ext4: grab missed write_count for EXT4_IOC_SWAP_BOOT
[linux-2.6-block.git] / fs / ext4 / inode.c
CommitLineData
ac27a0ec 1/*
617ba13b 2 * linux/fs/ext4/inode.c
ac27a0ec
DK
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
ac27a0ec
DK
15 * 64-bit file support on 64-bit platforms by Jakub Jelinek
16 * (jj@sunsite.ms.mff.cuni.cz)
17 *
617ba13b 18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
ac27a0ec
DK
19 */
20
ac27a0ec
DK
21#include <linux/fs.h>
22#include <linux/time.h>
dab291af 23#include <linux/jbd2.h>
ac27a0ec
DK
24#include <linux/highuid.h>
25#include <linux/pagemap.h>
26#include <linux/quotaops.h>
27#include <linux/string.h>
28#include <linux/buffer_head.h>
29#include <linux/writeback.h>
64769240 30#include <linux/pagevec.h>
ac27a0ec 31#include <linux/mpage.h>
e83c1397 32#include <linux/namei.h>
ac27a0ec
DK
33#include <linux/uio.h>
34#include <linux/bio.h>
4c0425ff 35#include <linux/workqueue.h>
744692dc 36#include <linux/kernel.h>
6db26ffc 37#include <linux/printk.h>
5a0e3ad6 38#include <linux/slab.h>
a8901d34 39#include <linux/ratelimit.h>
a27bb332 40#include <linux/aio.h>
00a1a053 41#include <linux/bitops.h>
9bffad1e 42
3dcf5451 43#include "ext4_jbd2.h"
ac27a0ec
DK
44#include "xattr.h"
45#include "acl.h"
9f125d64 46#include "truncate.h"
ac27a0ec 47
9bffad1e
TT
48#include <trace/events/ext4.h>
49
a1d6cc56
AK
50#define MPAGE_DA_EXTENT_TAIL 0x01
51
814525f4
DW
52static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
53 struct ext4_inode_info *ei)
54{
55 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
56 __u16 csum_lo;
57 __u16 csum_hi = 0;
58 __u32 csum;
59
171a7f21 60 csum_lo = le16_to_cpu(raw->i_checksum_lo);
814525f4
DW
61 raw->i_checksum_lo = 0;
62 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
63 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
171a7f21 64 csum_hi = le16_to_cpu(raw->i_checksum_hi);
814525f4
DW
65 raw->i_checksum_hi = 0;
66 }
67
68 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
69 EXT4_INODE_SIZE(inode->i_sb));
70
171a7f21 71 raw->i_checksum_lo = cpu_to_le16(csum_lo);
814525f4
DW
72 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
73 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
171a7f21 74 raw->i_checksum_hi = cpu_to_le16(csum_hi);
814525f4
DW
75
76 return csum;
77}
78
79static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
80 struct ext4_inode_info *ei)
81{
82 __u32 provided, calculated;
83
84 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
85 cpu_to_le32(EXT4_OS_LINUX) ||
86 !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
87 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
88 return 1;
89
90 provided = le16_to_cpu(raw->i_checksum_lo);
91 calculated = ext4_inode_csum(inode, raw, ei);
92 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
93 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
94 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
95 else
96 calculated &= 0xFFFF;
97
98 return provided == calculated;
99}
100
101static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
102 struct ext4_inode_info *ei)
103{
104 __u32 csum;
105
106 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
107 cpu_to_le32(EXT4_OS_LINUX) ||
108 !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
109 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
110 return;
111
112 csum = ext4_inode_csum(inode, raw, ei);
113 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
114 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
115 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
116 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
117}
118
678aaf48
JK
119static inline int ext4_begin_ordered_truncate(struct inode *inode,
120 loff_t new_size)
121{
7ff9c073 122 trace_ext4_begin_ordered_truncate(inode, new_size);
8aefcd55
TT
123 /*
124 * If jinode is zero, then we never opened the file for
125 * writing, so there's no need to call
126 * jbd2_journal_begin_ordered_truncate() since there's no
127 * outstanding writes we need to flush.
128 */
129 if (!EXT4_I(inode)->jinode)
130 return 0;
131 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
132 EXT4_I(inode)->jinode,
133 new_size);
678aaf48
JK
134}
135
d47992f8
LC
136static void ext4_invalidatepage(struct page *page, unsigned int offset,
137 unsigned int length);
cb20d518
TT
138static int __ext4_journalled_writepage(struct page *page, unsigned int len);
139static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
fffb2739
JK
140static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
141 int pextents);
64769240 142
ac27a0ec
DK
143/*
144 * Test whether an inode is a fast symlink.
145 */
617ba13b 146static int ext4_inode_is_fast_symlink(struct inode *inode)
ac27a0ec 147{
65eddb56
YY
148 int ea_blocks = EXT4_I(inode)->i_file_acl ?
149 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
ac27a0ec 150
bd9db175
ZL
151 if (ext4_has_inline_data(inode))
152 return 0;
153
ac27a0ec
DK
154 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
155}
156
ac27a0ec
DK
157/*
158 * Restart the transaction associated with *handle. This does a commit,
159 * so before we call here everything must be consistently dirtied against
160 * this transaction.
161 */
fa5d1113 162int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
487caeef 163 int nblocks)
ac27a0ec 164{
487caeef
JK
165 int ret;
166
167 /*
e35fd660 168 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
487caeef
JK
169 * moment, get_block can be called only for blocks inside i_size since
170 * page cache has been already dropped and writes are blocked by
171 * i_mutex. So we can safely drop the i_data_sem here.
172 */
0390131b 173 BUG_ON(EXT4_JOURNAL(inode) == NULL);
ac27a0ec 174 jbd_debug(2, "restarting handle %p\n", handle);
487caeef 175 up_write(&EXT4_I(inode)->i_data_sem);
8e8eaabe 176 ret = ext4_journal_restart(handle, nblocks);
487caeef 177 down_write(&EXT4_I(inode)->i_data_sem);
fa5d1113 178 ext4_discard_preallocations(inode);
487caeef
JK
179
180 return ret;
ac27a0ec
DK
181}
182
183/*
184 * Called at the last iput() if i_nlink is zero.
185 */
0930fcc1 186void ext4_evict_inode(struct inode *inode)
ac27a0ec
DK
187{
188 handle_t *handle;
bc965ab3 189 int err;
ac27a0ec 190
7ff9c073 191 trace_ext4_evict_inode(inode);
2581fdc8 192
0930fcc1 193 if (inode->i_nlink) {
2d859db3
JK
194 /*
195 * When journalling data dirty buffers are tracked only in the
196 * journal. So although mm thinks everything is clean and
197 * ready for reaping the inode might still have some pages to
198 * write in the running transaction or waiting to be
199 * checkpointed. Thus calling jbd2_journal_invalidatepage()
200 * (via truncate_inode_pages()) to discard these buffers can
201 * cause data loss. Also even if we did not discard these
202 * buffers, we would have no way to find them after the inode
203 * is reaped and thus user could see stale data if he tries to
204 * read them before the transaction is checkpointed. So be
205 * careful and force everything to disk here... We use
206 * ei->i_datasync_tid to store the newest transaction
207 * containing inode's data.
208 *
209 * Note that directories do not have this problem because they
210 * don't use page cache.
211 */
212 if (ext4_should_journal_data(inode) &&
2b405bfa
TT
213 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
214 inode->i_ino != EXT4_JOURNAL_INO) {
2d859db3
JK
215 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
216 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
217
d76a3a77 218 jbd2_complete_transaction(journal, commit_tid);
2d859db3
JK
219 filemap_write_and_wait(&inode->i_data);
220 }
91b0abe3 221 truncate_inode_pages_final(&inode->i_data);
5dc23bdd
JK
222
223 WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
0930fcc1
AV
224 goto no_delete;
225 }
226
907f4554 227 if (!is_bad_inode(inode))
871a2931 228 dquot_initialize(inode);
907f4554 229
678aaf48
JK
230 if (ext4_should_order_data(inode))
231 ext4_begin_ordered_truncate(inode, 0);
91b0abe3 232 truncate_inode_pages_final(&inode->i_data);
ac27a0ec 233
5dc23bdd 234 WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
ac27a0ec
DK
235 if (is_bad_inode(inode))
236 goto no_delete;
237
8e8ad8a5
JK
238 /*
239 * Protect us against freezing - iput() caller didn't have to have any
240 * protection against it
241 */
242 sb_start_intwrite(inode->i_sb);
9924a92a
TT
243 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
244 ext4_blocks_for_truncate(inode)+3);
ac27a0ec 245 if (IS_ERR(handle)) {
bc965ab3 246 ext4_std_error(inode->i_sb, PTR_ERR(handle));
ac27a0ec
DK
247 /*
248 * If we're going to skip the normal cleanup, we still need to
249 * make sure that the in-core orphan linked list is properly
250 * cleaned up.
251 */
617ba13b 252 ext4_orphan_del(NULL, inode);
8e8ad8a5 253 sb_end_intwrite(inode->i_sb);
ac27a0ec
DK
254 goto no_delete;
255 }
256
257 if (IS_SYNC(inode))
0390131b 258 ext4_handle_sync(handle);
ac27a0ec 259 inode->i_size = 0;
bc965ab3
TT
260 err = ext4_mark_inode_dirty(handle, inode);
261 if (err) {
12062ddd 262 ext4_warning(inode->i_sb,
bc965ab3
TT
263 "couldn't mark inode dirty (err %d)", err);
264 goto stop_handle;
265 }
ac27a0ec 266 if (inode->i_blocks)
617ba13b 267 ext4_truncate(inode);
bc965ab3
TT
268
269 /*
270 * ext4_ext_truncate() doesn't reserve any slop when it
271 * restarts journal transactions; therefore there may not be
272 * enough credits left in the handle to remove the inode from
273 * the orphan list and set the dtime field.
274 */
0390131b 275 if (!ext4_handle_has_enough_credits(handle, 3)) {
bc965ab3
TT
276 err = ext4_journal_extend(handle, 3);
277 if (err > 0)
278 err = ext4_journal_restart(handle, 3);
279 if (err != 0) {
12062ddd 280 ext4_warning(inode->i_sb,
bc965ab3
TT
281 "couldn't extend journal (err %d)", err);
282 stop_handle:
283 ext4_journal_stop(handle);
45388219 284 ext4_orphan_del(NULL, inode);
8e8ad8a5 285 sb_end_intwrite(inode->i_sb);
bc965ab3
TT
286 goto no_delete;
287 }
288 }
289
ac27a0ec 290 /*
617ba13b 291 * Kill off the orphan record which ext4_truncate created.
ac27a0ec 292 * AKPM: I think this can be inside the above `if'.
617ba13b 293 * Note that ext4_orphan_del() has to be able to cope with the
ac27a0ec 294 * deletion of a non-existent orphan - this is because we don't
617ba13b 295 * know if ext4_truncate() actually created an orphan record.
ac27a0ec
DK
296 * (Well, we could do this if we need to, but heck - it works)
297 */
617ba13b
MC
298 ext4_orphan_del(handle, inode);
299 EXT4_I(inode)->i_dtime = get_seconds();
ac27a0ec
DK
300
301 /*
302 * One subtle ordering requirement: if anything has gone wrong
303 * (transaction abort, IO errors, whatever), then we can still
304 * do these next steps (the fs will already have been marked as
305 * having errors), but we can't free the inode if the mark_dirty
306 * fails.
307 */
617ba13b 308 if (ext4_mark_inode_dirty(handle, inode))
ac27a0ec 309 /* If that failed, just do the required in-core inode clear. */
0930fcc1 310 ext4_clear_inode(inode);
ac27a0ec 311 else
617ba13b
MC
312 ext4_free_inode(handle, inode);
313 ext4_journal_stop(handle);
8e8ad8a5 314 sb_end_intwrite(inode->i_sb);
ac27a0ec
DK
315 return;
316no_delete:
0930fcc1 317 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
ac27a0ec
DK
318}
319
a9e7f447
DM
320#ifdef CONFIG_QUOTA
321qsize_t *ext4_get_reserved_space(struct inode *inode)
60e58e0f 322{
a9e7f447 323 return &EXT4_I(inode)->i_reserved_quota;
60e58e0f 324}
a9e7f447 325#endif
9d0be502 326
0637c6f4
TT
327/*
328 * Called with i_data_sem down, which is important since we can call
329 * ext4_discard_preallocations() from here.
330 */
5f634d06
AK
331void ext4_da_update_reserve_space(struct inode *inode,
332 int used, int quota_claim)
12219aea
AK
333{
334 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 335 struct ext4_inode_info *ei = EXT4_I(inode);
0637c6f4
TT
336
337 spin_lock(&ei->i_block_reservation_lock);
d8990240 338 trace_ext4_da_update_reserve_space(inode, used, quota_claim);
0637c6f4 339 if (unlikely(used > ei->i_reserved_data_blocks)) {
8de5c325 340 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
1084f252 341 "with only %d reserved data blocks",
0637c6f4
TT
342 __func__, inode->i_ino, used,
343 ei->i_reserved_data_blocks);
344 WARN_ON(1);
345 used = ei->i_reserved_data_blocks;
346 }
12219aea 347
0637c6f4
TT
348 /* Update per-inode reservations */
349 ei->i_reserved_data_blocks -= used;
71d4f7d0 350 percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
6bc6e63f 351
12219aea 352 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f 353
72b8ab9d
ES
354 /* Update quota subsystem for data blocks */
355 if (quota_claim)
7b415bf6 356 dquot_claim_block(inode, EXT4_C2B(sbi, used));
72b8ab9d 357 else {
5f634d06
AK
358 /*
359 * We did fallocate with an offset that is already delayed
360 * allocated. So on delayed allocated writeback we should
72b8ab9d 361 * not re-claim the quota for fallocated blocks.
5f634d06 362 */
7b415bf6 363 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
5f634d06 364 }
d6014301
AK
365
366 /*
367 * If we have done all the pending block allocations and if
368 * there aren't any writers on the inode, we can discard the
369 * inode's preallocations.
370 */
0637c6f4
TT
371 if ((ei->i_reserved_data_blocks == 0) &&
372 (atomic_read(&inode->i_writecount) == 0))
d6014301 373 ext4_discard_preallocations(inode);
12219aea
AK
374}
375
e29136f8 376static int __check_block_validity(struct inode *inode, const char *func,
c398eda0
TT
377 unsigned int line,
378 struct ext4_map_blocks *map)
6fd058f7 379{
24676da4
TT
380 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
381 map->m_len)) {
c398eda0
TT
382 ext4_error_inode(inode, func, line, map->m_pblk,
383 "lblock %lu mapped to illegal pblock "
384 "(length %d)", (unsigned long) map->m_lblk,
385 map->m_len);
6fd058f7
TT
386 return -EIO;
387 }
388 return 0;
389}
390
e29136f8 391#define check_block_validity(inode, map) \
c398eda0 392 __check_block_validity((inode), __func__, __LINE__, (map))
e29136f8 393
921f266b
DM
394#ifdef ES_AGGRESSIVE_TEST
395static void ext4_map_blocks_es_recheck(handle_t *handle,
396 struct inode *inode,
397 struct ext4_map_blocks *es_map,
398 struct ext4_map_blocks *map,
399 int flags)
400{
401 int retval;
402
403 map->m_flags = 0;
404 /*
405 * There is a race window that the result is not the same.
406 * e.g. xfstests #223 when dioread_nolock enables. The reason
407 * is that we lookup a block mapping in extent status tree with
408 * out taking i_data_sem. So at the time the unwritten extent
409 * could be converted.
410 */
411 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
c8b459f4 412 down_read(&EXT4_I(inode)->i_data_sem);
921f266b
DM
413 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
414 retval = ext4_ext_map_blocks(handle, inode, map, flags &
415 EXT4_GET_BLOCKS_KEEP_SIZE);
416 } else {
417 retval = ext4_ind_map_blocks(handle, inode, map, flags &
418 EXT4_GET_BLOCKS_KEEP_SIZE);
419 }
420 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
421 up_read((&EXT4_I(inode)->i_data_sem));
422 /*
423 * Clear EXT4_MAP_FROM_CLUSTER and EXT4_MAP_BOUNDARY flag
424 * because it shouldn't be marked in es_map->m_flags.
425 */
426 map->m_flags &= ~(EXT4_MAP_FROM_CLUSTER | EXT4_MAP_BOUNDARY);
427
428 /*
429 * We don't check m_len because extent will be collpased in status
430 * tree. So the m_len might not equal.
431 */
432 if (es_map->m_lblk != map->m_lblk ||
433 es_map->m_flags != map->m_flags ||
434 es_map->m_pblk != map->m_pblk) {
bdafe42a 435 printk("ES cache assertion failed for inode: %lu "
921f266b
DM
436 "es_cached ex [%d/%d/%llu/%x] != "
437 "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
438 inode->i_ino, es_map->m_lblk, es_map->m_len,
439 es_map->m_pblk, es_map->m_flags, map->m_lblk,
440 map->m_len, map->m_pblk, map->m_flags,
441 retval, flags);
442 }
443}
444#endif /* ES_AGGRESSIVE_TEST */
445
f5ab0d1f 446/*
e35fd660 447 * The ext4_map_blocks() function tries to look up the requested blocks,
2b2d6d01 448 * and returns if the blocks are already mapped.
f5ab0d1f 449 *
f5ab0d1f
MC
450 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
451 * and store the allocated blocks in the result buffer head and mark it
452 * mapped.
453 *
e35fd660
TT
454 * If file type is extents based, it will call ext4_ext_map_blocks(),
455 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
f5ab0d1f
MC
456 * based files
457 *
556615dc
LC
458 * On success, it returns the number of blocks being mapped or allocated.
459 * if create==0 and the blocks are pre-allocated and unwritten block,
f5ab0d1f
MC
460 * the result buffer head is unmapped. If the create ==1, it will make sure
461 * the buffer head is mapped.
462 *
463 * It returns 0 if plain look up failed (blocks have not been allocated), in
df3ab170 464 * that case, buffer head is unmapped
f5ab0d1f
MC
465 *
466 * It returns the error in case of allocation failure.
467 */
e35fd660
TT
468int ext4_map_blocks(handle_t *handle, struct inode *inode,
469 struct ext4_map_blocks *map, int flags)
0e855ac8 470{
d100eef2 471 struct extent_status es;
0e855ac8 472 int retval;
b8a86845 473 int ret = 0;
921f266b
DM
474#ifdef ES_AGGRESSIVE_TEST
475 struct ext4_map_blocks orig_map;
476
477 memcpy(&orig_map, map, sizeof(*map));
478#endif
f5ab0d1f 479
e35fd660
TT
480 map->m_flags = 0;
481 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
482 "logical block %lu\n", inode->i_ino, flags, map->m_len,
483 (unsigned long) map->m_lblk);
d100eef2 484
e861b5e9
TT
485 /*
486 * ext4_map_blocks returns an int, and m_len is an unsigned int
487 */
488 if (unlikely(map->m_len > INT_MAX))
489 map->m_len = INT_MAX;
490
4adb6ab3
KM
491 /* We can handle the block number less than EXT_MAX_BLOCKS */
492 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
493 return -EIO;
494
d100eef2
ZL
495 /* Lookup extent status tree firstly */
496 if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
63b99968 497 ext4_es_lru_add(inode);
d100eef2
ZL
498 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
499 map->m_pblk = ext4_es_pblock(&es) +
500 map->m_lblk - es.es_lblk;
501 map->m_flags |= ext4_es_is_written(&es) ?
502 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
503 retval = es.es_len - (map->m_lblk - es.es_lblk);
504 if (retval > map->m_len)
505 retval = map->m_len;
506 map->m_len = retval;
507 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
508 retval = 0;
509 } else {
510 BUG_ON(1);
511 }
921f266b
DM
512#ifdef ES_AGGRESSIVE_TEST
513 ext4_map_blocks_es_recheck(handle, inode, map,
514 &orig_map, flags);
515#endif
d100eef2
ZL
516 goto found;
517 }
518
4df3d265 519 /*
b920c755
TT
520 * Try to see if we can get the block without requesting a new
521 * file system block.
4df3d265 522 */
729f52c6 523 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
c8b459f4 524 down_read(&EXT4_I(inode)->i_data_sem);
12e9b892 525 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
a4e5d88b
DM
526 retval = ext4_ext_map_blocks(handle, inode, map, flags &
527 EXT4_GET_BLOCKS_KEEP_SIZE);
0e855ac8 528 } else {
a4e5d88b
DM
529 retval = ext4_ind_map_blocks(handle, inode, map, flags &
530 EXT4_GET_BLOCKS_KEEP_SIZE);
0e855ac8 531 }
f7fec032 532 if (retval > 0) {
3be78c73 533 unsigned int status;
f7fec032 534
44fb851d
ZL
535 if (unlikely(retval != map->m_len)) {
536 ext4_warning(inode->i_sb,
537 "ES len assertion failed for inode "
538 "%lu: retval %d != map->m_len %d",
539 inode->i_ino, retval, map->m_len);
540 WARN_ON(1);
921f266b 541 }
921f266b 542
f7fec032
ZL
543 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
544 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
545 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
546 ext4_find_delalloc_range(inode, map->m_lblk,
547 map->m_lblk + map->m_len - 1))
548 status |= EXTENT_STATUS_DELAYED;
549 ret = ext4_es_insert_extent(inode, map->m_lblk,
550 map->m_len, map->m_pblk, status);
551 if (ret < 0)
552 retval = ret;
553 }
729f52c6
ZL
554 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
555 up_read((&EXT4_I(inode)->i_data_sem));
f5ab0d1f 556
d100eef2 557found:
e35fd660 558 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
b8a86845 559 ret = check_block_validity(inode, map);
6fd058f7
TT
560 if (ret != 0)
561 return ret;
562 }
563
f5ab0d1f 564 /* If it is only a block(s) look up */
c2177057 565 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
f5ab0d1f
MC
566 return retval;
567
568 /*
569 * Returns if the blocks have already allocated
570 *
571 * Note that if blocks have been preallocated
df3ab170 572 * ext4_ext_get_block() returns the create = 0
f5ab0d1f
MC
573 * with buffer head unmapped.
574 */
e35fd660 575 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
b8a86845
LC
576 /*
577 * If we need to convert extent to unwritten
578 * we continue and do the actual work in
579 * ext4_ext_map_blocks()
580 */
581 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
582 return retval;
4df3d265 583
2a8964d6 584 /*
a25a4e1a
ZL
585 * Here we clear m_flags because after allocating an new extent,
586 * it will be set again.
2a8964d6 587 */
a25a4e1a 588 map->m_flags &= ~EXT4_MAP_FLAGS;
2a8964d6 589
4df3d265 590 /*
556615dc 591 * New blocks allocate and/or writing to unwritten extent
f5ab0d1f 592 * will possibly result in updating i_data, so we take
d91bd2c1 593 * the write lock of i_data_sem, and call get_block()
f5ab0d1f 594 * with create == 1 flag.
4df3d265 595 */
c8b459f4 596 down_write(&EXT4_I(inode)->i_data_sem);
d2a17637 597
4df3d265
AK
598 /*
599 * We need to check for EXT4 here because migrate
600 * could have changed the inode type in between
601 */
12e9b892 602 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
e35fd660 603 retval = ext4_ext_map_blocks(handle, inode, map, flags);
0e855ac8 604 } else {
e35fd660 605 retval = ext4_ind_map_blocks(handle, inode, map, flags);
267e4db9 606
e35fd660 607 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
267e4db9
AK
608 /*
609 * We allocated new blocks which will result in
610 * i_data's format changing. Force the migrate
611 * to fail by clearing migrate flags
612 */
19f5fb7a 613 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
267e4db9 614 }
d2a17637 615
5f634d06
AK
616 /*
617 * Update reserved blocks/metadata blocks after successful
618 * block allocation which had been deferred till now. We don't
619 * support fallocate for non extent files. So we can update
620 * reserve space here.
621 */
622 if ((retval > 0) &&
1296cc85 623 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
5f634d06
AK
624 ext4_da_update_reserve_space(inode, retval, 1);
625 }
2ac3b6e0 626
f7fec032 627 if (retval > 0) {
3be78c73 628 unsigned int status;
f7fec032 629
44fb851d
ZL
630 if (unlikely(retval != map->m_len)) {
631 ext4_warning(inode->i_sb,
632 "ES len assertion failed for inode "
633 "%lu: retval %d != map->m_len %d",
634 inode->i_ino, retval, map->m_len);
635 WARN_ON(1);
921f266b 636 }
921f266b 637
adb23551
ZL
638 /*
639 * If the extent has been zeroed out, we don't need to update
640 * extent status tree.
