ext4: update reserved space after the 'correction'
[linux-2.6-block.git] / fs / ext4 / inode.c
CommitLineData
ac27a0ec 1/*
617ba13b 2 * linux/fs/ext4/inode.c
ac27a0ec
DK
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
ac27a0ec
DK
15 * 64-bit file support on 64-bit platforms by Jakub Jelinek
16 * (jj@sunsite.ms.mff.cuni.cz)
17 *
617ba13b 18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
ac27a0ec
DK
19 */
20
ac27a0ec
DK
21#include <linux/fs.h>
22#include <linux/time.h>
dab291af 23#include <linux/jbd2.h>
ac27a0ec
DK
24#include <linux/highuid.h>
25#include <linux/pagemap.h>
26#include <linux/quotaops.h>
27#include <linux/string.h>
28#include <linux/buffer_head.h>
29#include <linux/writeback.h>
64769240 30#include <linux/pagevec.h>
ac27a0ec 31#include <linux/mpage.h>
e83c1397 32#include <linux/namei.h>
ac27a0ec
DK
33#include <linux/uio.h>
34#include <linux/bio.h>
4c0425ff 35#include <linux/workqueue.h>
744692dc 36#include <linux/kernel.h>
6db26ffc 37#include <linux/printk.h>
5a0e3ad6 38#include <linux/slab.h>
a8901d34 39#include <linux/ratelimit.h>
9bffad1e 40
3dcf5451 41#include "ext4_jbd2.h"
ac27a0ec
DK
42#include "xattr.h"
43#include "acl.h"
9f125d64 44#include "truncate.h"
ac27a0ec 45
9bffad1e
TT
46#include <trace/events/ext4.h>
47
a1d6cc56
AK
48#define MPAGE_DA_EXTENT_TAIL 0x01
49
814525f4
DW
50static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
51 struct ext4_inode_info *ei)
52{
53 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
54 __u16 csum_lo;
55 __u16 csum_hi = 0;
56 __u32 csum;
57
58 csum_lo = raw->i_checksum_lo;
59 raw->i_checksum_lo = 0;
60 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
61 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
62 csum_hi = raw->i_checksum_hi;
63 raw->i_checksum_hi = 0;
64 }
65
66 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
67 EXT4_INODE_SIZE(inode->i_sb));
68
69 raw->i_checksum_lo = csum_lo;
70 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
71 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
72 raw->i_checksum_hi = csum_hi;
73
74 return csum;
75}
76
77static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
78 struct ext4_inode_info *ei)
79{
80 __u32 provided, calculated;
81
82 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
83 cpu_to_le32(EXT4_OS_LINUX) ||
84 !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
85 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
86 return 1;
87
88 provided = le16_to_cpu(raw->i_checksum_lo);
89 calculated = ext4_inode_csum(inode, raw, ei);
90 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
91 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
92 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
93 else
94 calculated &= 0xFFFF;
95
96 return provided == calculated;
97}
98
99static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
100 struct ext4_inode_info *ei)
101{
102 __u32 csum;
103
104 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
105 cpu_to_le32(EXT4_OS_LINUX) ||
106 !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
107 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
108 return;
109
110 csum = ext4_inode_csum(inode, raw, ei);
111 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
112 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
113 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
114 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
115}
116
678aaf48
JK
117static inline int ext4_begin_ordered_truncate(struct inode *inode,
118 loff_t new_size)
119{
7ff9c073 120 trace_ext4_begin_ordered_truncate(inode, new_size);
8aefcd55
TT
121 /*
122 * If jinode is zero, then we never opened the file for
123 * writing, so there's no need to call
124 * jbd2_journal_begin_ordered_truncate() since there's no
125 * outstanding writes we need to flush.
126 */
127 if (!EXT4_I(inode)->jinode)
128 return 0;
129 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
130 EXT4_I(inode)->jinode,
131 new_size);
678aaf48
JK
132}
133
64769240 134static void ext4_invalidatepage(struct page *page, unsigned long offset);
cb20d518
TT
135static int __ext4_journalled_writepage(struct page *page, unsigned int len);
136static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
5f163cc7
ES
137static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
138 struct inode *inode, struct page *page, loff_t from,
139 loff_t length, int flags);
64769240 140
ac27a0ec
DK
141/*
142 * Test whether an inode is a fast symlink.
143 */
617ba13b 144static int ext4_inode_is_fast_symlink(struct inode *inode)
ac27a0ec 145{
617ba13b 146 int ea_blocks = EXT4_I(inode)->i_file_acl ?
ac27a0ec
DK
147 (inode->i_sb->s_blocksize >> 9) : 0;
148
149 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
150}
151
ac27a0ec
DK
152/*
153 * Restart the transaction associated with *handle. This does a commit,
154 * so before we call here everything must be consistently dirtied against
155 * this transaction.
156 */
fa5d1113 157int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
487caeef 158 int nblocks)
ac27a0ec 159{
487caeef
JK
160 int ret;
161
162 /*
e35fd660 163 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
487caeef
JK
164 * moment, get_block can be called only for blocks inside i_size since
165 * page cache has been already dropped and writes are blocked by
166 * i_mutex. So we can safely drop the i_data_sem here.
167 */
0390131b 168 BUG_ON(EXT4_JOURNAL(inode) == NULL);
ac27a0ec 169 jbd_debug(2, "restarting handle %p\n", handle);
487caeef 170 up_write(&EXT4_I(inode)->i_data_sem);
8e8eaabe 171 ret = ext4_journal_restart(handle, nblocks);
487caeef 172 down_write(&EXT4_I(inode)->i_data_sem);
fa5d1113 173 ext4_discard_preallocations(inode);
487caeef
JK
174
175 return ret;
ac27a0ec
DK
176}
177
178/*
179 * Called at the last iput() if i_nlink is zero.
180 */
0930fcc1 181void ext4_evict_inode(struct inode *inode)
ac27a0ec
DK
182{
183 handle_t *handle;
bc965ab3 184 int err;
ac27a0ec 185
7ff9c073 186 trace_ext4_evict_inode(inode);
2581fdc8 187
2581fdc8
JZ
188 ext4_ioend_wait(inode);
189
0930fcc1 190 if (inode->i_nlink) {
2d859db3
JK
191 /*
192 * When journalling data dirty buffers are tracked only in the
193 * journal. So although mm thinks everything is clean and
194 * ready for reaping the inode might still have some pages to
195 * write in the running transaction or waiting to be
196 * checkpointed. Thus calling jbd2_journal_invalidatepage()
197 * (via truncate_inode_pages()) to discard these buffers can
198 * cause data loss. Also even if we did not discard these
199 * buffers, we would have no way to find them after the inode
200 * is reaped and thus user could see stale data if he tries to
201 * read them before the transaction is checkpointed. So be
202 * careful and force everything to disk here... We use
203 * ei->i_datasync_tid to store the newest transaction
204 * containing inode's data.
205 *
206 * Note that directories do not have this problem because they
207 * don't use page cache.
208 */
209 if (ext4_should_journal_data(inode) &&
210 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) {
211 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
212 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
213
214 jbd2_log_start_commit(journal, commit_tid);
215 jbd2_log_wait_commit(journal, commit_tid);
216 filemap_write_and_wait(&inode->i_data);
217 }
0930fcc1
AV
218 truncate_inode_pages(&inode->i_data, 0);
219 goto no_delete;
220 }
221
907f4554 222 if (!is_bad_inode(inode))
871a2931 223 dquot_initialize(inode);
907f4554 224
678aaf48
JK
225 if (ext4_should_order_data(inode))
226 ext4_begin_ordered_truncate(inode, 0);
ac27a0ec
DK
227 truncate_inode_pages(&inode->i_data, 0);
228
229 if (is_bad_inode(inode))
230 goto no_delete;
231
8e8ad8a5
JK
232 /*
233 * Protect us against freezing - iput() caller didn't have to have any
234 * protection against it
235 */
236 sb_start_intwrite(inode->i_sb);
9924a92a
TT
237 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
238 ext4_blocks_for_truncate(inode)+3);
ac27a0ec 239 if (IS_ERR(handle)) {
bc965ab3 240 ext4_std_error(inode->i_sb, PTR_ERR(handle));
ac27a0ec
DK
241 /*
242 * If we're going to skip the normal cleanup, we still need to
243 * make sure that the in-core orphan linked list is properly
244 * cleaned up.
245 */
617ba13b 246 ext4_orphan_del(NULL, inode);
8e8ad8a5 247 sb_end_intwrite(inode->i_sb);
ac27a0ec
DK
248 goto no_delete;
249 }
250
251 if (IS_SYNC(inode))
0390131b 252 ext4_handle_sync(handle);
ac27a0ec 253 inode->i_size = 0;
bc965ab3
TT
254 err = ext4_mark_inode_dirty(handle, inode);
255 if (err) {
12062ddd 256 ext4_warning(inode->i_sb,
bc965ab3
TT
257 "couldn't mark inode dirty (err %d)", err);
258 goto stop_handle;
259 }
ac27a0ec 260 if (inode->i_blocks)
617ba13b 261 ext4_truncate(inode);
bc965ab3
TT
262
263 /*
264 * ext4_ext_truncate() doesn't reserve any slop when it
265 * restarts journal transactions; therefore there may not be
266 * enough credits left in the handle to remove the inode from
267 * the orphan list and set the dtime field.
268 */
0390131b 269 if (!ext4_handle_has_enough_credits(handle, 3)) {
bc965ab3
TT
270 err = ext4_journal_extend(handle, 3);
271 if (err > 0)
272 err = ext4_journal_restart(handle, 3);
273 if (err != 0) {
12062ddd 274 ext4_warning(inode->i_sb,
bc965ab3
TT
275 "couldn't extend journal (err %d)", err);
276 stop_handle:
277 ext4_journal_stop(handle);
45388219 278 ext4_orphan_del(NULL, inode);
8e8ad8a5 279 sb_end_intwrite(inode->i_sb);
bc965ab3
TT
280 goto no_delete;
281 }
282 }
283
ac27a0ec 284 /*
617ba13b 285 * Kill off the orphan record which ext4_truncate created.
ac27a0ec 286 * AKPM: I think this can be inside the above `if'.
617ba13b 287 * Note that ext4_orphan_del() has to be able to cope with the
ac27a0ec 288 * deletion of a non-existent orphan - this is because we don't
617ba13b 289 * know if ext4_truncate() actually created an orphan record.
ac27a0ec
DK
290 * (Well, we could do this if we need to, but heck - it works)
291 */
617ba13b
MC
292 ext4_orphan_del(handle, inode);
293 EXT4_I(inode)->i_dtime = get_seconds();
ac27a0ec
DK
294
295 /*
296 * One subtle ordering requirement: if anything has gone wrong
297 * (transaction abort, IO errors, whatever), then we can still
298 * do these next steps (the fs will already have been marked as
299 * having errors), but we can't free the inode if the mark_dirty
300 * fails.
301 */
617ba13b 302 if (ext4_mark_inode_dirty(handle, inode))
ac27a0ec 303 /* If that failed, just do the required in-core inode clear. */
0930fcc1 304 ext4_clear_inode(inode);
ac27a0ec 305 else
617ba13b
MC
306 ext4_free_inode(handle, inode);
307 ext4_journal_stop(handle);
8e8ad8a5 308 sb_end_intwrite(inode->i_sb);
ac27a0ec
DK
309 return;
310no_delete:
0930fcc1 311 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
ac27a0ec
DK
312}
313
a9e7f447
DM
314#ifdef CONFIG_QUOTA
315qsize_t *ext4_get_reserved_space(struct inode *inode)
60e58e0f 316{
a9e7f447 317 return &EXT4_I(inode)->i_reserved_quota;
60e58e0f 318}
a9e7f447 319#endif
9d0be502 320
12219aea
AK
321/*
322 * Calculate the number of metadata blocks need to reserve
9d0be502 323 * to allocate a block located at @lblock
12219aea 324 */
01f49d0b 325static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
12219aea 326{
12e9b892 327 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
9d0be502 328 return ext4_ext_calc_metadata_amount(inode, lblock);
12219aea 329
8bb2b247 330 return ext4_ind_calc_metadata_amount(inode, lblock);
12219aea
AK
331}
332
0637c6f4
TT
333/*
334 * Called with i_data_sem down, which is important since we can call
335 * ext4_discard_preallocations() from here.
