jbd2: change jbd2_journal_invalidatepage to accept length
[linux-2.6-block.git] / fs / ext4 / inode.c
CommitLineData
ac27a0ec 1/*
617ba13b 2 * linux/fs/ext4/inode.c
ac27a0ec
DK
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
ac27a0ec
DK
15 * 64-bit file support on 64-bit platforms by Jakub Jelinek
16 * (jj@sunsite.ms.mff.cuni.cz)
17 *
617ba13b 18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
ac27a0ec
DK
19 */
20
ac27a0ec
DK
21#include <linux/fs.h>
22#include <linux/time.h>
dab291af 23#include <linux/jbd2.h>
ac27a0ec
DK
24#include <linux/highuid.h>
25#include <linux/pagemap.h>
26#include <linux/quotaops.h>
27#include <linux/string.h>
28#include <linux/buffer_head.h>
29#include <linux/writeback.h>
64769240 30#include <linux/pagevec.h>
ac27a0ec 31#include <linux/mpage.h>
e83c1397 32#include <linux/namei.h>
ac27a0ec
DK
33#include <linux/uio.h>
34#include <linux/bio.h>
4c0425ff 35#include <linux/workqueue.h>
744692dc 36#include <linux/kernel.h>
6db26ffc 37#include <linux/printk.h>
5a0e3ad6 38#include <linux/slab.h>
a8901d34 39#include <linux/ratelimit.h>
a27bb332 40#include <linux/aio.h>
9bffad1e 41
3dcf5451 42#include "ext4_jbd2.h"
ac27a0ec
DK
43#include "xattr.h"
44#include "acl.h"
9f125d64 45#include "truncate.h"
ac27a0ec 46
9bffad1e
TT
47#include <trace/events/ext4.h>
48
a1d6cc56
AK
49#define MPAGE_DA_EXTENT_TAIL 0x01
50
814525f4
DW
51static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
52 struct ext4_inode_info *ei)
53{
54 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
55 __u16 csum_lo;
56 __u16 csum_hi = 0;
57 __u32 csum;
58
171a7f21 59 csum_lo = le16_to_cpu(raw->i_checksum_lo);
814525f4
DW
60 raw->i_checksum_lo = 0;
61 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
62 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
171a7f21 63 csum_hi = le16_to_cpu(raw->i_checksum_hi);
814525f4
DW
64 raw->i_checksum_hi = 0;
65 }
66
67 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
68 EXT4_INODE_SIZE(inode->i_sb));
69
171a7f21 70 raw->i_checksum_lo = cpu_to_le16(csum_lo);
814525f4
DW
71 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
72 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
171a7f21 73 raw->i_checksum_hi = cpu_to_le16(csum_hi);
814525f4
DW
74
75 return csum;
76}
77
78static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
79 struct ext4_inode_info *ei)
80{
81 __u32 provided, calculated;
82
83 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
84 cpu_to_le32(EXT4_OS_LINUX) ||
85 !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
86 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
87 return 1;
88
89 provided = le16_to_cpu(raw->i_checksum_lo);
90 calculated = ext4_inode_csum(inode, raw, ei);
91 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
92 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
93 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
94 else
95 calculated &= 0xFFFF;
96
97 return provided == calculated;
98}
99
100static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
101 struct ext4_inode_info *ei)
102{
103 __u32 csum;
104
105 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
106 cpu_to_le32(EXT4_OS_LINUX) ||
107 !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
108 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
109 return;
110
111 csum = ext4_inode_csum(inode, raw, ei);
112 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
113 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
114 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
115 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
116}
117
678aaf48
JK
118static inline int ext4_begin_ordered_truncate(struct inode *inode,
119 loff_t new_size)
120{
7ff9c073 121 trace_ext4_begin_ordered_truncate(inode, new_size);
8aefcd55
TT
122 /*
123 * If jinode is zero, then we never opened the file for
124 * writing, so there's no need to call
125 * jbd2_journal_begin_ordered_truncate() since there's no
126 * outstanding writes we need to flush.
127 */
128 if (!EXT4_I(inode)->jinode)
129 return 0;
130 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
131 EXT4_I(inode)->jinode,
132 new_size);
678aaf48
JK
133}
134
d47992f8
LC
135static void ext4_invalidatepage(struct page *page, unsigned int offset,
136 unsigned int length);
cb20d518
TT
137static int __ext4_journalled_writepage(struct page *page, unsigned int len);
138static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
5f163cc7
ES
139static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
140 struct inode *inode, struct page *page, loff_t from,
141 loff_t length, int flags);
64769240 142
ac27a0ec
DK
143/*
144 * Test whether an inode is a fast symlink.
145 */
617ba13b 146static int ext4_inode_is_fast_symlink(struct inode *inode)
ac27a0ec 147{
617ba13b 148 int ea_blocks = EXT4_I(inode)->i_file_acl ?
ac27a0ec
DK
149 (inode->i_sb->s_blocksize >> 9) : 0;
150
151 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
152}
153
ac27a0ec
DK
154/*
155 * Restart the transaction associated with *handle. This does a commit,
156 * so before we call here everything must be consistently dirtied against
157 * this transaction.
158 */
fa5d1113 159int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
487caeef 160 int nblocks)
ac27a0ec 161{
487caeef
JK
162 int ret;
163
164 /*
e35fd660 165 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
487caeef
JK
166 * moment, get_block can be called only for blocks inside i_size since
167 * page cache has been already dropped and writes are blocked by
168 * i_mutex. So we can safely drop the i_data_sem here.
169 */
0390131b 170 BUG_ON(EXT4_JOURNAL(inode) == NULL);
ac27a0ec 171 jbd_debug(2, "restarting handle %p\n", handle);
487caeef 172 up_write(&EXT4_I(inode)->i_data_sem);
8e8eaabe 173 ret = ext4_journal_restart(handle, nblocks);
487caeef 174 down_write(&EXT4_I(inode)->i_data_sem);
fa5d1113 175 ext4_discard_preallocations(inode);
487caeef
JK
176
177 return ret;
ac27a0ec
DK
178}
179
180/*
181 * Called at the last iput() if i_nlink is zero.
182 */
0930fcc1 183void ext4_evict_inode(struct inode *inode)
ac27a0ec
DK
184{
185 handle_t *handle;
bc965ab3 186 int err;
ac27a0ec 187
7ff9c073 188 trace_ext4_evict_inode(inode);
2581fdc8 189
0930fcc1 190 if (inode->i_nlink) {
2d859db3
JK
191 /*
192 * When journalling data dirty buffers are tracked only in the
193 * journal. So although mm thinks everything is clean and
194 * ready for reaping the inode might still have some pages to
195 * write in the running transaction or waiting to be
196 * checkpointed. Thus calling jbd2_journal_invalidatepage()
197 * (via truncate_inode_pages()) to discard these buffers can
198 * cause data loss. Also even if we did not discard these
199 * buffers, we would have no way to find them after the inode
200 * is reaped and thus user could see stale data if he tries to
201 * read them before the transaction is checkpointed. So be
202 * careful and force everything to disk here... We use
203 * ei->i_datasync_tid to store the newest transaction
204 * containing inode's data.
205 *
206 * Note that directories do not have this problem because they
207 * don't use page cache.
208 */
209 if (ext4_should_journal_data(inode) &&
2b405bfa
TT
210 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
211 inode->i_ino != EXT4_JOURNAL_INO) {
2d859db3
JK
212 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
213 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
214
d76a3a77 215 jbd2_complete_transaction(journal, commit_tid);
2d859db3
JK
216 filemap_write_and_wait(&inode->i_data);
217 }
0930fcc1 218 truncate_inode_pages(&inode->i_data, 0);
1ada47d9 219 ext4_ioend_shutdown(inode);
0930fcc1
AV
220 goto no_delete;
221 }
222
907f4554 223 if (!is_bad_inode(inode))
871a2931 224 dquot_initialize(inode);
907f4554 225
678aaf48
JK
226 if (ext4_should_order_data(inode))
227 ext4_begin_ordered_truncate(inode, 0);
ac27a0ec 228 truncate_inode_pages(&inode->i_data, 0);
1ada47d9 229 ext4_ioend_shutdown(inode);
ac27a0ec
DK
230
231 if (is_bad_inode(inode))
232 goto no_delete;
233
8e8ad8a5
JK
234 /*
235 * Protect us against freezing - iput() caller didn't have to have any
236 * protection against it
237 */
238 sb_start_intwrite(inode->i_sb);
9924a92a
TT
239 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
240 ext4_blocks_for_truncate(inode)+3);
ac27a0ec 241 if (IS_ERR(handle)) {
bc965ab3 242 ext4_std_error(inode->i_sb, PTR_ERR(handle));
ac27a0ec
DK
243 /*
244 * If we're going to skip the normal cleanup, we still need to
245 * make sure that the in-core orphan linked list is properly
246 * cleaned up.
247 */
617ba13b 248 ext4_orphan_del(NULL, inode);
8e8ad8a5 249 sb_end_intwrite(inode->i_sb);
ac27a0ec
DK
250 goto no_delete;
251 }
252
253 if (IS_SYNC(inode))
0390131b 254 ext4_handle_sync(handle);
ac27a0ec 255 inode->i_size = 0;
bc965ab3
TT
256 err = ext4_mark_inode_dirty(handle, inode);
257 if (err) {
12062ddd 258 ext4_warning(inode->i_sb,
bc965ab3
TT
259 "couldn't mark inode dirty (err %d)", err);
260 goto stop_handle;
261 }
ac27a0ec 262 if (inode->i_blocks)
617ba13b 263 ext4_truncate(inode);
bc965ab3
TT
264
265 /*
266 * ext4_ext_truncate() doesn't reserve any slop when it
267 * restarts journal transactions; therefore there may not be
268 * enough credits left in the handle to remove the inode from
269 * the orphan list and set the dtime field.
270 */
0390131b 271 if (!ext4_handle_has_enough_credits(handle, 3)) {
bc965ab3
TT
272 err = ext4_journal_extend(handle, 3);
273 if (err > 0)
274 err = ext4_journal_restart(handle, 3);
275 if (err != 0) {
12062ddd 276 ext4_warning(inode->i_sb,
bc965ab3
TT
277 "couldn't extend journal (err %d)", err);
278 stop_handle:
279 ext4_journal_stop(handle);
45388219 280 ext4_orphan_del(NULL, inode);
8e8ad8a5 281 sb_end_intwrite(inode->i_sb);
bc965ab3
TT
282 goto no_delete;
283 }
284 }
285
ac27a0ec 286 /*
617ba13b 287 * Kill off the orphan record which ext4_truncate created.
ac27a0ec 288 * AKPM: I think this can be inside the above `if'.
617ba13b 289 * Note that ext4_orphan_del() has to be able to cope with the
ac27a0ec 290 * deletion of a non-existent orphan - this is because we don't
617ba13b 291 * know if ext4_truncate() actually created an orphan record.
ac27a0ec
DK
292 * (Well, we could do this if we need to, but heck - it works)
293 */
617ba13b
MC
294 ext4_orphan_del(handle, inode);
295 EXT4_I(inode)->i_dtime = get_seconds();
ac27a0ec
DK
296
297 /*
298 * One subtle ordering requirement: if anything has gone wrong
299 * (transaction abort, IO errors, whatever), then we can still
300 * do these next steps (the fs will already have been marked as
301 * having errors), but we can't free the inode if the mark_dirty
302 * fails.
303 */
617ba13b 304 if (ext4_mark_inode_dirty(handle, inode))
ac27a0ec 305 /* If that failed, just do the required in-core inode clear. */
0930fcc1 306 ext4_clear_inode(inode);
ac27a0ec 307 else
617ba13b
MC
308 ext4_free_inode(handle, inode);
309 ext4_journal_stop(handle);
8e8ad8a5 310 sb_end_intwrite(inode->i_sb);
ac27a0ec
DK
311 return;
312no_delete:
0930fcc1 313 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
ac27a0ec
DK
314}
315
a9e7f447
DM
316#ifdef CONFIG_QUOTA
317qsize_t *ext4_get_reserved_space(struct inode *inode)
60e58e0f 318{
a9e7f447 319 return &EXT4_I(inode)->i_reserved_quota;
60e58e0f 320}
a9e7f447 321#endif
9d0be502 322
12219aea
AK
323/*
324 * Calculate the number of metadata blocks need to reserve
9d0be502 325 * to allocate a block located at @lblock
12219aea 326 */
01f49d0b 327static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
12219aea 328{
12e9b892 329 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
9d0be502 330 return ext4_ext_calc_metadata_amount(inode, lblock);
12219aea 331
8bb2b247 332 return ext4_ind_calc_metadata_amount(inode, lblock);
12219aea
AK
333}
334
0637c6f4
TT
335/*
336 * Called with i_data_sem down, which is important since we can call
337 * ext4_discard_preallocations() from here.
338 */
5f634d06
AK
339void ext4_da_update_reserve_space(struct inode *inode,
340 int used, int quota_claim)
12219aea
AK
341{
342 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 343 struct ext4_inode_info *ei = EXT4_I(inode);
0637c6f4
TT
344
345 spin_lock(&ei->i_block_reservation_lock);
d8990240 346 trace_ext4_da_update_reserve_space(inode, used, quota_claim);
0637c6f4 347 if (unlikely(used > ei->i_reserved_data_blocks)) {
8de5c325 348 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
1084f252 349 "with only %d reserved data blocks",
0637c6f4
TT
350 __func__, inode->i_ino, used,
351 ei->i_reserved_data_blocks);
352 WARN_ON(1);
353 used = ei->i_reserved_data_blocks;
354 }
12219aea 355
97795d2a 356 if (unlikely(ei->i_allocated_meta_blocks > ei->i_reserved_meta_blocks)) {
01a523eb
TT
357 ext4_warning(inode->i_sb, "ino %lu, allocated %d "
358 "with only %d reserved metadata blocks "
359 "(releasing %d blocks with reserved %d data blocks)",
360 inode->i_ino, ei->i_allocated_meta_blocks,
361 ei->i_reserved_meta_blocks, used,
362 ei->i_reserved_data_blocks);
97795d2a
BF
363 WARN_ON(1);
364 ei->i_allocated_meta_blocks = ei->i_reserved_meta_blocks;
365 }
366
0637c6f4
TT
367 /* Update per-inode reservations */
368 ei->i_reserved_data_blocks -= used;
0637c6f4 369 ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
57042651 370 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
72b8ab9d 371 used + ei->i_allocated_meta_blocks);
0637c6f4 372 ei->i_allocated_meta_blocks = 0;
6bc6e63f 373
0637c6f4
TT
374 if (ei->i_reserved_data_blocks == 0) {
375 /*
376 * We can release all of the reserved metadata blocks
377 * only when we have written all of the delayed
378 * allocation blocks.
379 */
57042651 380 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
72b8ab9d 381 ei->i_reserved_meta_blocks);
ee5f4d9c 382 ei->i_reserved_meta_blocks = 0;
9d0be502 383 ei->i_da_metadata_calc_len = 0;
6bc6e63f 384 }
12219aea 385 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f 386
72b8ab9d
ES
387 /* Update quota subsystem for data blocks */
388 if (quota_claim)
7b415bf6 389 dquot_claim_block(inode, EXT4_C2B(sbi, used));
72b8ab9d 390 else {
5f634d06
AK
391 /*
392 * We did fallocate with an offset that is already delayed
393 * allocated. So on delayed allocated writeback we should
72b8ab9d 394 * not re-claim the quota for fallocated blocks.
5f634d06 395 */
7b415bf6 396 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
5f634d06 397 }
d6014301
AK
398
399 /*
400 * If we have done all the pending block allocations and if
401 * there aren't any writers on the inode, we can discard the
402 * inode's preallocations.
403 */
0637c6f4
TT
404 if ((ei->i_reserved_data_blocks == 0) &&
405 (atomic_read(&inode->i_writecount) == 0))
d6014301 406 ext4_discard_preallocations(inode);
12219aea
AK
407}
408
e29136f8 409static int __check_block_validity(struct inode *inode, const char *func,
c398eda0
TT
410 unsigned int line,
411 struct ext4_map_blocks *map)
6fd058f7 412{
24676da4
TT
413 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
414 map->m_len)) {
c398eda0
TT
415 ext4_error_inode(inode, func, line, map->m_pblk,
416 "lblock %lu mapped to illegal pblock "
417 "(length %d)", (unsigned long) map->m_lblk,
418 map->m_len);
6fd058f7
TT
419 return -EIO;
420 }
421 return 0;
422}
423
e29136f8 424#define check_block_validity(inode, map) \
c398eda0 425 __check_block_validity((inode), __func__, __LINE__, (map))
e29136f8 426
55138e0b 427/*
1f94533d
TT
428 * Return the number of contiguous dirty pages in a given inode
429 * starting at page frame idx.
55138e0b
TT
430 */
431static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
432 unsigned int max_pages)
433{
434 struct address_space *mapping = inode->i_mapping;
435 pgoff_t index;
436 struct pagevec pvec;
437 pgoff_t num = 0;
438 int i, nr_pages, done = 0;
439
440 if (max_pages == 0)
441 return 0;
442 pagevec_init(&pvec, 0);
443 while (!done) {
444 index = idx;
445 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
446 PAGECACHE_TAG_DIRTY,
447 (pgoff_t)PAGEVEC_SIZE);
448 if (nr_pages == 0)
449 break;
450 for (i = 0; i < nr_pages; i++) {
451 struct page *page = pvec.pages[i];
452 struct buffer_head *bh, *head;
453
454 lock_page(page);
455 if (unlikely(page->mapping != mapping) ||
456 !PageDirty(page) ||
457 PageWriteback(page) ||
458 page->index != idx) {
459 done = 1;
460 unlock_page(page);
461 break;
462 }
1f94533d
TT
463 if (page_has_buffers(page)) {
464 bh = head = page_buffers(page);
465 do {
466 if (!buffer_delay(bh) &&
467 !buffer_unwritten(bh))
468 done = 1;
469 bh = bh->b_this_page;
470 } while (!done && (bh != head));
471 }
55138e0b
TT
472 unlock_page(page);
473 if (done)
474 break;
475 idx++;
476 num++;
659c6009
ES
477 if (num >= max_pages) {
478 done = 1;
55138e0b 479 break;
659c6009 480 }
55138e0b
TT
481 }
482 pagevec_release(&pvec);
483 }
484 return num;
485}
486
921f266b
DM
487#ifdef ES_AGGRESSIVE_TEST
488static void ext4_map_blocks_es_recheck(handle_t *handle,
489 struct inode *inode,
490 struct ext4_map_blocks *es_map,
491 struct ext4_map_blocks *map,
492 int flags)
493{
494 int retval;
495
496 map->m_flags = 0;
497 /*
498 * There is a race window that the result is not the same.
499 * e.g. xfstests #223 when dioread_nolock enables. The reason
500 * is that we lookup a block mapping in extent status tree with
501 * out taking i_data_sem. So at the time the unwritten extent
502 * could be converted.
503 */
504 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
505 down_read((&EXT4_I(inode)->i_data_sem));
506 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
507 retval = ext4_ext_map_blocks(handle, inode, map, flags &
508 EXT4_GET_BLOCKS_KEEP_SIZE);
509 } else {
510 retval = ext4_ind_map_blocks(handle, inode, map, flags &
511 EXT4_GET_BLOCKS_KEEP_SIZE);
512 }
513 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
514 up_read((&EXT4_I(inode)->i_data_sem));
515 /*
516 * Clear EXT4_MAP_FROM_CLUSTER and EXT4_MAP_BOUNDARY flag
517 * because it shouldn't be marked in es_map->m_flags.
518 */
519 map->m_flags &= ~(EXT4_MAP_FROM_CLUSTER | EXT4_MAP_BOUNDARY);
520
521 /*
522 * We don't check m_len because extent will be collpased in status
523 * tree. So the m_len might not equal.
524 */
525 if (es_map->m_lblk != map->m_lblk ||
526 es_map->m_flags != map->m_flags ||
527 es_map->m_pblk != map->m_pblk) {
528 printk("ES cache assertation failed for inode: %lu "
529 "es_cached ex [%d/%d/%llu/%x] != "
530 "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
531 inode->i_ino, es_map->m_lblk, es_map->m_len,
532 es_map->m_pblk, es_map->m_flags, map->m_lblk,
533 map->m_len, map->m_pblk, map->m_flags,
534 retval, flags);
535 }
536}
537#endif /* ES_AGGRESSIVE_TEST */
538
f5ab0d1f 539/*
e35fd660 540 * The ext4_map_blocks() function tries to look up the requested blocks,
2b2d6d01 541 * and returns if the blocks are already mapped.
f5ab0d1f 542 *
f5ab0d1f
MC
543 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
544 * and store the allocated blocks in the result buffer head and mark it
545 * mapped.
546 *
e35fd660
TT
547 * If file type is extents based, it will call ext4_ext_map_blocks(),
548 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
f5ab0d1f
MC
549 * based files
550 *
551 * On success, it returns the number of blocks being mapped or allocate.
552 * if create==0 and the blocks are pre-allocated and uninitialized block,
553 * the result buffer head is unmapped. If the create ==1, it will make sure
554 * the buffer head is mapped.
555 *
556 * It returns 0 if plain look up failed (blocks have not been allocated), in
df3ab170 557 * that case, buffer head is unmapped
f5ab0d1f
MC
558 *
559 * It returns the error in case of allocation failure.
560 */
e35fd660
TT
561int ext4_map_blocks(handle_t *handle, struct inode *inode,
562 struct ext4_map_blocks *map, int flags)
0e855ac8 563{
d100eef2 564 struct extent_status es;
0e855ac8 565 int retval;
921f266b
DM
566#ifdef ES_AGGRESSIVE_TEST
567 struct ext4_map_blocks orig_map;
568
569 memcpy(&orig_map, map, sizeof(*map));
570#endif
f5ab0d1f 571
e35fd660
TT
572 map->m_flags = 0;
573 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
574 "logical block %lu\n", inode->i_ino, flags, map->m_len,
575 (unsigned long) map->m_lblk);
d100eef2
ZL
576
577 /* Lookup extent status tree firstly */
578 if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
579 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
580 map->m_pblk = ext4_es_pblock(&es) +
581 map->m_lblk - es.es_lblk;
582 map->m_flags |= ext4_es_is_written(&es) ?
583 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
584 retval = es.es_len - (map->m_lblk - es.es_lblk);
585 if (retval > map->m_len)
586 retval = map->m_len;
587 map->m_len = retval;
588 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
589 retval = 0;
590 } else {
591 BUG_ON(1);
592 }
921f266b
DM
593#ifdef ES_AGGRESSIVE_TEST
594 ext4_map_blocks_es_recheck(handle, inode, map,
595 &orig_map, flags);
596#endif
d100eef2
ZL
597 goto found;
598 }
599
4df3d265 600 /*
b920c755
TT
601 * Try to see if we can get the block without requesting a new
602 * file system block.
4df3d265 603 */
729f52c6
ZL
604 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
605 down_read((&EXT4_I(inode)->i_data_sem));
12e9b892 606 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
a4e5d88b
DM
607 retval = ext4_ext_map_blocks(handle, inode, map, flags &
608 EXT4_GET_BLOCKS_KEEP_SIZE);
0e855ac8 609 } else {
a4e5d88b
DM
610 retval = ext4_ind_map_blocks(handle, inode, map, flags &
611 EXT4_GET_BLOCKS_KEEP_SIZE);
0e855ac8 612 }
f7fec032
ZL
613 if (retval > 0) {
614 int ret;
615 unsigned long long status;
616
921f266b
DM
617#ifdef ES_AGGRESSIVE_TEST
618 if (retval != map->m_len) {
619 printk("ES len assertation failed for inode: %lu "
620 "retval %d != map->m_len %d "
621 "in %s (lookup)\n", inode->i_ino, retval,
622 map->m_len, __func__);
623 }
624#endif
625
f7fec032
ZL
626 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
627 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
628 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
629 ext4_find_delalloc_range(inode, map->m_lblk,
630 map->m_lblk + map->m_len - 1))
631 status |= EXTENT_STATUS_DELAYED;
632 ret = ext4_es_insert_extent(inode, map->m_lblk,
633 map->m_len, map->m_pblk, status);
634 if (ret < 0)
635 retval = ret;
636 }
729f52c6
ZL
637 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
638 up_read((&EXT4_I(inode)->i_data_sem));
f5ab0d1f 639
d100eef2 640found:
e35fd660 641 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
f7fec032 642 int ret = check_block_validity(inode, map);
6fd058f7
TT
643 if (ret != 0)
644 return ret;
645 }
646
f5ab0d1f 647 /* If it is only a block(s) look up */
c2177057 648 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
f5ab0d1f
MC
649 return retval;
650
651 /*
652 * Returns if the blocks have already allocated
653 *
654 * Note that if blocks have been preallocated
df3ab170 655 * ext4_ext_get_block() returns the create = 0
f5ab0d1f
MC
656 * with buffer head unmapped.
657 */
e35fd660 658 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
4df3d265
AK
659 return retval;
660
2a8964d6 661 /*
a25a4e1a
ZL
662 * Here we clear m_flags because after allocating an new extent,
663 * it will be set again.
2a8964d6 664 */
a25a4e1a 665 map->m_flags &= ~EXT4_MAP_FLAGS;
2a8964d6 666
4df3d265 667 /*
f5ab0d1f
MC
668 * New blocks allocate and/or writing to uninitialized extent
669 * will possibly result in updating i_data, so we take
670 * the write lock of i_data_sem, and call get_blocks()
671 * with create == 1 flag.
