away instead of dumping stack traces later on that
2313 * will obscure the real source of the problem. We test
4ab2f15b 2314 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2a21e37e 2315 * the latter could be true if the filesystem is mounted
20970ba6 2316 * read-only, and in that case, ext4_writepages should
2a21e37e
TT
2317 * *never* be called, so if that ever happens, we would want
2318 * the stack trace.
2319 */
bbf023c7
ML
2320 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2321 ret = -EROFS;
2322 goto out_writepages;
2323 }
2a21e37e 2324
6b523df4
JK
2325 if (ext4_should_dioread_nolock(inode)) {
2326 /*
70261f56 2327 * We may need to convert up to one extent per block in
6b523df4
JK
2328 * the page and we may dirty the inode.
2329 */
2330 rsv_blocks = 1 + (PAGE_CACHE_SIZE >> inode->i_blkbits);
2331 }
2332
4e7ea81d
JK
2333 /*
2334 * If we have inline data and arrive here, it means that
2335 * we will soon create the block for the 1st page, so
2336 * we'd better clear the inline data here.
2337 */
2338 if (ext4_has_inline_data(inode)) {
2339 /* Just inode will be modified... */
2340 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2341 if (IS_ERR(handle)) {
2342 ret = PTR_ERR(handle);
2343 goto out_writepages;
2344 }
2345 BUG_ON(ext4_test_inode_state(inode,
2346 EXT4_STATE_MAY_INLINE_DATA));
2347 ext4_destroy_inline_data(handle, inode);
2348 ext4_journal_stop(handle);
2349 }
2350
22208ded
AK
2351 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2352 range_whole = 1;
61628a3f 2353
2acf2c26 2354 if (wbc->range_cyclic) {
4e7ea81d
JK
2355 writeback_index = mapping->writeback_index;
2356 if (writeback_index)
2acf2c26 2357 cycled = 0;
4e7ea81d
JK
2358 mpd.first_page = writeback_index;
2359 mpd.last_page = -1;
5b41d924 2360 } else {
4e7ea81d
JK
2361 mpd.first_page = wbc->range_start >> PAGE_CACHE_SHIFT;
2362 mpd.last_page = wbc->range_end >> PAGE_CACHE_SHIFT;
5b41d924 2363 }
a1d6cc56 2364
4e7ea81d
JK
2365 mpd.inode = inode;
2366 mpd.wbc = wbc;
2367 ext4_io_submit_init(&mpd.io_submit, wbc);
2acf2c26 2368retry:
6e6938b6 2369 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
4e7ea81d
JK
2370 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2371 done = false;
1bce63d1 2372 blk_start_plug(&plug);
4e7ea81d
JK
2373 while (!done && mpd.first_page <= mpd.last_page) {
2374 /* For each extent of pages we use new io_end */
2375 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2376 if (!mpd.io_submit.io_end) {
2377 ret = -ENOMEM;
2378 break;
2379 }
a1d6cc56
AK
2380
2381 /*
4e7ea81d
JK
2382 * We have two constraints: We find one extent to map and we
2383 * must always write out whole page (makes a difference when
2384 * blocksize < pagesize) so that we don't block on IO when we
2385 * try to write out the rest of the page. Journalled mode is
2386 * not supported by delalloc.
a1d6cc56
AK
2387 */
2388 BUG_ON(ext4_should_journal_data(inode));
525f4ed8 2389 needed_blocks = ext4_da_writepages_trans_blocks(inode);
a1d6cc56 2390
4e7ea81d 2391 /* start a new transaction */
6b523df4
JK
2392 handle = ext4_journal_start_with_reserve(inode,
2393 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
61628a3f
MC
2394 if (IS_ERR(handle)) {
2395 ret = PTR_ERR(handle);
1693918e 2396 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
fbe845dd 2397 "%ld pages, ino %lu; err %d", __func__,
a1d6cc56 2398 wbc->nr_to_write, inode->i_ino, ret);
4e7ea81d
JK
2399 /* Release allocated io_end */
2400 ext4_put_io_end(mpd.io_submit.io_end);
2401 break;
61628a3f 2402 }
f63e6005 2403
4e7ea81d
JK
2404 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2405 ret = mpage_prepare_extent_to_map(&mpd);
2406 if (!ret) {
2407 if (mpd.map.m_len)
cb530541
TT
2408 ret = mpage_map_and_submit_extent(handle, &mpd,
2409 &give_up_on_write);
4e7ea81d
JK
2410 else {
2411 /*
2412 * We scanned the whole range (or exhausted
2413 * nr_to_write), submitted what was mapped and
2414 * didn't find anything needing mapping. We are
2415 * done.
2416 */
2417 done = true;
2418 }
f63e6005 2419 }
61628a3f 2420 ext4_journal_stop(handle);
4e7ea81d
JK
2421 /* Submit prepared bio */
2422 ext4_io_submit(&mpd.io_submit);
2423 /* Unlock pages we didn't use */
cb530541 2424 mpage_release_unused_pages(&mpd, give_up_on_write);
4e7ea81d
JK
2425 /* Drop our io_end reference we got from init */
2426 ext4_put_io_end(mpd.io_submit.io_end);
2427
2428 if (ret == -ENOSPC && sbi->s_journal) {
2429 /*
2430 * Commit the transaction which would
22208ded
AK
2431 * free blocks released in the transaction
2432 * and try again
2433 */
df22291f 2434 jbd2_journal_force_commit_nested(sbi->s_journal);
22208ded 2435 ret = 0;
4e7ea81d
JK
2436 continue;
2437 }
2438 /* Fatal error - ENOMEM, EIO... */
2439 if (ret)
61628a3f 2440 break;
a1d6cc56 2441 }
1bce63d1 2442 blk_finish_plug(&plug);
9c12a831 2443 if (!ret && !cycled && wbc->nr_to_write > 0) {
2acf2c26 2444 cycled = 1;
4e7ea81d
JK
2445 mpd.last_page = writeback_index - 1;
2446 mpd.first_page = 0;
2acf2c26
AK
2447 goto retry;
2448 }
22208ded
AK
2449
2450 /* Update index */
22208ded
AK
2451 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2452 /*
4e7ea81d 2453 * Set the writeback_index so that range_cyclic
22208ded
AK
2454 * mode will write it back later
2455 */
4e7ea81d 2456 mapping->writeback_index = mpd.first_page;
a1d6cc56 2457
61628a3f 2458out_writepages:
20970ba6
TT
2459 trace_ext4_writepages_result(inode, wbc, ret,
2460 nr_to_write - wbc->nr_to_write);
61628a3f 2461 return ret;
64769240
AT
2462}
2463
79f0be8d
AK
2464static int ext4_nonda_switch(struct super_block *sb)
2465{
5c1ff336 2466 s64 free_clusters, dirty_clusters;
79f0be8d
AK
2467 struct ext4_sb_info *sbi = EXT4_SB(sb);
2468
2469 /*
2470 * switch to non delalloc mode if we are running low
2471 * on free block. The free block accounting via percpu
179f7ebf 2472 * counters can get slightly wrong with percpu_counter_batch getting
79f0be8d
AK
2473 * accumulated on each CPU without updating global counters
2474 * Delalloc need an accurate free block accounting. So switch
2475 * to non delalloc when we are near to error range.
2476 */
5c1ff336
EW
2477 free_clusters =
2478 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2479 dirty_clusters =
2480 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
00d4e736
TT
2481 /*
2482 * Start pushing delalloc when 1/2 of free blocks are dirty.
2483 */
5c1ff336 2484 if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
10ee27a0 2485 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
00d4e736 2486
5c1ff336
EW
2487 if (2 * free_clusters < 3 * dirty_clusters ||
2488 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
79f0be8d 2489 /*
c8afb446
ES
2490 * free block count is less than 150% of dirty blocks
2491 * or free blocks is less than watermark
79f0be8d
AK
2492 */
2493 return 1;
2494 }
2495 return 0;
2496}
2497
0ff8947f
ES
2498/* We always reserve for an inode update; the superblock could be there too */
2499static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2500{
2501 if (likely(EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
2502 EXT4_FEATURE_RO_COMPAT_LARGE_FILE)))
2503 return 1;
2504
2505 if (pos + len <= 0x7fffffffULL)
2506 return 1;
2507
2508 /* We might need to update the superblock to set LARGE_FILE */
2509 return 2;
2510}
2511
64769240 2512static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
de9a55b8
TT
2513 loff_t pos, unsigned len, unsigned flags,
2514 struct page **pagep, void **fsdata)
64769240 2515{
72b8ab9d 2516 int ret, retries = 0;
64769240
AT
2517 struct page *page;
2518 pgoff_t index;
64769240
AT
2519 struct inode *inode = mapping->host;
2520 handle_t *handle;
2521
2522 index = pos >> PAGE_CACHE_SHIFT;
79f0be8d
AK
2523
2524 if (ext4_nonda_switch(inode->i_sb)) {
2525 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2526 return ext4_write_begin(file, mapping, pos,
2527 len, flags, pagep, fsdata);
2528 }
2529 *fsdata = (void *)0;
9bffad1e 2530 trace_ext4_da_write_begin(inode, pos, len, flags);
9c3569b5
TM
2531
2532 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2533 ret = ext4_da_write_inline_data_begin(mapping, inode,
2534 pos, len, flags,
2535 pagep, fsdata);
2536 if (ret < 0)
47564bfb
TT
2537 return ret;
2538 if (ret == 1)
2539 return 0;
9c3569b5
TM
2540 }
2541
47564bfb
TT
2542 /*
2543 * grab_cache_page_write_begin() can take a long time if the
2544 * system is thrashing due to memory pressure, or if the page
2545 * is being written back. So grab it first before we start
2546 * the transaction handle. This also allows us to allocate
2547 * the page (if needed) without using GFP_NOFS.
2548 */
2549retry_grab:
2550 page = grab_cache_page_write_begin(mapping, index, flags);
2551 if (!page)
2552 return -ENOMEM;
2553 unlock_page(page);
2554
64769240
AT
2555 /*
2556 * With delayed allocation, we don't log the i_disksize update
2557 * if there is delayed block allocation. But we still need
2558 * to journalling the i_disksize update if writes to the end
2559 * of file which has an already mapped buffer.
2560 */
47564bfb 2561retry_journal:
0ff8947f
ES
2562 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2563 ext4_da_write_credits(inode, pos, len));
64769240 2564 if (IS_ERR(handle)) {
47564bfb
TT
2565 page_cache_release(page);
2566 return PTR_ERR(handle);
64769240
AT
2567 }
2568
47564bfb
TT
2569 lock_page(page);
2570 if (page->mapping != mapping) {
2571 /* The page got truncated from under us */
2572 unlock_page(page);
2573 page_cache_release(page);
d5a0d4f7 2574 ext4_journal_stop(handle);
47564bfb 2575 goto retry_grab;
d5a0d4f7 2576 }
47564bfb 2577 /* In case writeback began while the page was unlocked */
7afe5aa5 2578 wait_for_stable_page(page);
64769240 2579
6e1db88d 2580 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
64769240
AT
2581 if (ret < 0) {
2582 unlock_page(page);
2583 ext4_journal_stop(handle);
ae4d5372
AK
2584 /*
2585 * block_write_begin may have instantiated a few blocks
2586 * outside i_size. Trim these off again. Don't need
2587 * i_size_read because we hold i_mutex.
2588 */
2589 if (pos + len > inode->i_size)
b9a4207d 2590 ext4_truncate_failed_write(inode);
47564bfb
TT
2591
2592 if (ret == -ENOSPC &&
2593 ext4_should_retry_alloc(inode->i_sb, &retries))
2594 goto retry_journal;
2595
2596 page_cache_release(page);
2597 return ret;
64769240
AT
2598 }
2599
47564bfb 2600 *pagep = page;
64769240
AT
2601 return ret;
2602}
2603
632eaeab
MC
2604/*
2605 * Check if we should update i_disksize
2606 * when write to the end of file but not require block allocation
2607 */
2608static int ext4_da_should_update_i_disksize(struct page *page,
de9a55b8 2609 unsigned long offset)
632eaeab
MC
2610{
2611 struct buffer_head *bh;
2612 struct inode *inode = page->mapping->host;
2613 unsigned int idx;
2614 int i;
2615
2616 bh = page_buffers(page);
2617 idx = offset >> inode->i_blkbits;
2618
af5bc92d 2619 for (i = 0; i < idx; i++)
632eaeab
MC
2620 bh = bh->b_this_page;
2621
29fa89d0 2622 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
632eaeab
MC
2623 return 0;
2624 return 1;
2625}
2626
64769240 2627static int ext4_da_write_end(struct file *file,
de9a55b8
TT
2628 struct address_space *mapping,
2629 loff_t pos, unsigned len, unsigned copied,
2630 struct page *page, void *fsdata)
64769240
AT
2631{
2632 struct inode *inode = mapping->host;
2633 int ret = 0, ret2;
2634 handle_t *handle = ext4_journal_current_handle();
2635 loff_t new_i_size;
632eaeab 2636 unsigned long start, end;
79f0be8d
AK
2637 int write_mode = (int)(unsigned long)fsdata;
2638
74d553aa
TT
2639 if (write_mode == FALL_BACK_TO_NONDELALLOC)
2640 return ext4_write_end(file, mapping, pos,
2641 len, copied, page, fsdata);
632eaeab 2642
9bffad1e 2643 trace_ext4_da_write_end(inode, pos, len, copied);
632eaeab 2644 start = pos & (PAGE_CACHE_SIZE - 1);
af5bc92d 2645 end = start + copied - 1;
64769240
AT
2646
2647 /*
2648 * generic_write_end() will run mark_inode_dirty() if i_size
2649 * changes. So let's piggyback the i_disksize mark_inode_dirty
2650 * into that.