641 */
642 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
643 ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
644 if (ext4_es_is_written(&es))
645 goto has_zeroout;
646 }
f7fec032
ZL
647 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
648 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
649 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
650 ext4_find_delalloc_range(inode, map->m_lblk,
651 map->m_lblk + map->m_len - 1))
652 status |= EXTENT_STATUS_DELAYED;
653 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
654 map->m_pblk, status);
655 if (ret < 0)
656 retval = ret;
5356f261
AK
657 }
658
adb23551 659has_zeroout:
4df3d265 660 up_write((&EXT4_I(inode)->i_data_sem));
e35fd660 661 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
b8a86845 662 ret = check_block_validity(inode, map);
6fd058f7
TT
663 if (ret != 0)
664 return ret;
665 }
0e855ac8
AK
666 return retval;
667}
668
f3bd1f3f
MC
669/* Maximum number of blocks we map for direct IO at once. */
670#define DIO_MAX_BLOCKS 4096
671
2ed88685
TT
672static int _ext4_get_block(struct inode *inode, sector_t iblock,
673 struct buffer_head *bh, int flags)
ac27a0ec 674{
3e4fdaf8 675 handle_t *handle = ext4_journal_current_handle();
2ed88685 676 struct ext4_map_blocks map;
7fb5409d 677 int ret = 0, started = 0;
f3bd1f3f 678 int dio_credits;
ac27a0ec 679
46c7f254
TM
680 if (ext4_has_inline_data(inode))
681 return -ERANGE;
682
2ed88685
TT
683 map.m_lblk = iblock;
684 map.m_len = bh->b_size >> inode->i_blkbits;
685
8b0f165f 686 if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
7fb5409d 687 /* Direct IO write... */
2ed88685
TT
688 if (map.m_len > DIO_MAX_BLOCKS)
689 map.m_len = DIO_MAX_BLOCKS;
690 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
9924a92a
TT
691 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
692 dio_credits);
7fb5409d 693 if (IS_ERR(handle)) {
ac27a0ec 694 ret = PTR_ERR(handle);
2ed88685 695 return ret;
ac27a0ec 696 }
7fb5409d 697 started = 1;
ac27a0ec
DK
698 }
699
2ed88685 700 ret = ext4_map_blocks(handle, inode, &map, flags);
7fb5409d 701 if (ret > 0) {
7b7a8665
CH
702 ext4_io_end_t *io_end = ext4_inode_aio(inode);
703
2ed88685
TT
704 map_bh(bh, inode->i_sb, map.m_pblk);
705 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
7b7a8665
CH
706 if (io_end && io_end->flag & EXT4_IO_END_UNWRITTEN)
707 set_buffer_defer_completion(bh);
2ed88685 708 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
7fb5409d 709 ret = 0;
ac27a0ec 710 }
7fb5409d
JK
711 if (started)
712 ext4_journal_stop(handle);
ac27a0ec
DK
713 return ret;
714}
715
2ed88685
TT
716int ext4_get_block(struct inode *inode, sector_t iblock,
717 struct buffer_head *bh, int create)
718{
719 return _ext4_get_block(inode, iblock, bh,
720 create ? EXT4_GET_BLOCKS_CREATE : 0);
721}
722
ac27a0ec
DK
723/*
724 * `handle' can be NULL if create is zero
725 */
617ba13b 726struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
10560082 727 ext4_lblk_t block, int create)
ac27a0ec 728{
2ed88685
TT
729 struct ext4_map_blocks map;
730 struct buffer_head *bh;
10560082 731 int err;
ac27a0ec
DK
732
733 J_ASSERT(handle != NULL || create == 0);
734
2ed88685
TT
735 map.m_lblk = block;
736 map.m_len = 1;
737 err = ext4_map_blocks(handle, inode, &map,
738 create ? EXT4_GET_BLOCKS_CREATE : 0);
ac27a0ec 739
10560082
TT
740 if (err == 0)
741 return create ? ERR_PTR(-ENOSPC) : NULL;
2ed88685 742 if (err < 0)
10560082 743 return ERR_PTR(err);
2ed88685
TT
744
745 bh = sb_getblk(inode->i_sb, map.m_pblk);
10560082
TT
746 if (unlikely(!bh))
747 return ERR_PTR(-ENOMEM);
2ed88685
TT
748 if (map.m_flags & EXT4_MAP_NEW) {
749 J_ASSERT(create != 0);
750 J_ASSERT(handle != NULL);
ac27a0ec 751
2ed88685
TT
752 /*
753 * Now that we do not always journal data, we should
754 * keep in mind whether this should always journal the
755 * new buffer as metadata. For now, regular file
756 * writes use ext4_get_block instead, so it's not a
757 * problem.
758 */
759 lock_buffer(bh);
760 BUFFER_TRACE(bh, "call get_create_access");
10560082
TT
761 err = ext4_journal_get_create_access(handle, bh);
762 if (unlikely(err)) {
763 unlock_buffer(bh);
764 goto errout;
765 }
766 if (!buffer_uptodate(bh)) {
2ed88685
TT
767 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
768 set_buffer_uptodate(bh);
ac27a0ec 769 }
2ed88685
TT
770 unlock_buffer(bh);
771 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
772 err = ext4_handle_dirty_metadata(handle, inode, bh);
10560082
TT
773 if (unlikely(err))
774 goto errout;
775 } else
2ed88685 776 BUFFER_TRACE(bh, "not a new buffer");
2ed88685 777 return bh;
10560082
TT
778errout:
779 brelse(bh);
780 return ERR_PTR(err);
ac27a0ec
DK
781}
782
617ba13b 783struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1c215028 784 ext4_lblk_t block, int create)
ac27a0ec 785{
af5bc92d 786 struct buffer_head *bh;
ac27a0ec 787
10560082 788 bh = ext4_getblk(handle, inode, block, create);
1c215028 789 if (IS_ERR(bh))
ac27a0ec 790 return bh;
1c215028 791 if (!bh || buffer_uptodate(bh))
ac27a0ec 792 return bh;
65299a3b 793 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
ac27a0ec
DK
794 wait_on_buffer(bh);
795 if (buffer_uptodate(bh))
796 return bh;
797 put_bh(bh);
1c215028 798 return ERR_PTR(-EIO);
ac27a0ec
DK
799}
800
f19d5870
TM
801int ext4_walk_page_buffers(handle_t *handle,
802 struct buffer_head *head,
803 unsigned from,
804 unsigned to,
805 int *partial,
806 int (*fn)(handle_t *handle,
807 struct buffer_head *bh))
ac27a0ec
DK
808{
809 struct buffer_head *bh;
810 unsigned block_start, block_end;
811 unsigned blocksize = head->b_size;
812 int err, ret = 0;
813 struct buffer_head *next;
814
af5bc92d
TT
815 for (bh = head, block_start = 0;
816 ret == 0 && (bh != head || !block_start);
de9a55b8 817 block_start = block_end, bh = next) {
ac27a0ec
DK
818 next = bh->b_this_page;
819 block_end = block_start + blocksize;
820 if (block_end <= from || block_start >= to) {
821 if (partial && !buffer_uptodate(bh))
822 *partial = 1;
823 continue;
824 }
825 err = (*fn)(handle, bh);
826 if (!ret)
827 ret = err;
828 }
829 return ret;
830}
831
832/*
833 * To preserve ordering, it is essential that the hole instantiation and
834 * the data write be encapsulated in a single transaction. We cannot
617ba13b 835 * close off a transaction and start a new one between the ext4_get_block()
dab291af 836 * and the commit_write(). So doing the jbd2_journal_start at the start of
ac27a0ec
DK
837 * prepare_write() is the right place.
838 *
36ade451
JK
839 * Also, this function can nest inside ext4_writepage(). In that case, we
840 * *know* that ext4_writepage() has generated enough buffer credits to do the
841 * whole page. So we won't block on the journal in that case, which is good,
842 * because the caller may be PF_MEMALLOC.
ac27a0ec 843 *
617ba13b 844 * By accident, ext4 can be reentered when a transaction is open via
ac27a0ec
DK
845 * quota file writes. If we were to commit the transaction while thus
846 * reentered, there can be a deadlock - we would be holding a quota
847 * lock, and the commit would never complete if another thread had a
848 * transaction open and was blocking on the quota lock - a ranking
849 * violation.
850 *
dab291af 851 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
ac27a0ec
DK
852 * will _not_ run commit under these circumstances because handle->h_ref
853 * is elevated. We'll still have enough credits for the tiny quotafile
854 * write.
855 */
f19d5870
TM
856int do_journal_get_write_access(handle_t *handle,
857 struct buffer_head *bh)
ac27a0ec 858{
56d35a4c
JK
859 int dirty = buffer_dirty(bh);
860 int ret;
861
ac27a0ec
DK
862 if (!buffer_mapped(bh) || buffer_freed(bh))
863 return 0;
56d35a4c 864 /*
ebdec241 865 * __block_write_begin() could have dirtied some buffers. Clean
56d35a4c
JK
866 * the dirty bit as jbd2_journal_get_write_access() could complain
867 * otherwise about fs integrity issues. Setting of the dirty bit
ebdec241 868 * by __block_write_begin() isn't a real problem here as we clear
56d35a4c
JK
869 * the bit before releasing a page lock and thus writeback cannot
870 * ever write the buffer.
871 */
872 if (dirty)
873 clear_buffer_dirty(bh);
5d601255 874 BUFFER_TRACE(bh, "get write access");
56d35a4c
JK
875 ret = ext4_journal_get_write_access(handle, bh);
876 if (!ret && dirty)
877 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
878 return ret;
ac27a0ec
DK
879}
880
8b0f165f
AP
881static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
882 struct buffer_head *bh_result, int create);
bfc1af65 883static int ext4_write_begin(struct file *file, struct address_space *mapping,
de9a55b8
TT
884 loff_t pos, unsigned len, unsigned flags,
885 struct page **pagep, void **fsdata)
ac27a0ec 886{
af5bc92d 887 struct inode *inode = mapping->host;
1938a150 888 int ret, needed_blocks;
ac27a0ec
DK
889 handle_t *handle;
890 int retries = 0;
af5bc92d 891 struct page *page;
de9a55b8 892 pgoff_t index;
af5bc92d 893 unsigned from, to;
bfc1af65 894
9bffad1e 895 trace_ext4_write_begin(inode, pos, len, flags);
1938a150
AK
896 /*
897 * Reserve one block more for addition to orphan list in case
898 * we allocate blocks but write fails for some reason
899 */
900 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
de9a55b8 901 index = pos >> PAGE_CACHE_SHIFT;
af5bc92d
TT
902 from = pos & (PAGE_CACHE_SIZE - 1);
903 to = from + len;
ac27a0ec 904
f19d5870
TM
905 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
906 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
907 flags, pagep);
908 if (ret < 0)
47564bfb
TT
909 return ret;
910 if (ret == 1)
911 return 0;
f19d5870
TM
912 }
913
47564bfb
TT
914 /*
915 * grab_cache_page_write_begin() can take a long time if the
916 * system is thrashing due to memory pressure, or if the page
917 * is being written back. So grab it first before we start
918 * the transaction handle. This also allows us to allocate
919 * the page (if needed) without using GFP_NOFS.
920 */
921retry_grab:
922 page = grab_cache_page_write_begin(mapping, index, flags);
923 if (!page)
924 return -ENOMEM;
925 unlock_page(page);
926
927retry_journal:
9924a92a 928 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
af5bc92d 929 if (IS_ERR(handle)) {
47564bfb
TT
930 page_cache_release(page);
931 return PTR_ERR(handle);
7479d2b9 932 }
ac27a0ec 933
47564bfb
TT
934 lock_page(page);
935 if (page->mapping != mapping) {
936 /* The page got truncated from under us */
937 unlock_page(page);
938 page_cache_release(page);
cf108bca 939 ext4_journal_stop(handle);
47564bfb 940 goto retry_grab;
cf108bca 941 }
7afe5aa5
DM
942 /* In case writeback began while the page was unlocked */
943 wait_for_stable_page(page);
cf108bca 944
744692dc 945 if (ext4_should_dioread_nolock(inode))
6e1db88d 946 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
744692dc 947 else
6e1db88d 948 ret = __block_write_begin(page, pos, len, ext4_get_block);
bfc1af65
NP
949
950 if (!ret && ext4_should_journal_data(inode)) {
f19d5870
TM
951 ret = ext4_walk_page_buffers(handle, page_buffers(page),
952 from, to, NULL,
953 do_journal_get_write_access);
ac27a0ec 954 }
bfc1af65
NP
955
956 if (ret) {
af5bc92d 957 unlock_page(page);
ae4d5372 958 /*
6e1db88d 959 * __block_write_begin may have instantiated a few blocks
ae4d5372
AK
960 * outside i_size. Trim these off again. Don't need
961 * i_size_read because we hold i_mutex.
1938a150
AK
962 *
963 * Add inode to orphan list in case we crash before
964 * truncate finishes
ae4d5372 965 */
ffacfa7a 966 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1938a150
AK
967 ext4_orphan_add(handle, inode);
968
969 ext4_journal_stop(handle);
970 if (pos + len > inode->i_size) {
b9a4207d 971 ext4_truncate_failed_write(inode);
de9a55b8 972 /*
ffacfa7a 973 * If truncate failed early the inode might
1938a150
AK
974 * still be on the orphan list; we need to
975 * make sure the inode is removed from the
976 * orphan list in that case.
977 */
978 if (inode->i_nlink)
979 ext4_orphan_del(NULL, inode);
980 }
bfc1af65 981
47564bfb
TT
982 if (ret == -ENOSPC &&
983 ext4_should_retry_alloc(inode->i_sb, &retries))
984 goto retry_journal;
985 page_cache_release(page);
986 return ret;
987 }
988 *pagep = page;
ac27a0ec
DK
989 return ret;
990}
991
bfc1af65
NP
992/* For write_end() in data=journal mode */
993static int write_end_fn(handle_t *handle, struct buffer_head *bh)
ac27a0ec 994{
13fca323 995 int ret;
ac27a0ec
DK
996 if (!buffer_mapped(bh) || buffer_freed(bh))
997 return 0;
998 set_buffer_uptodate(bh);
13fca323
TT
999 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1000 clear_buffer_meta(bh);
1001 clear_buffer_prio(bh);
1002 return ret;
ac27a0ec
DK
1003}
1004
eed4333f
ZL
1005/*
1006 * We need to pick up the new inode size which generic_commit_write gave us
1007 * `file' can be NULL - eg, when called from page_symlink().
1008 *
1009 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1010 * buffers are managed internally.
1011 */
1012static int ext4_write_end(struct file *file,
1013 struct address_space *mapping,
1014 loff_t pos, unsigned len, unsigned copied,
1015 struct page *page, void *fsdata)
f8514083 1016{
f8514083 1017 handle_t *handle = ext4_journal_current_handle();
eed4333f
ZL
1018 struct inode *inode = mapping->host;
1019 int ret = 0, ret2;
1020 int i_size_changed = 0;
1021
1022 trace_ext4_write_end(inode, pos, len, copied);
1023 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) {
1024 ret = ext4_jbd2_file_inode(handle, inode);
1025 if (ret) {
1026 unlock_page(page);
1027 page_cache_release(page);
1028 goto errout;
1029 }
1030 }
f8514083 1031
42c832de
TT
1032 if (ext4_has_inline_data(inode)) {
1033 ret = ext4_write_inline_data_end(inode, pos, len,
1034 copied, page);
1035 if (ret < 0)
1036 goto errout;
1037 copied = ret;
1038 } else
f19d5870
TM
1039 copied = block_write_end(file, mapping, pos,
1040 len, copied, page, fsdata);
f8514083 1041 /*
4631dbf6 1042 * it's important to update i_size while still holding page lock:
f8514083
AK
1043 * page writeout could otherwise come in and zero beyond i_size.
1044 */
4631dbf6 1045 i_size_changed = ext4_update_inode_size(inode, pos + copied);
f8514083
AK
1046 unlock_page(page);
1047 page_cache_release(page);
1048
1049 /*
1050 * Don't mark the inode dirty under page lock. First, it unnecessarily
1051 * makes the holding time of page lock longer. Second, it forces lock
1052 * ordering of page lock and transaction start for journaling
1053 * filesystems.
1054 */
1055 if (i_size_changed)
1056 ext4_mark_inode_dirty(handle, inode);
1057
ffacfa7a 1058 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1059 /* if we have allocated more blocks and copied
1060 * less. We will have blocks allocated outside
1061 * inode->i_size. So truncate them
1062 */
1063 ext4_orphan_add(handle, inode);
74d553aa 1064errout:
617ba13b 1065 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1066 if (!ret)
1067 ret = ret2;
bfc1af65 1068
f8514083 1069 if (pos + len > inode->i_size) {
b9a4207d 1070 ext4_truncate_failed_write(inode);
de9a55b8 1071 /*
ffacfa7a 1072 * If truncate failed early the inode might still be
f8514083
AK
1073 * on the orphan list; we need to make sure the inode
1074 * is removed from the orphan list in that case.
1075 */
1076 if (inode->i_nlink)
1077 ext4_orphan_del(NULL, inode);
1078 }
1079
bfc1af65 1080 return ret ? ret : copied;
ac27a0ec
DK
1081}
1082
bfc1af65 1083static int ext4_journalled_write_end(struct file *file,
de9a55b8
TT
1084 struct address_space *mapping,
1085 loff_t pos, unsigned len, unsigned copied,
1086 struct page *page, void *fsdata)
ac27a0ec 1087{
617ba13b 1088 handle_t *handle = ext4_journal_current_handle();
bfc1af65 1089 struct inode *inode = mapping->host;
ac27a0ec
DK
1090 int ret = 0, ret2;
1091 int partial = 0;
bfc1af65 1092 unsigned from, to;
4631dbf6 1093 int size_changed = 0;
ac27a0ec 1094
9bffad1e 1095 trace_ext4_journalled_write_end(inode, pos, len, copied);
bfc1af65
NP
1096 from = pos & (PAGE_CACHE_SIZE - 1);
1097 to = from + len;
1098
441c8508
CW
1099 BUG_ON(!ext4_handle_valid(handle));
1100
3fdcfb66
TM
1101 if (ext4_has_inline_data(inode))
1102 copied = ext4_write_inline_data_end(inode, pos, len,
1103 copied, page);
1104 else {
1105 if (copied < len) {
1106 if (!PageUptodate(page))
1107 copied = 0;
1108 page_zero_new_buffers(page, from+copied, to);
1109 }
ac27a0ec 1110
3fdcfb66
TM
1111 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1112 to, &partial, write_end_fn);
1113 if (!partial)
1114 SetPageUptodate(page);
1115 }
4631dbf6 1116 size_changed = ext4_update_inode_size(inode, pos + copied);
19f5fb7a 1117 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2d859db3 1118 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
4631dbf6
DM
1119 unlock_page(page);
1120 page_cache_release(page);
1121
1122 if (size_changed) {
617ba13b 1123 ret2 = ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
1124 if (!ret)
1125 ret = ret2;
1126 }
bfc1af65 1127
ffacfa7a 1128 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1129 /* if we have allocated more blocks and copied
1130 * less. We will have blocks allocated outside
1131 * inode->i_size. So truncate them
1132 */
1133 ext4_orphan_add(handle, inode);
1134
617ba13b 1135 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1136 if (!ret)
1137 ret = ret2;
f8514083 1138 if (pos + len > inode->i_size) {
b9a4207d 1139 ext4_truncate_failed_write(inode);
de9a55b8 1140 /*
ffacfa7a 1141 * If truncate failed early the inode might still be
f8514083
AK
1142 * on the orphan list; we need to make sure the inode
1143 * is removed from the orphan list in that case.
1144 */
1145 if (inode->i_nlink)
1146 ext4_orphan_del(NULL, inode);
1147 }
bfc1af65
NP
1148
1149 return ret ? ret : copied;
ac27a0ec 1150}
d2a17637 1151
9d0be502 1152/*
7b415bf6 1153 * Reserve a single cluster located at lblock
9d0be502 1154 */
01f49d0b 1155static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
d2a17637 1156{
60e58e0f 1157 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 1158 struct ext4_inode_info *ei = EXT4_I(inode);
7b415bf6 1159 unsigned int md_needed;
5dd4056d 1160 int ret;
03179fe9
TT
1161
1162 /*
1163 * We will charge metadata quota at writeout time; this saves
1164 * us from metadata over-estimation, though we may go over by
1165 * a small amount in the end. Here we just reserve for data.
1166 */
1167 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1168 if (ret)
1169 return ret;
d2a17637
MC
1170
1171 /*
1172 * recalculate the amount of metadata blocks to reserve
1173 * in order to allocate nrblocks
1174 * worse case is one extent per block
1175 */
0637c6f4 1176 spin_lock(&ei->i_block_reservation_lock);
03179fe9
TT
1177 /*
1178 * ext4_calc_metadata_amount() has side effects, which we have
1179 * to be prepared undo if we fail to claim space.
1180 */
71d4f7d0
TT
1181 md_needed = 0;
1182 trace_ext4_da_reserve_space(inode, 0);
d2a17637 1183
71d4f7d0 1184 if (ext4_claim_free_clusters(sbi, 1, 0)) {
03179fe9 1185 spin_unlock(&ei->i_block_reservation_lock);
03179fe9 1186 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
d2a17637
MC
1187 return -ENOSPC;
1188 }
9d0be502 1189 ei->i_reserved_data_blocks++;
0637c6f4 1190 spin_unlock(&ei->i_block_reservation_lock);
39bc680a 1191
d2a17637
MC
1192 return 0; /* success */
1193}
1194
12219aea 1195static void ext4_da_release_space(struct inode *inode, int to_free)
d2a17637
MC
1196{
1197 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 1198 struct ext4_inode_info *ei = EXT4_I(inode);
d2a17637 1199
cd213226
MC
1200 if (!to_free)
1201 return; /* Nothing to release, exit */
1202
d2a17637 1203 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
cd213226 1204
5a58ec87 1205 trace_ext4_da_release_space(inode, to_free);
0637c6f4 1206 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
cd213226 1207 /*
0637c6f4
TT
1208 * if there aren't enough reserved blocks, then the
1209 * counter is messed up somewhere. Since this
1210 * function is called from invalidate page, it's
1211 * harmless to return without any action.
cd213226 1212 */
8de5c325 1213 ext4_warning(inode->i_sb, "ext4_da_release_space: "
0637c6f4 1214 "ino %lu, to_free %d with only %d reserved "
1084f252 1215 "data blocks", inode->i_ino, to_free,
0637c6f4
TT
1216 ei->i_reserved_data_blocks);
1217 WARN_ON(1);
1218 to_free = ei->i_reserved_data_blocks;
cd213226 1219 }
0637c6f4 1220 ei->i_reserved_data_blocks -= to_free;
cd213226 1221
72b8ab9d 1222 /* update fs dirty data blocks counter */
57042651 1223 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
d2a17637 1224
d2a17637 1225 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f 1226
7b415bf6 1227 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
d2a17637
MC
1228}
1229
1230static void ext4_da_page_release_reservation(struct page *page,
ca99fdd2
LC
1231 unsigned int offset,
1232 unsigned int length)
d2a17637
MC
1233{
1234 int to_release = 0;
1235 struct buffer_head *head, *bh;
1236 unsigned int curr_off = 0;
7b415bf6
AK
1237 struct inode *inode = page->mapping->host;
1238 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
ca99fdd2 1239 unsigned int stop = offset + length;
7b415bf6 1240 int num_clusters;
51865fda 1241 ext4_fsblk_t lblk;
d2a17637 1242
ca99fdd2
LC
1243 BUG_ON(stop > PAGE_CACHE_SIZE || stop < length);
1244
d2a17637
MC
1245 head = page_buffers(page);
1246 bh = head;
1247 do {
1248 unsigned int next_off = curr_off + bh->b_size;
1249
ca99fdd2
LC
1250 if (next_off > stop)
1251 break;
1252
d2a17637
MC
1253 if ((offset <= curr_off) && (buffer_delay(bh))) {
1254 to_release++;
1255 clear_buffer_delay(bh);
1256 }
1257 curr_off = next_off;
1258 } while ((bh = bh->b_this_page) != head);
7b415bf6 1259
51865fda
ZL
1260 if (to_release) {
1261 lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1262 ext4_es_remove_extent(inode, lblk, to_release);
1263 }
1264
7b415bf6
AK
1265 /* If we have released all the blocks belonging to a cluster, then we
1266 * need to release the reserved space for that cluster. */
1267 num_clusters = EXT4_NUM_B2C(sbi, to_release);
1268 while (num_clusters > 0) {
7b415bf6
AK
1269 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1270 ((num_clusters - 1) << sbi->s_cluster_bits);
1271 if (sbi->s_cluster_ratio == 1 ||
7d1b1fbc 1272 !ext4_find_delalloc_cluster(inode, lblk))
7b415bf6
AK
1273 ext4_da_release_space(inode, 1);
1274
1275 num_clusters--;
1276 }
d2a17637 1277}
ac27a0ec 1278
64769240
AT
1279/*
1280 * Delayed allocation stuff
1281 */
1282
4e7ea81d
JK
1283struct mpage_da_data {
1284 struct inode *inode;
1285 struct writeback_control *wbc;
6b523df4 1286
4e7ea81d
JK
1287 pgoff_t first_page; /* The first page to write */
1288 pgoff_t next_page; /* Current page to examine */
1289 pgoff_t last_page; /* Last page to examine */
791b7f08 1290 /*
4e7ea81d
JK
1291 * Extent to map - this can be after first_page because that can be
1292 * fully mapped. We somewhat abuse m_flags to store whether the extent
1293 * is delalloc or unwritten.
