ext4: add journalled write support for inline data
[linux-2.6-block.git] / fs / ext4 / inode.c
CommitLineData
ac27a0ec 1/*
617ba13b 2 * linux/fs/ext4/inode.c
ac27a0ec
DK
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
ac27a0ec
DK
15 * 64-bit file support on 64-bit platforms by Jakub Jelinek
16 * (jj@sunsite.ms.mff.cuni.cz)
17 *
617ba13b 18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
ac27a0ec
DK
19 */
20
ac27a0ec
DK
21#include <linux/fs.h>
22#include <linux/time.h>
dab291af 23#include <linux/jbd2.h>
ac27a0ec
DK
24#include <linux/highuid.h>
25#include <linux/pagemap.h>
26#include <linux/quotaops.h>
27#include <linux/string.h>
28#include <linux/buffer_head.h>
29#include <linux/writeback.h>
64769240 30#include <linux/pagevec.h>
ac27a0ec 31#include <linux/mpage.h>
e83c1397 32#include <linux/namei.h>
ac27a0ec
DK
33#include <linux/uio.h>
34#include <linux/bio.h>
4c0425ff 35#include <linux/workqueue.h>
744692dc 36#include <linux/kernel.h>
6db26ffc 37#include <linux/printk.h>
5a0e3ad6 38#include <linux/slab.h>
a8901d34 39#include <linux/ratelimit.h>
9bffad1e 40
3dcf5451 41#include "ext4_jbd2.h"
ac27a0ec
DK
42#include "xattr.h"
43#include "acl.h"
9f125d64 44#include "truncate.h"
ac27a0ec 45
9bffad1e
TT
46#include <trace/events/ext4.h>
47
a1d6cc56
AK
48#define MPAGE_DA_EXTENT_TAIL 0x01
49
814525f4
DW
50static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
51 struct ext4_inode_info *ei)
52{
53 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
54 __u16 csum_lo;
55 __u16 csum_hi = 0;
56 __u32 csum;
57
58 csum_lo = raw->i_checksum_lo;
59 raw->i_checksum_lo = 0;
60 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
61 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
62 csum_hi = raw->i_checksum_hi;
63 raw->i_checksum_hi = 0;
64 }
65
66 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
67 EXT4_INODE_SIZE(inode->i_sb));
68
69 raw->i_checksum_lo = csum_lo;
70 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
71 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
72 raw->i_checksum_hi = csum_hi;
73
74 return csum;
75}
76
77static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
78 struct ext4_inode_info *ei)
79{
80 __u32 provided, calculated;
81
82 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
83 cpu_to_le32(EXT4_OS_LINUX) ||
84 !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
85 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
86 return 1;
87
88 provided = le16_to_cpu(raw->i_checksum_lo);
89 calculated = ext4_inode_csum(inode, raw, ei);
90 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
91 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
92 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
93 else
94 calculated &= 0xFFFF;
95
96 return provided == calculated;
97}
98
99static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
100 struct ext4_inode_info *ei)
101{
102 __u32 csum;
103
104 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
105 cpu_to_le32(EXT4_OS_LINUX) ||
106 !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
107 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
108 return;
109
110 csum = ext4_inode_csum(inode, raw, ei);
111 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
112 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
113 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
114 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
115}
116
678aaf48
JK
117static inline int ext4_begin_ordered_truncate(struct inode *inode,
118 loff_t new_size)
119{
7ff9c073 120 trace_ext4_begin_ordered_truncate(inode, new_size);
8aefcd55
TT
121 /*
122 * If jinode is zero, then we never opened the file for
123 * writing, so there's no need to call
124 * jbd2_journal_begin_ordered_truncate() since there's no
125 * outstanding writes we need to flush.
126 */
127 if (!EXT4_I(inode)->jinode)
128 return 0;
129 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
130 EXT4_I(inode)->jinode,
131 new_size);
678aaf48
JK
132}
133
64769240 134static void ext4_invalidatepage(struct page *page, unsigned long offset);
cb20d518
TT
135static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
136 struct buffer_head *bh_result, int create);
137static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
138static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
139static int __ext4_journalled_writepage(struct page *page, unsigned int len);
140static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
5f163cc7
ES
141static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
142 struct inode *inode, struct page *page, loff_t from,
143 loff_t length, int flags);
64769240 144
ac27a0ec
DK
145/*
146 * Test whether an inode is a fast symlink.
147 */
617ba13b 148static int ext4_inode_is_fast_symlink(struct inode *inode)
ac27a0ec 149{
617ba13b 150 int ea_blocks = EXT4_I(inode)->i_file_acl ?
ac27a0ec
DK
151 (inode->i_sb->s_blocksize >> 9) : 0;
152
153 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
154}
155
ac27a0ec
DK
156/*
157 * Restart the transaction associated with *handle. This does a commit,
158 * so before we call here everything must be consistently dirtied against
159 * this transaction.
160 */
fa5d1113 161int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
487caeef 162 int nblocks)
ac27a0ec 163{
487caeef
JK
164 int ret;
165
166 /*
e35fd660 167 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
487caeef
JK
168 * moment, get_block can be called only for blocks inside i_size since
169 * page cache has been already dropped and writes are blocked by
170 * i_mutex. So we can safely drop the i_data_sem here.
171 */
0390131b 172 BUG_ON(EXT4_JOURNAL(inode) == NULL);
ac27a0ec 173 jbd_debug(2, "restarting handle %p\n", handle);
487caeef 174 up_write(&EXT4_I(inode)->i_data_sem);
8e8eaabe 175 ret = ext4_journal_restart(handle, nblocks);
487caeef 176 down_write(&EXT4_I(inode)->i_data_sem);
fa5d1113 177 ext4_discard_preallocations(inode);
487caeef
JK
178
179 return ret;
ac27a0ec
DK
180}
181
182/*
183 * Called at the last iput() if i_nlink is zero.
184 */
0930fcc1 185void ext4_evict_inode(struct inode *inode)
ac27a0ec
DK
186{
187 handle_t *handle;
bc965ab3 188 int err;
ac27a0ec 189
7ff9c073 190 trace_ext4_evict_inode(inode);
2581fdc8 191
2581fdc8
JZ
192 ext4_ioend_wait(inode);
193
0930fcc1 194 if (inode->i_nlink) {
2d859db3
JK
195 /*
196 * When journalling data dirty buffers are tracked only in the
197 * journal. So although mm thinks everything is clean and
198 * ready for reaping the inode might still have some pages to
199 * write in the running transaction or waiting to be
200 * checkpointed. Thus calling jbd2_journal_invalidatepage()
201 * (via truncate_inode_pages()) to discard these buffers can
202 * cause data loss. Also even if we did not discard these
203 * buffers, we would have no way to find them after the inode
204 * is reaped and thus user could see stale data if he tries to
205 * read them before the transaction is checkpointed. So be
206 * careful and force everything to disk here... We use
207 * ei->i_datasync_tid to store the newest transaction
208 * containing inode's data.
209 *
210 * Note that directories do not have this problem because they
211 * don't use page cache.
212 */
213 if (ext4_should_journal_data(inode) &&
214 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) {
215 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
216 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
217
218 jbd2_log_start_commit(journal, commit_tid);
219 jbd2_log_wait_commit(journal, commit_tid);
220 filemap_write_and_wait(&inode->i_data);
221 }
0930fcc1
AV
222 truncate_inode_pages(&inode->i_data, 0);
223 goto no_delete;
224 }
225
907f4554 226 if (!is_bad_inode(inode))
871a2931 227 dquot_initialize(inode);
907f4554 228
678aaf48
JK
229 if (ext4_should_order_data(inode))
230 ext4_begin_ordered_truncate(inode, 0);
ac27a0ec
DK
231 truncate_inode_pages(&inode->i_data, 0);
232
233 if (is_bad_inode(inode))
234 goto no_delete;
235
8e8ad8a5
JK
236 /*
237 * Protect us against freezing - iput() caller didn't have to have any
238 * protection against it
239 */
240 sb_start_intwrite(inode->i_sb);
9f125d64 241 handle = ext4_journal_start(inode, ext4_blocks_for_truncate(inode)+3);
ac27a0ec 242 if (IS_ERR(handle)) {
bc965ab3 243 ext4_std_error(inode->i_sb, PTR_ERR(handle));
ac27a0ec
DK
244 /*
245 * If we're going to skip the normal cleanup, we still need to
246 * make sure that the in-core orphan linked list is properly
247 * cleaned up.
248 */
617ba13b 249 ext4_orphan_del(NULL, inode);
8e8ad8a5 250 sb_end_intwrite(inode->i_sb);
ac27a0ec
DK
251 goto no_delete;
252 }
253
254 if (IS_SYNC(inode))
0390131b 255 ext4_handle_sync(handle);
ac27a0ec 256 inode->i_size = 0;
bc965ab3
TT
257 err = ext4_mark_inode_dirty(handle, inode);
258 if (err) {
12062ddd 259 ext4_warning(inode->i_sb,
bc965ab3
TT
260 "couldn't mark inode dirty (err %d)", err);
261 goto stop_handle;
262 }
ac27a0ec 263 if (inode->i_blocks)
617ba13b 264 ext4_truncate(inode);
bc965ab3
TT
265
266 /*
267 * ext4_ext_truncate() doesn't reserve any slop when it
268 * restarts journal transactions; therefore there may not be
269 * enough credits left in the handle to remove the inode from
270 * the orphan list and set the dtime field.
271 */
0390131b 272 if (!ext4_handle_has_enough_credits(handle, 3)) {
bc965ab3
TT
273 err = ext4_journal_extend(handle, 3);
274 if (err > 0)
275 err = ext4_journal_restart(handle, 3);
276 if (err != 0) {
12062ddd 277 ext4_warning(inode->i_sb,
bc965ab3
TT
278 "couldn't extend journal (err %d)", err);
279 stop_handle:
280 ext4_journal_stop(handle);
45388219 281 ext4_orphan_del(NULL, inode);
8e8ad8a5 282 sb_end_intwrite(inode->i_sb);
bc965ab3
TT
283 goto no_delete;
284 }
285 }
286
ac27a0ec 287 /*
617ba13b 288 * Kill off the orphan record which ext4_truncate created.
ac27a0ec 289 * AKPM: I think this can be inside the above `if'.
617ba13b 290 * Note that ext4_orphan_del() has to be able to cope with the
ac27a0ec 291 * deletion of a non-existent orphan - this is because we don't
617ba13b 292 * know if ext4_truncate() actually created an orphan record.
ac27a0ec
DK
293 * (Well, we could do this if we need to, but heck - it works)
294 */
617ba13b
MC
295 ext4_orphan_del(handle, inode);
296 EXT4_I(inode)->i_dtime = get_seconds();
ac27a0ec
DK
297
298 /*
299 * One subtle ordering requirement: if anything has gone wrong
300 * (transaction abort, IO errors, whatever), then we can still
301 * do these next steps (the fs will already have been marked as
302 * having errors), but we can't free the inode if the mark_dirty
303 * fails.
304 */
617ba13b 305 if (ext4_mark_inode_dirty(handle, inode))
ac27a0ec 306 /* If that failed, just do the required in-core inode clear. */
0930fcc1 307 ext4_clear_inode(inode);
ac27a0ec 308 else
617ba13b
MC
309 ext4_free_inode(handle, inode);
310 ext4_journal_stop(handle);
8e8ad8a5 311 sb_end_intwrite(inode->i_sb);
ac27a0ec
DK
312 return;
313no_delete:
0930fcc1 314 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
ac27a0ec
DK
315}
316
a9e7f447
DM
317#ifdef CONFIG_QUOTA
318qsize_t *ext4_get_reserved_space(struct inode *inode)
60e58e0f 319{
a9e7f447 320 return &EXT4_I(inode)->i_reserved_quota;
60e58e0f 321}
a9e7f447 322#endif
9d0be502 323
12219aea
AK
324/*
325 * Calculate the number of metadata blocks need to reserve
9d0be502 326 * to allocate a block located at @lblock
12219aea 327 */
01f49d0b 328static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
12219aea 329{
12e9b892 330 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
9d0be502 331 return ext4_ext_calc_metadata_amount(inode, lblock);
12219aea 332
8bb2b247 333 return ext4_ind_calc_metadata_amount(inode, lblock);
12219aea
AK
334}
335
0637c6f4
TT
336/*
337 * Called with i_data_sem down, which is important since we can call
338 * ext4_discard_preallocations() from here.
339 */
5f634d06
AK
340void ext4_da_update_reserve_space(struct inode *inode,
341 int used, int quota_claim)
12219aea
AK
342{
343 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 344 struct ext4_inode_info *ei = EXT4_I(inode);
0637c6f4
TT
345
346 spin_lock(&ei->i_block_reservation_lock);
d8990240 347 trace_ext4_da_update_reserve_space(inode, used, quota_claim);
0637c6f4
TT
348 if (unlikely(used > ei->i_reserved_data_blocks)) {
349 ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d "
1084f252 350 "with only %d reserved data blocks",
0637c6f4
TT
351 __func__, inode->i_ino, used,
352 ei->i_reserved_data_blocks);
353 WARN_ON(1);
354 used = ei->i_reserved_data_blocks;
355 }
12219aea 356
97795d2a
BF
357 if (unlikely(ei->i_allocated_meta_blocks > ei->i_reserved_meta_blocks)) {
358 ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, allocated %d "
359 "with only %d reserved metadata blocks\n", __func__,
360 inode->i_ino, ei->i_allocated_meta_blocks,
361 ei->i_reserved_meta_blocks);
362 WARN_ON(1);
363 ei->i_allocated_meta_blocks = ei->i_reserved_meta_blocks;
364 }
365
0637c6f4
TT
366 /* Update per-inode reservations */
367 ei->i_reserved_data_blocks -= used;
0637c6f4 368 ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
57042651 369 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
72b8ab9d 370 used + ei->i_allocated_meta_blocks);
0637c6f4 371 ei->i_allocated_meta_blocks = 0;
6bc6e63f 372
0637c6f4
TT
373 if (ei->i_reserved_data_blocks == 0) {
374 /*
375 * We can release all of the reserved metadata blocks
376 * only when we have written all of the delayed
377 * allocation blocks.
378 */
57042651 379 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
72b8ab9d 380 ei->i_reserved_meta_blocks);
ee5f4d9c 381 ei->i_reserved_meta_blocks = 0;
9d0be502 382 ei->i_da_metadata_calc_len = 0;
6bc6e63f 383 }
12219aea 384 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f 385
72b8ab9d
ES
386 /* Update quota subsystem for data blocks */
387 if (quota_claim)
7b415bf6 388 dquot_claim_block(inode, EXT4_C2B(sbi, used));
72b8ab9d 389 else {
5f634d06
AK
390 /*
391 * We did fallocate with an offset that is already delayed
392 * allocated. So on delayed allocated writeback we should
72b8ab9d 393 * not re-claim the quota for fallocated blocks.
5f634d06 394 */
7b415bf6 395 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
5f634d06 396 }
d6014301
AK
397
398 /*
399 * If we have done all the pending block allocations and if
400 * there aren't any writers on the inode, we can discard the
401 * inode's preallocations.
402 */
0637c6f4
TT
403 if ((ei->i_reserved_data_blocks == 0) &&
404 (atomic_read(&inode->i_writecount) == 0))
d6014301 405 ext4_discard_preallocations(inode);
12219aea
AK
406}
407
e29136f8 408static int __check_block_validity(struct inode *inode, const char *func,
c398eda0
TT
409 unsigned int line,
410 struct ext4_map_blocks *map)
6fd058f7 411{
24676da4
TT
412 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
413 map->m_len)) {
c398eda0
TT
414 ext4_error_inode(inode, func, line, map->m_pblk,
415 "lblock %lu mapped to illegal pblock "
416 "(length %d)", (unsigned long) map->m_lblk,
417 map->m_len);
6fd058f7
TT
418 return -EIO;
419 }
420 return 0;
421}
422
e29136f8 423#define check_block_validity(inode, map) \
c398eda0 424 __check_block_validity((inode), __func__, __LINE__, (map))
e29136f8 425
55138e0b 426/*
1f94533d
TT
427 * Return the number of contiguous dirty pages in a given inode
428 * starting at page frame idx.
55138e0b
TT
429 */
430static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
431 unsigned int max_pages)
432{
433 struct address_space *mapping = inode->i_mapping;
434 pgoff_t index;
435 struct pagevec pvec;
436 pgoff_t num = 0;
437 int i, nr_pages, done = 0;
438
439 if (max_pages == 0)
440 return 0;
441 pagevec_init(&pvec, 0);
442 while (!done) {
443 index = idx;
444 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
445 PAGECACHE_TAG_DIRTY,
446 (pgoff_t)PAGEVEC_SIZE);
447 if (nr_pages == 0)
448 break;
449 for (i = 0; i < nr_pages; i++) {
450 struct page *page = pvec.pages[i];
451 struct buffer_head *bh, *head;
452
453 lock_page(page);
454 if (unlikely(page->mapping != mapping) ||
455 !PageDirty(page) ||
456 PageWriteback(page) ||
457 page->index != idx) {
458 done = 1;
459 unlock_page(page);
460 break;
461 }
1f94533d
TT
462 if (page_has_buffers(page)) {
463 bh = head = page_buffers(page);
464 do {
465 if (!buffer_delay(bh) &&
466 !buffer_unwritten(bh))
467 done = 1;
468 bh = bh->b_this_page;
469 } while (!done && (bh != head));
470 }
55138e0b
TT
471 unlock_page(page);
472 if (done)
473 break;
474 idx++;
475 num++;
659c6009
ES
476 if (num >= max_pages) {
477 done = 1;
55138e0b 478 break;
659c6009 479 }
55138e0b
TT
480 }
481 pagevec_release(&pvec);
482 }
483 return num;
484}
485
f5ab0d1f 486/*
e35fd660 487 * The ext4_map_blocks() function tries to look up the requested blocks,
2b2d6d01 488 * and returns if the blocks are already mapped.
f5ab0d1f 489 *
f5ab0d1f
MC
490 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
491 * and store the allocated blocks in the result buffer head and mark it
492 * mapped.
493 *
e35fd660
TT
494 * If file type is extents based, it will call ext4_ext_map_blocks(),
495 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
f5ab0d1f
MC
496 * based files
497 *
498 * On success, it returns the number of blocks being mapped or allocate.
499 * if create==0 and the blocks are pre-allocated and uninitialized block,
500 * the result buffer head is unmapped. If the create ==1, it will make sure
501 * the buffer head is mapped.
502 *
503 * It returns 0 if plain look up failed (blocks have not been allocated), in
df3ab170 504 * that case, buffer head is unmapped
f5ab0d1f
MC
505 *
506 * It returns the error in case of allocation failure.
507 */
e35fd660
TT
508int ext4_map_blocks(handle_t *handle, struct inode *inode,
509 struct ext4_map_blocks *map, int flags)
0e855ac8
AK
510{
511 int retval;
f5ab0d1f 512
e35fd660
TT
513 map->m_flags = 0;
514 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
515 "logical block %lu\n", inode->i_ino, flags, map->m_len,
516 (unsigned long) map->m_lblk);
4df3d265 517 /*
b920c755
TT
518 * Try to see if we can get the block without requesting a new
519 * file system block.
4df3d265 520 */
729f52c6
ZL
521 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
522 down_read((&EXT4_I(inode)->i_data_sem));
12e9b892 523 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
a4e5d88b
DM
524 retval = ext4_ext_map_blocks(handle, inode, map, flags &
525 EXT4_GET_BLOCKS_KEEP_SIZE);
0e855ac8 526 } else {
a4e5d88b
DM
527 retval = ext4_ind_map_blocks(handle, inode, map, flags &
528 EXT4_GET_BLOCKS_KEEP_SIZE);
0e855ac8 529 }
729f52c6
ZL
530 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
531 up_read((&EXT4_I(inode)->i_data_sem));
f5ab0d1f 532
e35fd660 533 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
51865fda
ZL
534 int ret;
535 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
536 /* delayed alloc may be allocated by fallocate and
537 * coverted to initialized by directIO.
538 * we need to handle delayed extent here.
539 */
540 down_write((&EXT4_I(inode)->i_data_sem));
541 goto delayed_mapped;
542 }
543 ret = check_block_validity(inode, map);
6fd058f7
TT
544 if (ret != 0)
545 return ret;
546 }
547
f5ab0d1f 548 /* If it is only a block(s) look up */
c2177057 549 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
f5ab0d1f
MC
550 return retval;
551
552 /*
553 * Returns if the blocks have already allocated
554 *
555 * Note that if blocks have been preallocated
df3ab170 556 * ext4_ext_get_block() returns the create = 0
f5ab0d1f
MC
557 * with buffer head unmapped.
558 */
e35fd660 559 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
4df3d265
AK
560 return retval;
561
2a8964d6
AK
562 /*
563 * When we call get_blocks without the create flag, the
564 * BH_Unwritten flag could have gotten set if the blocks
565 * requested were part of a uninitialized extent. We need to
566 * clear this flag now that we are committed to convert all or
567 * part of the uninitialized extent to be an initialized
568 * extent. This is because we need to avoid the combination
569 * of BH_Unwritten and BH_Mapped flags being simultaneously
570 * set on the buffer_head.
571 */
e35fd660 572 map->m_flags &= ~EXT4_MAP_UNWRITTEN;
2a8964d6 573
4df3d265 574 /*
f5ab0d1f
MC
575 * New blocks allocate and/or writing to uninitialized extent
576 * will possibly result in updating i_data, so we take
577 * the write lock of i_data_sem, and call get_blocks()
578 * with create == 1 flag.
4df3d265
AK
579 */
580 down_write((&EXT4_I(inode)->i_data_sem));
d2a17637
MC
581
582 /*
583 * if the caller is from delayed allocation writeout path
584 * we have already reserved fs blocks for allocation
585 * let the underlying get_block() function know to
586 * avoid double accounting
587 */
c2177057 588 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
f2321097 589 ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
4df3d265
AK
590 /*
591 * We need to check for EXT4 here because migrate
592 * could have changed the inode type in between
593 */
12e9b892 594 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
e35fd660 595 retval = ext4_ext_map_blocks(handle, inode, map, flags);
0e855ac8 596 } else {
e35fd660 597 retval = ext4_ind_map_blocks(handle, inode, map, flags);
267e4db9 598
e35fd660 599 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
267e4db9
AK
600 /*
601 * We allocated new blocks which will result in
602 * i_data's format changing. Force the migrate
603 * to fail by clearing migrate flags
604 */
19f5fb7a 605 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
267e4db9 606 }
d2a17637 607
5f634d06
AK
608 /*
609 * Update reserved blocks/metadata blocks after successful
610 * block allocation which had been deferred till now. We don't
611 * support fallocate for non extent files. So we can update
612 * reserve space here.