2651 */
64769240 2652 new_i_size = pos + copied;
ea51d132 2653 if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
9c3569b5
TM
2654 if (ext4_has_inline_data(inode) ||
2655 ext4_da_should_update_i_disksize(page, end)) {
ee124d27 2656 ext4_update_i_disksize(inode, new_i_size);
cf17fea6
AK
2657 /* We need to mark inode dirty even if
2658 * new_i_size is less that inode->i_size
2659 * bu greater than i_disksize.(hint delalloc)
2660 */
2661 ext4_mark_inode_dirty(handle, inode);
64769240 2662 }
632eaeab 2663 }
9c3569b5
TM
2664
2665 if (write_mode != CONVERT_INLINE_DATA &&
2666 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2667 ext4_has_inline_data(inode))
2668 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
2669 page);
2670 else
2671 ret2 = generic_write_end(file, mapping, pos, len, copied,
64769240 2672 page, fsdata);
9c3569b5 2673
64769240
AT
2674 copied = ret2;
2675 if (ret2 < 0)
2676 ret = ret2;
2677 ret2 = ext4_journal_stop(handle);
2678 if (!ret)
2679 ret = ret2;
2680
2681 return ret ? ret : copied;
2682}
2683
d47992f8
LC
2684static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
2685 unsigned int length)
64769240 2686{
64769240
AT
2687 /*
2688 * Drop reserved blocks
2689 */
2690 BUG_ON(!PageLocked(page));
2691 if (!page_has_buffers(page))
2692 goto out;
2693
ca99fdd2 2694 ext4_da_page_release_reservation(page, offset, length);
64769240
AT
2695
2696out:
d47992f8 2697 ext4_invalidatepage(page, offset, length);
64769240
AT
2698
2699 return;
2700}
2701
ccd2506b
TT
2702/*
2703 * Force all delayed allocation blocks to be allocated for a given inode.
2704 */
2705int ext4_alloc_da_blocks(struct inode *inode)
2706{
fb40ba0d
TT
2707 trace_ext4_alloc_da_blocks(inode);
2708
71d4f7d0 2709 if (!EXT4_I(inode)->i_reserved_data_blocks)
ccd2506b
TT
2710 return 0;
2711
2712 /*
2713 * We do something simple for now. The filemap_flush() will
2714 * also start triggering a write of the data blocks, which is
2715 * not strictly speaking necessary (and for users of
2716 * laptop_mode, not even desirable). However, to do otherwise
2717 * would require replicating code paths in:
de9a55b8 2718 *
20970ba6 2719 * ext4_writepages() ->
ccd2506b
TT
2720 * write_cache_pages() ---> (via passed in callback function)
2721 * __mpage_da_writepage() -->
2722 * mpage_add_bh_to_extent()
2723 * mpage_da_map_blocks()
2724 *
2725 * The problem is that write_cache_pages(), located in
2726 * mm/page-writeback.c, marks pages clean in preparation for
2727 * doing I/O, which is not desirable if we're not planning on
2728 * doing I/O at all.
2729 *
2730 * We could call write_cache_pages(), and then redirty all of
380cf090 2731 * the pages by calling redirty_page_for_writepage() but that
ccd2506b
TT
2732 * would be ugly in the extreme. So instead we would need to
2733 * replicate parts of the code in the above functions,
25985edc 2734 * simplifying them because we wouldn't actually intend to
ccd2506b
TT
2735 * write out the pages, but rather only collect contiguous
2736 * logical block extents, call the multi-block allocator, and
2737 * then update the buffer heads with the block allocations.
de9a55b8 2738 *
ccd2506b
TT
2739 * For now, though, we'll cheat by calling filemap_flush(),
2740 * which will map the blocks, and start the I/O, but not
2741 * actually wait for the I/O to complete.
2742 */
2743 return filemap_flush(inode->i_mapping);
2744}
64769240 2745
ac27a0ec
DK
2746/*
2747 * bmap() is special. It gets used by applications such as lilo and by
2748 * the swapper to find the on-disk block of a specific piece of data.
2749 *
2750 * Naturally, this is dangerous if the block concerned is still in the
617ba13b 2751 * journal. If somebody makes a swapfile on an ext4 data-journaling
ac27a0ec
DK
2752 * filesystem and enables swap, then they may get a nasty shock when the
2753 * data getting swapped to that swapfile suddenly gets overwritten by
2754 * the original zero's written out previously to the journal and
2755 * awaiting writeback in the kernel's buffer cache.
2756 *
2757 * So, if we see any bmap calls here on a modified, data-journaled file,
2758 * take extra steps to flush any blocks which might be in the cache.
2759 */
617ba13b 2760static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
ac27a0ec
DK
2761{
2762 struct inode *inode = mapping->host;
2763 journal_t *journal;
2764 int err;
2765
46c7f254
TM
2766 /*
2767 * We can get here for an inline file via the FIBMAP ioctl
2768 */
2769 if (ext4_has_inline_data(inode))
2770 return 0;
2771
64769240
AT
2772 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2773 test_opt(inode->i_sb, DELALLOC)) {
2774 /*
2775 * With delalloc we want to sync the file
2776 * so that we can make sure we allocate
2777 * blocks for file
2778 */
2779 filemap_write_and_wait(mapping);
2780 }
2781
19f5fb7a
TT
2782 if (EXT4_JOURNAL(inode) &&
2783 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
ac27a0ec
DK
2784 /*
2785 * This is a REALLY heavyweight approach, but the use of
2786 * bmap on dirty files is expected to be extremely rare:
2787 * only if we run lilo or swapon on a freshly made file
2788 * do we expect this to happen.
2789 *
2790 * (bmap requires CAP_SYS_RAWIO so this does not
2791 * represent an unprivileged user DOS attack --- we'd be
2792 * in trouble if mortal users could trigger this path at
2793 * will.)
2794 *
617ba13b 2795 * NB. EXT4_STATE_JDATA is not set on files other than
ac27a0ec
DK
2796 * regular files. If somebody wants to bmap a directory
2797 * or symlink and gets confused because the buffer
2798 * hasn't yet been flushed to disk, they deserve
2799 * everything they get.
2800 */
2801
19f5fb7a 2802 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
617ba13b 2803 journal = EXT4_JOURNAL(inode);
dab291af
MC
2804 jbd2_journal_lock_updates(journal);
2805 err = jbd2_journal_flush(journal);
2806 jbd2_journal_unlock_updates(journal);
ac27a0ec
DK
2807
2808 if (err)
2809 return 0;
2810 }
2811
af5bc92d 2812 return generic_block_bmap(mapping, block, ext4_get_block);
ac27a0ec
DK
2813}
2814
617ba13b 2815static int ext4_readpage(struct file *file, struct page *page)
ac27a0ec 2816{
46c7f254
TM
2817 int ret = -EAGAIN;
2818 struct inode *inode = page->mapping->host;
2819
0562e0ba 2820 trace_ext4_readpage(page);
46c7f254
TM
2821
2822 if (ext4_has_inline_data(inode))
2823 ret = ext4_readpage_inline(inode, page);
2824
2825 if (ret == -EAGAIN)
2826 return mpage_readpage(page, ext4_get_block);
2827
2828 return ret;
ac27a0ec
DK
2829}
2830
2831static int
617ba13b 2832ext4_readpages(struct file *file, struct address_space *mapping,
ac27a0ec
DK
2833 struct list_head *pages, unsigned nr_pages)
2834{
46c7f254
TM
2835 struct inode *inode = mapping->host;
2836
2837 /* If the file has inline data, no need to do readpages. */
2838 if (ext4_has_inline_data(inode))
2839 return 0;
2840
617ba13b 2841 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
ac27a0ec
DK
2842}
2843
d47992f8
LC
2844static void ext4_invalidatepage(struct page *page, unsigned int offset,
2845 unsigned int length)
ac27a0ec 2846{
ca99fdd2 2847 trace_ext4_invalidatepage(page, offset, length);
0562e0ba 2848
4520fb3c
JK
2849 /* No journalling happens on data buffers when this function is used */
2850 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
2851
ca99fdd2 2852 block_invalidatepage(page, offset, length);
4520fb3c
JK
2853}
2854
53e87268 2855static int __ext4_journalled_invalidatepage(struct page *page,
ca99fdd2
LC
2856 unsigned int offset,
2857 unsigned int length)
4520fb3c
JK
2858{
2859 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2860
ca99fdd2 2861 trace_ext4_journalled_invalidatepage(page, offset, length);
4520fb3c 2862
ac27a0ec
DK
2863 /*
2864 * If it's a full truncate we just forget about the pending dirtying
2865 */
ca99fdd2 2866 if (offset == 0 && length == PAGE_CACHE_SIZE)
ac27a0ec
DK
2867 ClearPageChecked(page);
2868
ca99fdd2 2869 return jbd2_journal_invalidatepage(journal, page, offset, length);
53e87268
JK
2870}
2871
2872/* Wrapper for aops... */
2873static void ext4_journalled_invalidatepage(struct page *page,
d47992f8
LC
2874 unsigned int offset,
2875 unsigned int length)
53e87268 2876{
ca99fdd2 2877 WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
ac27a0ec
DK
2878}
2879
617ba13b 2880static int ext4_releasepage(struct page *page, gfp_t wait)
ac27a0ec 2881{
617ba13b 2882 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
ac27a0ec 2883
0562e0ba
JZ
2884 trace_ext4_releasepage(page);
2885
e1c36595
JK
2886 /* Page has dirty journalled data -> cannot release */
2887 if (PageChecked(page))
ac27a0ec 2888 return 0;
0390131b
FM
2889 if (journal)
2890 return jbd2_journal_try_to_free_buffers(journal, page, wait);
2891 else
2892 return try_to_free_buffers(page);
ac27a0ec
DK
2893}
2894
2ed88685
TT
2895/*
2896 * ext4_get_block used when preparing for a DIO write or buffer write.
2897 * We allocate an uinitialized extent if blocks haven't been allocated.
2898 * The extent will be converted to initialized after the IO is complete.
2899 */
f19d5870 2900int ext4_get_block_write(struct inode *inode, sector_t iblock,
4c0425ff
MC
2901 struct buffer_head *bh_result, int create)
2902{
c7064ef1 2903 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
8d5d02e6 2904 inode->i_ino, create);
2ed88685
TT
2905 return _ext4_get_block(inode, iblock, bh_result,
2906 EXT4_GET_BLOCKS_IO_CREATE_EXT);
4c0425ff
MC
2907}
2908
729f52c6 2909static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
8b0f165f 2910 struct buffer_head *bh_result, int create)
729f52c6 2911{
8b0f165f
AP
2912 ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
2913 inode->i_ino, create);
2914 return _ext4_get_block(inode, iblock, bh_result,
2915 EXT4_GET_BLOCKS_NO_LOCK);
729f52c6
ZL
2916}
2917
4c0425ff 2918static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
7b7a8665 2919 ssize_t size, void *private)
4c0425ff
MC
2920{
2921 ext4_io_end_t *io_end = iocb->private;
4c0425ff 2922
97a851ed 2923 /* if not async direct IO just return */
7b7a8665 2924 if (!io_end)
97a851ed 2925 return;
4b70df18 2926
88635ca2 2927 ext_debug("ext4_end_io_dio(): io_end 0x%p "
ace36ad4 2928 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
8d5d02e6
MC
2929 iocb->private, io_end->inode->i_ino, iocb, offset,
2930 size);
8d5d02e6 2931
b5a7e970 2932 iocb->private = NULL;
4c0425ff
MC
2933 io_end->offset = offset;
2934 io_end->size = size;
7b7a8665 2935 ext4_put_io_end(io_end);
4c0425ff 2936}
c7064ef1 2937
4c0425ff
MC
2938/*
2939 * For ext4 extent files, ext4 will do direct-io write to holes,
2940 * preallocated extents, and those write extend the file, no need to
2941 * fall back to buffered IO.
2942 *
556615dc 2943 * For holes, we fallocate those blocks, mark them as unwritten
69c499d1 2944 * If those blocks were preallocated, we mark sure they are split, but
556615dc 2945 * still keep the range to write as unwritten.
4c0425ff 2946 *
69c499d1 2947 * The unwritten extents will be converted to written when DIO is completed.
8d5d02e6 2948 * For async direct IO, since the IO may still pending when return, we
25985edc 2949 * set up an end_io call back function, which will do the conversion
8d5d02e6 2950 * when async direct IO completed.
4c0425ff
MC
2951 *
2952 * If the O_DIRECT write will extend the file then add this inode to the
2953 * orphan list. So recovery will truncate it back to the original size
2954 * if the machine crashes during the write.
2955 *
2956 */
2957static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
16b1f05d 2958 struct iov_iter *iter, loff_t offset)
4c0425ff
MC
2959{
2960 struct file *file = iocb->ki_filp;
2961 struct inode *inode = file->f_mapping->host;
2962 ssize_t ret;
a6cbcd4a 2963 size_t count = iov_iter_count(iter);
69c499d1
TT
2964 int overwrite = 0;
2965 get_block_t *get_block_func = NULL;
2966 int dio_flags = 0;
4c0425ff 2967 loff_t final_size = offset + count;
97a851ed 2968 ext4_io_end_t *io_end = NULL;
729f52c6 2969
69c499d1
TT
2970 /* Use the old path for reads and writes beyond i_size. */
2971 if (rw != WRITE || final_size > inode->i_size)
16b1f05d 2972 return ext4_ind_direct_IO(rw, iocb, iter, offset);
4bd809db 2973
69c499d1 2974 BUG_ON(iocb->private == NULL);
4bd809db 2975
e8340395
JK
2976 /*
2977 * Make all waiters for direct IO properly wait also for extent
2978 * conversion. This also disallows race between truncate() and
2979 * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
2980 */
2981 if (rw == WRITE)
2982 atomic_inc(&inode->i_dio_count);
2983
69c499d1
TT
2984 /* If we do a overwrite dio, i_mutex locking can be released */
2985 overwrite = *((int *)iocb->private);
4bd809db 2986
69c499d1 2987 if (overwrite) {
69c499d1
TT
2988 down_read(&EXT4_I(inode)->i_data_sem);
2989 mutex_unlock(&inode->i_mutex);
2990 }
8d5d02e6 2991
69c499d1
TT
2992 /*
2993 * We could direct write to holes and fallocate.