336 */
5f634d06
AK
337void ext4_da_update_reserve_space(struct inode *inode,
338 int used, int quota_claim)
12219aea
AK
339{
340 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 341 struct ext4_inode_info *ei = EXT4_I(inode);
0637c6f4
TT
342
343 spin_lock(&ei->i_block_reservation_lock);
d8990240 344 trace_ext4_da_update_reserve_space(inode, used, quota_claim);
0637c6f4 345 if (unlikely(used > ei->i_reserved_data_blocks)) {
8de5c325 346 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
1084f252 347 "with only %d reserved data blocks",
0637c6f4
TT
348 __func__, inode->i_ino, used,
349 ei->i_reserved_data_blocks);
350 WARN_ON(1);
351 used = ei->i_reserved_data_blocks;
352 }
12219aea 353
97795d2a 354 if (unlikely(ei->i_allocated_meta_blocks > ei->i_reserved_meta_blocks)) {
01a523eb
TT
355 ext4_warning(inode->i_sb, "ino %lu, allocated %d "
356 "with only %d reserved metadata blocks "
357 "(releasing %d blocks with reserved %d data blocks)",
358 inode->i_ino, ei->i_allocated_meta_blocks,
359 ei->i_reserved_meta_blocks, used,
360 ei->i_reserved_data_blocks);
97795d2a
BF
361 WARN_ON(1);
362 ei->i_allocated_meta_blocks = ei->i_reserved_meta_blocks;
363 }
364
0637c6f4
TT
365 /* Update per-inode reservations */
366 ei->i_reserved_data_blocks -= used;
0637c6f4 367 ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
57042651 368 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
72b8ab9d 369 used + ei->i_allocated_meta_blocks);
0637c6f4 370 ei->i_allocated_meta_blocks = 0;
6bc6e63f 371
0637c6f4
TT
372 if (ei->i_reserved_data_blocks == 0) {
373 /*
374 * We can release all of the reserved metadata blocks
375 * only when we have written all of the delayed
376 * allocation blocks.
377 */
57042651 378 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
72b8ab9d 379 ei->i_reserved_meta_blocks);
ee5f4d9c 380 ei->i_reserved_meta_blocks = 0;
9d0be502 381 ei->i_da_metadata_calc_len = 0;
6bc6e63f 382 }
12219aea 383 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f 384
72b8ab9d
ES
385 /* Update quota subsystem for data blocks */
386 if (quota_claim)
7b415bf6 387 dquot_claim_block(inode, EXT4_C2B(sbi, used));
72b8ab9d 388 else {
5f634d06
AK
389 /*
390 * We did fallocate with an offset that is already delayed
391 * allocated. So on delayed allocated writeback we should
72b8ab9d 392 * not re-claim the quota for fallocated blocks.
5f634d06 393 */
7b415bf6 394 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
5f634d06 395 }
d6014301
AK
396
397 /*
398 * If we have done all the pending block allocations and if
399 * there aren't any writers on the inode, we can discard the
400 * inode's preallocations.
401 */
0637c6f4
TT
402 if ((ei->i_reserved_data_blocks == 0) &&
403 (atomic_read(&inode->i_writecount) == 0))
d6014301 404 ext4_discard_preallocations(inode);
12219aea
AK
405}
406
e29136f8 407static int __check_block_validity(struct inode *inode, const char *func,
c398eda0
TT
408 unsigned int line,
409 struct ext4_map_blocks *map)
6fd058f7 410{
24676da4
TT
411 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
412 map->m_len)) {
c398eda0
TT
413 ext4_error_inode(inode, func, line, map->m_pblk,
414 "lblock %lu mapped to illegal pblock "
415 "(length %d)", (unsigned long) map->m_lblk,
416 map->m_len);
6fd058f7
TT
417 return -EIO;
418 }
419 return 0;
420}
421
e29136f8 422#define check_block_validity(inode, map) \
c398eda0 423 __check_block_validity((inode), __func__, __LINE__, (map))
e29136f8 424
55138e0b 425/*
1f94533d
TT
426 * Return the number of contiguous dirty pages in a given inode
427 * starting at page frame idx.
55138e0b
TT
428 */
429static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
430 unsigned int max_pages)
431{
432 struct address_space *mapping = inode->i_mapping;
433 pgoff_t index;
434 struct pagevec pvec;
435 pgoff_t num = 0;
436 int i, nr_pages, done = 0;
437
438 if (max_pages == 0)
439 return 0;
440 pagevec_init(&pvec, 0);
441 while (!done) {
442 index = idx;
443 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
444 PAGECACHE_TAG_DIRTY,
445 (pgoff_t)PAGEVEC_SIZE);
446 if (nr_pages == 0)
447 break;
448 for (i = 0; i < nr_pages; i++) {
449 struct page *page = pvec.pages[i];
450 struct buffer_head *bh, *head;
451
452 lock_page(page);
453 if (unlikely(page->mapping != mapping) ||
454 !PageDirty(page) ||
455 PageWriteback(page) ||
456 page->index != idx) {
457 done = 1;
458 unlock_page(page);
459 break;
460 }
1f94533d
TT
461 if (page_has_buffers(page)) {
462 bh = head = page_buffers(page);
463 do {
464 if (!buffer_delay(bh) &&
465 !buffer_unwritten(bh))
466 done = 1;
467 bh = bh->b_this_page;
468 } while (!done && (bh != head));
469 }
55138e0b
TT
470 unlock_page(page);
471 if (done)
472 break;
473 idx++;
474 num++;
659c6009
ES
475 if (num >= max_pages) {
476 done = 1;
55138e0b 477 break;
659c6009 478 }
55138e0b
TT
479 }
480 pagevec_release(&pvec);
481 }
482 return num;
483}
484
921f266b
DM
485#ifdef ES_AGGRESSIVE_TEST
486static void ext4_map_blocks_es_recheck(handle_t *handle,
487 struct inode *inode,
488 struct ext4_map_blocks *es_map,
489 struct ext4_map_blocks *map,
490 int flags)
491{
492 int retval;
493
494 map->m_flags = 0;
495 /*
496 * There is a race window that the result is not the same.
497 * e.g. xfstests #223 when dioread_nolock enables. The reason
498 * is that we lookup a block mapping in extent status tree with
499 * out taking i_data_sem. So at the time the unwritten extent
500 * could be converted.
501 */
502 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
503 down_read((&EXT4_I(inode)->i_data_sem));
504 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
505 retval = ext4_ext_map_blocks(handle, inode, map, flags &
506 EXT4_GET_BLOCKS_KEEP_SIZE);
507 } else {
508 retval = ext4_ind_map_blocks(handle, inode, map, flags &
509 EXT4_GET_BLOCKS_KEEP_SIZE);
510 }
511 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
512 up_read((&EXT4_I(inode)->i_data_sem));
513 /*
514 * Clear EXT4_MAP_FROM_CLUSTER and EXT4_MAP_BOUNDARY flag
515 * because it shouldn't be marked in es_map->m_flags.
516 */
517 map->m_flags &= ~(EXT4_MAP_FROM_CLUSTER | EXT4_MAP_BOUNDARY);
518
519 /*
520 * We don't check m_len because extent will be collpased in status
521 * tree. So the m_len might not equal.
522 */
523 if (es_map->m_lblk != map->m_lblk ||
524 es_map->m_flags != map->m_flags ||
525 es_map->m_pblk != map->m_pblk) {
526 printk("ES cache assertation failed for inode: %lu "
527 "es_cached ex [%d/%d/%llu/%x] != "
528 "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
529 inode->i_ino, es_map->m_lblk, es_map->m_len,
530 es_map->m_pblk, es_map->m_flags, map->m_lblk,
531 map->m_len, map->m_pblk, map->m_flags,
532 retval, flags);
533 }
534}
535#endif /* ES_AGGRESSIVE_TEST */
536
f5ab0d1f 537/*
e35fd660 538 * The ext4_map_blocks() function tries to look up the requested blocks,
2b2d6d01 539 * and returns if the blocks are already mapped.
f5ab0d1f 540 *
f5ab0d1f
MC
541 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
542 * and store the allocated blocks in the result buffer head and mark it
543 * mapped.
544 *
e35fd660
TT
545 * If file type is extents based, it will call ext4_ext_map_blocks(),
546 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
f5ab0d1f
MC
547 * based files
548 *
549 * On success, it returns the number of blocks being mapped or allocate.
550 * if create==0 and the blocks are pre-allocated and uninitialized block,
551 * the result buffer head is unmapped. If the create ==1, it will make sure
552 * the buffer head is mapped.
553 *
554 * It returns 0 if plain look up failed (blocks have not been allocated), in
df3ab170 555 * that case, buffer head is unmapped
f5ab0d1f
MC
556 *
557 * It returns the error in case of allocation failure.
558 */
e35fd660
TT
559int ext4_map_blocks(handle_t *handle, struct inode *inode,
560 struct ext4_map_blocks *map, int flags)
0e855ac8 561{
d100eef2 562 struct extent_status es;
0e855ac8 563 int retval;
921f266b
DM
564#ifdef ES_AGGRESSIVE_TEST
565 struct ext4_map_blocks orig_map;
566
567 memcpy(&orig_map, map, sizeof(*map));
568#endif
f5ab0d1f 569
e35fd660
TT
570 map->m_flags = 0;
571 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
572 "logical block %lu\n", inode->i_ino, flags, map->m_len,
573 (unsigned long) map->m_lblk);
d100eef2
ZL
574
575 /* Lookup extent status tree firstly */
576 if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
577 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
578 map->m_pblk = ext4_es_pblock(&es) +
579 map->m_lblk - es.es_lblk;
580 map->m_flags |= ext4_es_is_written(&es) ?
581 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
582 retval = es.es_len - (map->m_lblk - es.es_lblk);
583 if (retval > map->m_len)
584 retval = map->m_len;
585 map->m_len = retval;
586 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
587 retval = 0;
588 } else {
589 BUG_ON(1);
590 }
921f266b
DM
591#ifdef ES_AGGRESSIVE_TEST
592 ext4_map_blocks_es_recheck(handle, inode, map,
593 &orig_map, flags);
594#endif
d100eef2
ZL
595 goto found;
596 }
597
4df3d265 598 /*
b920c755
TT
599 * Try to see if we can get the block without requesting a new
600 * file system block.