791b7f08 1294 */
4e7ea81d
JK
1295 struct ext4_map_blocks map;
1296 struct ext4_io_submit io_submit; /* IO submission data */
1297};
64769240 1298
4e7ea81d
JK
1299static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1300 bool invalidate)
c4a0c46e
AK
1301{
1302 int nr_pages, i;
1303 pgoff_t index, end;
1304 struct pagevec pvec;
1305 struct inode *inode = mpd->inode;
1306 struct address_space *mapping = inode->i_mapping;
4e7ea81d
JK
1307
1308 /* This is necessary when next_page == 0. */
1309 if (mpd->first_page >= mpd->next_page)
1310 return;
c4a0c46e 1311
c7f5938a
CW
1312 index = mpd->first_page;
1313 end = mpd->next_page - 1;
4e7ea81d
JK
1314 if (invalidate) {
1315 ext4_lblk_t start, last;
1316 start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1317 last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1318 ext4_es_remove_extent(inode, start, last - start + 1);
1319 }
51865fda 1320
66bea92c 1321 pagevec_init(&pvec, 0);
c4a0c46e
AK
1322 while (index <= end) {
1323 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1324 if (nr_pages == 0)
1325 break;
1326 for (i = 0; i < nr_pages; i++) {
1327 struct page *page = pvec.pages[i];
9b1d0998 1328 if (page->index > end)
c4a0c46e 1329 break;
c4a0c46e
AK
1330 BUG_ON(!PageLocked(page));
1331 BUG_ON(PageWriteback(page));
4e7ea81d
JK
1332 if (invalidate) {
1333 block_invalidatepage(page, 0, PAGE_CACHE_SIZE);
1334 ClearPageUptodate(page);
1335 }
c4a0c46e
AK
1336 unlock_page(page);
1337 }
9b1d0998
JK
1338 index = pvec.pages[nr_pages - 1]->index + 1;
1339 pagevec_release(&pvec);
c4a0c46e 1340 }
c4a0c46e
AK
1341}
1342
df22291f
AK
1343static void ext4_print_free_blocks(struct inode *inode)
1344{
1345 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
92b97816 1346 struct super_block *sb = inode->i_sb;
f78ee70d 1347 struct ext4_inode_info *ei = EXT4_I(inode);
92b97816
TT
1348
1349 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
5dee5437 1350 EXT4_C2B(EXT4_SB(inode->i_sb),
f78ee70d 1351 ext4_count_free_clusters(sb)));
92b97816
TT
1352 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1353 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
f78ee70d 1354 (long long) EXT4_C2B(EXT4_SB(sb),
57042651 1355 percpu_counter_sum(&sbi->s_freeclusters_counter)));
92b97816 1356 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
f78ee70d 1357 (long long) EXT4_C2B(EXT4_SB(sb),
7b415bf6 1358 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
92b97816
TT
1359 ext4_msg(sb, KERN_CRIT, "Block reservation details");
1360 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
f78ee70d 1361 ei->i_reserved_data_blocks);
df22291f
AK
1362 return;
1363}
1364
c364b22c 1365static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
29fa89d0 1366{
c364b22c 1367 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
29fa89d0
AK
1368}
1369
5356f261
AK
1370/*
1371 * This function is grabs code from the very beginning of
1372 * ext4_map_blocks, but assumes that the caller is from delayed write
1373 * time. This function looks up the requested blocks and sets the
1374 * buffer delay bit under the protection of i_data_sem.
1375 */
1376static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1377 struct ext4_map_blocks *map,
1378 struct buffer_head *bh)
1379{
d100eef2 1380 struct extent_status es;
5356f261
AK
1381 int retval;
1382 sector_t invalid_block = ~((sector_t) 0xffff);
921f266b
DM
1383#ifdef ES_AGGRESSIVE_TEST
1384 struct ext4_map_blocks orig_map;
1385
1386 memcpy(&orig_map, map, sizeof(*map));
1387#endif
5356f261
AK
1388
1389 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1390 invalid_block = ~0;
1391
1392 map->m_flags = 0;
1393 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1394 "logical block %lu\n", inode->i_ino, map->m_len,
1395 (unsigned long) map->m_lblk);
d100eef2
ZL
1396
1397 /* Lookup extent status tree firstly */
1398 if (ext4_es_lookup_extent(inode, iblock, &es)) {
63b99968 1399 ext4_es_lru_add(inode);
d100eef2
ZL
1400 if (ext4_es_is_hole(&es)) {
1401 retval = 0;
c8b459f4 1402 down_read(&EXT4_I(inode)->i_data_sem);
d100eef2
ZL
1403 goto add_delayed;
1404 }
1405
1406 /*
1407 * Delayed extent could be allocated by fallocate.
1408 * So we need to check it.
1409 */
1410 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1411 map_bh(bh, inode->i_sb, invalid_block);
1412 set_buffer_new(bh);
1413 set_buffer_delay(bh);
1414 return 0;
1415 }
1416
1417 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1418 retval = es.es_len - (iblock - es.es_lblk);
1419 if (retval > map->m_len)
1420 retval = map->m_len;
1421 map->m_len = retval;
1422 if (ext4_es_is_written(&es))
1423 map->m_flags |= EXT4_MAP_MAPPED;
1424 else if (ext4_es_is_unwritten(&es))
1425 map->m_flags |= EXT4_MAP_UNWRITTEN;
1426 else
1427 BUG_ON(1);
1428
921f266b
DM
1429#ifdef ES_AGGRESSIVE_TEST
1430 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1431#endif
d100eef2
ZL
1432 return retval;
1433 }
1434
5356f261
AK
1435 /*
1436 * Try to see if we can get the block without requesting a new
1437 * file system block.
1438 */
c8b459f4 1439 down_read(&EXT4_I(inode)->i_data_sem);
9c3569b5
TM
1440 if (ext4_has_inline_data(inode)) {
1441 /*
1442 * We will soon create blocks for this page, and let
1443 * us pretend as if the blocks aren't allocated yet.
1444 * In case of clusters, we have to handle the work
1445 * of mapping from cluster so that the reserved space
1446 * is calculated properly.
1447 */
1448 if ((EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) &&
1449 ext4_find_delalloc_cluster(inode, map->m_lblk))
1450 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
1451 retval = 0;
1452 } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
d100eef2
ZL
1453 retval = ext4_ext_map_blocks(NULL, inode, map,
1454 EXT4_GET_BLOCKS_NO_PUT_HOLE);
5356f261 1455 else
d100eef2
ZL
1456 retval = ext4_ind_map_blocks(NULL, inode, map,
1457 EXT4_GET_BLOCKS_NO_PUT_HOLE);
5356f261 1458
d100eef2 1459add_delayed:
5356f261 1460 if (retval == 0) {
f7fec032 1461 int ret;
5356f261
AK
1462 /*
1463 * XXX: __block_prepare_write() unmaps passed block,
1464 * is it OK?
1465 */
386ad67c
LC
1466 /*
1467 * If the block was allocated from previously allocated cluster,
1468 * then we don't need to reserve it again. However we still need
1469 * to reserve metadata for every block we're going to write.
1470 */
5356f261 1471 if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
f7fec032
ZL
1472 ret = ext4_da_reserve_space(inode, iblock);
1473 if (ret) {
5356f261 1474 /* not enough space to reserve */
f7fec032 1475 retval = ret;
5356f261 1476 goto out_unlock;
f7fec032 1477 }
5356f261
AK
1478 }
1479
f7fec032
ZL
1480 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1481 ~0, EXTENT_STATUS_DELAYED);
1482 if (ret) {
1483 retval = ret;
51865fda 1484 goto out_unlock;
f7fec032 1485 }
51865fda 1486
5356f261
AK
1487 /* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
1488 * and it should not appear on the bh->b_state.
1489 */
1490 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
1491
1492 map_bh(bh, inode->i_sb, invalid_block);
1493 set_buffer_new(bh);
1494 set_buffer_delay(bh);
f7fec032
ZL
1495 } else if (retval > 0) {
1496 int ret;
3be78c73 1497 unsigned int status;
f7fec032 1498
44fb851d
ZL
1499 if (unlikely(retval != map->m_len)) {
1500 ext4_warning(inode->i_sb,
1501 "ES len assertion failed for inode "
1502 "%lu: retval %d != map->m_len %d",
1503 inode->i_ino, retval, map->m_len);
1504 WARN_ON(1);
921f266b 1505 }
921f266b 1506
f7fec032
ZL
1507 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1508 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1509 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1510 map->m_pblk, status);
1511 if (ret != 0)
1512 retval = ret;
5356f261
AK
1513 }
1514
1515out_unlock:
1516 up_read((&EXT4_I(inode)->i_data_sem));
1517
1518 return retval;
1519}
1520
64769240 1521/*
d91bd2c1 1522 * This is a special get_block_t callback which is used by
b920c755
TT
1523 * ext4_da_write_begin(). It will either return mapped block or
1524 * reserve space for a single block.
29fa89d0
AK
1525 *
1526 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1527 * We also have b_blocknr = -1 and b_bdev initialized properly
1528 *
1529 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1530 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1531 * initialized properly.
64769240 1532 */
9c3569b5
TM
1533int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1534 struct buffer_head *bh, int create)
64769240 1535{
2ed88685 1536 struct ext4_map_blocks map;
64769240
AT
1537 int ret = 0;
1538
1539 BUG_ON(create == 0);
2ed88685
TT
1540 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1541
1542 map.m_lblk = iblock;
1543 map.m_len = 1;
64769240
AT
1544
1545 /*
1546 * first, we need to know whether the block is allocated already
1547 * preallocated blocks are unmapped but should treated
1548 * the same as allocated blocks.
1549 */
5356f261
AK
1550 ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1551 if (ret <= 0)
2ed88685 1552 return ret;
64769240 1553
2ed88685
TT
1554 map_bh(bh, inode->i_sb, map.m_pblk);
1555 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1556
1557 if (buffer_unwritten(bh)) {
1558 /* A delayed write to unwritten bh should be marked
1559 * new and mapped. Mapped ensures that we don't do
1560 * get_block multiple times when we write to the same
1561 * offset and new ensures that we do proper zero out
1562 * for partial write.
1563 */
1564 set_buffer_new(bh);
c8205636 1565 set_buffer_mapped(bh);
2ed88685
TT
1566 }
1567 return 0;
64769240 1568}
61628a3f 1569
62e086be
AK
1570static int bget_one(handle_t *handle, struct buffer_head *bh)
1571{
1572 get_bh(bh);
1573 return 0;
1574}
1575
1576static int bput_one(handle_t *handle, struct buffer_head *bh)
1577{
1578 put_bh(bh);
1579 return 0;
1580}
1581
1582static int __ext4_journalled_writepage(struct page *page,
62e086be
AK
1583 unsigned int len)
1584{
1585 struct address_space *mapping = page->mapping;
1586 struct inode *inode = mapping->host;
3fdcfb66 1587 struct buffer_head *page_bufs = NULL;
62e086be 1588 handle_t *handle = NULL;
3fdcfb66
TM
1589 int ret = 0, err = 0;
1590 int inline_data = ext4_has_inline_data(inode);
1591 struct buffer_head *inode_bh = NULL;
62e086be 1592
cb20d518 1593 ClearPageChecked(page);
3fdcfb66
TM
1594
1595 if (inline_data) {
1596 BUG_ON(page->index != 0);
1597 BUG_ON(len > ext4_get_max_inline_size(inode));
1598 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1599 if (inode_bh == NULL)
1600 goto out;
1601 } else {
1602 page_bufs = page_buffers(page);
1603 if (!page_bufs) {
1604 BUG();
1605 goto out;
1606 }
1607 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1608 NULL, bget_one);
1609 }
62e086be
AK
1610 /* As soon as we unlock the page, it can go away, but we have
1611 * references to buffers so we are safe */
1612 unlock_page(page);
1613
9924a92a
TT
1614 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1615 ext4_writepage_trans_blocks(inode));
62e086be
AK
1616 if (IS_ERR(handle)) {
1617 ret = PTR_ERR(handle);
1618 goto out;
1619 }
1620
441c8508
CW
1621 BUG_ON(!ext4_handle_valid(handle));
1622
3fdcfb66 1623 if (inline_data) {
5d601255 1624 BUFFER_TRACE(inode_bh, "get write access");
3fdcfb66 1625 ret = ext4_journal_get_write_access(handle, inode_bh);
62e086be 1626
3fdcfb66
TM
1627 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
1628
1629 } else {
1630 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1631 do_journal_get_write_access);
1632
1633 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1634 write_end_fn);
1635 }
62e086be
AK
1636 if (ret == 0)
1637 ret = err;
2d859db3 1638 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
62e086be
AK
1639 err = ext4_journal_stop(handle);
1640 if (!ret)
1641 ret = err;
1642
3fdcfb66 1643 if (!ext4_has_inline_data(inode))
8c9367fd 1644 ext4_walk_page_buffers(NULL, page_bufs, 0, len,
3fdcfb66 1645 NULL, bput_one);
19f5fb7a 1646 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
62e086be 1647out:
3fdcfb66 1648 brelse(inode_bh);
62e086be
AK
1649 return ret;
1650}
1651
61628a3f 1652/*
43ce1d23
AK
1653 * Note that we don't need to start a transaction unless we're journaling data
1654 * because we should have holes filled from ext4_page_mkwrite(). We even don't
1655 * need to file the inode to the transaction's list in ordered mode because if
1656 * we are writing back data added by write(), the inode is already there and if
25985edc 1657 * we are writing back data modified via mmap(), no one guarantees in which
43ce1d23
AK
1658 * transaction the data will hit the disk. In case we are journaling data, we
1659 * cannot start transaction directly because transaction start ranks above page
1660 * lock so we have to do some magic.
1661 *
b920c755 1662 * This function can get called via...
20970ba6 1663 * - ext4_writepages after taking page lock (have journal handle)
b920c755 1664 * - journal_submit_inode_data_buffers (no journal handle)
f6463b0d 1665 * - shrink_page_list via the kswapd/direct reclaim (no journal handle)
b920c755 1666 * - grab_page_cache when doing write_begin (have journal handle)
43ce1d23
AK
1667 *
1668 * We don't do any block allocation in this function. If we have page with
1669 * multiple blocks we need to write those buffer_heads that are mapped. This
1670 * is important for mmaped based write. So if we do with blocksize 1K
1671 * truncate(f, 1024);
1672 * a = mmap(f, 0, 4096);
1673 * a[0] = 'a';
1674 * truncate(f, 4096);
1675 * we have in the page first buffer_head mapped via page_mkwrite call back
90802ed9 1676 * but other buffer_heads would be unmapped but dirty (dirty done via the
43ce1d23
AK
1677 * do_wp_page). So writepage should write the first block. If we modify
1678 * the mmap area beyond 1024 we will again get a page_fault and the
1679 * page_mkwrite callback will do the block allocation and mark the
1680 * buffer_heads mapped.
1681 *
1682 * We redirty the page if we have any buffer_heads that is either delay or
1683 * unwritten in the page.
1684 *
1685 * We can get recursively called as show below.
1686 *
1687 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1688 * ext4_writepage()
1689 *
1690 * But since we don't do any block allocation we should not deadlock.
1691 * Page also have the dirty flag cleared so we don't get recurive page_lock.
61628a3f 1692 */
43ce1d23 1693static int ext4_writepage(struct page *page,
62e086be 1694 struct writeback_control *wbc)
64769240 1695{
f8bec370 1696 int ret = 0;
61628a3f 1697 loff_t size;
498e5f24 1698 unsigned int len;
744692dc 1699 struct buffer_head *page_bufs = NULL;
61628a3f 1700 struct inode *inode = page->mapping->host;
36ade451 1701 struct ext4_io_submit io_submit;
1c8349a1 1702 bool keep_towrite = false;
61628a3f 1703
a9c667f8 1704 trace_ext4_writepage(page);
f0e6c985
AK
1705 size = i_size_read(inode);
1706 if (page->index == size >> PAGE_CACHE_SHIFT)
1707 len = size & ~PAGE_CACHE_MASK;
1708 else
1709 len = PAGE_CACHE_SIZE;
64769240 1710
a42afc5f 1711 page_bufs = page_buffers(page);
a42afc5f 1712 /*
fe386132
JK
1713 * We cannot do block allocation or other extent handling in this
1714 * function. If there are buffers needing that, we have to redirty
1715 * the page. But we may reach here when we do a journal commit via
1716 * journal_submit_inode_data_buffers() and in that case we must write
1717 * allocated buffers to achieve data=ordered mode guarantees.
a42afc5f 1718 */
f19d5870
TM
1719 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
1720 ext4_bh_delay_or_unwritten)) {
f8bec370 1721 redirty_page_for_writepage(wbc, page);
fe386132
JK
1722 if (current->flags & PF_MEMALLOC) {
1723 /*
1724 * For memory cleaning there's no point in writing only
1725 * some buffers. So just bail out. Warn if we came here
1726 * from direct reclaim.
1727 */
1728 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
1729 == PF_MEMALLOC);
f0e6c985
AK
1730 unlock_page(page);
1731 return 0;
1732 }
1c8349a1 1733 keep_towrite = true;
a42afc5f 1734 }
64769240 1735
cb20d518 1736 if (PageChecked(page) && ext4_should_journal_data(inode))
43ce1d23
AK
1737 /*
1738 * It's mmapped pagecache. Add buffers and journal it. There
1739 * doesn't seem much point in redirtying the page here.
1740 */
3f0ca309 1741 return __ext4_journalled_writepage(page, len);
43ce1d23 1742
97a851ed
JK
1743 ext4_io_submit_init(&io_submit, wbc);
1744 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
1745 if (!io_submit.io_end) {
1746 redirty_page_for_writepage(wbc, page);
1747 unlock_page(page);
1748 return -ENOMEM;
1749 }
1c8349a1 1750 ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
36ade451 1751 ext4_io_submit(&io_submit);
97a851ed
JK
1752 /* Drop io_end reference we got from init */
1753 ext4_put_io_end_defer(io_submit.io_end);
64769240
AT
1754 return ret;
1755}
1756
5f1132b2
JK
1757static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
1758{
1759 int len;
1760 loff_t size = i_size_read(mpd->inode);
1761 int err;
1762
1763 BUG_ON(page->index != mpd->first_page);
1764 if (page->index == size >> PAGE_CACHE_SHIFT)
1765 len = size & ~PAGE_CACHE_MASK;
1766 else
1767 len = PAGE_CACHE_SIZE;
1768 clear_page_dirty_for_io(page);
1c8349a1 1769 err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
5f1132b2
JK
1770 if (!err)
1771 mpd->wbc->nr_to_write--;
1772 mpd->first_page++;
1773
1774 return err;
1775}
1776
4e7ea81d
JK
1777#define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
1778
61628a3f 1779/*
fffb2739
JK
1780 * mballoc gives us at most this number of blocks...
1781 * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
70261f56 1782 * The rest of mballoc seems to handle chunks up to full group size.
61628a3f 1783 */
fffb2739 1784#define MAX_WRITEPAGES_EXTENT_LEN 2048
525f4ed8 1785
4e7ea81d
JK
1786/*
1787 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
1788 *
1789 * @mpd - extent of blocks
1790 * @lblk - logical number of the block in the file
09930042 1791 * @bh - buffer head we want to add to the extent
4e7ea81d 1792 *
09930042
JK
1793 * The function is used to collect contig. blocks in the same state. If the
1794 * buffer doesn't require mapping for writeback and we haven't started the
1795 * extent of buffers to map yet, the function returns 'true' immediately - the
1796 * caller can write the buffer right away. Otherwise the function returns true
1797 * if the block has been added to the extent, false if the block couldn't be
1798 * added.
4e7ea81d 1799 */
09930042
JK
1800static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
1801 struct buffer_head *bh)
4e7ea81d
JK
1802{
1803 struct ext4_map_blocks *map = &mpd->map;
1804
09930042
JK
1805 /* Buffer that doesn't need mapping for writeback? */
1806 if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
1807 (!buffer_delay(bh) && !buffer_unwritten(bh))) {
1808 /* So far no extent to map => we write the buffer right away */
1809 if (map->m_len == 0)
1810 return true;
1811 return false;
1812 }
4e7ea81d
JK
1813
1814 /* First block in the extent? */
1815 if (map->m_len == 0) {
1816 map->m_lblk = lblk;
1817 map->m_len = 1;
09930042
JK
1818 map->m_flags = bh->b_state & BH_FLAGS;
1819 return true;
4e7ea81d
JK
1820 }
1821
09930042
JK
1822 /* Don't go larger than mballoc is willing to allocate */
1823 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
1824 return false;
1825
4e7ea81d
JK
1826 /* Can we merge the block to our big extent? */
1827 if (lblk == map->m_lblk + map->m_len &&
09930042 1828 (bh->b_state & BH_FLAGS) == map->m_flags) {
4e7ea81d 1829 map->m_len++;
09930042 1830 return true;
4e7ea81d 1831 }
09930042 1832 return false;
4e7ea81d
JK
1833}
1834
5f1132b2
JK
1835/*
1836 * mpage_process_page_bufs - submit page buffers for IO or add them to extent
1837 *
1838 * @mpd - extent of blocks for mapping
1839 * @head - the first buffer in the page
1840 * @bh - buffer we should start processing from
1841 * @lblk - logical number of the block in the file corresponding to @bh
1842 *
1843 * Walk through page buffers from @bh upto @head (exclusive) and either submit
1844 * the page for IO if all buffers in this page were mapped and there's no
1845 * accumulated extent of buffers to map or add buffers in the page to the
1846 * extent of buffers to map. The function returns 1 if the caller can continue
1847 * by processing the next page, 0 if it should stop adding buffers to the
1848 * extent to map because we cannot extend it anymore. It can also return value
1849 * < 0 in case of error during IO submission.
1850 */
1851static int mpage_process_page_bufs(struct mpage_da_data *mpd,
1852 struct buffer_head *head,
1853 struct buffer_head *bh,
1854 ext4_lblk_t lblk)
4e7ea81d
JK
1855{
1856 struct inode *inode = mpd->inode;
5f1132b2 1857 int err;
4e7ea81d
JK
1858 ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1)
1859 >> inode->i_blkbits;
1860
1861 do {
1862 BUG_ON(buffer_locked(bh));
1863
09930042 1864 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
4e7ea81d
JK
1865 /* Found extent to map? */
1866 if (mpd->map.m_len)
5f1132b2 1867 return 0;
09930042 1868 /* Everything mapped so far and we hit EOF */
5f1132b2 1869 break;
4e7ea81d 1870 }
4e7ea81d 1871 } while (lblk++, (bh = bh->b_this_page) != head);
5f1132b2
JK
1872 /* So far everything mapped? Submit the page for IO. */
1873 if (mpd->map.m_len == 0) {
1874 err = mpage_submit_page(mpd, head->b_page);
1875 if (err < 0)
1876 return err;
1877 }
1878 return lblk < blocks;
4e7ea81d
JK
1879}
1880
1881/*
1882 * mpage_map_buffers - update buffers corresponding to changed extent and
1883 * submit fully mapped pages for IO
1884 *
1885 * @mpd - description of extent to map, on return next extent to map
1886 *
1887 * Scan buffers corresponding to changed extent (we expect corresponding pages
1888 * to be already locked) and update buffer state according to new extent state.
1889 * We map delalloc buffers to their physical location, clear unwritten bits,
556615dc 1890 * and mark buffers as uninit when we perform writes to unwritten extents
4e7ea81d
JK
1891 * and do extent conversion after IO is finished. If the last page is not fully
1892 * mapped, we update @map to the next extent in the last page that needs
1893 * mapping. Otherwise we submit the page for IO.
1894 */
1895static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
1896{
1897 struct pagevec pvec;
1898 int nr_pages, i;
1899 struct inode *inode = mpd->inode;
1900 struct buffer_head *head, *bh;
1901 int bpp_bits = PAGE_CACHE_SHIFT - inode->i_blkbits;
4e7ea81d
JK
1902 pgoff_t start, end;
1903 ext4_lblk_t lblk;
1904 sector_t pblock;
1905 int err;
1906
1907 start = mpd->map.m_lblk >> bpp_bits;
1908 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
1909 lblk = start << bpp_bits;
1910 pblock = mpd->map.m_pblk;
1911
1912 pagevec_init(&pvec, 0);
1913 while (start <= end) {
1914 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start,
1915 PAGEVEC_SIZE);
1916 if (nr_pages == 0)
1917 break;
1918 for (i = 0; i < nr_pages; i++) {
1919 struct page *page = pvec.pages[i];
1920
1921 if (page->index > end)
1922 break;
70261f56 1923 /* Up to 'end' pages must be contiguous */
4e7ea81d
JK
1924 BUG_ON(page->index != start);
1925 bh = head = page_buffers(page);
1926 do {
1927 if (lblk < mpd->map.m_lblk)
1928 continue;
1929 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
1930 /*
1931 * Buffer after end of mapped extent.
1932 * Find next buffer in the page to map.
1933 */
1934 mpd->map.m_len = 0;
1935 mpd->map.m_flags = 0;
5f1132b2
JK
1936 /*
1937 * FIXME: If dioread_nolock supports
1938 * blocksize < pagesize, we need to make
1939 * sure we add size mapped so far to
1940 * io_end->size as the following call
1941 * can submit the page for IO.