613 */
614 if ((retval > 0) &&
1296cc85 615 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
5f634d06
AK
616 ext4_da_update_reserve_space(inode, retval, 1);
617 }
5356f261 618 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
f2321097 619 ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
2ac3b6e0 620
51865fda
ZL
621 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
622 int ret;
51865fda
ZL
623delayed_mapped:
624 /* delayed allocation blocks has been allocated */
625 ret = ext4_es_remove_extent(inode, map->m_lblk,
626 map->m_len);
627 if (ret < 0)
628 retval = ret;
629 }
5356f261
AK
630 }
631
4df3d265 632 up_write((&EXT4_I(inode)->i_data_sem));
e35fd660 633 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
e29136f8 634 int ret = check_block_validity(inode, map);
6fd058f7
TT
635 if (ret != 0)
636 return ret;
637 }
0e855ac8
AK
638 return retval;
639}
640
f3bd1f3f
MC
641/* Maximum number of blocks we map for direct IO at once. */
642#define DIO_MAX_BLOCKS 4096
643
2ed88685
TT
644static int _ext4_get_block(struct inode *inode, sector_t iblock,
645 struct buffer_head *bh, int flags)
ac27a0ec 646{
3e4fdaf8 647 handle_t *handle = ext4_journal_current_handle();
2ed88685 648 struct ext4_map_blocks map;
7fb5409d 649 int ret = 0, started = 0;
f3bd1f3f 650 int dio_credits;
ac27a0ec 651
46c7f254
TM
652 if (ext4_has_inline_data(inode))
653 return -ERANGE;
654
2ed88685
TT
655 map.m_lblk = iblock;
656 map.m_len = bh->b_size >> inode->i_blkbits;
657
8b0f165f 658 if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
7fb5409d 659 /* Direct IO write... */
2ed88685
TT
660 if (map.m_len > DIO_MAX_BLOCKS)
661 map.m_len = DIO_MAX_BLOCKS;
662 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
f3bd1f3f 663 handle = ext4_journal_start(inode, dio_credits);
7fb5409d 664 if (IS_ERR(handle)) {
ac27a0ec 665 ret = PTR_ERR(handle);
2ed88685 666 return ret;
ac27a0ec 667 }
7fb5409d 668 started = 1;
ac27a0ec
DK
669 }
670
2ed88685 671 ret = ext4_map_blocks(handle, inode, &map, flags);
7fb5409d 672 if (ret > 0) {
2ed88685
TT
673 map_bh(bh, inode->i_sb, map.m_pblk);
674 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
675 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
7fb5409d 676 ret = 0;
ac27a0ec 677 }
7fb5409d
JK
678 if (started)
679 ext4_journal_stop(handle);
ac27a0ec
DK
680 return ret;
681}
682
2ed88685
TT
683int ext4_get_block(struct inode *inode, sector_t iblock,
684 struct buffer_head *bh, int create)
685{
686 return _ext4_get_block(inode, iblock, bh,
687 create ? EXT4_GET_BLOCKS_CREATE : 0);
688}
689
ac27a0ec
DK
690/*
691 * `handle' can be NULL if create is zero
692 */
617ba13b 693struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
725d26d3 694 ext4_lblk_t block, int create, int *errp)
ac27a0ec 695{
2ed88685
TT
696 struct ext4_map_blocks map;
697 struct buffer_head *bh;
ac27a0ec
DK
698 int fatal = 0, err;
699
700 J_ASSERT(handle != NULL || create == 0);
701
2ed88685
TT
702 map.m_lblk = block;
703 map.m_len = 1;
704 err = ext4_map_blocks(handle, inode, &map,
705 create ? EXT4_GET_BLOCKS_CREATE : 0);
ac27a0ec 706
90b0a973
CM
707 /* ensure we send some value back into *errp */
708 *errp = 0;
709
2ed88685
TT
710 if (err < 0)
711 *errp = err;
712 if (err <= 0)
713 return NULL;
2ed88685
TT
714
715 bh = sb_getblk(inode->i_sb, map.m_pblk);
716 if (!bh) {
717 *errp = -EIO;
718 return NULL;
ac27a0ec 719 }
2ed88685
TT
720 if (map.m_flags & EXT4_MAP_NEW) {
721 J_ASSERT(create != 0);
722 J_ASSERT(handle != NULL);
ac27a0ec 723
2ed88685
TT
724 /*
725 * Now that we do not always journal data, we should
726 * keep in mind whether this should always journal the
727 * new buffer as metadata. For now, regular file
728 * writes use ext4_get_block instead, so it's not a
729 * problem.
730 */
731 lock_buffer(bh);
732 BUFFER_TRACE(bh, "call get_create_access");
733 fatal = ext4_journal_get_create_access(handle, bh);
734 if (!fatal && !buffer_uptodate(bh)) {
735 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
736 set_buffer_uptodate(bh);
ac27a0ec 737 }
2ed88685
TT
738 unlock_buffer(bh);
739 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
740 err = ext4_handle_dirty_metadata(handle, inode, bh);
741 if (!fatal)
742 fatal = err;
743 } else {
744 BUFFER_TRACE(bh, "not a new buffer");
ac27a0ec 745 }
2ed88685
TT
746 if (fatal) {
747 *errp = fatal;
748 brelse(bh);
749 bh = NULL;
750 }
751 return bh;
ac27a0ec
DK
752}
753
617ba13b 754struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
725d26d3 755 ext4_lblk_t block, int create, int *err)
ac27a0ec 756{
af5bc92d 757 struct buffer_head *bh;
ac27a0ec 758
617ba13b 759 bh = ext4_getblk(handle, inode, block, create, err);
ac27a0ec
DK
760 if (!bh)
761 return bh;
762 if (buffer_uptodate(bh))
763 return bh;
65299a3b 764 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
ac27a0ec
DK
765 wait_on_buffer(bh);
766 if (buffer_uptodate(bh))
767 return bh;
768 put_bh(bh);
769 *err = -EIO;
770 return NULL;
771}
772
f19d5870
TM
773int ext4_walk_page_buffers(handle_t *handle,
774 struct buffer_head *head,
775 unsigned from,
776 unsigned to,
777 int *partial,
778 int (*fn)(handle_t *handle,
779 struct buffer_head *bh))
ac27a0ec
DK
780{
781 struct buffer_head *bh;
782 unsigned block_start, block_end;
783 unsigned blocksize = head->b_size;
784 int err, ret = 0;
785 struct buffer_head *next;
786
af5bc92d
TT
787 for (bh = head, block_start = 0;
788 ret == 0 && (bh != head || !block_start);
de9a55b8 789 block_start = block_end, bh = next) {
ac27a0ec
DK
790 next = bh->b_this_page;
791 block_end = block_start + blocksize;
792 if (block_end <= from || block_start >= to) {
793 if (partial && !buffer_uptodate(bh))
794 *partial = 1;
795 continue;
796 }
797 err = (*fn)(handle, bh);
798 if (!ret)
799 ret = err;
800 }
801 return ret;
802}
803
804/*
805 * To preserve ordering, it is essential that the hole instantiation and
806 * the data write be encapsulated in a single transaction. We cannot
617ba13b 807 * close off a transaction and start a new one between the ext4_get_block()
dab291af 808 * and the commit_write(). So doing the jbd2_journal_start at the start of
ac27a0ec
DK
809 * prepare_write() is the right place.
810 *
617ba13b
MC
811 * Also, this function can nest inside ext4_writepage() ->
812 * block_write_full_page(). In that case, we *know* that ext4_writepage()
ac27a0ec
DK
813 * has generated enough buffer credits to do the whole page. So we won't
814 * block on the journal in that case, which is good, because the caller may
815 * be PF_MEMALLOC.
816 *
617ba13b 817 * By accident, ext4 can be reentered when a transaction is open via
ac27a0ec
DK
818 * quota file writes. If we were to commit the transaction while thus
819 * reentered, there can be a deadlock - we would be holding a quota
820 * lock, and the commit would never complete if another thread had a
821 * transaction open and was blocking on the quota lock - a ranking
822 * violation.
823 *
dab291af 824 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
ac27a0ec
DK
825 * will _not_ run commit under these circumstances because handle->h_ref
826 * is elevated. We'll still have enough credits for the tiny quotafile
827 * write.
828 */
f19d5870
TM
829int do_journal_get_write_access(handle_t *handle,
830 struct buffer_head *bh)
ac27a0ec 831{
56d35a4c
JK
832 int dirty = buffer_dirty(bh);
833 int ret;
834
ac27a0ec
DK
835 if (!buffer_mapped(bh) || buffer_freed(bh))
836 return 0;
56d35a4c 837 /*
ebdec241 838 * __block_write_begin() could have dirtied some buffers. Clean
56d35a4c
JK
839 * the dirty bit as jbd2_journal_get_write_access() could complain
840 * otherwise about fs integrity issues. Setting of the dirty bit
ebdec241 841 * by __block_write_begin() isn't a real problem here as we clear
56d35a4c
JK
842 * the bit before releasing a page lock and thus writeback cannot
843 * ever write the buffer.
844 */
845 if (dirty)
846 clear_buffer_dirty(bh);
847 ret = ext4_journal_get_write_access(handle, bh);
848 if (!ret && dirty)
849 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
850 return ret;
ac27a0ec
DK
851}
852
8b0f165f
AP
853static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
854 struct buffer_head *bh_result, int create);
bfc1af65 855static int ext4_write_begin(struct file *file, struct address_space *mapping,
de9a55b8
TT
856 loff_t pos, unsigned len, unsigned flags,
857 struct page **pagep, void **fsdata)
ac27a0ec 858{
af5bc92d 859 struct inode *inode = mapping->host;
1938a150 860 int ret, needed_blocks;
ac27a0ec
DK
861 handle_t *handle;
862 int retries = 0;
af5bc92d 863 struct page *page;
de9a55b8 864 pgoff_t index;
af5bc92d 865 unsigned from, to;
bfc1af65 866
9bffad1e 867 trace_ext4_write_begin(inode, pos, len, flags);
1938a150
AK
868 /*
869 * Reserve one block more for addition to orphan list in case
870 * we allocate blocks but write fails for some reason
871 */
872 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
de9a55b8 873 index = pos >> PAGE_CACHE_SHIFT;
af5bc92d
TT
874 from = pos & (PAGE_CACHE_SIZE - 1);
875 to = from + len;
ac27a0ec 876
f19d5870
TM
877 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
878 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
879 flags, pagep);
880 if (ret < 0)
881 goto out;
882 if (ret == 1) {
883 ret = 0;
884 goto out;
885 }
886 }
887
ac27a0ec 888retry:
af5bc92d
TT
889 handle = ext4_journal_start(inode, needed_blocks);
890 if (IS_ERR(handle)) {
891 ret = PTR_ERR(handle);
892 goto out;
7479d2b9 893 }
ac27a0ec 894
ebd3610b
JK
895 /* We cannot recurse into the filesystem as the transaction is already
896 * started */
897 flags |= AOP_FLAG_NOFS;
898
54566b2c 899 page = grab_cache_page_write_begin(mapping, index, flags);
cf108bca
JK
900 if (!page) {
901 ext4_journal_stop(handle);
902 ret = -ENOMEM;
903 goto out;
904 }
f19d5870 905
cf108bca
JK
906 *pagep = page;
907
744692dc 908 if (ext4_should_dioread_nolock(inode))
6e1db88d 909 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
744692dc 910 else
6e1db88d 911 ret = __block_write_begin(page, pos, len, ext4_get_block);
bfc1af65
NP
912
913 if (!ret && ext4_should_journal_data(inode)) {
f19d5870
TM
914 ret = ext4_walk_page_buffers(handle, page_buffers(page),
915 from, to, NULL,
916 do_journal_get_write_access);
ac27a0ec 917 }
bfc1af65
NP
918
919 if (ret) {
af5bc92d 920 unlock_page(page);
af5bc92d 921 page_cache_release(page);
ae4d5372 922 /*
6e1db88d 923 * __block_write_begin may have instantiated a few blocks
ae4d5372
AK
924 * outside i_size. Trim these off again. Don't need
925 * i_size_read because we hold i_mutex.
1938a150
AK
926 *
927 * Add inode to orphan list in case we crash before
928 * truncate finishes
ae4d5372 929 */
ffacfa7a 930 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1938a150
AK
931 ext4_orphan_add(handle, inode);
932
933 ext4_journal_stop(handle);
934 if (pos + len > inode->i_size) {
b9a4207d 935 ext4_truncate_failed_write(inode);
de9a55b8 936 /*
ffacfa7a 937 * If truncate failed early the inode might
1938a150
AK
938 * still be on the orphan list; we need to
939 * make sure the inode is removed from the
940 * orphan list in that case.
941 */
942 if (inode->i_nlink)
943 ext4_orphan_del(NULL, inode);
944 }
bfc1af65
NP
945 }
946
617ba13b 947 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
ac27a0ec 948 goto retry;
7479d2b9 949out:
ac27a0ec
DK
950 return ret;
951}
952
bfc1af65
NP
953/* For write_end() in data=journal mode */
954static int write_end_fn(handle_t *handle, struct buffer_head *bh)
ac27a0ec
DK
955{
956 if (!buffer_mapped(bh) || buffer_freed(bh))
957 return 0;
958 set_buffer_uptodate(bh);
0390131b 959 return ext4_handle_dirty_metadata(handle, NULL, bh);
ac27a0ec
DK
960}
961
f8514083 962static int ext4_generic_write_end(struct file *file,
de9a55b8
TT
963 struct address_space *mapping,
964 loff_t pos, unsigned len, unsigned copied,
965 struct page *page, void *fsdata)
f8514083
AK
966{
967 int i_size_changed = 0;
968 struct inode *inode = mapping->host;
969 handle_t *handle = ext4_journal_current_handle();
970
f19d5870
TM
971 if (ext4_has_inline_data(inode))
972 copied = ext4_write_inline_data_end(inode, pos, len,
973 copied, page);
974 else
975 copied = block_write_end(file, mapping, pos,
976 len, copied, page, fsdata);
f8514083
AK
977
978 /*
979 * No need to use i_size_read() here, the i_size
980 * cannot change under us because we hold i_mutex.
981 *
982 * But it's important to update i_size while still holding page lock:
983 * page writeout could otherwise come in and zero beyond i_size.
984 */
985 if (pos + copied > inode->i_size) {
986 i_size_write(inode, pos + copied);
987 i_size_changed = 1;
988 }
989
990 if (pos + copied > EXT4_I(inode)->i_disksize) {
991 /* We need to mark inode dirty even if
992 * new_i_size is less that inode->i_size
993 * bu greater than i_disksize.(hint delalloc)
994 */
995 ext4_update_i_disksize(inode, (pos + copied));
996 i_size_changed = 1;
997 }
998 unlock_page(page);
999 page_cache_release(page);
1000
1001 /*
1002 * Don't mark the inode dirty under page lock. First, it unnecessarily
1003 * makes the holding time of page lock longer. Second, it forces lock
1004 * ordering of page lock and transaction start for journaling
1005 * filesystems.
1006 */
1007 if (i_size_changed)
1008 ext4_mark_inode_dirty(handle, inode);
1009
1010 return copied;
1011}
1012
ac27a0ec
DK
1013/*
1014 * We need to pick up the new inode size which generic_commit_write gave us
1015 * `file' can be NULL - eg, when called from page_symlink().
1016 *
617ba13b 1017 * ext4 never places buffers on inode->i_mapping->private_list. metadata
ac27a0ec
DK
1018 * buffers are managed internally.
1019 */
bfc1af65 1020static int ext4_ordered_write_end(struct file *file,
de9a55b8
TT
1021 struct address_space *mapping,
1022 loff_t pos, unsigned len, unsigned copied,
1023 struct page *page, void *fsdata)
ac27a0ec 1024{
617ba13b 1025 handle_t *handle = ext4_journal_current_handle();
cf108bca 1026 struct inode *inode = mapping->host;
ac27a0ec
DK
1027 int ret = 0, ret2;
1028
9bffad1e 1029 trace_ext4_ordered_write_end(inode, pos, len, copied);
678aaf48 1030 ret = ext4_jbd2_file_inode(handle, inode);
ac27a0ec
DK
1031
1032 if (ret == 0) {
f8514083 1033 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
bfc1af65 1034 page, fsdata);
f8a87d89 1035 copied = ret2;
ffacfa7a 1036 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1037 /* if we have allocated more blocks and copied
1038 * less. We will have blocks allocated outside
1039 * inode->i_size. So truncate them
1040 */
1041 ext4_orphan_add(handle, inode);
f8a87d89
RK
1042 if (ret2 < 0)
1043 ret = ret2;
09e0834f
AF
1044 } else {
1045 unlock_page(page);
1046 page_cache_release(page);
ac27a0ec 1047 }
09e0834f 1048
617ba13b 1049 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1050 if (!ret)
1051 ret = ret2;
bfc1af65 1052
f8514083 1053 if (pos + len > inode->i_size) {
b9a4207d 1054 ext4_truncate_failed_write(inode);
de9a55b8 1055 /*
ffacfa7a 1056 * If truncate failed early the inode might still be
f8514083
AK
1057 * on the orphan list; we need to make sure the inode
1058 * is removed from the orphan list in that case.
1059 */
1060 if (inode->i_nlink)
1061 ext4_orphan_del(NULL, inode);
1062 }
1063
1064
bfc1af65 1065 return ret ? ret : copied;
ac27a0ec
DK
1066}
1067
bfc1af65 1068static int ext4_writeback_write_end(struct file *file,
de9a55b8
TT
1069 struct address_space *mapping,
1070 loff_t pos, unsigned len, unsigned copied,
1071 struct page *page, void *fsdata)
ac27a0ec 1072{
617ba13b 1073 handle_t *handle = ext4_journal_current_handle();
cf108bca 1074 struct inode *inode = mapping->host;
ac27a0ec 1075 int ret = 0, ret2;
ac27a0ec 1076
9bffad1e 1077 trace_ext4_writeback_write_end(inode, pos, len, copied);
f8514083 1078 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
bfc1af65 1079 page, fsdata);
f8a87d89 1080 copied = ret2;
ffacfa7a 1081 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1082 /* if we have allocated more blocks and copied
1083 * less. We will have blocks allocated outside
1084 * inode->i_size. So truncate them
1085 */
1086 ext4_orphan_add(handle, inode);
1087
f8a87d89
RK
1088 if (ret2 < 0)
1089 ret = ret2;
ac27a0ec 1090
617ba13b 1091 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1092 if (!ret)
1093 ret = ret2;
bfc1af65 1094
f8514083 1095 if (pos + len > inode->i_size) {
b9a4207d 1096 ext4_truncate_failed_write(inode);
de9a55b8 1097 /*
ffacfa7a 1098 * If truncate failed early the inode might still be
f8514083
AK
1099 * on the orphan list; we need to make sure the inode
1100 * is removed from the orphan list in that case.
1101 */
1102 if (inode->i_nlink)
1103 ext4_orphan_del(NULL, inode);
1104 }
1105
bfc1af65 1106 return ret ? ret : copied;
ac27a0ec
DK
1107}
1108
bfc1af65 1109static int ext4_journalled_write_end(struct file *file,
de9a55b8
TT
1110 struct address_space *mapping,
1111 loff_t pos, unsigned len, unsigned copied,
1112 struct page *page, void *fsdata)
ac27a0ec 1113{
617ba13b 1114 handle_t *handle = ext4_journal_current_handle();
bfc1af65 1115 struct inode *inode = mapping->host;
ac27a0ec
DK
1116 int ret = 0, ret2;
1117 int partial = 0;
bfc1af65 1118 unsigned from, to;
cf17fea6 1119 loff_t new_i_size;
ac27a0ec 1120
9bffad1e 1121 trace_ext4_journalled_write_end(inode, pos, len, copied);
bfc1af65
NP
1122 from = pos & (PAGE_CACHE_SIZE - 1);
1123 to = from + len;
1124
441c8508
CW
1125 BUG_ON(!ext4_handle_valid(handle));
1126
3fdcfb66
TM
1127 if (ext4_has_inline_data(inode))
1128 copied = ext4_write_inline_data_end(inode, pos, len,
1129 copied, page);
1130 else {
1131 if (copied < len) {
1132 if (!PageUptodate(page))
1133 copied = 0;
1134 page_zero_new_buffers(page, from+copied, to);
1135 }
ac27a0ec 1136
3fdcfb66
TM
1137 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1138 to, &partial, write_end_fn);
1139 if (!partial)
1140 SetPageUptodate(page);
1141 }
cf17fea6
AK
1142 new_i_size = pos + copied;
1143 if (new_i_size > inode->i_size)
bfc1af65 1144 i_size_write(inode, pos+copied);
19f5fb7a 1145 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2d859db3 1146 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
cf17fea6
AK
1147 if (new_i_size > EXT4_I(inode)->i_disksize) {
1148 ext4_update_i_disksize(inode, new_i_size);
617ba13b 1149 ret2 = ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
1150 if (!ret)
1151 ret = ret2;
1152 }
bfc1af65 1153
cf108bca 1154 unlock_page(page);
f8514083 1155 page_cache_release(page);
ffacfa7a 1156 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1157 /* if we have allocated more blocks and copied
1158 * less. We will have blocks allocated outside
1159 * inode->i_size. So truncate them
1160 */
1161 ext4_orphan_add(handle, inode);
1162
617ba13b 1163 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1164 if (!ret)
1165 ret = ret2;
f8514083 1166 if (pos + len > inode->i_size) {
b9a4207d 1167 ext4_truncate_failed_write(inode);
de9a55b8 1168 /*
ffacfa7a 1169 * If truncate failed early the inode might still be
f8514083
AK
1170 * on the orphan list; we need to make sure the inode
1171 * is removed from the orphan list in that case.
1172 */
1173 if (inode->i_nlink)
1174 ext4_orphan_del(NULL, inode);
1175 }
bfc1af65
NP
1176
1177 return ret ? ret : copied;
ac27a0ec 1178}
d2a17637 1179
9d0be502 1180/*
7b415bf6 1181 * Reserve a single cluster located at lblock
9d0be502 1182 */
01f49d0b 1183static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
d2a17637 1184{
030ba6bc 1185 int retries = 0;
60e58e0f 1186 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 1187 struct ext4_inode_info *ei = EXT4_I(inode);
7b415bf6 1188 unsigned int md_needed;
5dd4056d 1189 int ret;
03179fe9
TT
1190 ext4_lblk_t save_last_lblock;
1191 int save_len;
1192
1193 /*
1194 * We will charge metadata quota at writeout time; this saves
1195 * us from metadata over-estimation, though we may go over by
1196 * a small amount in the end. Here we just reserve for data.
1197 */
1198 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1199 if (ret)
1200 return ret;
d2a17637
MC
1201
1202 /*
1203 * recalculate the amount of metadata blocks to reserve
1204 * in order to allocate nrblocks
1205 * worse case is one extent per block
1206 */
030ba6bc 1207repeat:
0637c6f4 1208 spin_lock(&ei->i_block_reservation_lock);
03179fe9
TT
1209 /*
1210 * ext4_calc_metadata_amount() has side effects, which we have
1211 * to be prepared undo if we fail to claim space.
1212 */
1213 save_len = ei->i_da_metadata_calc_len;
1214 save_last_lblock = ei->i_da_metadata_calc_last_lblock;
7b415bf6
AK
1215 md_needed = EXT4_NUM_B2C(sbi,
1216 ext4_calc_metadata_amount(inode, lblock));
f8ec9d68 1217 trace_ext4_da_reserve_space(inode, md_needed);
d2a17637 1218
72b8ab9d
ES
1219 /*
1220 * We do still charge estimated metadata to the sb though;
1221 * we cannot afford to run out of free blocks.
1222 */
e7d5f315 1223 if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) {
03179fe9
TT
1224 ei->i_da_metadata_calc_len = save_len;
1225 ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1226 spin_unlock(&ei->i_block_reservation_lock);
030ba6bc
AK
1227 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1228 yield();
1229 goto repeat;
1230 }
03179fe9 1231 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
d2a17637
MC
1232 return -ENOSPC;
1233 }
9d0be502 1234 ei->i_reserved_data_blocks++;
0637c6f4
TT
1235 ei->i_reserved_meta_blocks += md_needed;
1236 spin_unlock(&ei->i_block_reservation_lock);
39bc680a 1237
d2a17637
MC
1238 return 0; /* success */
1239}
1240
12219aea 1241static void ext4_da_release_space(struct inode *inode, int to_free)
d2a17637
MC
1242{
1243 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 1244 struct ext4_inode_info *ei = EXT4_I(inode);
d2a17637 1245
cd213226
MC
1246 if (!to_free)
1247 return; /* Nothing to release, exit */
1248
d2a17637 1249 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
cd213226 1250
5a58ec87 1251 trace_ext4_da_release_space(inode, to_free);
0637c6f4 1252 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
cd213226 1253 /*
0637c6f4
TT
1254 * if there aren't enough reserved blocks, then the
1255 * counter is messed up somewhere. Since this
1256 * function is called from invalidate page, it's
1257 * harmless to return without any action.
cd213226 1258 */
0637c6f4
TT
1259 ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: "
1260 "ino %lu, to_free %d with only %d reserved "
1084f252 1261 "data blocks", inode->i_ino, to_free,
0637c6f4
TT
1262 ei->i_reserved_data_blocks);
1263 WARN_ON(1);
1264 to_free = ei->i_reserved_data_blocks;
cd213226 1265 }
0637c6f4 1266 ei->i_reserved_data_blocks -= to_free;
cd213226 1267
0637c6f4
TT
1268 if (ei->i_reserved_data_blocks == 0) {
1269 /*
1270 * We can release all of the reserved metadata blocks
1271 * only when we have written all of the delayed
1272 * allocation blocks.