4df3d265
AK
672 */
673 down_write((&EXT4_I(inode)->i_data_sem));
d2a17637
MC
674
675 /*
676 * if the caller is from delayed allocation writeout path
677 * we have already reserved fs blocks for allocation
678 * let the underlying get_block() function know to
679 * avoid double accounting
680 */
c2177057 681 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
f2321097 682 ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
4df3d265
AK
683 /*
684 * We need to check for EXT4 here because migrate
685 * could have changed the inode type in between
686 */
12e9b892 687 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
e35fd660 688 retval = ext4_ext_map_blocks(handle, inode, map, flags);
0e855ac8 689 } else {
e35fd660 690 retval = ext4_ind_map_blocks(handle, inode, map, flags);
267e4db9 691
e35fd660 692 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
267e4db9
AK
693 /*
694 * We allocated new blocks which will result in
695 * i_data's format changing. Force the migrate
696 * to fail by clearing migrate flags
697 */
19f5fb7a 698 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
267e4db9 699 }
d2a17637 700
5f634d06
AK
701 /*
702 * Update reserved blocks/metadata blocks after successful
703 * block allocation which had been deferred till now. We don't
704 * support fallocate for non extent files. So we can update
705 * reserve space here.
706 */
707 if ((retval > 0) &&
1296cc85 708 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
5f634d06
AK
709 ext4_da_update_reserve_space(inode, retval, 1);
710 }
f7fec032 711 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
f2321097 712 ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
2ac3b6e0 713
f7fec032
ZL
714 if (retval > 0) {
715 int ret;
716 unsigned long long status;
717
921f266b
DM
718#ifdef ES_AGGRESSIVE_TEST
719 if (retval != map->m_len) {
720 printk("ES len assertation failed for inode: %lu "
721 "retval %d != map->m_len %d "
722 "in %s (allocation)\n", inode->i_ino, retval,
723 map->m_len, __func__);
724 }
725#endif
726
adb23551
ZL
727 /*
728 * If the extent has been zeroed out, we don't need to update
729 * extent status tree.
730 */
731 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
732 ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
733 if (ext4_es_is_written(&es))
734 goto has_zeroout;
735 }
f7fec032
ZL
736 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
737 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
738 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
739 ext4_find_delalloc_range(inode, map->m_lblk,
740 map->m_lblk + map->m_len - 1))
741 status |= EXTENT_STATUS_DELAYED;
742 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
743 map->m_pblk, status);
744 if (ret < 0)
745 retval = ret;
5356f261
AK
746 }
747
adb23551 748has_zeroout:
4df3d265 749 up_write((&EXT4_I(inode)->i_data_sem));
e35fd660 750 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
e29136f8 751 int ret = check_block_validity(inode, map);
6fd058f7
TT
752 if (ret != 0)
753 return ret;
754 }
0e855ac8
AK
755 return retval;
756}
757
f3bd1f3f
MC
758/* Maximum number of blocks we map for direct IO at once. */
759#define DIO_MAX_BLOCKS 4096
760
2ed88685
TT
761static int _ext4_get_block(struct inode *inode, sector_t iblock,
762 struct buffer_head *bh, int flags)
ac27a0ec 763{
3e4fdaf8 764 handle_t *handle = ext4_journal_current_handle();
2ed88685 765 struct ext4_map_blocks map;
7fb5409d 766 int ret = 0, started = 0;
f3bd1f3f 767 int dio_credits;
ac27a0ec 768
46c7f254
TM
769 if (ext4_has_inline_data(inode))
770 return -ERANGE;
771
2ed88685
TT
772 map.m_lblk = iblock;
773 map.m_len = bh->b_size >> inode->i_blkbits;
774
8b0f165f 775 if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
7fb5409d 776 /* Direct IO write... */
2ed88685
TT
777 if (map.m_len > DIO_MAX_BLOCKS)
778 map.m_len = DIO_MAX_BLOCKS;
779 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
9924a92a
TT
780 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
781 dio_credits);
7fb5409d 782 if (IS_ERR(handle)) {
ac27a0ec 783 ret = PTR_ERR(handle);
2ed88685 784 return ret;
ac27a0ec 785 }
7fb5409d 786 started = 1;
ac27a0ec
DK
787 }
788
2ed88685 789 ret = ext4_map_blocks(handle, inode, &map, flags);
7fb5409d 790 if (ret > 0) {
2ed88685
TT
791 map_bh(bh, inode->i_sb, map.m_pblk);
792 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
793 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
7fb5409d 794 ret = 0;
ac27a0ec 795 }
7fb5409d
JK
796 if (started)
797 ext4_journal_stop(handle);
ac27a0ec
DK
798 return ret;
799}
800
2ed88685
TT
801int ext4_get_block(struct inode *inode, sector_t iblock,
802 struct buffer_head *bh, int create)
803{
804 return _ext4_get_block(inode, iblock, bh,
805 create ? EXT4_GET_BLOCKS_CREATE : 0);
806}
807
ac27a0ec
DK
808/*
809 * `handle' can be NULL if create is zero
810 */
617ba13b 811struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
725d26d3 812 ext4_lblk_t block, int create, int *errp)
ac27a0ec 813{
2ed88685
TT
814 struct ext4_map_blocks map;
815 struct buffer_head *bh;
ac27a0ec
DK
816 int fatal = 0, err;
817
818 J_ASSERT(handle != NULL || create == 0);
819
2ed88685
TT
820 map.m_lblk = block;
821 map.m_len = 1;
822 err = ext4_map_blocks(handle, inode, &map,
823 create ? EXT4_GET_BLOCKS_CREATE : 0);
ac27a0ec 824
90b0a973
CM
825 /* ensure we send some value back into *errp */
826 *errp = 0;
827
0f70b406
TT
828 if (create && err == 0)
829 err = -ENOSPC; /* should never happen */
2ed88685
TT
830 if (err < 0)
831 *errp = err;
832 if (err <= 0)
833 return NULL;
2ed88685
TT
834
835 bh = sb_getblk(inode->i_sb, map.m_pblk);
aebf0243 836 if (unlikely(!bh)) {
860d21e2 837 *errp = -ENOMEM;
2ed88685 838 return NULL;
ac27a0ec 839 }
2ed88685
TT
840 if (map.m_flags & EXT4_MAP_NEW) {
841 J_ASSERT(create != 0);
842 J_ASSERT(handle != NULL);
ac27a0ec 843
2ed88685
TT
844 /*
845 * Now that we do not always journal data, we should
846 * keep in mind whether this should always journal the
847 * new buffer as metadata. For now, regular file
848 * writes use ext4_get_block instead, so it's not a
849 * problem.
850 */
851 lock_buffer(bh);
852 BUFFER_TRACE(bh, "call get_create_access");
853 fatal = ext4_journal_get_create_access(handle, bh);
854 if (!fatal && !buffer_uptodate(bh)) {
855 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
856 set_buffer_uptodate(bh);
ac27a0ec 857 }
2ed88685
TT
858 unlock_buffer(bh);
859 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
860 err = ext4_handle_dirty_metadata(handle, inode, bh);
861 if (!fatal)
862 fatal = err;
863 } else {
864 BUFFER_TRACE(bh, "not a new buffer");
ac27a0ec 865 }
2ed88685
TT
866 if (fatal) {
867 *errp = fatal;
868 brelse(bh);
869 bh = NULL;
870 }
871 return bh;
ac27a0ec
DK
872}
873
617ba13b 874struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
725d26d3 875 ext4_lblk_t block, int create, int *err)
ac27a0ec 876{
af5bc92d 877 struct buffer_head *bh;
ac27a0ec 878
617ba13b 879 bh = ext4_getblk(handle, inode, block, create, err);
ac27a0ec
DK
880 if (!bh)
881 return bh;
882 if (buffer_uptodate(bh))
883 return bh;
65299a3b 884 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
ac27a0ec
DK
885 wait_on_buffer(bh);
886 if (buffer_uptodate(bh))
887 return bh;
888 put_bh(bh);
889 *err = -EIO;
890 return NULL;
891}
892
f19d5870
TM
893int ext4_walk_page_buffers(handle_t *handle,
894 struct buffer_head *head,
895 unsigned from,
896 unsigned to,
897 int *partial,
898 int (*fn)(handle_t *handle,
899 struct buffer_head *bh))
ac27a0ec
DK
900{
901 struct buffer_head *bh;
902 unsigned block_start, block_end;
903 unsigned blocksize = head->b_size;
904 int err, ret = 0;
905 struct buffer_head *next;
906
af5bc92d
TT
907 for (bh = head, block_start = 0;
908 ret == 0 && (bh != head || !block_start);
de9a55b8 909 block_start = block_end, bh = next) {
ac27a0ec
DK
910 next = bh->b_this_page;
911 block_end = block_start + blocksize;
912 if (block_end <= from || block_start >= to) {
913 if (partial && !buffer_uptodate(bh))
914 *partial = 1;
915 continue;
916 }
917 err = (*fn)(handle, bh);
918 if (!ret)
919 ret = err;
920 }
921 return ret;
922}
923
924/*
925 * To preserve ordering, it is essential that the hole instantiation and
926 * the data write be encapsulated in a single transaction. We cannot
617ba13b 927 * close off a transaction and start a new one between the ext4_get_block()
dab291af 928 * and the commit_write(). So doing the jbd2_journal_start at the start of
ac27a0ec
DK
929 * prepare_write() is the right place.
930 *
36ade451
JK
931 * Also, this function can nest inside ext4_writepage(). In that case, we
932 * *know* that ext4_writepage() has generated enough buffer credits to do the
933 * whole page. So we won't block on the journal in that case, which is good,
934 * because the caller may be PF_MEMALLOC.
ac27a0ec 935 *
617ba13b 936 * By accident, ext4 can be reentered when a transaction is open via
ac27a0ec
DK
937 * quota file writes. If we were to commit the transaction while thus
938 * reentered, there can be a deadlock - we would be holding a quota
939 * lock, and the commit would never complete if another thread had a
940 * transaction open and was blocking on the quota lock - a ranking
941 * violation.
942 *
dab291af 943 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
ac27a0ec
DK
944 * will _not_ run commit under these circumstances because handle->h_ref
945 * is elevated. We'll still have enough credits for the tiny quotafile
946 * write.
947 */
f19d5870
TM
948int do_journal_get_write_access(handle_t *handle,
949 struct buffer_head *bh)
ac27a0ec 950{
56d35a4c
JK
951 int dirty = buffer_dirty(bh);
952 int ret;
953
ac27a0ec
DK
954 if (!buffer_mapped(bh) || buffer_freed(bh))
955 return 0;
56d35a4c 956 /*
ebdec241 957 * __block_write_begin() could have dirtied some buffers. Clean
56d35a4c
JK
958 * the dirty bit as jbd2_journal_get_write_access() could complain
959 * otherwise about fs integrity issues. Setting of the dirty bit
ebdec241 960 * by __block_write_begin() isn't a real problem here as we clear
56d35a4c
JK
961 * the bit before releasing a page lock and thus writeback cannot
962 * ever write the buffer.
963 */
964 if (dirty)
965 clear_buffer_dirty(bh);
966 ret = ext4_journal_get_write_access(handle, bh);
967 if (!ret && dirty)
968 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
969 return ret;
ac27a0ec
DK
970}
971
8b0f165f
AP
972static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
973 struct buffer_head *bh_result, int create);
bfc1af65 974static int ext4_write_begin(struct file *file, struct address_space *mapping,
de9a55b8
TT
975 loff_t pos, unsigned len, unsigned flags,
976 struct page **pagep, void **fsdata)
ac27a0ec 977{
af5bc92d 978 struct inode *inode = mapping->host;
1938a150 979 int ret, needed_blocks;
ac27a0ec
DK
980 handle_t *handle;
981 int retries = 0;
af5bc92d 982 struct page *page;
de9a55b8 983 pgoff_t index;
af5bc92d 984 unsigned from, to;
bfc1af65 985
9bffad1e 986 trace_ext4_write_begin(inode, pos, len, flags);
1938a150
AK
987 /*
988 * Reserve one block more for addition to orphan list in case
989 * we allocate blocks but write fails for some reason
990 */
991 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
de9a55b8 992 index = pos >> PAGE_CACHE_SHIFT;
af5bc92d
TT
993 from = pos & (PAGE_CACHE_SIZE - 1);
994 to = from + len;
ac27a0ec 995
f19d5870
TM
996 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
997 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
998 flags, pagep);
999 if (ret < 0)
47564bfb
TT
1000 return ret;
1001 if (ret == 1)
1002 return 0;
f19d5870
TM
1003 }
1004
47564bfb
TT
1005 /*
1006 * grab_cache_page_write_begin() can take a long time if the
1007 * system is thrashing due to memory pressure, or if the page
1008 * is being written back. So grab it first before we start
1009 * the transaction handle. This also allows us to allocate
1010 * the page (if needed) without using GFP_NOFS.
1011 */
1012retry_grab:
1013 page = grab_cache_page_write_begin(mapping, index, flags);
1014 if (!page)
1015 return -ENOMEM;
1016 unlock_page(page);
1017
1018retry_journal:
9924a92a 1019 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
af5bc92d 1020 if (IS_ERR(handle)) {
47564bfb
TT
1021 page_cache_release(page);
1022 return PTR_ERR(handle);
7479d2b9 1023 }
ac27a0ec 1024
47564bfb
TT
1025 lock_page(page);
1026 if (page->mapping != mapping) {
1027 /* The page got truncated from under us */
1028 unlock_page(page);
1029 page_cache_release(page);
cf108bca 1030 ext4_journal_stop(handle);
47564bfb 1031 goto retry_grab;
cf108bca 1032 }
47564bfb 1033 wait_on_page_writeback(page);
cf108bca 1034
744692dc 1035 if (ext4_should_dioread_nolock(inode))
6e1db88d 1036 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
744692dc 1037 else
6e1db88d 1038 ret = __block_write_begin(page, pos, len, ext4_get_block);
bfc1af65
NP
1039
1040 if (!ret && ext4_should_journal_data(inode)) {
f19d5870
TM
1041 ret = ext4_walk_page_buffers(handle, page_buffers(page),
1042 from, to, NULL,
1043 do_journal_get_write_access);
ac27a0ec 1044 }
bfc1af65
NP
1045
1046 if (ret) {
af5bc92d 1047 unlock_page(page);
ae4d5372 1048 /*
6e1db88d 1049 * __block_write_begin may have instantiated a few blocks
ae4d5372
AK
1050 * outside i_size. Trim these off again. Don't need
1051 * i_size_read because we hold i_mutex.
1938a150
AK
1052 *
1053 * Add inode to orphan list in case we crash before
1054 * truncate finishes
ae4d5372 1055 */
ffacfa7a 1056 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1938a150
AK
1057 ext4_orphan_add(handle, inode);
1058
1059 ext4_journal_stop(handle);
1060 if (pos + len > inode->i_size) {
b9a4207d 1061 ext4_truncate_failed_write(inode);
de9a55b8 1062 /*
ffacfa7a 1063 * If truncate failed early the inode might
1938a150
AK
1064 * still be on the orphan list; we need to
1065 * make sure the inode is removed from the
1066 * orphan list in that case.
1067 */
1068 if (inode->i_nlink)
1069 ext4_orphan_del(NULL, inode);
1070 }
bfc1af65 1071
47564bfb
TT
1072 if (ret == -ENOSPC &&
1073 ext4_should_retry_alloc(inode->i_sb, &retries))
1074 goto retry_journal;
1075 page_cache_release(page);
1076 return ret;
1077 }
1078 *pagep = page;
ac27a0ec
DK
1079 return ret;
1080}
1081
bfc1af65
NP
1082/* For write_end() in data=journal mode */
1083static int write_end_fn(handle_t *handle, struct buffer_head *bh)
ac27a0ec 1084{
13fca323 1085 int ret;
ac27a0ec
DK
1086 if (!buffer_mapped(bh) || buffer_freed(bh))
1087 return 0;
1088 set_buffer_uptodate(bh);
13fca323
TT
1089 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1090 clear_buffer_meta(bh);
1091 clear_buffer_prio(bh);
1092 return ret;
ac27a0ec
DK
1093}
1094
eed4333f
ZL
1095/*
1096 * We need to pick up the new inode size which generic_commit_write gave us
1097 * `file' can be NULL - eg, when called from page_symlink().
1098 *
1099 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1100 * buffers are managed internally.
1101 */
1102static int ext4_write_end(struct file *file,
1103 struct address_space *mapping,
1104 loff_t pos, unsigned len, unsigned copied,
1105 struct page *page, void *fsdata)
f8514083 1106{
f8514083 1107 handle_t *handle = ext4_journal_current_handle();
eed4333f
ZL
1108 struct inode *inode = mapping->host;
1109 int ret = 0, ret2;
1110 int i_size_changed = 0;
1111
1112 trace_ext4_write_end(inode, pos, len, copied);
1113 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) {
1114 ret = ext4_jbd2_file_inode(handle, inode);
1115 if (ret) {
1116 unlock_page(page);
1117 page_cache_release(page);
1118 goto errout;
1119 }
1120 }
f8514083 1121
f19d5870
TM
1122 if (ext4_has_inline_data(inode))
1123 copied = ext4_write_inline_data_end(inode, pos, len,
1124 copied, page);
1125 else
1126 copied = block_write_end(file, mapping, pos,
1127 len, copied, page, fsdata);
f8514083
AK
1128
1129 /*
1130 * No need to use i_size_read() here, the i_size
eed4333f 1131 * cannot change under us because we hole i_mutex.
f8514083
AK
1132 *
1133 * But it's important to update i_size while still holding page lock:
1134 * page writeout could otherwise come in and zero beyond i_size.
1135 */
1136 if (pos + copied > inode->i_size) {
1137 i_size_write(inode, pos + copied);
1138 i_size_changed = 1;
1139 }
1140
eed4333f 1141 if (pos + copied > EXT4_I(inode)->i_disksize) {
f8514083
AK
1142 /* We need to mark inode dirty even if
1143 * new_i_size is less that inode->i_size
eed4333f 1144 * but greater than i_disksize. (hint delalloc)
f8514083
AK
1145 */
1146 ext4_update_i_disksize(inode, (pos + copied));
1147 i_size_changed = 1;
1148 }
1149 unlock_page(page);
1150 page_cache_release(page);
1151
1152 /*
1153 * Don't mark the inode dirty under page lock. First, it unnecessarily
1154 * makes the holding time of page lock longer. Second, it forces lock
1155 * ordering of page lock and transaction start for journaling
1156 * filesystems.
1157 */
1158 if (i_size_changed)
1159 ext4_mark_inode_dirty(handle, inode);
1160
74d553aa
TT
1161 if (copied < 0)
1162 ret = copied;
ffacfa7a 1163 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1164 /* if we have allocated more blocks and copied
1165 * less. We will have blocks allocated outside
1166 * inode->i_size. So truncate them
1167 */
1168 ext4_orphan_add(handle, inode);
74d553aa 1169errout:
617ba13b 1170 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1171 if (!ret)
1172 ret = ret2;
bfc1af65 1173
f8514083 1174 if (pos + len > inode->i_size) {
b9a4207d 1175 ext4_truncate_failed_write(inode);
de9a55b8 1176 /*
ffacfa7a 1177 * If truncate failed early the inode might still be
f8514083
AK
1178 * on the orphan list; we need to make sure the inode
1179 * is removed from the orphan list in that case.
1180 */
1181 if (inode->i_nlink)
1182 ext4_orphan_del(NULL, inode);
1183 }
1184
bfc1af65 1185 return ret ? ret : copied;
ac27a0ec
DK
1186}
1187
bfc1af65 1188static int ext4_journalled_write_end(struct file *file,
de9a55b8
TT
1189 struct address_space *mapping,
1190 loff_t pos, unsigned len, unsigned copied,
1191 struct page *page, void *fsdata)
ac27a0ec 1192{
617ba13b 1193 handle_t *handle = ext4_journal_current_handle();
bfc1af65 1194 struct inode *inode = mapping->host;
ac27a0ec
DK
1195 int ret = 0, ret2;
1196 int partial = 0;
bfc1af65 1197 unsigned from, to;
cf17fea6 1198 loff_t new_i_size;
ac27a0ec 1199
9bffad1e 1200 trace_ext4_journalled_write_end(inode, pos, len, copied);
bfc1af65
NP
1201 from = pos & (PAGE_CACHE_SIZE - 1);
1202 to = from + len;
1203
441c8508
CW
1204 BUG_ON(!ext4_handle_valid(handle));
1205
3fdcfb66
TM
1206 if (ext4_has_inline_data(inode))
1207 copied = ext4_write_inline_data_end(inode, pos, len,
1208 copied, page);
1209 else {
1210 if (copied < len) {
1211 if (!PageUptodate(page))
1212 copied = 0;
1213 page_zero_new_buffers(page, from+copied, to);
1214 }
ac27a0ec 1215
3fdcfb66
TM
1216 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1217 to, &partial, write_end_fn);
1218 if (!partial)
1219 SetPageUptodate(page);
1220 }
cf17fea6
AK
1221 new_i_size = pos + copied;
1222 if (new_i_size > inode->i_size)
bfc1af65 1223 i_size_write(inode, pos+copied);
19f5fb7a 1224 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2d859db3 1225 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
cf17fea6
AK
1226 if (new_i_size > EXT4_I(inode)->i_disksize) {
1227 ext4_update_i_disksize(inode, new_i_size);
617ba13b 1228 ret2 = ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
1229 if (!ret)
1230 ret = ret2;
1231 }
bfc1af65 1232
cf108bca 1233 unlock_page(page);
f8514083 1234 page_cache_release(page);
ffacfa7a 1235 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1236 /* if we have allocated more blocks and copied
1237 * less. We will have blocks allocated outside
1238 * inode->i_size. So truncate them
1239 */
1240 ext4_orphan_add(handle, inode);
1241
617ba13b 1242 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1243 if (!ret)
1244 ret = ret2;
f8514083 1245 if (pos + len > inode->i_size) {
b9a4207d 1246 ext4_truncate_failed_write(inode);
de9a55b8 1247 /*
ffacfa7a 1248 * If truncate failed early the inode might still be
f8514083
AK
1249 * on the orphan list; we need to make sure the inode
1250 * is removed from the orphan list in that case.
1251 */
1252 if (inode->i_nlink)
1253 ext4_orphan_del(NULL, inode);
1254 }
bfc1af65
NP
1255
1256 return ret ? ret : copied;
ac27a0ec 1257}
d2a17637 1258
386ad67c
LC
1259/*
1260 * Reserve a metadata for a single block located at lblock
1261 */
1262static int ext4_da_reserve_metadata(struct inode *inode, ext4_lblk_t lblock)
1263{
1264 int retries = 0;
1265 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1266 struct ext4_inode_info *ei = EXT4_I(inode);
1267 unsigned int md_needed;
1268 ext4_lblk_t save_last_lblock;
1269 int save_len;
1270
1271 /*
1272 * recalculate the amount of metadata blocks to reserve
1273 * in order to allocate nrblocks
1274 * worse case is one extent per block
1275 */
1276repeat:
1277 spin_lock(&ei->i_block_reservation_lock);
1278 /*
1279 * ext4_calc_metadata_amount() has side effects, which we have
1280 * to be prepared undo if we fail to claim space.
1281 */
1282 save_len = ei->i_da_metadata_calc_len;
1283 save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1284 md_needed = EXT4_NUM_B2C(sbi,
1285 ext4_calc_metadata_amount(inode, lblock));
1286 trace_ext4_da_reserve_space(inode, md_needed);
1287
1288 /*
1289 * We do still charge estimated metadata to the sb though;
1290 * we cannot afford to run out of free blocks.
1291 */
1292 if (ext4_claim_free_clusters(sbi, md_needed, 0)) {
1293 ei->i_da_metadata_calc_len = save_len;
1294 ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1295 spin_unlock(&ei->i_block_reservation_lock);
1296 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1297 cond_resched();
1298 goto repeat;
1299 }
1300 return -ENOSPC;
1301 }
1302 ei->i_reserved_meta_blocks += md_needed;
1303 spin_unlock(&ei->i_block_reservation_lock);
1304
1305 return 0; /* success */
1306}
1307
9d0be502 1308/*
7b415bf6 1309 * Reserve a single cluster located at lblock
9d0be502 1310 */
01f49d0b 1311static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
d2a17637 1312{
030ba6bc 1313 int retries = 0;
60e58e0f 1314 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 1315 struct ext4_inode_info *ei = EXT4_I(inode);
7b415bf6 1316 unsigned int md_needed;
5dd4056d 1317 int ret;
03179fe9
TT
1318 ext4_lblk_t save_last_lblock;
1319 int save_len;
1320
1321 /*
1322 * We will charge metadata quota at writeout time; this saves
1323 * us from metadata over-estimation, though we may go over by
1324 * a small amount in the end. Here we just reserve for data.
1325 */
1326 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1327 if (ret)
1328 return ret;
d2a17637
MC
1329
1330 /*
1331 * recalculate the amount of metadata blocks to reserve
1332 * in order to allocate nrblocks
1333 * worse case is one extent per block
1334 */
030ba6bc 1335repeat:
0637c6f4 1336 spin_lock(&ei->i_block_reservation_lock);
03179fe9
TT
1337 /*
1338 * ext4_calc_metadata_amount() has side effects, which we have
1339 * to be prepared undo if we fail to claim space.
1340 */
1341 save_len = ei->i_da_metadata_calc_len;
1342 save_last_lblock = ei->i_da_metadata_calc_last_lblock;
7b415bf6
AK
1343 md_needed = EXT4_NUM_B2C(sbi,
1344 ext4_calc_metadata_amount(inode, lblock));
f8ec9d68 1345 trace_ext4_da_reserve_space(inode, md_needed);
d2a17637 1346
72b8ab9d
ES
1347 /*
1348 * We do still charge estimated metadata to the sb though;
1349 * we cannot afford to run out of free blocks.