1942 */
1943 err = mpage_process_page_bufs(mpd, head,
1944 bh, lblk);
4e7ea81d 1945 pagevec_release(&pvec);
5f1132b2
JK
1946 if (err > 0)
1947 err = 0;
1948 return err;
4e7ea81d
JK
1949 }
1950 if (buffer_delay(bh)) {
1951 clear_buffer_delay(bh);
1952 bh->b_blocknr = pblock++;
1953 }
4e7ea81d 1954 clear_buffer_unwritten(bh);
5f1132b2 1955 } while (lblk++, (bh = bh->b_this_page) != head);
4e7ea81d
JK
1956
1957 /*
1958 * FIXME: This is going to break if dioread_nolock
1959 * supports blocksize < pagesize as we will try to
1960 * convert potentially unmapped parts of inode.
1961 */
1962 mpd->io_submit.io_end->size += PAGE_CACHE_SIZE;
1963 /* Page fully mapped - let IO run! */
1964 err = mpage_submit_page(mpd, page);
1965 if (err < 0) {
1966 pagevec_release(&pvec);
1967 return err;
1968 }
1969 start++;
1970 }
1971 pagevec_release(&pvec);
1972 }
1973 /* Extent fully mapped and matches with page boundary. We are done. */
1974 mpd->map.m_len = 0;
1975 mpd->map.m_flags = 0;
1976 return 0;
1977}
1978
1979static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
1980{
1981 struct inode *inode = mpd->inode;
1982 struct ext4_map_blocks *map = &mpd->map;
1983 int get_blocks_flags;
090f32ee 1984 int err, dioread_nolock;
4e7ea81d
JK
1985
1986 trace_ext4_da_write_pages_extent(inode, map);
1987 /*
1988 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
556615dc 1989 * to convert an unwritten extent to be initialized (in the case
4e7ea81d
JK
1990 * where we have written into one or more preallocated blocks). It is
1991 * possible that we're going to need more metadata blocks than
1992 * previously reserved. However we must not fail because we're in
1993 * writeback and there is nothing we can do about it so it might result
1994 * in data loss. So use reserved blocks to allocate metadata if
1995 * possible.
1996 *
754cfed6
TT
1997 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
1998 * the blocks in question are delalloc blocks. This indicates
1999 * that the blocks and quotas has already been checked when
2000 * the data was copied into the page cache.
4e7ea81d
JK
2001 */
2002 get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2003 EXT4_GET_BLOCKS_METADATA_NOFAIL;
090f32ee
LC
2004 dioread_nolock = ext4_should_dioread_nolock(inode);
2005 if (dioread_nolock)
4e7ea81d
JK
2006 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2007 if (map->m_flags & (1 << BH_Delay))
2008 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2009
2010 err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2011 if (err < 0)
2012 return err;
090f32ee 2013 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
6b523df4
JK
2014 if (!mpd->io_submit.io_end->handle &&
2015 ext4_handle_valid(handle)) {
2016 mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2017 handle->h_rsv_handle = NULL;
2018 }
3613d228 2019 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
6b523df4 2020 }
4e7ea81d
JK
2021
2022 BUG_ON(map->m_len == 0);
2023 if (map->m_flags & EXT4_MAP_NEW) {
2024 struct block_device *bdev = inode->i_sb->s_bdev;
2025 int i;
2026
2027 for (i = 0; i < map->m_len; i++)
2028 unmap_underlying_metadata(bdev, map->m_pblk + i);
2029 }
2030 return 0;
2031}
2032
2033/*
2034 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2035 * mpd->len and submit pages underlying it for IO
2036 *
2037 * @handle - handle for journal operations
2038 * @mpd - extent to map
7534e854
JK
2039 * @give_up_on_write - we set this to true iff there is a fatal error and there
2040 * is no hope of writing the data. The caller should discard
2041 * dirty pages to avoid infinite loops.
4e7ea81d
JK
2042 *
2043 * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2044 * delayed, blocks are allocated, if it is unwritten, we may need to convert
2045 * them to initialized or split the described range from larger unwritten
2046 * extent. Note that we need not map all the described range since allocation
2047 * can return less blocks or the range is covered by more unwritten extents. We
2048 * cannot map more because we are limited by reserved transaction credits. On
2049 * the other hand we always make sure that the last touched page is fully
2050 * mapped so that it can be written out (and thus forward progress is
2051 * guaranteed). After mapping we submit all mapped pages for IO.
2052 */
2053static int mpage_map_and_submit_extent(handle_t *handle,
cb530541
TT
2054 struct mpage_da_data *mpd,
2055 bool *give_up_on_write)
4e7ea81d
JK
2056{
2057 struct inode *inode = mpd->inode;
2058 struct ext4_map_blocks *map = &mpd->map;
2059 int err;
2060 loff_t disksize;
6603120e 2061 int progress = 0;
4e7ea81d
JK
2062
2063 mpd->io_submit.io_end->offset =
2064 ((loff_t)map->m_lblk) << inode->i_blkbits;
27d7c4ed 2065 do {
4e7ea81d
JK
2066 err = mpage_map_one_extent(handle, mpd);
2067 if (err < 0) {
2068 struct super_block *sb = inode->i_sb;
2069
cb530541
TT
2070 if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2071 goto invalidate_dirty_pages;
4e7ea81d 2072 /*
cb530541
TT
2073 * Let the uper layers retry transient errors.
2074 * In the case of ENOSPC, if ext4_count_free_blocks()
2075 * is non-zero, a commit should free up blocks.
4e7ea81d 2076 */
cb530541 2077 if ((err == -ENOMEM) ||
6603120e
DM
2078 (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2079 if (progress)
2080 goto update_disksize;
cb530541 2081 return err;
6603120e 2082 }
cb530541
TT
2083 ext4_msg(sb, KERN_CRIT,
2084 "Delayed block allocation failed for "
2085 "inode %lu at logical offset %llu with"
2086 " max blocks %u with error %d",
2087 inode->i_ino,
2088 (unsigned long long)map->m_lblk,
2089 (unsigned)map->m_len, -err);
2090 ext4_msg(sb, KERN_CRIT,
2091 "This should not happen!! Data will "
2092 "be lost\n");
2093 if (err == -ENOSPC)
2094 ext4_print_free_blocks(inode);
2095 invalidate_dirty_pages:
2096 *give_up_on_write = true;
4e7ea81d
JK
2097 return err;
2098 }
6603120e 2099 progress = 1;
4e7ea81d
JK
2100 /*
2101 * Update buffer state, submit mapped pages, and get us new
2102 * extent to map
2103 */
2104 err = mpage_map_and_submit_buffers(mpd);
2105 if (err < 0)
6603120e 2106 goto update_disksize;
27d7c4ed 2107 } while (map->m_len);
4e7ea81d 2108
6603120e 2109update_disksize:
622cad13
TT
2110 /*
2111 * Update on-disk size after IO is submitted. Races with
2112 * truncate are avoided by checking i_size under i_data_sem.
2113 */
4e7ea81d 2114 disksize = ((loff_t)mpd->first_page) << PAGE_CACHE_SHIFT;
4e7ea81d
JK
2115 if (disksize > EXT4_I(inode)->i_disksize) {
2116 int err2;
622cad13
TT
2117 loff_t i_size;
2118
2119 down_write(&EXT4_I(inode)->i_data_sem);
2120 i_size = i_size_read(inode);
2121 if (disksize > i_size)
2122 disksize = i_size;
2123 if (disksize > EXT4_I(inode)->i_disksize)
2124 EXT4_I(inode)->i_disksize = disksize;
4e7ea81d 2125 err2 = ext4_mark_inode_dirty(handle, inode);
622cad13 2126 up_write(&EXT4_I(inode)->i_data_sem);
4e7ea81d
JK
2127 if (err2)
2128 ext4_error(inode->i_sb,
2129 "Failed to mark inode %lu dirty",
2130 inode->i_ino);
2131 if (!err)
2132 err = err2;
2133 }
2134 return err;
2135}
2136
fffb2739
JK
2137/*
2138 * Calculate the total number of credits to reserve for one writepages
20970ba6 2139 * iteration. This is called from ext4_writepages(). We map an extent of
70261f56 2140 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
fffb2739
JK
2141 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2142 * bpp - 1 blocks in bpp different extents.
2143 */
525f4ed8
MC
2144static int ext4_da_writepages_trans_blocks(struct inode *inode)
2145{
fffb2739 2146 int bpp = ext4_journal_blocks_per_page(inode);
525f4ed8 2147
fffb2739
JK
2148 return ext4_meta_trans_blocks(inode,
2149 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
525f4ed8 2150}
61628a3f 2151
8e48dcfb 2152/*
4e7ea81d
JK
2153 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2154 * and underlying extent to map
2155 *
2156 * @mpd - where to look for pages
2157 *
2158 * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2159 * IO immediately. When we find a page which isn't mapped we start accumulating
2160 * extent of buffers underlying these pages that needs mapping (formed by
2161 * either delayed or unwritten buffers). We also lock the pages containing
2162 * these buffers. The extent found is returned in @mpd structure (starting at
2163 * mpd->lblk with length mpd->len blocks).
2164 *
2165 * Note that this function can attach bios to one io_end structure which are
2166 * neither logically nor physically contiguous. Although it may seem as an
2167 * unnecessary complication, it is actually inevitable in blocksize < pagesize
2168 * case as we need to track IO to all buffers underlying a page in one io_end.
8e48dcfb 2169 */
4e7ea81d 2170static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
8e48dcfb 2171{
4e7ea81d
JK
2172 struct address_space *mapping = mpd->inode->i_mapping;
2173 struct pagevec pvec;
2174 unsigned int nr_pages;
aeac589a 2175 long left = mpd->wbc->nr_to_write;
4e7ea81d
JK
2176 pgoff_t index = mpd->first_page;
2177 pgoff_t end = mpd->last_page;
2178 int tag;
2179 int i, err = 0;
2180 int blkbits = mpd->inode->i_blkbits;
2181 ext4_lblk_t lblk;
2182 struct buffer_head *head;
8e48dcfb 2183
4e7ea81d 2184 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
5b41d924
ES
2185 tag = PAGECACHE_TAG_TOWRITE;
2186 else
2187 tag = PAGECACHE_TAG_DIRTY;
2188
4e7ea81d
JK
2189 pagevec_init(&pvec, 0);
2190 mpd->map.m_len = 0;
2191 mpd->next_page = index;
4f01b02c 2192 while (index <= end) {
5b41d924 2193 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
8e48dcfb
TT
2194 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2195 if (nr_pages == 0)
4e7ea81d 2196 goto out;
8e48dcfb
TT
2197
2198 for (i = 0; i < nr_pages; i++) {
2199 struct page *page = pvec.pages[i];
2200
2201 /*
2202 * At this point, the page may be truncated or
2203 * invalidated (changing page->mapping to NULL), or
2204 * even swizzled back from swapper_space to tmpfs file
2205 * mapping. However, page->index will not change
2206 * because we have a reference on the page.
2207 */
4f01b02c
TT
2208 if (page->index > end)
2209 goto out;
8e48dcfb 2210
aeac589a
ML
2211 /*
2212 * Accumulated enough dirty pages? This doesn't apply
2213 * to WB_SYNC_ALL mode. For integrity sync we have to
2214 * keep going because someone may be concurrently
2215 * dirtying pages, and we might have synced a lot of
2216 * newly appeared dirty pages, but have not synced all
2217 * of the old dirty pages.
2218 */
2219 if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2220 goto out;
2221
4e7ea81d
JK
2222 /* If we can't merge this page, we are done. */
2223 if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2224 goto out;
78aaced3 2225
8e48dcfb 2226 lock_page(page);
8e48dcfb 2227 /*
4e7ea81d
JK
2228 * If the page is no longer dirty, or its mapping no
2229 * longer corresponds to inode we are writing (which
2230 * means it has been truncated or invalidated), or the
2231 * page is already under writeback and we are not doing
2232 * a data integrity writeback, skip the page
8e48dcfb 2233 */
4f01b02c
TT
2234 if (!PageDirty(page) ||
2235 (PageWriteback(page) &&
4e7ea81d 2236 (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
4f01b02c 2237 unlikely(page->mapping != mapping)) {
8e48dcfb
TT
2238 unlock_page(page);
2239 continue;
2240 }
2241
7cb1a535 2242 wait_on_page_writeback(page);
8e48dcfb 2243 BUG_ON(PageWriteback(page));
8e48dcfb 2244
4e7ea81d 2245 if (mpd->map.m_len == 0)
8eb9e5ce 2246 mpd->first_page = page->index;
8eb9e5ce 2247 mpd->next_page = page->index + 1;
f8bec370 2248 /* Add all dirty buffers to mpd */
4e7ea81d
JK
2249 lblk = ((ext4_lblk_t)page->index) <<
2250 (PAGE_CACHE_SHIFT - blkbits);
f8bec370 2251 head = page_buffers(page);
5f1132b2
JK
2252 err = mpage_process_page_bufs(mpd, head, head, lblk);
2253 if (err <= 0)
4e7ea81d 2254 goto out;
5f1132b2 2255 err = 0;
aeac589a 2256 left--;
8e48dcfb
TT
2257 }
2258 pagevec_release(&pvec);
2259 cond_resched();
2260 }
4f01b02c 2261 return 0;
8eb9e5ce
TT
2262out:
2263 pagevec_release(&pvec);
4e7ea81d 2264 return err;
8e48dcfb
TT
2265}
2266
20970ba6
TT
2267static int __writepage(struct page *page, struct writeback_control *wbc,
2268 void *data)
2269{
2270 struct address_space *mapping = data;
2271 int ret = ext4_writepage(page, wbc);
2272 mapping_set_error(mapping, ret);
2273 return ret;
2274}
2275
2276static int ext4_writepages(struct address_space *mapping,
2277 struct writeback_control *wbc)
64769240 2278{
4e7ea81d
JK
2279 pgoff_t writeback_index = 0;
2280 long nr_to_write = wbc->nr_to_write;
22208ded 2281 int range_whole = 0;
4e7ea81d 2282 int cycled = 1;
61628a3f 2283 handle_t *handle = NULL;
df22291f 2284 struct mpage_da_data mpd;
5e745b04 2285 struct inode *inode = mapping->host;
6b523df4 2286 int needed_blocks, rsv_blocks = 0, ret = 0;
5e745b04 2287 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
4e7ea81d 2288 bool done;
1bce63d1 2289 struct blk_plug plug;
cb530541 2290 bool give_up_on_write = false;
61628a3f 2291
20970ba6 2292 trace_ext4_writepages(inode, wbc);
ba80b101 2293
61628a3f
MC
2294 /*
2295 * No pages to write? This is mainly a kludge to avoid starting
2296 * a transaction for special inodes like journal inode on last iput()
2297 * because that could violate lock ordering on umount
2298 */
a1d6cc56 2299 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
bbf023c7 2300 goto out_writepages;
2a21e37e 2301
20970ba6
TT
2302 if (ext4_should_journal_data(inode)) {
2303 struct blk_plug plug;
20970ba6
TT
2304
2305 blk_start_plug(&plug);
2306 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2307 blk_finish_plug(&plug);
bbf023c7 2308 goto out_writepages;
20970ba6
TT
2309 }
2310
2a21e37e
TT
2311 /*
2312 * If the filesystem has aborted, it is read-only, so return
2313 * right away instead of dumping stack traces later on that
2314 * will obscure the real source of the problem. We test
4ab2f15b 2315 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2a21e37e 2316 * the latter could be true if the filesystem is mounted
20970ba6 2317 * read-only, and in that case, ext4_writepages should
2a21e37e
TT
2318 * *never* be called, so if that ever happens, we would want
2319 * the stack trace.
2320 */
bbf023c7
ML
2321 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2322 ret = -EROFS;
2323 goto out_writepages;
2324 }
2a21e37e 2325
6b523df4
JK
2326 if (ext4_should_dioread_nolock(inode)) {
2327 /*
70261f56 2328 * We may need to convert up to one extent per block in
6b523df4
JK
2329 * the page and we may dirty the inode.
2330 */
2331 rsv_blocks = 1 + (PAGE_CACHE_SIZE >> inode->i_blkbits);
2332 }
2333
4e7ea81d
JK
2334 /*
2335 * If we have inline data and arrive here, it means that
2336 * we will soon create the block for the 1st page, so
2337 * we'd better clear the inline data here.
2338 */
2339 if (ext4_has_inline_data(inode)) {
2340 /* Just inode will be modified... */
2341 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2342 if (IS_ERR(handle)) {
2343 ret = PTR_ERR(handle);
2344 goto out_writepages;
2345 }
2346 BUG_ON(ext4_test_inode_state(inode,
2347 EXT4_STATE_MAY_INLINE_DATA));
2348 ext4_destroy_inline_data(handle, inode);
2349 ext4_journal_stop(handle);
2350 }
2351
22208ded
AK
2352 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2353 range_whole = 1;
61628a3f 2354
2acf2c26 2355 if (wbc->range_cyclic) {
4e7ea81d
JK
2356 writeback_index = mapping->writeback_index;
2357 if (writeback_index)
2acf2c26 2358 cycled = 0;
4e7ea81d
JK
2359 mpd.first_page = writeback_index;
2360 mpd.last_page = -1;
5b41d924 2361 } else {
4e7ea81d
JK
2362 mpd.first_page = wbc->range_start >> PAGE_CACHE_SHIFT;
2363 mpd.last_page = wbc->range_end >> PAGE_CACHE_SHIFT;
5b41d924 2364 }
a1d6cc56 2365
4e7ea81d
JK
2366 mpd.inode = inode;
2367 mpd.wbc = wbc;
2368 ext4_io_submit_init(&mpd.io_submit, wbc);
2acf2c26 2369retry:
6e6938b6 2370 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
4e7ea81d
JK
2371 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2372 done = false;
1bce63d1 2373 blk_start_plug(&plug);
4e7ea81d
JK
2374 while (!done && mpd.first_page <= mpd.last_page) {
2375 /* For each extent of pages we use new io_end */
2376 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2377 if (!mpd.io_submit.io_end) {
2378 ret = -ENOMEM;
2379 break;
2380 }
a1d6cc56
AK
2381
2382 /*
4e7ea81d
JK
2383 * We have two constraints: We find one extent to map and we
2384 * must always write out whole page (makes a difference when
2385 * blocksize < pagesize) so that we don't block on IO when we
2386 * try to write out the rest of the page. Journalled mode is
2387 * not supported by delalloc.
a1d6cc56
AK
2388 */
2389 BUG_ON(ext4_should_journal_data(inode));
525f4ed8 2390 needed_blocks = ext4_da_writepages_trans_blocks(inode);
a1d6cc56 2391
4e7ea81d 2392 /* start a new transaction */
6b523df4
JK
2393 handle = ext4_journal_start_with_reserve(inode,
2394 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
61628a3f
MC
2395 if (IS_ERR(handle)) {
2396 ret = PTR_ERR(handle);
1693918e 2397 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
fbe845dd 2398 "%ld pages, ino %lu; err %d", __func__,
a1d6cc56 2399 wbc->nr_to_write, inode->i_ino, ret);
4e7ea81d
JK
2400 /* Release allocated io_end */
2401 ext4_put_io_end(mpd.io_submit.io_end);
2402 break;
61628a3f 2403 }
f63e6005 2404
4e7ea81d
JK
2405 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2406 ret = mpage_prepare_extent_to_map(&mpd);
2407 if (!ret) {
2408 if (mpd.map.m_len)
cb530541
TT
2409 ret = mpage_map_and_submit_extent(handle, &mpd,
2410 &give_up_on_write);
4e7ea81d
JK
2411 else {
2412 /*
2413 * We scanned the whole range (or exhausted
2414 * nr_to_write), submitted what was mapped and
2415 * didn't find anything needing mapping. We are
2416 * done.
2417 */
2418 done = true;
2419 }
f63e6005 2420 }
61628a3f 2421 ext4_journal_stop(handle);
4e7ea81d
JK
2422 /* Submit prepared bio */
2423 ext4_io_submit(&mpd.io_submit);
2424 /* Unlock pages we didn't use */
cb530541 2425 mpage_release_unused_pages(&mpd, give_up_on_write);
4e7ea81d
JK
2426 /* Drop our io_end reference we got from init */
2427 ext4_put_io_end(mpd.io_submit.io_end);
2428
2429 if (ret == -ENOSPC && sbi->s_journal) {
2430 /*
2431 * Commit the transaction which would
22208ded
AK
2432 * free blocks released in the transaction
2433 * and try again
2434 */
df22291f 2435 jbd2_journal_force_commit_nested(sbi->s_journal);
22208ded 2436 ret = 0;
4e7ea81d
JK
2437 continue;
2438 }
2439 /* Fatal error - ENOMEM, EIO... */
2440 if (ret)
61628a3f 2441 break;
a1d6cc56 2442 }
1bce63d1 2443 blk_finish_plug(&plug);
9c12a831 2444 if (!ret && !cycled && wbc->nr_to_write > 0) {
2acf2c26 2445 cycled = 1;
4e7ea81d
JK
2446 mpd.last_page = writeback_index - 1;
2447 mpd.first_page = 0;
2acf2c26
AK
2448 goto retry;
2449 }
22208ded
AK
2450
2451 /* Update index */
22208ded
AK
2452 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2453 /*
4e7ea81d 2454 * Set the writeback_index so that range_cyclic
22208ded
AK
2455 * mode will write it back later
2456 */
4e7ea81d 2457 mapping->writeback_index = mpd.first_page;
a1d6cc56 2458
61628a3f 2459out_writepages:
20970ba6
TT
2460 trace_ext4_writepages_result(inode, wbc, ret,
2461 nr_to_write - wbc->nr_to_write);
61628a3f 2462 return ret;
64769240
AT
2463}
2464
79f0be8d
AK
2465static int ext4_nonda_switch(struct super_block *sb)
2466{
5c1ff336 2467 s64 free_clusters, dirty_clusters;
79f0be8d
AK
2468 struct ext4_sb_info *sbi = EXT4_SB(sb);
2469
2470 /*
2471 * switch to non delalloc mode if we are running low
2472 * on free block. The free block accounting via percpu
179f7ebf 2473 * counters can get slightly wrong with percpu_counter_batch getting
79f0be8d
AK
2474 * accumulated on each CPU without updating global counters
2475 * Delalloc need an accurate free block accounting. So switch
2476 * to non delalloc when we are near to error range.
2477 */
5c1ff336
EW
2478 free_clusters =
2479 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2480 dirty_clusters =
2481 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
00d4e736
TT
2482 /*
2483 * Start pushing delalloc when 1/2 of free blocks are dirty.
2484 */
5c1ff336 2485 if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
10ee27a0 2486 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
00d4e736 2487
5c1ff336
EW
2488 if (2 * free_clusters < 3 * dirty_clusters ||
2489 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
79f0be8d 2490 /*
c8afb446
ES
2491 * free block count is less than 150% of dirty blocks
2492 * or free blocks is less than watermark
79f0be8d
AK
2493 */
2494 return 1;
2495 }
2496 return 0;
2497}
2498
64769240 2499static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
de9a55b8
TT
2500 loff_t pos, unsigned len, unsigned flags,
2501 struct page **pagep, void **fsdata)
64769240 2502{
72b8ab9d 2503 int ret, retries = 0;
64769240
AT
2504 struct page *page;
2505 pgoff_t index;
64769240
AT
2506 struct inode *inode = mapping->host;
2507 handle_t *handle;
2508
2509 index = pos >> PAGE_CACHE_SHIFT;
79f0be8d
AK
2510
2511 if (ext4_nonda_switch(inode->i_sb)) {
2512 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2513 return ext4_write_begin(file, mapping, pos,
2514 len, flags, pagep, fsdata);
2515 }
2516 *fsdata = (void *)0;
9bffad1e 2517 trace_ext4_da_write_begin(inode, pos, len, flags);
9c3569b5
TM
2518
2519 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2520 ret = ext4_da_write_inline_data_begin(mapping, inode,
2521 pos, len, flags,
2522 pagep, fsdata);
2523 if (ret < 0)
47564bfb
TT
2524 return ret;
2525 if (ret == 1)
2526 return 0;
9c3569b5
TM
2527 }
2528
47564bfb
TT
2529 /*
2530 * grab_cache_page_write_begin() can take a long time if the
2531 * system is thrashing due to memory pressure, or if the page
2532 * is being written back. So grab it first before we start
2533 * the transaction handle. This also allows us to allocate
2534 * the page (if needed) without using GFP_NOFS.
2535 */
2536retry_grab:
2537 page = grab_cache_page_write_begin(mapping, index, flags);
2538 if (!page)
2539 return -ENOMEM;
2540 unlock_page(page);
2541
64769240
AT
2542 /*
2543 * With delayed allocation, we don't log the i_disksize update
2544 * if there is delayed block allocation. But we still need
2545 * to journalling the i_disksize update if writes to the end
2546 * of file which has an already mapped buffer.