7b415bf6
AK
1273 * Note that in case of bigalloc, i_reserved_meta_blocks,
1274 * i_reserved_data_blocks, etc. refer to number of clusters.
0637c6f4 1275 */
57042651 1276 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
72b8ab9d 1277 ei->i_reserved_meta_blocks);
ee5f4d9c 1278 ei->i_reserved_meta_blocks = 0;
9d0be502 1279 ei->i_da_metadata_calc_len = 0;
0637c6f4 1280 }
d2a17637 1281
72b8ab9d 1282 /* update fs dirty data blocks counter */
57042651 1283 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
d2a17637 1284
d2a17637 1285 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f 1286
7b415bf6 1287 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
d2a17637
MC
1288}
1289
1290static void ext4_da_page_release_reservation(struct page *page,
de9a55b8 1291 unsigned long offset)
d2a17637
MC
1292{
1293 int to_release = 0;
1294 struct buffer_head *head, *bh;
1295 unsigned int curr_off = 0;
7b415bf6
AK
1296 struct inode *inode = page->mapping->host;
1297 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1298 int num_clusters;
51865fda 1299 ext4_fsblk_t lblk;
d2a17637
MC
1300
1301 head = page_buffers(page);
1302 bh = head;
1303 do {
1304 unsigned int next_off = curr_off + bh->b_size;
1305
1306 if ((offset <= curr_off) && (buffer_delay(bh))) {
1307 to_release++;
1308 clear_buffer_delay(bh);
1309 }
1310 curr_off = next_off;
1311 } while ((bh = bh->b_this_page) != head);
7b415bf6 1312
51865fda
ZL
1313 if (to_release) {
1314 lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1315 ext4_es_remove_extent(inode, lblk, to_release);
1316 }
1317
7b415bf6
AK
1318 /* If we have released all the blocks belonging to a cluster, then we
1319 * need to release the reserved space for that cluster. */
1320 num_clusters = EXT4_NUM_B2C(sbi, to_release);
1321 while (num_clusters > 0) {
7b415bf6
AK
1322 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1323 ((num_clusters - 1) << sbi->s_cluster_bits);
1324 if (sbi->s_cluster_ratio == 1 ||
7d1b1fbc 1325 !ext4_find_delalloc_cluster(inode, lblk))
7b415bf6
AK
1326 ext4_da_release_space(inode, 1);
1327
1328 num_clusters--;
1329 }
d2a17637 1330}
ac27a0ec 1331
64769240
AT
1332/*
1333 * Delayed allocation stuff
1334 */
1335
64769240
AT
1336/*
1337 * mpage_da_submit_io - walks through extent of pages and try to write
a1d6cc56 1338 * them with writepage() call back
64769240
AT
1339 *
1340 * @mpd->inode: inode
1341 * @mpd->first_page: first page of the extent
1342 * @mpd->next_page: page after the last page of the extent
64769240
AT
1343 *
1344 * By the time mpage_da_submit_io() is called we expect all blocks
1345 * to be allocated. this may be wrong if allocation failed.
1346 *
1347 * As pages are already locked by write_cache_pages(), we can't use it
1348 */
1de3e3df
TT
1349static int mpage_da_submit_io(struct mpage_da_data *mpd,
1350 struct ext4_map_blocks *map)
64769240 1351{
791b7f08
AK
1352 struct pagevec pvec;
1353 unsigned long index, end;
1354 int ret = 0, err, nr_pages, i;
1355 struct inode *inode = mpd->inode;
1356 struct address_space *mapping = inode->i_mapping;
cb20d518 1357 loff_t size = i_size_read(inode);
3ecdb3a1
TT
1358 unsigned int len, block_start;
1359 struct buffer_head *bh, *page_bufs = NULL;
cb20d518 1360 int journal_data = ext4_should_journal_data(inode);
1de3e3df 1361 sector_t pblock = 0, cur_logical = 0;
bd2d0210 1362 struct ext4_io_submit io_submit;
64769240
AT
1363
1364 BUG_ON(mpd->next_page <= mpd->first_page);
bd2d0210 1365 memset(&io_submit, 0, sizeof(io_submit));
791b7f08
AK
1366 /*
1367 * We need to start from the first_page to the next_page - 1
1368 * to make sure we also write the mapped dirty buffer_heads.
8dc207c0 1369 * If we look at mpd->b_blocknr we would only be looking
791b7f08
AK
1370 * at the currently mapped buffer_heads.
1371 */
64769240
AT
1372 index = mpd->first_page;
1373 end = mpd->next_page - 1;
1374
791b7f08 1375 pagevec_init(&pvec, 0);
64769240 1376 while (index <= end) {
791b7f08 1377 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
64769240
AT
1378 if (nr_pages == 0)
1379 break;
1380 for (i = 0; i < nr_pages; i++) {
97498956 1381 int commit_write = 0, skip_page = 0;
64769240
AT
1382 struct page *page = pvec.pages[i];
1383
791b7f08
AK
1384 index = page->index;
1385 if (index > end)
1386 break;
cb20d518
TT
1387
1388 if (index == size >> PAGE_CACHE_SHIFT)
1389 len = size & ~PAGE_CACHE_MASK;
1390 else
1391 len = PAGE_CACHE_SIZE;
1de3e3df
TT
1392 if (map) {
1393 cur_logical = index << (PAGE_CACHE_SHIFT -
1394 inode->i_blkbits);
1395 pblock = map->m_pblk + (cur_logical -
1396 map->m_lblk);
1397 }
791b7f08
AK
1398 index++;
1399
1400 BUG_ON(!PageLocked(page));
1401 BUG_ON(PageWriteback(page));
1402
64769240 1403 /*
cb20d518
TT
1404 * If the page does not have buffers (for
1405 * whatever reason), try to create them using
a107e5a3 1406 * __block_write_begin. If this fails,
97498956 1407 * skip the page and move on.
64769240 1408 */
cb20d518 1409 if (!page_has_buffers(page)) {
a107e5a3 1410 if (__block_write_begin(page, 0, len,
cb20d518 1411 noalloc_get_block_write)) {
97498956 1412 skip_page:
cb20d518
TT
1413 unlock_page(page);
1414 continue;
1415 }
1416 commit_write = 1;
1417 }
64769240 1418
3ecdb3a1
TT
1419 bh = page_bufs = page_buffers(page);
1420 block_start = 0;
64769240 1421 do {
1de3e3df 1422 if (!bh)
97498956 1423 goto skip_page;
1de3e3df
TT
1424 if (map && (cur_logical >= map->m_lblk) &&
1425 (cur_logical <= (map->m_lblk +
1426 (map->m_len - 1)))) {
29fa89d0
AK
1427 if (buffer_delay(bh)) {
1428 clear_buffer_delay(bh);
1429 bh->b_blocknr = pblock;
29fa89d0 1430 }
1de3e3df
TT
1431 if (buffer_unwritten(bh) ||
1432 buffer_mapped(bh))
1433 BUG_ON(bh->b_blocknr != pblock);
1434 if (map->m_flags & EXT4_MAP_UNINIT)
1435 set_buffer_uninit(bh);
1436 clear_buffer_unwritten(bh);
1437 }
29fa89d0 1438
13a79a47
YY
1439 /*
1440 * skip page if block allocation undone and
1441 * block is dirty
1442 */
1443 if (ext4_bh_delay_or_unwritten(NULL, bh))
97498956 1444 skip_page = 1;
3ecdb3a1
TT
1445 bh = bh->b_this_page;
1446 block_start += bh->b_size;
64769240
AT
1447 cur_logical++;
1448 pblock++;
1de3e3df
TT
1449 } while (bh != page_bufs);
1450
97498956
TT
1451 if (skip_page)
1452 goto skip_page;
cb20d518
TT
1453
1454 if (commit_write)
1455 /* mark the buffer_heads as dirty & uptodate */
1456 block_commit_write(page, 0, len);
1457
97498956 1458 clear_page_dirty_for_io(page);
bd2d0210
TT
1459 /*
1460 * Delalloc doesn't support data journalling,
1461 * but eventually maybe we'll lift this
1462 * restriction.
1463 */
1464 if (unlikely(journal_data && PageChecked(page)))
cb20d518 1465 err = __ext4_journalled_writepage(page, len);
1449032b 1466 else if (test_opt(inode->i_sb, MBLK_IO_SUBMIT))
bd2d0210
TT
1467 err = ext4_bio_write_page(&io_submit, page,
1468 len, mpd->wbc);
9dd75f1f
TT
1469 else if (buffer_uninit(page_bufs)) {
1470 ext4_set_bh_endio(page_bufs, inode);
1471 err = block_write_full_page_endio(page,
1472 noalloc_get_block_write,
1473 mpd->wbc, ext4_end_io_buffer_write);
1474 } else
1449032b
TT
1475 err = block_write_full_page(page,
1476 noalloc_get_block_write, mpd->wbc);
cb20d518
TT
1477
1478 if (!err)
a1d6cc56 1479 mpd->pages_written++;
64769240
AT
1480 /*
1481 * In error case, we have to continue because
1482 * remaining pages are still locked
64769240
AT
1483 */
1484 if (ret == 0)
1485 ret = err;
64769240
AT
1486 }
1487 pagevec_release(&pvec);
1488 }
bd2d0210 1489 ext4_io_submit(&io_submit);
64769240 1490 return ret;
64769240
AT
1491}
1492
c7f5938a 1493static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd)
c4a0c46e
AK
1494{
1495 int nr_pages, i;
1496 pgoff_t index, end;
1497 struct pagevec pvec;
1498 struct inode *inode = mpd->inode;
1499 struct address_space *mapping = inode->i_mapping;
51865fda 1500 ext4_lblk_t start, last;
c4a0c46e 1501
c7f5938a
CW
1502 index = mpd->first_page;
1503 end = mpd->next_page - 1;
51865fda
ZL
1504
1505 start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1506 last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1507 ext4_es_remove_extent(inode, start, last - start + 1);
1508
66bea92c 1509 pagevec_init(&pvec, 0);
c4a0c46e
AK
1510 while (index <= end) {
1511 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1512 if (nr_pages == 0)
1513 break;
1514 for (i = 0; i < nr_pages; i++) {
1515 struct page *page = pvec.pages[i];
9b1d0998 1516 if (page->index > end)
c4a0c46e 1517 break;
c4a0c46e
AK
1518 BUG_ON(!PageLocked(page));
1519 BUG_ON(PageWriteback(page));
1520 block_invalidatepage(page, 0);
1521 ClearPageUptodate(page);
1522 unlock_page(page);
1523 }
9b1d0998
JK
1524 index = pvec.pages[nr_pages - 1]->index + 1;
1525 pagevec_release(&pvec);
c4a0c46e
AK
1526 }
1527 return;
1528}
1529
df22291f
AK
1530static void ext4_print_free_blocks(struct inode *inode)
1531{
1532 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
92b97816
TT
1533 struct super_block *sb = inode->i_sb;
1534
1535 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
5dee5437
TT
1536 EXT4_C2B(EXT4_SB(inode->i_sb),
1537 ext4_count_free_clusters(inode->i_sb)));
92b97816
TT
1538 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1539 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
57042651
TT
1540 (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
1541 percpu_counter_sum(&sbi->s_freeclusters_counter)));
92b97816 1542 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
7b415bf6
AK
1543 (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
1544 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
92b97816
TT
1545 ext4_msg(sb, KERN_CRIT, "Block reservation details");
1546 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1547 EXT4_I(inode)->i_reserved_data_blocks);
1548 ext4_msg(sb, KERN_CRIT, "i_reserved_meta_blocks=%u",
1693918e 1549 EXT4_I(inode)->i_reserved_meta_blocks);
df22291f
AK
1550 return;
1551}
1552
64769240 1553/*
5a87b7a5
TT
1554 * mpage_da_map_and_submit - go through given space, map them
1555 * if necessary, and then submit them for I/O
64769240 1556 *
8dc207c0 1557 * @mpd - bh describing space
64769240
AT
1558 *
1559 * The function skips space we know is already mapped to disk blocks.
1560 *
64769240 1561 */
5a87b7a5 1562static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
64769240 1563{
2ac3b6e0 1564 int err, blks, get_blocks_flags;
1de3e3df 1565 struct ext4_map_blocks map, *mapp = NULL;
2fa3cdfb
TT
1566 sector_t next = mpd->b_blocknr;
1567 unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
1568 loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
1569 handle_t *handle = NULL;
64769240
AT
1570
1571 /*
5a87b7a5
TT
1572 * If the blocks are mapped already, or we couldn't accumulate
1573 * any blocks, then proceed immediately to the submission stage.
2fa3cdfb 1574 */
5a87b7a5
TT
1575 if ((mpd->b_size == 0) ||
1576 ((mpd->b_state & (1 << BH_Mapped)) &&
1577 !(mpd->b_state & (1 << BH_Delay)) &&
1578 !(mpd->b_state & (1 << BH_Unwritten))))
1579 goto submit_io;
2fa3cdfb
TT
1580
1581 handle = ext4_journal_current_handle();
1582 BUG_ON(!handle);
1583
79ffab34 1584 /*
79e83036 1585 * Call ext4_map_blocks() to allocate any delayed allocation
2ac3b6e0
TT
1586 * blocks, or to convert an uninitialized extent to be
1587 * initialized (in the case where we have written into
1588 * one or more preallocated blocks).
1589 *
1590 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
1591 * indicate that we are on the delayed allocation path. This
1592 * affects functions in many different parts of the allocation
1593 * call path. This flag exists primarily because we don't
79e83036 1594 * want to change *many* call functions, so ext4_map_blocks()
f2321097 1595 * will set the EXT4_STATE_DELALLOC_RESERVED flag once the
2ac3b6e0
TT
1596 * inode's allocation semaphore is taken.
1597 *
1598 * If the blocks in questions were delalloc blocks, set
1599 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
1600 * variables are updated after the blocks have been allocated.
79ffab34 1601 */
2ed88685
TT
1602 map.m_lblk = next;
1603 map.m_len = max_blocks;
1296cc85 1604 get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
744692dc
JZ
1605 if (ext4_should_dioread_nolock(mpd->inode))
1606 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2ac3b6e0 1607 if (mpd->b_state & (1 << BH_Delay))
1296cc85
AK
1608 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
1609
2ed88685 1610 blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
2fa3cdfb 1611 if (blks < 0) {
e3570639
ES
1612 struct super_block *sb = mpd->inode->i_sb;
1613
2fa3cdfb 1614 err = blks;
ed5bde0b 1615 /*
5a87b7a5 1616 * If get block returns EAGAIN or ENOSPC and there
97498956
TT
1617 * appears to be free blocks we will just let
1618 * mpage_da_submit_io() unlock all of the pages.
c4a0c46e
AK
1619 */
1620 if (err == -EAGAIN)
5a87b7a5 1621 goto submit_io;
df22291f 1622
5dee5437 1623 if (err == -ENOSPC && ext4_count_free_clusters(sb)) {
df22291f 1624 mpd->retval = err;
5a87b7a5 1625 goto submit_io;
df22291f
AK
1626 }
1627
c4a0c46e 1628 /*
ed5bde0b
TT
1629 * get block failure will cause us to loop in
1630 * writepages, because a_ops->writepage won't be able
1631 * to make progress. The page will be redirtied by
1632 * writepage and writepages will again try to write
1633 * the same.
c4a0c46e 1634 */
e3570639
ES
1635 if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
1636 ext4_msg(sb, KERN_CRIT,
1637 "delayed block allocation failed for inode %lu "
1638 "at logical offset %llu with max blocks %zd "
1639 "with error %d", mpd->inode->i_ino,
1640 (unsigned long long) next,
1641 mpd->b_size >> mpd->inode->i_blkbits, err);
1642 ext4_msg(sb, KERN_CRIT,
1643 "This should not happen!! Data will be lost\n");
1644 if (err == -ENOSPC)
1645 ext4_print_free_blocks(mpd->inode);
030ba6bc 1646 }
2fa3cdfb 1647 /* invalidate all the pages */
c7f5938a 1648 ext4_da_block_invalidatepages(mpd);
e0fd9b90
CW
1649
1650 /* Mark this page range as having been completed */
1651 mpd->io_done = 1;
5a87b7a5 1652 return;
c4a0c46e 1653 }
2fa3cdfb
TT
1654 BUG_ON(blks == 0);
1655
1de3e3df 1656 mapp = &map;
2ed88685
TT
1657 if (map.m_flags & EXT4_MAP_NEW) {
1658 struct block_device *bdev = mpd->inode->i_sb->s_bdev;
1659 int i;
64769240 1660
2ed88685
TT
1661 for (i = 0; i < map.m_len; i++)
1662 unmap_underlying_metadata(bdev, map.m_pblk + i);
2fa3cdfb
TT
1663 }
1664
1665 /*
03f5d8bc 1666 * Update on-disk size along with block allocation.
2fa3cdfb
TT
1667 */
1668 disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
1669 if (disksize > i_size_read(mpd->inode))
1670 disksize = i_size_read(mpd->inode);
1671 if (disksize > EXT4_I(mpd->inode)->i_disksize) {
1672 ext4_update_i_disksize(mpd->inode, disksize);
5a87b7a5
TT
1673 err = ext4_mark_inode_dirty(handle, mpd->inode);
1674 if (err)
1675 ext4_error(mpd->inode->i_sb,
1676 "Failed to mark inode %lu dirty",
1677 mpd->inode->i_ino);
2fa3cdfb
TT
1678 }
1679
5a87b7a5 1680submit_io:
1de3e3df 1681 mpage_da_submit_io(mpd, mapp);
5a87b7a5 1682 mpd->io_done = 1;
64769240
AT
1683}
1684
bf068ee2
AK
1685#define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
1686 (1 << BH_Delay) | (1 << BH_Unwritten))
64769240
AT
1687
1688/*
1689 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
1690 *
1691 * @mpd->lbh - extent of blocks
1692 * @logical - logical number of the block in the file
1693 * @bh - bh of the block (used to access block's state)
1694 *
1695 * the function is used to collect contig. blocks in same state
1696 */
1697static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
8dc207c0
TT
1698 sector_t logical, size_t b_size,
1699 unsigned long b_state)
64769240 1700{
64769240 1701 sector_t next;
8dc207c0 1702 int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
64769240 1703
c445e3e0
ES
1704 /*
1705 * XXX Don't go larger than mballoc is willing to allocate
1706 * This is a stopgap solution. We eventually need to fold
1707 * mpage_da_submit_io() into this function and then call
79e83036 1708 * ext4_map_blocks() multiple times in a loop
c445e3e0
ES
1709 */
1710 if (nrblocks >= 8*1024*1024/mpd->inode->i_sb->s_blocksize)
1711 goto flush_it;
1712
525f4ed8 1713 /* check if thereserved journal credits might overflow */
12e9b892 1714 if (!(ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS))) {
525f4ed8
MC
1715 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
1716 /*
1717 * With non-extent format we are limited by the journal
1718 * credit available. Total credit needed to insert
1719 * nrblocks contiguous blocks is dependent on the
1720 * nrblocks. So limit nrblocks.
1721 */
1722 goto flush_it;
1723 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
1724 EXT4_MAX_TRANS_DATA) {
1725 /*
1726 * Adding the new buffer_head would make it cross the
1727 * allowed limit for which we have journal credit
1728 * reserved. So limit the new bh->b_size
1729 */
1730 b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
1731 mpd->inode->i_blkbits;
1732 /* we will do mpage_da_submit_io in the next loop */
1733 }
1734 }
64769240
AT
1735 /*
1736 * First block in the extent
1737 */
8dc207c0
TT
1738 if (mpd->b_size == 0) {
1739 mpd->b_blocknr = logical;
1740 mpd->b_size = b_size;
1741 mpd->b_state = b_state & BH_FLAGS;
64769240
AT
1742 return;
1743 }
1744
8dc207c0 1745 next = mpd->b_blocknr + nrblocks;
64769240
AT
1746 /*
1747 * Can we merge the block to our big extent?
1748 */
8dc207c0
TT
1749 if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
1750 mpd->b_size += b_size;
64769240
AT
1751 return;
1752 }
1753
525f4ed8 1754flush_it:
64769240
AT
1755 /*
1756 * We couldn't merge the block to our extent, so we
1757 * need to flush current extent and start new one
1758 */
5a87b7a5 1759 mpage_da_map_and_submit(mpd);
a1d6cc56 1760 return;
64769240
AT
1761}
1762
c364b22c 1763static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
29fa89d0 1764{
c364b22c 1765 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
29fa89d0
AK
1766}
1767
5356f261
AK
1768/*
1769 * This function is grabs code from the very beginning of
1770 * ext4_map_blocks, but assumes that the caller is from delayed write
1771 * time. This function looks up the requested blocks and sets the
1772 * buffer delay bit under the protection of i_data_sem.
1773 */
1774static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1775 struct ext4_map_blocks *map,
1776 struct buffer_head *bh)
1777{
1778 int retval;
1779 sector_t invalid_block = ~((sector_t) 0xffff);
1780
1781 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1782 invalid_block = ~0;
1783
1784 map->m_flags = 0;
1785 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1786 "logical block %lu\n", inode->i_ino, map->m_len,
1787 (unsigned long) map->m_lblk);
1788 /*
1789 * Try to see if we can get the block without requesting a new
1790 * file system block.
1791 */
1792 down_read((&EXT4_I(inode)->i_data_sem));
1793 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1794 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1795 else
1796 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1797
1798 if (retval == 0) {
1799 /*
1800 * XXX: __block_prepare_write() unmaps passed block,
1801 * is it OK?
1802 */
1803 /* If the block was allocated from previously allocated cluster,
1804 * then we dont need to reserve it again. */
1805 if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
1806 retval = ext4_da_reserve_space(inode, iblock);
1807 if (retval)
1808 /* not enough space to reserve */
1809 goto out_unlock;
1810 }
1811
51865fda
ZL
1812 retval = ext4_es_insert_extent(inode, map->m_lblk, map->m_len);
1813 if (retval)
1814 goto out_unlock;
1815
5356f261
AK
1816 /* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
1817 * and it should not appear on the bh->b_state.
1818 */
1819 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
1820
1821 map_bh(bh, inode->i_sb, invalid_block);
1822 set_buffer_new(bh);
1823 set_buffer_delay(bh);
1824 }
1825
1826out_unlock:
1827 up_read((&EXT4_I(inode)->i_data_sem));
1828
1829 return retval;
1830}
1831
64769240 1832/*
b920c755
TT
1833 * This is a special get_blocks_t callback which is used by
1834 * ext4_da_write_begin(). It will either return mapped block or
1835 * reserve space for a single block.
29fa89d0
AK
1836 *
1837 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1838 * We also have b_blocknr = -1 and b_bdev initialized properly
1839 *
1840 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1841 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1842 * initialized properly.
64769240
AT
1843 */
1844static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2ed88685 1845 struct buffer_head *bh, int create)
64769240 1846{
2ed88685 1847 struct ext4_map_blocks map;
64769240
AT
1848 int ret = 0;
1849
1850 BUG_ON(create == 0);
2ed88685
TT
1851 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1852
1853 map.m_lblk = iblock;
1854 map.m_len = 1;
64769240
AT
1855
1856 /*
1857 * first, we need to know whether the block is allocated already
1858 * preallocated blocks are unmapped but should treated
1859 * the same as allocated blocks.
1860 */
5356f261
AK
1861 ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1862 if (ret <= 0)
2ed88685 1863 return ret;
64769240 1864
2ed88685
TT
1865 map_bh(bh, inode->i_sb, map.m_pblk);
1866 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1867
1868 if (buffer_unwritten(bh)) {
1869 /* A delayed write to unwritten bh should be marked
1870 * new and mapped. Mapped ensures that we don't do
1871 * get_block multiple times when we write to the same
1872 * offset and new ensures that we do proper zero out
1873 * for partial write.