4df3d265 601 */
729f52c6
ZL
602 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
603 down_read((&EXT4_I(inode)->i_data_sem));
12e9b892 604 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
a4e5d88b
DM
605 retval = ext4_ext_map_blocks(handle, inode, map, flags &
606 EXT4_GET_BLOCKS_KEEP_SIZE);
0e855ac8 607 } else {
a4e5d88b
DM
608 retval = ext4_ind_map_blocks(handle, inode, map, flags &
609 EXT4_GET_BLOCKS_KEEP_SIZE);
0e855ac8 610 }
f7fec032
ZL
611 if (retval > 0) {
612 int ret;
613 unsigned long long status;
614
921f266b
DM
615#ifdef ES_AGGRESSIVE_TEST
616 if (retval != map->m_len) {
617 printk("ES len assertation failed for inode: %lu "
618 "retval %d != map->m_len %d "
619 "in %s (lookup)\n", inode->i_ino, retval,
620 map->m_len, __func__);
621 }
622#endif
623
f7fec032
ZL
624 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
625 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
626 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
627 ext4_find_delalloc_range(inode, map->m_lblk,
628 map->m_lblk + map->m_len - 1))
629 status |= EXTENT_STATUS_DELAYED;
630 ret = ext4_es_insert_extent(inode, map->m_lblk,
631 map->m_len, map->m_pblk, status);
632 if (ret < 0)
633 retval = ret;
634 }
729f52c6
ZL
635 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
636 up_read((&EXT4_I(inode)->i_data_sem));
f5ab0d1f 637
d100eef2 638found:
e35fd660 639 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
f7fec032 640 int ret = check_block_validity(inode, map);
6fd058f7
TT
641 if (ret != 0)
642 return ret;
643 }
644
f5ab0d1f 645 /* If it is only a block(s) look up */
c2177057 646 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
f5ab0d1f
MC
647 return retval;
648
649 /*
650 * Returns if the blocks have already allocated
651 *
652 * Note that if blocks have been preallocated
df3ab170 653 * ext4_ext_get_block() returns the create = 0
f5ab0d1f
MC
654 * with buffer head unmapped.
655 */
e35fd660 656 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
4df3d265
AK
657 return retval;
658
2a8964d6 659 /*
a25a4e1a
ZL
660 * Here we clear m_flags because after allocating an new extent,
661 * it will be set again.
2a8964d6 662 */
a25a4e1a 663 map->m_flags &= ~EXT4_MAP_FLAGS;
2a8964d6 664
4df3d265 665 /*
f5ab0d1f
MC
666 * New blocks allocate and/or writing to uninitialized extent
667 * will possibly result in updating i_data, so we take
668 * the write lock of i_data_sem, and call get_blocks()
669 * with create == 1 flag.
4df3d265
AK
670 */
671 down_write((&EXT4_I(inode)->i_data_sem));
d2a17637
MC
672
673 /*
674 * if the caller is from delayed allocation writeout path
675 * we have already reserved fs blocks for allocation
676 * let the underlying get_block() function know to
677 * avoid double accounting
678 */
c2177057 679 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
f2321097 680 ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
4df3d265
AK
681 /*
682 * We need to check for EXT4 here because migrate
683 * could have changed the inode type in between
684 */
12e9b892 685 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
e35fd660 686 retval = ext4_ext_map_blocks(handle, inode, map, flags);
0e855ac8 687 } else {
e35fd660 688 retval = ext4_ind_map_blocks(handle, inode, map, flags);
267e4db9 689
e35fd660 690 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
267e4db9
AK
691 /*
692 * We allocated new blocks which will result in
693 * i_data's format changing. Force the migrate
694 * to fail by clearing migrate flags
695 */
19f5fb7a 696 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
267e4db9 697 }
d2a17637 698
5f634d06
AK
699 /*
700 * Update reserved blocks/metadata blocks after successful
701 * block allocation which had been deferred till now. We don't
702 * support fallocate for non extent files. So we can update
703 * reserve space here.
704 */
705 if ((retval > 0) &&
1296cc85 706 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
5f634d06
AK
707 ext4_da_update_reserve_space(inode, retval, 1);
708 }
f7fec032 709 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
f2321097 710 ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
2ac3b6e0 711
f7fec032
ZL
712 if (retval > 0) {
713 int ret;
714 unsigned long long status;
715
921f266b
DM
716#ifdef ES_AGGRESSIVE_TEST
717 if (retval != map->m_len) {
718 printk("ES len assertation failed for inode: %lu "
719 "retval %d != map->m_len %d "
720 "in %s (allocation)\n", inode->i_ino, retval,
721 map->m_len, __func__);
722 }
723#endif
724
adb23551
ZL
725 /*
726 * If the extent has been zeroed out, we don't need to update
727 * extent status tree.
728 */
729 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
730 ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
731 if (ext4_es_is_written(&es))
732 goto has_zeroout;
733 }
f7fec032
ZL
734 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
735 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
736 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
737 ext4_find_delalloc_range(inode, map->m_lblk,
738 map->m_lblk + map->m_len - 1))
739 status |= EXTENT_STATUS_DELAYED;
740 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
741 map->m_pblk, status);
742 if (ret < 0)
743 retval = ret;
5356f261
AK
744 }
745
adb23551 746has_zeroout:
4df3d265 747 up_write((&EXT4_I(inode)->i_data_sem));
e35fd660 748 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
e29136f8 749 int ret = check_block_validity(inode, map);
6fd058f7
TT
750 if (ret != 0)
751 return ret;
752 }
0e855ac8
AK
753 return retval;
754}
755
f3bd1f3f
MC
756/* Maximum number of blocks we map for direct IO at once. */
757#define DIO_MAX_BLOCKS 4096
758
2ed88685
TT
759static int _ext4_get_block(struct inode *inode, sector_t iblock,
760 struct buffer_head *bh, int flags)
ac27a0ec 761{
3e4fdaf8 762 handle_t *handle = ext4_journal_current_handle();
2ed88685 763 struct ext4_map_blocks map;
7fb5409d 764 int ret = 0, started = 0;
f3bd1f3f 765 int dio_credits;
ac27a0ec 766
46c7f254
TM
767 if (ext4_has_inline_data(inode))
768 return -ERANGE;
769
2ed88685
TT
770 map.m_lblk = iblock;
771 map.m_len = bh->b_size >> inode->i_blkbits;
772
8b0f165f 773 if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
7fb5409d 774 /* Direct IO write... */
2ed88685
TT
775 if (map.m_len > DIO_MAX_BLOCKS)
776 map.m_len = DIO_MAX_BLOCKS;
777 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
9924a92a
TT
778 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
779 dio_credits);
7fb5409d 780 if (IS_ERR(handle)) {
ac27a0ec 781 ret = PTR_ERR(handle);
2ed88685 782 return ret;
ac27a0ec 783 }
7fb5409d 784 started = 1;
ac27a0ec
DK
785 }
786
2ed88685 787 ret = ext4_map_blocks(handle, inode, &map, flags);
7fb5409d 788 if (ret > 0) {
2ed88685
TT
789 map_bh(bh, inode->i_sb, map.m_pblk);
790 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
791 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
7fb5409d 792 ret = 0;
ac27a0ec 793 }
7fb5409d
JK
794 if (started)
795 ext4_journal_stop(handle);
ac27a0ec
DK
796 return ret;
797}
798
2ed88685
TT
799int ext4_get_block(struct inode *inode, sector_t iblock,
800 struct buffer_head *bh, int create)
801{
802 return _ext4_get_block(inode, iblock, bh,
803 create ? EXT4_GET_BLOCKS_CREATE : 0);
804}
805
ac27a0ec
DK
806/*
807 * `handle' can be NULL if create is zero
808 */
617ba13b 809struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
725d26d3 810 ext4_lblk_t block, int create, int *errp)
ac27a0ec 811{
2ed88685
TT
812 struct ext4_map_blocks map;
813 struct buffer_head *bh;
ac27a0ec
DK
814 int fatal = 0, err;
815
816 J_ASSERT(handle != NULL || create == 0);
817
2ed88685
TT
818 map.m_lblk = block;
819 map.m_len = 1;
820 err = ext4_map_blocks(handle, inode, &map,
821 create ? EXT4_GET_BLOCKS_CREATE : 0);
ac27a0ec 822
90b0a973
CM
823 /* ensure we send some value back into *errp */
824 *errp = 0;
825
0f70b406
TT
826 if (create && err == 0)
827 err = -ENOSPC; /* should never happen */
2ed88685
TT
828 if (err < 0)
829 *errp = err;
830 if (err <= 0)
831 return NULL;
2ed88685
TT
832
833 bh = sb_getblk(inode->i_sb, map.m_pblk);
aebf0243 834 if (unlikely(!bh)) {
860d21e2 835 *errp = -ENOMEM;
2ed88685 836 return NULL;
ac27a0ec 837 }
2ed88685
TT
838 if (map.m_flags & EXT4_MAP_NEW) {
839 J_ASSERT(create != 0);
840 J_ASSERT(handle != NULL);
ac27a0ec 841
2ed88685
TT
842 /*
843 * Now that we do not always journal data, we should
844 * keep in mind whether this should always journal the
845 * new buffer as metadata. For now, regular file
846 * writes use ext4_get_block instead, so it's not a
847 * problem.
848 */
849 lock_buffer(bh);
850 BUFFER_TRACE(bh, "call get_create_access");
851 fatal = ext4_journal_get_create_access(handle, bh);
852 if (!fatal && !buffer_uptodate(bh)) {
853 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
854 set_buffer_uptodate(bh);
ac27a0ec 855 }
2ed88685
TT
856 unlock_buffer(bh);
857 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
858 err = ext4_handle_dirty_metadata(handle, inode, bh);
859 if (!fatal)
860 fatal = err;
861 } else {
862 BUFFER_TRACE(bh, "not a new buffer");
ac27a0ec 863 }
2ed88685
TT
864 if (fatal) {
865 *errp = fatal;
866 brelse(bh);
867 bh = NULL;
868 }
869 return bh;
ac27a0ec
DK
870}
871
617ba13b 872struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
725d26d3 873 ext4_lblk_t block, int create, int *err)
ac27a0ec 874{
af5bc92d 875 struct buffer_head *bh;
ac27a0ec 876
617ba13b 877 bh = ext4_getblk(handle, inode, block, create, err);
ac27a0ec
DK
878 if (!bh)
879 return bh;
880 if (buffer_uptodate(bh))
881 return bh;
65299a3b 882 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
ac27a0ec
DK
883 wait_on_buffer(bh);
884 if (buffer_uptodate(bh))
885 return bh;
886 put_bh(bh);
887 *err = -EIO;
888 return NULL;
889}
890
f19d5870
TM
891int ext4_walk_page_buffers(handle_t *handle,
892 struct buffer_head *head,
893 unsigned from,
894 unsigned to,
895 int *partial,
896 int (*fn)(handle_t *handle,
897 struct buffer_head *bh))
ac27a0ec
DK
898{
899 struct buffer_head *bh;
900 unsigned block_start, block_end;
901 unsigned blocksize = head->b_size;
902 int err, ret = 0;
903 struct buffer_head *next;
904
af5bc92d
TT
905 for (bh = head, block_start = 0;
906 ret == 0 && (bh != head || !block_start);
de9a55b8 907 block_start = block_end, bh = next) {
ac27a0ec
DK
908 next = bh->b_this_page;
909 block_end = block_start + blocksize;
910 if (block_end <= from || block_start >= to) {
911 if (partial && !buffer_uptodate(bh))
912 *partial = 1;
913 continue;
914 }
915 err = (*fn)(handle, bh);
916 if (!ret)
917 ret = err;
918 }
919 return ret;
920}
921
922/*
923 * To preserve ordering, it is essential that the hole instantiation and
924 * the data write be encapsulated in a single transaction. We cannot
617ba13b 925 * close off a transaction and start a new one between the ext4_get_block()
dab291af 926 * and the commit_write(). So doing the jbd2_journal_start at the start of
ac27a0ec
DK
927 * prepare_write() is the right place.
928 *
36ade451
JK
929 * Also, this function can nest inside ext4_writepage(). In that case, we
930 * *know* that ext4_writepage() has generated enough buffer credits to do the
931 * whole page. So we won't block on the journal in that case, which is good,
932 * because the caller may be PF_MEMALLOC.
ac27a0ec 933 *
617ba13b 934 * By accident, ext4 can be reentered when a transaction is open via
ac27a0ec
DK
935 * quota file writes. If we were to commit the transaction while thus
936 * reentered, there can be a deadlock - we would be holding a quota
937 * lock, and the commit would never complete if another thread had a
938 * transaction open and was blocking on the quota lock - a ranking
939 * violation.