2547 */
47564bfb 2548retry_journal:
9924a92a 2549 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 1);
64769240 2550 if (IS_ERR(handle)) {
47564bfb
TT
2551 page_cache_release(page);
2552 return PTR_ERR(handle);
64769240
AT
2553 }
2554
47564bfb
TT
2555 lock_page(page);
2556 if (page->mapping != mapping) {
2557 /* The page got truncated from under us */
2558 unlock_page(page);
2559 page_cache_release(page);
d5a0d4f7 2560 ext4_journal_stop(handle);
47564bfb 2561 goto retry_grab;
d5a0d4f7 2562 }
47564bfb 2563 /* In case writeback began while the page was unlocked */
7afe5aa5 2564 wait_for_stable_page(page);
64769240 2565
6e1db88d 2566 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
64769240
AT
2567 if (ret < 0) {
2568 unlock_page(page);
2569 ext4_journal_stop(handle);
ae4d5372
AK
2570 /*
2571 * block_write_begin may have instantiated a few blocks
2572 * outside i_size. Trim these off again. Don't need
2573 * i_size_read because we hold i_mutex.
2574 */
2575 if (pos + len > inode->i_size)
b9a4207d 2576 ext4_truncate_failed_write(inode);
47564bfb
TT
2577
2578 if (ret == -ENOSPC &&
2579 ext4_should_retry_alloc(inode->i_sb, &retries))
2580 goto retry_journal;
2581
2582 page_cache_release(page);
2583 return ret;
64769240
AT
2584 }
2585
47564bfb 2586 *pagep = page;
64769240
AT
2587 return ret;
2588}
2589
632eaeab
MC
2590/*
2591 * Check if we should update i_disksize
2592 * when write to the end of file but not require block allocation
2593 */
2594static int ext4_da_should_update_i_disksize(struct page *page,
de9a55b8 2595 unsigned long offset)
632eaeab
MC
2596{
2597 struct buffer_head *bh;
2598 struct inode *inode = page->mapping->host;
2599 unsigned int idx;
2600 int i;
2601
2602 bh = page_buffers(page);
2603 idx = offset >> inode->i_blkbits;
2604
af5bc92d 2605 for (i = 0; i < idx; i++)
632eaeab
MC
2606 bh = bh->b_this_page;
2607
29fa89d0 2608 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
632eaeab
MC
2609 return 0;
2610 return 1;
2611}
2612
64769240 2613static int ext4_da_write_end(struct file *file,
de9a55b8
TT
2614 struct address_space *mapping,
2615 loff_t pos, unsigned len, unsigned copied,
2616 struct page *page, void *fsdata)
64769240
AT
2617{
2618 struct inode *inode = mapping->host;
2619 int ret = 0, ret2;
2620 handle_t *handle = ext4_journal_current_handle();
2621 loff_t new_i_size;
632eaeab 2622 unsigned long start, end;
79f0be8d
AK
2623 int write_mode = (int)(unsigned long)fsdata;
2624
74d553aa
TT
2625 if (write_mode == FALL_BACK_TO_NONDELALLOC)
2626 return ext4_write_end(file, mapping, pos,
2627 len, copied, page, fsdata);
632eaeab 2628
9bffad1e 2629 trace_ext4_da_write_end(inode, pos, len, copied);
632eaeab 2630 start = pos & (PAGE_CACHE_SIZE - 1);
af5bc92d 2631 end = start + copied - 1;
64769240
AT
2632
2633 /*
2634 * generic_write_end() will run mark_inode_dirty() if i_size
2635 * changes. So let's piggyback the i_disksize mark_inode_dirty
2636 * into that.
2637 */
64769240 2638 new_i_size = pos + copied;
ea51d132 2639 if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
9c3569b5
TM
2640 if (ext4_has_inline_data(inode) ||
2641 ext4_da_should_update_i_disksize(page, end)) {
ee124d27 2642 ext4_update_i_disksize(inode, new_i_size);
cf17fea6
AK
2643 /* We need to mark inode dirty even if
2644 * new_i_size is less that inode->i_size
2645 * bu greater than i_disksize.(hint delalloc)
2646 */
2647 ext4_mark_inode_dirty(handle, inode);
64769240 2648 }
632eaeab 2649 }
9c3569b5
TM
2650
2651 if (write_mode != CONVERT_INLINE_DATA &&
2652 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2653 ext4_has_inline_data(inode))
2654 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
2655 page);
2656 else
2657 ret2 = generic_write_end(file, mapping, pos, len, copied,
64769240 2658 page, fsdata);
9c3569b5 2659
64769240
AT
2660 copied = ret2;
2661 if (ret2 < 0)
2662 ret = ret2;
2663 ret2 = ext4_journal_stop(handle);
2664 if (!ret)
2665 ret = ret2;
2666
2667 return ret ? ret : copied;
2668}
2669
d47992f8
LC
2670static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
2671 unsigned int length)
64769240 2672{
64769240
AT
2673 /*
2674 * Drop reserved blocks
2675 */
2676 BUG_ON(!PageLocked(page));
2677 if (!page_has_buffers(page))
2678 goto out;
2679
ca99fdd2 2680 ext4_da_page_release_reservation(page, offset, length);
64769240
AT
2681
2682out:
d47992f8 2683 ext4_invalidatepage(page, offset, length);
64769240
AT
2684
2685 return;
2686}
2687
ccd2506b
TT
2688/*
2689 * Force all delayed allocation blocks to be allocated for a given inode.
2690 */
2691int ext4_alloc_da_blocks(struct inode *inode)
2692{
fb40ba0d
TT
2693 trace_ext4_alloc_da_blocks(inode);
2694
71d4f7d0 2695 if (!EXT4_I(inode)->i_reserved_data_blocks)
ccd2506b
TT
2696 return 0;
2697
2698 /*
2699 * We do something simple for now. The filemap_flush() will
2700 * also start triggering a write of the data blocks, which is
2701 * not strictly speaking necessary (and for users of
2702 * laptop_mode, not even desirable). However, to do otherwise
2703 * would require replicating code paths in:
de9a55b8 2704 *
20970ba6 2705 * ext4_writepages() ->
ccd2506b
TT
2706 * write_cache_pages() ---> (via passed in callback function)
2707 * __mpage_da_writepage() -->
2708 * mpage_add_bh_to_extent()
2709 * mpage_da_map_blocks()
2710 *
2711 * The problem is that write_cache_pages(), located in
2712 * mm/page-writeback.c, marks pages clean in preparation for
2713 * doing I/O, which is not desirable if we're not planning on
2714 * doing I/O at all.
2715 *
2716 * We could call write_cache_pages(), and then redirty all of
380cf090 2717 * the pages by calling redirty_page_for_writepage() but that
ccd2506b
TT
2718 * would be ugly in the extreme. So instead we would need to
2719 * replicate parts of the code in the above functions,
25985edc 2720 * simplifying them because we wouldn't actually intend to
ccd2506b
TT
2721 * write out the pages, but rather only collect contiguous
2722 * logical block extents, call the multi-block allocator, and
2723 * then update the buffer heads with the block allocations.
de9a55b8 2724 *
ccd2506b
TT
2725 * For now, though, we'll cheat by calling filemap_flush(),
2726 * which will map the blocks, and start the I/O, but not
2727 * actually wait for the I/O to complete.
2728 */
2729 return filemap_flush(inode->i_mapping);
2730}
64769240 2731
ac27a0ec
DK
2732/*
2733 * bmap() is special. It gets used by applications such as lilo and by
2734 * the swapper to find the on-disk block of a specific piece of data.
2735 *
2736 * Naturally, this is dangerous if the block concerned is still in the
617ba13b 2737 * journal. If somebody makes a swapfile on an ext4 data-journaling
ac27a0ec
DK
2738 * filesystem and enables swap, then they may get a nasty shock when the
2739 * data getting swapped to that swapfile suddenly gets overwritten by
2740 * the original zero's written out previously to the journal and
2741 * awaiting writeback in the kernel's buffer cache.
2742 *
2743 * So, if we see any bmap calls here on a modified, data-journaled file,
2744 * take extra steps to flush any blocks which might be in the cache.
2745 */
617ba13b 2746static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
ac27a0ec
DK
2747{
2748 struct inode *inode = mapping->host;
2749 journal_t *journal;
2750 int err;
2751
46c7f254
TM
2752 /*
2753 * We can get here for an inline file via the FIBMAP ioctl
2754 */
2755 if (ext4_has_inline_data(inode))
2756 return 0;
2757
64769240
AT
2758 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2759 test_opt(inode->i_sb, DELALLOC)) {
2760 /*
2761 * With delalloc we want to sync the file
2762 * so that we can make sure we allocate
2763 * blocks for file
2764 */
2765 filemap_write_and_wait(mapping);
2766 }
2767
19f5fb7a
TT
2768 if (EXT4_JOURNAL(inode) &&
2769 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
ac27a0ec
DK
2770 /*
2771 * This is a REALLY heavyweight approach, but the use of
2772 * bmap on dirty files is expected to be extremely rare:
2773 * only if we run lilo or swapon on a freshly made file
2774 * do we expect this to happen.
2775 *
2776 * (bmap requires CAP_SYS_RAWIO so this does not
2777 * represent an unprivileged user DOS attack --- we'd be
2778 * in trouble if mortal users could trigger this path at
2779 * will.)
2780 *
617ba13b 2781 * NB. EXT4_STATE_JDATA is not set on files other than
ac27a0ec
DK
2782 * regular files. If somebody wants to bmap a directory
2783 * or symlink and gets confused because the buffer
2784 * hasn't yet been flushed to disk, they deserve
2785 * everything they get.
2786 */
2787
19f5fb7a 2788 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
617ba13b 2789 journal = EXT4_JOURNAL(inode);
dab291af
MC
2790 jbd2_journal_lock_updates(journal);
2791 err = jbd2_journal_flush(journal);
2792 jbd2_journal_unlock_updates(journal);
ac27a0ec
DK
2793
2794 if (err)
2795 return 0;
2796 }
2797
af5bc92d 2798 return generic_block_bmap(mapping, block, ext4_get_block);
ac27a0ec
DK
2799}
2800
617ba13b 2801static int ext4_readpage(struct file *file, struct page *page)
ac27a0ec 2802{
46c7f254
TM
2803 int ret = -EAGAIN;
2804 struct inode *inode = page->mapping->host;
2805
0562e0ba 2806 trace_ext4_readpage(page);
46c7f254
TM
2807
2808 if (ext4_has_inline_data(inode))
2809 ret = ext4_readpage_inline(inode, page);
2810
2811 if (ret == -EAGAIN)
2812 return mpage_readpage(page, ext4_get_block);
2813
2814 return ret;
ac27a0ec
DK
2815}
2816
2817static int
617ba13b 2818ext4_readpages(struct file *file, struct address_space *mapping,
ac27a0ec
DK
2819 struct list_head *pages, unsigned nr_pages)
2820{
46c7f254
TM
2821 struct inode *inode = mapping->host;
2822
2823 /* If the file has inline data, no need to do readpages. */
2824 if (ext4_has_inline_data(inode))
2825 return 0;
2826
617ba13b 2827 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
ac27a0ec
DK
2828}
2829
d47992f8
LC
2830static void ext4_invalidatepage(struct page *page, unsigned int offset,
2831 unsigned int length)
ac27a0ec 2832{
ca99fdd2 2833 trace_ext4_invalidatepage(page, offset, length);
0562e0ba 2834
4520fb3c
JK
2835 /* No journalling happens on data buffers when this function is used */
2836 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
2837
ca99fdd2 2838 block_invalidatepage(page, offset, length);
4520fb3c
JK
2839}
2840
53e87268 2841static int __ext4_journalled_invalidatepage(struct page *page,
ca99fdd2
LC
2842 unsigned int offset,
2843 unsigned int length)
4520fb3c
JK
2844{
2845 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2846
ca99fdd2 2847 trace_ext4_journalled_invalidatepage(page, offset, length);
4520fb3c 2848
ac27a0ec
DK
2849 /*
2850 * If it's a full truncate we just forget about the pending dirtying
2851 */
ca99fdd2 2852 if (offset == 0 && length == PAGE_CACHE_SIZE)
ac27a0ec
DK
2853 ClearPageChecked(page);
2854
ca99fdd2 2855 return jbd2_journal_invalidatepage(journal, page, offset, length);
53e87268
JK
2856}
2857
2858/* Wrapper for aops... */
2859static void ext4_journalled_invalidatepage(struct page *page,
d47992f8
LC
2860 unsigned int offset,
2861 unsigned int length)
53e87268 2862{
ca99fdd2 2863 WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
ac27a0ec
DK
2864}
2865
617ba13b 2866static int ext4_releasepage(struct page *page, gfp_t wait)
ac27a0ec 2867{
617ba13b 2868 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
ac27a0ec 2869
0562e0ba
JZ
2870 trace_ext4_releasepage(page);
2871
e1c36595
JK
2872 /* Page has dirty journalled data -> cannot release */
2873 if (PageChecked(page))
ac27a0ec 2874 return 0;
0390131b
FM
2875 if (journal)
2876 return jbd2_journal_try_to_free_buffers(journal, page, wait);
2877 else
2878 return try_to_free_buffers(page);
ac27a0ec
DK
2879}
2880
2ed88685
TT
2881/*
2882 * ext4_get_block used when preparing for a DIO write or buffer write.
2883 * We allocate an uinitialized extent if blocks haven't been allocated.
2884 * The extent will be converted to initialized after the IO is complete.
2885 */
f19d5870 2886int ext4_get_block_write(struct inode *inode, sector_t iblock,
4c0425ff
MC
2887 struct buffer_head *bh_result, int create)
2888{
c7064ef1 2889 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
8d5d02e6 2890 inode->i_ino, create);
2ed88685
TT
2891 return _ext4_get_block(inode, iblock, bh_result,
2892 EXT4_GET_BLOCKS_IO_CREATE_EXT);
4c0425ff
MC
2893}
2894
729f52c6 2895static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
8b0f165f 2896 struct buffer_head *bh_result, int create)
729f52c6 2897{
8b0f165f
AP
2898 ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
2899 inode->i_ino, create);
2900 return _ext4_get_block(inode, iblock, bh_result,
2901 EXT4_GET_BLOCKS_NO_LOCK);
729f52c6
ZL
2902}
2903
4c0425ff 2904static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
7b7a8665 2905 ssize_t size, void *private)
4c0425ff
MC
2906{
2907 ext4_io_end_t *io_end = iocb->private;
4c0425ff 2908
97a851ed 2909 /* if not async direct IO just return */
7b7a8665 2910 if (!io_end)
97a851ed 2911 return;
4b70df18 2912
88635ca2 2913 ext_debug("ext4_end_io_dio(): io_end 0x%p "
ace36ad4 2914 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
8d5d02e6
MC
2915 iocb->private, io_end->inode->i_ino, iocb, offset,
2916 size);
8d5d02e6 2917
b5a7e970 2918 iocb->private = NULL;
4c0425ff
MC
2919 io_end->offset = offset;
2920 io_end->size = size;
7b7a8665 2921 ext4_put_io_end(io_end);
4c0425ff 2922}
c7064ef1 2923
4c0425ff
MC
2924/*
2925 * For ext4 extent files, ext4 will do direct-io write to holes,
2926 * preallocated extents, and those write extend the file, no need to
2927 * fall back to buffered IO.
2928 *
556615dc 2929 * For holes, we fallocate those blocks, mark them as unwritten
69c499d1 2930 * If those blocks were preallocated, we mark sure they are split, but
556615dc 2931 * still keep the range to write as unwritten.
4c0425ff 2932 *
69c499d1 2933 * The unwritten extents will be converted to written when DIO is completed.
8d5d02e6 2934 * For async direct IO, since the IO may still pending when return, we
25985edc 2935 * set up an end_io call back function, which will do the conversion
8d5d02e6 2936 * when async direct IO completed.
4c0425ff
MC
2937 *
2938 * If the O_DIRECT write will extend the file then add this inode to the
2939 * orphan list. So recovery will truncate it back to the original size
2940 * if the machine crashes during the write.
2941 *
2942 */
2943static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
16b1f05d 2944 struct iov_iter *iter, loff_t offset)
4c0425ff
MC
2945{
2946 struct file *file = iocb->ki_filp;
2947 struct inode *inode = file->f_mapping->host;
2948 ssize_t ret;
a6cbcd4a 2949 size_t count = iov_iter_count(iter);
69c499d1
TT
2950 int overwrite = 0;
2951 get_block_t *get_block_func = NULL;
2952 int dio_flags = 0;
4c0425ff 2953 loff_t final_size = offset + count;
97a851ed 2954 ext4_io_end_t *io_end = NULL;
729f52c6 2955
69c499d1
TT
2956 /* Use the old path for reads and writes beyond i_size. */
2957 if (rw != WRITE || final_size > inode->i_size)
16b1f05d 2958 return ext4_ind_direct_IO(rw, iocb, iter, offset);
4bd809db 2959
69c499d1 2960 BUG_ON(iocb->private == NULL);
4bd809db 2961
e8340395
JK
2962 /*
2963 * Make all waiters for direct IO properly wait also for extent
2964 * conversion. This also disallows race between truncate() and
2965 * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
2966 */
2967 if (rw == WRITE)
2968 atomic_inc(&inode->i_dio_count);
2969
69c499d1
TT
2970 /* If we do a overwrite dio, i_mutex locking can be released */
2971 overwrite = *((int *)iocb->private);
4bd809db 2972
69c499d1 2973 if (overwrite) {
69c499d1
TT
2974 down_read(&EXT4_I(inode)->i_data_sem);
2975 mutex_unlock(&inode->i_mutex);
2976 }
8d5d02e6 2977
69c499d1
TT
2978 /*
2979 * We could direct write to holes and fallocate.
2980 *
2981 * Allocated blocks to fill the hole are marked as
556615dc 2982 * unwritten to prevent parallel buffered read to expose
69c499d1
TT
2983 * the stale data before DIO complete the data IO.
2984 *
2985 * As to previously fallocated extents, ext4 get_block will
2986 * just simply mark the buffer mapped but still keep the
556615dc 2987 * extents unwritten.
69c499d1
TT
2988 *
2989 * For non AIO case, we will convert those unwritten extents
2990 * to written after return back from blockdev_direct_IO.
2991 *
2992 * For async DIO, the conversion needs to be deferred when the
2993 * IO is completed. The ext4 end_io callback function will be
2994 * called to take care of the conversion work. Here for async
2995 * case, we allocate an io_end structure to hook to the iocb.
2996 */
2997 iocb->private = NULL;
2998 ext4_inode_aio_set(inode, NULL);
2999 if (!is_sync_kiocb(iocb)) {
97a851ed 3000 io_end = ext4_init_io_end(inode, GFP_NOFS);
69c499d1
TT
3001 if (!io_end) {
3002 ret = -ENOMEM;
3003 goto retake_lock;
8b0f165f 3004 }
97a851ed
JK
3005 /*
3006 * Grab reference for DIO. Will be dropped in ext4_end_io_dio()
3007 */
3008 iocb->private = ext4_get_io_end(io_end);
8d5d02e6 3009 /*
69c499d1
TT
3010 * we save the io structure for current async direct
3011 * IO, so that later ext4_map_blocks() could flag the
3012 * io structure whether there is a unwritten extents
3013 * needs to be converted when IO is completed.
8d5d02e6 3014 */
69c499d1
TT
3015 ext4_inode_aio_set(inode, io_end);
3016 }
4bd809db 3017
69c499d1
TT
3018 if (overwrite) {
3019 get_block_func = ext4_get_block_write_nolock;
3020 } else {
3021 get_block_func = ext4_get_block_write;
3022 dio_flags = DIO_LOCKING;
3023 }
3024 ret = __blockdev_direct_IO(rw, iocb, inode,
31b14039
AV
3025 inode->i_sb->s_bdev, iter,
3026 offset,
69c499d1
TT
3027 get_block_func,
3028 ext4_end_io_dio,
3029 NULL,
3030 dio_flags);
3031
69c499d1 3032 /*
97a851ed
JK
3033 * Put our reference to io_end. This can free the io_end structure e.g.
3034 * in sync IO case or in case of error. It can even perform extent
3035 * conversion if all bios we submitted finished before we got here.
3036 * Note that in that case iocb->private can be already set to NULL
3037 * here.
69c499d1 3038 */
97a851ed
JK
3039 if (io_end) {
3040 ext4_inode_aio_set(inode, NULL);
3041 ext4_put_io_end(io_end);
3042 /*
3043 * When no IO was submitted ext4_end_io_dio() was not
3044 * called so we have to put iocb's reference.
3045 */
3046 if (ret <= 0 && ret != -EIOCBQUEUED && iocb->private) {
3047 WARN_ON(iocb->private != io_end);
3048 WARN_ON(io_end->flag & EXT4_IO_END_UNWRITTEN);
97a851ed
JK
3049 ext4_put_io_end(io_end);
3050 iocb->private = NULL;
3051 }
3052 }
3053 if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
69c499d1
TT
3054 EXT4_STATE_DIO_UNWRITTEN)) {
3055 int err;
3056 /*
3057 * for non AIO case, since the IO is already
3058 * completed, we could do the conversion right here
3059 */
6b523df4 3060 err = ext4_convert_unwritten_extents(NULL, inode,
69c499d1
TT
3061 offset, ret);
3062 if (err < 0)
3063 ret = err;
3064 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3065 }
4bd809db 3066
69c499d1 3067retake_lock:
e8340395
JK
3068 if (rw == WRITE)
3069 inode_dio_done(inode);
69c499d1
TT
3070 /* take i_mutex locking again if we do a ovewrite dio */
3071 if (overwrite) {
69c499d1
TT
3072 up_read(&EXT4_I(inode)->i_data_sem);
3073 mutex_lock(&inode->i_mutex);
4c0425ff 3074 }
8d5d02e6 3075
69c499d1 3076 return ret;
4c0425ff
MC
3077}
3078
3079static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
d8d3d94b 3080 struct iov_iter *iter, loff_t offset)
4c0425ff
MC
3081{
3082 struct file *file = iocb->ki_filp;
3083 struct inode *inode = file->f_mapping->host;
a6cbcd4a 3084 size_t count = iov_iter_count(iter);
0562e0ba 3085 ssize_t ret;
4c0425ff 3086
84ebd795
TT
3087 /*
3088 * If we are doing data journalling we don't support O_DIRECT
3089 */
3090 if (ext4_should_journal_data(inode))
3091 return 0;
3092
46c7f254
TM
3093 /* Let buffer I/O handle the inline data case. */
3094 if (ext4_has_inline_data(inode))
3095 return 0;
3096
a6cbcd4a 3097 trace_ext4_direct_IO_enter(inode, offset, count, rw);
12e9b892 3098 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
16b1f05d 3099 ret = ext4_ext_direct_IO(rw, iocb, iter, offset);
0562e0ba 3100 else
16b1f05d 3101 ret = ext4_ind_direct_IO(rw, iocb, iter, offset);
a6cbcd4a 3102 trace_ext4_direct_IO_exit(inode, offset, count, rw, ret);
0562e0ba 3103 return ret;
4c0425ff
MC
3104}
3105
ac27a0ec 3106/*
617ba13b 3107 * Pages can be marked dirty completely asynchronously from ext4's journalling
ac27a0ec
DK
3108 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3109 * much here because ->set_page_dirty is called under VFS locks. The page is
3110 * not necessarily locked.
3111 *
3112 * We cannot just dirty the page and leave attached buffers clean, because the
3113 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3114 * or jbddirty because all the journalling code will explode.
3115 *
3116 * So what we do is to mark the page "pending dirty" and next time writepage
3117 * is called, propagate that into the buffers appropriately.