1350 */
e7d5f315 1351 if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) {
03179fe9
TT
1352 ei->i_da_metadata_calc_len = save_len;
1353 ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1354 spin_unlock(&ei->i_block_reservation_lock);
030ba6bc 1355 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
bb8b20ed 1356 cond_resched();
030ba6bc
AK
1357 goto repeat;
1358 }
03179fe9 1359 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
d2a17637
MC
1360 return -ENOSPC;
1361 }
9d0be502 1362 ei->i_reserved_data_blocks++;
0637c6f4
TT
1363 ei->i_reserved_meta_blocks += md_needed;
1364 spin_unlock(&ei->i_block_reservation_lock);
39bc680a 1365
d2a17637
MC
1366 return 0; /* success */
1367}
1368
12219aea 1369static void ext4_da_release_space(struct inode *inode, int to_free)
d2a17637
MC
1370{
1371 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 1372 struct ext4_inode_info *ei = EXT4_I(inode);
d2a17637 1373
cd213226
MC
1374 if (!to_free)
1375 return; /* Nothing to release, exit */
1376
d2a17637 1377 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
cd213226 1378
5a58ec87 1379 trace_ext4_da_release_space(inode, to_free);
0637c6f4 1380 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
cd213226 1381 /*
0637c6f4
TT
1382 * if there aren't enough reserved blocks, then the
1383 * counter is messed up somewhere. Since this
1384 * function is called from invalidate page, it's
1385 * harmless to return without any action.
cd213226 1386 */
8de5c325 1387 ext4_warning(inode->i_sb, "ext4_da_release_space: "
0637c6f4 1388 "ino %lu, to_free %d with only %d reserved "
1084f252 1389 "data blocks", inode->i_ino, to_free,
0637c6f4
TT
1390 ei->i_reserved_data_blocks);
1391 WARN_ON(1);
1392 to_free = ei->i_reserved_data_blocks;
cd213226 1393 }
0637c6f4 1394 ei->i_reserved_data_blocks -= to_free;
cd213226 1395
0637c6f4
TT
1396 if (ei->i_reserved_data_blocks == 0) {
1397 /*
1398 * We can release all of the reserved metadata blocks
1399 * only when we have written all of the delayed
1400 * allocation blocks.
7b415bf6
AK
1401 * Note that in case of bigalloc, i_reserved_meta_blocks,
1402 * i_reserved_data_blocks, etc. refer to number of clusters.
0637c6f4 1403 */
57042651 1404 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
72b8ab9d 1405 ei->i_reserved_meta_blocks);
ee5f4d9c 1406 ei->i_reserved_meta_blocks = 0;
9d0be502 1407 ei->i_da_metadata_calc_len = 0;
0637c6f4 1408 }
d2a17637 1409
72b8ab9d 1410 /* update fs dirty data blocks counter */
57042651 1411 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
d2a17637 1412
d2a17637 1413 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f 1414
7b415bf6 1415 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
d2a17637
MC
1416}
1417
1418static void ext4_da_page_release_reservation(struct page *page,
de9a55b8 1419 unsigned long offset)
d2a17637
MC
1420{
1421 int to_release = 0;
1422 struct buffer_head *head, *bh;
1423 unsigned int curr_off = 0;
7b415bf6
AK
1424 struct inode *inode = page->mapping->host;
1425 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1426 int num_clusters;
51865fda 1427 ext4_fsblk_t lblk;
d2a17637
MC
1428
1429 head = page_buffers(page);
1430 bh = head;
1431 do {
1432 unsigned int next_off = curr_off + bh->b_size;
1433
1434 if ((offset <= curr_off) && (buffer_delay(bh))) {
1435 to_release++;
1436 clear_buffer_delay(bh);
1437 }
1438 curr_off = next_off;
1439 } while ((bh = bh->b_this_page) != head);
7b415bf6 1440
51865fda
ZL
1441 if (to_release) {
1442 lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1443 ext4_es_remove_extent(inode, lblk, to_release);
1444 }
1445
7b415bf6
AK
1446 /* If we have released all the blocks belonging to a cluster, then we
1447 * need to release the reserved space for that cluster. */
1448 num_clusters = EXT4_NUM_B2C(sbi, to_release);
1449 while (num_clusters > 0) {
7b415bf6
AK
1450 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1451 ((num_clusters - 1) << sbi->s_cluster_bits);
1452 if (sbi->s_cluster_ratio == 1 ||
7d1b1fbc 1453 !ext4_find_delalloc_cluster(inode, lblk))
7b415bf6
AK
1454 ext4_da_release_space(inode, 1);
1455
1456 num_clusters--;
1457 }
d2a17637 1458}
ac27a0ec 1459
64769240
AT
1460/*
1461 * Delayed allocation stuff
1462 */
1463
64769240
AT
1464/*
1465 * mpage_da_submit_io - walks through extent of pages and try to write
a1d6cc56 1466 * them with writepage() call back
64769240
AT
1467 *
1468 * @mpd->inode: inode
1469 * @mpd->first_page: first page of the extent
1470 * @mpd->next_page: page after the last page of the extent
64769240
AT
1471 *
1472 * By the time mpage_da_submit_io() is called we expect all blocks
1473 * to be allocated. this may be wrong if allocation failed.
1474 *
1475 * As pages are already locked by write_cache_pages(), we can't use it
1476 */
1de3e3df
TT
1477static int mpage_da_submit_io(struct mpage_da_data *mpd,
1478 struct ext4_map_blocks *map)
64769240 1479{
791b7f08
AK
1480 struct pagevec pvec;
1481 unsigned long index, end;
1482 int ret = 0, err, nr_pages, i;
1483 struct inode *inode = mpd->inode;
1484 struct address_space *mapping = inode->i_mapping;
cb20d518 1485 loff_t size = i_size_read(inode);
3ecdb3a1
TT
1486 unsigned int len, block_start;
1487 struct buffer_head *bh, *page_bufs = NULL;
1de3e3df 1488 sector_t pblock = 0, cur_logical = 0;
bd2d0210 1489 struct ext4_io_submit io_submit;
64769240
AT
1490
1491 BUG_ON(mpd->next_page <= mpd->first_page);
a549984b 1492 memset(&io_submit, 0, sizeof(io_submit));
791b7f08
AK
1493 /*
1494 * We need to start from the first_page to the next_page - 1
1495 * to make sure we also write the mapped dirty buffer_heads.
8dc207c0 1496 * If we look at mpd->b_blocknr we would only be looking
791b7f08
AK
1497 * at the currently mapped buffer_heads.
1498 */
64769240
AT
1499 index = mpd->first_page;
1500 end = mpd->next_page - 1;
1501
791b7f08 1502 pagevec_init(&pvec, 0);
64769240 1503 while (index <= end) {
791b7f08 1504 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
64769240
AT
1505 if (nr_pages == 0)
1506 break;
1507 for (i = 0; i < nr_pages; i++) {
f8bec370 1508 int skip_page = 0;
64769240
AT
1509 struct page *page = pvec.pages[i];
1510
791b7f08
AK
1511 index = page->index;
1512 if (index > end)
1513 break;
cb20d518
TT
1514
1515 if (index == size >> PAGE_CACHE_SHIFT)
1516 len = size & ~PAGE_CACHE_MASK;
1517 else
1518 len = PAGE_CACHE_SIZE;
1de3e3df
TT
1519 if (map) {
1520 cur_logical = index << (PAGE_CACHE_SHIFT -
1521 inode->i_blkbits);
1522 pblock = map->m_pblk + (cur_logical -
1523 map->m_lblk);
1524 }
791b7f08
AK
1525 index++;
1526
1527 BUG_ON(!PageLocked(page));
1528 BUG_ON(PageWriteback(page));
1529
3ecdb3a1
TT
1530 bh = page_bufs = page_buffers(page);
1531 block_start = 0;
64769240 1532 do {
1de3e3df
TT
1533 if (map && (cur_logical >= map->m_lblk) &&
1534 (cur_logical <= (map->m_lblk +
1535 (map->m_len - 1)))) {
29fa89d0
AK
1536 if (buffer_delay(bh)) {
1537 clear_buffer_delay(bh);
1538 bh->b_blocknr = pblock;
29fa89d0 1539 }
1de3e3df
TT
1540 if (buffer_unwritten(bh) ||
1541 buffer_mapped(bh))
1542 BUG_ON(bh->b_blocknr != pblock);
1543 if (map->m_flags & EXT4_MAP_UNINIT)
1544 set_buffer_uninit(bh);
1545 clear_buffer_unwritten(bh);
1546 }
29fa89d0 1547
13a79a47
YY
1548 /*
1549 * skip page if block allocation undone and
1550 * block is dirty
1551 */
1552 if (ext4_bh_delay_or_unwritten(NULL, bh))
97498956 1553 skip_page = 1;
3ecdb3a1
TT
1554 bh = bh->b_this_page;
1555 block_start += bh->b_size;
64769240
AT
1556 cur_logical++;
1557 pblock++;
1de3e3df
TT
1558 } while (bh != page_bufs);
1559
f8bec370
JK
1560 if (skip_page) {
1561 unlock_page(page);
1562 continue;
1563 }
cb20d518 1564
97498956 1565 clear_page_dirty_for_io(page);
fe089c77
JK
1566 err = ext4_bio_write_page(&io_submit, page, len,
1567 mpd->wbc);
cb20d518 1568 if (!err)
a1d6cc56 1569 mpd->pages_written++;
64769240
AT
1570 /*
1571 * In error case, we have to continue because
1572 * remaining pages are still locked
64769240
AT
1573 */
1574 if (ret == 0)
1575 ret = err;
64769240
AT
1576 }
1577 pagevec_release(&pvec);
1578 }
bd2d0210 1579 ext4_io_submit(&io_submit);
64769240 1580 return ret;
64769240
AT
1581}
1582
c7f5938a 1583static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd)
c4a0c46e
AK
1584{
1585 int nr_pages, i;
1586 pgoff_t index, end;
1587 struct pagevec pvec;
1588 struct inode *inode = mpd->inode;
1589 struct address_space *mapping = inode->i_mapping;
51865fda 1590 ext4_lblk_t start, last;
c4a0c46e 1591
c7f5938a
CW
1592 index = mpd->first_page;
1593 end = mpd->next_page - 1;
51865fda
ZL
1594
1595 start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1596 last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1597 ext4_es_remove_extent(inode, start, last - start + 1);
1598
66bea92c 1599 pagevec_init(&pvec, 0);
c4a0c46e
AK
1600 while (index <= end) {
1601 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1602 if (nr_pages == 0)
1603 break;
1604 for (i = 0; i < nr_pages; i++) {
1605 struct page *page = pvec.pages[i];
9b1d0998 1606 if (page->index > end)
c4a0c46e 1607 break;
c4a0c46e
AK
1608 BUG_ON(!PageLocked(page));
1609 BUG_ON(PageWriteback(page));
d47992f8 1610 block_invalidatepage(page, 0, PAGE_CACHE_SIZE);
c4a0c46e
AK
1611 ClearPageUptodate(page);
1612 unlock_page(page);
1613 }
9b1d0998
JK
1614 index = pvec.pages[nr_pages - 1]->index + 1;
1615 pagevec_release(&pvec);
c4a0c46e
AK
1616 }
1617 return;
1618}
1619
df22291f
AK
1620static void ext4_print_free_blocks(struct inode *inode)
1621{
1622 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
92b97816 1623 struct super_block *sb = inode->i_sb;
f78ee70d 1624 struct ext4_inode_info *ei = EXT4_I(inode);
92b97816
TT
1625
1626 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
5dee5437 1627 EXT4_C2B(EXT4_SB(inode->i_sb),
f78ee70d 1628 ext4_count_free_clusters(sb)));
92b97816
TT
1629 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1630 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
f78ee70d 1631 (long long) EXT4_C2B(EXT4_SB(sb),
57042651 1632 percpu_counter_sum(&sbi->s_freeclusters_counter)));
92b97816 1633 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
f78ee70d 1634 (long long) EXT4_C2B(EXT4_SB(sb),
7b415bf6 1635 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
92b97816
TT
1636 ext4_msg(sb, KERN_CRIT, "Block reservation details");
1637 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
f78ee70d 1638 ei->i_reserved_data_blocks);
92b97816 1639 ext4_msg(sb, KERN_CRIT, "i_reserved_meta_blocks=%u",
f78ee70d
LC
1640 ei->i_reserved_meta_blocks);
1641 ext4_msg(sb, KERN_CRIT, "i_allocated_meta_blocks=%u",
1642 ei->i_allocated_meta_blocks);
df22291f
AK
1643 return;
1644}
1645
64769240 1646/*
5a87b7a5
TT
1647 * mpage_da_map_and_submit - go through given space, map them
1648 * if necessary, and then submit them for I/O
64769240 1649 *
8dc207c0 1650 * @mpd - bh describing space
64769240
AT
1651 *
1652 * The function skips space we know is already mapped to disk blocks.
1653 *
64769240 1654 */
5a87b7a5 1655static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
64769240 1656{
2ac3b6e0 1657 int err, blks, get_blocks_flags;
1de3e3df 1658 struct ext4_map_blocks map, *mapp = NULL;
2fa3cdfb
TT
1659 sector_t next = mpd->b_blocknr;
1660 unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
1661 loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
1662 handle_t *handle = NULL;
64769240
AT
1663
1664 /*
5a87b7a5
TT
1665 * If the blocks are mapped already, or we couldn't accumulate
1666 * any blocks, then proceed immediately to the submission stage.
2fa3cdfb 1667 */
5a87b7a5
TT
1668 if ((mpd->b_size == 0) ||
1669 ((mpd->b_state & (1 << BH_Mapped)) &&
1670 !(mpd->b_state & (1 << BH_Delay)) &&
1671 !(mpd->b_state & (1 << BH_Unwritten))))
1672 goto submit_io;
2fa3cdfb
TT
1673
1674 handle = ext4_journal_current_handle();
1675 BUG_ON(!handle);
1676
79ffab34 1677 /*
79e83036 1678 * Call ext4_map_blocks() to allocate any delayed allocation
2ac3b6e0
TT
1679 * blocks, or to convert an uninitialized extent to be
1680 * initialized (in the case where we have written into
1681 * one or more preallocated blocks).
1682 *
1683 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
1684 * indicate that we are on the delayed allocation path. This
1685 * affects functions in many different parts of the allocation
1686 * call path. This flag exists primarily because we don't
79e83036 1687 * want to change *many* call functions, so ext4_map_blocks()
f2321097 1688 * will set the EXT4_STATE_DELALLOC_RESERVED flag once the
2ac3b6e0
TT
1689 * inode's allocation semaphore is taken.
1690 *
1691 * If the blocks in questions were delalloc blocks, set
1692 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
1693 * variables are updated after the blocks have been allocated.
79ffab34 1694 */
2ed88685
TT
1695 map.m_lblk = next;
1696 map.m_len = max_blocks;
27dd4385
LC
1697 /*
1698 * We're in delalloc path and it is possible that we're going to
1699 * need more metadata blocks than previously reserved. However
1700 * we must not fail because we're in writeback and there is
1701 * nothing we can do about it so it might result in data loss.
1702 * So use reserved blocks to allocate metadata if possible.
1703 */
1704 get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
1705 EXT4_GET_BLOCKS_METADATA_NOFAIL;
744692dc
JZ
1706 if (ext4_should_dioread_nolock(mpd->inode))
1707 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2ac3b6e0 1708 if (mpd->b_state & (1 << BH_Delay))
1296cc85
AK
1709 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
1710
27dd4385 1711
2ed88685 1712 blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
2fa3cdfb 1713 if (blks < 0) {
e3570639
ES
1714 struct super_block *sb = mpd->inode->i_sb;
1715
2fa3cdfb 1716 err = blks;
ed5bde0b 1717 /*
5a87b7a5 1718 * If get block returns EAGAIN or ENOSPC and there
97498956
TT
1719 * appears to be free blocks we will just let
1720 * mpage_da_submit_io() unlock all of the pages.
c4a0c46e
AK
1721 */
1722 if (err == -EAGAIN)
5a87b7a5 1723 goto submit_io;
df22291f 1724
5dee5437 1725 if (err == -ENOSPC && ext4_count_free_clusters(sb)) {
df22291f 1726 mpd->retval = err;
5a87b7a5 1727 goto submit_io;
df22291f
AK
1728 }
1729
c4a0c46e 1730 /*
ed5bde0b
TT
1731 * get block failure will cause us to loop in
1732 * writepages, because a_ops->writepage won't be able
1733 * to make progress. The page will be redirtied by
1734 * writepage and writepages will again try to write
1735 * the same.
c4a0c46e 1736 */
e3570639
ES
1737 if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
1738 ext4_msg(sb, KERN_CRIT,
1739 "delayed block allocation failed for inode %lu "
1740 "at logical offset %llu with max blocks %zd "
1741 "with error %d", mpd->inode->i_ino,
1742 (unsigned long long) next,
1743 mpd->b_size >> mpd->inode->i_blkbits, err);
1744 ext4_msg(sb, KERN_CRIT,
01a523eb 1745 "This should not happen!! Data will be lost");
e3570639
ES
1746 if (err == -ENOSPC)
1747 ext4_print_free_blocks(mpd->inode);
030ba6bc 1748 }
2fa3cdfb 1749 /* invalidate all the pages */
c7f5938a 1750 ext4_da_block_invalidatepages(mpd);
e0fd9b90
CW
1751
1752 /* Mark this page range as having been completed */
1753 mpd->io_done = 1;
5a87b7a5 1754 return;
c4a0c46e 1755 }
2fa3cdfb
TT
1756 BUG_ON(blks == 0);
1757
1de3e3df 1758 mapp = &map;
2ed88685
TT
1759 if (map.m_flags & EXT4_MAP_NEW) {
1760 struct block_device *bdev = mpd->inode->i_sb->s_bdev;
1761 int i;
64769240 1762
2ed88685
TT
1763 for (i = 0; i < map.m_len; i++)
1764 unmap_underlying_metadata(bdev, map.m_pblk + i);
2fa3cdfb
TT
1765 }
1766
1767 /*
03f5d8bc 1768 * Update on-disk size along with block allocation.
2fa3cdfb
TT
1769 */
1770 disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
1771 if (disksize > i_size_read(mpd->inode))
1772 disksize = i_size_read(mpd->inode);
1773 if (disksize > EXT4_I(mpd->inode)->i_disksize) {
1774 ext4_update_i_disksize(mpd->inode, disksize);
5a87b7a5
TT
1775 err = ext4_mark_inode_dirty(handle, mpd->inode);
1776 if (err)
1777 ext4_error(mpd->inode->i_sb,
1778 "Failed to mark inode %lu dirty",
1779 mpd->inode->i_ino);
2fa3cdfb
TT
1780 }
1781
5a87b7a5 1782submit_io:
1de3e3df 1783 mpage_da_submit_io(mpd, mapp);
5a87b7a5 1784 mpd->io_done = 1;
64769240
AT
1785}
1786
bf068ee2
AK
1787#define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
1788 (1 << BH_Delay) | (1 << BH_Unwritten))
64769240
AT
1789
1790/*
1791 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
1792 *
1793 * @mpd->lbh - extent of blocks
1794 * @logical - logical number of the block in the file
b6a8e62f 1795 * @b_state - b_state of the buffer head added
64769240
AT
1796 *
1797 * the function is used to collect contig. blocks in same state
1798 */
b6a8e62f 1799static void mpage_add_bh_to_extent(struct mpage_da_data *mpd, sector_t logical,
8dc207c0 1800 unsigned long b_state)
64769240 1801{
64769240 1802 sector_t next;
b6a8e62f
JK
1803 int blkbits = mpd->inode->i_blkbits;
1804 int nrblocks = mpd->b_size >> blkbits;
64769240 1805
c445e3e0
ES
1806 /*
1807 * XXX Don't go larger than mballoc is willing to allocate
1808 * This is a stopgap solution. We eventually need to fold
1809 * mpage_da_submit_io() into this function and then call
79e83036 1810 * ext4_map_blocks() multiple times in a loop
c445e3e0 1811 */
b6a8e62f 1812 if (nrblocks >= (8*1024*1024 >> blkbits))
c445e3e0
ES
1813 goto flush_it;
1814
b6a8e62f
JK
1815 /* check if the reserved journal credits might overflow */
1816 if (!ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS)) {
525f4ed8
MC
1817 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
1818 /*
1819 * With non-extent format we are limited by the journal
1820 * credit available. Total credit needed to insert
1821 * nrblocks contiguous blocks is dependent on the
1822 * nrblocks. So limit nrblocks.
1823 */
1824 goto flush_it;
525f4ed8
MC
1825 }
1826 }
64769240
AT
1827 /*
1828 * First block in the extent
1829 */
8dc207c0
TT
1830 if (mpd->b_size == 0) {
1831 mpd->b_blocknr = logical;
b6a8e62f 1832 mpd->b_size = 1 << blkbits;
8dc207c0 1833 mpd->b_state = b_state & BH_FLAGS;
64769240
AT
1834 return;
1835 }
1836
8dc207c0 1837 next = mpd->b_blocknr + nrblocks;
64769240
AT
1838 /*
1839 * Can we merge the block to our big extent?
1840 */
8dc207c0 1841 if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
b6a8e62f 1842 mpd->b_size += 1 << blkbits;
64769240
AT
1843 return;
1844 }
1845
525f4ed8 1846flush_it:
64769240
AT
1847 /*
1848 * We couldn't merge the block to our extent, so we
1849 * need to flush current extent and start new one
1850 */
5a87b7a5 1851 mpage_da_map_and_submit(mpd);
a1d6cc56 1852 return;
64769240
AT
1853}
1854
c364b22c 1855static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
29fa89d0 1856{
c364b22c 1857 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
29fa89d0
AK
1858}
1859
5356f261
AK
1860/*
1861 * This function is grabs code from the very beginning of
1862 * ext4_map_blocks, but assumes that the caller is from delayed write
1863 * time. This function looks up the requested blocks and sets the
1864 * buffer delay bit under the protection of i_data_sem.
1865 */
1866static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1867 struct ext4_map_blocks *map,
1868 struct buffer_head *bh)
1869{
d100eef2 1870 struct extent_status es;
5356f261
AK
1871 int retval;
1872 sector_t invalid_block = ~((sector_t) 0xffff);
921f266b
DM
1873#ifdef ES_AGGRESSIVE_TEST
1874 struct ext4_map_blocks orig_map;
1875
1876 memcpy(&orig_map, map, sizeof(*map));
1877#endif
5356f261
AK
1878
1879 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1880 invalid_block = ~0;
1881
1882 map->m_flags = 0;
1883 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1884 "logical block %lu\n", inode->i_ino, map->m_len,
1885 (unsigned long) map->m_lblk);
d100eef2
ZL
1886
1887 /* Lookup extent status tree firstly */
1888 if (ext4_es_lookup_extent(inode, iblock, &es)) {
1889
1890 if (ext4_es_is_hole(&es)) {
1891 retval = 0;
1892 down_read((&EXT4_I(inode)->i_data_sem));
1893 goto add_delayed;
1894 }
1895
1896 /*
1897 * Delayed extent could be allocated by fallocate.
1898 * So we need to check it.
1899 */
1900 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1901 map_bh(bh, inode->i_sb, invalid_block);
1902 set_buffer_new(bh);
1903 set_buffer_delay(bh);
1904 return 0;
1905 }
1906
1907 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1908 retval = es.es_len - (iblock - es.es_lblk);
1909 if (retval > map->m_len)
1910 retval = map->m_len;
1911 map->m_len = retval;
1912 if (ext4_es_is_written(&es))
1913 map->m_flags |= EXT4_MAP_MAPPED;
1914 else if (ext4_es_is_unwritten(&es))
1915 map->m_flags |= EXT4_MAP_UNWRITTEN;
1916 else
1917 BUG_ON(1);
1918
921f266b
DM
1919#ifdef ES_AGGRESSIVE_TEST
1920 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1921#endif
d100eef2
ZL
1922 return retval;
1923 }
1924
5356f261
AK
1925 /*
1926 * Try to see if we can get the block without requesting a new
1927 * file system block.
1928 */
1929 down_read((&EXT4_I(inode)->i_data_sem));
9c3569b5
TM
1930 if (ext4_has_inline_data(inode)) {
1931 /*
1932 * We will soon create blocks for this page, and let
1933 * us pretend as if the blocks aren't allocated yet.
1934 * In case of clusters, we have to handle the work
1935 * of mapping from cluster so that the reserved space
1936 * is calculated properly.
1937 */
1938 if ((EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) &&
1939 ext4_find_delalloc_cluster(inode, map->m_lblk))
1940 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
1941 retval = 0;
1942 } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
d100eef2
ZL
1943 retval = ext4_ext_map_blocks(NULL, inode, map,
1944 EXT4_GET_BLOCKS_NO_PUT_HOLE);
5356f261 1945 else
d100eef2
ZL
1946 retval = ext4_ind_map_blocks(NULL, inode, map,
1947 EXT4_GET_BLOCKS_NO_PUT_HOLE);
5356f261 1948
d100eef2 1949add_delayed:
5356f261 1950 if (retval == 0) {
f7fec032 1951 int ret;
5356f261
AK
1952 /*
1953 * XXX: __block_prepare_write() unmaps passed block,
1954 * is it OK?
1955 */
386ad67c
LC
1956 /*
1957 * If the block was allocated from previously allocated cluster,
1958 * then we don't need to reserve it again. However we still need
1959 * to reserve metadata for every block we're going to write.
1960 */
5356f261 1961 if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
f7fec032
ZL
1962 ret = ext4_da_reserve_space(inode, iblock);
1963 if (ret) {
5356f261 1964 /* not enough space to reserve */
f7fec032 1965 retval = ret;
5356f261 1966 goto out_unlock;
f7fec032 1967 }
386ad67c
LC
1968 } else {
1969 ret = ext4_da_reserve_metadata(inode, iblock);
1970 if (ret) {
1971 /* not enough space to reserve */
1972 retval = ret;
1973 goto out_unlock;
1974 }
5356f261
AK
1975 }
1976
f7fec032
ZL
1977 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1978 ~0, EXTENT_STATUS_DELAYED);
1979 if (ret) {
1980 retval = ret;
51865fda 1981 goto out_unlock;
f7fec032 1982 }
51865fda 1983
5356f261
AK
1984 /* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
1985 * and it should not appear on the bh->b_state.