940 *
dab291af 941 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
ac27a0ec
DK
942 * will _not_ run commit under these circumstances because handle->h_ref
943 * is elevated. We'll still have enough credits for the tiny quotafile
944 * write.
945 */
f19d5870
TM
946int do_journal_get_write_access(handle_t *handle,
947 struct buffer_head *bh)
ac27a0ec 948{
56d35a4c
JK
949 int dirty = buffer_dirty(bh);
950 int ret;
951
ac27a0ec
DK
952 if (!buffer_mapped(bh) || buffer_freed(bh))
953 return 0;
56d35a4c 954 /*
ebdec241 955 * __block_write_begin() could have dirtied some buffers. Clean
56d35a4c
JK
956 * the dirty bit as jbd2_journal_get_write_access() could complain
957 * otherwise about fs integrity issues. Setting of the dirty bit
ebdec241 958 * by __block_write_begin() isn't a real problem here as we clear
56d35a4c
JK
959 * the bit before releasing a page lock and thus writeback cannot
960 * ever write the buffer.
961 */
962 if (dirty)
963 clear_buffer_dirty(bh);
964 ret = ext4_journal_get_write_access(handle, bh);
965 if (!ret && dirty)
966 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
967 return ret;
ac27a0ec
DK
968}
969
8b0f165f
AP
970static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
971 struct buffer_head *bh_result, int create);
bfc1af65 972static int ext4_write_begin(struct file *file, struct address_space *mapping,
de9a55b8
TT
973 loff_t pos, unsigned len, unsigned flags,
974 struct page **pagep, void **fsdata)
ac27a0ec 975{
af5bc92d 976 struct inode *inode = mapping->host;
1938a150 977 int ret, needed_blocks;
ac27a0ec
DK
978 handle_t *handle;
979 int retries = 0;
af5bc92d 980 struct page *page;
de9a55b8 981 pgoff_t index;
af5bc92d 982 unsigned from, to;
bfc1af65 983
9bffad1e 984 trace_ext4_write_begin(inode, pos, len, flags);
1938a150
AK
985 /*
986 * Reserve one block more for addition to orphan list in case
987 * we allocate blocks but write fails for some reason
988 */
989 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
de9a55b8 990 index = pos >> PAGE_CACHE_SHIFT;
af5bc92d
TT
991 from = pos & (PAGE_CACHE_SIZE - 1);
992 to = from + len;
ac27a0ec 993
f19d5870
TM
994 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
995 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
996 flags, pagep);
997 if (ret < 0)
47564bfb
TT
998 return ret;
999 if (ret == 1)
1000 return 0;
f19d5870
TM
1001 }
1002
47564bfb
TT
1003 /*
1004 * grab_cache_page_write_begin() can take a long time if the
1005 * system is thrashing due to memory pressure, or if the page
1006 * is being written back. So grab it first before we start
1007 * the transaction handle. This also allows us to allocate
1008 * the page (if needed) without using GFP_NOFS.
1009 */
1010retry_grab:
1011 page = grab_cache_page_write_begin(mapping, index, flags);
1012 if (!page)
1013 return -ENOMEM;
1014 unlock_page(page);
1015
1016retry_journal:
9924a92a 1017 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
af5bc92d 1018 if (IS_ERR(handle)) {
47564bfb
TT
1019 page_cache_release(page);
1020 return PTR_ERR(handle);
7479d2b9 1021 }
ac27a0ec 1022
47564bfb
TT
1023 lock_page(page);
1024 if (page->mapping != mapping) {
1025 /* The page got truncated from under us */
1026 unlock_page(page);
1027 page_cache_release(page);
cf108bca 1028 ext4_journal_stop(handle);
47564bfb 1029 goto retry_grab;
cf108bca 1030 }
47564bfb 1031 wait_on_page_writeback(page);
cf108bca 1032
744692dc 1033 if (ext4_should_dioread_nolock(inode))
6e1db88d 1034 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
744692dc 1035 else
6e1db88d 1036 ret = __block_write_begin(page, pos, len, ext4_get_block);
bfc1af65
NP
1037
1038 if (!ret && ext4_should_journal_data(inode)) {
f19d5870
TM
1039 ret = ext4_walk_page_buffers(handle, page_buffers(page),
1040 from, to, NULL,
1041 do_journal_get_write_access);
ac27a0ec 1042 }
bfc1af65
NP
1043
1044 if (ret) {
af5bc92d 1045 unlock_page(page);
ae4d5372 1046 /*
6e1db88d 1047 * __block_write_begin may have instantiated a few blocks
ae4d5372
AK
1048 * outside i_size. Trim these off again. Don't need
1049 * i_size_read because we hold i_mutex.
1938a150
AK
1050 *
1051 * Add inode to orphan list in case we crash before
1052 * truncate finishes
ae4d5372 1053 */
ffacfa7a 1054 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1938a150
AK
1055 ext4_orphan_add(handle, inode);
1056
1057 ext4_journal_stop(handle);
1058 if (pos + len > inode->i_size) {
b9a4207d 1059 ext4_truncate_failed_write(inode);
de9a55b8 1060 /*
ffacfa7a 1061 * If truncate failed early the inode might
1938a150
AK
1062 * still be on the orphan list; we need to
1063 * make sure the inode is removed from the
1064 * orphan list in that case.
1065 */
1066 if (inode->i_nlink)
1067 ext4_orphan_del(NULL, inode);
1068 }
bfc1af65 1069
47564bfb
TT
1070 if (ret == -ENOSPC &&
1071 ext4_should_retry_alloc(inode->i_sb, &retries))
1072 goto retry_journal;
1073 page_cache_release(page);
1074 return ret;
1075 }
1076 *pagep = page;
ac27a0ec
DK
1077 return ret;
1078}
1079
bfc1af65
NP
1080/* For write_end() in data=journal mode */
1081static int write_end_fn(handle_t *handle, struct buffer_head *bh)
ac27a0ec
DK
1082{
1083 if (!buffer_mapped(bh) || buffer_freed(bh))
1084 return 0;
1085 set_buffer_uptodate(bh);
0390131b 1086 return ext4_handle_dirty_metadata(handle, NULL, bh);
ac27a0ec
DK
1087}
1088
f8514083 1089static int ext4_generic_write_end(struct file *file,
de9a55b8
TT
1090 struct address_space *mapping,
1091 loff_t pos, unsigned len, unsigned copied,
1092 struct page *page, void *fsdata)
f8514083
AK
1093{
1094 int i_size_changed = 0;
1095 struct inode *inode = mapping->host;
1096 handle_t *handle = ext4_journal_current_handle();
1097
f19d5870
TM
1098 if (ext4_has_inline_data(inode))
1099 copied = ext4_write_inline_data_end(inode, pos, len,
1100 copied, page);
1101 else
1102 copied = block_write_end(file, mapping, pos,
1103 len, copied, page, fsdata);
f8514083
AK
1104
1105 /*
1106 * No need to use i_size_read() here, the i_size
1107 * cannot change under us because we hold i_mutex.
1108 *
1109 * But it's important to update i_size while still holding page lock:
1110 * page writeout could otherwise come in and zero beyond i_size.
1111 */
1112 if (pos + copied > inode->i_size) {
1113 i_size_write(inode, pos + copied);
1114 i_size_changed = 1;
1115 }
1116
1117 if (pos + copied > EXT4_I(inode)->i_disksize) {
1118 /* We need to mark inode dirty even if
1119 * new_i_size is less that inode->i_size
1120 * bu greater than i_disksize.(hint delalloc)
1121 */
1122 ext4_update_i_disksize(inode, (pos + copied));
1123 i_size_changed = 1;
1124 }
1125 unlock_page(page);
1126 page_cache_release(page);
1127
1128 /*
1129 * Don't mark the inode dirty under page lock. First, it unnecessarily
1130 * makes the holding time of page lock longer. Second, it forces lock
1131 * ordering of page lock and transaction start for journaling
1132 * filesystems.
1133 */
1134 if (i_size_changed)
1135 ext4_mark_inode_dirty(handle, inode);
1136
1137 return copied;
1138}
1139
ac27a0ec
DK
1140/*
1141 * We need to pick up the new inode size which generic_commit_write gave us
1142 * `file' can be NULL - eg, when called from page_symlink().
1143 *
617ba13b 1144 * ext4 never places buffers on inode->i_mapping->private_list. metadata
ac27a0ec
DK
1145 * buffers are managed internally.
1146 */
bfc1af65 1147static int ext4_ordered_write_end(struct file *file,
de9a55b8
TT
1148 struct address_space *mapping,
1149 loff_t pos, unsigned len, unsigned copied,
1150 struct page *page, void *fsdata)
ac27a0ec 1151{
617ba13b 1152 handle_t *handle = ext4_journal_current_handle();
cf108bca 1153 struct inode *inode = mapping->host;
ac27a0ec
DK
1154 int ret = 0, ret2;
1155
9bffad1e 1156 trace_ext4_ordered_write_end(inode, pos, len, copied);
678aaf48 1157 ret = ext4_jbd2_file_inode(handle, inode);
ac27a0ec
DK
1158
1159 if (ret == 0) {
f8514083 1160 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
bfc1af65 1161 page, fsdata);
f8a87d89 1162 copied = ret2;
ffacfa7a 1163 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1164 /* if we have allocated more blocks and copied
1165 * less. We will have blocks allocated outside
1166 * inode->i_size. So truncate them
1167 */
1168 ext4_orphan_add(handle, inode);
f8a87d89
RK
1169 if (ret2 < 0)
1170 ret = ret2;
09e0834f
AF
1171 } else {
1172 unlock_page(page);
1173 page_cache_release(page);
ac27a0ec 1174 }
09e0834f 1175
617ba13b 1176 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1177 if (!ret)
1178 ret = ret2;
bfc1af65 1179
f8514083 1180 if (pos + len > inode->i_size) {
b9a4207d 1181 ext4_truncate_failed_write(inode);
de9a55b8 1182 /*
ffacfa7a 1183 * If truncate failed early the inode might still be
f8514083
AK
1184 * on the orphan list; we need to make sure the inode
1185 * is removed from the orphan list in that case.
1186 */
1187 if (inode->i_nlink)
1188 ext4_orphan_del(NULL, inode);
1189 }
1190
1191
bfc1af65 1192 return ret ? ret : copied;
ac27a0ec
DK
1193}
1194
bfc1af65 1195static int ext4_writeback_write_end(struct file *file,
de9a55b8
TT
1196 struct address_space *mapping,
1197 loff_t pos, unsigned len, unsigned copied,
1198 struct page *page, void *fsdata)
ac27a0ec 1199{
617ba13b 1200 handle_t *handle = ext4_journal_current_handle();
cf108bca 1201 struct inode *inode = mapping->host;
ac27a0ec 1202 int ret = 0, ret2;
ac27a0ec 1203
9bffad1e 1204 trace_ext4_writeback_write_end(inode, pos, len, copied);
f8514083 1205 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
bfc1af65 1206 page, fsdata);
f8a87d89 1207 copied = ret2;
ffacfa7a 1208 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1209 /* if we have allocated more blocks and copied
1210 * less. We will have blocks allocated outside
1211 * inode->i_size. So truncate them
1212 */
1213 ext4_orphan_add(handle, inode);
1214
f8a87d89
RK
1215 if (ret2 < 0)
1216 ret = ret2;
ac27a0ec 1217
617ba13b 1218 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1219 if (!ret)
1220 ret = ret2;
bfc1af65 1221
f8514083 1222 if (pos + len > inode->i_size) {
b9a4207d 1223 ext4_truncate_failed_write(inode);
de9a55b8 1224 /*
ffacfa7a 1225 * If truncate failed early the inode might still be
f8514083
AK
1226 * on the orphan list; we need to make sure the inode
1227 * is removed from the orphan list in that case.