1874 */
1875 set_buffer_new(bh);
c8205636 1876 set_buffer_mapped(bh);
2ed88685
TT
1877 }
1878 return 0;
64769240 1879}
61628a3f 1880
b920c755
TT
1881/*
1882 * This function is used as a standard get_block_t calback function
1883 * when there is no desire to allocate any blocks. It is used as a
ebdec241 1884 * callback function for block_write_begin() and block_write_full_page().
206f7ab4 1885 * These functions should only try to map a single block at a time.
b920c755
TT
1886 *
1887 * Since this function doesn't do block allocations even if the caller
1888 * requests it by passing in create=1, it is critically important that
1889 * any caller checks to make sure that any buffer heads are returned
1890 * by this function are either all already mapped or marked for
206f7ab4
CH
1891 * delayed allocation before calling block_write_full_page(). Otherwise,
1892 * b_blocknr could be left unitialized, and the page write functions will
1893 * be taken by surprise.
b920c755
TT
1894 */
1895static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
f0e6c985
AK
1896 struct buffer_head *bh_result, int create)
1897{
a2dc52b5 1898 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2ed88685 1899 return _ext4_get_block(inode, iblock, bh_result, 0);
61628a3f
MC
1900}
1901
62e086be
AK
1902static int bget_one(handle_t *handle, struct buffer_head *bh)
1903{
1904 get_bh(bh);
1905 return 0;
1906}
1907
1908static int bput_one(handle_t *handle, struct buffer_head *bh)
1909{
1910 put_bh(bh);
1911 return 0;
1912}
1913
1914static int __ext4_journalled_writepage(struct page *page,
62e086be
AK
1915 unsigned int len)
1916{
1917 struct address_space *mapping = page->mapping;
1918 struct inode *inode = mapping->host;
3fdcfb66 1919 struct buffer_head *page_bufs = NULL;
62e086be 1920 handle_t *handle = NULL;
3fdcfb66
TM
1921 int ret = 0, err = 0;
1922 int inline_data = ext4_has_inline_data(inode);
1923 struct buffer_head *inode_bh = NULL;
62e086be 1924
cb20d518 1925 ClearPageChecked(page);
3fdcfb66
TM
1926
1927 if (inline_data) {
1928 BUG_ON(page->index != 0);
1929 BUG_ON(len > ext4_get_max_inline_size(inode));
1930 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1931 if (inode_bh == NULL)
1932 goto out;
1933 } else {
1934 page_bufs = page_buffers(page);
1935 if (!page_bufs) {
1936 BUG();
1937 goto out;
1938 }
1939 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1940 NULL, bget_one);
1941 }
62e086be
AK
1942 /* As soon as we unlock the page, it can go away, but we have
1943 * references to buffers so we are safe */
1944 unlock_page(page);
1945
1946 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
1947 if (IS_ERR(handle)) {
1948 ret = PTR_ERR(handle);
1949 goto out;
1950 }
1951
441c8508
CW
1952 BUG_ON(!ext4_handle_valid(handle));
1953
3fdcfb66
TM
1954 if (inline_data) {
1955 ret = ext4_journal_get_write_access(handle, inode_bh);
62e086be 1956
3fdcfb66
TM
1957 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
1958
1959 } else {
1960 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1961 do_journal_get_write_access);
1962
1963 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1964 write_end_fn);
1965 }
62e086be
AK
1966 if (ret == 0)
1967 ret = err;
2d859db3 1968 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
62e086be
AK
1969 err = ext4_journal_stop(handle);
1970 if (!ret)
1971 ret = err;
1972
3fdcfb66
TM
1973 if (!ext4_has_inline_data(inode))
1974 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1975 NULL, bput_one);
19f5fb7a 1976 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
62e086be 1977out:
3fdcfb66 1978 brelse(inode_bh);
62e086be
AK
1979 return ret;
1980}
1981
61628a3f 1982/*
43ce1d23
AK
1983 * Note that we don't need to start a transaction unless we're journaling data
1984 * because we should have holes filled from ext4_page_mkwrite(). We even don't
1985 * need to file the inode to the transaction's list in ordered mode because if
1986 * we are writing back data added by write(), the inode is already there and if
25985edc 1987 * we are writing back data modified via mmap(), no one guarantees in which
43ce1d23
AK
1988 * transaction the data will hit the disk. In case we are journaling data, we
1989 * cannot start transaction directly because transaction start ranks above page
1990 * lock so we have to do some magic.
1991 *
b920c755
TT
1992 * This function can get called via...
1993 * - ext4_da_writepages after taking page lock (have journal handle)
1994 * - journal_submit_inode_data_buffers (no journal handle)
f6463b0d 1995 * - shrink_page_list via the kswapd/direct reclaim (no journal handle)
b920c755 1996 * - grab_page_cache when doing write_begin (have journal handle)
43ce1d23
AK
1997 *
1998 * We don't do any block allocation in this function. If we have page with
1999 * multiple blocks we need to write those buffer_heads that are mapped. This
2000 * is important for mmaped based write. So if we do with blocksize 1K
2001 * truncate(f, 1024);
2002 * a = mmap(f, 0, 4096);
2003 * a[0] = 'a';
2004 * truncate(f, 4096);
2005 * we have in the page first buffer_head mapped via page_mkwrite call back
90802ed9 2006 * but other buffer_heads would be unmapped but dirty (dirty done via the
43ce1d23
AK
2007 * do_wp_page). So writepage should write the first block. If we modify
2008 * the mmap area beyond 1024 we will again get a page_fault and the
2009 * page_mkwrite callback will do the block allocation and mark the
2010 * buffer_heads mapped.
2011 *
2012 * We redirty the page if we have any buffer_heads that is either delay or
2013 * unwritten in the page.
2014 *
2015 * We can get recursively called as show below.
2016 *
2017 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2018 * ext4_writepage()
2019 *
2020 * But since we don't do any block allocation we should not deadlock.
2021 * Page also have the dirty flag cleared so we don't get recurive page_lock.
61628a3f 2022 */
43ce1d23 2023static int ext4_writepage(struct page *page,
62e086be 2024 struct writeback_control *wbc)
64769240 2025{
a42afc5f 2026 int ret = 0, commit_write = 0;
61628a3f 2027 loff_t size;
498e5f24 2028 unsigned int len;
744692dc 2029 struct buffer_head *page_bufs = NULL;
61628a3f
MC
2030 struct inode *inode = page->mapping->host;
2031
a9c667f8 2032 trace_ext4_writepage(page);
f0e6c985
AK
2033 size = i_size_read(inode);
2034 if (page->index == size >> PAGE_CACHE_SHIFT)
2035 len = size & ~PAGE_CACHE_MASK;
2036 else
2037 len = PAGE_CACHE_SIZE;
64769240 2038
a42afc5f
TT
2039 /*
2040 * If the page does not have buffers (for whatever reason),
a107e5a3 2041 * try to create them using __block_write_begin. If this
a42afc5f
TT
2042 * fails, redirty the page and move on.
2043 */
b1142e8f 2044 if (!page_has_buffers(page)) {
a107e5a3 2045 if (__block_write_begin(page, 0, len,
a42afc5f
TT
2046 noalloc_get_block_write)) {
2047 redirty_page:
f0e6c985
AK
2048 redirty_page_for_writepage(wbc, page);
2049 unlock_page(page);
2050 return 0;
2051 }
a42afc5f
TT
2052 commit_write = 1;
2053 }
2054 page_bufs = page_buffers(page);
f19d5870
TM
2055 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2056 ext4_bh_delay_or_unwritten)) {
f0e6c985 2057 /*
b1142e8f
TT
2058 * We don't want to do block allocation, so redirty
2059 * the page and return. We may reach here when we do
2060 * a journal commit via journal_submit_inode_data_buffers.
966dbde2
MG
2061 * We can also reach here via shrink_page_list but it
2062 * should never be for direct reclaim so warn if that
2063 * happens
f0e6c985 2064 */
966dbde2
MG
2065 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
2066 PF_MEMALLOC);
a42afc5f
TT
2067 goto redirty_page;
2068 }
2069 if (commit_write)
ed9b3e33 2070 /* now mark the buffer_heads as dirty and uptodate */
b767e78a 2071 block_commit_write(page, 0, len);
64769240 2072
cb20d518 2073 if (PageChecked(page) && ext4_should_journal_data(inode))
43ce1d23
AK
2074 /*
2075 * It's mmapped pagecache. Add buffers and journal it. There
2076 * doesn't seem much point in redirtying the page here.
2077 */
3f0ca309 2078 return __ext4_journalled_writepage(page, len);
43ce1d23 2079
a42afc5f 2080 if (buffer_uninit(page_bufs)) {
744692dc
JZ
2081 ext4_set_bh_endio(page_bufs, inode);
2082 ret = block_write_full_page_endio(page, noalloc_get_block_write,
2083 wbc, ext4_end_io_buffer_write);
2084 } else
b920c755
TT
2085 ret = block_write_full_page(page, noalloc_get_block_write,
2086 wbc);
64769240 2087
64769240
AT
2088 return ret;
2089}
2090
61628a3f 2091/*
525f4ed8 2092 * This is called via ext4_da_writepages() to
25985edc 2093 * calculate the total number of credits to reserve to fit
525f4ed8
MC
2094 * a single extent allocation into a single transaction,
2095 * ext4_da_writpeages() will loop calling this before
2096 * the block allocation.
61628a3f 2097 */
525f4ed8
MC
2098
2099static int ext4_da_writepages_trans_blocks(struct inode *inode)
2100{
2101 int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2102
2103 /*
2104 * With non-extent format the journal credit needed to
2105 * insert nrblocks contiguous block is dependent on
2106 * number of contiguous block. So we will limit
2107 * number of contiguous block to a sane value
2108 */
12e9b892 2109 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
525f4ed8
MC
2110 (max_blocks > EXT4_MAX_TRANS_DATA))
2111 max_blocks = EXT4_MAX_TRANS_DATA;
2112
2113 return ext4_chunk_trans_blocks(inode, max_blocks);
2114}
61628a3f 2115
8e48dcfb
TT
2116/*
2117 * write_cache_pages_da - walk the list of dirty pages of the given
8eb9e5ce 2118 * address space and accumulate pages that need writing, and call
168fc022
TT
2119 * mpage_da_map_and_submit to map a single contiguous memory region
2120 * and then write them.
8e48dcfb
TT
2121 */
2122static int write_cache_pages_da(struct address_space *mapping,
2123 struct writeback_control *wbc,
72f84e65
ES
2124 struct mpage_da_data *mpd,
2125 pgoff_t *done_index)
8e48dcfb 2126{
4f01b02c 2127 struct buffer_head *bh, *head;
168fc022 2128 struct inode *inode = mapping->host;
4f01b02c
TT
2129 struct pagevec pvec;
2130 unsigned int nr_pages;
2131 sector_t logical;
2132 pgoff_t index, end;
2133 long nr_to_write = wbc->nr_to_write;
2134 int i, tag, ret = 0;
8e48dcfb 2135
168fc022
TT
2136 memset(mpd, 0, sizeof(struct mpage_da_data));
2137 mpd->wbc = wbc;
2138 mpd->inode = inode;
8e48dcfb
TT
2139 pagevec_init(&pvec, 0);
2140 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2141 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2142
6e6938b6 2143 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
5b41d924
ES
2144 tag = PAGECACHE_TAG_TOWRITE;
2145 else
2146 tag = PAGECACHE_TAG_DIRTY;
2147
72f84e65 2148 *done_index = index;
4f01b02c 2149 while (index <= end) {
5b41d924 2150 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
8e48dcfb
TT
2151 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2152 if (nr_pages == 0)
4f01b02c 2153 return 0;
8e48dcfb
TT
2154
2155 for (i = 0; i < nr_pages; i++) {
2156 struct page *page = pvec.pages[i];
2157
2158 /*
2159 * At this point, the page may be truncated or
2160 * invalidated (changing page->mapping to NULL), or
2161 * even swizzled back from swapper_space to tmpfs file
2162 * mapping. However, page->index will not change
2163 * because we have a reference on the page.
2164 */
4f01b02c
TT
2165 if (page->index > end)
2166 goto out;
8e48dcfb 2167
72f84e65
ES
2168 *done_index = page->index + 1;
2169
78aaced3
TT
2170 /*
2171 * If we can't merge this page, and we have
2172 * accumulated an contiguous region, write it
2173 */
2174 if ((mpd->next_page != page->index) &&
2175 (mpd->next_page != mpd->first_page)) {
2176 mpage_da_map_and_submit(mpd);
2177 goto ret_extent_tail;
2178 }
2179
8e48dcfb
TT
2180 lock_page(page);
2181
2182 /*
4f01b02c
TT
2183 * If the page is no longer dirty, or its
2184 * mapping no longer corresponds to inode we
2185 * are writing (which means it has been
2186 * truncated or invalidated), or the page is
2187 * already under writeback and we are not
2188 * doing a data integrity writeback, skip the page
8e48dcfb 2189 */
4f01b02c
TT
2190 if (!PageDirty(page) ||
2191 (PageWriteback(page) &&
2192 (wbc->sync_mode == WB_SYNC_NONE)) ||
2193 unlikely(page->mapping != mapping)) {
8e48dcfb
TT
2194 unlock_page(page);
2195 continue;
2196 }
2197
7cb1a535 2198 wait_on_page_writeback(page);
8e48dcfb 2199 BUG_ON(PageWriteback(page));
8e48dcfb 2200
168fc022 2201 if (mpd->next_page != page->index)
8eb9e5ce 2202 mpd->first_page = page->index;
8eb9e5ce
TT
2203 mpd->next_page = page->index + 1;
2204 logical = (sector_t) page->index <<
2205 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2206
2207 if (!page_has_buffers(page)) {
4f01b02c
TT
2208 mpage_add_bh_to_extent(mpd, logical,
2209 PAGE_CACHE_SIZE,
8eb9e5ce 2210 (1 << BH_Dirty) | (1 << BH_Uptodate));
4f01b02c
TT
2211 if (mpd->io_done)
2212 goto ret_extent_tail;
8eb9e5ce
TT
2213 } else {
2214 /*
4f01b02c
TT
2215 * Page with regular buffer heads,
2216 * just add all dirty ones
8eb9e5ce
TT
2217 */
2218 head = page_buffers(page);
2219 bh = head;
2220 do {
2221 BUG_ON(buffer_locked(bh));
2222 /*
2223 * We need to try to allocate
2224 * unmapped blocks in the same page.
2225 * Otherwise we won't make progress
2226 * with the page in ext4_writepage
2227 */
2228 if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2229 mpage_add_bh_to_extent(mpd, logical,
2230 bh->b_size,
2231 bh->b_state);
4f01b02c
TT
2232 if (mpd->io_done)
2233 goto ret_extent_tail;
8eb9e5ce
TT
2234 } else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2235 /*
4f01b02c
TT
2236 * mapped dirty buffer. We need
2237 * to update the b_state
2238 * because we look at b_state
2239 * in mpage_da_map_blocks. We
2240 * don't update b_size because
2241 * if we find an unmapped
2242 * buffer_head later we need to
2243 * use the b_state flag of that
2244 * buffer_head.
8eb9e5ce
TT
2245 */
2246 if (mpd->b_size == 0)
2247 mpd->b_state = bh->b_state & BH_FLAGS;
2248 }
2249 logical++;
2250 } while ((bh = bh->b_this_page) != head);
8e48dcfb
TT
2251 }
2252
2253 if (nr_to_write > 0) {
2254 nr_to_write--;
2255 if (nr_to_write == 0 &&
4f01b02c 2256 wbc->sync_mode == WB_SYNC_NONE)
8e48dcfb
TT
2257 /*
2258 * We stop writing back only if we are
2259 * not doing integrity sync. In case of
2260 * integrity sync we have to keep going
2261 * because someone may be concurrently
2262 * dirtying pages, and we might have
2263 * synced a lot of newly appeared dirty
2264 * pages, but have not synced all of the
2265 * old dirty pages.
2266 */
4f01b02c 2267 goto out;
8e48dcfb
TT
2268 }
2269 }
2270 pagevec_release(&pvec);
2271 cond_resched();
2272 }
4f01b02c
TT
2273 return 0;
2274ret_extent_tail:
2275 ret = MPAGE_DA_EXTENT_TAIL;
8eb9e5ce
TT
2276out:
2277 pagevec_release(&pvec);
2278 cond_resched();
8e48dcfb
TT
2279 return ret;
2280}
2281
2282
64769240 2283static int ext4_da_writepages(struct address_space *mapping,
a1d6cc56 2284 struct writeback_control *wbc)
64769240 2285{
22208ded
AK
2286 pgoff_t index;
2287 int range_whole = 0;
61628a3f 2288 handle_t *handle = NULL;
df22291f 2289 struct mpage_da_data mpd;
5e745b04 2290 struct inode *inode = mapping->host;
498e5f24 2291 int pages_written = 0;
55138e0b 2292 unsigned int max_pages;
2acf2c26 2293 int range_cyclic, cycled = 1, io_done = 0;
55138e0b
TT
2294 int needed_blocks, ret = 0;
2295 long desired_nr_to_write, nr_to_writebump = 0;
de89de6e 2296 loff_t range_start = wbc->range_start;
5e745b04 2297 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
72f84e65 2298 pgoff_t done_index = 0;
5b41d924 2299 pgoff_t end;
1bce63d1 2300 struct blk_plug plug;
61628a3f 2301
9bffad1e 2302 trace_ext4_da_writepages(inode, wbc);
ba80b101 2303
61628a3f
MC
2304 /*
2305 * No pages to write? This is mainly a kludge to avoid starting
2306 * a transaction for special inodes like journal inode on last iput()
2307 * because that could violate lock ordering on umount
2308 */
a1d6cc56 2309 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
61628a3f 2310 return 0;
2a21e37e
TT
2311
2312 /*
2313 * If the filesystem has aborted, it is read-only, so return
2314 * right away instead of dumping stack traces later on that
2315 * will obscure the real source of the problem. We test
4ab2f15b 2316 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2a21e37e
TT
2317 * the latter could be true if the filesystem is mounted
2318 * read-only, and in that case, ext4_da_writepages should
2319 * *never* be called, so if that ever happens, we would want
2320 * the stack trace.
2321 */
4ab2f15b 2322 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2a21e37e
TT
2323 return -EROFS;
2324
22208ded
AK
2325 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2326 range_whole = 1;
61628a3f 2327
2acf2c26
AK
2328 range_cyclic = wbc->range_cyclic;
2329 if (wbc->range_cyclic) {
22208ded 2330 index = mapping->writeback_index;
2acf2c26
AK
2331 if (index)
2332 cycled = 0;
2333 wbc->range_start = index << PAGE_CACHE_SHIFT;
2334 wbc->range_end = LLONG_MAX;
2335 wbc->range_cyclic = 0;
5b41d924
ES
2336 end = -1;
2337 } else {
22208ded 2338 index = wbc->range_start >> PAGE_CACHE_SHIFT;
5b41d924
ES
2339 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2340 }
a1d6cc56 2341
55138e0b
TT
2342 /*
2343 * This works around two forms of stupidity. The first is in
2344 * the writeback code, which caps the maximum number of pages
2345 * written to be 1024 pages. This is wrong on multiple
2346 * levels; different architectues have a different page size,
2347 * which changes the maximum amount of data which gets
2348 * written. Secondly, 4 megabytes is way too small. XFS
2349 * forces this value to be 16 megabytes by multiplying
2350 * nr_to_write parameter by four, and then relies on its
2351 * allocator to allocate larger extents to make them
2352 * contiguous. Unfortunately this brings us to the second
2353 * stupidity, which is that ext4's mballoc code only allocates
2354 * at most 2048 blocks. So we force contiguous writes up to
2355 * the number of dirty blocks in the inode, or
2356 * sbi->max_writeback_mb_bump whichever is smaller.
2357 */
2358 max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
b443e733
ES
2359 if (!range_cyclic && range_whole) {
2360 if (wbc->nr_to_write == LONG_MAX)
2361 desired_nr_to_write = wbc->nr_to_write;
2362 else
2363 desired_nr_to_write = wbc->nr_to_write * 8;
2364 } else
55138e0b
TT
2365 desired_nr_to_write = ext4_num_dirty_pages(inode, index,
2366 max_pages);
2367 if (desired_nr_to_write > max_pages)
2368 desired_nr_to_write = max_pages;
2369
2370 if (wbc->nr_to_write < desired_nr_to_write) {
2371 nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
2372 wbc->nr_to_write = desired_nr_to_write;
2373 }
2374
2acf2c26 2375retry:
6e6938b6 2376 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
5b41d924
ES
2377 tag_pages_for_writeback(mapping, index, end);
2378
1bce63d1 2379 blk_start_plug(&plug);
22208ded 2380 while (!ret && wbc->nr_to_write > 0) {
a1d6cc56
AK
2381
2382 /*
2383 * we insert one extent at a time. So we need
2384 * credit needed for single extent allocation.
2385 * journalled mode is currently not supported
2386 * by delalloc
2387 */
2388 BUG_ON(ext4_should_journal_data(inode));
525f4ed8 2389 needed_blocks = ext4_da_writepages_trans_blocks(inode);
a1d6cc56 2390
61628a3f
MC
2391 /* start a new transaction*/
2392 handle = ext4_journal_start(inode, needed_blocks);
2393 if (IS_ERR(handle)) {
2394 ret = PTR_ERR(handle);
1693918e 2395 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
fbe845dd 2396 "%ld pages, ino %lu; err %d", __func__,
a1d6cc56 2397 wbc->nr_to_write, inode->i_ino, ret);
3c1fcb2c 2398 blk_finish_plug(&plug);
61628a3f
MC
2399 goto out_writepages;
2400 }
f63e6005
TT
2401
2402 /*
8eb9e5ce 2403 * Now call write_cache_pages_da() to find the next
f63e6005 2404 * contiguous region of logical blocks that need
8eb9e5ce 2405 * blocks to be allocated by ext4 and submit them.
f63e6005 2406 */
72f84e65 2407 ret = write_cache_pages_da(mapping, wbc, &mpd, &done_index);
f63e6005 2408 /*
af901ca1 2409 * If we have a contiguous extent of pages and we
f63e6005
TT
2410 * haven't done the I/O yet, map the blocks and submit
2411 * them for I/O.
2412 */
2413 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
5a87b7a5 2414 mpage_da_map_and_submit(&mpd);
f63e6005
TT
2415 ret = MPAGE_DA_EXTENT_TAIL;
2416 }
b3a3ca8c 2417 trace_ext4_da_write_pages(inode, &mpd);
f63e6005 2418 wbc->nr_to_write -= mpd.pages_written;
df22291f 2419
61628a3f 2420 ext4_journal_stop(handle);
df22291f 2421
8f64b32e 2422 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
22208ded
AK
2423 /* commit the transaction which would
2424 * free blocks released in the transaction
2425 * and try again
2426 */
df22291f 2427 jbd2_journal_force_commit_nested(sbi->s_journal);
22208ded
AK
2428 ret = 0;
2429 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
a1d6cc56 2430 /*
8de49e67
KM
2431 * Got one extent now try with rest of the pages.
2432 * If mpd.retval is set -EIO, journal is aborted.