3118 */
617ba13b 3119static int ext4_journalled_set_page_dirty(struct page *page)
ac27a0ec
DK
3120{
3121 SetPageChecked(page);
3122 return __set_page_dirty_nobuffers(page);
3123}
3124
74d553aa 3125static const struct address_space_operations ext4_aops = {
8ab22b9a
HH
3126 .readpage = ext4_readpage,
3127 .readpages = ext4_readpages,
43ce1d23 3128 .writepage = ext4_writepage,
20970ba6 3129 .writepages = ext4_writepages,
8ab22b9a 3130 .write_begin = ext4_write_begin,
74d553aa 3131 .write_end = ext4_write_end,
8ab22b9a
HH
3132 .bmap = ext4_bmap,
3133 .invalidatepage = ext4_invalidatepage,
3134 .releasepage = ext4_releasepage,
3135 .direct_IO = ext4_direct_IO,
3136 .migratepage = buffer_migrate_page,
3137 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3138 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
3139};
3140
617ba13b 3141static const struct address_space_operations ext4_journalled_aops = {
8ab22b9a
HH
3142 .readpage = ext4_readpage,
3143 .readpages = ext4_readpages,
43ce1d23 3144 .writepage = ext4_writepage,
20970ba6 3145 .writepages = ext4_writepages,
8ab22b9a
HH
3146 .write_begin = ext4_write_begin,
3147 .write_end = ext4_journalled_write_end,
3148 .set_page_dirty = ext4_journalled_set_page_dirty,
3149 .bmap = ext4_bmap,
4520fb3c 3150 .invalidatepage = ext4_journalled_invalidatepage,
8ab22b9a 3151 .releasepage = ext4_releasepage,
84ebd795 3152 .direct_IO = ext4_direct_IO,
8ab22b9a 3153 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3154 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
3155};
3156
64769240 3157static const struct address_space_operations ext4_da_aops = {
8ab22b9a
HH
3158 .readpage = ext4_readpage,
3159 .readpages = ext4_readpages,
43ce1d23 3160 .writepage = ext4_writepage,
20970ba6 3161 .writepages = ext4_writepages,
8ab22b9a
HH
3162 .write_begin = ext4_da_write_begin,
3163 .write_end = ext4_da_write_end,
3164 .bmap = ext4_bmap,
3165 .invalidatepage = ext4_da_invalidatepage,
3166 .releasepage = ext4_releasepage,
3167 .direct_IO = ext4_direct_IO,
3168 .migratepage = buffer_migrate_page,
3169 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3170 .error_remove_page = generic_error_remove_page,
64769240
AT
3171};
3172
617ba13b 3173void ext4_set_aops(struct inode *inode)
ac27a0ec 3174{
3d2b1582
LC
3175 switch (ext4_inode_journal_mode(inode)) {
3176 case EXT4_INODE_ORDERED_DATA_MODE:
74d553aa 3177 ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3d2b1582
LC
3178 break;
3179 case EXT4_INODE_WRITEBACK_DATA_MODE:
74d553aa 3180 ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3d2b1582
LC
3181 break;
3182 case EXT4_INODE_JOURNAL_DATA_MODE:
617ba13b 3183 inode->i_mapping->a_ops = &ext4_journalled_aops;
74d553aa 3184 return;
3d2b1582
LC
3185 default:
3186 BUG();
3187 }
74d553aa
TT
3188 if (test_opt(inode->i_sb, DELALLOC))
3189 inode->i_mapping->a_ops = &ext4_da_aops;
3190 else
3191 inode->i_mapping->a_ops = &ext4_aops;
ac27a0ec
DK
3192}
3193
d863dc36
LC
3194/*
3195 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3196 * starting from file offset 'from'. The range to be zero'd must
3197 * be contained with in one block. If the specified range exceeds
3198 * the end of the block it will be shortened to end of the block
3199 * that cooresponds to 'from'
3200 */
94350ab5 3201static int ext4_block_zero_page_range(handle_t *handle,
d863dc36
LC
3202 struct address_space *mapping, loff_t from, loff_t length)
3203{
3204 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3205 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3206 unsigned blocksize, max, pos;
3207 ext4_lblk_t iblock;
3208 struct inode *inode = mapping->host;
3209 struct buffer_head *bh;
3210 struct page *page;
3211 int err = 0;
3212
3213 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3214 mapping_gfp_mask(mapping) & ~__GFP_FS);
3215 if (!page)
3216 return -ENOMEM;
3217
3218 blocksize = inode->i_sb->s_blocksize;
3219 max = blocksize - (offset & (blocksize - 1));
3220
3221 /*
3222 * correct length if it does not fall between
3223 * 'from' and the end of the block
3224 */
3225 if (length > max || length < 0)
3226 length = max;
3227
3228 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3229
3230 if (!page_has_buffers(page))
3231 create_empty_buffers(page, blocksize, 0);
3232
3233 /* Find the buffer that contains "offset" */
3234 bh = page_buffers(page);
3235 pos = blocksize;
3236 while (offset >= pos) {
3237 bh = bh->b_this_page;
3238 iblock++;
3239 pos += blocksize;
3240 }
d863dc36
LC
3241 if (buffer_freed(bh)) {
3242 BUFFER_TRACE(bh, "freed: skip");
3243 goto unlock;
3244 }
d863dc36
LC
3245 if (!buffer_mapped(bh)) {
3246 BUFFER_TRACE(bh, "unmapped");
3247 ext4_get_block(inode, iblock, bh, 0);
3248 /* unmapped? It's a hole - nothing to do */
3249 if (!buffer_mapped(bh)) {
3250 BUFFER_TRACE(bh, "still unmapped");
3251 goto unlock;
3252 }
3253 }
3254
3255 /* Ok, it's mapped. Make sure it's up-to-date */
3256 if (PageUptodate(page))
3257 set_buffer_uptodate(bh);
3258
3259 if (!buffer_uptodate(bh)) {
3260 err = -EIO;
3261 ll_rw_block(READ, 1, &bh);
3262 wait_on_buffer(bh);
3263 /* Uhhuh. Read error. Complain and punt. */
3264 if (!buffer_uptodate(bh))
3265 goto unlock;
3266 }
d863dc36
LC
3267 if (ext4_should_journal_data(inode)) {
3268 BUFFER_TRACE(bh, "get write access");
3269 err = ext4_journal_get_write_access(handle, bh);
3270 if (err)
3271 goto unlock;
3272 }
d863dc36 3273 zero_user(page, offset, length);
d863dc36
LC
3274 BUFFER_TRACE(bh, "zeroed end of block");
3275
d863dc36
LC
3276 if (ext4_should_journal_data(inode)) {
3277 err = ext4_handle_dirty_metadata(handle, inode, bh);
0713ed0c 3278 } else {
353eefd3 3279 err = 0;
d863dc36 3280 mark_buffer_dirty(bh);
0713ed0c
LC
3281 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE))
3282 err = ext4_jbd2_file_inode(handle, inode);
3283 }
d863dc36
LC
3284
3285unlock:
3286 unlock_page(page);
3287 page_cache_release(page);
3288 return err;
3289}
3290
94350ab5
MW
3291/*
3292 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3293 * up to the end of the block which corresponds to `from'.
3294 * This required during truncate. We need to physically zero the tail end
3295 * of that block so it doesn't yield old data if the file is later grown.
3296 */
c197855e 3297static int ext4_block_truncate_page(handle_t *handle,
94350ab5
MW
3298 struct address_space *mapping, loff_t from)
3299{
3300 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3301 unsigned length;
3302 unsigned blocksize;
3303 struct inode *inode = mapping->host;
3304
3305 blocksize = inode->i_sb->s_blocksize;
3306 length = blocksize - (offset & (blocksize - 1));
3307
3308 return ext4_block_zero_page_range(handle, mapping, from, length);
3309}
3310
a87dd18c
LC
3311int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3312 loff_t lstart, loff_t length)
3313{
3314 struct super_block *sb = inode->i_sb;
3315 struct address_space *mapping = inode->i_mapping;
e1be3a92 3316 unsigned partial_start, partial_end;
a87dd18c
LC
3317 ext4_fsblk_t start, end;
3318 loff_t byte_end = (lstart + length - 1);
3319 int err = 0;
3320
e1be3a92
LC
3321 partial_start = lstart & (sb->s_blocksize - 1);
3322 partial_end = byte_end & (sb->s_blocksize - 1);
3323
a87dd18c
LC
3324 start = lstart >> sb->s_blocksize_bits;
3325 end = byte_end >> sb->s_blocksize_bits;
3326
3327 /* Handle partial zero within the single block */
e1be3a92
LC
3328 if (start == end &&
3329 (partial_start || (partial_end != sb->s_blocksize - 1))) {
a87dd18c
LC
3330 err = ext4_block_zero_page_range(handle, mapping,
3331 lstart, length);
3332 return err;
3333 }
3334 /* Handle partial zero out on the start of the range */
e1be3a92 3335 if (partial_start) {
a87dd18c
LC
3336 err = ext4_block_zero_page_range(handle, mapping,
3337 lstart, sb->s_blocksize);
3338 if (err)
3339 return err;
3340 }
3341 /* Handle partial zero out on the end of the range */
e1be3a92 3342 if (partial_end != sb->s_blocksize - 1)
a87dd18c 3343 err = ext4_block_zero_page_range(handle, mapping,
e1be3a92
LC
3344 byte_end - partial_end,
3345 partial_end + 1);
a87dd18c
LC
3346 return err;
3347}
3348
91ef4caf
DG
3349int ext4_can_truncate(struct inode *inode)
3350{
91ef4caf
DG
3351 if (S_ISREG(inode->i_mode))
3352 return 1;
3353 if (S_ISDIR(inode->i_mode))
3354 return 1;
3355 if (S_ISLNK(inode->i_mode))
3356 return !ext4_inode_is_fast_symlink(inode);
3357 return 0;
3358}
3359
a4bb6b64
AH
3360/*
3361 * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3362 * associated with the given offset and length
3363 *
3364 * @inode: File inode
3365 * @offset: The offset where the hole will begin
3366 * @len: The length of the hole
3367 *
4907cb7b 3368 * Returns: 0 on success or negative on failure
a4bb6b64
AH
3369 */
3370
aeb2817a 3371int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
a4bb6b64 3372{
26a4c0c6
TT
3373 struct super_block *sb = inode->i_sb;
3374 ext4_lblk_t first_block, stop_block;
3375 struct address_space *mapping = inode->i_mapping;
a87dd18c 3376 loff_t first_block_offset, last_block_offset;
26a4c0c6
TT
3377 handle_t *handle;
3378 unsigned int credits;
3379 int ret = 0;
3380
a4bb6b64 3381 if (!S_ISREG(inode->i_mode))
73355192 3382 return -EOPNOTSUPP;
a4bb6b64 3383
b8a86845 3384 trace_ext4_punch_hole(inode, offset, length, 0);
aaddea81 3385
26a4c0c6
TT
3386 /*
3387 * Write out all dirty pages to avoid race conditions
3388 * Then release them.
3389 */
3390 if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3391 ret = filemap_write_and_wait_range(mapping, offset,
3392 offset + length - 1);
3393 if (ret)
3394 return ret;
3395 }
3396
3397 mutex_lock(&inode->i_mutex);
9ef06cec 3398
26a4c0c6
TT
3399 /* No need to punch hole beyond i_size */
3400 if (offset >= inode->i_size)
3401 goto out_mutex;
3402
3403 /*
3404 * If the hole extends beyond i_size, set the hole
3405 * to end after the page that contains i_size
3406 */
3407 if (offset + length > inode->i_size) {
3408 length = inode->i_size +
3409 PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
3410 offset;
3411 }
3412
a361293f
JK
3413 if (offset & (sb->s_blocksize - 1) ||
3414 (offset + length) & (sb->s_blocksize - 1)) {
3415 /*
3416 * Attach jinode to inode for jbd2 if we do any zeroing of
3417 * partial block
3418 */
3419 ret = ext4_inode_attach_jinode(inode);
3420 if (ret < 0)
3421 goto out_mutex;
3422
3423 }
3424
a87dd18c
LC
3425 first_block_offset = round_up(offset, sb->s_blocksize);
3426 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
26a4c0c6 3427
a87dd18c
LC
3428 /* Now release the pages and zero block aligned part of pages*/
3429 if (last_block_offset > first_block_offset)
3430 truncate_pagecache_range(inode, first_block_offset,
3431 last_block_offset);
26a4c0c6
TT
3432
3433 /* Wait all existing dio workers, newcomers will block on i_mutex */
3434 ext4_inode_block_unlocked_dio(inode);
26a4c0c6
TT
3435 inode_dio_wait(inode);
3436
3437 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3438 credits = ext4_writepage_trans_blocks(inode);
3439 else
3440 credits = ext4_blocks_for_truncate(inode);
3441 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3442 if (IS_ERR(handle)) {
3443 ret = PTR_ERR(handle);
3444 ext4_std_error(sb, ret);
3445 goto out_dio;
3446 }
3447
a87dd18c
LC
3448 ret = ext4_zero_partial_blocks(handle, inode, offset,
3449 length);
3450 if (ret)
3451 goto out_stop;
26a4c0c6
TT
3452
3453 first_block = (offset + sb->s_blocksize - 1) >>
3454 EXT4_BLOCK_SIZE_BITS(sb);
3455 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
3456
3457 /* If there are no blocks to remove, return now */
3458 if (first_block >= stop_block)
3459 goto out_stop;
3460
3461 down_write(&EXT4_I(inode)->i_data_sem);
3462 ext4_discard_preallocations(inode);
3463
3464 ret = ext4_es_remove_extent(inode, first_block,
3465 stop_block - first_block);
3466 if (ret) {
3467 up_write(&EXT4_I(inode)->i_data_sem);
3468 goto out_stop;
3469 }
3470
3471 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3472 ret = ext4_ext_remove_space(inode, first_block,
3473 stop_block - 1);
3474 else
4f579ae7 3475 ret = ext4_ind_remove_space(handle, inode, first_block,
26a4c0c6
TT
3476 stop_block);
3477
819c4920 3478 up_write(&EXT4_I(inode)->i_data_sem);
26a4c0c6
TT
3479 if (IS_SYNC(inode))
3480 ext4_handle_sync(handle);
e251f9bc
MP
3481
3482 /* Now release the pages again to reduce race window */
3483 if (last_block_offset > first_block_offset)
3484 truncate_pagecache_range(inode, first_block_offset,
3485 last_block_offset);
3486
26a4c0c6
TT
3487 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3488 ext4_mark_inode_dirty(handle, inode);
3489out_stop:
3490 ext4_journal_stop(handle);
3491out_dio:
3492 ext4_inode_resume_unlocked_dio(inode);
3493out_mutex:
3494 mutex_unlock(&inode->i_mutex);
3495 return ret;
a4bb6b64
AH
3496}
3497
a361293f
JK
3498int ext4_inode_attach_jinode(struct inode *inode)
3499{
3500 struct ext4_inode_info *ei = EXT4_I(inode);
3501 struct jbd2_inode *jinode;
3502
3503 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
3504 return 0;
3505
3506 jinode = jbd2_alloc_inode(GFP_KERNEL);
3507 spin_lock(&inode->i_lock);
3508 if (!ei->jinode) {
3509 if (!jinode) {
3510 spin_unlock(&inode->i_lock);
3511 return -ENOMEM;
3512 }
3513 ei->jinode = jinode;
3514 jbd2_journal_init_jbd_inode(ei->jinode, inode);
3515 jinode = NULL;
3516 }
3517 spin_unlock(&inode->i_lock);
3518 if (unlikely(jinode != NULL))
3519 jbd2_free_inode(jinode);
3520 return 0;
3521}
3522
ac27a0ec 3523/*
617ba13b 3524 * ext4_truncate()
ac27a0ec 3525 *
617ba13b
MC
3526 * We block out ext4_get_block() block instantiations across the entire
3527 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
ac27a0ec
DK
3528 * simultaneously on behalf of the same inode.
3529 *
42b2aa86 3530 * As we work through the truncate and commit bits of it to the journal there
ac27a0ec
DK
3531 * is one core, guiding principle: the file's tree must always be consistent on
3532 * disk. We must be able to restart the truncate after a crash.
3533 *
3534 * The file's tree may be transiently inconsistent in memory (although it
3535 * probably isn't), but whenever we close off and commit a journal transaction,
3536 * the contents of (the filesystem + the journal) must be consistent and
3537 * restartable. It's pretty simple, really: bottom up, right to left (although
3538 * left-to-right works OK too).
3539 *
3540 * Note that at recovery time, journal replay occurs *before* the restart of
3541 * truncate against the orphan inode list.
3542 *
3543 * The committed inode has the new, desired i_size (which is the same as
617ba13b 3544 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
ac27a0ec 3545 * that this inode's truncate did not complete and it will again call
617ba13b
MC
3546 * ext4_truncate() to have another go. So there will be instantiated blocks
3547 * to the right of the truncation point in a crashed ext4 filesystem. But
ac27a0ec 3548 * that's fine - as long as they are linked from the inode, the post-crash
617ba13b 3549 * ext4_truncate() run will find them and release them.
ac27a0ec 3550 */
617ba13b 3551void ext4_truncate(struct inode *inode)
ac27a0ec 3552{
819c4920
TT
3553 struct ext4_inode_info *ei = EXT4_I(inode);
3554 unsigned int credits;
3555 handle_t *handle;
3556 struct address_space *mapping = inode->i_mapping;
819c4920 3557
19b5ef61
TT
3558 /*
3559 * There is a possibility that we're either freeing the inode
e04027e8 3560 * or it's a completely new inode. In those cases we might not
19b5ef61
TT
3561 * have i_mutex locked because it's not necessary.
3562 */
3563 if (!(inode->i_state & (I_NEW|I_FREEING)))
3564 WARN_ON(!mutex_is_locked(&inode->i_mutex));
0562e0ba
JZ
3565 trace_ext4_truncate_enter(inode);
3566
91ef4caf 3567 if (!ext4_can_truncate(inode))
ac27a0ec
DK
3568 return;
3569
12e9b892 3570 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
c8d46e41 3571
5534fb5b 3572 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
19f5fb7a 3573 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
7d8f9f7d 3574
aef1c851
TM
3575 if (ext4_has_inline_data(inode)) {
3576 int has_inline = 1;
3577
3578 ext4_inline_data_truncate(inode, &has_inline);
3579 if (has_inline)
3580 return;
3581 }
3582
a361293f
JK
3583 /* If we zero-out tail of the page, we have to create jinode for jbd2 */
3584 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
3585 if (ext4_inode_attach_jinode(inode) < 0)
3586 return;
3587 }
3588
819c4920
TT
3589 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3590 credits = ext4_writepage_trans_blocks(inode);
3591 else
3592 credits = ext4_blocks_for_truncate(inode);
3593
3594 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3595 if (IS_ERR(handle)) {
3596 ext4_std_error(inode->i_sb, PTR_ERR(handle));
3597 return;
3598 }
3599
eb3544c6
LC
3600 if (inode->i_size & (inode->i_sb->s_blocksize - 1))
3601 ext4_block_truncate_page(handle, mapping, inode->i_size);
819c4920
TT
3602
3603 /*
3604 * We add the inode to the orphan list, so that if this
3605 * truncate spans multiple transactions, and we crash, we will
3606 * resume the truncate when the filesystem recovers. It also
3607 * marks the inode dirty, to catch the new size.
3608 *
3609 * Implication: the file must always be in a sane, consistent
3610 * truncatable state while each transaction commits.
3611 */
3612 if (ext4_orphan_add(handle, inode))
3613 goto out_stop;
3614
3615 down_write(&EXT4_I(inode)->i_data_sem);
3616
3617 ext4_discard_preallocations(inode);
3618
ff9893dc 3619 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
819c4920 3620 ext4_ext_truncate(handle, inode);
ff9893dc 3621 else
819c4920
TT
3622 ext4_ind_truncate(handle, inode);
3623
3624 up_write(&ei->i_data_sem);
3625
3626 if (IS_SYNC(inode))
3627 ext4_handle_sync(handle);
3628
3629out_stop:
3630 /*
3631 * If this was a simple ftruncate() and the file will remain alive,
3632 * then we need to clear up the orphan record which we created above.
3633 * However, if this was a real unlink then we were called by
3634 * ext4_delete_inode(), and we allow that function to clean up the
3635 * orphan info for us.
3636 */
3637 if (inode->i_nlink)
3638 ext4_orphan_del(handle, inode);
3639
3640 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3641 ext4_mark_inode_dirty(handle, inode);
3642 ext4_journal_stop(handle);
ac27a0ec 3643
0562e0ba 3644 trace_ext4_truncate_exit(inode);
ac27a0ec
DK
3645}
3646
ac27a0ec 3647/*
617ba13b 3648 * ext4_get_inode_loc returns with an extra refcount against the inode's
ac27a0ec
DK
3649 * underlying buffer_head on success. If 'in_mem' is true, we have all
3650 * data in memory that is needed to recreate the on-disk version of this
3651 * inode.
3652 */
617ba13b
MC
3653static int __ext4_get_inode_loc(struct inode *inode,
3654 struct ext4_iloc *iloc, int in_mem)
ac27a0ec 3655{
240799cd
TT
3656 struct ext4_group_desc *gdp;
3657 struct buffer_head *bh;
3658 struct super_block *sb = inode->i_sb;
3659 ext4_fsblk_t block;
3660 int inodes_per_block, inode_offset;
3661
3a06d778 3662 iloc->bh = NULL;
240799cd
TT
3663 if (!ext4_valid_inum(sb, inode->i_ino))
3664 return -EIO;
ac27a0ec 3665
240799cd
TT
3666 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3667 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3668 if (!gdp)
ac27a0ec
DK
3669 return -EIO;
3670
240799cd
TT
3671 /*
3672 * Figure out the offset within the block group inode table
3673 */
00d09882 3674 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
240799cd
TT
3675 inode_offset = ((inode->i_ino - 1) %
3676 EXT4_INODES_PER_GROUP(sb));
3677 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3678 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3679
3680 bh = sb_getblk(sb, block);
aebf0243 3681 if (unlikely(!bh))
860d21e2 3682 return -ENOMEM;
ac27a0ec
DK
3683 if (!buffer_uptodate(bh)) {
3684 lock_buffer(bh);
9c83a923
HK
3685
3686 /*
3687 * If the buffer has the write error flag, we have failed
3688 * to write out another inode in the same block. In this
3689 * case, we don't have to read the block because we may
3690 * read the old inode data successfully.
3691 */
3692 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3693 set_buffer_uptodate(bh);
3694
ac27a0ec
DK
3695 if (buffer_uptodate(bh)) {
3696 /* someone brought it uptodate while we waited */
3697 unlock_buffer(bh);
3698 goto has_buffer;
3699 }
3700
3701 /*
3702 * If we have all information of the inode in memory and this
3703 * is the only valid inode in the block, we need not read the
3704 * block.
3705 */
3706 if (in_mem) {
3707 struct buffer_head *bitmap_bh;
240799cd 3708 int i, start;
ac27a0ec 3709
240799cd 3710 start = inode_offset & ~(inodes_per_block - 1);
ac27a0ec 3711
240799cd
TT
3712 /* Is the inode bitmap in cache? */
3713 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
aebf0243 3714 if (unlikely(!bitmap_bh))
ac27a0ec
DK
3715 goto make_io;
3716
3717 /*
3718 * If the inode bitmap isn't in cache then the
3719 * optimisation may end up performing two reads instead
3720 * of one, so skip it.
3721 */
3722 if (!buffer_uptodate(bitmap_bh)) {
3723 brelse(bitmap_bh);
3724 goto make_io;
3725 }
240799cd 3726 for (i = start; i < start + inodes_per_block; i++) {
ac27a0ec
DK
3727 if (i == inode_offset)
3728 continue;
617ba13b 3729 if (ext4_test_bit(i, bitmap_bh->b_data))
ac27a0ec
DK
3730 break;
3731 }
3732 brelse(bitmap_bh);
240799cd 3733 if (i == start + inodes_per_block) {
ac27a0ec
DK
3734 /* all other inodes are free, so skip I/O */
3735 memset(bh->b_data, 0, bh->b_size);
3736 set_buffer_uptodate(bh);
3737 unlock_buffer(bh);
3738 goto has_buffer;
3739 }
3740 }
3741
3742make_io:
240799cd
TT
3743 /*
3744 * If we need to do any I/O, try to pre-readahead extra
3745 * blocks from the inode table.
3746 */
3747 if (EXT4_SB(sb)->s_inode_readahead_blks) {
3748 ext4_fsblk_t b, end, table;
3749 unsigned num;
0d606e2c 3750 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
240799cd
TT
3751
3752 table = ext4_inode_table(sb, gdp);
b713a5ec 3753 /* s_inode_readahead_blks is always a power of 2 */
0d606e2c 3754 b = block & ~((ext4_fsblk_t) ra_blks - 1);
240799cd
TT
3755 if (table > b)
3756 b = table;
0d606e2c 3757 end = b + ra_blks;
240799cd 3758 num = EXT4_INODES_PER_GROUP(sb);
feb0ab32 3759 if (ext4_has_group_desc_csum(sb))
560671a0 3760 num -= ext4_itable_unused_count(sb, gdp);
240799cd
TT
3761 table += num / inodes_per_block;
3762 if (end > table)
3763 end = table;
3764 while (b <= end)
3765 sb_breadahead(sb, b++);
3766 }
3767
ac27a0ec
DK
3768 /*
3769 * There are other valid inodes in the buffer, this inode
3770 * has in-inode xattrs, or we don't have this inode in memory.
3771 * Read the block from disk.