1228 */
1229 if (inode->i_nlink)
1230 ext4_orphan_del(NULL, inode);
1231 }
1232
bfc1af65 1233 return ret ? ret : copied;
ac27a0ec
DK
1234}
1235
bfc1af65 1236static int ext4_journalled_write_end(struct file *file,
de9a55b8
TT
1237 struct address_space *mapping,
1238 loff_t pos, unsigned len, unsigned copied,
1239 struct page *page, void *fsdata)
ac27a0ec 1240{
617ba13b 1241 handle_t *handle = ext4_journal_current_handle();
bfc1af65 1242 struct inode *inode = mapping->host;
ac27a0ec
DK
1243 int ret = 0, ret2;
1244 int partial = 0;
bfc1af65 1245 unsigned from, to;
cf17fea6 1246 loff_t new_i_size;
ac27a0ec 1247
9bffad1e 1248 trace_ext4_journalled_write_end(inode, pos, len, copied);
bfc1af65
NP
1249 from = pos & (PAGE_CACHE_SIZE - 1);
1250 to = from + len;
1251
441c8508
CW
1252 BUG_ON(!ext4_handle_valid(handle));
1253
3fdcfb66
TM
1254 if (ext4_has_inline_data(inode))
1255 copied = ext4_write_inline_data_end(inode, pos, len,
1256 copied, page);
1257 else {
1258 if (copied < len) {
1259 if (!PageUptodate(page))
1260 copied = 0;
1261 page_zero_new_buffers(page, from+copied, to);
1262 }
ac27a0ec 1263
3fdcfb66
TM
1264 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1265 to, &partial, write_end_fn);
1266 if (!partial)
1267 SetPageUptodate(page);
1268 }
cf17fea6
AK
1269 new_i_size = pos + copied;
1270 if (new_i_size > inode->i_size)
bfc1af65 1271 i_size_write(inode, pos+copied);
19f5fb7a 1272 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2d859db3 1273 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
cf17fea6
AK
1274 if (new_i_size > EXT4_I(inode)->i_disksize) {
1275 ext4_update_i_disksize(inode, new_i_size);
617ba13b 1276 ret2 = ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
1277 if (!ret)
1278 ret = ret2;
1279 }
bfc1af65 1280
cf108bca 1281 unlock_page(page);
f8514083 1282 page_cache_release(page);
ffacfa7a 1283 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1284 /* if we have allocated more blocks and copied
1285 * less. We will have blocks allocated outside
1286 * inode->i_size. So truncate them
1287 */
1288 ext4_orphan_add(handle, inode);
1289
617ba13b 1290 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1291 if (!ret)
1292 ret = ret2;
f8514083 1293 if (pos + len > inode->i_size) {
b9a4207d 1294 ext4_truncate_failed_write(inode);
de9a55b8 1295 /*
ffacfa7a 1296 * If truncate failed early the inode might still be
f8514083
AK
1297 * on the orphan list; we need to make sure the inode
1298 * is removed from the orphan list in that case.
1299 */
1300 if (inode->i_nlink)
1301 ext4_orphan_del(NULL, inode);
1302 }
bfc1af65
NP
1303
1304 return ret ? ret : copied;
ac27a0ec 1305}
d2a17637 1306
9d0be502 1307/*
7b415bf6 1308 * Reserve a single cluster located at lblock
9d0be502 1309 */
01f49d0b 1310static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
d2a17637 1311{
030ba6bc 1312 int retries = 0;
60e58e0f 1313 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 1314 struct ext4_inode_info *ei = EXT4_I(inode);
7b415bf6 1315 unsigned int md_needed;
5dd4056d 1316 int ret;
03179fe9
TT
1317 ext4_lblk_t save_last_lblock;
1318 int save_len;
1319
1320 /*
1321 * We will charge metadata quota at writeout time; this saves
1322 * us from metadata over-estimation, though we may go over by
1323 * a small amount in the end. Here we just reserve for data.
1324 */
1325 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1326 if (ret)
1327 return ret;
d2a17637
MC
1328
1329 /*
1330 * recalculate the amount of metadata blocks to reserve
1331 * in order to allocate nrblocks
1332 * worse case is one extent per block
1333 */
030ba6bc 1334repeat:
0637c6f4 1335 spin_lock(&ei->i_block_reservation_lock);
03179fe9
TT
1336 /*
1337 * ext4_calc_metadata_amount() has side effects, which we have
1338 * to be prepared undo if we fail to claim space.
1339 */
1340 save_len = ei->i_da_metadata_calc_len;
1341 save_last_lblock = ei->i_da_metadata_calc_last_lblock;
7b415bf6
AK
1342 md_needed = EXT4_NUM_B2C(sbi,
1343 ext4_calc_metadata_amount(inode, lblock));
f8ec9d68 1344 trace_ext4_da_reserve_space(inode, md_needed);
d2a17637 1345
72b8ab9d
ES
1346 /*
1347 * We do still charge estimated metadata to the sb though;
1348 * we cannot afford to run out of free blocks.
1349 */
e7d5f315 1350 if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) {
03179fe9
TT
1351 ei->i_da_metadata_calc_len = save_len;
1352 ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1353 spin_unlock(&ei->i_block_reservation_lock);
030ba6bc 1354 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
bb8b20ed 1355 cond_resched();
030ba6bc
AK
1356 goto repeat;
1357 }
03179fe9 1358 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
d2a17637
MC
1359 return -ENOSPC;
1360 }
9d0be502 1361 ei->i_reserved_data_blocks++;
0637c6f4
TT
1362 ei->i_reserved_meta_blocks += md_needed;
1363 spin_unlock(&ei->i_block_reservation_lock);
39bc680a 1364
d2a17637
MC
1365 return 0; /* success */
1366}
1367
12219aea 1368static void ext4_da_release_space(struct inode *inode, int to_free)
d2a17637
MC
1369{
1370 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 1371 struct ext4_inode_info *ei = EXT4_I(inode);
d2a17637 1372
cd213226
MC
1373 if (!to_free)
1374 return; /* Nothing to release, exit */
1375
d2a17637 1376 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
cd213226 1377
5a58ec87 1378 trace_ext4_da_release_space(inode, to_free);
0637c6f4 1379 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
cd213226 1380 /*
0637c6f4
TT
1381 * if there aren't enough reserved blocks, then the
1382 * counter is messed up somewhere. Since this
1383 * function is called from invalidate page, it's
1384 * harmless to return without any action.
cd213226 1385 */
8de5c325 1386 ext4_warning(inode->i_sb, "ext4_da_release_space: "
0637c6f4 1387 "ino %lu, to_free %d with only %d reserved "
1084f252 1388 "data blocks", inode->i_ino, to_free,
0637c6f4
TT
1389 ei->i_reserved_data_blocks);
1390 WARN_ON(1);
1391 to_free = ei->i_reserved_data_blocks;
cd213226 1392 }
0637c6f4 1393 ei->i_reserved_data_blocks -= to_free;
cd213226 1394
0637c6f4
TT
1395 if (ei->i_reserved_data_blocks == 0) {
1396 /*
1397 * We can release all of the reserved metadata blocks
1398 * only when we have written all of the delayed
1399 * allocation blocks.
7b415bf6
AK
1400 * Note that in case of bigalloc, i_reserved_meta_blocks,
1401 * i_reserved_data_blocks, etc. refer to number of clusters.
0637c6f4 1402 */
57042651 1403 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
72b8ab9d 1404 ei->i_reserved_meta_blocks);
ee5f4d9c 1405 ei->i_reserved_meta_blocks = 0;
9d0be502 1406 ei->i_da_metadata_calc_len = 0;
0637c6f4 1407 }
d2a17637 1408
72b8ab9d 1409 /* update fs dirty data blocks counter */
57042651 1410 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
d2a17637 1411
d2a17637 1412 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f 1413
7b415bf6 1414 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
d2a17637
MC
1415}
1416
1417static void ext4_da_page_release_reservation(struct page *page,
de9a55b8 1418 unsigned long offset)
d2a17637
MC
1419{
1420 int to_release = 0;
1421 struct buffer_head *head, *bh;
1422 unsigned int curr_off = 0;
7b415bf6
AK
1423 struct inode *inode = page->mapping->host;
1424 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1425 int num_clusters;
51865fda 1426 ext4_fsblk_t lblk;
d2a17637
MC
1427
1428 head = page_buffers(page);
1429 bh = head;
1430 do {
1431 unsigned int next_off = curr_off + bh->b_size;
1432
1433 if ((offset <= curr_off) && (buffer_delay(bh))) {
1434 to_release++;
1435 clear_buffer_delay(bh);
1436 }
1437 curr_off = next_off;
1438 } while ((bh = bh->b_this_page) != head);
7b415bf6 1439
51865fda
ZL
1440 if (to_release) {
1441 lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1442 ext4_es_remove_extent(inode, lblk, to_release);
1443 }
1444
7b415bf6
AK
1445 /* If we have released all the blocks belonging to a cluster, then we
1446 * need to release the reserved space for that cluster. */
1447 num_clusters = EXT4_NUM_B2C(sbi, to_release);
1448 while (num_clusters > 0) {
7b415bf6
AK
1449 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1450 ((num_clusters - 1) << sbi->s_cluster_bits);
1451 if (sbi->s_cluster_ratio == 1 ||
7d1b1fbc 1452 !ext4_find_delalloc_cluster(inode, lblk))
7b415bf6
AK
1453 ext4_da_release_space(inode, 1);
1454
1455 num_clusters--;
1456 }
d2a17637 1457}
ac27a0ec 1458
64769240
AT
1459/*
1460 * Delayed allocation stuff
1461 */
1462
64769240
AT
1463/*
1464 * mpage_da_submit_io - walks through extent of pages and try to write
a1d6cc56 1465 * them with writepage() call back
64769240
AT
1466 *
1467 * @mpd->inode: inode
1468 * @mpd->first_page: first page of the extent
1469 * @mpd->next_page: page after the last page of the extent
64769240
AT
1470 *
1471 * By the time mpage_da_submit_io() is called we expect all blocks
1472 * to be allocated. this may be wrong if allocation failed.
1473 *
1474 * As pages are already locked by write_cache_pages(), we can't use it
1475 */
1de3e3df
TT
1476static int mpage_da_submit_io(struct mpage_da_data *mpd,
1477 struct ext4_map_blocks *map)
64769240 1478{
791b7f08
AK
1479 struct pagevec pvec;
1480 unsigned long index, end;
1481 int ret = 0, err, nr_pages, i;
1482 struct inode *inode = mpd->inode;
1483 struct address_space *mapping = inode->i_mapping;
cb20d518 1484 loff_t size = i_size_read(inode);
3ecdb3a1
TT
1485 unsigned int len, block_start;
1486 struct buffer_head *bh, *page_bufs = NULL;
1de3e3df 1487 sector_t pblock = 0, cur_logical = 0;
bd2d0210 1488 struct ext4_io_submit io_submit;
64769240
AT
1489
1490 BUG_ON(mpd->next_page <= mpd->first_page);
bd2d0210 1491 memset(&io_submit, 0, sizeof(io_submit));
791b7f08
AK
1492 /*
1493 * We need to start from the first_page to the next_page - 1
1494 * to make sure we also write the mapped dirty buffer_heads.
8dc207c0 1495 * If we look at mpd->b_blocknr we would only be looking
791b7f08
AK
1496 * at the currently mapped buffer_heads.