2994 *
2995 * Allocated blocks to fill the hole are marked as
556615dc 2996 * unwritten to prevent parallel buffered read to expose
69c499d1
TT
2997 * the stale data before DIO complete the data IO.
2998 *
2999 * As to previously fallocated extents, ext4 get_block will
3000 * just simply mark the buffer mapped but still keep the
556615dc 3001 * extents unwritten.
69c499d1
TT
3002 *
3003 * For non AIO case, we will convert those unwritten extents
3004 * to written after return back from blockdev_direct_IO.
3005 *
3006 * For async DIO, the conversion needs to be deferred when the
3007 * IO is completed. The ext4 end_io callback function will be
3008 * called to take care of the conversion work. Here for async
3009 * case, we allocate an io_end structure to hook to the iocb.
3010 */
3011 iocb->private = NULL;
3012 ext4_inode_aio_set(inode, NULL);
3013 if (!is_sync_kiocb(iocb)) {
97a851ed 3014 io_end = ext4_init_io_end(inode, GFP_NOFS);
69c499d1
TT
3015 if (!io_end) {
3016 ret = -ENOMEM;
3017 goto retake_lock;
8b0f165f 3018 }
97a851ed
JK
3019 /*
3020 * Grab reference for DIO. Will be dropped in ext4_end_io_dio()
3021 */
3022 iocb->private = ext4_get_io_end(io_end);
8d5d02e6 3023 /*
69c499d1
TT
3024 * we save the io structure for current async direct
3025 * IO, so that later ext4_map_blocks() could flag the
3026 * io structure whether there is a unwritten extents
3027 * needs to be converted when IO is completed.
8d5d02e6 3028 */
69c499d1
TT
3029 ext4_inode_aio_set(inode, io_end);
3030 }
4bd809db 3031
69c499d1
TT
3032 if (overwrite) {
3033 get_block_func = ext4_get_block_write_nolock;
3034 } else {
3035 get_block_func = ext4_get_block_write;
3036 dio_flags = DIO_LOCKING;
3037 }
3038 ret = __blockdev_direct_IO(rw, iocb, inode,
31b14039
AV
3039 inode->i_sb->s_bdev, iter,
3040 offset,
69c499d1
TT
3041 get_block_func,
3042 ext4_end_io_dio,
3043 NULL,
3044 dio_flags);
3045
69c499d1 3046 /*
97a851ed
JK
3047 * Put our reference to io_end. This can free the io_end structure e.g.
3048 * in sync IO case or in case of error. It can even perform extent
3049 * conversion if all bios we submitted finished before we got here.
3050 * Note that in that case iocb->private can be already set to NULL
3051 * here.
69c499d1 3052 */
97a851ed
JK
3053 if (io_end) {
3054 ext4_inode_aio_set(inode, NULL);
3055 ext4_put_io_end(io_end);
3056 /*
3057 * When no IO was submitted ext4_end_io_dio() was not
3058 * called so we have to put iocb's reference.
3059 */
3060 if (ret <= 0 && ret != -EIOCBQUEUED && iocb->private) {
3061 WARN_ON(iocb->private != io_end);
3062 WARN_ON(io_end->flag & EXT4_IO_END_UNWRITTEN);
97a851ed
JK
3063 ext4_put_io_end(io_end);
3064 iocb->private = NULL;
3065 }
3066 }
3067 if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
69c499d1
TT
3068 EXT4_STATE_DIO_UNWRITTEN)) {
3069 int err;
3070 /*
3071 * for non AIO case, since the IO is already
3072 * completed, we could do the conversion right here
3073 */
6b523df4 3074 err = ext4_convert_unwritten_extents(NULL, inode,
69c499d1
TT
3075 offset, ret);
3076 if (err < 0)
3077 ret = err;
3078 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3079 }
4bd809db 3080
69c499d1 3081retake_lock:
e8340395
JK
3082 if (rw == WRITE)
3083 inode_dio_done(inode);
69c499d1
TT
3084 /* take i_mutex locking again if we do a ovewrite dio */
3085 if (overwrite) {
69c499d1
TT
3086 up_read(&EXT4_I(inode)->i_data_sem);
3087 mutex_lock(&inode->i_mutex);
4c0425ff 3088 }
8d5d02e6 3089
69c499d1 3090 return ret;
4c0425ff
MC
3091}
3092
3093static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
d8d3d94b 3094 struct iov_iter *iter, loff_t offset)
4c0425ff
MC
3095{
3096 struct file *file = iocb->ki_filp;
3097 struct inode *inode = file->f_mapping->host;
a6cbcd4a 3098 size_t count = iov_iter_count(iter);
0562e0ba 3099 ssize_t ret;
4c0425ff 3100
84ebd795
TT
3101 /*
3102 * If we are doing data journalling we don't support O_DIRECT
3103 */
3104 if (ext4_should_journal_data(inode))
3105 return 0;
3106
46c7f254
TM
3107 /* Let buffer I/O handle the inline data case. */
3108 if (ext4_has_inline_data(inode))
3109 return 0;
3110
a6cbcd4a 3111 trace_ext4_direct_IO_enter(inode, offset, count, rw);
12e9b892 3112 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
16b1f05d 3113 ret = ext4_ext_direct_IO(rw, iocb, iter, offset);
0562e0ba 3114 else
16b1f05d 3115 ret = ext4_ind_direct_IO(rw, iocb, iter, offset);
a6cbcd4a 3116 trace_ext4_direct_IO_exit(inode, offset, count, rw, ret);
0562e0ba 3117 return ret;
4c0425ff
MC
3118}
3119
ac27a0ec 3120/*
617ba13b 3121 * Pages can be marked dirty completely asynchronously from ext4's journalling
ac27a0ec
DK
3122 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3123 * much here because ->set_page_dirty is called under VFS locks. The page is
3124 * not necessarily locked.
3125 *
3126 * We cannot just dirty the page and leave attached buffers clean, because the
3127 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3128 * or jbddirty because all the journalling code will explode.
3129 *
3130 * So what we do is to mark the page "pending dirty" and next time writepage
3131 * is called, propagate that into the buffers appropriately.
3132 */
617ba13b 3133static int ext4_journalled_set_page_dirty(struct page *page)
ac27a0ec
DK
3134{
3135 SetPageChecked(page);
3136 return __set_page_dirty_nobuffers(page);
3137}
3138
74d553aa 3139static const struct address_space_operations ext4_aops = {
8ab22b9a
HH
3140 .readpage = ext4_readpage,
3141 .readpages = ext4_readpages,
43ce1d23 3142 .writepage = ext4_writepage,
20970ba6 3143 .writepages = ext4_writepages,
8ab22b9a 3144 .write_begin = ext4_write_begin,
74d553aa 3145 .write_end = ext4_write_end,
8ab22b9a
HH
3146 .bmap = ext4_bmap,
3147 .invalidatepage = ext4_invalidatepage,
3148 .releasepage = ext4_releasepage,
3149 .direct_IO = ext4_direct_IO,
3150 .migratepage = buffer_migrate_page,
3151 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3152 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
3153};
3154
617ba13b 3155static const struct address_space_operations ext4_journalled_aops = {
8ab22b9a
HH
3156 .readpage = ext4_readpage,
3157 .readpages = ext4_readpages,
43ce1d23 3158 .writepage = ext4_writepage,
20970ba6 3159 .writepages = ext4_writepages,
8ab22b9a
HH
3160 .write_begin = ext4_write_begin,
3161 .write_end = ext4_journalled_write_end,
3162 .set_page_dirty = ext4_journalled_set_page_dirty,
3163 .bmap = ext4_bmap,
4520fb3c 3164 .invalidatepage = ext4_journalled_invalidatepage,
8ab22b9a 3165 .releasepage = ext4_releasepage,
84ebd795 3166 .direct_IO = ext4_direct_IO,
8ab22b9a 3167 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3168 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
3169};
3170
64769240 3171static const struct address_space_operations ext4_da_aops = {
8ab22b9a
HH
3172 .readpage = ext4_readpage,
3173 .readpages = ext4_readpages,
43ce1d23 3174 .writepage = ext4_writepage,
20970ba6 3175 .writepages = ext4_writepages,
8ab22b9a
HH
3176 .write_begin = ext4_da_write_begin,
3177 .write_end = ext4_da_write_end,
3178 .bmap = ext4_bmap,
3179 .invalidatepage = ext4_da_invalidatepage,
3180 .releasepage = ext4_releasepage,
3181 .direct_IO = ext4_direct_IO,
3182 .migratepage = buffer_migrate_page,
3183 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3184 .error_remove_page = generic_error_remove_page,
64769240
AT
3185};
3186
617ba13b 3187void ext4_set_aops(struct inode *inode)
ac27a0ec 3188{
3d2b1582
LC
3189 switch (ext4_inode_journal_mode(inode)) {
3190 case EXT4_INODE_ORDERED_DATA_MODE:
74d553aa 3191 ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3d2b1582
LC
3192 break;
3193 case EXT4_INODE_WRITEBACK_DATA_MODE:
74d553aa 3194 ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3d2b1582
LC
3195 break;
3196 case EXT4_INODE_JOURNAL_DATA_MODE:
617ba13b 3197 inode->i_mapping->a_ops = &ext4_journalled_aops;
74d553aa 3198 return;
3d2b1582
LC
3199 default:
3200 BUG();
3201 }
74d553aa
TT
3202 if (test_opt(inode->i_sb, DELALLOC))
3203 inode->i_mapping->a_ops = &ext4_da_aops;
3204 else
3205 inode->i_mapping->a_ops = &ext4_aops;
ac27a0ec
DK
3206}
3207
d863dc36
LC
3208/*
3209 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3210 * starting from file offset 'from'. The range to be zero'd must
3211 * be contained with in one block. If the specified range exceeds
3212 * the end of the block it will be shortened to end of the block
3213 * that cooresponds to 'from'
3214 */
94350ab5 3215static int ext4_block_zero_page_range(handle_t *handle,
d863dc36
LC
3216 struct address_space *mapping, loff_t from, loff_t length)
3217{
3218 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3219 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3220 unsigned blocksize, max, pos;
3221 ext4_lblk_t iblock;
3222 struct inode *inode = mapping->host;
3223 struct buffer_head *bh;
3224 struct page *page;
3225 int err = 0;
3226
3227 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3228 mapping_gfp_mask(mapping) & ~__GFP_FS);
3229 if (!page)
3230 return -ENOMEM;
3231
3232 blocksize = inode->i_sb->s_blocksize;
3233 max = blocksize - (offset & (blocksize - 1));
3234
3235 /*
3236 * correct length if it does not fall between
3237 * 'from' and the end of the block
3238 */
3239 if (length > max || length < 0)
3240 length = max;
3241
3242 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3243
3244 if (!page_has_buffers(page))
3245 create_empty_buffers(page, blocksize, 0);
3246
3247 /* Find the buffer that contains "offset" */
3248 bh = page_buffers(page);
3249 pos = blocksize;
3250 while (offset >= pos) {
3251 bh = bh->b_this_page;
3252 iblock++;
3253 pos += blocksize;
3254 }
d863dc36
LC
3255 if (buffer_freed(bh)) {
3256 BUFFER_TRACE(bh, "freed: skip");
3257 goto unlock;
3258 }
d863dc36
LC
3259 if (!buffer_mapped(bh)) {
3260 BUFFER_TRACE(bh, "unmapped");
3261 ext4_get_block(inode, iblock, bh, 0);
3262 /* unmapped? It's a hole - nothing to do */
3263 if (!buffer_mapped(bh)) {
3264 BUFFER_TRACE(bh, "still unmapped");
3265 goto unlock;
3266 }
3267 }
3268
3269 /* Ok, it's mapped. Make sure it's up-to-date */
3270 if (PageUptodate(page))
3271 set_buffer_uptodate(bh);
3272
3273 if (!buffer_uptodate(bh)) {
3274 err = -EIO;
3275 ll_rw_block(READ, 1, &bh);
3276 wait_on_buffer(bh);
3277 /* Uhhuh. Read error. Complain and punt. */
3278 if (!buffer_uptodate(bh))
3279 goto unlock;
3280 }
d863dc36
LC
3281 if (ext4_should_journal_data(inode)) {
3282 BUFFER_TRACE(bh, "get write access");
3283 err = ext4_journal_get_write_access(handle, bh);
3284 if (err)
3285 goto unlock;
3286 }
d863dc36 3287 zero_user(page, offset, length);
d863dc36
LC
3288 BUFFER_TRACE(bh, "zeroed end of block");
3289
d863dc36
LC
3290 if (ext4_should_journal_data(inode)) {
3291 err = ext4_handle_dirty_metadata(handle, inode, bh);
0713ed0c 3292 } else {
353eefd3 3293 err = 0;
d863dc36 3294 mark_buffer_dirty(bh);
0713ed0c
LC
3295 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE))
3296 err = ext4_jbd2_file_inode(handle, inode);
3297 }
d863dc36
LC
3298
3299unlock:
3300 unlock_page(page);
3301 page_cache_release(page);
3302 return err;
3303}
3304
94350ab5
MW
3305/*
3306 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3307 * up to the end of the block which corresponds to `from'.
3308 * This required during truncate. We need to physically zero the tail end
3309 * of that block so it doesn't yield old data if the file is later grown.