1986 */
1987 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
1988
1989 map_bh(bh, inode->i_sb, invalid_block);
1990 set_buffer_new(bh);
1991 set_buffer_delay(bh);
f7fec032
ZL
1992 } else if (retval > 0) {
1993 int ret;
1994 unsigned long long status;
1995
921f266b
DM
1996#ifdef ES_AGGRESSIVE_TEST
1997 if (retval != map->m_len) {
1998 printk("ES len assertation failed for inode: %lu "
1999 "retval %d != map->m_len %d "
2000 "in %s (lookup)\n", inode->i_ino, retval,
2001 map->m_len, __func__);
2002 }
2003#endif
2004
f7fec032
ZL
2005 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
2006 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
2007 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
2008 map->m_pblk, status);
2009 if (ret != 0)
2010 retval = ret;
5356f261
AK
2011 }
2012
2013out_unlock:
2014 up_read((&EXT4_I(inode)->i_data_sem));
2015
2016 return retval;
2017}
2018
64769240 2019/*
b920c755
TT
2020 * This is a special get_blocks_t callback which is used by
2021 * ext4_da_write_begin(). It will either return mapped block or
2022 * reserve space for a single block.
29fa89d0
AK
2023 *
2024 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
2025 * We also have b_blocknr = -1 and b_bdev initialized properly
2026 *
2027 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
2028 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
2029 * initialized properly.
64769240 2030 */
9c3569b5
TM
2031int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2032 struct buffer_head *bh, int create)
64769240 2033{
2ed88685 2034 struct ext4_map_blocks map;
64769240
AT
2035 int ret = 0;
2036
2037 BUG_ON(create == 0);
2ed88685
TT
2038 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
2039
2040 map.m_lblk = iblock;
2041 map.m_len = 1;
64769240
AT
2042
2043 /*
2044 * first, we need to know whether the block is allocated already
2045 * preallocated blocks are unmapped but should treated
2046 * the same as allocated blocks.
2047 */
5356f261
AK
2048 ret = ext4_da_map_blocks(inode, iblock, &map, bh);
2049 if (ret <= 0)
2ed88685 2050 return ret;
64769240 2051
2ed88685
TT
2052 map_bh(bh, inode->i_sb, map.m_pblk);
2053 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
2054
2055 if (buffer_unwritten(bh)) {
2056 /* A delayed write to unwritten bh should be marked
2057 * new and mapped. Mapped ensures that we don't do
2058 * get_block multiple times when we write to the same
2059 * offset and new ensures that we do proper zero out
2060 * for partial write.
2061 */
2062 set_buffer_new(bh);
c8205636 2063 set_buffer_mapped(bh);
2ed88685
TT
2064 }
2065 return 0;
64769240 2066}
61628a3f 2067
62e086be
AK
2068static int bget_one(handle_t *handle, struct buffer_head *bh)
2069{
2070 get_bh(bh);
2071 return 0;
2072}
2073
2074static int bput_one(handle_t *handle, struct buffer_head *bh)
2075{
2076 put_bh(bh);
2077 return 0;
2078}
2079
2080static int __ext4_journalled_writepage(struct page *page,
62e086be
AK
2081 unsigned int len)
2082{
2083 struct address_space *mapping = page->mapping;
2084 struct inode *inode = mapping->host;
3fdcfb66 2085 struct buffer_head *page_bufs = NULL;
62e086be 2086 handle_t *handle = NULL;
3fdcfb66
TM
2087 int ret = 0, err = 0;
2088 int inline_data = ext4_has_inline_data(inode);
2089 struct buffer_head *inode_bh = NULL;
62e086be 2090
cb20d518 2091 ClearPageChecked(page);
3fdcfb66
TM
2092
2093 if (inline_data) {
2094 BUG_ON(page->index != 0);
2095 BUG_ON(len > ext4_get_max_inline_size(inode));
2096 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
2097 if (inode_bh == NULL)
2098 goto out;
2099 } else {
2100 page_bufs = page_buffers(page);
2101 if (!page_bufs) {
2102 BUG();
2103 goto out;
2104 }
2105 ext4_walk_page_buffers(handle, page_bufs, 0, len,
2106 NULL, bget_one);
2107 }
62e086be
AK
2108 /* As soon as we unlock the page, it can go away, but we have
2109 * references to buffers so we are safe */
2110 unlock_page(page);
2111
9924a92a
TT
2112 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2113 ext4_writepage_trans_blocks(inode));
62e086be
AK
2114 if (IS_ERR(handle)) {
2115 ret = PTR_ERR(handle);
2116 goto out;
2117 }
2118
441c8508
CW
2119 BUG_ON(!ext4_handle_valid(handle));
2120
3fdcfb66
TM
2121 if (inline_data) {
2122 ret = ext4_journal_get_write_access(handle, inode_bh);
62e086be 2123
3fdcfb66
TM
2124 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
2125
2126 } else {
2127 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2128 do_journal_get_write_access);
2129
2130 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2131 write_end_fn);
2132 }
62e086be
AK
2133 if (ret == 0)
2134 ret = err;
2d859db3 2135 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
62e086be
AK
2136 err = ext4_journal_stop(handle);
2137 if (!ret)
2138 ret = err;
2139
3fdcfb66
TM
2140 if (!ext4_has_inline_data(inode))
2141 ext4_walk_page_buffers(handle, page_bufs, 0, len,
2142 NULL, bput_one);
19f5fb7a 2143 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
62e086be 2144out:
3fdcfb66 2145 brelse(inode_bh);
62e086be
AK
2146 return ret;
2147}
2148
61628a3f 2149/*
43ce1d23
AK
2150 * Note that we don't need to start a transaction unless we're journaling data
2151 * because we should have holes filled from ext4_page_mkwrite(). We even don't
2152 * need to file the inode to the transaction's list in ordered mode because if
2153 * we are writing back data added by write(), the inode is already there and if
25985edc 2154 * we are writing back data modified via mmap(), no one guarantees in which
43ce1d23
AK
2155 * transaction the data will hit the disk. In case we are journaling data, we
2156 * cannot start transaction directly because transaction start ranks above page
2157 * lock so we have to do some magic.
2158 *
b920c755
TT
2159 * This function can get called via...
2160 * - ext4_da_writepages after taking page lock (have journal handle)
2161 * - journal_submit_inode_data_buffers (no journal handle)
f6463b0d 2162 * - shrink_page_list via the kswapd/direct reclaim (no journal handle)
b920c755 2163 * - grab_page_cache when doing write_begin (have journal handle)
43ce1d23
AK
2164 *
2165 * We don't do any block allocation in this function. If we have page with
2166 * multiple blocks we need to write those buffer_heads that are mapped. This
2167 * is important for mmaped based write. So if we do with blocksize 1K
2168 * truncate(f, 1024);
2169 * a = mmap(f, 0, 4096);
2170 * a[0] = 'a';
2171 * truncate(f, 4096);
2172 * we have in the page first buffer_head mapped via page_mkwrite call back
90802ed9 2173 * but other buffer_heads would be unmapped but dirty (dirty done via the
43ce1d23
AK
2174 * do_wp_page). So writepage should write the first block. If we modify
2175 * the mmap area beyond 1024 we will again get a page_fault and the
2176 * page_mkwrite callback will do the block allocation and mark the
2177 * buffer_heads mapped.
2178 *
2179 * We redirty the page if we have any buffer_heads that is either delay or
2180 * unwritten in the page.
2181 *
2182 * We can get recursively called as show below.
2183 *
2184 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2185 * ext4_writepage()
2186 *
2187 * But since we don't do any block allocation we should not deadlock.
2188 * Page also have the dirty flag cleared so we don't get recurive page_lock.
61628a3f 2189 */
43ce1d23 2190static int ext4_writepage(struct page *page,
62e086be 2191 struct writeback_control *wbc)
64769240 2192{
f8bec370 2193 int ret = 0;
61628a3f 2194 loff_t size;
498e5f24 2195 unsigned int len;
744692dc 2196 struct buffer_head *page_bufs = NULL;
61628a3f 2197 struct inode *inode = page->mapping->host;
36ade451 2198 struct ext4_io_submit io_submit;
61628a3f 2199
a9c667f8 2200 trace_ext4_writepage(page);
f0e6c985
AK
2201 size = i_size_read(inode);
2202 if (page->index == size >> PAGE_CACHE_SHIFT)
2203 len = size & ~PAGE_CACHE_MASK;
2204 else
2205 len = PAGE_CACHE_SIZE;
64769240 2206
a42afc5f 2207 page_bufs = page_buffers(page);
a42afc5f 2208 /*
fe386132
JK
2209 * We cannot do block allocation or other extent handling in this
2210 * function. If there are buffers needing that, we have to redirty
2211 * the page. But we may reach here when we do a journal commit via
2212 * journal_submit_inode_data_buffers() and in that case we must write
2213 * allocated buffers to achieve data=ordered mode guarantees.
a42afc5f 2214 */
f19d5870
TM
2215 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2216 ext4_bh_delay_or_unwritten)) {
f8bec370 2217 redirty_page_for_writepage(wbc, page);
fe386132
JK
2218 if (current->flags & PF_MEMALLOC) {
2219 /*
2220 * For memory cleaning there's no point in writing only
2221 * some buffers. So just bail out. Warn if we came here
2222 * from direct reclaim.
2223 */
2224 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2225 == PF_MEMALLOC);
f0e6c985
AK
2226 unlock_page(page);
2227 return 0;
2228 }
a42afc5f 2229 }
64769240 2230
cb20d518 2231 if (PageChecked(page) && ext4_should_journal_data(inode))
43ce1d23
AK
2232 /*
2233 * It's mmapped pagecache. Add buffers and journal it. There
2234 * doesn't seem much point in redirtying the page here.
2235 */
3f0ca309 2236 return __ext4_journalled_writepage(page, len);
43ce1d23 2237
a549984b 2238 memset(&io_submit, 0, sizeof(io_submit));
36ade451
JK
2239 ret = ext4_bio_write_page(&io_submit, page, len, wbc);
2240 ext4_io_submit(&io_submit);
64769240
AT
2241 return ret;
2242}
2243
61628a3f 2244/*
525f4ed8 2245 * This is called via ext4_da_writepages() to
25985edc 2246 * calculate the total number of credits to reserve to fit
525f4ed8
MC
2247 * a single extent allocation into a single transaction,
2248 * ext4_da_writpeages() will loop calling this before
2249 * the block allocation.
61628a3f 2250 */
525f4ed8
MC
2251
2252static int ext4_da_writepages_trans_blocks(struct inode *inode)
2253{
2254 int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2255
2256 /*
2257 * With non-extent format the journal credit needed to
2258 * insert nrblocks contiguous block is dependent on
2259 * number of contiguous block. So we will limit
2260 * number of contiguous block to a sane value
2261 */
12e9b892 2262 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
525f4ed8
MC
2263 (max_blocks > EXT4_MAX_TRANS_DATA))
2264 max_blocks = EXT4_MAX_TRANS_DATA;
2265
2266 return ext4_chunk_trans_blocks(inode, max_blocks);
2267}
61628a3f 2268
8e48dcfb
TT
2269/*
2270 * write_cache_pages_da - walk the list of dirty pages of the given
8eb9e5ce 2271 * address space and accumulate pages that need writing, and call
168fc022
TT
2272 * mpage_da_map_and_submit to map a single contiguous memory region
2273 * and then write them.
8e48dcfb 2274 */
9c3569b5
TM
2275static int write_cache_pages_da(handle_t *handle,
2276 struct address_space *mapping,
8e48dcfb 2277 struct writeback_control *wbc,
72f84e65
ES
2278 struct mpage_da_data *mpd,
2279 pgoff_t *done_index)
8e48dcfb 2280{
4f01b02c 2281 struct buffer_head *bh, *head;
168fc022 2282 struct inode *inode = mapping->host;
4f01b02c
TT
2283 struct pagevec pvec;
2284 unsigned int nr_pages;
2285 sector_t logical;
2286 pgoff_t index, end;
2287 long nr_to_write = wbc->nr_to_write;
2288 int i, tag, ret = 0;
8e48dcfb 2289
168fc022
TT
2290 memset(mpd, 0, sizeof(struct mpage_da_data));
2291 mpd->wbc = wbc;
2292 mpd->inode = inode;
8e48dcfb
TT
2293 pagevec_init(&pvec, 0);
2294 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2295 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2296
6e6938b6 2297 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
5b41d924
ES
2298 tag = PAGECACHE_TAG_TOWRITE;
2299 else
2300 tag = PAGECACHE_TAG_DIRTY;
2301
72f84e65 2302 *done_index = index;
4f01b02c 2303 while (index <= end) {
5b41d924 2304 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
8e48dcfb
TT
2305 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2306 if (nr_pages == 0)
4f01b02c 2307 return 0;
8e48dcfb
TT
2308
2309 for (i = 0; i < nr_pages; i++) {
2310 struct page *page = pvec.pages[i];
2311
2312 /*
2313 * At this point, the page may be truncated or
2314 * invalidated (changing page->mapping to NULL), or
2315 * even swizzled back from swapper_space to tmpfs file
2316 * mapping. However, page->index will not change
2317 * because we have a reference on the page.
2318 */
4f01b02c
TT
2319 if (page->index > end)
2320 goto out;
8e48dcfb 2321
72f84e65
ES
2322 *done_index = page->index + 1;
2323
78aaced3
TT
2324 /*
2325 * If we can't merge this page, and we have
2326 * accumulated an contiguous region, write it
2327 */
2328 if ((mpd->next_page != page->index) &&
2329 (mpd->next_page != mpd->first_page)) {
2330 mpage_da_map_and_submit(mpd);
2331 goto ret_extent_tail;
2332 }
2333
8e48dcfb
TT
2334 lock_page(page);
2335
2336 /*
4f01b02c
TT
2337 * If the page is no longer dirty, or its
2338 * mapping no longer corresponds to inode we
2339 * are writing (which means it has been
2340 * truncated or invalidated), or the page is
2341 * already under writeback and we are not
2342 * doing a data integrity writeback, skip the page
8e48dcfb 2343 */
4f01b02c
TT
2344 if (!PageDirty(page) ||
2345 (PageWriteback(page) &&
2346 (wbc->sync_mode == WB_SYNC_NONE)) ||
2347 unlikely(page->mapping != mapping)) {
8e48dcfb
TT
2348 unlock_page(page);
2349 continue;
2350 }
2351
7cb1a535 2352 wait_on_page_writeback(page);
8e48dcfb 2353 BUG_ON(PageWriteback(page));
8e48dcfb 2354
9c3569b5
TM
2355 /*
2356 * If we have inline data and arrive here, it means that
2357 * we will soon create the block for the 1st page, so
2358 * we'd better clear the inline data here.
2359 */
2360 if (ext4_has_inline_data(inode)) {
2361 BUG_ON(ext4_test_inode_state(inode,
2362 EXT4_STATE_MAY_INLINE_DATA));
2363 ext4_destroy_inline_data(handle, inode);
2364 }
2365
168fc022 2366 if (mpd->next_page != page->index)
8eb9e5ce 2367 mpd->first_page = page->index;
8eb9e5ce
TT
2368 mpd->next_page = page->index + 1;
2369 logical = (sector_t) page->index <<
2370 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2371
f8bec370
JK
2372 /* Add all dirty buffers to mpd */
2373 head = page_buffers(page);
2374 bh = head;
2375 do {
2376 BUG_ON(buffer_locked(bh));
8eb9e5ce 2377 /*
f8bec370
JK
2378 * We need to try to allocate unmapped blocks
2379 * in the same page. Otherwise we won't make
2380 * progress with the page in ext4_writepage
8eb9e5ce 2381 */
f8bec370
JK
2382 if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2383 mpage_add_bh_to_extent(mpd, logical,
f8bec370
JK
2384 bh->b_state);
2385 if (mpd->io_done)
2386 goto ret_extent_tail;
2387 } else if (buffer_dirty(bh) &&
2388 buffer_mapped(bh)) {
8eb9e5ce 2389 /*
f8bec370
JK
2390 * mapped dirty buffer. We need to
2391 * update the b_state because we look
2392 * at b_state in mpage_da_map_blocks.
2393 * We don't update b_size because if we
2394 * find an unmapped buffer_head later
2395 * we need to use the b_state flag of
2396 * that buffer_head.
8eb9e5ce 2397 */
f8bec370
JK
2398 if (mpd->b_size == 0)
2399 mpd->b_state =
2400 bh->b_state & BH_FLAGS;
2401 }
2402 logical++;
2403 } while ((bh = bh->b_this_page) != head);
8e48dcfb
TT
2404
2405 if (nr_to_write > 0) {
2406 nr_to_write--;
2407 if (nr_to_write == 0 &&
4f01b02c 2408 wbc->sync_mode == WB_SYNC_NONE)
8e48dcfb
TT
2409 /*
2410 * We stop writing back only if we are
2411 * not doing integrity sync. In case of
2412 * integrity sync we have to keep going
2413 * because someone may be concurrently
2414 * dirtying pages, and we might have
2415 * synced a lot of newly appeared dirty
2416 * pages, but have not synced all of the
2417 * old dirty pages.
2418 */
4f01b02c 2419 goto out;
8e48dcfb
TT
2420 }
2421 }
2422 pagevec_release(&pvec);
2423 cond_resched();
2424 }
4f01b02c
TT
2425 return 0;
2426ret_extent_tail:
2427 ret = MPAGE_DA_EXTENT_TAIL;
8eb9e5ce
TT
2428out:
2429 pagevec_release(&pvec);
2430 cond_resched();
8e48dcfb
TT
2431 return ret;
2432}
2433
2434
64769240 2435static int ext4_da_writepages(struct address_space *mapping,
a1d6cc56 2436 struct writeback_control *wbc)
64769240 2437{
22208ded
AK
2438 pgoff_t index;
2439 int range_whole = 0;
61628a3f 2440 handle_t *handle = NULL;
df22291f 2441 struct mpage_da_data mpd;
5e745b04 2442 struct inode *inode = mapping->host;
498e5f24 2443 int pages_written = 0;
55138e0b 2444 unsigned int max_pages;
2acf2c26 2445 int range_cyclic, cycled = 1, io_done = 0;
55138e0b
TT
2446 int needed_blocks, ret = 0;
2447 long desired_nr_to_write, nr_to_writebump = 0;
de89de6e 2448 loff_t range_start = wbc->range_start;
5e745b04 2449 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
72f84e65 2450 pgoff_t done_index = 0;
5b41d924 2451 pgoff_t end;
1bce63d1 2452 struct blk_plug plug;
61628a3f 2453
9bffad1e 2454 trace_ext4_da_writepages(inode, wbc);
ba80b101 2455
61628a3f
MC
2456 /*
2457 * No pages to write? This is mainly a kludge to avoid starting
2458 * a transaction for special inodes like journal inode on last iput()
2459 * because that could violate lock ordering on umount
2460 */
a1d6cc56 2461 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
61628a3f 2462 return 0;
2a21e37e
TT
2463
2464 /*
2465 * If the filesystem has aborted, it is read-only, so return
2466 * right away instead of dumping stack traces later on that
2467 * will obscure the real source of the problem. We test
4ab2f15b 2468 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2a21e37e
TT
2469 * the latter could be true if the filesystem is mounted
2470 * read-only, and in that case, ext4_da_writepages should
2471 * *never* be called, so if that ever happens, we would want
2472 * the stack trace.
2473 */
4ab2f15b 2474 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2a21e37e
TT
2475 return -EROFS;
2476
22208ded
AK
2477 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2478 range_whole = 1;
61628a3f 2479
2acf2c26
AK
2480 range_cyclic = wbc->range_cyclic;
2481 if (wbc->range_cyclic) {
22208ded 2482 index = mapping->writeback_index;
2acf2c26
AK
2483 if (index)
2484 cycled = 0;
2485 wbc->range_start = index << PAGE_CACHE_SHIFT;
2486 wbc->range_end = LLONG_MAX;
2487 wbc->range_cyclic = 0;
5b41d924
ES
2488 end = -1;
2489 } else {
22208ded 2490 index = wbc->range_start >> PAGE_CACHE_SHIFT;
5b41d924
ES
2491 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2492 }
a1d6cc56 2493
55138e0b
TT
2494 /*
2495 * This works around two forms of stupidity. The first is in
2496 * the writeback code, which caps the maximum number of pages
2497 * written to be 1024 pages. This is wrong on multiple
2498 * levels; different architectues have a different page size,
2499 * which changes the maximum amount of data which gets
2500 * written. Secondly, 4 megabytes is way too small. XFS
2501 * forces this value to be 16 megabytes by multiplying
2502 * nr_to_write parameter by four, and then relies on its
2503 * allocator to allocate larger extents to make them
2504 * contiguous. Unfortunately this brings us to the second
2505 * stupidity, which is that ext4's mballoc code only allocates
2506 * at most 2048 blocks. So we force contiguous writes up to
2507 * the number of dirty blocks in the inode, or
2508 * sbi->max_writeback_mb_bump whichever is smaller.
2509 */
2510 max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
b443e733
ES
2511 if (!range_cyclic && range_whole) {
2512 if (wbc->nr_to_write == LONG_MAX)
2513 desired_nr_to_write = wbc->nr_to_write;
2514 else
2515 desired_nr_to_write = wbc->nr_to_write * 8;
2516 } else
55138e0b
TT
2517 desired_nr_to_write = ext4_num_dirty_pages(inode, index,
2518 max_pages);
2519 if (desired_nr_to_write > max_pages)
2520 desired_nr_to_write = max_pages;
2521
2522 if (wbc->nr_to_write < desired_nr_to_write) {
2523 nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
2524 wbc->nr_to_write = desired_nr_to_write;
2525 }
2526
2acf2c26 2527retry:
6e6938b6 2528 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
5b41d924
ES
2529 tag_pages_for_writeback(mapping, index, end);
2530
1bce63d1 2531 blk_start_plug(&plug);
22208ded 2532 while (!ret && wbc->nr_to_write > 0) {
a1d6cc56
AK
2533
2534 /*
2535 * we insert one extent at a time. So we need
2536 * credit needed for single extent allocation.
2537 * journalled mode is currently not supported
2538 * by delalloc
2539 */
2540 BUG_ON(ext4_should_journal_data(inode));
525f4ed8 2541 needed_blocks = ext4_da_writepages_trans_blocks(inode);
a1d6cc56 2542
61628a3f 2543 /* start a new transaction*/
9924a92a
TT
2544 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2545 needed_blocks);
61628a3f
MC
2546 if (IS_ERR(handle)) {
2547 ret = PTR_ERR(handle);
1693918e 2548 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
fbe845dd 2549 "%ld pages, ino %lu; err %d", __func__,
a1d6cc56 2550 wbc->nr_to_write, inode->i_ino, ret);
3c1fcb2c 2551 blk_finish_plug(&plug);
61628a3f
MC
2552 goto out_writepages;
2553 }
f63e6005
TT
2554
2555 /*
8eb9e5ce 2556 * Now call write_cache_pages_da() to find the next
f63e6005 2557 * contiguous region of logical blocks that need
8eb9e5ce 2558 * blocks to be allocated by ext4 and submit them.
f63e6005 2559 */
9c3569b5
TM
2560 ret = write_cache_pages_da(handle, mapping,
2561 wbc, &mpd, &done_index);
f63e6005 2562 /*
af901ca1 2563 * If we have a contiguous extent of pages and we
f63e6005
TT
2564 * haven't done the I/O yet, map the blocks and submit
2565 * them for I/O.
2566 */
2567 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
5a87b7a5 2568 mpage_da_map_and_submit(&mpd);
f63e6005
TT
2569 ret = MPAGE_DA_EXTENT_TAIL;
2570 }
b3a3ca8c 2571 trace_ext4_da_write_pages(inode, &mpd);
f63e6005 2572 wbc->nr_to_write -= mpd.pages_written;
df22291f 2573
61628a3f 2574 ext4_journal_stop(handle);
df22291f 2575
8f64b32e 2576 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
22208ded
AK
2577 /* commit the transaction which would
2578 * free blocks released in the transaction
2579 * and try again
2580 */
df22291f 2581 jbd2_journal_force_commit_nested(sbi->s_journal);
22208ded
AK
2582 ret = 0;
2583 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
a1d6cc56 2584 /*
8de49e67
KM
2585 * Got one extent now try with rest of the pages.
2586 * If mpd.retval is set -EIO, journal is aborted.
2587 * So we don't need to write any more.
a1d6cc56 2588 */
22208ded 2589 pages_written += mpd.pages_written;
8de49e67 2590 ret = mpd.retval;
2acf2c26 2591 io_done = 1;
22208ded 2592 } else if (wbc->nr_to_write)
61628a3f
MC
2593 /*
2594 * There is no more writeout needed
2595 * or we requested for a noblocking writeout
2596 * and we found the device congested
2597 */
61628a3f 2598 break;
a1d6cc56 2599 }
1bce63d1 2600 blk_finish_plug(&plug);
2acf2c26
AK
2601 if (!io_done && !cycled) {
2602 cycled = 1;
2603 index = 0;
2604 wbc->range_start = index << PAGE_CACHE_SHIFT;
2605 wbc->range_end = mapping->writeback_index - 1;
2606 goto retry;
2607 }
22208ded
AK
2608
2609 /* Update index */
2acf2c26 2610 wbc->range_cyclic = range_cyclic;
22208ded
AK
2611 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2612 /*
2613 * set the writeback_index so that range_cyclic
2614 * mode will write it back later
2615 */
72f84e65 2616 mapping->writeback_index = done_index;
a1d6cc56 2617
61628a3f 2618out_writepages:
2faf2e19 2619 wbc->nr_to_write -= nr_to_writebump;
de89de6e 2620 wbc->range_start = range_start;
9bffad1e 2621 trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
61628a3f 2622 return ret;
64769240
AT
2623}
2624
79f0be8d
AK
2625static int ext4_nonda_switch(struct super_block *sb)
2626{
5c1ff336 2627 s64 free_clusters, dirty_clusters;
79f0be8d
AK
2628 struct ext4_sb_info *sbi = EXT4_SB(sb);
2629
2630 /*
2631 * switch to non delalloc mode if we are running low
2632 * on free block. The free block accounting via percpu
179f7ebf 2633 * counters can get slightly wrong with percpu_counter_batch getting
79f0be8d
AK
2634 * accumulated on each CPU without updating global counters
2635 * Delalloc need an accurate free block accounting. So switch
2636 * to non delalloc when we are near to error range.