1497 */
64769240
AT
1498 index = mpd->first_page;
1499 end = mpd->next_page - 1;
1500
791b7f08 1501 pagevec_init(&pvec, 0);
64769240 1502 while (index <= end) {
791b7f08 1503 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
64769240
AT
1504 if (nr_pages == 0)
1505 break;
1506 for (i = 0; i < nr_pages; i++) {
f8bec370 1507 int skip_page = 0;
64769240
AT
1508 struct page *page = pvec.pages[i];
1509
791b7f08
AK
1510 index = page->index;
1511 if (index > end)
1512 break;
cb20d518
TT
1513
1514 if (index == size >> PAGE_CACHE_SHIFT)
1515 len = size & ~PAGE_CACHE_MASK;
1516 else
1517 len = PAGE_CACHE_SIZE;
1de3e3df
TT
1518 if (map) {
1519 cur_logical = index << (PAGE_CACHE_SHIFT -
1520 inode->i_blkbits);
1521 pblock = map->m_pblk + (cur_logical -
1522 map->m_lblk);
1523 }
791b7f08
AK
1524 index++;
1525
1526 BUG_ON(!PageLocked(page));
1527 BUG_ON(PageWriteback(page));
1528
3ecdb3a1
TT
1529 bh = page_bufs = page_buffers(page);
1530 block_start = 0;
64769240 1531 do {
1de3e3df
TT
1532 if (map && (cur_logical >= map->m_lblk) &&
1533 (cur_logical <= (map->m_lblk +
1534 (map->m_len - 1)))) {
29fa89d0
AK
1535 if (buffer_delay(bh)) {
1536 clear_buffer_delay(bh);
1537 bh->b_blocknr = pblock;
29fa89d0 1538 }
1de3e3df
TT
1539 if (buffer_unwritten(bh) ||
1540 buffer_mapped(bh))
1541 BUG_ON(bh->b_blocknr != pblock);
1542 if (map->m_flags & EXT4_MAP_UNINIT)
1543 set_buffer_uninit(bh);
1544 clear_buffer_unwritten(bh);
1545 }
29fa89d0 1546
13a79a47
YY
1547 /*
1548 * skip page if block allocation undone and
1549 * block is dirty
1550 */
1551 if (ext4_bh_delay_or_unwritten(NULL, bh))
97498956 1552 skip_page = 1;
3ecdb3a1
TT
1553 bh = bh->b_this_page;
1554 block_start += bh->b_size;
64769240
AT
1555 cur_logical++;
1556 pblock++;
1de3e3df
TT
1557 } while (bh != page_bufs);
1558
f8bec370
JK
1559 if (skip_page) {
1560 unlock_page(page);
1561 continue;
1562 }
cb20d518 1563
97498956 1564 clear_page_dirty_for_io(page);
fe089c77
JK
1565 err = ext4_bio_write_page(&io_submit, page, len,
1566 mpd->wbc);
cb20d518 1567 if (!err)
a1d6cc56 1568 mpd->pages_written++;
64769240
AT
1569 /*
1570 * In error case, we have to continue because
1571 * remaining pages are still locked
64769240
AT
1572 */
1573 if (ret == 0)
1574 ret = err;
64769240
AT
1575 }
1576 pagevec_release(&pvec);
1577 }
bd2d0210 1578 ext4_io_submit(&io_submit);
64769240 1579 return ret;
64769240
AT
1580}
1581
c7f5938a 1582static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd)
c4a0c46e
AK
1583{
1584 int nr_pages, i;
1585 pgoff_t index, end;
1586 struct pagevec pvec;
1587 struct inode *inode = mpd->inode;
1588 struct address_space *mapping = inode->i_mapping;
51865fda 1589 ext4_lblk_t start, last;
c4a0c46e 1590
c7f5938a
CW
1591 index = mpd->first_page;
1592 end = mpd->next_page - 1;
51865fda
ZL
1593
1594 start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1595 last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1596 ext4_es_remove_extent(inode, start, last - start + 1);
1597
66bea92c 1598 pagevec_init(&pvec, 0);
c4a0c46e
AK
1599 while (index <= end) {
1600 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1601 if (nr_pages == 0)
1602 break;
1603 for (i = 0; i < nr_pages; i++) {
1604 struct page *page = pvec.pages[i];
9b1d0998 1605 if (page->index > end)
c4a0c46e 1606 break;
c4a0c46e
AK
1607 BUG_ON(!PageLocked(page));
1608 BUG_ON(PageWriteback(page));
1609 block_invalidatepage(page, 0);
1610 ClearPageUptodate(page);
1611 unlock_page(page);
1612 }
9b1d0998
JK
1613 index = pvec.pages[nr_pages - 1]->index + 1;
1614 pagevec_release(&pvec);
c4a0c46e
AK
1615 }
1616 return;
1617}
1618
df22291f
AK
1619static void ext4_print_free_blocks(struct inode *inode)
1620{
1621 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
92b97816
TT
1622 struct super_block *sb = inode->i_sb;
1623
1624 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
5dee5437
TT
1625 EXT4_C2B(EXT4_SB(inode->i_sb),
1626 ext4_count_free_clusters(inode->i_sb)));
92b97816
TT
1627 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1628 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
57042651
TT
1629 (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
1630 percpu_counter_sum(&sbi->s_freeclusters_counter)));
92b97816 1631 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
7b415bf6
AK
1632 (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
1633 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
92b97816
TT
1634 ext4_msg(sb, KERN_CRIT, "Block reservation details");
1635 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1636 EXT4_I(inode)->i_reserved_data_blocks);
1637 ext4_msg(sb, KERN_CRIT, "i_reserved_meta_blocks=%u",
1693918e 1638 EXT4_I(inode)->i_reserved_meta_blocks);
df22291f
AK
1639 return;
1640}
1641
64769240 1642/*
5a87b7a5
TT
1643 * mpage_da_map_and_submit - go through given space, map them
1644 * if necessary, and then submit them for I/O
64769240 1645 *
8dc207c0 1646 * @mpd - bh describing space
64769240
AT
1647 *
1648 * The function skips space we know is already mapped to disk blocks.
1649 *
64769240 1650 */
5a87b7a5 1651static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
64769240 1652{
2ac3b6e0 1653 int err, blks, get_blocks_flags;
1de3e3df 1654 struct ext4_map_blocks map, *mapp = NULL;
2fa3cdfb
TT
1655 sector_t next = mpd->b_blocknr;
1656 unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
1657 loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
1658 handle_t *handle = NULL;
64769240
AT
1659
1660 /*
5a87b7a5
TT
1661 * If the blocks are mapped already, or we couldn't accumulate
1662 * any blocks, then proceed immediately to the submission stage.
2fa3cdfb 1663 */
5a87b7a5
TT
1664 if ((mpd->b_size == 0) ||
1665 ((mpd->b_state & (1 << BH_Mapped)) &&
1666 !(mpd->b_state & (1 << BH_Delay)) &&
1667 !(mpd->b_state & (1 << BH_Unwritten))))
1668 goto submit_io;
2fa3cdfb
TT
1669
1670 handle = ext4_journal_current_handle();
1671 BUG_ON(!handle);
1672
79ffab34 1673 /*
79e83036 1674 * Call ext4_map_blocks() to allocate any delayed allocation
2ac3b6e0
TT
1675 * blocks, or to convert an uninitialized extent to be
1676 * initialized (in the case where we have written into
1677 * one or more preallocated blocks).
1678 *
1679 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
1680 * indicate that we are on the delayed allocation path. This
1681 * affects functions in many different parts of the allocation
1682 * call path. This flag exists primarily because we don't
79e83036 1683 * want to change *many* call functions, so ext4_map_blocks()
f2321097 1684 * will set the EXT4_STATE_DELALLOC_RESERVED flag once the
2ac3b6e0
TT
1685 * inode's allocation semaphore is taken.
1686 *
1687 * If the blocks in questions were delalloc blocks, set
1688 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
1689 * variables are updated after the blocks have been allocated.
79ffab34 1690 */
2ed88685
TT
1691 map.m_lblk = next;
1692 map.m_len = max_blocks;
1296cc85 1693 get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
744692dc
JZ
1694 if (ext4_should_dioread_nolock(mpd->inode))
1695 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2ac3b6e0 1696 if (mpd->b_state & (1 << BH_Delay))
1296cc85
AK
1697 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
1698
2ed88685 1699 blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
2fa3cdfb 1700 if (blks < 0) {
e3570639
ES
1701 struct super_block *sb = mpd->inode->i_sb;
1702
2fa3cdfb 1703 err = blks;
ed5bde0b 1704 /*
5a87b7a5 1705 * If get block returns EAGAIN or ENOSPC and there
97498956
TT
1706 * appears to be free blocks we will just let
1707 * mpage_da_submit_io() unlock all of the pages.
c4a0c46e
AK
1708 */
1709 if (err == -EAGAIN)
5a87b7a5 1710 goto submit_io;
df22291f 1711
5dee5437 1712 if (err == -ENOSPC && ext4_count_free_clusters(sb)) {
df22291f 1713 mpd->retval = err;
5a87b7a5 1714 goto submit_io;
df22291f
AK
1715 }
1716
c4a0c46e 1717 /*
ed5bde0b
TT
1718 * get block failure will cause us to loop in
1719 * writepages, because a_ops->writepage won't be able
1720 * to make progress. The page will be redirtied by
1721 * writepage and writepages will again try to write
1722 * the same.
c4a0c46e 1723 */
e3570639
ES
1724 if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
1725 ext4_msg(sb, KERN_CRIT,
1726 "delayed block allocation failed for inode %lu "
1727 "at logical offset %llu with max blocks %zd "
1728 "with error %d", mpd->inode->i_ino,
1729 (unsigned long long) next,
1730 mpd->b_size >> mpd->inode->i_blkbits, err);
1731 ext4_msg(sb, KERN_CRIT,
01a523eb 1732 "This should not happen!! Data will be lost");
e3570639
ES
1733 if (err == -ENOSPC)
1734 ext4_print_free_blocks(mpd->inode);
030ba6bc 1735 }
2fa3cdfb 1736 /* invalidate all the pages */
c7f5938a 1737 ext4_da_block_invalidatepages(mpd);
e0fd9b90
CW
1738
1739 /* Mark this page range as having been completed */
1740 mpd->io_done = 1;
5a87b7a5 1741 return;
c4a0c46e 1742 }
2fa3cdfb
TT
1743 BUG_ON(blks == 0);
1744
1de3e3df 1745 mapp = &map;
2ed88685
TT
1746 if (map.m_flags & EXT4_MAP_NEW) {
1747 struct block_device *bdev = mpd->inode->i_sb->s_bdev;
1748 int i;
64769240 1749
2ed88685
TT
1750 for (i = 0; i < map.m_len; i++)
1751 unmap_underlying_metadata(bdev, map.m_pblk + i);
2fa3cdfb
TT
1752 }
1753
1754 /*
03f5d8bc 1755 * Update on-disk size along with block allocation.
2fa3cdfb
TT
1756 */
1757 disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
1758 if (disksize > i_size_read(mpd->inode))
1759 disksize = i_size_read(mpd->inode);
1760 if (disksize > EXT4_I(mpd->inode)->i_disksize) {
1761 ext4_update_i_disksize(mpd->inode, disksize);
5a87b7a5
TT
1762 err = ext4_mark_inode_dirty(handle, mpd->inode);
1763 if (err)
1764 ext4_error(mpd->inode->i_sb,
1765 "Failed to mark inode %lu dirty",
1766 mpd->inode->i_ino);
2fa3cdfb
TT
1767 }
1768
5a87b7a5 1769submit_io:
1de3e3df 1770 mpage_da_submit_io(mpd, mapp);
5a87b7a5 1771 mpd->io_done = 1;
64769240
AT
1772}
1773
bf068ee2
AK
1774#define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
1775 (1 << BH_Delay) | (1 << BH_Unwritten))
64769240
AT
1776
1777/*
1778 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
1779 *
1780 * @mpd->lbh - extent of blocks
1781 * @logical - logical number of the block in the file
b6a8e62f 1782 * @b_state - b_state of the buffer head added
64769240
AT
1783 *
1784 * the function is used to collect contig. blocks in same state
1785 */
b6a8e62f 1786static void mpage_add_bh_to_extent(struct mpage_da_data *mpd, sector_t logical,
8dc207c0 1787 unsigned long b_state)
64769240 1788{
64769240 1789 sector_t next;
b6a8e62f
JK
1790 int blkbits = mpd->inode->i_blkbits;
1791 int nrblocks = mpd->b_size >> blkbits;
64769240 1792
c445e3e0
ES
1793 /*
1794 * XXX Don't go larger than mballoc is willing to allocate
1795 * This is a stopgap solution. We eventually need to fold
1796 * mpage_da_submit_io() into this function and then call
79e83036 1797 * ext4_map_blocks() multiple times in a loop
c445e3e0 1798 */
b6a8e62f 1799 if (nrblocks >= (8*1024*1024 >> blkbits))
c445e3e0
ES
1800 goto flush_it;
1801
b6a8e62f
JK
1802 /* check if the reserved journal credits might overflow */
1803 if (!ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS)) {
525f4ed8
MC
1804 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
1805 /*
1806 * With non-extent format we are limited by the journal
1807 * credit available. Total credit needed to insert
1808 * nrblocks contiguous blocks is dependent on the
1809 * nrblocks. So limit nrblocks.