3310 */
c197855e 3311static int ext4_block_truncate_page(handle_t *handle,
94350ab5
MW
3312 struct address_space *mapping, loff_t from)
3313{
3314 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3315 unsigned length;
3316 unsigned blocksize;
3317 struct inode *inode = mapping->host;
3318
3319 blocksize = inode->i_sb->s_blocksize;
3320 length = blocksize - (offset & (blocksize - 1));
3321
3322 return ext4_block_zero_page_range(handle, mapping, from, length);
3323}
3324
a87dd18c
LC
3325int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3326 loff_t lstart, loff_t length)
3327{
3328 struct super_block *sb = inode->i_sb;
3329 struct address_space *mapping = inode->i_mapping;
e1be3a92 3330 unsigned partial_start, partial_end;
a87dd18c
LC
3331 ext4_fsblk_t start, end;
3332 loff_t byte_end = (lstart + length - 1);
3333 int err = 0;
3334
e1be3a92
LC
3335 partial_start = lstart & (sb->s_blocksize - 1);
3336 partial_end = byte_end & (sb->s_blocksize - 1);
3337
a87dd18c
LC
3338 start = lstart >> sb->s_blocksize_bits;
3339 end = byte_end >> sb->s_blocksize_bits;
3340
3341 /* Handle partial zero within the single block */
e1be3a92
LC
3342 if (start == end &&
3343 (partial_start || (partial_end != sb->s_blocksize - 1))) {
a87dd18c
LC
3344 err = ext4_block_zero_page_range(handle, mapping,
3345 lstart, length);
3346 return err;
3347 }
3348 /* Handle partial zero out on the start of the range */
e1be3a92 3349 if (partial_start) {
a87dd18c
LC
3350 err = ext4_block_zero_page_range(handle, mapping,
3351 lstart, sb->s_blocksize);
3352 if (err)
3353 return err;
3354 }
3355 /* Handle partial zero out on the end of the range */
e1be3a92 3356 if (partial_end != sb->s_blocksize - 1)
a87dd18c 3357 err = ext4_block_zero_page_range(handle, mapping,
e1be3a92
LC
3358 byte_end - partial_end,
3359 partial_end + 1);
a87dd18c
LC
3360 return err;
3361}
3362
91ef4caf
DG
3363int ext4_can_truncate(struct inode *inode)
3364{
91ef4caf
DG
3365 if (S_ISREG(inode->i_mode))
3366 return 1;
3367 if (S_ISDIR(inode->i_mode))
3368 return 1;
3369 if (S_ISLNK(inode->i_mode))
3370 return !ext4_inode_is_fast_symlink(inode);
3371 return 0;
3372}
3373
a4bb6b64
AH
3374/*
3375 * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3376 * associated with the given offset and length
3377 *
3378 * @inode: File inode
3379 * @offset: The offset where the hole will begin
3380 * @len: The length of the hole
3381 *
4907cb7b 3382 * Returns: 0 on success or negative on failure
a4bb6b64
AH
3383 */
3384
aeb2817a 3385int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
a4bb6b64 3386{
26a4c0c6
TT
3387 struct super_block *sb = inode->i_sb;
3388 ext4_lblk_t first_block, stop_block;
3389 struct address_space *mapping = inode->i_mapping;
a87dd18c 3390 loff_t first_block_offset, last_block_offset;
26a4c0c6
TT
3391 handle_t *handle;
3392 unsigned int credits;
3393 int ret = 0;
3394
a4bb6b64 3395 if (!S_ISREG(inode->i_mode))
73355192 3396 return -EOPNOTSUPP;
a4bb6b64 3397
b8a86845 3398 trace_ext4_punch_hole(inode, offset, length, 0);
aaddea81 3399
26a4c0c6
TT
3400 /*
3401 * Write out all dirty pages to avoid race conditions
3402 * Then release them.
3403 */
3404 if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3405 ret = filemap_write_and_wait_range(mapping, offset,
3406 offset + length - 1);
3407 if (ret)
3408 return ret;
3409 }
3410
3411 mutex_lock(&inode->i_mutex);
9ef06cec 3412
26a4c0c6
TT
3413 /* No need to punch hole beyond i_size */
3414 if (offset >= inode->i_size)
3415 goto out_mutex;
3416
3417 /*
3418 * If the hole extends beyond i_size, set the hole
3419 * to end after the page that contains i_size
3420 */
3421 if (offset + length > inode->i_size) {
3422 length = inode->i_size +
3423 PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
3424 offset;
3425 }
3426
a361293f
JK
3427 if (offset & (sb->s_blocksize - 1) ||
3428 (offset + length) & (sb->s_blocksize - 1)) {
3429 /*
3430 * Attach jinode to inode for jbd2 if we do any zeroing of
3431 * partial block
3432 */
3433 ret = ext4_inode_attach_jinode(inode);
3434 if (ret < 0)
3435 goto out_mutex;
3436
3437 }
3438
a87dd18c
LC
3439 first_block_offset = round_up(offset, sb->s_blocksize);
3440 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
26a4c0c6 3441
a87dd18c
LC
3442 /* Now release the pages and zero block aligned part of pages*/
3443 if (last_block_offset > first_block_offset)
3444 truncate_pagecache_range(inode, first_block_offset,
3445 last_block_offset);
26a4c0c6
TT
3446
3447 /* Wait all existing dio workers, newcomers will block on i_mutex */
3448 ext4_inode_block_unlocked_dio(inode);
26a4c0c6
TT
3449 inode_dio_wait(inode);
3450
3451 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3452 credits = ext4_writepage_trans_blocks(inode);
3453 else
3454 credits = ext4_blocks_for_truncate(inode);
3455 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3456 if (IS_ERR(handle)) {
3457 ret = PTR_ERR(handle);
3458 ext4_std_error(sb, ret);
3459 goto out_dio;
3460 }
3461
a87dd18c
LC
3462 ret = ext4_zero_partial_blocks(handle, inode, offset,
3463 length);
3464 if (ret)
3465 goto out_stop;
26a4c0c6
TT
3466
3467 first_block = (offset + sb->s_blocksize - 1) >>
3468 EXT4_BLOCK_SIZE_BITS(sb);
3469 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
3470
3471 /* If there are no blocks to remove, return now */
3472 if (first_block >= stop_block)
3473 goto out_stop;
3474
3475 down_write(&EXT4_I(inode)->i_data_sem);
3476 ext4_discard_preallocations(inode);
3477
3478 ret = ext4_es_remove_extent(inode, first_block,
3479 stop_block - first_block);
3480 if (ret) {
3481 up_write(&EXT4_I(inode)->i_data_sem);
3482 goto out_stop;
3483 }
3484
3485 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3486 ret = ext4_ext_remove_space(inode, first_block,
3487 stop_block - 1);
3488 else
4f579ae7 3489 ret = ext4_ind_remove_space(handle, inode, first_block,
26a4c0c6
TT
3490 stop_block);
3491
819c4920 3492 up_write(&EXT4_I(inode)->i_data_sem);
26a4c0c6
TT
3493 if (IS_SYNC(inode))
3494 ext4_handle_sync(handle);
e251f9bc
MP
3495
3496 /* Now release the pages again to reduce race window */
3497 if (last_block_offset > first_block_offset)
3498 truncate_pagecache_range(inode, first_block_offset,
3499 last_block_offset);
3500
26a4c0c6
TT
3501 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3502 ext4_mark_inode_dirty(handle, inode);
3503out_stop:
3504 ext4_journal_stop(handle);
3505out_dio:
3506 ext4_inode_resume_unlocked_dio(inode);
3507out_mutex:
3508 mutex_unlock(&inode->i_mutex);
3509 return ret;
a4bb6b64
AH
3510}
3511
a361293f
JK
3512int ext4_inode_attach_jinode(struct inode *inode)
3513{
3514 struct ext4_inode_info *ei = EXT4_I(inode);
3515 struct jbd2_inode *jinode;
3516
3517 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
3518 return 0;
3519
3520 jinode = jbd2_alloc_inode(GFP_KERNEL);
3521 spin_lock(&inode->i_lock);
3522 if (!ei->jinode) {
3523 if (!jinode) {
3524 spin_unlock(&inode->i_lock);
3525 return -ENOMEM;
3526 }
3527 ei->jinode = jinode;
3528 jbd2_journal_init_jbd_inode(ei->jinode, inode);
3529 jinode = NULL;
3530 }
3531 spin_unlock(&inode->i_lock);
3532 if (unlikely(jinode != NULL))
3533 jbd2_free_inode(jinode);
3534 return 0;
3535}
3536
ac27a0ec 3537/*
617ba13b 3538 * ext4_truncate()
ac27a0ec 3539 *
617ba13b
MC
3540 * We block out ext4_get_block() block instantiations across the entire
3541 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
ac27a0ec
DK
3542 * simultaneously on behalf of the same inode.
3543 *
42b2aa86 3544 * As we work through the truncate and commit bits of it to the journal there
ac27a0ec
DK
3545 * is one core, guiding principle: the file's tree must always be consistent on
3546 * disk. We must be able to restart the truncate after a crash.
3547 *
3548 * The file's tree may be transiently inconsistent in memory (although it
3549 * probably isn't), but whenever we close off and commit a journal transaction,
3550 * the contents of (the filesystem + the journal) must be consistent and
3551 * restartable. It's pretty simple, really: bottom up, right to left (although
3552 * left-to-right works OK too).
3553 *
3554 * Note that at recovery time, journal replay occurs *before* the restart of
3555 * truncate against the orphan inode list.
3556 *
3557 * The committed inode has the new, desired i_size (which is the same as
617ba13b 3558 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
ac27a0ec 3559 * that this inode's truncate did not complete and it will again call
617ba13b
MC
3560 * ext4_truncate() to have another go. So there will be instantiated blocks
3561 * to the right of the truncation point in a crashed ext4 filesystem. But
ac27a0ec 3562 * that's fine - as long as they are linked from the inode, the post-crash
617ba13b 3563 * ext4_truncate() run will find them and release them.
ac27a0ec 3564 */
617ba13b 3565void ext4_truncate(struct inode *inode)
ac27a0ec 3566{
819c4920
TT
3567 struct ext4_inode_info *ei = EXT4_I(inode);
3568 unsigned int credits;
3569 handle_t *handle;
3570 struct address_space *mapping = inode->i_mapping;
819c4920 3571
19b5ef61
TT
3572 /*
3573 * There is a possibility that we're either freeing the inode
e04027e8 3574 * or it's a completely new inode. In those cases we might not
19b5ef61
TT
3575 * have i_mutex locked because it's not necessary.
3576 */
3577 if (!(inode->i_state & (I_NEW|I_FREEING)))
3578 WARN_ON(!mutex_is_locked(&inode->i_mutex));
0562e0ba
JZ
3579 trace_ext4_truncate_enter(inode);
3580
91ef4caf 3581 if (!ext4_can_truncate(inode))
ac27a0ec
DK
3582 return;
3583
12e9b892 3584 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
c8d46e41 3585
5534fb5b 3586 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
19f5fb7a 3587 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
7d8f9f7d 3588
aef1c851
TM
3589 if (ext4_has_inline_data(inode)) {
3590 int has_inline = 1;
3591
3592 ext4_inline_data_truncate(inode, &has_inline);
3593 if (has_inline)
3594 return;
3595 }
3596
a361293f
JK
3597 /* If we zero-out tail of the page, we have to create jinode for jbd2 */
3598 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
3599 if (ext4_inode_attach_jinode(inode) < 0)
3600 return;
3601 }
3602
819c4920
TT
3603 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3604 credits = ext4_writepage_trans_blocks(inode);
3605 else
3606 credits = ext4_blocks_for_truncate(inode);
3607
3608 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3609 if (IS_ERR(handle)) {
3610 ext4_std_error(inode->i_sb, PTR_ERR(handle));
3611 return;
3612 }
3613
eb3544c6
LC
3614 if (inode->i_size & (inode->i_sb->s_blocksize - 1))
3615 ext4_block_truncate_page(handle, mapping, inode->i_size);
819c4920
TT
3616
3617 /*
3618 * We add the inode to the orphan list, so that if this
3619 * truncate spans multiple transactions, and we crash, we will
3620 * resume the truncate when the filesystem recovers. It also
3621 * marks the inode dirty, to catch the new size.
3622 *
3623 * Implication: the file must always be in a sane, consistent
3624 * truncatable state while each transaction commits.
3625 */
3626 if (ext4_orphan_add(handle, inode))
3627 goto out_stop;
3628
3629 down_write(&EXT4_I(inode)->i_data_sem);
3630
3631 ext4_discard_preallocations(inode);
3632
ff9893dc 3633 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
819c4920 3634 ext4_ext_truncate(handle, inode);
ff9893dc 3635 else
819c4920
TT
3636 ext4_ind_truncate(handle, inode);
3637
3638 up_write(&ei->i_data_sem);
3639
3640 if (IS_SYNC(inode))
3641 ext4_handle_sync(handle);
3642
3643out_stop:
3644 /*
3645 * If this was a simple ftruncate() and the file will remain alive,
3646 * then we need to clear up the orphan record which we created above.
3647 * However, if this was a real unlink then we were called by
3648 * ext4_delete_inode(), and we allow that function to clean up the
3649 * orphan info for us.
3650 */
3651 if (inode->i_nlink)
3652 ext4_orphan_del(handle, inode);
3653
3654 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3655 ext4_mark_inode_dirty(handle, inode);
3656 ext4_journal_stop(handle);
ac27a0ec 3657
0562e0ba 3658 trace_ext4_truncate_exit(inode);
ac27a0ec
DK
3659}
3660
ac27a0ec 3661/*
617ba13b 3662 * ext4_get_inode_loc returns with an extra refcount against the inode's
ac27a0ec
DK
3663 * underlying buffer_head on success. If 'in_mem' is true, we have all
3664 * data in memory that is needed to recreate the on-disk version of this
3665 * inode.