2433 * So we don't need to write any more.
a1d6cc56 2434 */
22208ded 2435 pages_written += mpd.pages_written;
8de49e67 2436 ret = mpd.retval;
2acf2c26 2437 io_done = 1;
22208ded 2438 } else if (wbc->nr_to_write)
61628a3f
MC
2439 /*
2440 * There is no more writeout needed
2441 * or we requested for a noblocking writeout
2442 * and we found the device congested
2443 */
61628a3f 2444 break;
a1d6cc56 2445 }
1bce63d1 2446 blk_finish_plug(&plug);
2acf2c26
AK
2447 if (!io_done && !cycled) {
2448 cycled = 1;
2449 index = 0;
2450 wbc->range_start = index << PAGE_CACHE_SHIFT;
2451 wbc->range_end = mapping->writeback_index - 1;
2452 goto retry;
2453 }
22208ded
AK
2454
2455 /* Update index */
2acf2c26 2456 wbc->range_cyclic = range_cyclic;
22208ded
AK
2457 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2458 /*
2459 * set the writeback_index so that range_cyclic
2460 * mode will write it back later
2461 */
72f84e65 2462 mapping->writeback_index = done_index;
a1d6cc56 2463
61628a3f 2464out_writepages:
2faf2e19 2465 wbc->nr_to_write -= nr_to_writebump;
de89de6e 2466 wbc->range_start = range_start;
9bffad1e 2467 trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
61628a3f 2468 return ret;
64769240
AT
2469}
2470
79f0be8d
AK
2471#define FALL_BACK_TO_NONDELALLOC 1
2472static int ext4_nonda_switch(struct super_block *sb)
2473{
2474 s64 free_blocks, dirty_blocks;
2475 struct ext4_sb_info *sbi = EXT4_SB(sb);
2476
2477 /*
2478 * switch to non delalloc mode if we are running low
2479 * on free block. The free block accounting via percpu
179f7ebf 2480 * counters can get slightly wrong with percpu_counter_batch getting
79f0be8d
AK
2481 * accumulated on each CPU without updating global counters
2482 * Delalloc need an accurate free block accounting. So switch
2483 * to non delalloc when we are near to error range.
2484 */
57042651
TT
2485 free_blocks = EXT4_C2B(sbi,
2486 percpu_counter_read_positive(&sbi->s_freeclusters_counter));
2487 dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
00d4e736
TT
2488 /*
2489 * Start pushing delalloc when 1/2 of free blocks are dirty.
2490 */
2491 if (dirty_blocks && (free_blocks < 2 * dirty_blocks) &&
2492 !writeback_in_progress(sb->s_bdi) &&
2493 down_read_trylock(&sb->s_umount)) {
2494 writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2495 up_read(&sb->s_umount);
2496 }
2497
79f0be8d 2498 if (2 * free_blocks < 3 * dirty_blocks ||
df55c99d 2499 free_blocks < (dirty_blocks + EXT4_FREECLUSTERS_WATERMARK)) {
79f0be8d 2500 /*
c8afb446
ES
2501 * free block count is less than 150% of dirty blocks
2502 * or free blocks is less than watermark
79f0be8d
AK
2503 */
2504 return 1;
2505 }
2506 return 0;
2507}
2508
64769240 2509static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
de9a55b8
TT
2510 loff_t pos, unsigned len, unsigned flags,
2511 struct page **pagep, void **fsdata)
64769240 2512{
72b8ab9d 2513 int ret, retries = 0;
64769240
AT
2514 struct page *page;
2515 pgoff_t index;
64769240
AT
2516 struct inode *inode = mapping->host;
2517 handle_t *handle;
2518
2519 index = pos >> PAGE_CACHE_SHIFT;
79f0be8d
AK
2520
2521 if (ext4_nonda_switch(inode->i_sb)) {
2522 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2523 return ext4_write_begin(file, mapping, pos,
2524 len, flags, pagep, fsdata);
2525 }
2526 *fsdata = (void *)0;
9bffad1e 2527 trace_ext4_da_write_begin(inode, pos, len, flags);
d2a17637 2528retry:
64769240
AT
2529 /*
2530 * With delayed allocation, we don't log the i_disksize update
2531 * if there is delayed block allocation. But we still need
2532 * to journalling the i_disksize update if writes to the end
2533 * of file which has an already mapped buffer.
2534 */
2535 handle = ext4_journal_start(inode, 1);
2536 if (IS_ERR(handle)) {
2537 ret = PTR_ERR(handle);
2538 goto out;
2539 }
ebd3610b
JK
2540 /* We cannot recurse into the filesystem as the transaction is already
2541 * started */
2542 flags |= AOP_FLAG_NOFS;
64769240 2543
54566b2c 2544 page = grab_cache_page_write_begin(mapping, index, flags);
d5a0d4f7
ES
2545 if (!page) {
2546 ext4_journal_stop(handle);
2547 ret = -ENOMEM;
2548 goto out;
2549 }
64769240
AT
2550 *pagep = page;
2551
6e1db88d 2552 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
64769240
AT
2553 if (ret < 0) {
2554 unlock_page(page);
2555 ext4_journal_stop(handle);
2556 page_cache_release(page);
ae4d5372
AK
2557 /*
2558 * block_write_begin may have instantiated a few blocks
2559 * outside i_size. Trim these off again. Don't need
2560 * i_size_read because we hold i_mutex.
2561 */
2562 if (pos + len > inode->i_size)
b9a4207d 2563 ext4_truncate_failed_write(inode);
64769240
AT
2564 }
2565
d2a17637
MC
2566 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
2567 goto retry;
64769240
AT
2568out:
2569 return ret;
2570}
2571
632eaeab
MC
2572/*
2573 * Check if we should update i_disksize
2574 * when write to the end of file but not require block allocation
2575 */
2576static int ext4_da_should_update_i_disksize(struct page *page,
de9a55b8 2577 unsigned long offset)
632eaeab
MC
2578{
2579 struct buffer_head *bh;
2580 struct inode *inode = page->mapping->host;
2581 unsigned int idx;
2582 int i;
2583
2584 bh = page_buffers(page);
2585 idx = offset >> inode->i_blkbits;
2586
af5bc92d 2587 for (i = 0; i < idx; i++)
632eaeab
MC
2588 bh = bh->b_this_page;
2589
29fa89d0 2590 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
632eaeab
MC
2591 return 0;
2592 return 1;
2593}
2594
64769240 2595static int ext4_da_write_end(struct file *file,
de9a55b8
TT
2596 struct address_space *mapping,
2597 loff_t pos, unsigned len, unsigned copied,
2598 struct page *page, void *fsdata)
64769240
AT
2599{
2600 struct inode *inode = mapping->host;
2601 int ret = 0, ret2;
2602 handle_t *handle = ext4_journal_current_handle();
2603 loff_t new_i_size;
632eaeab 2604 unsigned long start, end;
79f0be8d
AK
2605 int write_mode = (int)(unsigned long)fsdata;
2606
2607 if (write_mode == FALL_BACK_TO_NONDELALLOC) {
3d2b1582
LC
2608 switch (ext4_inode_journal_mode(inode)) {
2609 case EXT4_INODE_ORDERED_DATA_MODE:
79f0be8d
AK
2610 return ext4_ordered_write_end(file, mapping, pos,
2611 len, copied, page, fsdata);
3d2b1582 2612 case EXT4_INODE_WRITEBACK_DATA_MODE:
79f0be8d
AK
2613 return ext4_writeback_write_end(file, mapping, pos,
2614 len, copied, page, fsdata);
3d2b1582 2615 default:
79f0be8d
AK
2616 BUG();
2617 }
2618 }
632eaeab 2619
9bffad1e 2620 trace_ext4_da_write_end(inode, pos, len, copied);
632eaeab 2621 start = pos & (PAGE_CACHE_SIZE - 1);
af5bc92d 2622 end = start + copied - 1;
64769240
AT
2623
2624 /*
2625 * generic_write_end() will run mark_inode_dirty() if i_size
2626 * changes. So let's piggyback the i_disksize mark_inode_dirty
2627 * into that.
2628 */
2629
2630 new_i_size = pos + copied;
ea51d132 2631 if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
632eaeab
MC
2632 if (ext4_da_should_update_i_disksize(page, end)) {
2633 down_write(&EXT4_I(inode)->i_data_sem);
f3b59291 2634 if (new_i_size > EXT4_I(inode)->i_disksize)
632eaeab 2635 EXT4_I(inode)->i_disksize = new_i_size;
632eaeab 2636 up_write(&EXT4_I(inode)->i_data_sem);
cf17fea6
AK
2637 /* We need to mark inode dirty even if
2638 * new_i_size is less that inode->i_size
2639 * bu greater than i_disksize.(hint delalloc)
2640 */
2641 ext4_mark_inode_dirty(handle, inode);
64769240 2642 }
632eaeab 2643 }
64769240
AT
2644 ret2 = generic_write_end(file, mapping, pos, len, copied,
2645 page, fsdata);
2646 copied = ret2;
2647 if (ret2 < 0)
2648 ret = ret2;
2649 ret2 = ext4_journal_stop(handle);
2650 if (!ret)
2651 ret = ret2;
2652
2653 return ret ? ret : copied;
2654}
2655
2656static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
2657{
64769240
AT
2658 /*
2659 * Drop reserved blocks
2660 */
2661 BUG_ON(!PageLocked(page));
2662 if (!page_has_buffers(page))
2663 goto out;
2664
d2a17637 2665 ext4_da_page_release_reservation(page, offset);
64769240
AT
2666
2667out:
2668 ext4_invalidatepage(page, offset);
2669
2670 return;
2671}
2672
ccd2506b
TT
2673/*
2674 * Force all delayed allocation blocks to be allocated for a given inode.
2675 */
2676int ext4_alloc_da_blocks(struct inode *inode)
2677{
fb40ba0d
TT
2678 trace_ext4_alloc_da_blocks(inode);
2679
ccd2506b
TT
2680 if (!EXT4_I(inode)->i_reserved_data_blocks &&
2681 !EXT4_I(inode)->i_reserved_meta_blocks)
2682 return 0;
2683
2684 /*
2685 * We do something simple for now. The filemap_flush() will
2686 * also start triggering a write of the data blocks, which is
2687 * not strictly speaking necessary (and for users of
2688 * laptop_mode, not even desirable). However, to do otherwise
2689 * would require replicating code paths in:
de9a55b8 2690 *
ccd2506b
TT
2691 * ext4_da_writepages() ->
2692 * write_cache_pages() ---> (via passed in callback function)
2693 * __mpage_da_writepage() -->
2694 * mpage_add_bh_to_extent()
2695 * mpage_da_map_blocks()
2696 *
2697 * The problem is that write_cache_pages(), located in
2698 * mm/page-writeback.c, marks pages clean in preparation for
2699 * doing I/O, which is not desirable if we're not planning on
2700 * doing I/O at all.
2701 *
2702 * We could call write_cache_pages(), and then redirty all of
380cf090 2703 * the pages by calling redirty_page_for_writepage() but that
ccd2506b
TT
2704 * would be ugly in the extreme. So instead we would need to
2705 * replicate parts of the code in the above functions,
25985edc 2706 * simplifying them because we wouldn't actually intend to
ccd2506b
TT
2707 * write out the pages, but rather only collect contiguous
2708 * logical block extents, call the multi-block allocator, and
2709 * then update the buffer heads with the block allocations.
de9a55b8 2710 *
ccd2506b
TT
2711 * For now, though, we'll cheat by calling filemap_flush(),
2712 * which will map the blocks, and start the I/O, but not
2713 * actually wait for the I/O to complete.
2714 */
2715 return filemap_flush(inode->i_mapping);
2716}
64769240 2717
ac27a0ec
DK
2718/*
2719 * bmap() is special. It gets used by applications such as lilo and by
2720 * the swapper to find the on-disk block of a specific piece of data.
2721 *
2722 * Naturally, this is dangerous if the block concerned is still in the
617ba13b 2723 * journal. If somebody makes a swapfile on an ext4 data-journaling
ac27a0ec
DK
2724 * filesystem and enables swap, then they may get a nasty shock when the
2725 * data getting swapped to that swapfile suddenly gets overwritten by
2726 * the original zero's written out previously to the journal and
2727 * awaiting writeback in the kernel's buffer cache.
2728 *
2729 * So, if we see any bmap calls here on a modified, data-journaled file,
2730 * take extra steps to flush any blocks which might be in the cache.
2731 */
617ba13b 2732static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
ac27a0ec
DK
2733{
2734 struct inode *inode = mapping->host;
2735 journal_t *journal;
2736 int err;
2737
46c7f254
TM
2738 /*
2739 * We can get here for an inline file via the FIBMAP ioctl
2740 */
2741 if (ext4_has_inline_data(inode))
2742 return 0;
2743
64769240
AT
2744 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2745 test_opt(inode->i_sb, DELALLOC)) {
2746 /*
2747 * With delalloc we want to sync the file
2748 * so that we can make sure we allocate
2749 * blocks for file
2750 */
2751 filemap_write_and_wait(mapping);
2752 }
2753
19f5fb7a
TT
2754 if (EXT4_JOURNAL(inode) &&
2755 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
ac27a0ec
DK
2756 /*
2757 * This is a REALLY heavyweight approach, but the use of
2758 * bmap on dirty files is expected to be extremely rare:
2759 * only if we run lilo or swapon on a freshly made file
2760 * do we expect this to happen.
2761 *
2762 * (bmap requires CAP_SYS_RAWIO so this does not
2763 * represent an unprivileged user DOS attack --- we'd be
2764 * in trouble if mortal users could trigger this path at
2765 * will.)
2766 *
617ba13b 2767 * NB. EXT4_STATE_JDATA is not set on files other than
ac27a0ec
DK
2768 * regular files. If somebody wants to bmap a directory
2769 * or symlink and gets confused because the buffer
2770 * hasn't yet been flushed to disk, they deserve
2771 * everything they get.
2772 */
2773
19f5fb7a 2774 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
617ba13b 2775 journal = EXT4_JOURNAL(inode);
dab291af
MC
2776 jbd2_journal_lock_updates(journal);
2777 err = jbd2_journal_flush(journal);
2778 jbd2_journal_unlock_updates(journal);
ac27a0ec
DK
2779
2780 if (err)
2781 return 0;
2782 }
2783
af5bc92d 2784 return generic_block_bmap(mapping, block, ext4_get_block);
ac27a0ec
DK
2785}
2786
617ba13b 2787static int ext4_readpage(struct file *file, struct page *page)
ac27a0ec 2788{
46c7f254
TM
2789 int ret = -EAGAIN;
2790 struct inode *inode = page->mapping->host;
2791
0562e0ba 2792 trace_ext4_readpage(page);
46c7f254
TM
2793
2794 if (ext4_has_inline_data(inode))
2795 ret = ext4_readpage_inline(inode, page);
2796
2797 if (ret == -EAGAIN)
2798 return mpage_readpage(page, ext4_get_block);
2799
2800 return ret;
ac27a0ec
DK
2801}
2802
2803static int
617ba13b 2804ext4_readpages(struct file *file, struct address_space *mapping,
ac27a0ec
DK
2805 struct list_head *pages, unsigned nr_pages)
2806{
46c7f254
TM
2807 struct inode *inode = mapping->host;
2808
2809 /* If the file has inline data, no need to do readpages. */
2810 if (ext4_has_inline_data(inode))
2811 return 0;
2812
617ba13b 2813 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
ac27a0ec
DK
2814}
2815
744692dc
JZ
2816static void ext4_invalidatepage_free_endio(struct page *page, unsigned long offset)
2817{
2818 struct buffer_head *head, *bh;
2819 unsigned int curr_off = 0;
2820
2821 if (!page_has_buffers(page))
2822 return;
2823 head = bh = page_buffers(page);
2824 do {
2825 if (offset <= curr_off && test_clear_buffer_uninit(bh)
2826 && bh->b_private) {
2827 ext4_free_io_end(bh->b_private);
2828 bh->b_private = NULL;
2829 bh->b_end_io = NULL;
2830 }
2831 curr_off = curr_off + bh->b_size;
2832 bh = bh->b_this_page;
2833 } while (bh != head);
2834}
2835
617ba13b 2836static void ext4_invalidatepage(struct page *page, unsigned long offset)
ac27a0ec 2837{
617ba13b 2838 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
ac27a0ec 2839
0562e0ba
JZ
2840 trace_ext4_invalidatepage(page, offset);
2841
744692dc
JZ
2842 /*
2843 * free any io_end structure allocated for buffers to be discarded
2844 */
2845 if (ext4_should_dioread_nolock(page->mapping->host))
2846 ext4_invalidatepage_free_endio(page, offset);
ac27a0ec
DK
2847 /*
2848 * If it's a full truncate we just forget about the pending dirtying
2849 */
2850 if (offset == 0)
2851 ClearPageChecked(page);
2852
0390131b
FM
2853 if (journal)
2854 jbd2_journal_invalidatepage(journal, page, offset);
2855 else
2856 block_invalidatepage(page, offset);
ac27a0ec
DK
2857}
2858
617ba13b 2859static int ext4_releasepage(struct page *page, gfp_t wait)
ac27a0ec 2860{
617ba13b 2861 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
ac27a0ec 2862
0562e0ba
JZ
2863 trace_ext4_releasepage(page);
2864
ac27a0ec
DK
2865 WARN_ON(PageChecked(page));
2866 if (!page_has_buffers(page))
2867 return 0;
0390131b
FM
2868 if (journal)
2869 return jbd2_journal_try_to_free_buffers(journal, page, wait);
2870 else
2871 return try_to_free_buffers(page);
ac27a0ec
DK
2872}
2873
2ed88685
TT
2874/*
2875 * ext4_get_block used when preparing for a DIO write or buffer write.
2876 * We allocate an uinitialized extent if blocks haven't been allocated.
2877 * The extent will be converted to initialized after the IO is complete.
2878 */
f19d5870 2879int ext4_get_block_write(struct inode *inode, sector_t iblock,
4c0425ff
MC
2880 struct buffer_head *bh_result, int create)
2881{
c7064ef1 2882 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
8d5d02e6 2883 inode->i_ino, create);
2ed88685
TT
2884 return _ext4_get_block(inode, iblock, bh_result,
2885 EXT4_GET_BLOCKS_IO_CREATE_EXT);
4c0425ff
MC
2886}
2887
729f52c6 2888static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
8b0f165f 2889 struct buffer_head *bh_result, int create)
729f52c6 2890{
8b0f165f
AP
2891 ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
2892 inode->i_ino, create);
2893 return _ext4_get_block(inode, iblock, bh_result,
2894 EXT4_GET_BLOCKS_NO_LOCK);
729f52c6
ZL
2895}
2896
4c0425ff 2897static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
552ef802
CH
2898 ssize_t size, void *private, int ret,
2899 bool is_async)
4c0425ff 2900{
72c5052d 2901 struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
4c0425ff 2902 ext4_io_end_t *io_end = iocb->private;
4c0425ff 2903
4b70df18
M
2904 /* if not async direct IO or dio with 0 bytes write, just return */
2905 if (!io_end || !size)
552ef802 2906 goto out;
4b70df18 2907
88635ca2 2908 ext_debug("ext4_end_io_dio(): io_end 0x%p "
ace36ad4 2909 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
8d5d02e6
MC
2910 iocb->private, io_end->inode->i_ino, iocb, offset,
2911 size);
8d5d02e6 2912
b5a7e970
TT
2913 iocb->private = NULL;
2914
8d5d02e6 2915 /* if not aio dio with unwritten extents, just free io and return */
bd2d0210 2916 if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
8d5d02e6 2917 ext4_free_io_end(io_end);
5b3ff237
JZ
2918out:
2919 if (is_async)
2920 aio_complete(iocb, ret, 0);
72c5052d 2921 inode_dio_done(inode);
5b3ff237 2922 return;
8d5d02e6
MC
2923 }
2924
4c0425ff
MC
2925 io_end->offset = offset;
2926 io_end->size = size;
5b3ff237
JZ
2927 if (is_async) {
2928 io_end->iocb = iocb;
2929 io_end->result = ret;
2930 }
4c0425ff 2931
28a535f9 2932 ext4_add_complete_io(io_end);
4c0425ff 2933}
c7064ef1 2934
744692dc
JZ
2935static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate)
2936{
2937 ext4_io_end_t *io_end = bh->b_private;
744692dc 2938 struct inode *inode;
744692dc
JZ
2939
2940 if (!test_clear_buffer_uninit(bh) || !io_end)
2941 goto out;
2942
2943 if (!(io_end->inode->i_sb->s_flags & MS_ACTIVE)) {
92b97816
TT
2944 ext4_msg(io_end->inode->i_sb, KERN_INFO,
2945 "sb umounted, discard end_io request for inode %lu",
2946 io_end->inode->i_ino);
744692dc
JZ
2947 ext4_free_io_end(io_end);
2948 goto out;
2949 }
2950
32c80b32
TM
2951 /*
2952 * It may be over-defensive here to check EXT4_IO_END_UNWRITTEN now,
2953 * but being more careful is always safe for the future change.
2954 */
744692dc 2955 inode = io_end->inode;
0edeb71d 2956 ext4_set_io_unwritten_flag(inode, io_end);
28a535f9 2957 ext4_add_complete_io(io_end);
744692dc
JZ
2958out:
2959 bh->b_private = NULL;
2960 bh->b_end_io = NULL;
2961 clear_buffer_uninit(bh);
2962 end_buffer_async_write(bh, uptodate);
2963}
2964
2965static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode)
2966{
2967 ext4_io_end_t *io_end;
2968 struct page *page = bh->b_page;
2969 loff_t offset = (sector_t)page->index << PAGE_CACHE_SHIFT;
2970 size_t size = bh->b_size;
2971
2972retry:
2973 io_end = ext4_init_io_end(inode, GFP_ATOMIC);
2974 if (!io_end) {
6db26ffc 2975 pr_warn_ratelimited("%s: allocation fail\n", __func__);
744692dc
JZ
2976 schedule();
2977 goto retry;
2978 }
2979 io_end->offset = offset;
2980 io_end->size = size;
2981 /*
2982 * We need to hold a reference to the page to make sure it
2983 * doesn't get evicted before ext4_end_io_work() has a chance
2984 * to convert the extent from written to unwritten.
2985 */
2986 io_end->page = page;
2987 get_page(io_end->page);
2988
2989 bh->b_private = io_end;
2990 bh->b_end_io = ext4_end_io_buffer_write;
2991 return 0;
2992}
2993
4c0425ff
MC
2994/*
2995 * For ext4 extent files, ext4 will do direct-io write to holes,
2996 * preallocated extents, and those write extend the file, no need to
2997 * fall back to buffered IO.
2998 *
b595076a 2999 * For holes, we fallocate those blocks, mark them as uninitialized
69c499d1 3000 * If those blocks were preallocated, we mark sure they are split, but
b595076a 3001 * still keep the range to write as uninitialized.
4c0425ff 3002 *
69c499d1 3003 * The unwritten extents will be converted to written when DIO is completed.
8d5d02e6 3004 * For async direct IO, since the IO may still pending when return, we
25985edc 3005 * set up an end_io call back function, which will do the conversion
8d5d02e6 3006 * when async direct IO completed.
4c0425ff
MC
3007 *
3008 * If the O_DIRECT write will extend the file then add this inode to the
3009 * orphan list. So recovery will truncate it back to the original size
3010 * if the machine crashes during the write.
3011 *
3012 */
3013static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
3014 const struct iovec *iov, loff_t offset,
3015 unsigned long nr_segs)
3016{
3017 struct file *file = iocb->ki_filp;
3018 struct inode *inode = file->f_mapping->host;
3019 ssize_t ret;
3020 size_t count = iov_length(iov, nr_segs);
69c499d1
TT
3021 int overwrite = 0;
3022 get_block_t *get_block_func = NULL;
3023 int dio_flags = 0;
4c0425ff 3024 loff_t final_size = offset + count;
729f52c6 3025
69c499d1
TT
3026 /* Use the old path for reads and writes beyond i_size. */
3027 if (rw != WRITE || final_size > inode->i_size)
3028 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
4bd809db 3029
69c499d1 3030 BUG_ON(iocb->private == NULL);
4bd809db 3031
69c499d1
TT
3032 /* If we do a overwrite dio, i_mutex locking can be released */
3033 overwrite = *((int *)iocb->private);
4bd809db 3034
69c499d1
TT
3035 if (overwrite) {
3036 atomic_inc(&inode->i_dio_count);
3037 down_read(&EXT4_I(inode)->i_data_sem);
3038 mutex_unlock(&inode->i_mutex);
3039 }
8d5d02e6 3040
69c499d1
TT
3041 /*
3042 * We could direct write to holes and fallocate.
3043 *
3044 * Allocated blocks to fill the hole are marked as
3045 * uninitialized to prevent parallel buffered read to expose
3046 * the stale data before DIO complete the data IO.
3047 *
3048 * As to previously fallocated extents, ext4 get_block will
3049 * just simply mark the buffer mapped but still keep the
3050 * extents uninitialized.