2637 */
5c1ff336
EW
2638 free_clusters =
2639 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2640 dirty_clusters =
2641 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
00d4e736
TT
2642 /*
2643 * Start pushing delalloc when 1/2 of free blocks are dirty.
2644 */
5c1ff336 2645 if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
10ee27a0 2646 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
00d4e736 2647
5c1ff336
EW
2648 if (2 * free_clusters < 3 * dirty_clusters ||
2649 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
79f0be8d 2650 /*
c8afb446
ES
2651 * free block count is less than 150% of dirty blocks
2652 * or free blocks is less than watermark
79f0be8d
AK
2653 */
2654 return 1;
2655 }
2656 return 0;
2657}
2658
64769240 2659static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
de9a55b8
TT
2660 loff_t pos, unsigned len, unsigned flags,
2661 struct page **pagep, void **fsdata)
64769240 2662{
72b8ab9d 2663 int ret, retries = 0;
64769240
AT
2664 struct page *page;
2665 pgoff_t index;
64769240
AT
2666 struct inode *inode = mapping->host;
2667 handle_t *handle;
2668
2669 index = pos >> PAGE_CACHE_SHIFT;
79f0be8d
AK
2670
2671 if (ext4_nonda_switch(inode->i_sb)) {
2672 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2673 return ext4_write_begin(file, mapping, pos,
2674 len, flags, pagep, fsdata);
2675 }
2676 *fsdata = (void *)0;
9bffad1e 2677 trace_ext4_da_write_begin(inode, pos, len, flags);
9c3569b5
TM
2678
2679 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2680 ret = ext4_da_write_inline_data_begin(mapping, inode,
2681 pos, len, flags,
2682 pagep, fsdata);
2683 if (ret < 0)
47564bfb
TT
2684 return ret;
2685 if (ret == 1)
2686 return 0;
9c3569b5
TM
2687 }
2688
47564bfb
TT
2689 /*
2690 * grab_cache_page_write_begin() can take a long time if the
2691 * system is thrashing due to memory pressure, or if the page
2692 * is being written back. So grab it first before we start
2693 * the transaction handle. This also allows us to allocate
2694 * the page (if needed) without using GFP_NOFS.
2695 */
2696retry_grab:
2697 page = grab_cache_page_write_begin(mapping, index, flags);
2698 if (!page)
2699 return -ENOMEM;
2700 unlock_page(page);
2701
64769240
AT
2702 /*
2703 * With delayed allocation, we don't log the i_disksize update
2704 * if there is delayed block allocation. But we still need
2705 * to journalling the i_disksize update if writes to the end
2706 * of file which has an already mapped buffer.
2707 */
47564bfb 2708retry_journal:
9924a92a 2709 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 1);
64769240 2710 if (IS_ERR(handle)) {
47564bfb
TT
2711 page_cache_release(page);
2712 return PTR_ERR(handle);
64769240
AT
2713 }
2714
47564bfb
TT
2715 lock_page(page);
2716 if (page->mapping != mapping) {
2717 /* The page got truncated from under us */
2718 unlock_page(page);
2719 page_cache_release(page);
d5a0d4f7 2720 ext4_journal_stop(handle);
47564bfb 2721 goto retry_grab;
d5a0d4f7 2722 }
47564bfb
TT
2723 /* In case writeback began while the page was unlocked */
2724 wait_on_page_writeback(page);
64769240 2725
6e1db88d 2726 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
64769240
AT
2727 if (ret < 0) {
2728 unlock_page(page);
2729 ext4_journal_stop(handle);
ae4d5372
AK
2730 /*
2731 * block_write_begin may have instantiated a few blocks
2732 * outside i_size. Trim these off again. Don't need
2733 * i_size_read because we hold i_mutex.
2734 */
2735 if (pos + len > inode->i_size)
b9a4207d 2736 ext4_truncate_failed_write(inode);
47564bfb
TT
2737
2738 if (ret == -ENOSPC &&
2739 ext4_should_retry_alloc(inode->i_sb, &retries))
2740 goto retry_journal;
2741
2742 page_cache_release(page);
2743 return ret;
64769240
AT
2744 }
2745
47564bfb 2746 *pagep = page;
64769240
AT
2747 return ret;
2748}
2749
632eaeab
MC
2750/*
2751 * Check if we should update i_disksize
2752 * when write to the end of file but not require block allocation
2753 */
2754static int ext4_da_should_update_i_disksize(struct page *page,
de9a55b8 2755 unsigned long offset)
632eaeab
MC
2756{
2757 struct buffer_head *bh;
2758 struct inode *inode = page->mapping->host;
2759 unsigned int idx;
2760 int i;
2761
2762 bh = page_buffers(page);
2763 idx = offset >> inode->i_blkbits;
2764
af5bc92d 2765 for (i = 0; i < idx; i++)
632eaeab
MC
2766 bh = bh->b_this_page;
2767
29fa89d0 2768 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
632eaeab
MC
2769 return 0;
2770 return 1;
2771}
2772
64769240 2773static int ext4_da_write_end(struct file *file,
de9a55b8
TT
2774 struct address_space *mapping,
2775 loff_t pos, unsigned len, unsigned copied,
2776 struct page *page, void *fsdata)
64769240
AT
2777{
2778 struct inode *inode = mapping->host;
2779 int ret = 0, ret2;
2780 handle_t *handle = ext4_journal_current_handle();
2781 loff_t new_i_size;
632eaeab 2782 unsigned long start, end;
79f0be8d
AK
2783 int write_mode = (int)(unsigned long)fsdata;
2784
74d553aa
TT
2785 if (write_mode == FALL_BACK_TO_NONDELALLOC)
2786 return ext4_write_end(file, mapping, pos,
2787 len, copied, page, fsdata);
632eaeab 2788
9bffad1e 2789 trace_ext4_da_write_end(inode, pos, len, copied);
632eaeab 2790 start = pos & (PAGE_CACHE_SIZE - 1);
af5bc92d 2791 end = start + copied - 1;
64769240
AT
2792
2793 /*
2794 * generic_write_end() will run mark_inode_dirty() if i_size
2795 * changes. So let's piggyback the i_disksize mark_inode_dirty
2796 * into that.
2797 */
64769240 2798 new_i_size = pos + copied;
ea51d132 2799 if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
9c3569b5
TM
2800 if (ext4_has_inline_data(inode) ||
2801 ext4_da_should_update_i_disksize(page, end)) {
632eaeab 2802 down_write(&EXT4_I(inode)->i_data_sem);
f3b59291 2803 if (new_i_size > EXT4_I(inode)->i_disksize)
632eaeab 2804 EXT4_I(inode)->i_disksize = new_i_size;
632eaeab 2805 up_write(&EXT4_I(inode)->i_data_sem);
cf17fea6
AK
2806 /* We need to mark inode dirty even if
2807 * new_i_size is less that inode->i_size
2808 * bu greater than i_disksize.(hint delalloc)
2809 */
2810 ext4_mark_inode_dirty(handle, inode);
64769240 2811 }
632eaeab 2812 }
9c3569b5
TM
2813
2814 if (write_mode != CONVERT_INLINE_DATA &&
2815 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2816 ext4_has_inline_data(inode))
2817 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
2818 page);
2819 else
2820 ret2 = generic_write_end(file, mapping, pos, len, copied,
64769240 2821 page, fsdata);
9c3569b5 2822
64769240
AT
2823 copied = ret2;
2824 if (ret2 < 0)
2825 ret = ret2;
2826 ret2 = ext4_journal_stop(handle);
2827 if (!ret)
2828 ret = ret2;
2829
2830 return ret ? ret : copied;
2831}
2832
d47992f8
LC
2833static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
2834 unsigned int length)
64769240 2835{
64769240
AT
2836 /*
2837 * Drop reserved blocks
2838 */
2839 BUG_ON(!PageLocked(page));
2840 if (!page_has_buffers(page))
2841 goto out;
2842
d2a17637 2843 ext4_da_page_release_reservation(page, offset);
64769240
AT
2844
2845out:
d47992f8 2846 ext4_invalidatepage(page, offset, length);
64769240
AT
2847
2848 return;
2849}
2850
ccd2506b
TT
2851/*
2852 * Force all delayed allocation blocks to be allocated for a given inode.
2853 */
2854int ext4_alloc_da_blocks(struct inode *inode)
2855{
fb40ba0d
TT
2856 trace_ext4_alloc_da_blocks(inode);
2857
ccd2506b
TT
2858 if (!EXT4_I(inode)->i_reserved_data_blocks &&
2859 !EXT4_I(inode)->i_reserved_meta_blocks)
2860 return 0;
2861
2862 /*
2863 * We do something simple for now. The filemap_flush() will
2864 * also start triggering a write of the data blocks, which is
2865 * not strictly speaking necessary (and for users of
2866 * laptop_mode, not even desirable). However, to do otherwise
2867 * would require replicating code paths in:
de9a55b8 2868 *
ccd2506b
TT
2869 * ext4_da_writepages() ->
2870 * write_cache_pages() ---> (via passed in callback function)
2871 * __mpage_da_writepage() -->
2872 * mpage_add_bh_to_extent()
2873 * mpage_da_map_blocks()
2874 *
2875 * The problem is that write_cache_pages(), located in
2876 * mm/page-writeback.c, marks pages clean in preparation for
2877 * doing I/O, which is not desirable if we're not planning on
2878 * doing I/O at all.
2879 *
2880 * We could call write_cache_pages(), and then redirty all of
380cf090 2881 * the pages by calling redirty_page_for_writepage() but that
ccd2506b
TT
2882 * would be ugly in the extreme. So instead we would need to
2883 * replicate parts of the code in the above functions,
25985edc 2884 * simplifying them because we wouldn't actually intend to
ccd2506b
TT
2885 * write out the pages, but rather only collect contiguous
2886 * logical block extents, call the multi-block allocator, and
2887 * then update the buffer heads with the block allocations.
de9a55b8 2888 *
ccd2506b
TT
2889 * For now, though, we'll cheat by calling filemap_flush(),
2890 * which will map the blocks, and start the I/O, but not
2891 * actually wait for the I/O to complete.
2892 */
2893 return filemap_flush(inode->i_mapping);
2894}
64769240 2895
ac27a0ec
DK
2896/*
2897 * bmap() is special. It gets used by applications such as lilo and by
2898 * the swapper to find the on-disk block of a specific piece of data.
2899 *
2900 * Naturally, this is dangerous if the block concerned is still in the
617ba13b 2901 * journal. If somebody makes a swapfile on an ext4 data-journaling
ac27a0ec
DK
2902 * filesystem and enables swap, then they may get a nasty shock when the
2903 * data getting swapped to that swapfile suddenly gets overwritten by
2904 * the original zero's written out previously to the journal and
2905 * awaiting writeback in the kernel's buffer cache.
2906 *
2907 * So, if we see any bmap calls here on a modified, data-journaled file,
2908 * take extra steps to flush any blocks which might be in the cache.
2909 */
617ba13b 2910static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
ac27a0ec
DK
2911{
2912 struct inode *inode = mapping->host;
2913 journal_t *journal;
2914 int err;
2915
46c7f254
TM
2916 /*
2917 * We can get here for an inline file via the FIBMAP ioctl
2918 */
2919 if (ext4_has_inline_data(inode))
2920 return 0;
2921
64769240
AT
2922 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2923 test_opt(inode->i_sb, DELALLOC)) {
2924 /*
2925 * With delalloc we want to sync the file
2926 * so that we can make sure we allocate
2927 * blocks for file
2928 */
2929 filemap_write_and_wait(mapping);
2930 }
2931
19f5fb7a
TT
2932 if (EXT4_JOURNAL(inode) &&
2933 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
ac27a0ec
DK
2934 /*
2935 * This is a REALLY heavyweight approach, but the use of
2936 * bmap on dirty files is expected to be extremely rare:
2937 * only if we run lilo or swapon on a freshly made file
2938 * do we expect this to happen.
2939 *
2940 * (bmap requires CAP_SYS_RAWIO so this does not
2941 * represent an unprivileged user DOS attack --- we'd be
2942 * in trouble if mortal users could trigger this path at
2943 * will.)
2944 *
617ba13b 2945 * NB. EXT4_STATE_JDATA is not set on files other than
ac27a0ec
DK
2946 * regular files. If somebody wants to bmap a directory
2947 * or symlink and gets confused because the buffer
2948 * hasn't yet been flushed to disk, they deserve
2949 * everything they get.
2950 */
2951
19f5fb7a 2952 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
617ba13b 2953 journal = EXT4_JOURNAL(inode);
dab291af
MC
2954 jbd2_journal_lock_updates(journal);
2955 err = jbd2_journal_flush(journal);
2956 jbd2_journal_unlock_updates(journal);
ac27a0ec
DK
2957
2958 if (err)
2959 return 0;
2960 }
2961
af5bc92d 2962 return generic_block_bmap(mapping, block, ext4_get_block);
ac27a0ec
DK
2963}
2964
617ba13b 2965static int ext4_readpage(struct file *file, struct page *page)
ac27a0ec 2966{
46c7f254
TM
2967 int ret = -EAGAIN;
2968 struct inode *inode = page->mapping->host;
2969
0562e0ba 2970 trace_ext4_readpage(page);
46c7f254
TM
2971
2972 if (ext4_has_inline_data(inode))
2973 ret = ext4_readpage_inline(inode, page);
2974
2975 if (ret == -EAGAIN)
2976 return mpage_readpage(page, ext4_get_block);
2977
2978 return ret;
ac27a0ec
DK
2979}
2980
2981static int
617ba13b 2982ext4_readpages(struct file *file, struct address_space *mapping,
ac27a0ec
DK
2983 struct list_head *pages, unsigned nr_pages)
2984{
46c7f254
TM
2985 struct inode *inode = mapping->host;
2986
2987 /* If the file has inline data, no need to do readpages. */
2988 if (ext4_has_inline_data(inode))
2989 return 0;
2990
617ba13b 2991 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
ac27a0ec
DK
2992}
2993
d47992f8
LC
2994static void ext4_invalidatepage(struct page *page, unsigned int offset,
2995 unsigned int length)
ac27a0ec 2996{
0562e0ba
JZ
2997 trace_ext4_invalidatepage(page, offset);
2998
4520fb3c
JK
2999 /* No journalling happens on data buffers when this function is used */
3000 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3001
d47992f8 3002 block_invalidatepage(page, offset, PAGE_CACHE_SIZE - offset);
4520fb3c
JK
3003}
3004
53e87268
JK
3005static int __ext4_journalled_invalidatepage(struct page *page,
3006 unsigned long offset)
4520fb3c
JK
3007{
3008 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3009
3010 trace_ext4_journalled_invalidatepage(page, offset);
3011
ac27a0ec
DK
3012 /*
3013 * If it's a full truncate we just forget about the pending dirtying
3014 */
3015 if (offset == 0)
3016 ClearPageChecked(page);
3017
259709b0
LC
3018 return jbd2_journal_invalidatepage(journal, page, offset,
3019 PAGE_CACHE_SIZE - offset);
53e87268
JK
3020}
3021
3022/* Wrapper for aops... */
3023static void ext4_journalled_invalidatepage(struct page *page,
d47992f8
LC
3024 unsigned int offset,
3025 unsigned int length)
53e87268
JK
3026{
3027 WARN_ON(__ext4_journalled_invalidatepage(page, offset) < 0);
ac27a0ec
DK
3028}
3029
617ba13b 3030static int ext4_releasepage(struct page *page, gfp_t wait)
ac27a0ec 3031{
617ba13b 3032 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
ac27a0ec 3033
0562e0ba
JZ
3034 trace_ext4_releasepage(page);
3035
e1c36595
JK
3036 /* Page has dirty journalled data -> cannot release */
3037 if (PageChecked(page))
ac27a0ec 3038 return 0;
0390131b
FM
3039 if (journal)
3040 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3041 else
3042 return try_to_free_buffers(page);
ac27a0ec
DK
3043}
3044
2ed88685
TT
3045/*
3046 * ext4_get_block used when preparing for a DIO write or buffer write.
3047 * We allocate an uinitialized extent if blocks haven't been allocated.
3048 * The extent will be converted to initialized after the IO is complete.
3049 */
f19d5870 3050int ext4_get_block_write(struct inode *inode, sector_t iblock,
4c0425ff
MC
3051 struct buffer_head *bh_result, int create)
3052{
c7064ef1 3053 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
8d5d02e6 3054 inode->i_ino, create);
2ed88685
TT
3055 return _ext4_get_block(inode, iblock, bh_result,
3056 EXT4_GET_BLOCKS_IO_CREATE_EXT);
4c0425ff
MC
3057}
3058
729f52c6 3059static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
8b0f165f 3060 struct buffer_head *bh_result, int create)
729f52c6 3061{
8b0f165f
AP
3062 ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
3063 inode->i_ino, create);
3064 return _ext4_get_block(inode, iblock, bh_result,
3065 EXT4_GET_BLOCKS_NO_LOCK);
729f52c6
ZL
3066}
3067
4c0425ff 3068static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
552ef802
CH
3069 ssize_t size, void *private, int ret,
3070 bool is_async)
4c0425ff 3071{
496ad9aa 3072 struct inode *inode = file_inode(iocb->ki_filp);
4c0425ff 3073 ext4_io_end_t *io_end = iocb->private;
4c0425ff 3074
a549984b
TT
3075 /* if not async direct IO or dio with 0 bytes write, just return */
3076 if (!io_end || !size)
3077 goto out;
4b70df18 3078
88635ca2 3079 ext_debug("ext4_end_io_dio(): io_end 0x%p "
ace36ad4 3080 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
8d5d02e6
MC
3081 iocb->private, io_end->inode->i_ino, iocb, offset,
3082 size);
8d5d02e6 3083
b5a7e970 3084 iocb->private = NULL;
a549984b
TT
3085
3086 /* if not aio dio with unwritten extents, just free io and return */
3087 if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
3088 ext4_free_io_end(io_end);
3089out:
3090 inode_dio_done(inode);
3091 if (is_async)
3092 aio_complete(iocb, ret, 0);
3093 return;
3094 }
3095
4c0425ff
MC
3096 io_end->offset = offset;
3097 io_end->size = size;
5b3ff237
JZ
3098 if (is_async) {
3099 io_end->iocb = iocb;
3100 io_end->result = ret;
3101 }
a549984b
TT
3102
3103 ext4_add_complete_io(io_end);
4c0425ff 3104}
c7064ef1 3105
4c0425ff
MC
3106/*
3107 * For ext4 extent files, ext4 will do direct-io write to holes,
3108 * preallocated extents, and those write extend the file, no need to
3109 * fall back to buffered IO.
3110 *
b595076a 3111 * For holes, we fallocate those blocks, mark them as uninitialized
69c499d1 3112 * If those blocks were preallocated, we mark sure they are split, but
b595076a 3113 * still keep the range to write as uninitialized.
4c0425ff 3114 *
69c499d1 3115 * The unwritten extents will be converted to written when DIO is completed.
8d5d02e6 3116 * For async direct IO, since the IO may still pending when return, we
25985edc 3117 * set up an end_io call back function, which will do the conversion
8d5d02e6 3118 * when async direct IO completed.
4c0425ff
MC
3119 *
3120 * If the O_DIRECT write will extend the file then add this inode to the
3121 * orphan list. So recovery will truncate it back to the original size
3122 * if the machine crashes during the write.
3123 *
3124 */
3125static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
3126 const struct iovec *iov, loff_t offset,
3127 unsigned long nr_segs)
3128{
3129 struct file *file = iocb->ki_filp;
3130 struct inode *inode = file->f_mapping->host;
3131 ssize_t ret;
3132 size_t count = iov_length(iov, nr_segs);
69c499d1
TT
3133 int overwrite = 0;
3134 get_block_t *get_block_func = NULL;
3135 int dio_flags = 0;
4c0425ff 3136 loff_t final_size = offset + count;
729f52c6 3137
69c499d1
TT
3138 /* Use the old path for reads and writes beyond i_size. */
3139 if (rw != WRITE || final_size > inode->i_size)
3140 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
4bd809db 3141
69c499d1 3142 BUG_ON(iocb->private == NULL);
4bd809db 3143
69c499d1
TT
3144 /* If we do a overwrite dio, i_mutex locking can be released */
3145 overwrite = *((int *)iocb->private);
4bd809db 3146
69c499d1
TT
3147 if (overwrite) {
3148 atomic_inc(&inode->i_dio_count);
3149 down_read(&EXT4_I(inode)->i_data_sem);
3150 mutex_unlock(&inode->i_mutex);
3151 }
8d5d02e6 3152
69c499d1
TT
3153 /*
3154 * We could direct write to holes and fallocate.
3155 *
3156 * Allocated blocks to fill the hole are marked as
3157 * uninitialized to prevent parallel buffered read to expose
3158 * the stale data before DIO complete the data IO.
3159 *
3160 * As to previously fallocated extents, ext4 get_block will
3161 * just simply mark the buffer mapped but still keep the
3162 * extents uninitialized.
3163 *
3164 * For non AIO case, we will convert those unwritten extents
3165 * to written after return back from blockdev_direct_IO.
3166 *
3167 * For async DIO, the conversion needs to be deferred when the
3168 * IO is completed. The ext4 end_io callback function will be
3169 * called to take care of the conversion work. Here for async
3170 * case, we allocate an io_end structure to hook to the iocb.
3171 */
3172 iocb->private = NULL;
3173 ext4_inode_aio_set(inode, NULL);
3174 if (!is_sync_kiocb(iocb)) {
a549984b 3175 ext4_io_end_t *io_end = ext4_init_io_end(inode, GFP_NOFS);
69c499d1
TT
3176 if (!io_end) {
3177 ret = -ENOMEM;
3178 goto retake_lock;
8b0f165f 3179 }
69c499d1 3180 io_end->flag |= EXT4_IO_END_DIRECT;
a549984b 3181 iocb->private = io_end;
8d5d02e6 3182 /*
69c499d1
TT
3183 * we save the io structure for current async direct
3184 * IO, so that later ext4_map_blocks() could flag the
3185 * io structure whether there is a unwritten extents
3186 * needs to be converted when IO is completed.
8d5d02e6 3187 */
69c499d1
TT
3188 ext4_inode_aio_set(inode, io_end);
3189 }
4bd809db 3190
69c499d1
TT
3191 if (overwrite) {
3192 get_block_func = ext4_get_block_write_nolock;
3193 } else {
3194 get_block_func = ext4_get_block_write;
3195 dio_flags = DIO_LOCKING;
3196 }
3197 ret = __blockdev_direct_IO(rw, iocb, inode,
3198 inode->i_sb->s_bdev, iov,
3199 offset, nr_segs,
3200 get_block_func,
3201 ext4_end_io_dio,
3202 NULL,
3203 dio_flags);
3204
a549984b
TT
3205 if (iocb->private)
3206 ext4_inode_aio_set(inode, NULL);
69c499d1 3207 /*
a549984b
TT
3208 * The io_end structure takes a reference to the inode, that
3209 * structure needs to be destroyed and the reference to the
3210 * inode need to be dropped, when IO is complete, even with 0
3211 * byte write, or failed.
3212 *
3213 * In the successful AIO DIO case, the io_end structure will
3214 * be destroyed and the reference to the inode will be dropped
3215 * after the end_io call back function is called.
3216 *
3217 * In the case there is 0 byte write, or error case, since VFS
3218 * direct IO won't invoke the end_io call back function, we
3219 * need to free the end_io structure here.
69c499d1 3220 */
a549984b
TT
3221 if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
3222 ext4_free_io_end(iocb->private);
3223 iocb->private = NULL;
3224 } else if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
69c499d1
TT
3225 EXT4_STATE_DIO_UNWRITTEN)) {
3226 int err;
3227 /*
3228 * for non AIO case, since the IO is already
3229 * completed, we could do the conversion right here
3230 */
3231 err = ext4_convert_unwritten_extents(inode,
3232 offset, ret);
3233 if (err < 0)
3234 ret = err;
3235 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3236 }
4bd809db 3237
69c499d1
TT
3238retake_lock:
3239 /* take i_mutex locking again if we do a ovewrite dio */
3240 if (overwrite) {
3241 inode_dio_done(inode);
3242 up_read(&EXT4_I(inode)->i_data_sem);
3243 mutex_lock(&inode->i_mutex);
4c0425ff 3244 }
8d5d02e6 3245
69c499d1 3246 return ret;
4c0425ff
MC
3247}
3248
3249static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3250 const struct iovec *iov, loff_t offset,
3251 unsigned long nr_segs)
3252{
3253 struct file *file = iocb->ki_filp;
3254 struct inode *inode = file->f_mapping->host;
0562e0ba 3255 ssize_t ret;
4c0425ff 3256
84ebd795
TT
3257 /*
3258 * If we are doing data journalling we don't support O_DIRECT
3259 */
3260 if (ext4_should_journal_data(inode))
3261 return 0;
3262
46c7f254
TM
3263 /* Let buffer I/O handle the inline data case. */
3264 if (ext4_has_inline_data(inode))
3265 return 0;
3266
0562e0ba 3267 trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
12e9b892 3268 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
0562e0ba
JZ
3269 ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3270 else
3271 ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3272 trace_ext4_direct_IO_exit(inode, offset,
3273 iov_length(iov, nr_segs), rw, ret);
3274 return ret;
4c0425ff
MC
3275}
3276
ac27a0ec 3277/*
617ba13b 3278 * Pages can be marked dirty completely asynchronously from ext4's journalling
ac27a0ec
DK
3279 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3280 * much here because ->set_page_dirty is called under VFS locks. The page is
3281 * not necessarily locked.