1810 */
1811 goto flush_it;
525f4ed8
MC
1812 }
1813 }
64769240
AT
1814 /*
1815 * First block in the extent
1816 */
8dc207c0
TT
1817 if (mpd->b_size == 0) {
1818 mpd->b_blocknr = logical;
b6a8e62f 1819 mpd->b_size = 1 << blkbits;
8dc207c0 1820 mpd->b_state = b_state & BH_FLAGS;
64769240
AT
1821 return;
1822 }
1823
8dc207c0 1824 next = mpd->b_blocknr + nrblocks;
64769240
AT
1825 /*
1826 * Can we merge the block to our big extent?
1827 */
8dc207c0 1828 if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
b6a8e62f 1829 mpd->b_size += 1 << blkbits;
64769240
AT
1830 return;
1831 }
1832
525f4ed8 1833flush_it:
64769240
AT
1834 /*
1835 * We couldn't merge the block to our extent, so we
1836 * need to flush current extent and start new one
1837 */
5a87b7a5 1838 mpage_da_map_and_submit(mpd);
a1d6cc56 1839 return;
64769240
AT
1840}
1841
c364b22c 1842static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
29fa89d0 1843{
c364b22c 1844 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
29fa89d0
AK
1845}
1846
5356f261
AK
1847/*
1848 * This function is grabs code from the very beginning of
1849 * ext4_map_blocks, but assumes that the caller is from delayed write
1850 * time. This function looks up the requested blocks and sets the
1851 * buffer delay bit under the protection of i_data_sem.
1852 */
1853static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1854 struct ext4_map_blocks *map,
1855 struct buffer_head *bh)
1856{
d100eef2 1857 struct extent_status es;
5356f261
AK
1858 int retval;
1859 sector_t invalid_block = ~((sector_t) 0xffff);
921f266b
DM
1860#ifdef ES_AGGRESSIVE_TEST
1861 struct ext4_map_blocks orig_map;
1862
1863 memcpy(&orig_map, map, sizeof(*map));
1864#endif
5356f261
AK
1865
1866 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1867 invalid_block = ~0;
1868
1869 map->m_flags = 0;
1870 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1871 "logical block %lu\n", inode->i_ino, map->m_len,
1872 (unsigned long) map->m_lblk);
d100eef2
ZL
1873
1874 /* Lookup extent status tree firstly */
1875 if (ext4_es_lookup_extent(inode, iblock, &es)) {
1876
1877 if (ext4_es_is_hole(&es)) {
1878 retval = 0;
1879 down_read((&EXT4_I(inode)->i_data_sem));
1880 goto add_delayed;
1881 }
1882
1883 /*
1884 * Delayed extent could be allocated by fallocate.
1885 * So we need to check it.
1886 */
1887 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1888 map_bh(bh, inode->i_sb, invalid_block);
1889 set_buffer_new(bh);
1890 set_buffer_delay(bh);
1891 return 0;
1892 }
1893
1894 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1895 retval = es.es_len - (iblock - es.es_lblk);
1896 if (retval > map->m_len)
1897 retval = map->m_len;
1898 map->m_len = retval;
1899 if (ext4_es_is_written(&es))
1900 map->m_flags |= EXT4_MAP_MAPPED;
1901 else if (ext4_es_is_unwritten(&es))
1902 map->m_flags |= EXT4_MAP_UNWRITTEN;
1903 else
1904 BUG_ON(1);
1905
921f266b
DM
1906#ifdef ES_AGGRESSIVE_TEST
1907 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1908#endif
d100eef2
ZL
1909 return retval;
1910 }
1911
5356f261
AK
1912 /*
1913 * Try to see if we can get the block without requesting a new
1914 * file system block.
1915 */
1916 down_read((&EXT4_I(inode)->i_data_sem));
9c3569b5
TM
1917 if (ext4_has_inline_data(inode)) {
1918 /*
1919 * We will soon create blocks for this page, and let
1920 * us pretend as if the blocks aren't allocated yet.
1921 * In case of clusters, we have to handle the work
1922 * of mapping from cluster so that the reserved space
1923 * is calculated properly.
1924 */
1925 if ((EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) &&
1926 ext4_find_delalloc_cluster(inode, map->m_lblk))
1927 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
1928 retval = 0;
1929 } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
d100eef2
ZL
1930 retval = ext4_ext_map_blocks(NULL, inode, map,
1931 EXT4_GET_BLOCKS_NO_PUT_HOLE);
5356f261 1932 else
d100eef2
ZL
1933 retval = ext4_ind_map_blocks(NULL, inode, map,
1934 EXT4_GET_BLOCKS_NO_PUT_HOLE);
5356f261 1935
d100eef2 1936add_delayed:
5356f261 1937 if (retval == 0) {
f7fec032 1938 int ret;
5356f261
AK
1939 /*
1940 * XXX: __block_prepare_write() unmaps passed block,
1941 * is it OK?
1942 */
1943 /* If the block was allocated from previously allocated cluster,
1944 * then we dont need to reserve it again. */
1945 if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
f7fec032
ZL
1946 ret = ext4_da_reserve_space(inode, iblock);
1947 if (ret) {
5356f261 1948 /* not enough space to reserve */
f7fec032 1949 retval = ret;
5356f261 1950 goto out_unlock;
f7fec032 1951 }
5356f261
AK
1952 }
1953
f7fec032
ZL
1954 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1955 ~0, EXTENT_STATUS_DELAYED);
1956 if (ret) {
1957 retval = ret;
51865fda 1958 goto out_unlock;
f7fec032 1959 }
51865fda 1960
5356f261
AK
1961 /* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
1962 * and it should not appear on the bh->b_state.
1963 */
1964 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
1965
1966 map_bh(bh, inode->i_sb, invalid_block);
1967 set_buffer_new(bh);
1968 set_buffer_delay(bh);
f7fec032
ZL
1969 } else if (retval > 0) {
1970 int ret;
1971 unsigned long long status;
1972
921f266b
DM
1973#ifdef ES_AGGRESSIVE_TEST
1974 if (retval != map->m_len) {
1975 printk("ES len assertation failed for inode: %lu "
1976 "retval %d != map->m_len %d "
1977 "in %s (lookup)\n", inode->i_ino, retval,
1978 map->m_len, __func__);
1979 }
1980#endif
1981
f7fec032
ZL
1982 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1983 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1984 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1985 map->m_pblk, status);
1986 if (ret != 0)
1987 retval = ret;
5356f261
AK
1988 }
1989
1990out_unlock:
1991 up_read((&EXT4_I(inode)->i_data_sem));
1992
1993 return retval;
1994}
1995
64769240 1996/*
b920c755
TT
1997 * This is a special get_blocks_t callback which is used by
1998 * ext4_da_write_begin(). It will either return mapped block or
1999 * reserve space for a single block.
29fa89d0
AK
2000 *
2001 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
2002 * We also have b_blocknr = -1 and b_bdev initialized properly
2003 *
2004 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
2005 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
2006 * initialized properly.
64769240 2007 */
9c3569b5
TM
2008int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2009 struct buffer_head *bh, int create)
64769240 2010{
2ed88685 2011 struct ext4_map_blocks map;
64769240
AT
2012 int ret = 0;
2013
2014 BUG_ON(create == 0);
2ed88685
TT
2015 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
2016
2017 map.m_lblk = iblock;
2018 map.m_len = 1;
64769240
AT
2019
2020 /*
2021 * first, we need to know whether the block is allocated already
2022 * preallocated blocks are unmapped but should treated
2023 * the same as allocated blocks.
2024 */
5356f261
AK
2025 ret = ext4_da_map_blocks(inode, iblock, &map, bh);
2026 if (ret <= 0)
2ed88685 2027 return ret;
64769240 2028
2ed88685
TT
2029 map_bh(bh, inode->i_sb, map.m_pblk);
2030 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
2031
2032 if (buffer_unwritten(bh)) {
2033 /* A delayed write to unwritten bh should be marked
2034 * new and mapped. Mapped ensures that we don't do
2035 * get_block multiple times when we write to the same
2036 * offset and new ensures that we do proper zero out
2037 * for partial write.
2038 */
2039 set_buffer_new(bh);
c8205636 2040 set_buffer_mapped(bh);
2ed88685
TT
2041 }
2042 return 0;
64769240 2043}
61628a3f 2044
62e086be
AK
2045static int bget_one(handle_t *handle, struct buffer_head *bh)
2046{
2047 get_bh(bh);
2048 return 0;
2049}
2050
2051static int bput_one(handle_t *handle, struct buffer_head *bh)
2052{
2053 put_bh(bh);
2054 return 0;
2055}
2056
2057static int __ext4_journalled_writepage(struct page *page,
62e086be
AK
2058 unsigned int len)
2059{
2060 struct address_space *mapping = page->mapping;
2061 struct inode *inode = mapping->host;
3fdcfb66 2062 struct buffer_head *page_bufs = NULL;
62e086be 2063 handle_t *handle = NULL;
3fdcfb66
TM
2064 int ret = 0, err = 0;
2065 int inline_data = ext4_has_inline_data(inode);
2066 struct buffer_head *inode_bh = NULL;
62e086be 2067
cb20d518 2068 ClearPageChecked(page);
3fdcfb66
TM
2069
2070 if (inline_data) {
2071 BUG_ON(page->index != 0);
2072 BUG_ON(len > ext4_get_max_inline_size(inode));
2073 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
2074 if (inode_bh == NULL)
2075 goto out;
2076 } else {
2077 page_bufs = page_buffers(page);
2078 if (!page_bufs) {
2079 BUG();
2080 goto out;
2081 }
2082 ext4_walk_page_buffers(handle, page_bufs, 0, len,
2083 NULL, bget_one);
2084 }
62e086be
AK
2085 /* As soon as we unlock the page, it can go away, but we have
2086 * references to buffers so we are safe */
2087 unlock_page(page);
2088
9924a92a
TT
2089 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2090 ext4_writepage_trans_blocks(inode));
62e086be
AK
2091 if (IS_ERR(handle)) {
2092 ret = PTR_ERR(handle);
2093 goto out;
2094 }
2095
441c8508
CW
2096 BUG_ON(!ext4_handle_valid(handle));
2097
3fdcfb66
TM
2098 if (inline_data) {
2099 ret = ext4_journal_get_write_access(handle, inode_bh);
62e086be 2100
3fdcfb66
TM
2101 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
2102
2103 } else {
2104 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2105 do_journal_get_write_access);
2106
2107 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2108 write_end_fn);
2109 }
62e086be
AK
2110 if (ret == 0)
2111 ret = err;
2d859db3 2112 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
62e086be
AK
2113 err = ext4_journal_stop(handle);
2114 if (!ret)
2115 ret = err;
2116
3fdcfb66
TM
2117 if (!ext4_has_inline_data(inode))
2118 ext4_walk_page_buffers(handle, page_bufs, 0, len,
2119 NULL, bput_one);
19f5fb7a 2120 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
62e086be 2121out:
3fdcfb66 2122 brelse(inode_bh);
62e086be
AK
2123 return ret;
2124}
2125
61628a3f 2126/*
43ce1d23
AK
2127 * Note that we don't need to start a transaction unless we're journaling data
2128 * because we should have holes filled from ext4_page_mkwrite(). We even don't
2129 * need to file the inode to the transaction's list in ordered mode because if
2130 * we are writing back data added by write(), the inode is already there and if
25985edc 2131 * we are writing back data modified via mmap(), no one guarantees in which
43ce1d23
AK
2132 * transaction the data will hit the disk. In case we are journaling data, we
2133 * cannot start transaction directly because transaction start ranks above page
2134 * lock so we have to do some magic.