3051 *
3052 * For non AIO case, we will convert those unwritten extents
3053 * to written after return back from blockdev_direct_IO.
3054 *
3055 * For async DIO, the conversion needs to be deferred when the
3056 * IO is completed. The ext4 end_io callback function will be
3057 * called to take care of the conversion work. Here for async
3058 * case, we allocate an io_end structure to hook to the iocb.
3059 */
3060 iocb->private = NULL;
3061 ext4_inode_aio_set(inode, NULL);
3062 if (!is_sync_kiocb(iocb)) {
3063 ext4_io_end_t *io_end = ext4_init_io_end(inode, GFP_NOFS);
3064 if (!io_end) {
3065 ret = -ENOMEM;
3066 goto retake_lock;
8b0f165f 3067 }
69c499d1
TT
3068 io_end->flag |= EXT4_IO_END_DIRECT;
3069 iocb->private = io_end;
8d5d02e6 3070 /*
69c499d1
TT
3071 * we save the io structure for current async direct
3072 * IO, so that later ext4_map_blocks() could flag the
3073 * io structure whether there is a unwritten extents
3074 * needs to be converted when IO is completed.
8d5d02e6 3075 */
69c499d1
TT
3076 ext4_inode_aio_set(inode, io_end);
3077 }
4bd809db 3078
69c499d1
TT
3079 if (overwrite) {
3080 get_block_func = ext4_get_block_write_nolock;
3081 } else {
3082 get_block_func = ext4_get_block_write;
3083 dio_flags = DIO_LOCKING;
3084 }
3085 ret = __blockdev_direct_IO(rw, iocb, inode,
3086 inode->i_sb->s_bdev, iov,
3087 offset, nr_segs,
3088 get_block_func,
3089 ext4_end_io_dio,
3090 NULL,
3091 dio_flags);
3092
3093 if (iocb->private)
3094 ext4_inode_aio_set(inode, NULL);
3095 /*
3096 * The io_end structure takes a reference to the inode, that
3097 * structure needs to be destroyed and the reference to the
3098 * inode need to be dropped, when IO is complete, even with 0
3099 * byte write, or failed.
3100 *
3101 * In the successful AIO DIO case, the io_end structure will
3102 * be destroyed and the reference to the inode will be dropped
3103 * after the end_io call back function is called.
3104 *
3105 * In the case there is 0 byte write, or error case, since VFS
3106 * direct IO won't invoke the end_io call back function, we
3107 * need to free the end_io structure here.
3108 */
3109 if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
3110 ext4_free_io_end(iocb->private);
3111 iocb->private = NULL;
3112 } else if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3113 EXT4_STATE_DIO_UNWRITTEN)) {
3114 int err;
3115 /*
3116 * for non AIO case, since the IO is already
3117 * completed, we could do the conversion right here
3118 */
3119 err = ext4_convert_unwritten_extents(inode,
3120 offset, ret);
3121 if (err < 0)
3122 ret = err;
3123 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3124 }
4bd809db 3125
69c499d1
TT
3126retake_lock:
3127 /* take i_mutex locking again if we do a ovewrite dio */
3128 if (overwrite) {
3129 inode_dio_done(inode);
3130 up_read(&EXT4_I(inode)->i_data_sem);
3131 mutex_lock(&inode->i_mutex);
4c0425ff 3132 }
8d5d02e6 3133
69c499d1 3134 return ret;
4c0425ff
MC
3135}
3136
3137static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3138 const struct iovec *iov, loff_t offset,
3139 unsigned long nr_segs)
3140{
3141 struct file *file = iocb->ki_filp;
3142 struct inode *inode = file->f_mapping->host;
0562e0ba 3143 ssize_t ret;
4c0425ff 3144
84ebd795
TT
3145 /*
3146 * If we are doing data journalling we don't support O_DIRECT
3147 */
3148 if (ext4_should_journal_data(inode))
3149 return 0;
3150
46c7f254
TM
3151 /* Let buffer I/O handle the inline data case. */
3152 if (ext4_has_inline_data(inode))
3153 return 0;
3154
0562e0ba 3155 trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
12e9b892 3156 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
0562e0ba
JZ
3157 ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3158 else
3159 ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3160 trace_ext4_direct_IO_exit(inode, offset,
3161 iov_length(iov, nr_segs), rw, ret);
3162 return ret;
4c0425ff
MC
3163}
3164
ac27a0ec 3165/*
617ba13b 3166 * Pages can be marked dirty completely asynchronously from ext4's journalling
ac27a0ec
DK
3167 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3168 * much here because ->set_page_dirty is called under VFS locks. The page is
3169 * not necessarily locked.
3170 *
3171 * We cannot just dirty the page and leave attached buffers clean, because the
3172 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3173 * or jbddirty because all the journalling code will explode.
3174 *
3175 * So what we do is to mark the page "pending dirty" and next time writepage
3176 * is called, propagate that into the buffers appropriately.
3177 */
617ba13b 3178static int ext4_journalled_set_page_dirty(struct page *page)
ac27a0ec
DK
3179{
3180 SetPageChecked(page);
3181 return __set_page_dirty_nobuffers(page);
3182}
3183
617ba13b 3184static const struct address_space_operations ext4_ordered_aops = {
8ab22b9a
HH
3185 .readpage = ext4_readpage,
3186 .readpages = ext4_readpages,
43ce1d23 3187 .writepage = ext4_writepage,
8ab22b9a
HH
3188 .write_begin = ext4_write_begin,
3189 .write_end = ext4_ordered_write_end,
3190 .bmap = ext4_bmap,
3191 .invalidatepage = ext4_invalidatepage,
3192 .releasepage = ext4_releasepage,
3193 .direct_IO = ext4_direct_IO,
3194 .migratepage = buffer_migrate_page,
3195 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3196 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
3197};
3198
617ba13b 3199static const struct address_space_operations ext4_writeback_aops = {
8ab22b9a
HH
3200 .readpage = ext4_readpage,
3201 .readpages = ext4_readpages,
43ce1d23 3202 .writepage = ext4_writepage,
8ab22b9a
HH
3203 .write_begin = ext4_write_begin,
3204 .write_end = ext4_writeback_write_end,
3205 .bmap = ext4_bmap,
3206 .invalidatepage = ext4_invalidatepage,
3207 .releasepage = ext4_releasepage,
3208 .direct_IO = ext4_direct_IO,
3209 .migratepage = buffer_migrate_page,
3210 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3211 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
3212};
3213
617ba13b 3214static const struct address_space_operations ext4_journalled_aops = {
8ab22b9a
HH
3215 .readpage = ext4_readpage,
3216 .readpages = ext4_readpages,
43ce1d23 3217 .writepage = ext4_writepage,
8ab22b9a
HH
3218 .write_begin = ext4_write_begin,
3219 .write_end = ext4_journalled_write_end,
3220 .set_page_dirty = ext4_journalled_set_page_dirty,
3221 .bmap = ext4_bmap,
3222 .invalidatepage = ext4_invalidatepage,
3223 .releasepage = ext4_releasepage,
84ebd795 3224 .direct_IO = ext4_direct_IO,
8ab22b9a 3225 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3226 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
3227};
3228
64769240 3229static const struct address_space_operations ext4_da_aops = {
8ab22b9a
HH
3230 .readpage = ext4_readpage,
3231 .readpages = ext4_readpages,
43ce1d23 3232 .writepage = ext4_writepage,
8ab22b9a 3233 .writepages = ext4_da_writepages,
8ab22b9a
HH
3234 .write_begin = ext4_da_write_begin,
3235 .write_end = ext4_da_write_end,
3236 .bmap = ext4_bmap,
3237 .invalidatepage = ext4_da_invalidatepage,
3238 .releasepage = ext4_releasepage,
3239 .direct_IO = ext4_direct_IO,
3240 .migratepage = buffer_migrate_page,
3241 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3242 .error_remove_page = generic_error_remove_page,
64769240
AT
3243};
3244
617ba13b 3245void ext4_set_aops(struct inode *inode)
ac27a0ec 3246{
3d2b1582
LC
3247 switch (ext4_inode_journal_mode(inode)) {
3248 case EXT4_INODE_ORDERED_DATA_MODE:
3249 if (test_opt(inode->i_sb, DELALLOC))
3250 inode->i_mapping->a_ops = &ext4_da_aops;
3251 else
3252 inode->i_mapping->a_ops = &ext4_ordered_aops;
3253 break;
3254 case EXT4_INODE_WRITEBACK_DATA_MODE:
3255 if (test_opt(inode->i_sb, DELALLOC))
3256 inode->i_mapping->a_ops = &ext4_da_aops;
3257 else
3258 inode->i_mapping->a_ops = &ext4_writeback_aops;
3259 break;
3260 case EXT4_INODE_JOURNAL_DATA_MODE:
617ba13b 3261 inode->i_mapping->a_ops = &ext4_journalled_aops;
3d2b1582
LC
3262 break;
3263 default:
3264 BUG();
3265 }
ac27a0ec
DK
3266}
3267
4e96b2db
AH
3268
3269/*
3270 * ext4_discard_partial_page_buffers()
3271 * Wrapper function for ext4_discard_partial_page_buffers_no_lock.
3272 * This function finds and locks the page containing the offset
3273 * "from" and passes it to ext4_discard_partial_page_buffers_no_lock.
3274 * Calling functions that already have the page locked should call
3275 * ext4_discard_partial_page_buffers_no_lock directly.
3276 */
3277int ext4_discard_partial_page_buffers(handle_t *handle,
3278 struct address_space *mapping, loff_t from,
3279 loff_t length, int flags)
3280{
3281 struct inode *inode = mapping->host;
3282 struct page *page;
3283 int err = 0;
3284
3285 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3286 mapping_gfp_mask(mapping) & ~__GFP_FS);
3287 if (!page)
5129d05f 3288 return -ENOMEM;
4e96b2db
AH
3289
3290 err = ext4_discard_partial_page_buffers_no_lock(handle, inode, page,
3291 from, length, flags);
3292
3293 unlock_page(page);
3294 page_cache_release(page);
3295 return err;
3296}
3297
3298/*
3299 * ext4_discard_partial_page_buffers_no_lock()
3300 * Zeros a page range of length 'length' starting from offset 'from'.
3301 * Buffer heads that correspond to the block aligned regions of the
3302 * zeroed range will be unmapped. Unblock aligned regions
3303 * will have the corresponding buffer head mapped if needed so that
3304 * that region of the page can be updated with the partial zero out.
3305 *
3306 * This function assumes that the page has already been locked. The
3307 * The range to be discarded must be contained with in the given page.
3308 * If the specified range exceeds the end of the page it will be shortened
3309 * to the end of the page that corresponds to 'from'. This function is
3310 * appropriate for updating a page and it buffer heads to be unmapped and
3311 * zeroed for blocks that have been either released, or are going to be
3312 * released.
3313 *
3314 * handle: The journal handle
3315 * inode: The files inode
3316 * page: A locked page that contains the offset "from"
4907cb7b 3317 * from: The starting byte offset (from the beginning of the file)
4e96b2db
AH
3318 * to begin discarding
3319 * len: The length of bytes to discard
3320 * flags: Optional flags that may be used:
3321 *
3322 * EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED
3323 * Only zero the regions of the page whose buffer heads
3324 * have already been unmapped. This flag is appropriate
4907cb7b 3325 * for updating the contents of a page whose blocks may
4e96b2db
AH
3326 * have already been released, and we only want to zero
3327 * out the regions that correspond to those released blocks.
3328 *
4907cb7b 3329 * Returns zero on success or negative on failure.
4e96b2db 3330 */
5f163cc7 3331static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
4e96b2db
AH
3332 struct inode *inode, struct page *page, loff_t from,
3333 loff_t length, int flags)
3334{
3335 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3336 unsigned int offset = from & (PAGE_CACHE_SIZE-1);
3337 unsigned int blocksize, max, pos;
4e96b2db
AH
3338 ext4_lblk_t iblock;
3339 struct buffer_head *bh;
3340 int err = 0;
3341
3342 blocksize = inode->i_sb->s_blocksize;
3343 max = PAGE_CACHE_SIZE - offset;
3344
3345 if (index != page->index)
3346 return -EINVAL;
3347
3348 /*
3349 * correct length if it does not fall between
3350 * 'from' and the end of the page
3351 */
3352 if (length > max || length < 0)
3353 length = max;
3354
3355 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3356
093e6e36
YY
3357 if (!page_has_buffers(page))
3358 create_empty_buffers(page, blocksize, 0);
4e96b2db
AH
3359
3360 /* Find the buffer that contains "offset" */
3361 bh = page_buffers(page);
3362 pos = blocksize;
3363 while (offset >= pos) {
3364 bh = bh->b_this_page;
3365 iblock++;
3366 pos += blocksize;
3367 }
3368
3369 pos = offset;
3370 while (pos < offset + length) {
e260daf2
YY
3371 unsigned int end_of_block, range_to_discard;
3372
4e96b2db
AH
3373 err = 0;
3374
3375 /* The length of space left to zero and unmap */
3376 range_to_discard = offset + length - pos;
3377
3378 /* The length of space until the end of the block */
3379 end_of_block = blocksize - (pos & (blocksize-1));
3380
3381 /*
3382 * Do not unmap or zero past end of block
3383 * for this buffer head
3384 */
3385 if (range_to_discard > end_of_block)
3386 range_to_discard = end_of_block;
3387
3388
3389 /*
3390 * Skip this buffer head if we are only zeroing unampped
3391 * regions of the page
3392 */
3393 if (flags & EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED &&
3394 buffer_mapped(bh))
3395 goto next;
3396
3397 /* If the range is block aligned, unmap */
3398 if (range_to_discard == blocksize) {
3399 clear_buffer_dirty(bh);
3400 bh->b_bdev = NULL;
3401 clear_buffer_mapped(bh);
3402 clear_buffer_req(bh);
3403 clear_buffer_new(bh);
3404 clear_buffer_delay(bh);
3405 clear_buffer_unwritten(bh);
3406 clear_buffer_uptodate(bh);
3407 zero_user(page, pos, range_to_discard);
3408 BUFFER_TRACE(bh, "Buffer discarded");
3409 goto next;
3410 }
3411
3412 /*
3413 * If this block is not completely contained in the range
3414 * to be discarded, then it is not going to be released. Because
3415 * we need to keep this block, we need to make sure this part
3416 * of the page is uptodate before we modify it by writeing
3417 * partial zeros on it.
3418 */
3419 if (!buffer_mapped(bh)) {
3420 /*
3421 * Buffer head must be mapped before we can read
3422 * from the block
3423 */
3424 BUFFER_TRACE(bh, "unmapped");
3425 ext4_get_block(inode, iblock, bh, 0);
3426 /* unmapped? It's a hole - nothing to do */
3427 if (!buffer_mapped(bh)) {
3428 BUFFER_TRACE(bh, "still unmapped");
3429 goto next;
3430 }
3431 }
3432
3433 /* Ok, it's mapped. Make sure it's up-to-date */
3434 if (PageUptodate(page))
3435 set_buffer_uptodate(bh);
3436
3437 if (!buffer_uptodate(bh)) {
3438 err = -EIO;
3439 ll_rw_block(READ, 1, &bh);
3440 wait_on_buffer(bh);
3441 /* Uhhuh. Read error. Complain and punt.*/
3442 if (!buffer_uptodate(bh))
3443 goto next;
3444 }
3445
3446 if (ext4_should_journal_data(inode)) {
3447 BUFFER_TRACE(bh, "get write access");
3448 err = ext4_journal_get_write_access(handle, bh);
3449 if (err)
3450 goto next;
3451 }
3452
3453 zero_user(page, pos, range_to_discard);
3454
3455 err = 0;
3456 if (ext4_should_journal_data(inode)) {
3457 err = ext4_handle_dirty_metadata(handle, inode, bh);
decbd919 3458 } else
4e96b2db 3459 mark_buffer_dirty(bh);
4e96b2db
AH
3460
3461 BUFFER_TRACE(bh, "Partial buffer zeroed");
3462next:
3463 bh = bh->b_this_page;
3464 iblock++;
3465 pos += range_to_discard;
3466 }
3467
3468 return err;
3469}
3470
91ef4caf
DG
3471int ext4_can_truncate(struct inode *inode)
3472{
91ef4caf
DG
3473 if (S_ISREG(inode->i_mode))
3474 return 1;
3475 if (S_ISDIR(inode->i_mode))
3476 return 1;
3477 if (S_ISLNK(inode->i_mode))
3478 return !ext4_inode_is_fast_symlink(inode);
3479 return 0;
3480}
3481
a4bb6b64
AH
3482/*
3483 * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3484 * associated with the given offset and length
3485 *
3486 * @inode: File inode
3487 * @offset: The offset where the hole will begin
3488 * @len: The length of the hole
3489 *
4907cb7b 3490 * Returns: 0 on success or negative on failure
a4bb6b64
AH
3491 */
3492
3493int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
3494{
3495 struct inode *inode = file->f_path.dentry->d_inode;
3496 if (!S_ISREG(inode->i_mode))
73355192 3497 return -EOPNOTSUPP;
a4bb6b64
AH
3498
3499 if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
3500 /* TODO: Add support for non extent hole punching */
73355192 3501 return -EOPNOTSUPP;
a4bb6b64
AH
3502 }
3503
bab08ab9
TT
3504 if (EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) {
3505 /* TODO: Add support for bigalloc file systems */
73355192 3506 return -EOPNOTSUPP;
bab08ab9
TT
3507 }
3508
a4bb6b64
AH
3509 return ext4_ext_punch_hole(file, offset, length);
3510}
3511
ac27a0ec 3512/*
617ba13b 3513 * ext4_truncate()
ac27a0ec 3514 *
617ba13b
MC
3515 * We block out ext4_get_block() block instantiations across the entire
3516 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
ac27a0ec
DK
3517 * simultaneously on behalf of the same inode.
3518 *
42b2aa86 3519 * As we work through the truncate and commit bits of it to the journal there
ac27a0ec
DK
3520 * is one core, guiding principle: the file's tree must always be consistent on
3521 * disk. We must be able to restart the truncate after a crash.
3522 *
3523 * The file's tree may be transiently inconsistent in memory (although it
3524 * probably isn't), but whenever we close off and commit a journal transaction,
3525 * the contents of (the filesystem + the journal) must be consistent and
3526 * restartable. It's pretty simple, really: bottom up, right to left (although
3527 * left-to-right works OK too).
3528 *
3529 * Note that at recovery time, journal replay occurs *before* the restart of
3530 * truncate against the orphan inode list.
3531 *
3532 * The committed inode has the new, desired i_size (which is the same as
617ba13b 3533 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
ac27a0ec 3534 * that this inode's truncate did not complete and it will again call
617ba13b
MC
3535 * ext4_truncate() to have another go. So there will be instantiated blocks
3536 * to the right of the truncation point in a crashed ext4 filesystem. But
ac27a0ec 3537 * that's fine - as long as they are linked from the inode, the post-crash
617ba13b 3538 * ext4_truncate() run will find them and release them.
ac27a0ec 3539 */
617ba13b 3540void ext4_truncate(struct inode *inode)
ac27a0ec 3541{
0562e0ba
JZ
3542 trace_ext4_truncate_enter(inode);
3543
91ef4caf 3544 if (!ext4_can_truncate(inode))
ac27a0ec
DK
3545 return;
3546
12e9b892 3547 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
c8d46e41 3548
5534fb5b 3549 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
19f5fb7a 3550 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
7d8f9f7d 3551
ff9893dc 3552 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
cf108bca 3553 ext4_ext_truncate(inode);
ff9893dc
AG
3554 else
3555 ext4_ind_truncate(inode);
ac27a0ec 3556
0562e0ba 3557 trace_ext4_truncate_exit(inode);
ac27a0ec
DK
3558}
3559
ac27a0ec 3560/*
617ba13b 3561 * ext4_get_inode_loc returns with an extra refcount against the inode's
ac27a0ec
DK
3562 * underlying buffer_head on success. If 'in_mem' is true, we have all
3563 * data in memory that is needed to recreate the on-disk version of this
3564 * inode.
3565 */
617ba13b
MC
3566static int __ext4_get_inode_loc(struct inode *inode,
3567 struct ext4_iloc *iloc, int in_mem)
ac27a0ec 3568{
240799cd
TT
3569 struct ext4_group_desc *gdp;
3570 struct buffer_head *bh;
3571 struct super_block *sb = inode->i_sb;
3572 ext4_fsblk_t block;
3573 int inodes_per_block, inode_offset;
3574
3a06d778 3575 iloc->bh = NULL;
240799cd
TT
3576 if (!ext4_valid_inum(sb, inode->i_ino))
3577 return -EIO;
ac27a0ec 3578
240799cd
TT
3579 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3580 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3581 if (!gdp)
ac27a0ec
DK
3582 return -EIO;
3583
240799cd
TT
3584 /*
3585 * Figure out the offset within the block group inode table
3586 */
00d09882 3587 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
240799cd
TT
3588 inode_offset = ((inode->i_ino - 1) %
3589 EXT4_INODES_PER_GROUP(sb));
3590 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3591 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3592
3593 bh = sb_getblk(sb, block);
ac27a0ec 3594 if (!bh) {
c398eda0
TT
3595 EXT4_ERROR_INODE_BLOCK(inode, block,
3596 "unable to read itable block");
ac27a0ec
DK
3597 return -EIO;
3598 }
3599 if (!buffer_uptodate(bh)) {
3600 lock_buffer(bh);
9c83a923
HK
3601
3602 /*
3603 * If the buffer has the write error flag, we have failed
3604 * to write out another inode in the same block. In this
3605 * case, we don't have to read the block because we may
3606 * read the old inode data successfully.
3607 */
3608 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3609 set_buffer_uptodate(bh);
3610
ac27a0ec
DK
3611 if (buffer_uptodate(bh)) {
3612 /* someone brought it uptodate while we waited */
3613 unlock_buffer(bh);
3614 goto has_buffer;
3615 }
3616
3617 /*
3618 * If we have all information of the inode in memory and this
3619 * is the only valid inode in the block, we need not read the
3620 * block.
3621 */
3622 if (in_mem) {
3623 struct buffer_head *bitmap_bh;
240799cd 3624 int i, start;
ac27a0ec 3625
240799cd 3626 start = inode_offset & ~(inodes_per_block - 1);
ac27a0ec 3627
240799cd
TT
3628 /* Is the inode bitmap in cache? */
3629 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
ac27a0ec
DK
3630 if (!bitmap_bh)
3631 goto make_io;
3632
3633 /*
3634 * If the inode bitmap isn't in cache then the
3635 * optimisation may end up performing two reads instead
3636 * of one, so skip it.
3637 */
3638 if (!buffer_uptodate(bitmap_bh)) {
3639 brelse(bitmap_bh);
3640 goto make_io;
3641 }
240799cd 3642 for (i = start; i < start + inodes_per_block; i++) {
ac27a0ec
DK
3643 if (i == inode_offset)
3644 continue;
617ba13b 3645 if (ext4_test_bit(i, bitmap_bh->b_data))
ac27a0ec
DK
3646 break;
3647 }
3648 brelse(bitmap_bh);
240799cd 3649 if (i == start + inodes_per_block) {
ac27a0ec
DK
3650 /* all other inodes are free, so skip I/O */
3651 memset(bh->b_data, 0, bh->b_size);
3652 set_buffer_uptodate(bh);
3653 unlock_buffer(bh);
3654 goto has_buffer;
3655 }
3656 }
3657
3658make_io:
240799cd
TT
3659 /*
3660 * If we need to do any I/O, try to pre-readahead extra
3661 * blocks from the inode table.
3662 */
3663 if (EXT4_SB(sb)->s_inode_readahead_blks) {
3664 ext4_fsblk_t b, end, table;
3665 unsigned num;
3666
3667 table = ext4_inode_table(sb, gdp);
b713a5ec 3668 /* s_inode_readahead_blks is always a power of 2 */
240799cd
TT
3669 b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
3670 if (table > b)
3671 b = table;
3672 end = b + EXT4_SB(sb)->s_inode_readahead_blks;
3673 num = EXT4_INODES_PER_GROUP(sb);
feb0ab32 3674 if (ext4_has_group_desc_csum(sb))
560671a0 3675 num -= ext4_itable_unused_count(sb, gdp);
240799cd
TT
3676 table += num / inodes_per_block;
3677 if (end > table)
3678 end = table;
3679 while (b <= end)
3680 sb_breadahead(sb, b++);
3681 }
3682
ac27a0ec
DK
3683 /*
3684 * There are other valid inodes in the buffer, this inode
3685 * has in-inode xattrs, or we don't have this inode in memory.