3282 *
3283 * We cannot just dirty the page and leave attached buffers clean, because the
3284 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3285 * or jbddirty because all the journalling code will explode.
3286 *
3287 * So what we do is to mark the page "pending dirty" and next time writepage
3288 * is called, propagate that into the buffers appropriately.
3289 */
617ba13b 3290static int ext4_journalled_set_page_dirty(struct page *page)
ac27a0ec
DK
3291{
3292 SetPageChecked(page);
3293 return __set_page_dirty_nobuffers(page);
3294}
3295
74d553aa 3296static const struct address_space_operations ext4_aops = {
8ab22b9a
HH
3297 .readpage = ext4_readpage,
3298 .readpages = ext4_readpages,
43ce1d23 3299 .writepage = ext4_writepage,
8ab22b9a 3300 .write_begin = ext4_write_begin,
74d553aa 3301 .write_end = ext4_write_end,
8ab22b9a
HH
3302 .bmap = ext4_bmap,
3303 .invalidatepage = ext4_invalidatepage,
3304 .releasepage = ext4_releasepage,
3305 .direct_IO = ext4_direct_IO,
3306 .migratepage = buffer_migrate_page,
3307 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3308 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
3309};
3310
617ba13b 3311static const struct address_space_operations ext4_journalled_aops = {
8ab22b9a
HH
3312 .readpage = ext4_readpage,
3313 .readpages = ext4_readpages,
43ce1d23 3314 .writepage = ext4_writepage,
8ab22b9a
HH
3315 .write_begin = ext4_write_begin,
3316 .write_end = ext4_journalled_write_end,
3317 .set_page_dirty = ext4_journalled_set_page_dirty,
3318 .bmap = ext4_bmap,
4520fb3c 3319 .invalidatepage = ext4_journalled_invalidatepage,
8ab22b9a 3320 .releasepage = ext4_releasepage,
84ebd795 3321 .direct_IO = ext4_direct_IO,
8ab22b9a 3322 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3323 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
3324};
3325
64769240 3326static const struct address_space_operations ext4_da_aops = {
8ab22b9a
HH
3327 .readpage = ext4_readpage,
3328 .readpages = ext4_readpages,
43ce1d23 3329 .writepage = ext4_writepage,
8ab22b9a 3330 .writepages = ext4_da_writepages,
8ab22b9a
HH
3331 .write_begin = ext4_da_write_begin,
3332 .write_end = ext4_da_write_end,
3333 .bmap = ext4_bmap,
3334 .invalidatepage = ext4_da_invalidatepage,
3335 .releasepage = ext4_releasepage,
3336 .direct_IO = ext4_direct_IO,
3337 .migratepage = buffer_migrate_page,
3338 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3339 .error_remove_page = generic_error_remove_page,
64769240
AT
3340};
3341
617ba13b 3342void ext4_set_aops(struct inode *inode)
ac27a0ec 3343{
3d2b1582
LC
3344 switch (ext4_inode_journal_mode(inode)) {
3345 case EXT4_INODE_ORDERED_DATA_MODE:
74d553aa 3346 ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3d2b1582
LC
3347 break;
3348 case EXT4_INODE_WRITEBACK_DATA_MODE:
74d553aa 3349 ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3d2b1582
LC
3350 break;
3351 case EXT4_INODE_JOURNAL_DATA_MODE:
617ba13b 3352 inode->i_mapping->a_ops = &ext4_journalled_aops;
74d553aa 3353 return;
3d2b1582
LC
3354 default:
3355 BUG();
3356 }
74d553aa
TT
3357 if (test_opt(inode->i_sb, DELALLOC))
3358 inode->i_mapping->a_ops = &ext4_da_aops;
3359 else
3360 inode->i_mapping->a_ops = &ext4_aops;
ac27a0ec
DK
3361}
3362
4e96b2db
AH
3363
3364/*
3365 * ext4_discard_partial_page_buffers()
3366 * Wrapper function for ext4_discard_partial_page_buffers_no_lock.
3367 * This function finds and locks the page containing the offset
3368 * "from" and passes it to ext4_discard_partial_page_buffers_no_lock.
3369 * Calling functions that already have the page locked should call
3370 * ext4_discard_partial_page_buffers_no_lock directly.
3371 */
3372int ext4_discard_partial_page_buffers(handle_t *handle,
3373 struct address_space *mapping, loff_t from,
3374 loff_t length, int flags)
3375{
3376 struct inode *inode = mapping->host;
3377 struct page *page;
3378 int err = 0;
3379
3380 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3381 mapping_gfp_mask(mapping) & ~__GFP_FS);
3382 if (!page)
5129d05f 3383 return -ENOMEM;
4e96b2db
AH
3384
3385 err = ext4_discard_partial_page_buffers_no_lock(handle, inode, page,
3386 from, length, flags);
3387
3388 unlock_page(page);
3389 page_cache_release(page);
3390 return err;
3391}
3392
3393/*
3394 * ext4_discard_partial_page_buffers_no_lock()
3395 * Zeros a page range of length 'length' starting from offset 'from'.
3396 * Buffer heads that correspond to the block aligned regions of the
3397 * zeroed range will be unmapped. Unblock aligned regions
3398 * will have the corresponding buffer head mapped if needed so that
3399 * that region of the page can be updated with the partial zero out.
3400 *
3401 * This function assumes that the page has already been locked. The
3402 * The range to be discarded must be contained with in the given page.
3403 * If the specified range exceeds the end of the page it will be shortened
3404 * to the end of the page that corresponds to 'from'. This function is
3405 * appropriate for updating a page and it buffer heads to be unmapped and
3406 * zeroed for blocks that have been either released, or are going to be
3407 * released.
3408 *
3409 * handle: The journal handle
3410 * inode: The files inode
3411 * page: A locked page that contains the offset "from"
4907cb7b 3412 * from: The starting byte offset (from the beginning of the file)
4e96b2db
AH
3413 * to begin discarding
3414 * len: The length of bytes to discard
3415 * flags: Optional flags that may be used:
3416 *
3417 * EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED
3418 * Only zero the regions of the page whose buffer heads
3419 * have already been unmapped. This flag is appropriate
4907cb7b 3420 * for updating the contents of a page whose blocks may
4e96b2db
AH
3421 * have already been released, and we only want to zero
3422 * out the regions that correspond to those released blocks.
3423 *
4907cb7b 3424 * Returns zero on success or negative on failure.
4e96b2db 3425 */
5f163cc7 3426static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
4e96b2db
AH
3427 struct inode *inode, struct page *page, loff_t from,
3428 loff_t length, int flags)
3429{
3430 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3431 unsigned int offset = from & (PAGE_CACHE_SIZE-1);
3432 unsigned int blocksize, max, pos;
4e96b2db
AH
3433 ext4_lblk_t iblock;
3434 struct buffer_head *bh;
3435 int err = 0;
3436
3437 blocksize = inode->i_sb->s_blocksize;
3438 max = PAGE_CACHE_SIZE - offset;
3439
3440 if (index != page->index)
3441 return -EINVAL;
3442
3443 /*
3444 * correct length if it does not fall between
3445 * 'from' and the end of the page
3446 */
3447 if (length > max || length < 0)
3448 length = max;
3449
3450 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3451
093e6e36
YY
3452 if (!page_has_buffers(page))
3453 create_empty_buffers(page, blocksize, 0);
4e96b2db
AH
3454
3455 /* Find the buffer that contains "offset" */
3456 bh = page_buffers(page);
3457 pos = blocksize;
3458 while (offset >= pos) {
3459 bh = bh->b_this_page;
3460 iblock++;
3461 pos += blocksize;
3462 }
3463
3464 pos = offset;
3465 while (pos < offset + length) {
e260daf2
YY
3466 unsigned int end_of_block, range_to_discard;
3467
4e96b2db
AH
3468 err = 0;
3469
3470 /* The length of space left to zero and unmap */
3471 range_to_discard = offset + length - pos;
3472
3473 /* The length of space until the end of the block */
3474 end_of_block = blocksize - (pos & (blocksize-1));
3475
3476 /*
3477 * Do not unmap or zero past end of block
3478 * for this buffer head
3479 */
3480 if (range_to_discard > end_of_block)
3481 range_to_discard = end_of_block;
3482
3483
3484 /*
3485 * Skip this buffer head if we are only zeroing unampped
3486 * regions of the page
3487 */
3488 if (flags & EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED &&
3489 buffer_mapped(bh))
3490 goto next;
3491
3492 /* If the range is block aligned, unmap */
3493 if (range_to_discard == blocksize) {
3494 clear_buffer_dirty(bh);
3495 bh->b_bdev = NULL;
3496 clear_buffer_mapped(bh);
3497 clear_buffer_req(bh);
3498 clear_buffer_new(bh);
3499 clear_buffer_delay(bh);
3500 clear_buffer_unwritten(bh);
3501 clear_buffer_uptodate(bh);
3502 zero_user(page, pos, range_to_discard);
3503 BUFFER_TRACE(bh, "Buffer discarded");
3504 goto next;
3505 }
3506
3507 /*
3508 * If this block is not completely contained in the range
3509 * to be discarded, then it is not going to be released. Because
3510 * we need to keep this block, we need to make sure this part
3511 * of the page is uptodate before we modify it by writeing
3512 * partial zeros on it.
3513 */
3514 if (!buffer_mapped(bh)) {
3515 /*
3516 * Buffer head must be mapped before we can read
3517 * from the block
3518 */
3519 BUFFER_TRACE(bh, "unmapped");
3520 ext4_get_block(inode, iblock, bh, 0);
3521 /* unmapped? It's a hole - nothing to do */
3522 if (!buffer_mapped(bh)) {
3523 BUFFER_TRACE(bh, "still unmapped");
3524 goto next;
3525 }
3526 }
3527
3528 /* Ok, it's mapped. Make sure it's up-to-date */
3529 if (PageUptodate(page))
3530 set_buffer_uptodate(bh);
3531
3532 if (!buffer_uptodate(bh)) {
3533 err = -EIO;
3534 ll_rw_block(READ, 1, &bh);
3535 wait_on_buffer(bh);
3536 /* Uhhuh. Read error. Complain and punt.*/
3537 if (!buffer_uptodate(bh))
3538 goto next;
3539 }
3540
3541 if (ext4_should_journal_data(inode)) {
3542 BUFFER_TRACE(bh, "get write access");
3543 err = ext4_journal_get_write_access(handle, bh);
3544 if (err)
3545 goto next;
3546 }
3547
3548 zero_user(page, pos, range_to_discard);
3549
3550 err = 0;
3551 if (ext4_should_journal_data(inode)) {
3552 err = ext4_handle_dirty_metadata(handle, inode, bh);
decbd919 3553 } else
4e96b2db 3554 mark_buffer_dirty(bh);
4e96b2db
AH
3555
3556 BUFFER_TRACE(bh, "Partial buffer zeroed");
3557next:
3558 bh = bh->b_this_page;
3559 iblock++;
3560 pos += range_to_discard;
3561 }
3562
3563 return err;
3564}
3565
91ef4caf
DG
3566int ext4_can_truncate(struct inode *inode)
3567{
91ef4caf
DG
3568 if (S_ISREG(inode->i_mode))
3569 return 1;
3570 if (S_ISDIR(inode->i_mode))
3571 return 1;
3572 if (S_ISLNK(inode->i_mode))
3573 return !ext4_inode_is_fast_symlink(inode);
3574 return 0;
3575}
3576
a4bb6b64
AH
3577/*
3578 * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3579 * associated with the given offset and length
3580 *
3581 * @inode: File inode
3582 * @offset: The offset where the hole will begin
3583 * @len: The length of the hole
3584 *
4907cb7b 3585 * Returns: 0 on success or negative on failure
a4bb6b64
AH
3586 */
3587
3588int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
3589{
496ad9aa 3590 struct inode *inode = file_inode(file);
26a4c0c6
TT
3591 struct super_block *sb = inode->i_sb;
3592 ext4_lblk_t first_block, stop_block;
3593 struct address_space *mapping = inode->i_mapping;
3594 loff_t first_page, last_page, page_len;
3595 loff_t first_page_offset, last_page_offset;
3596 handle_t *handle;
3597 unsigned int credits;
3598 int ret = 0;
3599
a4bb6b64 3600 if (!S_ISREG(inode->i_mode))
73355192 3601 return -EOPNOTSUPP;
a4bb6b64 3602
26a4c0c6 3603 if (EXT4_SB(sb)->s_cluster_ratio > 1) {
bab08ab9 3604 /* TODO: Add support for bigalloc file systems */
73355192 3605 return -EOPNOTSUPP;
bab08ab9
TT
3606 }
3607
aaddea81
ZL
3608 trace_ext4_punch_hole(inode, offset, length);
3609
26a4c0c6
TT
3610 /*
3611 * Write out all dirty pages to avoid race conditions
3612 * Then release them.
3613 */
3614 if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3615 ret = filemap_write_and_wait_range(mapping, offset,
3616 offset + length - 1);
3617 if (ret)
3618 return ret;
3619 }
3620
3621 mutex_lock(&inode->i_mutex);
3622 /* It's not possible punch hole on append only file */
3623 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
3624 ret = -EPERM;
3625 goto out_mutex;
3626 }
3627 if (IS_SWAPFILE(inode)) {
3628 ret = -ETXTBSY;
3629 goto out_mutex;
3630 }
3631
3632 /* No need to punch hole beyond i_size */
3633 if (offset >= inode->i_size)
3634 goto out_mutex;
3635
3636 /*
3637 * If the hole extends beyond i_size, set the hole
3638 * to end after the page that contains i_size
3639 */
3640 if (offset + length > inode->i_size) {
3641 length = inode->i_size +
3642 PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
3643 offset;
3644 }
3645
3646 first_page = (offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
3647 last_page = (offset + length) >> PAGE_CACHE_SHIFT;
3648
3649 first_page_offset = first_page << PAGE_CACHE_SHIFT;
3650 last_page_offset = last_page << PAGE_CACHE_SHIFT;
3651
3652 /* Now release the pages */
3653 if (last_page_offset > first_page_offset) {
3654 truncate_pagecache_range(inode, first_page_offset,
3655 last_page_offset - 1);
3656 }
3657
3658 /* Wait all existing dio workers, newcomers will block on i_mutex */
3659 ext4_inode_block_unlocked_dio(inode);
3660 ret = ext4_flush_unwritten_io(inode);
3661 if (ret)
3662 goto out_dio;
3663 inode_dio_wait(inode);
3664
3665 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3666 credits = ext4_writepage_trans_blocks(inode);
3667 else
3668 credits = ext4_blocks_for_truncate(inode);
3669 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3670 if (IS_ERR(handle)) {
3671 ret = PTR_ERR(handle);
3672 ext4_std_error(sb, ret);
3673 goto out_dio;
3674 }
3675
3676 /*
3677 * Now we need to zero out the non-page-aligned data in the
3678 * pages at the start and tail of the hole, and unmap the
3679 * buffer heads for the block aligned regions of the page that
3680 * were completely zeroed.
3681 */
3682 if (first_page > last_page) {
3683 /*
3684 * If the file space being truncated is contained
3685 * within a page just zero out and unmap the middle of
3686 * that page
3687 */
3688 ret = ext4_discard_partial_page_buffers(handle,
3689 mapping, offset, length, 0);
3690
3691 if (ret)
3692 goto out_stop;
3693 } else {
3694 /*
3695 * zero out and unmap the partial page that contains
3696 * the start of the hole
3697 */
3698 page_len = first_page_offset - offset;
3699 if (page_len > 0) {
3700 ret = ext4_discard_partial_page_buffers(handle, mapping,
3701 offset, page_len, 0);
3702 if (ret)
3703 goto out_stop;
3704 }
3705
3706 /*
3707 * zero out and unmap the partial page that contains
3708 * the end of the hole
3709 */
3710 page_len = offset + length - last_page_offset;
3711 if (page_len > 0) {
3712 ret = ext4_discard_partial_page_buffers(handle, mapping,
3713 last_page_offset, page_len, 0);
3714 if (ret)
3715 goto out_stop;
3716 }
3717 }
3718
3719 /*
3720 * If i_size is contained in the last page, we need to
3721 * unmap and zero the partial page after i_size
3722 */
3723 if (inode->i_size >> PAGE_CACHE_SHIFT == last_page &&
3724 inode->i_size % PAGE_CACHE_SIZE != 0) {
3725 page_len = PAGE_CACHE_SIZE -
3726 (inode->i_size & (PAGE_CACHE_SIZE - 1));
3727
3728 if (page_len > 0) {
3729 ret = ext4_discard_partial_page_buffers(handle,
3730 mapping, inode->i_size, page_len, 0);
3731
3732 if (ret)
3733 goto out_stop;
3734 }
3735 }
3736
3737 first_block = (offset + sb->s_blocksize - 1) >>
3738 EXT4_BLOCK_SIZE_BITS(sb);
3739 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
3740
3741 /* If there are no blocks to remove, return now */
3742 if (first_block >= stop_block)
3743 goto out_stop;
3744
3745 down_write(&EXT4_I(inode)->i_data_sem);
3746 ext4_discard_preallocations(inode);
3747
3748 ret = ext4_es_remove_extent(inode, first_block,
3749 stop_block - first_block);
3750 if (ret) {
3751 up_write(&EXT4_I(inode)->i_data_sem);
3752 goto out_stop;
3753 }
3754
3755 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3756 ret = ext4_ext_remove_space(inode, first_block,
3757 stop_block - 1);
3758 else
3759 ret = ext4_free_hole_blocks(handle, inode, first_block,
3760 stop_block);
3761
3762 ext4_discard_preallocations(inode);
819c4920 3763 up_write(&EXT4_I(inode)->i_data_sem);
26a4c0c6
TT
3764 if (IS_SYNC(inode))
3765 ext4_handle_sync(handle);
26a4c0c6
TT
3766 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3767 ext4_mark_inode_dirty(handle, inode);
3768out_stop:
3769 ext4_journal_stop(handle);
3770out_dio:
3771 ext4_inode_resume_unlocked_dio(inode);
3772out_mutex:
3773 mutex_unlock(&inode->i_mutex);
3774 return ret;
a4bb6b64
AH
3775}
3776
ac27a0ec 3777/*
617ba13b 3778 * ext4_truncate()
ac27a0ec 3779 *
617ba13b
MC
3780 * We block out ext4_get_block() block instantiations across the entire
3781 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
ac27a0ec
DK
3782 * simultaneously on behalf of the same inode.
3783 *
42b2aa86 3784 * As we work through the truncate and commit bits of it to the journal there
ac27a0ec
DK
3785 * is one core, guiding principle: the file's tree must always be consistent on
3786 * disk. We must be able to restart the truncate after a crash.
3787 *
3788 * The file's tree may be transiently inconsistent in memory (although it
3789 * probably isn't), but whenever we close off and commit a journal transaction,
3790 * the contents of (the filesystem + the journal) must be consistent and
3791 * restartable. It's pretty simple, really: bottom up, right to left (although
3792 * left-to-right works OK too).
3793 *
3794 * Note that at recovery time, journal replay occurs *before* the restart of
3795 * truncate against the orphan inode list.
3796 *
3797 * The committed inode has the new, desired i_size (which is the same as
617ba13b 3798 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
ac27a0ec 3799 * that this inode's truncate did not complete and it will again call
617ba13b
MC
3800 * ext4_truncate() to have another go. So there will be instantiated blocks
3801 * to the right of the truncation point in a crashed ext4 filesystem. But
ac27a0ec 3802 * that's fine - as long as they are linked from the inode, the post-crash
617ba13b 3803 * ext4_truncate() run will find them and release them.
ac27a0ec 3804 */
617ba13b 3805void ext4_truncate(struct inode *inode)
ac27a0ec 3806{
819c4920
TT
3807 struct ext4_inode_info *ei = EXT4_I(inode);
3808 unsigned int credits;
3809 handle_t *handle;
3810 struct address_space *mapping = inode->i_mapping;
3811 loff_t page_len;
3812
19b5ef61
TT
3813 /*
3814 * There is a possibility that we're either freeing the inode
3815 * or it completely new indode. In those cases we might not
3816 * have i_mutex locked because it's not necessary.
3817 */
3818 if (!(inode->i_state & (I_NEW|I_FREEING)))
3819 WARN_ON(!mutex_is_locked(&inode->i_mutex));
0562e0ba
JZ
3820 trace_ext4_truncate_enter(inode);
3821
91ef4caf 3822 if (!ext4_can_truncate(inode))
ac27a0ec
DK
3823 return;
3824
12e9b892 3825 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
c8d46e41 3826
5534fb5b 3827 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
19f5fb7a 3828 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
7d8f9f7d 3829
aef1c851
TM
3830 if (ext4_has_inline_data(inode)) {
3831 int has_inline = 1;
3832
3833 ext4_inline_data_truncate(inode, &has_inline);
3834 if (has_inline)
3835 return;
3836 }
3837
819c4920
TT
3838 /*
3839 * finish any pending end_io work so we won't run the risk of
3840 * converting any truncated blocks to initialized later
3841 */
3842 ext4_flush_unwritten_io(inode);
3843
3844 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3845 credits = ext4_writepage_trans_blocks(inode);
3846 else
3847 credits = ext4_blocks_for_truncate(inode);
3848
3849 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3850 if (IS_ERR(handle)) {
3851 ext4_std_error(inode->i_sb, PTR_ERR(handle));
3852 return;
3853 }
3854
3855 if (inode->i_size % PAGE_CACHE_SIZE != 0) {
3856 page_len = PAGE_CACHE_SIZE -
3857 (inode->i_size & (PAGE_CACHE_SIZE - 1));
3858
3859 if (ext4_discard_partial_page_buffers(handle,
3860 mapping, inode->i_size, page_len, 0))
3861 goto out_stop;
3862 }
3863
3864 /*
3865 * We add the inode to the orphan list, so that if this
3866 * truncate spans multiple transactions, and we crash, we will
3867 * resume the truncate when the filesystem recovers. It also
3868 * marks the inode dirty, to catch the new size.
3869 *
3870 * Implication: the file must always be in a sane, consistent
3871 * truncatable state while each transaction commits.
3872 */
3873 if (ext4_orphan_add(handle, inode))
3874 goto out_stop;
3875
3876 down_write(&EXT4_I(inode)->i_data_sem);
3877
3878 ext4_discard_preallocations(inode);
3879
ff9893dc 3880 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
819c4920 3881 ext4_ext_truncate(handle, inode);
ff9893dc 3882 else
819c4920
TT
3883 ext4_ind_truncate(handle, inode);
3884
3885 up_write(&ei->i_data_sem);
3886
3887 if (IS_SYNC(inode))
3888 ext4_handle_sync(handle);
3889
3890out_stop:
3891 /*
3892 * If this was a simple ftruncate() and the file will remain alive,
3893 * then we need to clear up the orphan record which we created above.
3894 * However, if this was a real unlink then we were called by
3895 * ext4_delete_inode(), and we allow that function to clean up the
3896 * orphan info for us.
3897 */
3898 if (inode->i_nlink)
3899 ext4_orphan_del(handle, inode);
3900
3901 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3902 ext4_mark_inode_dirty(handle, inode);
3903 ext4_journal_stop(handle);
ac27a0ec 3904
0562e0ba 3905 trace_ext4_truncate_exit(inode);
ac27a0ec
DK
3906}
3907
ac27a0ec 3908/*
617ba13b 3909 * ext4_get_inode_loc returns with an extra refcount against the inode's
ac27a0ec
DK
3910 * underlying buffer_head on success. If 'in_mem' is true, we have all
3911 * data in memory that is needed to recreate the on-disk version of this
3912 * inode.
3913 */
617ba13b
MC
3914static int __ext4_get_inode_loc(struct inode *inode,
3915 struct ext4_iloc *iloc, int in_mem)
ac27a0ec 3916{
240799cd
TT
3917 struct ext4_group_desc *gdp;
3918 struct buffer_head *bh;
3919 struct super_block *sb = inode->i_sb;
3920 ext4_fsblk_t block;
3921 int inodes_per_block, inode_offset;
3922
3a06d778 3923 iloc->bh = NULL;
240799cd
TT
3924 if (!ext4_valid_inum(sb, inode->i_ino))
3925 return -EIO;
ac27a0ec 3926
240799cd
TT
3927 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3928 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3929 if (!gdp)
ac27a0ec
DK
3930 return -EIO;
3931
240799cd
TT
3932 /*
3933 * Figure out the offset within the block group inode table
3934 */
00d09882 3935 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
240799cd
TT
3936 inode_offset = ((inode->i_ino - 1) %
3937 EXT4_INODES_PER_GROUP(sb));
3938 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3939 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3940
3941 bh = sb_getblk(sb, block);
aebf0243 3942 if (unlikely(!bh))
860d21e2 3943 return -ENOMEM;
ac27a0ec
DK
3944 if (!buffer_uptodate(bh)) {
3945 lock_buffer(bh);
9c83a923
HK
3946
3947 /*
3948 * If the buffer has the write error flag, we have failed
3949 * to write out another inode in the same block. In this
3950 * case, we don't have to read the block because we may
3951 * read the old inode data successfully.
3952 */
3953 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3954 set_buffer_uptodate(bh);
3955
ac27a0ec
DK
3956 if (buffer_uptodate(bh)) {
3957 /* someone brought it uptodate while we waited */
3958 unlock_buffer(bh);
3959 goto has_buffer;
3960 }
3961
3962 /*
3963 * If we have all information of the inode in memory and this
3964 * is the only valid inode in the block, we need not read the
3965 * block.
3966 */
3967 if (in_mem) {
3968 struct buffer_head *bitmap_bh;
240799cd 3969 int i, start;
ac27a0ec 3970
240799cd 3971 start = inode_offset & ~(inodes_per_block - 1);
ac27a0ec 3972
240799cd
TT
3973 /* Is the inode bitmap in cache? */
3974 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
aebf0243 3975 if (unlikely(!bitmap_bh))
ac27a0ec
DK
3976 goto make_io;
3977
3978 /*
3979 * If the inode bitmap isn't in cache then the
3980 * optimisation may end up performing two reads instead
3981 * of one, so skip it.