3666 */
617ba13b
MC
3667static int __ext4_get_inode_loc(struct inode *inode,
3668 struct ext4_iloc *iloc, int in_mem)
ac27a0ec 3669{
240799cd
TT
3670 struct ext4_group_desc *gdp;
3671 struct buffer_head *bh;
3672 struct super_block *sb = inode->i_sb;
3673 ext4_fsblk_t block;
3674 int inodes_per_block, inode_offset;
3675
3a06d778 3676 iloc->bh = NULL;
240799cd
TT
3677 if (!ext4_valid_inum(sb, inode->i_ino))
3678 return -EIO;
ac27a0ec 3679
240799cd
TT
3680 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3681 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3682 if (!gdp)
ac27a0ec
DK
3683 return -EIO;
3684
240799cd
TT
3685 /*
3686 * Figure out the offset within the block group inode table
3687 */
00d09882 3688 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
240799cd
TT
3689 inode_offset = ((inode->i_ino - 1) %
3690 EXT4_INODES_PER_GROUP(sb));
3691 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3692 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3693
3694 bh = sb_getblk(sb, block);
aebf0243 3695 if (unlikely(!bh))
860d21e2 3696 return -ENOMEM;
ac27a0ec
DK
3697 if (!buffer_uptodate(bh)) {
3698 lock_buffer(bh);
9c83a923
HK
3699
3700 /*
3701 * If the buffer has the write error flag, we have failed
3702 * to write out another inode in the same block. In this
3703 * case, we don't have to read the block because we may
3704 * read the old inode data successfully.
3705 */
3706 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3707 set_buffer_uptodate(bh);
3708
ac27a0ec
DK
3709 if (buffer_uptodate(bh)) {
3710 /* someone brought it uptodate while we waited */
3711 unlock_buffer(bh);
3712 goto has_buffer;
3713 }
3714
3715 /*
3716 * If we have all information of the inode in memory and this
3717 * is the only valid inode in the block, we need not read the
3718 * block.
3719 */
3720 if (in_mem) {
3721 struct buffer_head *bitmap_bh;
240799cd 3722 int i, start;
ac27a0ec 3723
240799cd 3724 start = inode_offset & ~(inodes_per_block - 1);
ac27a0ec 3725
240799cd
TT
3726 /* Is the inode bitmap in cache? */
3727 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
aebf0243 3728 if (unlikely(!bitmap_bh))
ac27a0ec
DK
3729 goto make_io;
3730
3731 /*
3732 * If the inode bitmap isn't in cache then the
3733 * optimisation may end up performing two reads instead
3734 * of one, so skip it.
3735 */
3736 if (!buffer_uptodate(bitmap_bh)) {
3737 brelse(bitmap_bh);
3738 goto make_io;
3739 }
240799cd 3740 for (i = start; i < start + inodes_per_block; i++) {
ac27a0ec
DK
3741 if (i == inode_offset)
3742 continue;
617ba13b 3743 if (ext4_test_bit(i, bitmap_bh->b_data))
ac27a0ec
DK
3744 break;
3745 }
3746 brelse(bitmap_bh);
240799cd 3747 if (i == start + inodes_per_block) {
ac27a0ec
DK
3748 /* all other inodes are free, so skip I/O */
3749 memset(bh->b_data, 0, bh->b_size);
3750 set_buffer_uptodate(bh);
3751 unlock_buffer(bh);
3752 goto has_buffer;
3753 }
3754 }
3755
3756make_io:
240799cd
TT
3757 /*
3758 * If we need to do any I/O, try to pre-readahead extra
3759 * blocks from the inode table.
3760 */
3761 if (EXT4_SB(sb)->s_inode_readahead_blks) {
3762 ext4_fsblk_t b, end, table;
3763 unsigned num;
0d606e2c 3764 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
240799cd
TT
3765
3766 table = ext4_inode_table(sb, gdp);
b713a5ec 3767 /* s_inode_readahead_blks is always a power of 2 */
0d606e2c 3768 b = block & ~((ext4_fsblk_t) ra_blks - 1);
240799cd
TT
3769 if (table > b)
3770 b = table;
0d606e2c 3771 end = b + ra_blks;
240799cd 3772 num = EXT4_INODES_PER_GROUP(sb);
feb0ab32 3773 if (ext4_has_group_desc_csum(sb))
560671a0 3774 num -= ext4_itable_unused_count(sb, gdp);
240799cd
TT
3775 table += num / inodes_per_block;
3776 if (end > table)
3777 end = table;
3778 while (b <= end)
3779 sb_breadahead(sb, b++);
3780 }
3781
ac27a0ec
DK
3782 /*
3783 * There are other valid inodes in the buffer, this inode
3784 * has in-inode xattrs, or we don't have this inode in memory.
3785 * Read the block from disk.
3786 */
0562e0ba 3787 trace_ext4_load_inode(inode);
ac27a0ec
DK
3788 get_bh(bh);
3789 bh->b_end_io = end_buffer_read_sync;
65299a3b 3790 submit_bh(READ | REQ_META | REQ_PRIO, bh);
ac27a0ec
DK
3791 wait_on_buffer(bh);
3792 if (!buffer_uptodate(bh)) {
c398eda0
TT
3793 EXT4_ERROR_INODE_BLOCK(inode, block,
3794 "unable to read itable block");
ac27a0ec
DK
3795 brelse(bh);
3796 return -EIO;
3797 }
3798 }
3799has_buffer:
3800 iloc->bh = bh;
3801 return 0;
3802}
3803
617ba13b 3804int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
3805{
3806 /* We have all inode data except xattrs in memory here. */
617ba13b 3807 return __ext4_get_inode_loc(inode, iloc,
19f5fb7a 3808 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
ac27a0ec
DK
3809}
3810
617ba13b 3811void ext4_set_inode_flags(struct inode *inode)
ac27a0ec 3812{
617ba13b 3813 unsigned int flags = EXT4_I(inode)->i_flags;
00a1a053 3814 unsigned int new_fl = 0;
ac27a0ec 3815
617ba13b 3816 if (flags & EXT4_SYNC_FL)
00a1a053 3817 new_fl |= S_SYNC;
617ba13b 3818 if (flags & EXT4_APPEND_FL)
00a1a053 3819 new_fl |= S_APPEND;
617ba13b 3820 if (flags & EXT4_IMMUTABLE_FL)
00a1a053 3821 new_fl |= S_IMMUTABLE;
617ba13b 3822 if (flags & EXT4_NOATIME_FL)
00a1a053 3823 new_fl |= S_NOATIME;
617ba13b 3824 if (flags & EXT4_DIRSYNC_FL)
00a1a053 3825 new_fl |= S_DIRSYNC;
5f16f322
TT
3826 inode_set_flags(inode, new_fl,
3827 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
ac27a0ec
DK
3828}
3829
ff9ddf7e
JK
3830/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3831void ext4_get_inode_flags(struct ext4_inode_info *ei)
3832{
84a8dce2
DM
3833 unsigned int vfs_fl;
3834 unsigned long old_fl, new_fl;
3835
3836 do {
3837 vfs_fl = ei->vfs_inode.i_flags;
3838 old_fl = ei->i_flags;
3839 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3840 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
3841 EXT4_DIRSYNC_FL);
3842 if (vfs_fl & S_SYNC)
3843 new_fl |= EXT4_SYNC_FL;
3844 if (vfs_fl & S_APPEND)
3845 new_fl |= EXT4_APPEND_FL;
3846 if (vfs_fl & S_IMMUTABLE)
3847 new_fl |= EXT4_IMMUTABLE_FL;
3848 if (vfs_fl & S_NOATIME)
3849 new_fl |= EXT4_NOATIME_FL;
3850 if (vfs_fl & S_DIRSYNC)
3851 new_fl |= EXT4_DIRSYNC_FL;
3852 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
ff9ddf7e 3853}
de9a55b8 3854
0fc1b451 3855static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
de9a55b8 3856 struct ext4_inode_info *ei)
0fc1b451
AK
3857{
3858 blkcnt_t i_blocks ;
8180a562
AK
3859 struct inode *inode = &(ei->vfs_inode);
3860 struct super_block *sb = inode->i_sb;
0fc1b451
AK
3861
3862 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3863 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3864 /* we are using combined 48 bit field */
3865 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3866 le32_to_cpu(raw_inode->i_blocks_lo);
07a03824 3867 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
8180a562
AK
3868 /* i_blocks represent file system block size */
3869 return i_blocks << (inode->i_blkbits - 9);
3870 } else {
3871 return i_blocks;
3872 }
0fc1b451
AK
3873 } else {
3874 return le32_to_cpu(raw_inode->i_blocks_lo);
3875 }
3876}
ff9ddf7e 3877
152a7b0a
TM
3878static inline void ext4_iget_extra_inode(struct inode *inode,
3879 struct ext4_inode *raw_inode,
3880 struct ext4_inode_info *ei)
3881{
3882 __le32 *magic = (void *)raw_inode +
3883 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
67cf5b09 3884 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
152a7b0a 3885 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
67cf5b09 3886 ext4_find_inline_data_nolock(inode);
f19d5870
TM
3887 } else
3888 EXT4_I(inode)->i_inline_off = 0;
152a7b0a
TM
3889}
3890
1d1fe1ee 3891struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
ac27a0ec 3892{
617ba13b
MC
3893 struct ext4_iloc iloc;
3894 struct ext4_inode *raw_inode;
1d1fe1ee 3895 struct ext4_inode_info *ei;
1d1fe1ee 3896 struct inode *inode;
b436b9be 3897 journal_t *journal = EXT4_SB(sb)->s_journal;
1d1fe1ee 3898 long ret;
ac27a0ec 3899 int block;
08cefc7a
EB
3900 uid_t i_uid;
3901 gid_t i_gid;
ac27a0ec 3902
1d1fe1ee
DH
3903 inode = iget_locked(sb, ino);
3904 if (!inode)
3905 return ERR_PTR(-ENOMEM);
3906 if (!(inode->i_state & I_NEW))
3907 return inode;
3908
3909 ei = EXT4_I(inode);
7dc57615 3910 iloc.bh = NULL;
ac27a0ec 3911
1d1fe1ee
DH
3912 ret = __ext4_get_inode_loc(inode, &iloc, 0);
3913 if (ret < 0)
ac27a0ec 3914 goto bad_inode;
617ba13b 3915 raw_inode = ext4_raw_inode(&iloc);
814525f4
DW
3916
3917 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3918 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
3919 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
3920 EXT4_INODE_SIZE(inode->i_sb)) {
3921 EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
3922 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
3923 EXT4_INODE_SIZE(inode->i_sb));
3924 ret = -EIO;
3925 goto bad_inode;
3926 }
3927 } else
3928 ei->i_extra_isize = 0;
3929
3930 /* Precompute checksum seed for inode metadata */
3931 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3932 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
3933 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3934 __u32 csum;
3935 __le32 inum = cpu_to_le32(inode->i_ino);
3936 __le32 gen = raw_inode->i_generation;
3937 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
3938 sizeof(inum));
3939 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
3940 sizeof(gen));
3941 }
3942
3943 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
3944 EXT4_ERROR_INODE(inode, "checksum invalid");
3945 ret = -EIO;
3946 goto bad_inode;
3947 }
3948
ac27a0ec 3949 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
08cefc7a
EB
3950 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
3951 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
af5bc92d 3952 if (!(test_opt(inode->i_sb, NO_UID32))) {
08cefc7a
EB
3953 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
3954 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
ac27a0ec 3955 }
08cefc7a
EB
3956 i_uid_write(inode, i_uid);
3957 i_gid_write(inode, i_gid);
bfe86848 3958 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
ac27a0ec 3959
353eb83c 3960 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
67cf5b09 3961 ei->i_inline_off = 0;
ac27a0ec
DK
3962 ei->i_dir_start_lookup = 0;
3963 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
3964 /* We now have enough fields to check if the inode was active or not.
3965 * This is needed because nfsd might try to access dead inodes
3966 * the test is that same one that e2fsck uses
3967 * NeilBrown 1999oct15
3968 */
3969 if (inode->i_nlink == 0) {
393d1d1d
DTB
3970 if ((inode->i_mode == 0 ||
3971 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
3972 ino != EXT4_BOOT_LOADER_INO) {
ac27a0ec 3973 /* this inode is deleted */
1d1fe1ee 3974 ret = -ESTALE;
ac27a0ec
DK
3975 goto bad_inode;
3976 }
3977 /* The only unlinked inodes we let through here have
3978 * valid i_mode and are being read by the orphan
3979 * recovery code: that's fine, we're about to complete
393d1d1d
DTB
3980 * the process of deleting those.
3981 * OR it is the EXT4_BOOT_LOADER_INO which is
3982 * not initialized on a new filesystem. */
ac27a0ec 3983 }
ac27a0ec 3984 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
0fc1b451 3985 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
7973c0c1 3986 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
a9e81742 3987 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
a1ddeb7e
BP
3988 ei->i_file_acl |=
3989 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
a48380f7 3990 inode->i_size = ext4_isize(raw_inode);
ac27a0ec 3991 ei->i_disksize = inode->i_size;
a9e7f447
DM
3992#ifdef CONFIG_QUOTA
3993 ei->i_reserved_quota = 0;
3994#endif
ac27a0ec
DK
3995 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
3996 ei->i_block_group = iloc.block_group;
a4912123 3997 ei->i_last_alloc_group = ~0;
ac27a0ec
DK
3998 /*
3999 * NOTE! The in-memory inode i_data array is in little-endian order
4000 * even on big-endian machines: we do NOT byteswap the block numbers!
4001 */
617ba13b 4002 for (block = 0; block < EXT4_N_BLOCKS; block++)
ac27a0ec
DK
4003 ei->i_data[block] = raw_inode->i_block[block];
4004 INIT_LIST_HEAD(&ei->i_orphan);
4005
b436b9be
JK
4006 /*
4007 * Set transaction id's of transactions that have to be committed
4008 * to finish f[data]sync. We set them to currently running transaction
4009 * as we cannot be sure that the inode or some of its metadata isn't
4010 * part of the transaction - the inode could have been reclaimed and
4011 * now it is reread from disk.