3686 * Read the block from disk.
3687 */
0562e0ba 3688 trace_ext4_load_inode(inode);
ac27a0ec
DK
3689 get_bh(bh);
3690 bh->b_end_io = end_buffer_read_sync;
65299a3b 3691 submit_bh(READ | REQ_META | REQ_PRIO, bh);
ac27a0ec
DK
3692 wait_on_buffer(bh);
3693 if (!buffer_uptodate(bh)) {
c398eda0
TT
3694 EXT4_ERROR_INODE_BLOCK(inode, block,
3695 "unable to read itable block");
ac27a0ec
DK
3696 brelse(bh);
3697 return -EIO;
3698 }
3699 }
3700has_buffer:
3701 iloc->bh = bh;
3702 return 0;
3703}
3704
617ba13b 3705int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
3706{
3707 /* We have all inode data except xattrs in memory here. */
617ba13b 3708 return __ext4_get_inode_loc(inode, iloc,
19f5fb7a 3709 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
ac27a0ec
DK
3710}
3711
617ba13b 3712void ext4_set_inode_flags(struct inode *inode)
ac27a0ec 3713{
617ba13b 3714 unsigned int flags = EXT4_I(inode)->i_flags;
ac27a0ec
DK
3715
3716 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
617ba13b 3717 if (flags & EXT4_SYNC_FL)
ac27a0ec 3718 inode->i_flags |= S_SYNC;
617ba13b 3719 if (flags & EXT4_APPEND_FL)
ac27a0ec 3720 inode->i_flags |= S_APPEND;
617ba13b 3721 if (flags & EXT4_IMMUTABLE_FL)
ac27a0ec 3722 inode->i_flags |= S_IMMUTABLE;
617ba13b 3723 if (flags & EXT4_NOATIME_FL)
ac27a0ec 3724 inode->i_flags |= S_NOATIME;
617ba13b 3725 if (flags & EXT4_DIRSYNC_FL)
ac27a0ec
DK
3726 inode->i_flags |= S_DIRSYNC;
3727}
3728
ff9ddf7e
JK
3729/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3730void ext4_get_inode_flags(struct ext4_inode_info *ei)
3731{
84a8dce2
DM
3732 unsigned int vfs_fl;
3733 unsigned long old_fl, new_fl;
3734
3735 do {
3736 vfs_fl = ei->vfs_inode.i_flags;
3737 old_fl = ei->i_flags;
3738 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3739 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
3740 EXT4_DIRSYNC_FL);
3741 if (vfs_fl & S_SYNC)
3742 new_fl |= EXT4_SYNC_FL;
3743 if (vfs_fl & S_APPEND)
3744 new_fl |= EXT4_APPEND_FL;
3745 if (vfs_fl & S_IMMUTABLE)
3746 new_fl |= EXT4_IMMUTABLE_FL;
3747 if (vfs_fl & S_NOATIME)
3748 new_fl |= EXT4_NOATIME_FL;
3749 if (vfs_fl & S_DIRSYNC)
3750 new_fl |= EXT4_DIRSYNC_FL;
3751 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
ff9ddf7e 3752}
de9a55b8 3753
0fc1b451 3754static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
de9a55b8 3755 struct ext4_inode_info *ei)
0fc1b451
AK
3756{
3757 blkcnt_t i_blocks ;
8180a562
AK
3758 struct inode *inode = &(ei->vfs_inode);
3759 struct super_block *sb = inode->i_sb;
0fc1b451
AK
3760
3761 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3762 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3763 /* we are using combined 48 bit field */
3764 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3765 le32_to_cpu(raw_inode->i_blocks_lo);
07a03824 3766 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
8180a562
AK
3767 /* i_blocks represent file system block size */
3768 return i_blocks << (inode->i_blkbits - 9);
3769 } else {
3770 return i_blocks;
3771 }
0fc1b451
AK
3772 } else {
3773 return le32_to_cpu(raw_inode->i_blocks_lo);
3774 }
3775}
ff9ddf7e 3776
152a7b0a
TM
3777static inline void ext4_iget_extra_inode(struct inode *inode,
3778 struct ext4_inode *raw_inode,
3779 struct ext4_inode_info *ei)
3780{
3781 __le32 *magic = (void *)raw_inode +
3782 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
67cf5b09 3783 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
152a7b0a 3784 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
67cf5b09 3785 ext4_find_inline_data_nolock(inode);
f19d5870
TM
3786 } else
3787 EXT4_I(inode)->i_inline_off = 0;
152a7b0a
TM
3788}
3789
1d1fe1ee 3790struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
ac27a0ec 3791{
617ba13b
MC
3792 struct ext4_iloc iloc;
3793 struct ext4_inode *raw_inode;
1d1fe1ee 3794 struct ext4_inode_info *ei;
1d1fe1ee 3795 struct inode *inode;
b436b9be 3796 journal_t *journal = EXT4_SB(sb)->s_journal;
1d1fe1ee 3797 long ret;
ac27a0ec 3798 int block;
08cefc7a
EB
3799 uid_t i_uid;
3800 gid_t i_gid;
ac27a0ec 3801
1d1fe1ee
DH
3802 inode = iget_locked(sb, ino);
3803 if (!inode)
3804 return ERR_PTR(-ENOMEM);
3805 if (!(inode->i_state & I_NEW))
3806 return inode;
3807
3808 ei = EXT4_I(inode);
7dc57615 3809 iloc.bh = NULL;
ac27a0ec 3810
1d1fe1ee
DH
3811 ret = __ext4_get_inode_loc(inode, &iloc, 0);
3812 if (ret < 0)
ac27a0ec 3813 goto bad_inode;
617ba13b 3814 raw_inode = ext4_raw_inode(&iloc);
814525f4
DW
3815
3816 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3817 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
3818 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
3819 EXT4_INODE_SIZE(inode->i_sb)) {
3820 EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
3821 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
3822 EXT4_INODE_SIZE(inode->i_sb));
3823 ret = -EIO;
3824 goto bad_inode;
3825 }
3826 } else
3827 ei->i_extra_isize = 0;
3828
3829 /* Precompute checksum seed for inode metadata */
3830 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3831 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
3832 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3833 __u32 csum;
3834 __le32 inum = cpu_to_le32(inode->i_ino);
3835 __le32 gen = raw_inode->i_generation;
3836 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
3837 sizeof(inum));
3838 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
3839 sizeof(gen));
3840 }
3841
3842 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
3843 EXT4_ERROR_INODE(inode, "checksum invalid");
3844 ret = -EIO;
3845 goto bad_inode;
3846 }
3847
ac27a0ec 3848 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
08cefc7a
EB
3849 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
3850 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
af5bc92d 3851 if (!(test_opt(inode->i_sb, NO_UID32))) {
08cefc7a
EB
3852 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
3853 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
ac27a0ec 3854 }
08cefc7a
EB
3855 i_uid_write(inode, i_uid);
3856 i_gid_write(inode, i_gid);
bfe86848 3857 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
ac27a0ec 3858
353eb83c 3859 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
67cf5b09 3860 ei->i_inline_off = 0;
ac27a0ec
DK
3861 ei->i_dir_start_lookup = 0;
3862 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
3863 /* We now have enough fields to check if the inode was active or not.
3864 * This is needed because nfsd might try to access dead inodes
3865 * the test is that same one that e2fsck uses
3866 * NeilBrown 1999oct15
3867 */
3868 if (inode->i_nlink == 0) {
3869 if (inode->i_mode == 0 ||
617ba13b 3870 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
ac27a0ec 3871 /* this inode is deleted */
1d1fe1ee 3872 ret = -ESTALE;
ac27a0ec
DK
3873 goto bad_inode;
3874 }
3875 /* The only unlinked inodes we let through here have
3876 * valid i_mode and are being read by the orphan
3877 * recovery code: that's fine, we're about to complete
3878 * the process of deleting those. */
3879 }
ac27a0ec 3880 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
0fc1b451 3881 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
7973c0c1 3882 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
a9e81742 3883 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
a1ddeb7e
BP
3884 ei->i_file_acl |=
3885 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
a48380f7 3886 inode->i_size = ext4_isize(raw_inode);
ac27a0ec 3887 ei->i_disksize = inode->i_size;
a9e7f447
DM
3888#ifdef CONFIG_QUOTA
3889 ei->i_reserved_quota = 0;
3890#endif
ac27a0ec
DK
3891 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
3892 ei->i_block_group = iloc.block_group;
a4912123 3893 ei->i_last_alloc_group = ~0;
ac27a0ec
DK
3894 /*
3895 * NOTE! The in-memory inode i_data array is in little-endian order
3896 * even on big-endian machines: we do NOT byteswap the block numbers!
3897 */
617ba13b 3898 for (block = 0; block < EXT4_N_BLOCKS; block++)
ac27a0ec
DK
3899 ei->i_data[block] = raw_inode->i_block[block];
3900 INIT_LIST_HEAD(&ei->i_orphan);
3901
b436b9be
JK
3902 /*
3903 * Set transaction id's of transactions that have to be committed
3904 * to finish f[data]sync. We set them to currently running transaction
3905 * as we cannot be sure that the inode or some of its metadata isn't
3906 * part of the transaction - the inode could have been reclaimed and
3907 * now it is reread from disk.
3908 */
3909 if (journal) {
3910 transaction_t *transaction;
3911 tid_t tid;
3912
a931da6a 3913 read_lock(&journal->j_state_lock);
b436b9be
JK
3914 if (journal->j_running_transaction)
3915 transaction = journal->j_running_transaction;
3916 else
3917 transaction = journal->j_committing_transaction;
3918 if (transaction)
3919 tid = transaction->t_tid;
3920 else
3921 tid = journal->j_commit_sequence;
a931da6a 3922 read_unlock(&journal->j_state_lock);
b436b9be
JK
3923 ei->i_sync_tid = tid;
3924 ei->i_datasync_tid = tid;
3925 }
3926
0040d987 3927 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
ac27a0ec
DK
3928 if (ei->i_extra_isize == 0) {
3929 /* The extra space is currently unused. Use it. */
617ba13b
MC
3930 ei->i_extra_isize = sizeof(struct ext4_inode) -
3931 EXT4_GOOD_OLD_INODE_SIZE;
ac27a0ec 3932 } else {
152a7b0a 3933 ext4_iget_extra_inode(inode, raw_inode, ei);
ac27a0ec 3934 }
814525f4 3935 }
ac27a0ec 3936
ef7f3835
KS
3937 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
3938 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
3939 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
3940 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
3941
25ec56b5
JNC
3942 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
3943 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3944 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
3945 inode->i_version |=
3946 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
3947 }
3948
c4b5a614 3949 ret = 0;
485c26ec 3950 if (ei->i_file_acl &&
1032988c 3951 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
24676da4
TT
3952 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
3953 ei->i_file_acl);
485c26ec
TT
3954 ret = -EIO;
3955 goto bad_inode;
f19d5870
TM
3956 } else if (!ext4_has_inline_data(inode)) {
3957 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
3958 if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
3959 (S_ISLNK(inode->i_mode) &&
3960 !ext4_inode_is_fast_symlink(inode))))
3961 /* Validate extent which is part of inode */
3962 ret = ext4_ext_check_inode(inode);
3963 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
3964 (S_ISLNK(inode->i_mode) &&
3965 !ext4_inode_is_fast_symlink(inode))) {
3966 /* Validate block references which are part of inode */
3967 ret = ext4_ind_check_inode(inode);
3968 }
fe2c8191 3969 }
567f3e9a 3970 if (ret)
de9a55b8 3971 goto bad_inode;
7a262f7c 3972
ac27a0ec 3973 if (S_ISREG(inode->i_mode)) {
617ba13b
MC
3974 inode->i_op = &ext4_file_inode_operations;
3975 inode->i_fop = &ext4_file_operations;
3976 ext4_set_aops(inode);
ac27a0ec 3977 } else if (S_ISDIR(inode->i_mode)) {
617ba13b
MC
3978 inode->i_op = &ext4_dir_inode_operations;
3979 inode->i_fop = &ext4_dir_operations;
ac27a0ec 3980 } else if (S_ISLNK(inode->i_mode)) {
e83c1397 3981 if (ext4_inode_is_fast_symlink(inode)) {
617ba13b 3982 inode->i_op = &ext4_fast_symlink_inode_operations;
e83c1397
DG
3983 nd_terminate_link(ei->i_data, inode->i_size,
3984 sizeof(ei->i_data) - 1);
3985 } else {
617ba13b
MC
3986 inode->i_op = &ext4_symlink_inode_operations;
3987 ext4_set_aops(inode);
ac27a0ec 3988 }
563bdd61
TT
3989 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
3990 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
617ba13b 3991 inode->i_op = &ext4_special_inode_operations;
ac27a0ec
DK
3992 if (raw_inode->i_block[0])
3993 init_special_inode(inode, inode->i_mode,
3994 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
3995 else
3996 init_special_inode(inode, inode->i_mode,
3997 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
563bdd61 3998 } else {
563bdd61 3999 ret = -EIO;
24676da4 4000 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
563bdd61 4001 goto bad_inode;
ac27a0ec 4002 }
af5bc92d 4003 brelse(iloc.bh);
617ba13b 4004 ext4_set_inode_flags(inode);
1d1fe1ee
DH
4005 unlock_new_inode(inode);
4006 return inode;
ac27a0ec
DK
4007
4008bad_inode:
567f3e9a 4009 brelse(iloc.bh);
1d1fe1ee
DH
4010 iget_failed(inode);
4011 return ERR_PTR(ret);
ac27a0ec
DK
4012}
4013
0fc1b451
AK
4014static int ext4_inode_blocks_set(handle_t *handle,
4015 struct ext4_inode *raw_inode,
4016 struct ext4_inode_info *ei)
4017{
4018 struct inode *inode = &(ei->vfs_inode);
4019 u64 i_blocks = inode->i_blocks;
4020 struct super_block *sb = inode->i_sb;
0fc1b451
AK
4021
4022 if (i_blocks <= ~0U) {
4023 /*
4907cb7b 4024 * i_blocks can be represented in a 32 bit variable
0fc1b451
AK
4025 * as multiple of 512 bytes
4026 */
8180a562 4027 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 4028 raw_inode->i_blocks_high = 0;
84a8dce2 4029 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
f287a1a5
TT
4030 return 0;
4031 }
4032 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4033 return -EFBIG;
4034
4035 if (i_blocks <= 0xffffffffffffULL) {
0fc1b451
AK
4036 /*
4037 * i_blocks can be represented in a 48 bit variable
4038 * as multiple of 512 bytes
4039 */
8180a562 4040 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 4041 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
84a8dce2 4042 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
0fc1b451 4043 } else {
84a8dce2 4044 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
8180a562
AK
4045 /* i_block is stored in file system block size */
4046 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4047 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4048 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
0fc1b451 4049 }
f287a1a5 4050 return 0;
0fc1b451
AK
4051}
4052
ac27a0ec
DK
4053/*
4054 * Post the struct inode info into an on-disk inode location in the
4055 * buffer-cache. This gobbles the caller's reference to the
4056 * buffer_head in the inode location struct.
4057 *
4058 * The caller must have write access to iloc->bh.
4059 */
617ba13b 4060static int ext4_do_update_inode(handle_t *handle,
ac27a0ec 4061 struct inode *inode,
830156c7 4062 struct ext4_iloc *iloc)
ac27a0ec 4063{
617ba13b
MC
4064 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4065 struct ext4_inode_info *ei = EXT4_I(inode);
ac27a0ec
DK
4066 struct buffer_head *bh = iloc->bh;
4067 int err = 0, rc, block;
b71fc079 4068 int need_datasync = 0;
08cefc7a
EB
4069 uid_t i_uid;
4070 gid_t i_gid;
ac27a0ec
DK
4071
4072 /* For fields not not tracking in the in-memory inode,
4073 * initialise them to zero for new inodes. */
19f5fb7a 4074 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
617ba13b 4075 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
ac27a0ec 4076
ff9ddf7e 4077 ext4_get_inode_flags(ei);
ac27a0ec 4078 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
08cefc7a
EB
4079 i_uid = i_uid_read(inode);
4080 i_gid = i_gid_read(inode);
af5bc92d 4081 if (!(test_opt(inode->i_sb, NO_UID32))) {
08cefc7a
EB
4082 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4083 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
ac27a0ec
DK
4084/*
4085 * Fix up interoperability with old kernels. Otherwise, old inodes get
4086 * re-used with the upper 16 bits of the uid/gid intact
4087 */
af5bc92d 4088 if (!ei->i_dtime) {
ac27a0ec 4089 raw_inode->i_uid_high =
08cefc7a 4090 cpu_to_le16(high_16_bits(i_uid));
ac27a0ec 4091 raw_inode->i_gid_high =
08cefc7a 4092 cpu_to_le16(high_16_bits(i_gid));
ac27a0ec
DK
4093 } else {
4094 raw_inode->i_uid_high = 0;
4095 raw_inode->i_gid_high = 0;
4096 }
4097 } else {
08cefc7a
EB
4098 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4099 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
ac27a0ec
DK
4100 raw_inode->i_uid_high = 0;
4101 raw_inode->i_gid_high = 0;
4102 }
4103 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
ef7f3835
KS
4104
4105 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4106 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4107 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4108 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4109
0fc1b451
AK
4110 if (ext4_inode_blocks_set(handle, raw_inode, ei))
4111 goto out_brelse;
ac27a0ec 4112 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
353eb83c 4113 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
9b8f1f01
MC
4114 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4115 cpu_to_le32(EXT4_OS_HURD))
a1ddeb7e
BP
4116 raw_inode->i_file_acl_high =
4117 cpu_to_le16(ei->i_file_acl >> 32);
7973c0c1 4118 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
b71fc079
JK
4119 if (ei->i_disksize != ext4_isize(raw_inode)) {
4120 ext4_isize_set(raw_inode, ei->i_disksize);
4121 need_datasync = 1;
4122 }
a48380f7
AK
4123 if (ei->i_disksize > 0x7fffffffULL) {
4124 struct super_block *sb = inode->i_sb;
4125 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4126 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4127 EXT4_SB(sb)->s_es->s_rev_level ==
4128 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4129 /* If this is the first large file
4130 * created, add a flag to the superblock.
4131 */
4132 err = ext4_journal_get_write_access(handle,
4133 EXT4_SB(sb)->s_sbh);
4134 if (err)
4135 goto out_brelse;
4136 ext4_update_dynamic_rev(sb);
4137 EXT4_SET_RO_COMPAT_FEATURE(sb,
617ba13b 4138 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
0390131b 4139 ext4_handle_sync(handle);
b50924c2 4140 err = ext4_handle_dirty_super(handle, sb);
ac27a0ec
DK
4141 }
4142 }
4143 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4144 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4145 if (old_valid_dev(inode->i_rdev)) {
4146 raw_inode->i_block[0] =
4147 cpu_to_le32(old_encode_dev(inode->i_rdev));
4148 raw_inode->i_block[1] = 0;
4149 } else {
4150 raw_inode->i_block[0] = 0;
4151 raw_inode->i_block[1] =
4152 cpu_to_le32(new_encode_dev(inode->i_rdev));
4153 raw_inode->i_block[2] = 0;
4154 }
f19d5870 4155 } else if (!ext4_has_inline_data(inode)) {
de9a55b8
TT
4156 for (block = 0; block < EXT4_N_BLOCKS; block++)
4157 raw_inode->i_block[block] = ei->i_data[block];
f19d5870 4158 }
ac27a0ec 4159
25ec56b5
JNC
4160 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4161 if (ei->i_extra_isize) {
4162 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4163 raw_inode->i_version_hi =
4164 cpu_to_le32(inode->i_version >> 32);
ac27a0ec 4165 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
25ec56b5
JNC
4166 }
4167
814525f4
DW
4168 ext4_inode_csum_set(inode, raw_inode, ei);
4169
830156c7 4170 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
73b50c1c 4171 rc = ext4_handle_dirty_metadata(handle, NULL, bh);
830156c7
FM
4172 if (!err)
4173 err = rc;
19f5fb7a 4174 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
ac27a0ec 4175
b71fc079 4176 ext4_update_inode_fsync_trans(handle, inode, need_datasync);
ac27a0ec 4177out_brelse:
af5bc92d 4178 brelse(bh);
617ba13b 4179 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4180 return err;
4181}
4182
4183/*
617ba13b 4184 * ext4_write_inode()
ac27a0ec
DK
4185 *
4186 * We are called from a few places:
4187 *
4188 * - Within generic_file_write() for O_SYNC files.
4189 * Here, there will be no transaction running. We wait for any running
4907cb7b 4190 * transaction to commit.
ac27a0ec
DK
4191 *
4192 * - Within sys_sync(), kupdate and such.
4193 * We wait on commit, if tol to.
4194 *
4195 * - Within prune_icache() (PF_MEMALLOC == true)
4196 * Here we simply return. We can't afford to block kswapd on the
4197 * journal commit.
4198 *
4199 * In all cases it is actually safe for us to return without doing anything,
4200 * because the inode has been copied into a raw inode buffer in
617ba13b 4201 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
ac27a0ec
DK
4202 * knfsd.
4203 *
4204 * Note that we are absolutely dependent upon all inode dirtiers doing the
4205 * right thing: they *must* call mark_inode_dirty() after dirtying info in
4206 * which we are interested.
4207 *
4208 * It would be a bug for them to not do this. The code:
4209 *
4210 * mark_inode_dirty(inode)
4211 * stuff();
4212 * inode->i_size = expr;
4213 *
4214 * is in error because a kswapd-driven write_inode() could occur while
4215 * `stuff()' is running, and the new i_size will be lost. Plus the inode
4216 * will no longer be on the superblock's dirty inode list.
4217 */
a9185b41 4218int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
ac27a0ec 4219{
91ac6f43
FM
4220 int err;
4221
ac27a0ec
DK
4222 if (current->flags & PF_MEMALLOC)
4223 return 0;
4224
91ac6f43
FM
4225 if (EXT4_SB(inode->i_sb)->s_journal) {
4226 if (ext4_journal_current_handle()) {
4227 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4228 dump_stack();
4229 return -EIO;
4230 }
ac27a0ec 4231
a9185b41 4232 if (wbc->sync_mode != WB_SYNC_ALL)
91ac6f43
FM
4233 return 0;
4234
4235 err = ext4_force_commit(inode->i_sb);
4236 } else {
4237 struct ext4_iloc iloc;
ac27a0ec 4238
8b472d73 4239 err = __ext4_get_inode_loc(inode, &iloc, 0);
91ac6f43
FM
4240 if (err)
4241 return err;
a9185b41 4242 if (wbc->sync_mode == WB_SYNC_ALL)
830156c7
FM
4243 sync_dirty_buffer(iloc.bh);
4244 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
c398eda0
TT
4245 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4246 "IO error syncing inode");
830156c7
FM
4247 err = -EIO;
4248 }
fd2dd9fb 4249 brelse(iloc.bh);
91ac6f43
FM
4250 }
4251 return err;
ac27a0ec
DK
4252}
4253
4254/*
617ba13b 4255 * ext4_setattr()
ac27a0ec
DK
4256 *
4257 * Called from notify_change.
4258 *
4259 * We want to trap VFS attempts to truncate the file as soon as
4260 * possible. In particular, we want to make sure that when the VFS
4261 * shrinks i_size, we put the inode on the orphan list and modify
4262 * i_disksize immediately, so that during the subsequent flushing of
4263 * dirty pages and freeing of disk blocks, we can guarantee that any
4264 * commit will leave the blocks being flushed in an unused state on
4265 * disk. (On recovery, the inode will get truncated and the blocks will
4266 * be freed, so we have a strong guarantee that no future commit will
4267 * leave these blocks visible to the user.)