3982 */
3983 if (!buffer_uptodate(bitmap_bh)) {
3984 brelse(bitmap_bh);
3985 goto make_io;
3986 }
240799cd 3987 for (i = start; i < start + inodes_per_block; i++) {
ac27a0ec
DK
3988 if (i == inode_offset)
3989 continue;
617ba13b 3990 if (ext4_test_bit(i, bitmap_bh->b_data))
ac27a0ec
DK
3991 break;
3992 }
3993 brelse(bitmap_bh);
240799cd 3994 if (i == start + inodes_per_block) {
ac27a0ec
DK
3995 /* all other inodes are free, so skip I/O */
3996 memset(bh->b_data, 0, bh->b_size);
3997 set_buffer_uptodate(bh);
3998 unlock_buffer(bh);
3999 goto has_buffer;
4000 }
4001 }
4002
4003make_io:
240799cd
TT
4004 /*
4005 * If we need to do any I/O, try to pre-readahead extra
4006 * blocks from the inode table.
4007 */
4008 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4009 ext4_fsblk_t b, end, table;
4010 unsigned num;
0d606e2c 4011 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
240799cd
TT
4012
4013 table = ext4_inode_table(sb, gdp);
b713a5ec 4014 /* s_inode_readahead_blks is always a power of 2 */
0d606e2c 4015 b = block & ~((ext4_fsblk_t) ra_blks - 1);
240799cd
TT
4016 if (table > b)
4017 b = table;
0d606e2c 4018 end = b + ra_blks;
240799cd 4019 num = EXT4_INODES_PER_GROUP(sb);
feb0ab32 4020 if (ext4_has_group_desc_csum(sb))
560671a0 4021 num -= ext4_itable_unused_count(sb, gdp);
240799cd
TT
4022 table += num / inodes_per_block;
4023 if (end > table)
4024 end = table;
4025 while (b <= end)
4026 sb_breadahead(sb, b++);
4027 }
4028
ac27a0ec
DK
4029 /*
4030 * There are other valid inodes in the buffer, this inode
4031 * has in-inode xattrs, or we don't have this inode in memory.
4032 * Read the block from disk.
4033 */
0562e0ba 4034 trace_ext4_load_inode(inode);
ac27a0ec
DK
4035 get_bh(bh);
4036 bh->b_end_io = end_buffer_read_sync;
65299a3b 4037 submit_bh(READ | REQ_META | REQ_PRIO, bh);
ac27a0ec
DK
4038 wait_on_buffer(bh);
4039 if (!buffer_uptodate(bh)) {
c398eda0
TT
4040 EXT4_ERROR_INODE_BLOCK(inode, block,
4041 "unable to read itable block");
ac27a0ec
DK
4042 brelse(bh);
4043 return -EIO;
4044 }
4045 }
4046has_buffer:
4047 iloc->bh = bh;
4048 return 0;
4049}
4050
617ba13b 4051int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
4052{
4053 /* We have all inode data except xattrs in memory here. */
617ba13b 4054 return __ext4_get_inode_loc(inode, iloc,
19f5fb7a 4055 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
ac27a0ec
DK
4056}
4057
617ba13b 4058void ext4_set_inode_flags(struct inode *inode)
ac27a0ec 4059{
617ba13b 4060 unsigned int flags = EXT4_I(inode)->i_flags;
ac27a0ec
DK
4061
4062 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
617ba13b 4063 if (flags & EXT4_SYNC_FL)
ac27a0ec 4064 inode->i_flags |= S_SYNC;
617ba13b 4065 if (flags & EXT4_APPEND_FL)
ac27a0ec 4066 inode->i_flags |= S_APPEND;
617ba13b 4067 if (flags & EXT4_IMMUTABLE_FL)
ac27a0ec 4068 inode->i_flags |= S_IMMUTABLE;
617ba13b 4069 if (flags & EXT4_NOATIME_FL)
ac27a0ec 4070 inode->i_flags |= S_NOATIME;
617ba13b 4071 if (flags & EXT4_DIRSYNC_FL)
ac27a0ec
DK
4072 inode->i_flags |= S_DIRSYNC;
4073}
4074
ff9ddf7e
JK
4075/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4076void ext4_get_inode_flags(struct ext4_inode_info *ei)
4077{
84a8dce2
DM
4078 unsigned int vfs_fl;
4079 unsigned long old_fl, new_fl;
4080
4081 do {
4082 vfs_fl = ei->vfs_inode.i_flags;
4083 old_fl = ei->i_flags;
4084 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4085 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
4086 EXT4_DIRSYNC_FL);
4087 if (vfs_fl & S_SYNC)
4088 new_fl |= EXT4_SYNC_FL;
4089 if (vfs_fl & S_APPEND)
4090 new_fl |= EXT4_APPEND_FL;
4091 if (vfs_fl & S_IMMUTABLE)
4092 new_fl |= EXT4_IMMUTABLE_FL;
4093 if (vfs_fl & S_NOATIME)
4094 new_fl |= EXT4_NOATIME_FL;
4095 if (vfs_fl & S_DIRSYNC)
4096 new_fl |= EXT4_DIRSYNC_FL;
4097 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
ff9ddf7e 4098}
de9a55b8 4099
0fc1b451 4100static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
de9a55b8 4101 struct ext4_inode_info *ei)
0fc1b451
AK
4102{
4103 blkcnt_t i_blocks ;
8180a562
AK
4104 struct inode *inode = &(ei->vfs_inode);
4105 struct super_block *sb = inode->i_sb;
0fc1b451
AK
4106
4107 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4108 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
4109 /* we are using combined 48 bit field */
4110 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4111 le32_to_cpu(raw_inode->i_blocks_lo);
07a03824 4112 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
8180a562
AK
4113 /* i_blocks represent file system block size */
4114 return i_blocks << (inode->i_blkbits - 9);
4115 } else {
4116 return i_blocks;
4117 }
0fc1b451
AK
4118 } else {
4119 return le32_to_cpu(raw_inode->i_blocks_lo);
4120 }
4121}
ff9ddf7e 4122
152a7b0a
TM
4123static inline void ext4_iget_extra_inode(struct inode *inode,
4124 struct ext4_inode *raw_inode,
4125 struct ext4_inode_info *ei)
4126{
4127 __le32 *magic = (void *)raw_inode +
4128 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
67cf5b09 4129 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
152a7b0a 4130 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
67cf5b09 4131 ext4_find_inline_data_nolock(inode);
f19d5870
TM
4132 } else
4133 EXT4_I(inode)->i_inline_off = 0;
152a7b0a
TM
4134}
4135
1d1fe1ee 4136struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
ac27a0ec 4137{
617ba13b
MC
4138 struct ext4_iloc iloc;
4139 struct ext4_inode *raw_inode;
1d1fe1ee 4140 struct ext4_inode_info *ei;
1d1fe1ee 4141 struct inode *inode;
b436b9be 4142 journal_t *journal = EXT4_SB(sb)->s_journal;
1d1fe1ee 4143 long ret;
ac27a0ec 4144 int block;
08cefc7a
EB
4145 uid_t i_uid;
4146 gid_t i_gid;
ac27a0ec 4147
1d1fe1ee
DH
4148 inode = iget_locked(sb, ino);
4149 if (!inode)
4150 return ERR_PTR(-ENOMEM);
4151 if (!(inode->i_state & I_NEW))
4152 return inode;
4153
4154 ei = EXT4_I(inode);
7dc57615 4155 iloc.bh = NULL;
ac27a0ec 4156
1d1fe1ee
DH
4157 ret = __ext4_get_inode_loc(inode, &iloc, 0);
4158 if (ret < 0)
ac27a0ec 4159 goto bad_inode;
617ba13b 4160 raw_inode = ext4_raw_inode(&iloc);
814525f4
DW
4161
4162 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4163 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4164 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4165 EXT4_INODE_SIZE(inode->i_sb)) {
4166 EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
4167 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
4168 EXT4_INODE_SIZE(inode->i_sb));
4169 ret = -EIO;
4170 goto bad_inode;
4171 }
4172 } else
4173 ei->i_extra_isize = 0;
4174
4175 /* Precompute checksum seed for inode metadata */
4176 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4177 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
4178 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4179 __u32 csum;
4180 __le32 inum = cpu_to_le32(inode->i_ino);
4181 __le32 gen = raw_inode->i_generation;
4182 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4183 sizeof(inum));
4184 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4185 sizeof(gen));
4186 }
4187
4188 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4189 EXT4_ERROR_INODE(inode, "checksum invalid");
4190 ret = -EIO;
4191 goto bad_inode;
4192 }
4193
ac27a0ec 4194 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
08cefc7a
EB
4195 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4196 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
af5bc92d 4197 if (!(test_opt(inode->i_sb, NO_UID32))) {
08cefc7a
EB
4198 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4199 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
ac27a0ec 4200 }
08cefc7a
EB
4201 i_uid_write(inode, i_uid);
4202 i_gid_write(inode, i_gid);
bfe86848 4203 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
ac27a0ec 4204
353eb83c 4205 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
67cf5b09 4206 ei->i_inline_off = 0;
ac27a0ec
DK
4207 ei->i_dir_start_lookup = 0;
4208 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4209 /* We now have enough fields to check if the inode was active or not.
4210 * This is needed because nfsd might try to access dead inodes
4211 * the test is that same one that e2fsck uses
4212 * NeilBrown 1999oct15
4213 */
4214 if (inode->i_nlink == 0) {
393d1d1d
DTB
4215 if ((inode->i_mode == 0 ||
4216 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4217 ino != EXT4_BOOT_LOADER_INO) {
ac27a0ec 4218 /* this inode is deleted */
1d1fe1ee 4219 ret = -ESTALE;
ac27a0ec
DK
4220 goto bad_inode;
4221 }
4222 /* The only unlinked inodes we let through here have
4223 * valid i_mode and are being read by the orphan
4224 * recovery code: that's fine, we're about to complete
393d1d1d
DTB
4225 * the process of deleting those.
4226 * OR it is the EXT4_BOOT_LOADER_INO which is
4227 * not initialized on a new filesystem. */
ac27a0ec 4228 }
ac27a0ec 4229 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
0fc1b451 4230 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
7973c0c1 4231 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
a9e81742 4232 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
a1ddeb7e
BP
4233 ei->i_file_acl |=
4234 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
a48380f7 4235 inode->i_size = ext4_isize(raw_inode);
ac27a0ec 4236 ei->i_disksize = inode->i_size;
a9e7f447
DM
4237#ifdef CONFIG_QUOTA
4238 ei->i_reserved_quota = 0;
4239#endif
ac27a0ec
DK
4240 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4241 ei->i_block_group = iloc.block_group;
a4912123 4242 ei->i_last_alloc_group = ~0;
ac27a0ec
DK
4243 /*
4244 * NOTE! The in-memory inode i_data array is in little-endian order
4245 * even on big-endian machines: we do NOT byteswap the block numbers!
4246 */
617ba13b 4247 for (block = 0; block < EXT4_N_BLOCKS; block++)
ac27a0ec
DK
4248 ei->i_data[block] = raw_inode->i_block[block];
4249 INIT_LIST_HEAD(&ei->i_orphan);
4250
b436b9be
JK
4251 /*
4252 * Set transaction id's of transactions that have to be committed
4253 * to finish f[data]sync. We set them to currently running transaction
4254 * as we cannot be sure that the inode or some of its metadata isn't
4255 * part of the transaction - the inode could have been reclaimed and
4256 * now it is reread from disk.
4257 */
4258 if (journal) {
4259 transaction_t *transaction;
4260 tid_t tid;
4261
a931da6a 4262 read_lock(&journal->j_state_lock);
b436b9be
JK
4263 if (journal->j_running_transaction)
4264 transaction = journal->j_running_transaction;
4265 else
4266 transaction = journal->j_committing_transaction;
4267 if (transaction)
4268 tid = transaction->t_tid;
4269 else
4270 tid = journal->j_commit_sequence;
a931da6a 4271 read_unlock(&journal->j_state_lock);
b436b9be
JK
4272 ei->i_sync_tid = tid;
4273 ei->i_datasync_tid = tid;
4274 }
4275
0040d987 4276 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
ac27a0ec
DK
4277 if (ei->i_extra_isize == 0) {
4278 /* The extra space is currently unused. Use it. */
617ba13b
MC
4279 ei->i_extra_isize = sizeof(struct ext4_inode) -
4280 EXT4_GOOD_OLD_INODE_SIZE;
ac27a0ec 4281 } else {
152a7b0a 4282 ext4_iget_extra_inode(inode, raw_inode, ei);
ac27a0ec 4283 }
814525f4 4284 }
ac27a0ec 4285
ef7f3835
KS
4286 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4287 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4288 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4289 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4290
25ec56b5
JNC
4291 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4292 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4293 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4294 inode->i_version |=
4295 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4296 }
4297
c4b5a614 4298 ret = 0;
485c26ec 4299 if (ei->i_file_acl &&
1032988c 4300 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
24676da4
TT
4301 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4302 ei->i_file_acl);
485c26ec
TT
4303 ret = -EIO;
4304 goto bad_inode;
f19d5870
TM
4305 } else if (!ext4_has_inline_data(inode)) {
4306 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4307 if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4308 (S_ISLNK(inode->i_mode) &&
4309 !ext4_inode_is_fast_symlink(inode))))
4310 /* Validate extent which is part of inode */
4311 ret = ext4_ext_check_inode(inode);
4312 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4313 (S_ISLNK(inode->i_mode) &&
4314 !ext4_inode_is_fast_symlink(inode))) {
4315 /* Validate block references which are part of inode */
4316 ret = ext4_ind_check_inode(inode);
4317 }
fe2c8191 4318 }
567f3e9a 4319 if (ret)
de9a55b8 4320 goto bad_inode;
7a262f7c 4321
ac27a0ec 4322 if (S_ISREG(inode->i_mode)) {
617ba13b
MC
4323 inode->i_op = &ext4_file_inode_operations;
4324 inode->i_fop = &ext4_file_operations;
4325 ext4_set_aops(inode);
ac27a0ec 4326 } else if (S_ISDIR(inode->i_mode)) {
617ba13b
MC
4327 inode->i_op = &ext4_dir_inode_operations;
4328 inode->i_fop = &ext4_dir_operations;
ac27a0ec 4329 } else if (S_ISLNK(inode->i_mode)) {
e83c1397 4330 if (ext4_inode_is_fast_symlink(inode)) {
617ba13b 4331 inode->i_op = &ext4_fast_symlink_inode_operations;
e83c1397
DG
4332 nd_terminate_link(ei->i_data, inode->i_size,
4333 sizeof(ei->i_data) - 1);
4334 } else {
617ba13b
MC
4335 inode->i_op = &ext4_symlink_inode_operations;
4336 ext4_set_aops(inode);
ac27a0ec 4337 }
563bdd61
TT
4338 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4339 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
617ba13b 4340 inode->i_op = &ext4_special_inode_operations;
ac27a0ec
DK
4341 if (raw_inode->i_block[0])
4342 init_special_inode(inode, inode->i_mode,
4343 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4344 else
4345 init_special_inode(inode, inode->i_mode,
4346 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
393d1d1d
DTB
4347 } else if (ino == EXT4_BOOT_LOADER_INO) {
4348 make_bad_inode(inode);
563bdd61 4349 } else {
563bdd61 4350 ret = -EIO;
24676da4 4351 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
563bdd61 4352 goto bad_inode;
ac27a0ec 4353 }
af5bc92d 4354 brelse(iloc.bh);
617ba13b 4355 ext4_set_inode_flags(inode);
1d1fe1ee
DH
4356 unlock_new_inode(inode);
4357 return inode;
ac27a0ec
DK
4358
4359bad_inode:
567f3e9a 4360 brelse(iloc.bh);
1d1fe1ee
DH
4361 iget_failed(inode);
4362 return ERR_PTR(ret);
ac27a0ec
DK
4363}
4364
0fc1b451
AK
4365static int ext4_inode_blocks_set(handle_t *handle,
4366 struct ext4_inode *raw_inode,
4367 struct ext4_inode_info *ei)
4368{
4369 struct inode *inode = &(ei->vfs_inode);
4370 u64 i_blocks = inode->i_blocks;
4371 struct super_block *sb = inode->i_sb;
0fc1b451
AK
4372
4373 if (i_blocks <= ~0U) {
4374 /*
4907cb7b 4375 * i_blocks can be represented in a 32 bit variable
0fc1b451
AK
4376 * as multiple of 512 bytes
4377 */
8180a562 4378 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 4379 raw_inode->i_blocks_high = 0;
84a8dce2 4380 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
f287a1a5
TT
4381 return 0;
4382 }
4383 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4384 return -EFBIG;
4385
4386 if (i_blocks <= 0xffffffffffffULL) {
0fc1b451
AK
4387 /*
4388 * i_blocks can be represented in a 48 bit variable
4389 * as multiple of 512 bytes
4390 */
8180a562 4391 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 4392 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
84a8dce2 4393 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
0fc1b451 4394 } else {
84a8dce2 4395 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
8180a562
AK
4396 /* i_block is stored in file system block size */
4397 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4398 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4399 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
0fc1b451 4400 }
f287a1a5 4401 return 0;
0fc1b451
AK
4402}
4403
ac27a0ec
DK
4404/*
4405 * Post the struct inode info into an on-disk inode location in the
4406 * buffer-cache. This gobbles the caller's reference to the
4407 * buffer_head in the inode location struct.
4408 *
4409 * The caller must have write access to iloc->bh.
4410 */
617ba13b 4411static int ext4_do_update_inode(handle_t *handle,
ac27a0ec 4412 struct inode *inode,
830156c7 4413 struct ext4_iloc *iloc)
ac27a0ec 4414{
617ba13b
MC
4415 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4416 struct ext4_inode_info *ei = EXT4_I(inode);
ac27a0ec
DK
4417 struct buffer_head *bh = iloc->bh;
4418 int err = 0, rc, block;
b71fc079 4419 int need_datasync = 0;
08cefc7a
EB
4420 uid_t i_uid;
4421 gid_t i_gid;
ac27a0ec
DK
4422
4423 /* For fields not not tracking in the in-memory inode,
4424 * initialise them to zero for new inodes. */
19f5fb7a 4425 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
617ba13b 4426 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
ac27a0ec 4427
ff9ddf7e 4428 ext4_get_inode_flags(ei);
ac27a0ec 4429 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
08cefc7a
EB
4430 i_uid = i_uid_read(inode);
4431 i_gid = i_gid_read(inode);
af5bc92d 4432 if (!(test_opt(inode->i_sb, NO_UID32))) {
08cefc7a
EB
4433 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4434 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
ac27a0ec
DK
4435/*
4436 * Fix up interoperability with old kernels. Otherwise, old inodes get
4437 * re-used with the upper 16 bits of the uid/gid intact
4438 */
af5bc92d 4439 if (!ei->i_dtime) {
ac27a0ec 4440 raw_inode->i_uid_high =
08cefc7a 4441 cpu_to_le16(high_16_bits(i_uid));
ac27a0ec 4442 raw_inode->i_gid_high =
08cefc7a 4443 cpu_to_le16(high_16_bits(i_gid));
ac27a0ec
DK
4444 } else {
4445 raw_inode->i_uid_high = 0;
4446 raw_inode->i_gid_high = 0;
4447 }
4448 } else {
08cefc7a
EB
4449 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4450 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
ac27a0ec
DK
4451 raw_inode->i_uid_high = 0;
4452 raw_inode->i_gid_high = 0;
4453 }
4454 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
ef7f3835
KS
4455
4456 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4457 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4458 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4459 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4460
0fc1b451
AK
4461 if (ext4_inode_blocks_set(handle, raw_inode, ei))
4462 goto out_brelse;
ac27a0ec 4463 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
353eb83c 4464 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
9b8f1f01
MC
4465 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4466 cpu_to_le32(EXT4_OS_HURD))
a1ddeb7e
BP
4467 raw_inode->i_file_acl_high =
4468 cpu_to_le16(ei->i_file_acl >> 32);
7973c0c1 4469 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
b71fc079
JK
4470 if (ei->i_disksize != ext4_isize(raw_inode)) {
4471 ext4_isize_set(raw_inode, ei->i_disksize);
4472 need_datasync = 1;
4473 }
a48380f7
AK
4474 if (ei->i_disksize > 0x7fffffffULL) {
4475 struct super_block *sb = inode->i_sb;
4476 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4477 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4478 EXT4_SB(sb)->s_es->s_rev_level ==
4479 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4480 /* If this is the first large file
4481 * created, add a flag to the superblock.
4482 */
4483 err = ext4_journal_get_write_access(handle,
4484 EXT4_SB(sb)->s_sbh);
4485 if (err)
4486 goto out_brelse;
4487 ext4_update_dynamic_rev(sb);
4488 EXT4_SET_RO_COMPAT_FEATURE(sb,
617ba13b 4489 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
0390131b 4490 ext4_handle_sync(handle);
b50924c2 4491 err = ext4_handle_dirty_super(handle, sb);
ac27a0ec
DK
4492 }
4493 }
4494 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4495 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4496 if (old_valid_dev(inode->i_rdev)) {
4497 raw_inode->i_block[0] =
4498 cpu_to_le32(old_encode_dev(inode->i_rdev));
4499 raw_inode->i_block[1] = 0;
4500 } else {
4501 raw_inode->i_block[0] = 0;
4502 raw_inode->i_block[1] =
4503 cpu_to_le32(new_encode_dev(inode->i_rdev));
4504 raw_inode->i_block[2] = 0;
4505 }
f19d5870 4506 } else if (!ext4_has_inline_data(inode)) {
de9a55b8
TT
4507 for (block = 0; block < EXT4_N_BLOCKS; block++)
4508 raw_inode->i_block[block] = ei->i_data[block];
f19d5870 4509 }
ac27a0ec 4510
25ec56b5
JNC
4511 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4512 if (ei->i_extra_isize) {
4513 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4514 raw_inode->i_version_hi =
4515 cpu_to_le32(inode->i_version >> 32);
ac27a0ec 4516 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
25ec56b5
JNC
4517 }
4518
814525f4
DW
4519 ext4_inode_csum_set(inode, raw_inode, ei);
4520
830156c7 4521 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
73b50c1c 4522 rc = ext4_handle_dirty_metadata(handle, NULL, bh);
830156c7
FM
4523 if (!err)
4524 err = rc;
19f5fb7a 4525 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
ac27a0ec 4526
b71fc079 4527 ext4_update_inode_fsync_trans(handle, inode, need_datasync);
ac27a0ec 4528out_brelse:
af5bc92d 4529 brelse(bh);
617ba13b 4530 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4531 return err;
4532}
4533
4534/*
617ba13b 4535 * ext4_write_inode()
ac27a0ec
DK
4536 *
4537 * We are called from a few places:
4538 *
4539 * - Within generic_file_write() for O_SYNC files.
4540 * Here, there will be no transaction running. We wait for any running
4907cb7b 4541 * transaction to commit.
ac27a0ec
DK
4542 *
4543 * - Within sys_sync(), kupdate and such.
4544 * We wait on commit, if tol to.
4545 *
4546 * - Within prune_icache() (PF_MEMALLOC == true)
4547 * Here we simply return. We can't afford to block kswapd on the
4548 * journal commit.
4549 *
4550 * In all cases it is actually safe for us to return without doing anything,
4551 * because the inode has been copied into a raw inode buffer in
617ba13b 4552 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
ac27a0ec
DK
4553 * knfsd.
4554 *
4555 * Note that we are absolutely dependent upon all inode dirtiers doing the
4556 * right thing: they *must* call mark_inode_dirty() after dirtying info in
4557 * which we are interested.
4558 *
4559 * It would be a bug for them to not do this. The code:
4560 *
4561 * mark_inode_dirty(inode)
4562 * stuff();
4563 * inode->i_size = expr;
4564 *
4565 * is in error because a kswapd-driven write_inode() could occur while
4566 * `stuff()' is running, and the new i_size will be lost. Plus the inode
4567 * will no longer be on the superblock's dirty inode list.
4568 */
a9185b41 4569int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
ac27a0ec 4570{
91ac6f43
FM
4571 int err;
4572
ac27a0ec
DK
4573 if (current->flags & PF_MEMALLOC)
4574 return 0;
4575
91ac6f43
FM
4576 if (EXT4_SB(inode->i_sb)->s_journal) {
4577 if (ext4_journal_current_handle()) {
4578 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4579 dump_stack();
4580 return -EIO;
4581 }
ac27a0ec 4582
a9185b41 4583 if (wbc->sync_mode != WB_SYNC_ALL)
91ac6f43
FM
4584 return 0;
4585
4586 err = ext4_force_commit(inode->i_sb);
4587 } else {
4588 struct ext4_iloc iloc;
ac27a0ec 4589
8b472d73 4590 err = __ext4_get_inode_loc(inode, &iloc, 0);
91ac6f43
FM
4591 if (err)
4592 return err;
a9185b41 4593 if (wbc->sync_mode == WB_SYNC_ALL)
830156c7
FM
4594 sync_dirty_buffer(iloc.bh);
4595 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
c398eda0
TT
4596 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4597 "IO error syncing inode");
830156c7
FM
4598 err = -EIO;
4599 }
fd2dd9fb 4600 brelse(iloc.bh);
91ac6f43
FM
4601 }
4602 return err;
ac27a0ec
DK
4603}
4604
53e87268
JK
4605/*
4606 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4607 * buffers that are attached to a page stradding i_size and are undergoing
4608 * commit. In that case we have to wait for commit to finish and try again.