4012 */
4013 if (journal) {
4014 transaction_t *transaction;
4015 tid_t tid;
4016
a931da6a 4017 read_lock(&journal->j_state_lock);
b436b9be
JK
4018 if (journal->j_running_transaction)
4019 transaction = journal->j_running_transaction;
4020 else
4021 transaction = journal->j_committing_transaction;
4022 if (transaction)
4023 tid = transaction->t_tid;
4024 else
4025 tid = journal->j_commit_sequence;
a931da6a 4026 read_unlock(&journal->j_state_lock);
b436b9be
JK
4027 ei->i_sync_tid = tid;
4028 ei->i_datasync_tid = tid;
4029 }
4030
0040d987 4031 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
ac27a0ec
DK
4032 if (ei->i_extra_isize == 0) {
4033 /* The extra space is currently unused. Use it. */
617ba13b
MC
4034 ei->i_extra_isize = sizeof(struct ext4_inode) -
4035 EXT4_GOOD_OLD_INODE_SIZE;
ac27a0ec 4036 } else {
152a7b0a 4037 ext4_iget_extra_inode(inode, raw_inode, ei);
ac27a0ec 4038 }
814525f4 4039 }
ac27a0ec 4040
ef7f3835
KS
4041 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4042 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4043 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4044 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4045
ed3654eb 4046 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
c4f65706
TT
4047 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4048 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4049 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4050 inode->i_version |=
4051 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4052 }
25ec56b5
JNC
4053 }
4054
c4b5a614 4055 ret = 0;
485c26ec 4056 if (ei->i_file_acl &&
1032988c 4057 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
24676da4
TT
4058 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4059 ei->i_file_acl);
485c26ec
TT
4060 ret = -EIO;
4061 goto bad_inode;
f19d5870
TM
4062 } else if (!ext4_has_inline_data(inode)) {
4063 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4064 if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4065 (S_ISLNK(inode->i_mode) &&
4066 !ext4_inode_is_fast_symlink(inode))))
4067 /* Validate extent which is part of inode */
4068 ret = ext4_ext_check_inode(inode);
4069 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4070 (S_ISLNK(inode->i_mode) &&
4071 !ext4_inode_is_fast_symlink(inode))) {
4072 /* Validate block references which are part of inode */
4073 ret = ext4_ind_check_inode(inode);
4074 }
fe2c8191 4075 }
567f3e9a 4076 if (ret)
de9a55b8 4077 goto bad_inode;
7a262f7c 4078
ac27a0ec 4079 if (S_ISREG(inode->i_mode)) {
617ba13b
MC
4080 inode->i_op = &ext4_file_inode_operations;
4081 inode->i_fop = &ext4_file_operations;
4082 ext4_set_aops(inode);
ac27a0ec 4083 } else if (S_ISDIR(inode->i_mode)) {
617ba13b
MC
4084 inode->i_op = &ext4_dir_inode_operations;
4085 inode->i_fop = &ext4_dir_operations;
ac27a0ec 4086 } else if (S_ISLNK(inode->i_mode)) {
e83c1397 4087 if (ext4_inode_is_fast_symlink(inode)) {
617ba13b 4088 inode->i_op = &ext4_fast_symlink_inode_operations;
e83c1397
DG
4089 nd_terminate_link(ei->i_data, inode->i_size,
4090 sizeof(ei->i_data) - 1);
4091 } else {
617ba13b
MC
4092 inode->i_op = &ext4_symlink_inode_operations;
4093 ext4_set_aops(inode);
ac27a0ec 4094 }
563bdd61
TT
4095 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4096 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
617ba13b 4097 inode->i_op = &ext4_special_inode_operations;
ac27a0ec
DK
4098 if (raw_inode->i_block[0])
4099 init_special_inode(inode, inode->i_mode,
4100 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4101 else
4102 init_special_inode(inode, inode->i_mode,
4103 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
393d1d1d
DTB
4104 } else if (ino == EXT4_BOOT_LOADER_INO) {
4105 make_bad_inode(inode);
563bdd61 4106 } else {
563bdd61 4107 ret = -EIO;
24676da4 4108 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
563bdd61 4109 goto bad_inode;
ac27a0ec 4110 }
af5bc92d 4111 brelse(iloc.bh);
617ba13b 4112 ext4_set_inode_flags(inode);
1d1fe1ee
DH
4113 unlock_new_inode(inode);
4114 return inode;
ac27a0ec
DK
4115
4116bad_inode:
567f3e9a 4117 brelse(iloc.bh);
1d1fe1ee
DH
4118 iget_failed(inode);
4119 return ERR_PTR(ret);
ac27a0ec
DK
4120}
4121
f4bb2981
TT
4122struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino)
4123{
4124 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
4125 return ERR_PTR(-EIO);
4126 return ext4_iget(sb, ino);
4127}
4128
0fc1b451
AK
4129static int ext4_inode_blocks_set(handle_t *handle,
4130 struct ext4_inode *raw_inode,
4131 struct ext4_inode_info *ei)
4132{
4133 struct inode *inode = &(ei->vfs_inode);
4134 u64 i_blocks = inode->i_blocks;
4135 struct super_block *sb = inode->i_sb;
0fc1b451
AK
4136
4137 if (i_blocks <= ~0U) {
4138 /*
4907cb7b 4139 * i_blocks can be represented in a 32 bit variable
0fc1b451
AK
4140 * as multiple of 512 bytes
4141 */
8180a562 4142 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 4143 raw_inode->i_blocks_high = 0;
84a8dce2 4144 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
f287a1a5
TT
4145 return 0;
4146 }
4147 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4148 return -EFBIG;
4149
4150 if (i_blocks <= 0xffffffffffffULL) {
0fc1b451
AK
4151 /*
4152 * i_blocks can be represented in a 48 bit variable
4153 * as multiple of 512 bytes
4154 */
8180a562 4155 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 4156 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
84a8dce2 4157 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
0fc1b451 4158 } else {
84a8dce2 4159 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
8180a562
AK
4160 /* i_block is stored in file system block size */
4161 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4162 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4163 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
0fc1b451 4164 }
f287a1a5 4165 return 0;
0fc1b451
AK
4166}
4167
ac27a0ec
DK
4168/*
4169 * Post the struct inode info into an on-disk inode location in the
4170 * buffer-cache. This gobbles the caller's reference to the
4171 * buffer_head in the inode location struct.
4172 *
4173 * The caller must have write access to iloc->bh.
4174 */
617ba13b 4175static int ext4_do_update_inode(handle_t *handle,
ac27a0ec 4176 struct inode *inode,
830156c7 4177 struct ext4_iloc *iloc)
ac27a0ec 4178{
617ba13b
MC
4179 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4180 struct ext4_inode_info *ei = EXT4_I(inode);
ac27a0ec 4181 struct buffer_head *bh = iloc->bh;
202ee5df 4182 struct super_block *sb = inode->i_sb;
ac27a0ec 4183 int err = 0, rc, block;
202ee5df 4184 int need_datasync = 0, set_large_file = 0;
08cefc7a
EB
4185 uid_t i_uid;
4186 gid_t i_gid;
ac27a0ec 4187
202ee5df
TT
4188 spin_lock(&ei->i_raw_lock);
4189
4190 /* For fields not tracked in the in-memory inode,
ac27a0ec 4191 * initialise them to zero for new inodes. */
19f5fb7a 4192 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
617ba13b 4193 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
ac27a0ec 4194
ff9ddf7e 4195 ext4_get_inode_flags(ei);
ac27a0ec 4196 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
08cefc7a
EB
4197 i_uid = i_uid_read(inode);
4198 i_gid = i_gid_read(inode);
af5bc92d 4199 if (!(test_opt(inode->i_sb, NO_UID32))) {
08cefc7a
EB
4200 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4201 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
ac27a0ec
DK
4202/*
4203 * Fix up interoperability with old kernels. Otherwise, old inodes get
4204 * re-used with the upper 16 bits of the uid/gid intact
4205 */
af5bc92d 4206 if (!ei->i_dtime) {
ac27a0ec 4207 raw_inode->i_uid_high =
08cefc7a 4208 cpu_to_le16(high_16_bits(i_uid));
ac27a0ec 4209 raw_inode->i_gid_high =
08cefc7a 4210 cpu_to_le16(high_16_bits(i_gid));
ac27a0ec
DK
4211 } else {
4212 raw_inode->i_uid_high = 0;
4213 raw_inode->i_gid_high = 0;
4214 }
4215 } else {
08cefc7a
EB
4216 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4217 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
ac27a0ec
DK
4218 raw_inode->i_uid_high = 0;
4219 raw_inode->i_gid_high = 0;
4220 }
4221 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
ef7f3835
KS
4222
4223 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4224 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4225 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4226 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4227
bce92d56
LX
4228 err = ext4_inode_blocks_set(handle, raw_inode, ei);
4229 if (err) {
202ee5df 4230 spin_unlock(&ei->i_raw_lock);
0fc1b451 4231 goto out_brelse;
202ee5df 4232 }
ac27a0ec 4233 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
353eb83c 4234 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
ed3654eb 4235 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
a1ddeb7e
BP
4236 raw_inode->i_file_acl_high =
4237 cpu_to_le16(ei->i_file_acl >> 32);
7973c0c1 4238 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
b71fc079
JK
4239 if (ei->i_disksize != ext4_isize(raw_inode)) {
4240 ext4_isize_set(raw_inode, ei->i_disksize);
4241 need_datasync = 1;
4242 }
a48380f7 4243 if (ei->i_disksize > 0x7fffffffULL) {
a48380f7
AK
4244 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4245 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4246 EXT4_SB(sb)->s_es->s_rev_level ==
202ee5df
TT
4247 cpu_to_le32(EXT4_GOOD_OLD_REV))
4248 set_large_file = 1;
ac27a0ec
DK
4249 }
4250 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4251 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4252 if (old_valid_dev(inode->i_rdev)) {
4253 raw_inode->i_block[0] =
4254 cpu_to_le32(old_encode_dev(inode->i_rdev));
4255 raw_inode->i_block[1] = 0;
4256 } else {
4257 raw_inode->i_block[0] = 0;
4258 raw_inode->i_block[1] =
4259 cpu_to_le32(new_encode_dev(inode->i_rdev));
4260 raw_inode->i_block[2] = 0;
4261 }
f19d5870 4262 } else if (!ext4_has_inline_data(inode)) {
de9a55b8
TT
4263 for (block = 0; block < EXT4_N_BLOCKS; block++)
4264 raw_inode->i_block[block] = ei->i_data[block];
f19d5870 4265 }
ac27a0ec 4266
ed3654eb 4267 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
c4f65706
TT
4268 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4269 if (ei->i_extra_isize) {
4270 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4271 raw_inode->i_version_hi =
4272 cpu_to_le32(inode->i_version >> 32);
4273 raw_inode->i_extra_isize =
4274 cpu_to_le16(ei->i_extra_isize);
4275 }
25ec56b5
JNC
4276 }
4277
814525f4
DW
4278 ext4_inode_csum_set(inode, raw_inode, ei);
4279
202ee5df
TT
4280 spin_unlock(&ei->i_raw_lock);
4281
830156c7 4282 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
73b50c1c 4283 rc = ext4_handle_dirty_metadata(handle, NULL, bh);
830156c7
FM
4284 if (!err)
4285 err = rc;
19f5fb7a 4286 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
202ee5df 4287 if (set_large_file) {
5d601255 4288 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
202ee5df
TT
4289 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
4290 if (err)
4291 goto out_brelse;
4292 ext4_update_dynamic_rev(sb);
4293 EXT4_SET_RO_COMPAT_FEATURE(sb,
4294 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4295 ext4_handle_sync(handle);
4296 err = ext4_handle_dirty_super(handle, sb);
4297 }
b71fc079 4298 ext4_update_inode_fsync_trans(handle, inode, need_datasync);
ac27a0ec 4299out_brelse:
af5bc92d 4300 brelse(bh);
617ba13b 4301 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4302 return err;
4303}
4304
4305/*
617ba13b 4306 * ext4_write_inode()
ac27a0ec
DK
4307 *
4308 * We are called from a few places:
4309 *
87f7e416 4310 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
ac27a0ec 4311 * Here, there will be no transaction running. We wait for any running
4907cb7b 4312 * transaction to commit.
ac27a0ec 4313 *
87f7e416
TT
4314 * - Within flush work (sys_sync(), kupdate and such).
4315 * We wait on commit, if told to.
ac27a0ec 4316 *
87f7e416
TT
4317 * - Within iput_final() -> write_inode_now()
4318 * We wait on commit, if told to.
ac27a0ec
DK
4319 *
4320 * In all cases it is actually safe for us to return without doing anything,
4321 * because the inode has been copied into a raw inode buffer in
87f7e416
TT
4322 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL
4323 * writeback.
ac27a0ec
DK
4324 *
4325 * Note that we are absolutely dependent upon all inode dirtiers doing the
4326 * right thing: they *must* call mark_inode_dirty() after dirtying info in
4327 * which we are interested.
4328 *
4329 * It would be a bug for them to not do this. The code:
4330 *
4331 * mark_inode_dirty(inode)
4332 * stuff();
4333 * inode->i_size = expr;
4334 *
87f7e416
TT
4335 * is in error because write_inode() could occur while `stuff()' is running,
4336 * and the new i_size will be lost. Plus the inode will no longer be on the
4337 * superblock's dirty inode list.
ac27a0ec 4338 */
a9185b41 4339int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
ac27a0ec 4340{
91ac6f43
FM
4341 int err;
4342
87f7e416 4343 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
ac27a0ec
DK
4344 return 0;
4345
91ac6f43
FM
4346 if (EXT4_SB(inode->i_sb)->s_journal) {
4347 if (ext4_journal_current_handle()) {
4348 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4349 dump_stack();
4350 return -EIO;
4351 }
ac27a0ec 4352
10542c22
JK
4353 /*
4354 * No need to force transaction in WB_SYNC_NONE mode. Also
4355 * ext4_sync_fs() will force the commit after everything is
4356 * written.
4357 */
4358 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
91ac6f43
FM
4359 return 0;
4360
4361 err = ext4_force_commit(inode->i_sb);
4362 } else {
4363 struct ext4_iloc iloc;
ac27a0ec 4364
8b472d73 4365 err = __ext4_get_inode_loc(inode, &iloc, 0);
91ac6f43
FM
4366 if (err)
4367 return err;
10542c22
JK
4368 /*
4369 * sync(2) will flush the whole buffer cache. No need to do
4370 * it here separately for each inode.