3772 */
0562e0ba 3773 trace_ext4_load_inode(inode);
ac27a0ec
DK
3774 get_bh(bh);
3775 bh->b_end_io = end_buffer_read_sync;
65299a3b 3776 submit_bh(READ | REQ_META | REQ_PRIO, bh);
ac27a0ec
DK
3777 wait_on_buffer(bh);
3778 if (!buffer_uptodate(bh)) {
c398eda0
TT
3779 EXT4_ERROR_INODE_BLOCK(inode, block,
3780 "unable to read itable block");
ac27a0ec
DK
3781 brelse(bh);
3782 return -EIO;
3783 }
3784 }
3785has_buffer:
3786 iloc->bh = bh;
3787 return 0;
3788}
3789
617ba13b 3790int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
3791{
3792 /* We have all inode data except xattrs in memory here. */
617ba13b 3793 return __ext4_get_inode_loc(inode, iloc,
19f5fb7a 3794 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
ac27a0ec
DK
3795}
3796
617ba13b 3797void ext4_set_inode_flags(struct inode *inode)
ac27a0ec 3798{
617ba13b 3799 unsigned int flags = EXT4_I(inode)->i_flags;
00a1a053 3800 unsigned int new_fl = 0;
ac27a0ec 3801
617ba13b 3802 if (flags & EXT4_SYNC_FL)
00a1a053 3803 new_fl |= S_SYNC;
617ba13b 3804 if (flags & EXT4_APPEND_FL)
00a1a053 3805 new_fl |= S_APPEND;
617ba13b 3806 if (flags & EXT4_IMMUTABLE_FL)
00a1a053 3807 new_fl |= S_IMMUTABLE;
617ba13b 3808 if (flags & EXT4_NOATIME_FL)
00a1a053 3809 new_fl |= S_NOATIME;
617ba13b 3810 if (flags & EXT4_DIRSYNC_FL)
00a1a053 3811 new_fl |= S_DIRSYNC;
5f16f322
TT
3812 inode_set_flags(inode, new_fl,
3813 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
ac27a0ec
DK
3814}
3815
ff9ddf7e
JK
3816/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3817void ext4_get_inode_flags(struct ext4_inode_info *ei)
3818{
84a8dce2
DM
3819 unsigned int vfs_fl;
3820 unsigned long old_fl, new_fl;
3821
3822 do {
3823 vfs_fl = ei->vfs_inode.i_flags;
3824 old_fl = ei->i_flags;
3825 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3826 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
3827 EXT4_DIRSYNC_FL);
3828 if (vfs_fl & S_SYNC)
3829 new_fl |= EXT4_SYNC_FL;
3830 if (vfs_fl & S_APPEND)
3831 new_fl |= EXT4_APPEND_FL;
3832 if (vfs_fl & S_IMMUTABLE)
3833 new_fl |= EXT4_IMMUTABLE_FL;
3834 if (vfs_fl & S_NOATIME)
3835 new_fl |= EXT4_NOATIME_FL;
3836 if (vfs_fl & S_DIRSYNC)
3837 new_fl |= EXT4_DIRSYNC_FL;
3838 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
ff9ddf7e 3839}
de9a55b8 3840
0fc1b451 3841static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
de9a55b8 3842 struct ext4_inode_info *ei)
0fc1b451
AK
3843{
3844 blkcnt_t i_blocks ;
8180a562
AK
3845 struct inode *inode = &(ei->vfs_inode);
3846 struct super_block *sb = inode->i_sb;
0fc1b451
AK
3847
3848 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3849 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3850 /* we are using combined 48 bit field */
3851 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3852 le32_to_cpu(raw_inode->i_blocks_lo);
07a03824 3853 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
8180a562
AK
3854 /* i_blocks represent file system block size */
3855 return i_blocks << (inode->i_blkbits - 9);
3856 } else {
3857 return i_blocks;
3858 }
0fc1b451
AK
3859 } else {
3860 return le32_to_cpu(raw_inode->i_blocks_lo);
3861 }
3862}
ff9ddf7e 3863
152a7b0a
TM
3864static inline void ext4_iget_extra_inode(struct inode *inode,
3865 struct ext4_inode *raw_inode,
3866 struct ext4_inode_info *ei)
3867{
3868 __le32 *magic = (void *)raw_inode +
3869 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
67cf5b09 3870 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
152a7b0a 3871 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
67cf5b09 3872 ext4_find_inline_data_nolock(inode);
f19d5870
TM
3873 } else
3874 EXT4_I(inode)->i_inline_off = 0;
152a7b0a
TM
3875}
3876
1d1fe1ee 3877struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
ac27a0ec 3878{
617ba13b
MC
3879 struct ext4_iloc iloc;
3880 struct ext4_inode *raw_inode;
1d1fe1ee 3881 struct ext4_inode_info *ei;
1d1fe1ee 3882 struct inode *inode;
b436b9be 3883 journal_t *journal = EXT4_SB(sb)->s_journal;
1d1fe1ee 3884 long ret;
ac27a0ec 3885 int block;
08cefc7a
EB
3886 uid_t i_uid;
3887 gid_t i_gid;
ac27a0ec 3888
1d1fe1ee
DH
3889 inode = iget_locked(sb, ino);
3890 if (!inode)
3891 return ERR_PTR(-ENOMEM);
3892 if (!(inode->i_state & I_NEW))
3893 return inode;
3894
3895 ei = EXT4_I(inode);
7dc57615 3896 iloc.bh = NULL;
ac27a0ec 3897
1d1fe1ee
DH
3898 ret = __ext4_get_inode_loc(inode, &iloc, 0);
3899 if (ret < 0)
ac27a0ec 3900 goto bad_inode;
617ba13b 3901 raw_inode = ext4_raw_inode(&iloc);
814525f4
DW
3902
3903 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3904 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
3905 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
3906 EXT4_INODE_SIZE(inode->i_sb)) {
3907 EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
3908 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
3909 EXT4_INODE_SIZE(inode->i_sb));
3910 ret = -EIO;
3911 goto bad_inode;
3912 }
3913 } else
3914 ei->i_extra_isize = 0;
3915
3916 /* Precompute checksum seed for inode metadata */
3917 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3918 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
3919 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3920 __u32 csum;
3921 __le32 inum = cpu_to_le32(inode->i_ino);
3922 __le32 gen = raw_inode->i_generation;
3923 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
3924 sizeof(inum));
3925 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
3926 sizeof(gen));
3927 }
3928
3929 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
3930 EXT4_ERROR_INODE(inode, "checksum invalid");
3931 ret = -EIO;
3932 goto bad_inode;
3933 }
3934
ac27a0ec 3935 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
08cefc7a
EB
3936 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
3937 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
af5bc92d 3938 if (!(test_opt(inode->i_sb, NO_UID32))) {
08cefc7a
EB
3939 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
3940 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
ac27a0ec 3941 }
08cefc7a
EB
3942 i_uid_write(inode, i_uid);
3943 i_gid_write(inode, i_gid);
bfe86848 3944 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
ac27a0ec 3945
353eb83c 3946 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
67cf5b09 3947 ei->i_inline_off = 0;
ac27a0ec
DK
3948 ei->i_dir_start_lookup = 0;
3949 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
3950 /* We now have enough fields to check if the inode was active or not.
3951 * This is needed because nfsd might try to access dead inodes
3952 * the test is that same one that e2fsck uses
3953 * NeilBrown 1999oct15
3954 */
3955 if (inode->i_nlink == 0) {
393d1d1d
DTB
3956 if ((inode->i_mode == 0 ||
3957 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
3958 ino != EXT4_BOOT_LOADER_INO) {
ac27a0ec 3959 /* this inode is deleted */
1d1fe1ee 3960 ret = -ESTALE;
ac27a0ec
DK
3961 goto bad_inode;
3962 }
3963 /* The only unlinked inodes we let through here have
3964 * valid i_mode and are being read by the orphan
3965 * recovery code: that's fine, we're about to complete
393d1d1d
DTB
3966 * the process of deleting those.
3967 * OR it is the EXT4_BOOT_LOADER_INO which is
3968 * not initialized on a new filesystem. */
ac27a0ec 3969 }
ac27a0ec 3970 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
0fc1b451 3971 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
7973c0c1 3972 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
a9e81742 3973 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
a1ddeb7e
BP
3974 ei->i_file_acl |=
3975 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
a48380f7 3976 inode->i_size = ext4_isize(raw_inode);
ac27a0ec 3977 ei->i_disksize = inode->i_size;
a9e7f447
DM
3978#ifdef CONFIG_QUOTA
3979 ei->i_reserved_quota = 0;
3980#endif
ac27a0ec
DK
3981 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
3982 ei->i_block_group = iloc.block_group;
a4912123 3983 ei->i_last_alloc_group = ~0;
ac27a0ec
DK
3984 /*
3985 * NOTE! The in-memory inode i_data array is in little-endian order
3986 * even on big-endian machines: we do NOT byteswap the block numbers!
3987 */
617ba13b 3988 for (block = 0; block < EXT4_N_BLOCKS; block++)
ac27a0ec
DK
3989 ei->i_data[block] = raw_inode->i_block[block];
3990 INIT_LIST_HEAD(&ei->i_orphan);
3991
b436b9be
JK
3992 /*
3993 * Set transaction id's of transactions that have to be committed
3994 * to finish f[data]sync. We set them to currently running transaction
3995 * as we cannot be sure that the inode or some of its metadata isn't
3996 * part of the transaction - the inode could have been reclaimed and
3997 * now it is reread from disk.
3998 */
3999 if (journal) {
4000 transaction_t *transaction;
4001 tid_t tid;
4002
a931da6a 4003 read_lock(&journal->j_state_lock);
b436b9be
JK
4004 if (journal->j_running_transaction)
4005 transaction = journal->j_running_transaction;
4006 else
4007 transaction = journal->j_committing_transaction;
4008 if (transaction)
4009 tid = transaction->t_tid;
4010 else
4011 tid = journal->j_commit_sequence;
a931da6a 4012 read_unlock(&journal->j_state_lock);
b436b9be
JK
4013 ei->i_sync_tid = tid;
4014 ei->i_datasync_tid = tid;
4015 }
4016
0040d987 4017 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
ac27a0ec
DK
4018 if (ei->i_extra_isize == 0) {
4019 /* The extra space is currently unused. Use it. */
617ba13b
MC
4020 ei->i_extra_isize = sizeof(struct ext4_inode) -
4021 EXT4_GOOD_OLD_INODE_SIZE;
ac27a0ec 4022 } else {
152a7b0a 4023 ext4_iget_extra_inode(inode, raw_inode, ei);
ac27a0ec 4024 }
814525f4 4025 }
ac27a0ec 4026
ef7f3835
KS
4027 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4028 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4029 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4030 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4031
ed3654eb 4032 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
c4f65706
TT
4033 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4034 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4035 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4036 inode->i_version |=
4037 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4038 }
25ec56b5
JNC
4039 }
4040
c4b5a614 4041 ret = 0;
485c26ec 4042 if (ei->i_file_acl &&
1032988c 4043 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
24676da4
TT
4044 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4045 ei->i_file_acl);
485c26ec
TT
4046 ret = -EIO;
4047 goto bad_inode;
f19d5870
TM
4048 } else if (!ext4_has_inline_data(inode)) {
4049 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4050 if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4051 (S_ISLNK(inode->i_mode) &&
4052 !ext4_inode_is_fast_symlink(inode))))
4053 /* Validate extent which is part of inode */
4054 ret = ext4_ext_check_inode(inode);
4055 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4056 (S_ISLNK(inode->i_mode) &&
4057 !ext4_inode_is_fast_symlink(inode))) {
4058 /* Validate block references which are part of inode */
4059 ret = ext4_ind_check_inode(inode);
4060 }
fe2c8191 4061 }
567f3e9a 4062 if (ret)
de9a55b8 4063 goto bad_inode;
7a262f7c 4064
ac27a0ec 4065 if (S_ISREG(inode->i_mode)) {
617ba13b
MC
4066 inode->i_op = &ext4_file_inode_operations;
4067 inode->i_fop = &ext4_file_operations;
4068 ext4_set_aops(inode);
ac27a0ec 4069 } else if (S_ISDIR(inode->i_mode)) {
617ba13b
MC
4070 inode->i_op = &ext4_dir_inode_operations;
4071 inode->i_fop = &ext4_dir_operations;
ac27a0ec 4072 } else if (S_ISLNK(inode->i_mode)) {
e83c1397 4073 if (ext4_inode_is_fast_symlink(inode)) {
617ba13b 4074 inode->i_op = &ext4_fast_symlink_inode_operations;
e83c1397
DG
4075 nd_terminate_link(ei->i_data, inode->i_size,
4076 sizeof(ei->i_data) - 1);
4077 } else {
617ba13b
MC
4078 inode->i_op = &ext4_symlink_inode_operations;
4079 ext4_set_aops(inode);
ac27a0ec 4080 }
563bdd61
TT
4081 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4082 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
617ba13b 4083 inode->i_op = &ext4_special_inode_operations;
ac27a0ec
DK
4084 if (raw_inode->i_block[0])
4085 init_special_inode(inode, inode->i_mode,
4086 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4087 else
4088 init_special_inode(inode, inode->i_mode,
4089 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
393d1d1d
DTB
4090 } else if (ino == EXT4_BOOT_LOADER_INO) {
4091 make_bad_inode(inode);
563bdd61 4092 } else {
563bdd61 4093 ret = -EIO;
24676da4 4094 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
563bdd61 4095 goto bad_inode;
ac27a0ec 4096 }
af5bc92d 4097 brelse(iloc.bh);
617ba13b 4098 ext4_set_inode_flags(inode);
1d1fe1ee
DH
4099 unlock_new_inode(inode);
4100 return inode;
ac27a0ec
DK
4101
4102bad_inode:
567f3e9a 4103 brelse(iloc.bh);
1d1fe1ee
DH
4104 iget_failed(inode);
4105 return ERR_PTR(ret);
ac27a0ec
DK
4106}
4107
0fc1b451
AK
4108static int ext4_inode_blocks_set(handle_t *handle,
4109 struct ext4_inode *raw_inode,
4110 struct ext4_inode_info *ei)
4111{
4112 struct inode *inode = &(ei->vfs_inode);
4113 u64 i_blocks = inode->i_blocks;
4114 struct super_block *sb = inode->i_sb;
0fc1b451
AK
4115
4116 if (i_blocks <= ~0U) {
4117 /*
4907cb7b 4118 * i_blocks can be represented in a 32 bit variable
0fc1b451
AK
4119 * as multiple of 512 bytes
4120 */
8180a562 4121 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 4122 raw_inode->i_blocks_high = 0;
84a8dce2 4123 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
f287a1a5
TT
4124 return 0;
4125 }
4126 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4127 return -EFBIG;
4128
4129 if (i_blocks <= 0xffffffffffffULL) {
0fc1b451
AK
4130 /*
4131 * i_blocks can be represented in a 48 bit variable
4132 * as multiple of 512 bytes
4133 */
8180a562 4134 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 4135 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
84a8dce2 4136 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
0fc1b451 4137 } else {
84a8dce2 4138 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
8180a562
AK
4139 /* i_block is stored in file system block size */
4140 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4141 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4142 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
0fc1b451 4143 }
f287a1a5 4144 return 0;
0fc1b451
AK
4145}
4146
ac27a0ec
DK
4147/*
4148 * Post the struct inode info into an on-disk inode location in the
4149 * buffer-cache. This gobbles the caller's reference to the
4150 * buffer_head in the inode location struct.
4151 *
4152 * The caller must have write access to iloc->bh.
4153 */
617ba13b 4154static int ext4_do_update_inode(handle_t *handle,
ac27a0ec 4155 struct inode *inode,
830156c7 4156 struct ext4_iloc *iloc)
ac27a0ec 4157{
617ba13b
MC
4158 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4159 struct ext4_inode_info *ei = EXT4_I(inode);
ac27a0ec 4160 struct buffer_head *bh = iloc->bh;
202ee5df 4161 struct super_block *sb = inode->i_sb;
ac27a0ec 4162 int err = 0, rc, block;
202ee5df 4163 int need_datasync = 0, set_large_file = 0;
08cefc7a
EB
4164 uid_t i_uid;
4165 gid_t i_gid;
ac27a0ec 4166
202ee5df
TT
4167 spin_lock(&ei->i_raw_lock);
4168
4169 /* For fields not tracked in the in-memory inode,
ac27a0ec 4170 * initialise them to zero for new inodes. */
19f5fb7a 4171 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
617ba13b 4172 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
ac27a0ec 4173
ff9ddf7e 4174 ext4_get_inode_flags(ei);
ac27a0ec 4175 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
08cefc7a
EB
4176 i_uid = i_uid_read(inode);
4177 i_gid = i_gid_read(inode);
af5bc92d 4178 if (!(test_opt(inode->i_sb, NO_UID32))) {
08cefc7a
EB
4179 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4180 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
ac27a0ec
DK
4181/*
4182 * Fix up interoperability with old kernels. Otherwise, old inodes get
4183 * re-used with the upper 16 bits of the uid/gid intact
4184 */
af5bc92d 4185 if (!ei->i_dtime) {
ac27a0ec 4186 raw_inode->i_uid_high =
08cefc7a 4187 cpu_to_le16(high_16_bits(i_uid));
ac27a0ec 4188 raw_inode->i_gid_high =
08cefc7a 4189 cpu_to_le16(high_16_bits(i_gid));
ac27a0ec
DK
4190 } else {
4191 raw_inode->i_uid_high = 0;
4192 raw_inode->i_gid_high = 0;
4193 }
4194 } else {
08cefc7a
EB
4195 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4196 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
ac27a0ec
DK
4197 raw_inode->i_uid_high = 0;
4198 raw_inode->i_gid_high = 0;
4199 }
4200 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
ef7f3835
KS
4201
4202 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4203 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4204 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4205 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4206
bce92d56
LX
4207 err = ext4_inode_blocks_set(handle, raw_inode, ei);
4208 if (err) {
202ee5df 4209 spin_unlock(&ei->i_raw_lock);
0fc1b451 4210 goto out_brelse;
202ee5df 4211 }
ac27a0ec 4212 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
353eb83c 4213 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
ed3654eb 4214 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
a1ddeb7e
BP
4215 raw_inode->i_file_acl_high =
4216 cpu_to_le16(ei->i_file_acl >> 32);
7973c0c1 4217 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
b71fc079
JK
4218 if (ei->i_disksize != ext4_isize(raw_inode)) {
4219 ext4_isize_set(raw_inode, ei->i_disksize);
4220 need_datasync = 1;
4221 }
a48380f7 4222 if (ei->i_disksize > 0x7fffffffULL) {
a48380f7
AK
4223 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4224 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4225 EXT4_SB(sb)->s_es->s_rev_level ==
202ee5df
TT
4226 cpu_to_le32(EXT4_GOOD_OLD_REV))
4227 set_large_file = 1;
ac27a0ec
DK
4228 }
4229 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4230 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4231 if (old_valid_dev(inode->i_rdev)) {
4232 raw_inode->i_block[0] =
4233 cpu_to_le32(old_encode_dev(inode->i_rdev));
4234 raw_inode->i_block[1] = 0;
4235 } else {
4236 raw_inode->i_block[0] = 0;
4237 raw_inode->i_block[1] =
4238 cpu_to_le32(new_encode_dev(inode->i_rdev));
4239 raw_inode->i_block[2] = 0;
4240 }
f19d5870 4241 } else if (!ext4_has_inline_data(inode)) {
de9a55b8
TT
4242 for (block = 0; block < EXT4_N_BLOCKS; block++)
4243 raw_inode->i_block[block] = ei->i_data[block];
f19d5870 4244 }
ac27a0ec 4245
ed3654eb 4246 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
c4f65706
TT
4247 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4248 if (ei->i_extra_isize) {
4249 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4250 raw_inode->i_version_hi =
4251 cpu_to_le32(inode->i_version >> 32);
4252 raw_inode->i_extra_isize =
4253 cpu_to_le16(ei->i_extra_isize);
4254 }
25ec56b5
JNC
4255 }
4256
814525f4
DW
4257 ext4_inode_csum_set(inode, raw_inode, ei);
4258
202ee5df
TT
4259 spin_unlock(&ei->i_raw_lock);
4260
830156c7 4261 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
73b50c1c 4262 rc = ext4_handle_dirty_metadata(handle, NULL, bh);
830156c7
FM
4263 if (!err)
4264 err = rc;
19f5fb7a 4265 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
202ee5df 4266 if (set_large_file) {
5d601255 4267 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
202ee5df
TT
4268 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
4269 if (err)
4270 goto out_brelse;
4271 ext4_update_dynamic_rev(sb);
4272 EXT4_SET_RO_COMPAT_FEATURE(sb,
4273 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4274 ext4_handle_sync(handle);
4275 err = ext4_handle_dirty_super(handle, sb);
4276 }
b71fc079 4277 ext4_update_inode_fsync_trans(handle, inode, need_datasync);
ac27a0ec 4278out_brelse:
af5bc92d 4279 brelse(bh);
617ba13b 4280 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4281 return err;
4282}
4283
4284/*
617ba13b 4285 * ext4_write_inode()
ac27a0ec
DK
4286 *
4287 * We are called from a few places:
4288 *
87f7e416 4289 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
ac27a0ec 4290 * Here, there will be no transaction running. We wait for any running
4907cb7b 4291 * transaction to commit.
ac27a0ec 4292 *
87f7e416
TT
4293 * - Within flush work (sys_sync(), kupdate and such).
4294 * We wait on commit, if told to.
ac27a0ec 4295 *
87f7e416
TT
4296 * - Within iput_final() -> write_inode_now()
4297 * We wait on commit, if told to.
ac27a0ec
DK
4298 *
4299 * In all cases it is actually safe for us to return without doing anything,
4300 * because the inode has been copied into a raw inode buffer in
87f7e416
TT
4301 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL
4302 * writeback.
ac27a0ec
DK
4303 *
4304 * Note that we are absolutely dependent upon all inode dirtiers doing the
4305 * right thing: they *must* call mark_inode_dirty() after dirtying info in
4306 * which we are interested.
4307 *
4308 * It would be a bug for them to not do this. The code:
4309 *
4310 * mark_inode_dirty(inode)
4311 * stuff();
4312 * inode->i_size = expr;
4313 *
87f7e416
TT
4314 * is in error because write_inode() could occur while `stuff()' is running,
4315 * and the new i_size will be lost. Plus the inode will no longer be on the
4316 * superblock's dirty inode list.
ac27a0ec 4317 */
a9185b41 4318int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
ac27a0ec 4319{
91ac6f43
FM
4320 int err;
4321
87f7e416 4322 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
ac27a0ec
DK
4323 return 0;
4324
91ac6f43
FM
4325 if (EXT4_SB(inode->i_sb)->s_journal) {
4326 if (ext4_journal_current_handle()) {
4327 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4328 dump_stack();
4329 return -EIO;
4330 }
ac27a0ec 4331
10542c22
JK
4332 /*
4333 * No need to force transaction in WB_SYNC_NONE mode. Also
4334 * ext4_sync_fs() will force the commit after everything is
4335 * written.
4336 */
4337 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
91ac6f43
FM
4338 return 0;
4339
4340 err = ext4_force_commit(inode->i_sb);
4341 } else {
4342 struct ext4_iloc iloc;
ac27a0ec 4343
8b472d73 4344 err = __ext4_get_inode_loc(inode, &iloc, 0);
91ac6f43
FM
4345 if (err)
4346 return err;
10542c22
JK
4347 /*
4348 * sync(2) will flush the whole buffer cache. No need to do
4349 * it here separately for each inode.
4350 */
4351 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
830156c7
FM
4352 sync_dirty_buffer(iloc.bh);
4353 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
c398eda0
TT
4354 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4355 "IO error syncing inode");
830156c7
FM
4356 err = -EIO;
4357 }
fd2dd9fb 4358 brelse(iloc.bh);
91ac6f43
FM
4359 }
4360 return err;
ac27a0ec
DK
4361}
4362
53e87268
JK
4363/*
4364 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4365 * buffers that are attached to a page stradding i_size and are undergoing
4366 * commit. In that case we have to wait for commit to finish and try again.
4367 */
4368static void ext4_wait_for_tail_page_commit(struct inode *inode)
4369{
4370 struct page *page;
4371 unsigned offset;
4372 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4373 tid_t commit_tid = 0;
4374 int ret;
4375
4376 offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
4377 /*
4378 * All buffers in the last page remain valid? Then there's nothing to
4379 * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
4380 * blocksize case
4381 */
4382 if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
4383 return;
4384 while (1) {
4385 page = find_lock_page(inode->i_mapping,
4386 inode->i_size >> PAGE_CACHE_SHIFT);
4387 if (!page)
4388 return;
ca99fdd2
LC
4389 ret = __ext4_journalled_invalidatepage(page, offset,
4390 PAGE_CACHE_SIZE - offset);
53e87268
JK
4391 unlock_page(page);
4392 page_cache_release(page);
4393 if (ret != -EBUSY)
4394 return;
4395 commit_tid = 0;
4396 read_lock(&journal->j_state_lock);
4397 if (journal->j_committing_transaction)
4398 commit_tid = journal->j_committing_transaction->t_tid;
4399 read_unlock(&journal->j_state_lock);
4400 if (commit_tid)
4401 jbd2_log_wait_commit(journal, commit_tid);
4402 }
4403}
4404
ac27a0ec 4405/*
617ba13b 4406 * ext4_setattr()
ac27a0ec
DK
4407 *
4408 * Called from notify_change.
4409 *
4410 * We want to trap VFS attempts to truncate the file as soon as
4411 * possible. In particular, we want to make sure that when the VFS
4412 * shrinks i_size, we put the inode on the orphan list and modify
4413 * i_disksize immediately, so that during the subsequent flushing of
4414 * dirty pages and freeing of disk blocks, we can guarantee that any
4415 * commit will leave the blocks being flushed in an unused state on
4416 * disk. (On recovery, the inode will get truncated and the blocks will
4417 * be freed, so we have a strong guarantee that no future commit will
4418 * leave these blocks visible to the user.)