4609 */
4610static void ext4_wait_for_tail_page_commit(struct inode *inode)
4611{
4612 struct page *page;
4613 unsigned offset;
4614 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4615 tid_t commit_tid = 0;
4616 int ret;
4617
4618 offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
4619 /*
4620 * All buffers in the last page remain valid? Then there's nothing to
4621 * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
4622 * blocksize case
4623 */
4624 if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
4625 return;
4626 while (1) {
4627 page = find_lock_page(inode->i_mapping,
4628 inode->i_size >> PAGE_CACHE_SHIFT);
4629 if (!page)
4630 return;
4631 ret = __ext4_journalled_invalidatepage(page, offset);
4632 unlock_page(page);
4633 page_cache_release(page);
4634 if (ret != -EBUSY)
4635 return;
4636 commit_tid = 0;
4637 read_lock(&journal->j_state_lock);
4638 if (journal->j_committing_transaction)
4639 commit_tid = journal->j_committing_transaction->t_tid;
4640 read_unlock(&journal->j_state_lock);
4641 if (commit_tid)
4642 jbd2_log_wait_commit(journal, commit_tid);
4643 }
4644}
4645
ac27a0ec 4646/*
617ba13b 4647 * ext4_setattr()
ac27a0ec
DK
4648 *
4649 * Called from notify_change.
4650 *
4651 * We want to trap VFS attempts to truncate the file as soon as
4652 * possible. In particular, we want to make sure that when the VFS
4653 * shrinks i_size, we put the inode on the orphan list and modify
4654 * i_disksize immediately, so that during the subsequent flushing of
4655 * dirty pages and freeing of disk blocks, we can guarantee that any
4656 * commit will leave the blocks being flushed in an unused state on
4657 * disk. (On recovery, the inode will get truncated and the blocks will
4658 * be freed, so we have a strong guarantee that no future commit will
4659 * leave these blocks visible to the user.)
4660 *
678aaf48
JK
4661 * Another thing we have to assure is that if we are in ordered mode
4662 * and inode is still attached to the committing transaction, we must
4663 * we start writeout of all the dirty pages which are being truncated.
4664 * This way we are sure that all the data written in the previous
4665 * transaction are already on disk (truncate waits for pages under
4666 * writeback).
4667 *
4668 * Called with inode->i_mutex down.
ac27a0ec 4669 */
617ba13b 4670int ext4_setattr(struct dentry *dentry, struct iattr *attr)
ac27a0ec
DK
4671{
4672 struct inode *inode = dentry->d_inode;
4673 int error, rc = 0;
3d287de3 4674 int orphan = 0;
ac27a0ec
DK
4675 const unsigned int ia_valid = attr->ia_valid;
4676
4677 error = inode_change_ok(inode, attr);
4678 if (error)
4679 return error;
4680
12755627 4681 if (is_quota_modification(inode, attr))
871a2931 4682 dquot_initialize(inode);
08cefc7a
EB
4683 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4684 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
ac27a0ec
DK
4685 handle_t *handle;
4686
4687 /* (user+group)*(old+new) structure, inode write (sb,
4688 * inode block, ? - but truncate inode update has it) */
9924a92a
TT
4689 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4690 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
4691 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
ac27a0ec
DK
4692 if (IS_ERR(handle)) {
4693 error = PTR_ERR(handle);
4694 goto err_out;
4695 }
b43fa828 4696 error = dquot_transfer(inode, attr);
ac27a0ec 4697 if (error) {
617ba13b 4698 ext4_journal_stop(handle);
ac27a0ec
DK
4699 return error;
4700 }
4701 /* Update corresponding info in inode so that everything is in
4702 * one transaction */
4703 if (attr->ia_valid & ATTR_UID)
4704 inode->i_uid = attr->ia_uid;
4705 if (attr->ia_valid & ATTR_GID)
4706 inode->i_gid = attr->ia_gid;
617ba13b
MC
4707 error = ext4_mark_inode_dirty(handle, inode);
4708 ext4_journal_stop(handle);
ac27a0ec
DK
4709 }
4710
e2b46574 4711 if (attr->ia_valid & ATTR_SIZE) {
562c72aa 4712
12e9b892 4713 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
e2b46574
ES
4714 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4715
0c095c7f
TT
4716 if (attr->ia_size > sbi->s_bitmap_maxbytes)
4717 return -EFBIG;
e2b46574
ES
4718 }
4719 }
4720
ac27a0ec 4721 if (S_ISREG(inode->i_mode) &&
c8d46e41 4722 attr->ia_valid & ATTR_SIZE &&
072bd7ea 4723 (attr->ia_size < inode->i_size)) {
ac27a0ec
DK
4724 handle_t *handle;
4725
9924a92a 4726 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
ac27a0ec
DK
4727 if (IS_ERR(handle)) {
4728 error = PTR_ERR(handle);
4729 goto err_out;
4730 }
3d287de3
DM
4731 if (ext4_handle_valid(handle)) {
4732 error = ext4_orphan_add(handle, inode);
4733 orphan = 1;
4734 }
617ba13b
MC
4735 EXT4_I(inode)->i_disksize = attr->ia_size;
4736 rc = ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
4737 if (!error)
4738 error = rc;
617ba13b 4739 ext4_journal_stop(handle);
678aaf48
JK
4740
4741 if (ext4_should_order_data(inode)) {
4742 error = ext4_begin_ordered_truncate(inode,
4743 attr->ia_size);
4744 if (error) {
4745 /* Do as much error cleanup as possible */
9924a92a
TT
4746 handle = ext4_journal_start(inode,
4747 EXT4_HT_INODE, 3);
678aaf48
JK
4748 if (IS_ERR(handle)) {
4749 ext4_orphan_del(NULL, inode);
4750 goto err_out;
4751 }
4752 ext4_orphan_del(handle, inode);
3d287de3 4753 orphan = 0;
678aaf48
JK
4754 ext4_journal_stop(handle);
4755 goto err_out;
4756 }
4757 }
ac27a0ec
DK
4758 }
4759
072bd7ea 4760 if (attr->ia_valid & ATTR_SIZE) {
53e87268
JK
4761 if (attr->ia_size != inode->i_size) {
4762 loff_t oldsize = inode->i_size;
4763
4764 i_size_write(inode, attr->ia_size);
4765 /*
4766 * Blocks are going to be removed from the inode. Wait
4767 * for dio in flight. Temporarily disable
4768 * dioread_nolock to prevent livelock.
4769 */
1b65007e 4770 if (orphan) {
53e87268
JK
4771 if (!ext4_should_journal_data(inode)) {
4772 ext4_inode_block_unlocked_dio(inode);
4773 inode_dio_wait(inode);
4774 ext4_inode_resume_unlocked_dio(inode);
4775 } else
4776 ext4_wait_for_tail_page_commit(inode);
1b65007e 4777 }
53e87268
JK
4778 /*
4779 * Truncate pagecache after we've waited for commit
4780 * in data=journal mode to make pages freeable.
4781 */
4782 truncate_pagecache(inode, oldsize, inode->i_size);
1c9114f9 4783 }
afcff5d8 4784 ext4_truncate(inode);
072bd7ea 4785 }
ac27a0ec 4786
1025774c
CH
4787 if (!rc) {
4788 setattr_copy(inode, attr);
4789 mark_inode_dirty(inode);
4790 }
4791
4792 /*
4793 * If the call to ext4_truncate failed to get a transaction handle at
4794 * all, we need to clean up the in-core orphan list manually.
4795 */
3d287de3 4796 if (orphan && inode->i_nlink)
617ba13b 4797 ext4_orphan_del(NULL, inode);
ac27a0ec
DK
4798
4799 if (!rc && (ia_valid & ATTR_MODE))
617ba13b 4800 rc = ext4_acl_chmod(inode);
ac27a0ec
DK
4801
4802err_out:
617ba13b 4803 ext4_std_error(inode->i_sb, error);
ac27a0ec
DK
4804 if (!error)
4805 error = rc;
4806 return error;
4807}
4808
3e3398a0
MC
4809int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4810 struct kstat *stat)
4811{
4812 struct inode *inode;
4813 unsigned long delalloc_blocks;
4814
4815 inode = dentry->d_inode;
4816 generic_fillattr(inode, stat);
4817
4818 /*
4819 * We can't update i_blocks if the block allocation is delayed
4820 * otherwise in the case of system crash before the real block
4821 * allocation is done, we will have i_blocks inconsistent with
4822 * on-disk file blocks.
4823 * We always keep i_blocks updated together with real
4824 * allocation. But to not confuse with user, stat
4825 * will return the blocks that include the delayed allocation
4826 * blocks for this file.
4827 */
96607551
TM
4828 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
4829 EXT4_I(inode)->i_reserved_data_blocks);
3e3398a0
MC
4830
4831 stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
4832 return 0;
4833}
ac27a0ec 4834
a02908f1
MC
4835static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4836{
12e9b892 4837 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
8bb2b247 4838 return ext4_ind_trans_blocks(inode, nrblocks, chunk);
ac51d837 4839 return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
a02908f1 4840}
ac51d837 4841
ac27a0ec 4842/*
a02908f1
MC
4843 * Account for index blocks, block groups bitmaps and block group
4844 * descriptor blocks if modify datablocks and index blocks
4845 * worse case, the indexs blocks spread over different block groups
ac27a0ec 4846 *
a02908f1 4847 * If datablocks are discontiguous, they are possible to spread over
4907cb7b 4848 * different block groups too. If they are contiguous, with flexbg,
a02908f1 4849 * they could still across block group boundary.
ac27a0ec 4850 *
a02908f1
MC
4851 * Also account for superblock, inode, quota and xattr blocks
4852 */
1f109d5a 4853static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
a02908f1 4854{
8df9675f
TT
4855 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4856 int gdpblocks;
a02908f1
MC
4857 int idxblocks;
4858 int ret = 0;
4859
4860 /*
4861 * How many index blocks need to touch to modify nrblocks?
4862 * The "Chunk" flag indicating whether the nrblocks is
4863 * physically contiguous on disk
4864 *
4865 * For Direct IO and fallocate, they calls get_block to allocate
4866 * one single extent at a time, so they could set the "Chunk" flag
4867 */
4868 idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4869
4870 ret = idxblocks;
4871
4872 /*
4873 * Now let's see how many group bitmaps and group descriptors need
4874 * to account
4875 */
4876 groups = idxblocks;
4877 if (chunk)
4878 groups += 1;
4879 else
4880 groups += nrblocks;
4881
4882 gdpblocks = groups;
8df9675f
TT
4883 if (groups > ngroups)
4884 groups = ngroups;
a02908f1
MC
4885 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4886 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4887
4888 /* bitmaps and block group descriptor blocks */
4889 ret += groups + gdpblocks;
4890
4891 /* Blocks for super block, inode, quota and xattr blocks */
4892 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4893
4894 return ret;
4895}
4896
4897/*
25985edc 4898 * Calculate the total number of credits to reserve to fit
f3bd1f3f
MC
4899 * the modification of a single pages into a single transaction,
4900 * which may include multiple chunks of block allocations.
ac27a0ec 4901 *
525f4ed8 4902 * This could be called via ext4_write_begin()
ac27a0ec 4903 *
525f4ed8 4904 * We need to consider the worse case, when
a02908f1 4905 * one new block per extent.
ac27a0ec 4906 */
a86c6181 4907int ext4_writepage_trans_blocks(struct inode *inode)
ac27a0ec 4908{
617ba13b 4909 int bpp = ext4_journal_blocks_per_page(inode);
ac27a0ec
DK
4910 int ret;
4911
a02908f1 4912 ret = ext4_meta_trans_blocks(inode, bpp, 0);
a86c6181 4913
a02908f1 4914 /* Account for data blocks for journalled mode */
617ba13b 4915 if (ext4_should_journal_data(inode))
a02908f1 4916 ret += bpp;
ac27a0ec
DK
4917 return ret;
4918}
f3bd1f3f
MC
4919
4920/*
4921 * Calculate the journal credits for a chunk of data modification.
4922 *
4923 * This is called from DIO, fallocate or whoever calling
79e83036 4924 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
f3bd1f3f
MC
4925 *
4926 * journal buffers for data blocks are not included here, as DIO
4927 * and fallocate do no need to journal data buffers.
4928 */
4929int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4930{
4931 return ext4_meta_trans_blocks(inode, nrblocks, 1);
4932}
4933
ac27a0ec 4934/*
617ba13b 4935 * The caller must have previously called ext4_reserve_inode_write().
ac27a0ec
DK
4936 * Give this, we know that the caller already has write access to iloc->bh.
4937 */
617ba13b 4938int ext4_mark_iloc_dirty(handle_t *handle,
de9a55b8 4939 struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
4940{
4941 int err = 0;
4942
c64db50e 4943 if (IS_I_VERSION(inode))
25ec56b5
JNC
4944 inode_inc_iversion(inode);
4945
ac27a0ec
DK
4946 /* the do_update_inode consumes one bh->b_count */
4947 get_bh(iloc->bh);
4948
dab291af 4949 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
830156c7 4950 err = ext4_do_update_inode(handle, inode, iloc);
ac27a0ec
DK
4951 put_bh(iloc->bh);
4952 return err;
4953}
4954
4955/*
4956 * On success, We end up with an outstanding reference count against
4957 * iloc->bh. This _must_ be cleaned up later.
4958 */
4959
4960int
617ba13b
MC
4961ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4962 struct ext4_iloc *iloc)
ac27a0ec 4963{
0390131b
FM
4964 int err;
4965
4966 err = ext4_get_inode_loc(inode, iloc);
4967 if (!err) {
4968 BUFFER_TRACE(iloc->bh, "get_write_access");
4969 err = ext4_journal_get_write_access(handle, iloc->bh);
4970 if (err) {
4971 brelse(iloc->bh);
4972 iloc->bh = NULL;
ac27a0ec
DK
4973 }
4974 }
617ba13b 4975 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4976 return err;
4977}
4978
6dd4ee7c
KS
4979/*
4980 * Expand an inode by new_extra_isize bytes.
4981 * Returns 0 on success or negative error number on failure.
4982 */
1d03ec98
AK
4983static int ext4_expand_extra_isize(struct inode *inode,
4984 unsigned int new_extra_isize,
4985 struct ext4_iloc iloc,
4986 handle_t *handle)
6dd4ee7c
KS
4987{
4988 struct ext4_inode *raw_inode;
4989 struct ext4_xattr_ibody_header *header;
6dd4ee7c
KS
4990
4991 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4992 return 0;
4993
4994 raw_inode = ext4_raw_inode(&iloc);
4995
4996 header = IHDR(inode, raw_inode);
6dd4ee7c
KS
4997
4998 /* No extended attributes present */
19f5fb7a
TT
4999 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5000 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
6dd4ee7c
KS
5001 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5002 new_extra_isize);
5003 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5004 return 0;
5005 }
5006
5007 /* try to expand with EAs present */
5008 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5009 raw_inode, handle);
5010}
5011
ac27a0ec
DK
5012/*
5013 * What we do here is to mark the in-core inode as clean with respect to inode
5014 * dirtiness (it may still be data-dirty).
5015 * This means that the in-core inode may be reaped by prune_icache
5016 * without having to perform any I/O. This is a very good thing,
5017 * because *any* task may call prune_icache - even ones which
5018 * have a transaction open against a different journal.
5019 *
5020 * Is this cheating? Not really. Sure, we haven't written the
5021 * inode out, but prune_icache isn't a user-visible syncing function.
5022 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5023 * we start and wait on commits.
ac27a0ec 5024 */
617ba13b 5025int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
ac27a0ec 5026{
617ba13b 5027 struct ext4_iloc iloc;
6dd4ee7c
KS
5028 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5029 static unsigned int mnt_count;
5030 int err, ret;
ac27a0ec
DK
5031
5032 might_sleep();
7ff9c073 5033 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
617ba13b 5034 err = ext4_reserve_inode_write(handle, inode, &iloc);
0390131b
FM
5035 if (ext4_handle_valid(handle) &&
5036 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
19f5fb7a 5037 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
6dd4ee7c
KS
5038 /*
5039 * We need extra buffer credits since we may write into EA block
5040 * with this same handle. If journal_extend fails, then it will
5041 * only result in a minor loss of functionality for that inode.
5042 * If this is felt to be critical, then e2fsck should be run to
5043 * force a large enough s_min_extra_isize.
5044 */
5045 if ((jbd2_journal_extend(handle,
5046 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5047 ret = ext4_expand_extra_isize(inode,
5048 sbi->s_want_extra_isize,
5049 iloc, handle);
5050 if (ret) {
19f5fb7a
TT
5051 ext4_set_inode_state(inode,
5052 EXT4_STATE_NO_EXPAND);
c1bddad9
AK
5053 if (mnt_count !=
5054 le16_to_cpu(sbi->s_es->s_mnt_count)) {
12062ddd 5055 ext4_warning(inode->i_sb,
6dd4ee7c
KS
5056 "Unable to expand inode %lu. Delete"
5057 " some EAs or run e2fsck.",
5058 inode->i_ino);
c1bddad9
AK
5059 mnt_count =
5060 le16_to_cpu(sbi->s_es->s_mnt_count);
6dd4ee7c
KS
5061 }
5062 }
5063 }
5064 }
ac27a0ec 5065 if (!err)
617ba13b 5066 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
ac27a0ec
DK
5067 return err;
5068}
5069
5070/*
617ba13b 5071 * ext4_dirty_inode() is called from __mark_inode_dirty()
ac27a0ec
DK
5072 *
5073 * We're really interested in the case where a file is being extended.
5074 * i_size has been changed by generic_commit_write() and we thus need
5075 * to include the updated inode in the current transaction.
5076 *
5dd4056d 5077 * Also, dquot_alloc_block() will always dirty the inode when blocks
ac27a0ec
DK
5078 * are allocated to the file.
5079 *
5080 * If the inode is marked synchronous, we don't honour that here - doing
5081 * so would cause a commit on atime updates, which we don't bother doing.
5082 * We handle synchronous inodes at the highest possible level.
5083 */
aa385729 5084void ext4_dirty_inode(struct inode *inode, int flags)
ac27a0ec 5085{
ac27a0ec
DK
5086 handle_t *handle;
5087
9924a92a 5088 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
ac27a0ec
DK
5089 if (IS_ERR(handle))
5090 goto out;
f3dc272f 5091
f3dc272f
CW
5092 ext4_mark_inode_dirty(handle, inode);
5093
617ba13b 5094 ext4_journal_stop(handle);
ac27a0ec
DK
5095out:
5096 return;
5097}
5098
5099#if 0
5100/*
5101 * Bind an inode's backing buffer_head into this transaction, to prevent
5102 * it from being flushed to disk early. Unlike
617ba13b 5103 * ext4_reserve_inode_write, this leaves behind no bh reference and
ac27a0ec
DK
5104 * returns no iloc structure, so the caller needs to repeat the iloc
5105 * lookup to mark the inode dirty later.
5106 */
617ba13b 5107static int ext4_pin_inode(handle_t *handle, struct inode *inode)
ac27a0ec 5108{
617ba13b 5109 struct ext4_iloc iloc;
ac27a0ec
DK
5110
5111 int err = 0;
5112 if (handle) {
617ba13b 5113 err = ext4_get_inode_loc(inode, &iloc);
ac27a0ec
DK
5114 if (!err) {
5115 BUFFER_TRACE(iloc.bh, "get_write_access");
dab291af 5116 err = jbd2_journal_get_write_access(handle, iloc.bh);
ac27a0ec 5117 if (!err)
0390131b 5118 err = ext4_handle_dirty_metadata(handle,
73b50c1c 5119 NULL,
0390131b 5120 iloc.bh);
ac27a0ec
DK
5121 brelse(iloc.bh);
5122 }
5123 }
617ba13b 5124 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5125 return err;
5126}
5127#endif
5128
617ba13b 5129int ext4_change_inode_journal_flag(struct inode *inode, int val)
ac27a0ec
DK
5130{
5131 journal_t *journal;
5132 handle_t *handle;
5133 int err;
5134
5135 /*
5136 * We have to be very careful here: changing a data block's
5137 * journaling status dynamically is dangerous. If we write a
5138 * data block to the journal, change the status and then delete
5139 * that block, we risk forgetting to revoke the old log record
5140 * from the journal and so a subsequent replay can corrupt data.
5141 * So, first we make sure that the journal is empty and that
5142 * nobody is changing anything.
5143 */
5144
617ba13b 5145 journal = EXT4_JOURNAL(inode);
0390131b
FM
5146 if (!journal)
5147 return 0;
d699594d 5148 if (is_journal_aborted(journal))
ac27a0ec 5149 return -EROFS;
2aff57b0
YY
5150 /* We have to allocate physical blocks for delalloc blocks
5151 * before flushing journal. otherwise delalloc blocks can not
5152 * be allocated any more. even more truncate on delalloc blocks
5153 * could trigger BUG by flushing delalloc blocks in journal.
5154 * There is no delalloc block in non-journal data mode.
5155 */
5156 if (val && test_opt(inode->i_sb, DELALLOC)) {
5157 err = ext4_alloc_da_blocks(inode);
5158 if (err < 0)
5159 return err;
5160 }
ac27a0ec 5161
17335dcc
DM
5162 /* Wait for all existing dio workers */
5163 ext4_inode_block_unlocked_dio(inode);
5164 inode_dio_wait(inode);
5165
dab291af 5166 jbd2_journal_lock_updates(journal);
ac27a0ec
DK
5167
5168 /*
5169 * OK, there are no updates running now, and all cached data is
5170 * synced to disk. We are now in a completely consistent state
5171 * which doesn't have anything in the journal, and we know that
5172 * no filesystem updates are running, so it is safe to modify
5173 * the inode's in-core data-journaling state flag now.
5174 */
5175
5176 if (val)
12e9b892 5177 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5872ddaa
YY
5178 else {
5179 jbd2_journal_flush(journal);
12e9b892 5180 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5872ddaa 5181 }
617ba13b 5182 ext4_set_aops(inode);
ac27a0ec 5183
dab291af 5184 jbd2_journal_unlock_updates(journal);
17335dcc 5185 ext4_inode_resume_unlocked_dio(inode);
ac27a0ec
DK
5186
5187 /* Finally we can mark the inode as dirty. */
5188
9924a92a 5189 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
ac27a0ec
DK
5190 if (IS_ERR(handle))
5191 return PTR_ERR(handle);
5192
617ba13b 5193 err = ext4_mark_inode_dirty(handle, inode);
0390131b 5194 ext4_handle_sync(handle);
617ba13b
MC
5195 ext4_journal_stop(handle);
5196 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5197
5198 return err;
5199}
2e9ee850
AK
5200
5201static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5202{
5203 return !buffer_mapped(bh);
5204}
5205
c2ec175c 5206int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2e9ee850 5207{
c2ec175c 5208 struct page *page = vmf->page;
2e9ee850
AK
5209 loff_t size;
5210 unsigned long len;
9ea7df53 5211 int ret;
2e9ee850 5212 struct file *file = vma->vm_file;
496ad9aa 5213 struct inode *inode = file_inode(file);
2e9ee850 5214 struct address_space *mapping = inode->i_mapping;
9ea7df53
JK
5215 handle_t *handle;
5216 get_block_t *get_block;
5217 int retries = 0;
2e9ee850 5218
8e8ad8a5 5219 sb_start_pagefault(inode->i_sb);
041bbb6d 5220 file_update_time(vma->vm_file);
9ea7df53
JK
5221 /* Delalloc case is easy... */
5222 if (test_opt(inode->i_sb, DELALLOC) &&
5223 !ext4_should_journal_data(inode) &&
5224 !ext4_nonda_switch(inode->i_sb)) {
5225 do {
5226 ret = __block_page_mkwrite(vma, vmf,
5227 ext4_da_get_block_prep);
5228 } while (ret == -ENOSPC &&
5229 ext4_should_retry_alloc(inode->i_sb, &retries));
5230 goto out_ret;
2e9ee850 5231 }
0e499890
DW
5232
5233 lock_page(page);
9ea7df53
JK
5234 size = i_size_read(inode);
5235 /* Page got truncated from under us? */
5236 if (page->mapping != mapping || page_offset(page) > size) {
5237 unlock_page(page);
5238 ret = VM_FAULT_NOPAGE;
5239 goto out;
0e499890 5240 }
2e9ee850
AK
5241
5242 if (page->index == size >> PAGE_CACHE_SHIFT)
5243 len = size & ~PAGE_CACHE_MASK;
5244 else
5245 len = PAGE_CACHE_SIZE;
a827eaff 5246 /*
9ea7df53
JK
5247 * Return if we have all the buffers mapped. This avoids the need to do
5248 * journal_start/journal_stop which can block and take a long time
a827eaff 5249 */
2e9ee850 5250 if (page_has_buffers(page)) {
f19d5870
TM
5251 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5252 0, len, NULL,
5253 ext4_bh_unmapped)) {
9ea7df53 5254 /* Wait so that we don't change page under IO */
1d1d1a76 5255 wait_for_stable_page(page);
9ea7df53
JK
5256 ret = VM_FAULT_LOCKED;
5257 goto out;
a827eaff 5258 }
2e9ee850 5259 }
a827eaff 5260 unlock_page(page);
9ea7df53
JK
5261 /* OK, we need to fill the hole... */
5262 if (ext4_should_dioread_nolock(inode))
5263 get_block = ext4_get_block_write;
5264 else
5265 get_block = ext4_get_block;
5266retry_alloc:
9924a92a
TT
5267 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5268 ext4_writepage_trans_blocks(inode));
9ea7df53 5269 if (IS_ERR(handle)) {
c2ec175c 5270 ret = VM_FAULT_SIGBUS;
9ea7df53
JK
5271 goto out;
5272 }
5273 ret = __block_page_mkwrite(vma, vmf, get_block);
5274 if (!ret && ext4_should_journal_data(inode)) {
f19d5870 5275 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
9ea7df53
JK
5276 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
5277 unlock_page(page);
5278 ret = VM_FAULT_SIGBUS;
fcbb5515 5279 ext4_journal_stop(handle);
9ea7df53
JK
5280 goto out;
5281 }
5282 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5283 }
5284 ext4_journal_stop(handle);
5285 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5286 goto retry_alloc;
5287out_ret:
5288 ret = block_page_mkwrite_return(ret);
5289out:
8e8ad8a5 5290 sb_end_pagefault(inode->i_sb);
2e9ee850
AK
5291 return ret;
5292}