4268 *
678aaf48
JK
4269 * Another thing we have to assure is that if we are in ordered mode
4270 * and inode is still attached to the committing transaction, we must
4271 * we start writeout of all the dirty pages which are being truncated.
4272 * This way we are sure that all the data written in the previous
4273 * transaction are already on disk (truncate waits for pages under
4274 * writeback).
4275 *
4276 * Called with inode->i_mutex down.
ac27a0ec 4277 */
617ba13b 4278int ext4_setattr(struct dentry *dentry, struct iattr *attr)
ac27a0ec
DK
4279{
4280 struct inode *inode = dentry->d_inode;
4281 int error, rc = 0;
3d287de3 4282 int orphan = 0;
ac27a0ec
DK
4283 const unsigned int ia_valid = attr->ia_valid;
4284
4285 error = inode_change_ok(inode, attr);
4286 if (error)
4287 return error;
4288
12755627 4289 if (is_quota_modification(inode, attr))
871a2931 4290 dquot_initialize(inode);
08cefc7a
EB
4291 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4292 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
ac27a0ec
DK
4293 handle_t *handle;
4294
4295 /* (user+group)*(old+new) structure, inode write (sb,
4296 * inode block, ? - but truncate inode update has it) */
5aca07eb 4297 handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
194074ac 4298 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3);
ac27a0ec
DK
4299 if (IS_ERR(handle)) {
4300 error = PTR_ERR(handle);
4301 goto err_out;
4302 }
b43fa828 4303 error = dquot_transfer(inode, attr);
ac27a0ec 4304 if (error) {
617ba13b 4305 ext4_journal_stop(handle);
ac27a0ec
DK
4306 return error;
4307 }
4308 /* Update corresponding info in inode so that everything is in
4309 * one transaction */
4310 if (attr->ia_valid & ATTR_UID)
4311 inode->i_uid = attr->ia_uid;
4312 if (attr->ia_valid & ATTR_GID)
4313 inode->i_gid = attr->ia_gid;
617ba13b
MC
4314 error = ext4_mark_inode_dirty(handle, inode);
4315 ext4_journal_stop(handle);
ac27a0ec
DK
4316 }
4317
e2b46574 4318 if (attr->ia_valid & ATTR_SIZE) {
562c72aa 4319
12e9b892 4320 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
e2b46574
ES
4321 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4322
0c095c7f
TT
4323 if (attr->ia_size > sbi->s_bitmap_maxbytes)
4324 return -EFBIG;
e2b46574
ES
4325 }
4326 }
4327
ac27a0ec 4328 if (S_ISREG(inode->i_mode) &&
c8d46e41 4329 attr->ia_valid & ATTR_SIZE &&
072bd7ea 4330 (attr->ia_size < inode->i_size)) {
ac27a0ec
DK
4331 handle_t *handle;
4332
617ba13b 4333 handle = ext4_journal_start(inode, 3);
ac27a0ec
DK
4334 if (IS_ERR(handle)) {
4335 error = PTR_ERR(handle);
4336 goto err_out;
4337 }
3d287de3
DM
4338 if (ext4_handle_valid(handle)) {
4339 error = ext4_orphan_add(handle, inode);
4340 orphan = 1;
4341 }
617ba13b
MC
4342 EXT4_I(inode)->i_disksize = attr->ia_size;
4343 rc = ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
4344 if (!error)
4345 error = rc;
617ba13b 4346 ext4_journal_stop(handle);
678aaf48
JK
4347
4348 if (ext4_should_order_data(inode)) {
4349 error = ext4_begin_ordered_truncate(inode,
4350 attr->ia_size);
4351 if (error) {
4352 /* Do as much error cleanup as possible */
4353 handle = ext4_journal_start(inode, 3);
4354 if (IS_ERR(handle)) {
4355 ext4_orphan_del(NULL, inode);
4356 goto err_out;
4357 }
4358 ext4_orphan_del(handle, inode);
3d287de3 4359 orphan = 0;
678aaf48
JK
4360 ext4_journal_stop(handle);
4361 goto err_out;
4362 }
4363 }
ac27a0ec
DK
4364 }
4365
072bd7ea 4366 if (attr->ia_valid & ATTR_SIZE) {
1c9114f9 4367 if (attr->ia_size != i_size_read(inode)) {
072bd7ea 4368 truncate_setsize(inode, attr->ia_size);
1b65007e
DM
4369 /* Inode size will be reduced, wait for dio in flight.
4370 * Temporarily disable dioread_nolock to prevent
4371 * livelock. */
4372 if (orphan) {
4373 ext4_inode_block_unlocked_dio(inode);
1c9114f9 4374 inode_dio_wait(inode);
1b65007e
DM
4375 ext4_inode_resume_unlocked_dio(inode);
4376 }
1c9114f9 4377 }
afcff5d8 4378 ext4_truncate(inode);
072bd7ea 4379 }
ac27a0ec 4380
1025774c
CH
4381 if (!rc) {
4382 setattr_copy(inode, attr);
4383 mark_inode_dirty(inode);
4384 }
4385
4386 /*
4387 * If the call to ext4_truncate failed to get a transaction handle at
4388 * all, we need to clean up the in-core orphan list manually.
4389 */
3d287de3 4390 if (orphan && inode->i_nlink)
617ba13b 4391 ext4_orphan_del(NULL, inode);
ac27a0ec
DK
4392
4393 if (!rc && (ia_valid & ATTR_MODE))
617ba13b 4394 rc = ext4_acl_chmod(inode);
ac27a0ec
DK
4395
4396err_out:
617ba13b 4397 ext4_std_error(inode->i_sb, error);
ac27a0ec
DK
4398 if (!error)
4399 error = rc;
4400 return error;
4401}
4402
3e3398a0
MC
4403int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4404 struct kstat *stat)
4405{
4406 struct inode *inode;
4407 unsigned long delalloc_blocks;
4408
4409 inode = dentry->d_inode;
4410 generic_fillattr(inode, stat);
4411
4412 /*
4413 * We can't update i_blocks if the block allocation is delayed
4414 * otherwise in the case of system crash before the real block
4415 * allocation is done, we will have i_blocks inconsistent with
4416 * on-disk file blocks.
4417 * We always keep i_blocks updated together with real
4418 * allocation. But to not confuse with user, stat
4419 * will return the blocks that include the delayed allocation
4420 * blocks for this file.
4421 */
96607551
TM
4422 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
4423 EXT4_I(inode)->i_reserved_data_blocks);
3e3398a0
MC
4424
4425 stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
4426 return 0;
4427}
ac27a0ec 4428
a02908f1
MC
4429static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4430{
12e9b892 4431 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
8bb2b247 4432 return ext4_ind_trans_blocks(inode, nrblocks, chunk);
ac51d837 4433 return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
a02908f1 4434}
ac51d837 4435
ac27a0ec 4436/*
a02908f1
MC
4437 * Account for index blocks, block groups bitmaps and block group
4438 * descriptor blocks if modify datablocks and index blocks
4439 * worse case, the indexs blocks spread over different block groups
ac27a0ec 4440 *
a02908f1 4441 * If datablocks are discontiguous, they are possible to spread over
4907cb7b 4442 * different block groups too. If they are contiguous, with flexbg,
a02908f1 4443 * they could still across block group boundary.
ac27a0ec 4444 *
a02908f1
MC
4445 * Also account for superblock, inode, quota and xattr blocks
4446 */
1f109d5a 4447static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
a02908f1 4448{
8df9675f
TT
4449 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4450 int gdpblocks;
a02908f1
MC
4451 int idxblocks;
4452 int ret = 0;
4453
4454 /*
4455 * How many index blocks need to touch to modify nrblocks?
4456 * The "Chunk" flag indicating whether the nrblocks is
4457 * physically contiguous on disk
4458 *
4459 * For Direct IO and fallocate, they calls get_block to allocate
4460 * one single extent at a time, so they could set the "Chunk" flag
4461 */
4462 idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4463
4464 ret = idxblocks;
4465
4466 /*
4467 * Now let's see how many group bitmaps and group descriptors need
4468 * to account
4469 */
4470 groups = idxblocks;
4471 if (chunk)
4472 groups += 1;
4473 else
4474 groups += nrblocks;
4475
4476 gdpblocks = groups;
8df9675f
TT
4477 if (groups > ngroups)
4478 groups = ngroups;
a02908f1
MC
4479 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4480 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4481
4482 /* bitmaps and block group descriptor blocks */
4483 ret += groups + gdpblocks;
4484
4485 /* Blocks for super block, inode, quota and xattr blocks */
4486 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4487
4488 return ret;
4489}
4490
4491/*
25985edc 4492 * Calculate the total number of credits to reserve to fit
f3bd1f3f
MC
4493 * the modification of a single pages into a single transaction,
4494 * which may include multiple chunks of block allocations.
ac27a0ec 4495 *
525f4ed8 4496 * This could be called via ext4_write_begin()
ac27a0ec 4497 *
525f4ed8 4498 * We need to consider the worse case, when
a02908f1 4499 * one new block per extent.
ac27a0ec 4500 */
a86c6181 4501int ext4_writepage_trans_blocks(struct inode *inode)
ac27a0ec 4502{
617ba13b 4503 int bpp = ext4_journal_blocks_per_page(inode);
ac27a0ec
DK
4504 int ret;
4505
a02908f1 4506 ret = ext4_meta_trans_blocks(inode, bpp, 0);
a86c6181 4507
a02908f1 4508 /* Account for data blocks for journalled mode */
617ba13b 4509 if (ext4_should_journal_data(inode))
a02908f1 4510 ret += bpp;
ac27a0ec
DK
4511 return ret;
4512}
f3bd1f3f
MC
4513
4514/*
4515 * Calculate the journal credits for a chunk of data modification.
4516 *
4517 * This is called from DIO, fallocate or whoever calling
79e83036 4518 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
f3bd1f3f
MC
4519 *
4520 * journal buffers for data blocks are not included here, as DIO
4521 * and fallocate do no need to journal data buffers.
4522 */
4523int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4524{
4525 return ext4_meta_trans_blocks(inode, nrblocks, 1);
4526}
4527
ac27a0ec 4528/*
617ba13b 4529 * The caller must have previously called ext4_reserve_inode_write().
ac27a0ec
DK
4530 * Give this, we know that the caller already has write access to iloc->bh.
4531 */
617ba13b 4532int ext4_mark_iloc_dirty(handle_t *handle,
de9a55b8 4533 struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
4534{
4535 int err = 0;
4536
c64db50e 4537 if (IS_I_VERSION(inode))
25ec56b5
JNC
4538 inode_inc_iversion(inode);
4539
ac27a0ec
DK
4540 /* the do_update_inode consumes one bh->b_count */
4541 get_bh(iloc->bh);
4542
dab291af 4543 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
830156c7 4544 err = ext4_do_update_inode(handle, inode, iloc);
ac27a0ec
DK
4545 put_bh(iloc->bh);
4546 return err;
4547}
4548
4549/*
4550 * On success, We end up with an outstanding reference count against
4551 * iloc->bh. This _must_ be cleaned up later.
4552 */
4553
4554int
617ba13b
MC
4555ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4556 struct ext4_iloc *iloc)
ac27a0ec 4557{
0390131b
FM
4558 int err;
4559
4560 err = ext4_get_inode_loc(inode, iloc);
4561 if (!err) {
4562 BUFFER_TRACE(iloc->bh, "get_write_access");
4563 err = ext4_journal_get_write_access(handle, iloc->bh);
4564 if (err) {
4565 brelse(iloc->bh);
4566 iloc->bh = NULL;
ac27a0ec
DK
4567 }
4568 }
617ba13b 4569 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4570 return err;
4571}
4572
6dd4ee7c
KS
4573/*
4574 * Expand an inode by new_extra_isize bytes.
4575 * Returns 0 on success or negative error number on failure.
4576 */
1d03ec98
AK
4577static int ext4_expand_extra_isize(struct inode *inode,
4578 unsigned int new_extra_isize,
4579 struct ext4_iloc iloc,
4580 handle_t *handle)
6dd4ee7c
KS
4581{
4582 struct ext4_inode *raw_inode;
4583 struct ext4_xattr_ibody_header *header;
6dd4ee7c
KS
4584
4585 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4586 return 0;
4587
4588 raw_inode = ext4_raw_inode(&iloc);
4589
4590 header = IHDR(inode, raw_inode);
6dd4ee7c
KS
4591
4592 /* No extended attributes present */
19f5fb7a
TT
4593 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4594 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
6dd4ee7c
KS
4595 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4596 new_extra_isize);
4597 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4598 return 0;
4599 }
4600
4601 /* try to expand with EAs present */
4602 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4603 raw_inode, handle);
4604}
4605
ac27a0ec
DK
4606/*
4607 * What we do here is to mark the in-core inode as clean with respect to inode
4608 * dirtiness (it may still be data-dirty).
4609 * This means that the in-core inode may be reaped by prune_icache
4610 * without having to perform any I/O. This is a very good thing,
4611 * because *any* task may call prune_icache - even ones which
4612 * have a transaction open against a different journal.
4613 *
4614 * Is this cheating? Not really. Sure, we haven't written the
4615 * inode out, but prune_icache isn't a user-visible syncing function.
4616 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4617 * we start and wait on commits.
ac27a0ec 4618 */
617ba13b 4619int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
ac27a0ec 4620{
617ba13b 4621 struct ext4_iloc iloc;
6dd4ee7c
KS
4622 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4623 static unsigned int mnt_count;
4624 int err, ret;
ac27a0ec
DK
4625
4626 might_sleep();
7ff9c073 4627 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
617ba13b 4628 err = ext4_reserve_inode_write(handle, inode, &iloc);
0390131b
FM
4629 if (ext4_handle_valid(handle) &&
4630 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
19f5fb7a 4631 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
6dd4ee7c
KS
4632 /*
4633 * We need extra buffer credits since we may write into EA block
4634 * with this same handle. If journal_extend fails, then it will
4635 * only result in a minor loss of functionality for that inode.
4636 * If this is felt to be critical, then e2fsck should be run to
4637 * force a large enough s_min_extra_isize.
4638 */
4639 if ((jbd2_journal_extend(handle,
4640 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4641 ret = ext4_expand_extra_isize(inode,
4642 sbi->s_want_extra_isize,
4643 iloc, handle);
4644 if (ret) {
19f5fb7a
TT
4645 ext4_set_inode_state(inode,
4646 EXT4_STATE_NO_EXPAND);
c1bddad9
AK
4647 if (mnt_count !=
4648 le16_to_cpu(sbi->s_es->s_mnt_count)) {
12062ddd 4649 ext4_warning(inode->i_sb,
6dd4ee7c
KS
4650 "Unable to expand inode %lu. Delete"
4651 " some EAs or run e2fsck.",
4652 inode->i_ino);
c1bddad9
AK
4653 mnt_count =
4654 le16_to_cpu(sbi->s_es->s_mnt_count);
6dd4ee7c
KS
4655 }
4656 }
4657 }
4658 }
ac27a0ec 4659 if (!err)
617ba13b 4660 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
ac27a0ec
DK
4661 return err;
4662}
4663
4664/*
617ba13b 4665 * ext4_dirty_inode() is called from __mark_inode_dirty()
ac27a0ec
DK
4666 *
4667 * We're really interested in the case where a file is being extended.
4668 * i_size has been changed by generic_commit_write() and we thus need
4669 * to include the updated inode in the current transaction.
4670 *
5dd4056d 4671 * Also, dquot_alloc_block() will always dirty the inode when blocks
ac27a0ec
DK
4672 * are allocated to the file.
4673 *
4674 * If the inode is marked synchronous, we don't honour that here - doing
4675 * so would cause a commit on atime updates, which we don't bother doing.
4676 * We handle synchronous inodes at the highest possible level.
4677 */
aa385729 4678void ext4_dirty_inode(struct inode *inode, int flags)
ac27a0ec 4679{
ac27a0ec
DK
4680 handle_t *handle;
4681
617ba13b 4682 handle = ext4_journal_start(inode, 2);
ac27a0ec
DK
4683 if (IS_ERR(handle))
4684 goto out;
f3dc272f 4685
f3dc272f
CW
4686 ext4_mark_inode_dirty(handle, inode);
4687
617ba13b 4688 ext4_journal_stop(handle);
ac27a0ec
DK
4689out:
4690 return;
4691}
4692
4693#if 0
4694/*
4695 * Bind an inode's backing buffer_head into this transaction, to prevent
4696 * it from being flushed to disk early. Unlike
617ba13b 4697 * ext4_reserve_inode_write, this leaves behind no bh reference and
ac27a0ec
DK
4698 * returns no iloc structure, so the caller needs to repeat the iloc
4699 * lookup to mark the inode dirty later.
4700 */
617ba13b 4701static int ext4_pin_inode(handle_t *handle, struct inode *inode)
ac27a0ec 4702{
617ba13b 4703 struct ext4_iloc iloc;
ac27a0ec
DK
4704
4705 int err = 0;
4706 if (handle) {
617ba13b 4707 err = ext4_get_inode_loc(inode, &iloc);
ac27a0ec
DK
4708 if (!err) {
4709 BUFFER_TRACE(iloc.bh, "get_write_access");
dab291af 4710 err = jbd2_journal_get_write_access(handle, iloc.bh);
ac27a0ec 4711 if (!err)
0390131b 4712 err = ext4_handle_dirty_metadata(handle,
73b50c1c 4713 NULL,
0390131b 4714 iloc.bh);
ac27a0ec
DK
4715 brelse(iloc.bh);
4716 }
4717 }
617ba13b 4718 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4719 return err;
4720}
4721#endif
4722
617ba13b 4723int ext4_change_inode_journal_flag(struct inode *inode, int val)
ac27a0ec
DK
4724{
4725 journal_t *journal;
4726 handle_t *handle;
4727 int err;
4728
4729 /*
4730 * We have to be very careful here: changing a data block's
4731 * journaling status dynamically is dangerous. If we write a
4732 * data block to the journal, change the status and then delete
4733 * that block, we risk forgetting to revoke the old log record
4734 * from the journal and so a subsequent replay can corrupt data.
4735 * So, first we make sure that the journal is empty and that
4736 * nobody is changing anything.
4737 */
4738
617ba13b 4739 journal = EXT4_JOURNAL(inode);
0390131b
FM
4740 if (!journal)
4741 return 0;
d699594d 4742 if (is_journal_aborted(journal))
ac27a0ec 4743 return -EROFS;
2aff57b0
YY
4744 /* We have to allocate physical blocks for delalloc blocks
4745 * before flushing journal. otherwise delalloc blocks can not
4746 * be allocated any more. even more truncate on delalloc blocks
4747 * could trigger BUG by flushing delalloc blocks in journal.
4748 * There is no delalloc block in non-journal data mode.
4749 */
4750 if (val && test_opt(inode->i_sb, DELALLOC)) {
4751 err = ext4_alloc_da_blocks(inode);
4752 if (err < 0)
4753 return err;
4754 }
ac27a0ec 4755
17335dcc
DM
4756 /* Wait for all existing dio workers */
4757 ext4_inode_block_unlocked_dio(inode);
4758 inode_dio_wait(inode);
4759
dab291af 4760 jbd2_journal_lock_updates(journal);
ac27a0ec
DK
4761
4762 /*
4763 * OK, there are no updates running now, and all cached data is
4764 * synced to disk. We are now in a completely consistent state
4765 * which doesn't have anything in the journal, and we know that
4766 * no filesystem updates are running, so it is safe to modify
4767 * the inode's in-core data-journaling state flag now.
4768 */
4769
4770 if (val)
12e9b892 4771 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5872ddaa
YY
4772 else {
4773 jbd2_journal_flush(journal);
12e9b892 4774 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5872ddaa 4775 }
617ba13b 4776 ext4_set_aops(inode);
ac27a0ec 4777
dab291af 4778 jbd2_journal_unlock_updates(journal);
17335dcc 4779 ext4_inode_resume_unlocked_dio(inode);
ac27a0ec
DK
4780
4781 /* Finally we can mark the inode as dirty. */
4782
617ba13b 4783 handle = ext4_journal_start(inode, 1);
ac27a0ec
DK
4784 if (IS_ERR(handle))
4785 return PTR_ERR(handle);
4786
617ba13b 4787 err = ext4_mark_inode_dirty(handle, inode);
0390131b 4788 ext4_handle_sync(handle);
617ba13b
MC
4789 ext4_journal_stop(handle);
4790 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4791
4792 return err;
4793}
2e9ee850
AK
4794
4795static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
4796{
4797 return !buffer_mapped(bh);
4798}
4799
c2ec175c 4800int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2e9ee850 4801{
c2ec175c 4802 struct page *page = vmf->page;
2e9ee850
AK
4803 loff_t size;
4804 unsigned long len;
9ea7df53 4805 int ret;
2e9ee850
AK
4806 struct file *file = vma->vm_file;
4807 struct inode *inode = file->f_path.dentry->d_inode;
4808 struct address_space *mapping = inode->i_mapping;
9ea7df53
JK
4809 handle_t *handle;
4810 get_block_t *get_block;
4811 int retries = 0;
2e9ee850 4812
8e8ad8a5 4813 sb_start_pagefault(inode->i_sb);
041bbb6d 4814 file_update_time(vma->vm_file);
9ea7df53
JK
4815 /* Delalloc case is easy... */
4816 if (test_opt(inode->i_sb, DELALLOC) &&
4817 !ext4_should_journal_data(inode) &&
4818 !ext4_nonda_switch(inode->i_sb)) {
4819 do {
4820 ret = __block_page_mkwrite(vma, vmf,
4821 ext4_da_get_block_prep);
4822 } while (ret == -ENOSPC &&
4823 ext4_should_retry_alloc(inode->i_sb, &retries));
4824 goto out_ret;
2e9ee850 4825 }
0e499890
DW
4826
4827 lock_page(page);
9ea7df53
JK
4828 size = i_size_read(inode);
4829 /* Page got truncated from under us? */
4830 if (page->mapping != mapping || page_offset(page) > size) {
4831 unlock_page(page);
4832 ret = VM_FAULT_NOPAGE;
4833 goto out;
0e499890 4834 }
2e9ee850
AK
4835
4836 if (page->index == size >> PAGE_CACHE_SHIFT)
4837 len = size & ~PAGE_CACHE_MASK;
4838 else
4839 len = PAGE_CACHE_SIZE;
a827eaff 4840 /*
9ea7df53
JK
4841 * Return if we have all the buffers mapped. This avoids the need to do
4842 * journal_start/journal_stop which can block and take a long time
a827eaff 4843 */
2e9ee850 4844 if (page_has_buffers(page)) {
f19d5870
TM
4845 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
4846 0, len, NULL,
4847 ext4_bh_unmapped)) {
9ea7df53
JK
4848 /* Wait so that we don't change page under IO */
4849 wait_on_page_writeback(page);
4850 ret = VM_FAULT_LOCKED;
4851 goto out;
a827eaff 4852 }
2e9ee850 4853 }
a827eaff 4854 unlock_page(page);
9ea7df53
JK
4855 /* OK, we need to fill the hole... */
4856 if (ext4_should_dioread_nolock(inode))
4857 get_block = ext4_get_block_write;
4858 else
4859 get_block = ext4_get_block;
4860retry_alloc:
4861 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
4862 if (IS_ERR(handle)) {
c2ec175c 4863 ret = VM_FAULT_SIGBUS;
9ea7df53
JK
4864 goto out;
4865 }
4866 ret = __block_page_mkwrite(vma, vmf, get_block);
4867 if (!ret && ext4_should_journal_data(inode)) {
f19d5870 4868 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
9ea7df53
JK
4869 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
4870 unlock_page(page);
4871 ret = VM_FAULT_SIGBUS;
fcbb5515 4872 ext4_journal_stop(handle);
9ea7df53
JK
4873 goto out;
4874 }
4875 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
4876 }
4877 ext4_journal_stop(handle);
4878 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
4879 goto retry_alloc;
4880out_ret:
4881 ret = block_page_mkwrite_return(ret);
4882out:
8e8ad8a5 4883 sb_end_pagefault(inode->i_sb);
2e9ee850
AK
4884 return ret;
4885}