4419 *
678aaf48
JK
4420 * Another thing we have to assure is that if we are in ordered mode
4421 * and inode is still attached to the committing transaction, we must
4422 * we start writeout of all the dirty pages which are being truncated.
4423 * This way we are sure that all the data written in the previous
4424 * transaction are already on disk (truncate waits for pages under
4425 * writeback).
4426 *
4427 * Called with inode->i_mutex down.
ac27a0ec 4428 */
617ba13b 4429int ext4_setattr(struct dentry *dentry, struct iattr *attr)
ac27a0ec
DK
4430{
4431 struct inode *inode = dentry->d_inode;
4432 int error, rc = 0;
3d287de3 4433 int orphan = 0;
ac27a0ec
DK
4434 const unsigned int ia_valid = attr->ia_valid;
4435
4436 error = inode_change_ok(inode, attr);
4437 if (error)
4438 return error;
4439
12755627 4440 if (is_quota_modification(inode, attr))
871a2931 4441 dquot_initialize(inode);
08cefc7a
EB
4442 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4443 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
ac27a0ec
DK
4444 handle_t *handle;
4445
4446 /* (user+group)*(old+new) structure, inode write (sb,
4447 * inode block, ? - but truncate inode update has it) */
9924a92a
TT
4448 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4449 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
4450 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
ac27a0ec
DK
4451 if (IS_ERR(handle)) {
4452 error = PTR_ERR(handle);
4453 goto err_out;
4454 }
b43fa828 4455 error = dquot_transfer(inode, attr);
ac27a0ec 4456 if (error) {
617ba13b 4457 ext4_journal_stop(handle);
ac27a0ec
DK
4458 return error;
4459 }
4460 /* Update corresponding info in inode so that everything is in
4461 * one transaction */
4462 if (attr->ia_valid & ATTR_UID)
4463 inode->i_uid = attr->ia_uid;
4464 if (attr->ia_valid & ATTR_GID)
4465 inode->i_gid = attr->ia_gid;
617ba13b
MC
4466 error = ext4_mark_inode_dirty(handle, inode);
4467 ext4_journal_stop(handle);
ac27a0ec
DK
4468 }
4469
5208386c
JK
4470 if (attr->ia_valid & ATTR_SIZE && attr->ia_size != inode->i_size) {
4471 handle_t *handle;
562c72aa 4472
12e9b892 4473 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
e2b46574
ES
4474 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4475
0c095c7f
TT
4476 if (attr->ia_size > sbi->s_bitmap_maxbytes)
4477 return -EFBIG;
e2b46574 4478 }
dff6efc3
CH
4479
4480 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
4481 inode_inc_iversion(inode);
4482
5208386c
JK
4483 if (S_ISREG(inode->i_mode) &&
4484 (attr->ia_size < inode->i_size)) {
4485 if (ext4_should_order_data(inode)) {
4486 error = ext4_begin_ordered_truncate(inode,
678aaf48 4487 attr->ia_size);
5208386c 4488 if (error)
678aaf48 4489 goto err_out;
5208386c
JK
4490 }
4491 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
4492 if (IS_ERR(handle)) {
4493 error = PTR_ERR(handle);
4494 goto err_out;
4495 }
4496 if (ext4_handle_valid(handle)) {
4497 error = ext4_orphan_add(handle, inode);
4498 orphan = 1;
4499 }
90e775b7 4500 down_write(&EXT4_I(inode)->i_data_sem);
5208386c
JK
4501 EXT4_I(inode)->i_disksize = attr->ia_size;
4502 rc = ext4_mark_inode_dirty(handle, inode);
4503 if (!error)
4504 error = rc;
90e775b7
JK
4505 /*
4506 * We have to update i_size under i_data_sem together
4507 * with i_disksize to avoid races with writeback code
4508 * running ext4_wb_update_i_disksize().
4509 */
4510 if (!error)
4511 i_size_write(inode, attr->ia_size);
4512 up_write(&EXT4_I(inode)->i_data_sem);
5208386c
JK
4513 ext4_journal_stop(handle);
4514 if (error) {
4515 ext4_orphan_del(NULL, inode);
678aaf48
JK
4516 goto err_out;
4517 }
d6320cbf
JK
4518 } else {
4519 loff_t oldsize = inode->i_size;
4520
90e775b7 4521 i_size_write(inode, attr->ia_size);
d6320cbf
JK
4522 pagecache_isize_extended(inode, oldsize, inode->i_size);
4523 }
53e87268 4524
5208386c
JK
4525 /*
4526 * Blocks are going to be removed from the inode. Wait
4527 * for dio in flight. Temporarily disable
4528 * dioread_nolock to prevent livelock.
4529 */
4530 if (orphan) {
4531 if (!ext4_should_journal_data(inode)) {
4532 ext4_inode_block_unlocked_dio(inode);
4533 inode_dio_wait(inode);
4534 ext4_inode_resume_unlocked_dio(inode);
4535 } else
4536 ext4_wait_for_tail_page_commit(inode);
1c9114f9 4537 }
5208386c
JK
4538 /*
4539 * Truncate pagecache after we've waited for commit
4540 * in data=journal mode to make pages freeable.
4541 */
7caef267 4542 truncate_pagecache(inode, inode->i_size);
072bd7ea 4543 }
5208386c
JK
4544 /*
4545 * We want to call ext4_truncate() even if attr->ia_size ==
4546 * inode->i_size for cases like truncation of fallocated space
4547 */
4548 if (attr->ia_valid & ATTR_SIZE)
4549 ext4_truncate(inode);
ac27a0ec 4550
1025774c
CH
4551 if (!rc) {
4552 setattr_copy(inode, attr);
4553 mark_inode_dirty(inode);
4554 }
4555
4556 /*
4557 * If the call to ext4_truncate failed to get a transaction handle at
4558 * all, we need to clean up the in-core orphan list manually.
4559 */
3d287de3 4560 if (orphan && inode->i_nlink)
617ba13b 4561 ext4_orphan_del(NULL, inode);
ac27a0ec
DK
4562
4563 if (!rc && (ia_valid & ATTR_MODE))
64e178a7 4564 rc = posix_acl_chmod(inode, inode->i_mode);
ac27a0ec
DK
4565
4566err_out:
617ba13b 4567 ext4_std_error(inode->i_sb, error);
ac27a0ec
DK
4568 if (!error)
4569 error = rc;
4570 return error;
4571}
4572
3e3398a0
MC
4573int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4574 struct kstat *stat)
4575{
4576 struct inode *inode;
8af8eecc 4577 unsigned long long delalloc_blocks;
3e3398a0
MC
4578
4579 inode = dentry->d_inode;
4580 generic_fillattr(inode, stat);
4581
9206c561
AD
4582 /*
4583 * If there is inline data in the inode, the inode will normally not
4584 * have data blocks allocated (it may have an external xattr block).
4585 * Report at least one sector for such files, so tools like tar, rsync,
4586 * others doen't incorrectly think the file is completely sparse.
4587 */
4588 if (unlikely(ext4_has_inline_data(inode)))
4589 stat->blocks += (stat->size + 511) >> 9;
4590
3e3398a0
MC
4591 /*
4592 * We can't update i_blocks if the block allocation is delayed
4593 * otherwise in the case of system crash before the real block
4594 * allocation is done, we will have i_blocks inconsistent with
4595 * on-disk file blocks.
4596 * We always keep i_blocks updated together with real
4597 * allocation. But to not confuse with user, stat
4598 * will return the blocks that include the delayed allocation
4599 * blocks for this file.
4600 */
96607551 4601 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
9206c561
AD
4602 EXT4_I(inode)->i_reserved_data_blocks);
4603 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
3e3398a0
MC
4604 return 0;
4605}
ac27a0ec 4606
fffb2739
JK
4607static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
4608 int pextents)
a02908f1 4609{
12e9b892 4610 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
fffb2739
JK
4611 return ext4_ind_trans_blocks(inode, lblocks);
4612 return ext4_ext_index_trans_blocks(inode, pextents);
a02908f1 4613}
ac51d837 4614
ac27a0ec 4615/*
a02908f1
MC
4616 * Account for index blocks, block groups bitmaps and block group
4617 * descriptor blocks if modify datablocks and index blocks
4618 * worse case, the indexs blocks spread over different block groups
ac27a0ec 4619 *
a02908f1 4620 * If datablocks are discontiguous, they are possible to spread over
4907cb7b 4621 * different block groups too. If they are contiguous, with flexbg,
a02908f1 4622 * they could still across block group boundary.
ac27a0ec 4623 *
a02908f1
MC
4624 * Also account for superblock, inode, quota and xattr blocks
4625 */
fffb2739
JK
4626static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
4627 int pextents)
a02908f1 4628{
8df9675f
TT
4629 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4630 int gdpblocks;
a02908f1
MC
4631 int idxblocks;
4632 int ret = 0;
4633
4634 /*
fffb2739
JK
4635 * How many index blocks need to touch to map @lblocks logical blocks
4636 * to @pextents physical extents?
a02908f1 4637 */
fffb2739 4638 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
a02908f1
MC
4639
4640 ret = idxblocks;
4641
4642 /*
4643 * Now let's see how many group bitmaps and group descriptors need
4644 * to account
4645 */
fffb2739 4646 groups = idxblocks + pextents;
a02908f1 4647 gdpblocks = groups;
8df9675f
TT
4648 if (groups > ngroups)
4649 groups = ngroups;
a02908f1
MC
4650 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4651 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4652
4653 /* bitmaps and block group descriptor blocks */
4654 ret += groups + gdpblocks;
4655
4656 /* Blocks for super block, inode, quota and xattr blocks */
4657 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4658
4659 return ret;
4660}
4661
4662/*
25985edc 4663 * Calculate the total number of credits to reserve to fit
f3bd1f3f
MC
4664 * the modification of a single pages into a single transaction,
4665 * which may include multiple chunks of block allocations.
ac27a0ec 4666 *
525f4ed8 4667 * This could be called via ext4_write_begin()
ac27a0ec 4668 *
525f4ed8 4669 * We need to consider the worse case, when
a02908f1 4670 * one new block per extent.
ac27a0ec 4671 */
a86c6181 4672int ext4_writepage_trans_blocks(struct inode *inode)
ac27a0ec 4673{
617ba13b 4674 int bpp = ext4_journal_blocks_per_page(inode);
ac27a0ec
DK
4675 int ret;
4676
fffb2739 4677 ret = ext4_meta_trans_blocks(inode, bpp, bpp);
a86c6181 4678
a02908f1 4679 /* Account for data blocks for journalled mode */
617ba13b 4680 if (ext4_should_journal_data(inode))
a02908f1 4681 ret += bpp;
ac27a0ec
DK
4682 return ret;
4683}
f3bd1f3f
MC
4684
4685/*
4686 * Calculate the journal credits for a chunk of data modification.
4687 *
4688 * This is called from DIO, fallocate or whoever calling
79e83036 4689 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
f3bd1f3f
MC
4690 *
4691 * journal buffers for data blocks are not included here, as DIO
4692 * and fallocate do no need to journal data buffers.
4693 */
4694int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4695{
4696 return ext4_meta_trans_blocks(inode, nrblocks, 1);
4697}
4698
ac27a0ec 4699/*
617ba13b 4700 * The caller must have previously called ext4_reserve_inode_write().
ac27a0ec
DK
4701 * Give this, we know that the caller already has write access to iloc->bh.
4702 */
617ba13b 4703int ext4_mark_iloc_dirty(handle_t *handle,
de9a55b8 4704 struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
4705{
4706 int err = 0;
4707
c64db50e 4708 if (IS_I_VERSION(inode))
25ec56b5
JNC
4709 inode_inc_iversion(inode);
4710
ac27a0ec
DK
4711 /* the do_update_inode consumes one bh->b_count */
4712 get_bh(iloc->bh);
4713
dab291af 4714 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
830156c7 4715 err = ext4_do_update_inode(handle, inode, iloc);
ac27a0ec
DK
4716 put_bh(iloc->bh);
4717 return err;
4718}
4719
4720/*
4721 * On success, We end up with an outstanding reference count against
4722 * iloc->bh. This _must_ be cleaned up later.
4723 */
4724
4725int
617ba13b
MC
4726ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4727 struct ext4_iloc *iloc)
ac27a0ec 4728{
0390131b
FM
4729 int err;
4730
4731 err = ext4_get_inode_loc(inode, iloc);
4732 if (!err) {
4733 BUFFER_TRACE(iloc->bh, "get_write_access");
4734 err = ext4_journal_get_write_access(handle, iloc->bh);
4735 if (err) {
4736 brelse(iloc->bh);
4737 iloc->bh = NULL;
ac27a0ec
DK
4738 }
4739 }
617ba13b 4740 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4741 return err;
4742}
4743
6dd4ee7c
KS
4744/*
4745 * Expand an inode by new_extra_isize bytes.
4746 * Returns 0 on success or negative error number on failure.
4747 */
1d03ec98
AK
4748static int ext4_expand_extra_isize(struct inode *inode,
4749 unsigned int new_extra_isize,
4750 struct ext4_iloc iloc,
4751 handle_t *handle)
6dd4ee7c
KS
4752{
4753 struct ext4_inode *raw_inode;
4754 struct ext4_xattr_ibody_header *header;
6dd4ee7c
KS
4755
4756 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4757 return 0;
4758
4759 raw_inode = ext4_raw_inode(&iloc);
4760
4761 header = IHDR(inode, raw_inode);
6dd4ee7c
KS
4762
4763 /* No extended attributes present */
19f5fb7a
TT
4764 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4765 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
6dd4ee7c
KS
4766 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4767 new_extra_isize);
4768 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4769 return 0;
4770 }
4771
4772 /* try to expand with EAs present */
4773 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4774 raw_inode, handle);
4775}
4776
ac27a0ec
DK
4777/*
4778 * What we do here is to mark the in-core inode as clean with respect to inode
4779 * dirtiness (it may still be data-dirty).
4780 * This means that the in-core inode may be reaped by prune_icache
4781 * without having to perform any I/O. This is a very good thing,
4782 * because *any* task may call prune_icache - even ones which
4783 * have a transaction open against a different journal.
4784 *
4785 * Is this cheating? Not really. Sure, we haven't written the
4786 * inode out, but prune_icache isn't a user-visible syncing function.
4787 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4788 * we start and wait on commits.
ac27a0ec 4789 */
617ba13b 4790int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
ac27a0ec 4791{
617ba13b 4792 struct ext4_iloc iloc;
6dd4ee7c
KS
4793 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4794 static unsigned int mnt_count;
4795 int err, ret;
ac27a0ec
DK
4796
4797 might_sleep();
7ff9c073 4798 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
617ba13b 4799 err = ext4_reserve_inode_write(handle, inode, &iloc);
0390131b
FM
4800 if (ext4_handle_valid(handle) &&
4801 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
19f5fb7a 4802 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
6dd4ee7c
KS
4803 /*
4804 * We need extra buffer credits since we may write into EA block
4805 * with this same handle. If journal_extend fails, then it will
4806 * only result in a minor loss of functionality for that inode.
4807 * If this is felt to be critical, then e2fsck should be run to
4808 * force a large enough s_min_extra_isize.
4809 */
4810 if ((jbd2_journal_extend(handle,
4811 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4812 ret = ext4_expand_extra_isize(inode,
4813 sbi->s_want_extra_isize,
4814 iloc, handle);
4815 if (ret) {
19f5fb7a
TT
4816 ext4_set_inode_state(inode,
4817 EXT4_STATE_NO_EXPAND);
c1bddad9
AK
4818 if (mnt_count !=
4819 le16_to_cpu(sbi->s_es->s_mnt_count)) {
12062ddd 4820 ext4_warning(inode->i_sb,
6dd4ee7c
KS
4821 "Unable to expand inode %lu. Delete"
4822 " some EAs or run e2fsck.",
4823 inode->i_ino);
c1bddad9
AK
4824 mnt_count =
4825 le16_to_cpu(sbi->s_es->s_mnt_count);
6dd4ee7c
KS
4826 }
4827 }
4828 }
4829 }
ac27a0ec 4830 if (!err)
617ba13b 4831 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
ac27a0ec
DK
4832 return err;
4833}
4834
4835/*
617ba13b 4836 * ext4_dirty_inode() is called from __mark_inode_dirty()
ac27a0ec
DK
4837 *
4838 * We're really interested in the case where a file is being extended.
4839 * i_size has been changed by generic_commit_write() and we thus need
4840 * to include the updated inode in the current transaction.
4841 *
5dd4056d 4842 * Also, dquot_alloc_block() will always dirty the inode when blocks
ac27a0ec
DK
4843 * are allocated to the file.
4844 *
4845 * If the inode is marked synchronous, we don't honour that here - doing
4846 * so would cause a commit on atime updates, which we don't bother doing.
4847 * We handle synchronous inodes at the highest possible level.
4848 */
aa385729 4849void ext4_dirty_inode(struct inode *inode, int flags)
ac27a0ec 4850{
ac27a0ec
DK
4851 handle_t *handle;
4852
9924a92a 4853 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
ac27a0ec
DK
4854 if (IS_ERR(handle))
4855 goto out;
f3dc272f 4856
f3dc272f
CW
4857 ext4_mark_inode_dirty(handle, inode);
4858
617ba13b 4859 ext4_journal_stop(handle);
ac27a0ec
DK
4860out:
4861 return;
4862}
4863
4864#if 0
4865/*
4866 * Bind an inode's backing buffer_head into this transaction, to prevent
4867 * it from being flushed to disk early. Unlike
617ba13b 4868 * ext4_reserve_inode_write, this leaves behind no bh reference and
ac27a0ec
DK
4869 * returns no iloc structure, so the caller needs to repeat the iloc
4870 * lookup to mark the inode dirty later.
4871 */
617ba13b 4872static int ext4_pin_inode(handle_t *handle, struct inode *inode)
ac27a0ec 4873{
617ba13b 4874 struct ext4_iloc iloc;
ac27a0ec
DK
4875
4876 int err = 0;
4877 if (handle) {
617ba13b 4878 err = ext4_get_inode_loc(inode, &iloc);
ac27a0ec
DK
4879 if (!err) {
4880 BUFFER_TRACE(iloc.bh, "get_write_access");
dab291af 4881 err = jbd2_journal_get_write_access(handle, iloc.bh);
ac27a0ec 4882 if (!err)
0390131b 4883 err = ext4_handle_dirty_metadata(handle,
73b50c1c 4884 NULL,
0390131b 4885 iloc.bh);
ac27a0ec
DK
4886 brelse(iloc.bh);
4887 }
4888 }
617ba13b 4889 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4890 return err;
4891}
4892#endif
4893
617ba13b 4894int ext4_change_inode_journal_flag(struct inode *inode, int val)
ac27a0ec
DK
4895{
4896 journal_t *journal;
4897 handle_t *handle;
4898 int err;
4899
4900 /*
4901 * We have to be very careful here: changing a data block's
4902 * journaling status dynamically is dangerous. If we write a
4903 * data block to the journal, change the status and then delete
4904 * that block, we risk forgetting to revoke the old log record
4905 * from the journal and so a subsequent replay can corrupt data.
4906 * So, first we make sure that the journal is empty and that
4907 * nobody is changing anything.
4908 */
4909
617ba13b 4910 journal = EXT4_JOURNAL(inode);
0390131b
FM
4911 if (!journal)
4912 return 0;
d699594d 4913 if (is_journal_aborted(journal))
ac27a0ec 4914 return -EROFS;
2aff57b0
YY
4915 /* We have to allocate physical blocks for delalloc blocks
4916 * before flushing journal. otherwise delalloc blocks can not
4917 * be allocated any more. even more truncate on delalloc blocks
4918 * could trigger BUG by flushing delalloc blocks in journal.
4919 * There is no delalloc block in non-journal data mode.
4920 */
4921 if (val && test_opt(inode->i_sb, DELALLOC)) {
4922 err = ext4_alloc_da_blocks(inode);
4923 if (err < 0)
4924 return err;
4925 }
ac27a0ec 4926
17335dcc
DM
4927 /* Wait for all existing dio workers */
4928 ext4_inode_block_unlocked_dio(inode);
4929 inode_dio_wait(inode);
4930
dab291af 4931 jbd2_journal_lock_updates(journal);
ac27a0ec
DK
4932
4933 /*
4934 * OK, there are no updates running now, and all cached data is
4935 * synced to disk. We are now in a completely consistent state
4936 * which doesn't have anything in the journal, and we know that
4937 * no filesystem updates are running, so it is safe to modify
4938 * the inode's in-core data-journaling state flag now.
4939 */
4940
4941 if (val)
12e9b892 4942 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5872ddaa
YY
4943 else {
4944 jbd2_journal_flush(journal);
12e9b892 4945 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5872ddaa 4946 }
617ba13b 4947 ext4_set_aops(inode);
ac27a0ec 4948
dab291af 4949 jbd2_journal_unlock_updates(journal);
17335dcc 4950 ext4_inode_resume_unlocked_dio(inode);
ac27a0ec
DK
4951
4952 /* Finally we can mark the inode as dirty. */
4953
9924a92a 4954 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
ac27a0ec
DK
4955 if (IS_ERR(handle))
4956 return PTR_ERR(handle);
4957
617ba13b 4958 err = ext4_mark_inode_dirty(handle, inode);
0390131b 4959 ext4_handle_sync(handle);
617ba13b
MC
4960 ext4_journal_stop(handle);
4961 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4962
4963 return err;
4964}
2e9ee850
AK
4965
4966static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
4967{
4968 return !buffer_mapped(bh);
4969}
4970
c2ec175c 4971int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2e9ee850 4972{
c2ec175c 4973 struct page *page = vmf->page;
2e9ee850
AK
4974 loff_t size;
4975 unsigned long len;
9ea7df53 4976 int ret;
2e9ee850 4977 struct file *file = vma->vm_file;
496ad9aa 4978 struct inode *inode = file_inode(file);
2e9ee850 4979 struct address_space *mapping = inode->i_mapping;
9ea7df53
JK
4980 handle_t *handle;
4981 get_block_t *get_block;
4982 int retries = 0;
2e9ee850 4983
8e8ad8a5 4984 sb_start_pagefault(inode->i_sb);
041bbb6d 4985 file_update_time(vma->vm_file);
9ea7df53
JK
4986 /* Delalloc case is easy... */
4987 if (test_opt(inode->i_sb, DELALLOC) &&
4988 !ext4_should_journal_data(inode) &&
4989 !ext4_nonda_switch(inode->i_sb)) {
4990 do {
4991 ret = __block_page_mkwrite(vma, vmf,
4992 ext4_da_get_block_prep);
4993 } while (ret == -ENOSPC &&
4994 ext4_should_retry_alloc(inode->i_sb, &retries));
4995 goto out_ret;
2e9ee850 4996 }
0e499890
DW
4997
4998 lock_page(page);
9ea7df53
JK
4999 size = i_size_read(inode);
5000 /* Page got truncated from under us? */
5001 if (page->mapping != mapping || page_offset(page) > size) {
5002 unlock_page(page);
5003 ret = VM_FAULT_NOPAGE;
5004 goto out;
0e499890 5005 }
2e9ee850
AK
5006
5007 if (page->index == size >> PAGE_CACHE_SHIFT)
5008 len = size & ~PAGE_CACHE_MASK;
5009 else
5010 len = PAGE_CACHE_SIZE;
a827eaff 5011 /*
9ea7df53
JK
5012 * Return if we have all the buffers mapped. This avoids the need to do
5013 * journal_start/journal_stop which can block and take a long time
a827eaff 5014 */
2e9ee850 5015 if (page_has_buffers(page)) {
f19d5870
TM
5016 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5017 0, len, NULL,
5018 ext4_bh_unmapped)) {
9ea7df53 5019 /* Wait so that we don't change page under IO */
1d1d1a76 5020 wait_for_stable_page(page);
9ea7df53
JK
5021 ret = VM_FAULT_LOCKED;
5022 goto out;
a827eaff 5023 }
2e9ee850 5024 }
a827eaff 5025 unlock_page(page);
9ea7df53
JK
5026 /* OK, we need to fill the hole... */
5027 if (ext4_should_dioread_nolock(inode))
5028 get_block = ext4_get_block_write;
5029 else
5030 get_block = ext4_get_block;
5031retry_alloc:
9924a92a
TT
5032 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5033 ext4_writepage_trans_blocks(inode));
9ea7df53 5034 if (IS_ERR(handle)) {
c2ec175c 5035 ret = VM_FAULT_SIGBUS;
9ea7df53
JK
5036 goto out;
5037 }
5038 ret = __block_page_mkwrite(vma, vmf, get_block);
5039 if (!ret && ext4_should_journal_data(inode)) {
f19d5870 5040 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
9ea7df53
JK
5041 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
5042 unlock_page(page);
5043 ret = VM_FAULT_SIGBUS;
fcbb5515 5044 ext4_journal_stop(handle);
9ea7df53
JK
5045 goto out;
5046 }
5047 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5048 }
5049 ext4_journal_stop(handle);
5050 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5051 goto retry_alloc;
5052out_ret:
5053 ret = block_page_mkwrite_return(ret);
5054out:
8e8ad8a5 5055 sb_end_pagefault(inode->i_sb);
2e9ee850
AK
5056 return ret;
5057}