4371 */
4372 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
830156c7
FM
4373 sync_dirty_buffer(iloc.bh);
4374 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
c398eda0
TT
4375 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4376 "IO error syncing inode");
830156c7
FM
4377 err = -EIO;
4378 }
fd2dd9fb 4379 brelse(iloc.bh);
91ac6f43
FM
4380 }
4381 return err;
ac27a0ec
DK
4382}
4383
53e87268
JK
4384/*
4385 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4386 * buffers that are attached to a page stradding i_size and are undergoing
4387 * commit. In that case we have to wait for commit to finish and try again.
4388 */
4389static void ext4_wait_for_tail_page_commit(struct inode *inode)
4390{
4391 struct page *page;
4392 unsigned offset;
4393 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4394 tid_t commit_tid = 0;
4395 int ret;
4396
4397 offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
4398 /*
4399 * All buffers in the last page remain valid? Then there's nothing to
4400 * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
4401 * blocksize case
4402 */
4403 if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
4404 return;
4405 while (1) {
4406 page = find_lock_page(inode->i_mapping,
4407 inode->i_size >> PAGE_CACHE_SHIFT);
4408 if (!page)
4409 return;
ca99fdd2
LC
4410 ret = __ext4_journalled_invalidatepage(page, offset,
4411 PAGE_CACHE_SIZE - offset);
53e87268
JK
4412 unlock_page(page);
4413 page_cache_release(page);
4414 if (ret != -EBUSY)
4415 return;
4416 commit_tid = 0;
4417 read_lock(&journal->j_state_lock);
4418 if (journal->j_committing_transaction)
4419 commit_tid = journal->j_committing_transaction->t_tid;
4420 read_unlock(&journal->j_state_lock);
4421 if (commit_tid)
4422 jbd2_log_wait_commit(journal, commit_tid);
4423 }
4424}
4425
ac27a0ec 4426/*
617ba13b 4427 * ext4_setattr()
ac27a0ec
DK
4428 *
4429 * Called from notify_change.
4430 *
4431 * We want to trap VFS attempts to truncate the file as soon as
4432 * possible. In particular, we want to make sure that when the VFS
4433 * shrinks i_size, we put the inode on the orphan list and modify
4434 * i_disksize immediately, so that during the subsequent flushing of
4435 * dirty pages and freeing of disk blocks, we can guarantee that any
4436 * commit will leave the blocks being flushed in an unused state on
4437 * disk. (On recovery, the inode will get truncated and the blocks will
4438 * be freed, so we have a strong guarantee that no future commit will
4439 * leave these blocks visible to the user.)
4440 *
678aaf48
JK
4441 * Another thing we have to assure is that if we are in ordered mode
4442 * and inode is still attached to the committing transaction, we must
4443 * we start writeout of all the dirty pages which are being truncated.
4444 * This way we are sure that all the data written in the previous
4445 * transaction are already on disk (truncate waits for pages under
4446 * writeback).
4447 *
4448 * Called with inode->i_mutex down.
ac27a0ec 4449 */
617ba13b 4450int ext4_setattr(struct dentry *dentry, struct iattr *attr)
ac27a0ec
DK
4451{
4452 struct inode *inode = dentry->d_inode;
4453 int error, rc = 0;
3d287de3 4454 int orphan = 0;
ac27a0ec
DK
4455 const unsigned int ia_valid = attr->ia_valid;
4456
4457 error = inode_change_ok(inode, attr);
4458 if (error)
4459 return error;
4460
12755627 4461 if (is_quota_modification(inode, attr))
871a2931 4462 dquot_initialize(inode);
08cefc7a
EB
4463 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4464 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
ac27a0ec
DK
4465 handle_t *handle;
4466
4467 /* (user+group)*(old+new) structure, inode write (sb,
4468 * inode block, ? - but truncate inode update has it) */
9924a92a
TT
4469 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4470 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
4471 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
ac27a0ec
DK
4472 if (IS_ERR(handle)) {
4473 error = PTR_ERR(handle);
4474 goto err_out;
4475 }
b43fa828 4476 error = dquot_transfer(inode, attr);
ac27a0ec 4477 if (error) {
617ba13b 4478 ext4_journal_stop(handle);
ac27a0ec
DK
4479 return error;
4480 }
4481 /* Update corresponding info in inode so that everything is in
4482 * one transaction */
4483 if (attr->ia_valid & ATTR_UID)
4484 inode->i_uid = attr->ia_uid;
4485 if (attr->ia_valid & ATTR_GID)
4486 inode->i_gid = attr->ia_gid;
617ba13b
MC
4487 error = ext4_mark_inode_dirty(handle, inode);
4488 ext4_journal_stop(handle);
ac27a0ec
DK
4489 }
4490
5208386c
JK
4491 if (attr->ia_valid & ATTR_SIZE && attr->ia_size != inode->i_size) {
4492 handle_t *handle;
562c72aa 4493
12e9b892 4494 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
e2b46574
ES
4495 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4496
0c095c7f
TT
4497 if (attr->ia_size > sbi->s_bitmap_maxbytes)
4498 return -EFBIG;
e2b46574 4499 }
dff6efc3
CH
4500
4501 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
4502 inode_inc_iversion(inode);
4503
5208386c
JK
4504 if (S_ISREG(inode->i_mode) &&
4505 (attr->ia_size < inode->i_size)) {
4506 if (ext4_should_order_data(inode)) {
4507 error = ext4_begin_ordered_truncate(inode,
678aaf48 4508 attr->ia_size);
5208386c 4509 if (error)
678aaf48 4510 goto err_out;
5208386c
JK
4511 }
4512 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
4513 if (IS_ERR(handle)) {
4514 error = PTR_ERR(handle);
4515 goto err_out;
4516 }
4517 if (ext4_handle_valid(handle)) {
4518 error = ext4_orphan_add(handle, inode);
4519 orphan = 1;
4520 }
90e775b7 4521 down_write(&EXT4_I(inode)->i_data_sem);
5208386c
JK
4522 EXT4_I(inode)->i_disksize = attr->ia_size;
4523 rc = ext4_mark_inode_dirty(handle, inode);
4524 if (!error)
4525 error = rc;
90e775b7
JK
4526 /*
4527 * We have to update i_size under i_data_sem together
4528 * with i_disksize to avoid races with writeback code
4529 * running ext4_wb_update_i_disksize().
4530 */
4531 if (!error)
4532 i_size_write(inode, attr->ia_size);
4533 up_write(&EXT4_I(inode)->i_data_sem);
5208386c
JK
4534 ext4_journal_stop(handle);
4535 if (error) {
4536 ext4_orphan_del(NULL, inode);
678aaf48
JK
4537 goto err_out;
4538 }
d6320cbf
JK
4539 } else {
4540 loff_t oldsize = inode->i_size;
4541
90e775b7 4542 i_size_write(inode, attr->ia_size);
d6320cbf
JK
4543 pagecache_isize_extended(inode, oldsize, inode->i_size);
4544 }
53e87268 4545
5208386c
JK
4546 /*
4547 * Blocks are going to be removed from the inode. Wait
4548 * for dio in flight. Temporarily disable
4549 * dioread_nolock to prevent livelock.
4550 */
4551 if (orphan) {
4552 if (!ext4_should_journal_data(inode)) {
4553 ext4_inode_block_unlocked_dio(inode);
4554 inode_dio_wait(inode);
4555 ext4_inode_resume_unlocked_dio(inode);
4556 } else
4557 ext4_wait_for_tail_page_commit(inode);
1c9114f9 4558 }
5208386c
JK
4559 /*
4560 * Truncate pagecache after we've waited for commit
4561 * in data=journal mode to make pages freeable.
4562 */
7caef267 4563 truncate_pagecache(inode, inode->i_size);
072bd7ea 4564 }
5208386c
JK
4565 /*
4566 * We want to call ext4_truncate() even if attr->ia_size ==
4567 * inode->i_size for cases like truncation of fallocated space
4568 */
4569 if (attr->ia_valid & ATTR_SIZE)
4570 ext4_truncate(inode);
ac27a0ec 4571
1025774c
CH
4572 if (!rc) {
4573 setattr_copy(inode, attr);
4574 mark_inode_dirty(inode);
4575 }
4576
4577 /*
4578 * If the call to ext4_truncate failed to get a transaction handle at
4579 * all, we need to clean up the in-core orphan list manually.
4580 */
3d287de3 4581 if (orphan && inode->i_nlink)
617ba13b 4582 ext4_orphan_del(NULL, inode);
ac27a0ec
DK
4583
4584 if (!rc && (ia_valid & ATTR_MODE))
64e178a7 4585 rc = posix_acl_chmod(inode, inode->i_mode);
ac27a0ec
DK
4586
4587err_out:
617ba13b 4588 ext4_std_error(inode->i_sb, error);
ac27a0ec
DK
4589 if (!error)
4590 error = rc;
4591 return error;
4592}
4593
3e3398a0
MC
4594int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4595 struct kstat *stat)
4596{
4597 struct inode *inode;
8af8eecc 4598 unsigned long long delalloc_blocks;
3e3398a0
MC
4599
4600 inode = dentry->d_inode;
4601 generic_fillattr(inode, stat);
4602
9206c561
AD
4603 /*
4604 * If there is inline data in the inode, the inode will normally not
4605 * have data blocks allocated (it may have an external xattr block).
4606 * Report at least one sector for such files, so tools like tar, rsync,
4607 * others doen't incorrectly think the file is completely sparse.
4608 */
4609 if (unlikely(ext4_has_inline_data(inode)))
4610 stat->blocks += (stat->size + 511) >> 9;
4611
3e3398a0
MC
4612 /*
4613 * We can't update i_blocks if the block allocation is delayed
4614 * otherwise in the case of system crash before the real block
4615 * allocation is done, we will have i_blocks inconsistent with
4616 * on-disk file blocks.
4617 * We always keep i_blocks updated together with real
4618 * allocation. But to not confuse with user, stat
4619 * will return the blocks that include the delayed allocation
4620 * blocks for this file.
4621 */
96607551 4622 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
9206c561
AD
4623 EXT4_I(inode)->i_reserved_data_blocks);
4624 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
3e3398a0
MC
4625 return 0;
4626}
ac27a0ec 4627
fffb2739
JK
4628static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
4629 int pextents)
a02908f1 4630{
12e9b892 4631 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
fffb2739
JK
4632 return ext4_ind_trans_blocks(inode, lblocks);
4633 return ext4_ext_index_trans_blocks(inode, pextents);
a02908f1 4634}
ac51d837 4635
ac27a0ec 4636/*
a02908f1
MC
4637 * Account for index blocks, block groups bitmaps and block group
4638 * descriptor blocks if modify datablocks and index blocks
4639 * worse case, the indexs blocks spread over different block groups
ac27a0ec 4640 *
a02908f1 4641 * If datablocks are discontiguous, they are possible to spread over
4907cb7b 4642 * different block groups too. If they are contiguous, with flexbg,
a02908f1 4643 * they could still across block group boundary.
ac27a0ec 4644 *
a02908f1
MC
4645 * Also account for superblock, inode, quota and xattr blocks
4646 */
fffb2739
JK
4647static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
4648 int pextents)
a02908f1 4649{
8df9675f
TT
4650 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4651 int gdpblocks;
a02908f1
MC
4652 int idxblocks;
4653 int ret = 0;
4654
4655 /*
fffb2739
JK
4656 * How many index blocks need to touch to map @lblocks logical blocks
4657 * to @pextents physical extents?
a02908f1 4658 */
fffb2739 4659 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
a02908f1
MC
4660
4661 ret = idxblocks;
4662
4663 /*
4664 * Now let's see how many group bitmaps and group descriptors need
4665 * to account
4666 */
fffb2739 4667 groups = idxblocks + pextents;
a02908f1 4668 gdpblocks = groups;
8df9675f
TT
4669 if (groups > ngroups)
4670 groups = ngroups;
a02908f1
MC
4671 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4672 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4673
4674 /* bitmaps and block group descriptor blocks */
4675 ret += groups + gdpblocks;
4676
4677 /* Blocks for super block, inode, quota and xattr blocks */
4678 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4679
4680 return ret;
4681}
4682
4683/*
25985edc 4684 * Calculate the total number of credits to reserve to fit
f3bd1f3f
MC
4685 * the modification of a single pages into a single transaction,
4686 * which may include multiple chunks of block allocations.
ac27a0ec 4687 *
525f4ed8 4688 * This could be called via ext4_write_begin()
ac27a0ec 4689 *
525f4ed8 4690 * We need to consider the worse case, when
a02908f1 4691 * one new block per extent.
ac27a0ec 4692 */
a86c6181 4693int ext4_writepage_trans_blocks(struct inode *inode)
ac27a0ec 4694{
617ba13b 4695 int bpp = ext4_journal_blocks_per_page(inode);
ac27a0ec
DK
4696 int ret;
4697
fffb2739 4698 ret = ext4_meta_trans_blocks(inode, bpp, bpp);
a86c6181 4699
a02908f1 4700 /* Account for data blocks for journalled mode */
617ba13b 4701 if (ext4_should_journal_data(inode))
a02908f1 4702 ret += bpp;
ac27a0ec
DK
4703 return ret;
4704}
f3bd1f3f
MC
4705
4706/*
4707 * Calculate the journal credits for a chunk of data modification.
4708 *
4709 * This is called from DIO, fallocate or whoever calling
79e83036 4710 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
f3bd1f3f
MC
4711 *
4712 * journal buffers for data blocks are not included here, as DIO
4713 * and fallocate do no need to journal data buffers.
4714 */
4715int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4716{
4717 return ext4_meta_trans_blocks(inode, nrblocks, 1);
4718}
4719
ac27a0ec 4720/*
617ba13b 4721 * The caller must have previously called ext4_reserve_inode_write().
ac27a0ec
DK
4722 * Give this, we know that the caller already has write access to iloc->bh.
4723 */
617ba13b 4724int ext4_mark_iloc_dirty(handle_t *handle,
de9a55b8 4725 struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
4726{
4727 int err = 0;
4728
c64db50e 4729 if (IS_I_VERSION(inode))
25ec56b5
JNC
4730 inode_inc_iversion(inode);
4731
ac27a0ec
DK
4732 /* the do_update_inode consumes one bh->b_count */
4733 get_bh(iloc->bh);
4734
dab291af 4735 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
830156c7 4736 err = ext4_do_update_inode(handle, inode, iloc);
ac27a0ec
DK
4737 put_bh(iloc->bh);
4738 return err;
4739}
4740
4741/*
4742 * On success, We end up with an outstanding reference count against
4743 * iloc->bh. This _must_ be cleaned up later.
4744 */
4745
4746int
617ba13b
MC
4747ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4748 struct ext4_iloc *iloc)
ac27a0ec 4749{
0390131b
FM
4750 int err;
4751
4752 err = ext4_get_inode_loc(inode, iloc);
4753 if (!err) {
4754 BUFFER_TRACE(iloc->bh, "get_write_access");
4755 err = ext4_journal_get_write_access(handle, iloc->bh);
4756 if (err) {
4757 brelse(iloc->bh);
4758 iloc->bh = NULL;
ac27a0ec
DK
4759 }
4760 }
617ba13b 4761 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4762 return err;
4763}
4764
6dd4ee7c
KS
4765/*
4766 * Expand an inode by new_extra_isize bytes.
4767 * Returns 0 on success or negative error number on failure.
4768 */
1d03ec98
AK
4769static int ext4_expand_extra_isize(struct inode *inode,
4770 unsigned int new_extra_isize,
4771 struct ext4_iloc iloc,
4772 handle_t *handle)
6dd4ee7c
KS
4773{
4774 struct ext4_inode *raw_inode;
4775 struct ext4_xattr_ibody_header *header;
6dd4ee7c
KS
4776
4777 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4778 return 0;
4779
4780 raw_inode = ext4_raw_inode(&iloc);
4781
4782 header = IHDR(inode, raw_inode);
6dd4ee7c
KS
4783
4784 /* No extended attributes present */
19f5fb7a
TT
4785 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4786 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
6dd4ee7c
KS
4787 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4788 new_extra_isize);
4789 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4790 return 0;
4791 }
4792
4793 /* try to expand with EAs present */
4794 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4795 raw_inode, handle);
4796}
4797
ac27a0ec
DK
4798/*
4799 * What we do here is to mark the in-core inode as clean with respect to inode
4800 * dirtiness (it may still be data-dirty).
4801 * This means that the in-core inode may be reaped by prune_icache
4802 * without having to perform any I/O. This is a very good thing,
4803 * because *any* task may call prune_icache - even ones which
4804 * have a transaction open against a different journal.
4805 *
4806 * Is this cheating? Not really. Sure, we haven't written the
4807 * inode out, but prune_icache isn't a user-visible syncing function.
4808 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4809 * we start and wait on commits.
ac27a0ec 4810 */
617ba13b 4811int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
ac27a0ec 4812{
617ba13b 4813 struct ext4_iloc iloc;
6dd4ee7c
KS
4814 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4815 static unsigned int mnt_count;
4816 int err, ret;
ac27a0ec
DK
4817
4818 might_sleep();
7ff9c073 4819 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
617ba13b 4820 err = ext4_reserve_inode_write(handle, inode, &iloc);
0390131b
FM
4821 if (ext4_handle_valid(handle) &&
4822 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
19f5fb7a 4823 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
6dd4ee7c
KS
4824 /*
4825 * We need extra buffer credits since we may write into EA block
4826 * with this same handle. If journal_extend fails, then it will
4827 * only result in a minor loss of functionality for that inode.
4828 * If this is felt to be critical, then e2fsck should be run to
4829 * force a large enough s_min_extra_isize.
4830 */
4831 if ((jbd2_journal_extend(handle,
4832 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4833 ret = ext4_expand_extra_isize(inode,
4834 sbi->s_want_extra_isize,
4835 iloc, handle);
4836 if (ret) {
19f5fb7a
TT
4837 ext4_set_inode_state(inode,
4838 EXT4_STATE_NO_EXPAND);
c1bddad9
AK
4839 if (mnt_count !=
4840 le16_to_cpu(sbi->s_es->s_mnt_count)) {
12062ddd 4841 ext4_warning(inode->i_sb,
6dd4ee7c
KS
4842 "Unable to expand inode %lu. Delete"
4843 " some EAs or run e2fsck.",
4844 inode->i_ino);
c1bddad9
AK
4845 mnt_count =
4846 le16_to_cpu(sbi->s_es->s_mnt_count);
6dd4ee7c
KS
4847 }
4848 }
4849 }
4850 }
ac27a0ec 4851 if (!err)
617ba13b 4852 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
ac27a0ec
DK
4853 return err;
4854}
4855
4856/*
617ba13b 4857 * ext4_dirty_inode() is called from __mark_inode_dirty()
ac27a0ec
DK
4858 *
4859 * We're really interested in the case where a file is being extended.
4860 * i_size has been changed by generic_commit_write() and we thus need
4861 * to include the updated inode in the current transaction.
4862 *
5dd4056d 4863 * Also, dquot_alloc_block() will always dirty the inode when blocks
ac27a0ec
DK
4864 * are allocated to the file.
4865 *
4866 * If the inode is marked synchronous, we don't honour that here - doing
4867 * so would cause a commit on atime updates, which we don't bother doing.
4868 * We handle synchronous inodes at the highest possible level.
4869 */
aa385729 4870void ext4_dirty_inode(struct inode *inode, int flags)
ac27a0ec 4871{
ac27a0ec
DK
4872 handle_t *handle;
4873
9924a92a 4874 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
ac27a0ec
DK
4875 if (IS_ERR(handle))
4876 goto out;
f3dc272f 4877
f3dc272f
CW
4878 ext4_mark_inode_dirty(handle, inode);
4879
617ba13b 4880 ext4_journal_stop(handle);
ac27a0ec
DK
4881out:
4882 return;
4883}
4884
4885#if 0
4886/*
4887 * Bind an inode's backing buffer_head into this transaction, to prevent
4888 * it from being flushed to disk early. Unlike
617ba13b 4889 * ext4_reserve_inode_write, this leaves behind no bh reference and
ac27a0ec
DK
4890 * returns no iloc structure, so the caller needs to repeat the iloc
4891 * lookup to mark the inode dirty later.
4892 */
617ba13b 4893static int ext4_pin_inode(handle_t *handle, struct inode *inode)
ac27a0ec 4894{
617ba13b 4895 struct ext4_iloc iloc;
ac27a0ec
DK
4896
4897 int err = 0;
4898 if (handle) {
617ba13b 4899 err = ext4_get_inode_loc(inode, &iloc);
ac27a0ec
DK
4900 if (!err) {
4901 BUFFER_TRACE(iloc.bh, "get_write_access");
dab291af 4902 err = jbd2_journal_get_write_access(handle, iloc.bh);
ac27a0ec 4903 if (!err)
0390131b 4904 err = ext4_handle_dirty_metadata(handle,
73b50c1c 4905 NULL,
0390131b 4906 iloc.bh);
ac27a0ec
DK
4907 brelse(iloc.bh);
4908 }
4909 }
617ba13b 4910 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4911 return err;
4912}
4913#endif
4914
617ba13b 4915int ext4_change_inode_journal_flag(struct inode *inode, int val)
ac27a0ec
DK
4916{
4917 journal_t *journal;
4918 handle_t *handle;
4919 int err;
4920
4921 /*
4922 * We have to be very careful here: changing a data block's
4923 * journaling status dynamically is dangerous. If we write a
4924 * data block to the journal, change the status and then delete
4925 * that block, we risk forgetting to revoke the old log record
4926 * from the journal and so a subsequent replay can corrupt data.
4927 * So, first we make sure that the journal is empty and that
4928 * nobody is changing anything.
4929 */
4930
617ba13b 4931 journal = EXT4_JOURNAL(inode);
0390131b
FM
4932 if (!journal)
4933 return 0;
d699594d 4934 if (is_journal_aborted(journal))
ac27a0ec 4935 return -EROFS;
2aff57b0
YY
4936 /* We have to allocate physical blocks for delalloc blocks
4937 * before flushing journal. otherwise delalloc blocks can not
4938 * be allocated any more. even more truncate on delalloc blocks
4939 * could trigger BUG by flushing delalloc blocks in journal.
4940 * There is no delalloc block in non-journal data mode.
4941 */
4942 if (val && test_opt(inode->i_sb, DELALLOC)) {
4943 err = ext4_alloc_da_blocks(inode);
4944 if (err < 0)
4945 return err;
4946 }
ac27a0ec 4947
17335dcc
DM
4948 /* Wait for all existing dio workers */
4949 ext4_inode_block_unlocked_dio(inode);
4950 inode_dio_wait(inode);
4951
dab291af 4952 jbd2_journal_lock_updates(journal);
ac27a0ec
DK
4953
4954 /*
4955 * OK, there are no updates running now, and all cached data is
4956 * synced to disk. We are now in a completely consistent state
4957 * which doesn't have anything in the journal, and we know that
4958 * no filesystem updates are running, so it is safe to modify
4959 * the inode's in-core data-journaling state flag now.
4960 */
4961
4962 if (val)
12e9b892 4963 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5872ddaa
YY
4964 else {
4965 jbd2_journal_flush(journal);
12e9b892 4966 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5872ddaa 4967 }
617ba13b 4968 ext4_set_aops(inode);
ac27a0ec 4969
dab291af 4970 jbd2_journal_unlock_updates(journal);
17335dcc 4971 ext4_inode_resume_unlocked_dio(inode);
ac27a0ec
DK
4972
4973 /* Finally we can mark the inode as dirty. */
4974
9924a92a 4975 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
ac27a0ec
DK
4976 if (IS_ERR(handle))
4977 return PTR_ERR(handle);
4978
617ba13b 4979 err = ext4_mark_inode_dirty(handle, inode);
0390131b 4980 ext4_handle_sync(handle);
617ba13b
MC
4981 ext4_journal_stop(handle);
4982 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4983
4984 return err;
4985}
2e9ee850
AK
4986
4987static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
4988{
4989 return !buffer_mapped(bh);
4990}
4991
c2ec175c 4992int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2e9ee850 4993{
c2ec175c 4994 struct page *page = vmf->page;
2e9ee850
AK
4995 loff_t size;
4996 unsigned long len;
9ea7df53 4997 int ret;
2e9ee850 4998 struct file *file = vma->vm_file;
496ad9aa 4999 struct inode *inode = file_inode(file);
2e9ee850 5000 struct address_space *mapping = inode->i_mapping;
9ea7df53
JK
5001 handle_t *handle;
5002 get_block_t *get_block;
5003 int retries = 0;
2e9ee850 5004
8e8ad8a5 5005 sb_start_pagefault(inode->i_sb);
041bbb6d 5006 file_update_time(vma->vm_file);
9ea7df53
JK
5007 /* Delalloc case is easy... */
5008 if (test_opt(inode->i_sb, DELALLOC) &&
5009 !ext4_should_journal_data(inode) &&
5010 !ext4_nonda_switch(inode->i_sb)) {
5011 do {
5012 ret = __block_page_mkwrite(vma, vmf,
5013 ext4_da_get_block_prep);
5014 } while (ret == -ENOSPC &&
5015 ext4_should_retry_alloc(inode->i_sb, &retries));
5016 goto out_ret;
2e9ee850 5017 }
0e499890
DW
5018
5019 lock_page(page);
9ea7df53
JK
5020 size = i_size_read(inode);
5021 /* Page got truncated from under us? */
5022 if (page->mapping != mapping || page_offset(page) > size) {
5023 unlock_page(page);
5024 ret = VM_FAULT_NOPAGE;
5025 goto out;
0e499890 5026 }
2e9ee850
AK
5027
5028 if (page->index == size >> PAGE_CACHE_SHIFT)
5029 len = size & ~PAGE_CACHE_MASK;
5030 else
5031 len = PAGE_CACHE_SIZE;
a827eaff 5032 /*
9ea7df53
JK
5033 * Return if we have all the buffers mapped. This avoids the need to do
5034 * journal_start/journal_stop which can block and take a long time
a827eaff 5035 */
2e9ee850 5036 if (page_has_buffers(page)) {
f19d5870
TM
5037 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5038 0, len, NULL,
5039 ext4_bh_unmapped)) {
9ea7df53 5040 /* Wait so that we don't change page under IO */
1d1d1a76 5041 wait_for_stable_page(page);
9ea7df53
JK
5042 ret = VM_FAULT_LOCKED;
5043 goto out;
a827eaff 5044 }
2e9ee850 5045 }
a827eaff 5046 unlock_page(page);
9ea7df53
JK
5047 /* OK, we need to fill the hole... */
5048 if (ext4_should_dioread_nolock(inode))
5049 get_block = ext4_get_block_write;
5050 else
5051 get_block = ext4_get_block;
5052retry_alloc:
9924a92a
TT
5053 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5054 ext4_writepage_trans_blocks(inode));
9ea7df53 5055 if (IS_ERR(handle)) {
c2ec175c 5056 ret = VM_FAULT_SIGBUS;
9ea7df53
JK
5057 goto out;
5058 }
5059 ret = __block_page_mkwrite(vma, vmf, get_block);
5060 if (!ret && ext4_should_journal_data(inode)) {
f19d5870 5061 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
9ea7df53
JK
5062 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
5063 unlock_page(page);
5064 ret = VM_FAULT_SIGBUS;
fcbb5515 5065 ext4_journal_stop(handle);
9ea7df53
JK
5066 goto out;
5067 }
5068 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5069 }
5070 ext4_journal_stop(handle);
5071 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5072 goto retry_alloc;
5073out_ret:
5074 ret = block_page_mkwrite_return(ret);
5075out:
8e8ad8a5 5076 sb_end_pagefault(inode->i_sb);
2e9ee850
AK
5077 return ret;
5078}