2135 *
b920c755
TT
2136 * This function can get called via...
2137 * - ext4_da_writepages after taking page lock (have journal handle)
2138 * - journal_submit_inode_data_buffers (no journal handle)
f6463b0d 2139 * - shrink_page_list via the kswapd/direct reclaim (no journal handle)
b920c755 2140 * - grab_page_cache when doing write_begin (have journal handle)
43ce1d23
AK
2141 *
2142 * We don't do any block allocation in this function. If we have page with
2143 * multiple blocks we need to write those buffer_heads that are mapped. This
2144 * is important for mmaped based write. So if we do with blocksize 1K
2145 * truncate(f, 1024);
2146 * a = mmap(f, 0, 4096);
2147 * a[0] = 'a';
2148 * truncate(f, 4096);
2149 * we have in the page first buffer_head mapped via page_mkwrite call back
90802ed9 2150 * but other buffer_heads would be unmapped but dirty (dirty done via the
43ce1d23
AK
2151 * do_wp_page). So writepage should write the first block. If we modify
2152 * the mmap area beyond 1024 we will again get a page_fault and the
2153 * page_mkwrite callback will do the block allocation and mark the
2154 * buffer_heads mapped.
2155 *
2156 * We redirty the page if we have any buffer_heads that is either delay or
2157 * unwritten in the page.
2158 *
2159 * We can get recursively called as show below.
2160 *
2161 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2162 * ext4_writepage()
2163 *
2164 * But since we don't do any block allocation we should not deadlock.
2165 * Page also have the dirty flag cleared so we don't get recurive page_lock.
61628a3f 2166 */
43ce1d23 2167static int ext4_writepage(struct page *page,
62e086be 2168 struct writeback_control *wbc)
64769240 2169{
f8bec370 2170 int ret = 0;
61628a3f 2171 loff_t size;
498e5f24 2172 unsigned int len;
744692dc 2173 struct buffer_head *page_bufs = NULL;
61628a3f 2174 struct inode *inode = page->mapping->host;
36ade451 2175 struct ext4_io_submit io_submit;
61628a3f 2176
a9c667f8 2177 trace_ext4_writepage(page);
f0e6c985
AK
2178 size = i_size_read(inode);
2179 if (page->index == size >> PAGE_CACHE_SHIFT)
2180 len = size & ~PAGE_CACHE_MASK;
2181 else
2182 len = PAGE_CACHE_SIZE;
64769240 2183
a42afc5f 2184 page_bufs = page_buffers(page);
fe386132
JK
2185 /*
2186 * We cannot do block allocation or other extent handling in this
2187 * function. If there are buffers needing that, we have to redirty
2188 * the page. But we may reach here when we do a journal commit via
2189 * journal_submit_inode_data_buffers() and in that case we must write
2190 * allocated buffers to achieve data=ordered mode guarantees.
2191 */
f19d5870
TM
2192 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2193 ext4_bh_delay_or_unwritten)) {
f8bec370 2194 redirty_page_for_writepage(wbc, page);
fe386132
JK
2195 if (current->flags & PF_MEMALLOC) {
2196 /*
2197 * For memory cleaning there's no point in writing only
2198 * some buffers. So just bail out. Warn if we came here
2199 * from direct reclaim.
2200 */
2201 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2202 == PF_MEMALLOC);
2203 unlock_page(page);
2204 return 0;
2205 }
a42afc5f 2206 }
64769240 2207
cb20d518 2208 if (PageChecked(page) && ext4_should_journal_data(inode))
43ce1d23
AK
2209 /*
2210 * It's mmapped pagecache. Add buffers and journal it. There
2211 * doesn't seem much point in redirtying the page here.
2212 */
3f0ca309 2213 return __ext4_journalled_writepage(page, len);
43ce1d23 2214
36ade451
JK
2215 memset(&io_submit, 0, sizeof(io_submit));
2216 ret = ext4_bio_write_page(&io_submit, page, len, wbc);
2217 ext4_io_submit(&io_submit);
64769240
AT
2218 return ret;
2219}
2220
61628a3f 2221/*
525f4ed8 2222 * This is called via ext4_da_writepages() to
25985edc 2223 * calculate the total number of credits to reserve to fit
525f4ed8
MC
2224 * a single extent allocation into a single transaction,
2225 * ext4_da_writpeages() will loop calling this before
2226 * the block allocation.
61628a3f 2227 */
525f4ed8
MC
2228
2229static int ext4_da_writepages_trans_blocks(struct inode *inode)
2230{
2231 int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2232
2233 /*
2234 * With non-extent format the journal credit needed to
2235 * insert nrblocks contiguous block is dependent on
2236 * number of contiguous block. So we will limit
2237 * number of contiguous block to a sane value
2238 */
12e9b892 2239 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
525f4ed8
MC
2240 (max_blocks > EXT4_MAX_TRANS_DATA))
2241 max_blocks = EXT4_MAX_TRANS_DATA;
2242
2243 return ext4_chunk_trans_blocks(inode, max_blocks);
2244}
61628a3f 2245
8e48dcfb
TT
2246/*
2247 * write_cache_pages_da - walk the list of dirty pages of the given
8eb9e5ce 2248 * address space and accumulate pages that need writing, and call
168fc022
TT
2249 * mpage_da_map_and_submit to map a single contiguous memory region
2250 * and then write them.
8e48dcfb 2251 */
9c3569b5
TM
2252static int write_cache_pages_da(handle_t *handle,
2253 struct address_space *mapping,
8e48dcfb 2254 struct writeback_control *wbc,
72f84e65
ES
2255 struct mpage_da_data *mpd,
2256 pgoff_t *done_index)
8e48dcfb 2257{
4f01b02c 2258 struct buffer_head *bh, *head;
168fc022 2259 struct inode *inode = mapping->host;
4f01b02c
TT
2260 struct pagevec pvec;
2261 unsigned int nr_pages;
2262 sector_t logical;
2263 pgoff_t index, end;
2264 long nr_to_write = wbc->nr_to_write;
2265 int i, tag, ret = 0;
8e48dcfb 2266
168fc022
TT
2267 memset(mpd, 0, sizeof(struct mpage_da_data));
2268 mpd->wbc = wbc;
2269 mpd->inode = inode;
8e48dcfb
TT
2270 pagevec_init(&pvec, 0);
2271 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2272 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2273
6e6938b6 2274 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
5b41d924
ES
2275 tag = PAGECACHE_TAG_TOWRITE;
2276 else
2277 tag = PAGECACHE_TAG_DIRTY;
2278
72f84e65 2279 *done_index = index;
4f01b02c 2280 while (index <= end) {
5b41d924 2281 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
8e48dcfb
TT
2282 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2283 if (nr_pages == 0)
4f01b02c 2284 return 0;
8e48dcfb
TT
2285
2286 for (i = 0; i < nr_pages; i++) {
2287 struct page *page = pvec.pages[i];
2288
2289 /*
2290 * At this point, the page may be truncated or
2291 * invalidated (changing page->mapping to NULL), or
2292 * even swizzled back from swapper_space to tmpfs file
2293 * mapping. However, page->index will not change
2294 * because we have a reference on the page.
2295 */
4f01b02c
TT
2296 if (page->index > end)
2297 goto out;
8e48dcfb 2298
72f84e65
ES
2299 *done_index = page->index + 1;
2300
78aaced3
TT
2301 /*
2302 * If we can't merge this page, and we have
2303 * accumulated an contiguous region, write it
2304 */
2305 if ((mpd->next_page != page->index) &&
2306 (mpd->next_page != mpd->first_page)) {
2307 mpage_da_map_and_submit(mpd);
2308 goto ret_extent_tail;
2309 }
2310
8e48dcfb
TT
2311 lock_page(page);
2312
2313 /*
4f01b02c
TT
2314 * If the page is no longer dirty, or its
2315 * mapping no longer corresponds to inode we
2316 * are writing (which means it has been
2317 * truncated or invalidated), or the page is
2318 * already under writeback and we are not
2319 * doing a data integrity writeback, skip the page
8e48dcfb 2320 */
4f01b02c
TT
2321 if (!PageDirty(page) ||
2322 (PageWriteback(page) &&
2323 (wbc->sync_mode == WB_SYNC_NONE)) ||
2324 unlikely(page->mapping != mapping)) {
8e48dcfb
TT
2325 unlock_page(page);
2326 continue;
2327 }
2328
7cb1a535 2329 wait_on_page_writeback(page);
8e48dcfb 2330 BUG_ON(PageWriteback(page));
8e48dcfb 2331
9c3569b5
TM
2332 /*
2333 * If we have inline data and arrive here, it means that
2334 * we will soon create the block for the 1st page, so
2335 * we'd better clear the inline data here.
2336 */
2337 if (ext4_has_inline_data(inode)) {
2338 BUG_ON(ext4_test_inode_state(inode,
2339 EXT4_STATE_MAY_INLINE_DATA));
2340 ext4_destroy_inline_data(handle, inode);
2341 }
2342
168fc022 2343 if (mpd->next_page != page->index)
8eb9e5ce 2344 mpd->first_page = page->index;
8eb9e5ce
TT
2345 mpd->next_page = page->index + 1;
2346 logical = (sector_t) page->index <<
2347 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2348
f8bec370
JK
2349 /* Add all dirty buffers to mpd */
2350 head = page_buffers(page);
2351 bh = head;
2352 do {
2353 BUG_ON(buffer_locked(bh));
8eb9e5ce 2354 /*
f8bec370
JK
2355 * We need to try to allocate unmapped blocks
2356 * in the same page. Otherwise we won't make
2357 * progress with the page in ext4_writepage
8eb9e5ce 2358 */
f8bec370
JK
2359 if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2360 mpage_add_bh_to_extent(mpd, logical,
f8bec370
JK
2361 bh->b_state);
2362 if (mpd->io_done)
2363 goto ret_extent_tail;
2364 } else if (buffer_dirty(bh) &&
2365 buffer_mapped(bh)) {
8eb9e5ce 2366 /*
f8bec370
JK
2367 * mapped dirty buffer. We need to
2368 * update the b_state because we look
2369 * at b_state in mpage_da_map_blocks.
2370 * We don't update b_size because if we
2371 * find an unmapped buffer_head later
2372 * we need to use the b_state flag of
2373 * that buffer_head.
8eb9e5ce 2374 */
f8bec370
JK
2375 if (mpd->b_size == 0)
2376 mpd->b_state =
2377 bh->b_state & BH_FLAGS;
2378 }
2379 logical++;
2380 } while ((bh = bh->b_this_page) != head);
8e48dcfb
TT
2381
2382 if (nr_to_write > 0) {
2383 nr_to_write--;
2384 if (nr_to_write == 0 &&
4f01b02c 2385 wbc->sync_mode == WB_SYNC_NONE)
8e48dcfb
TT
2386 /*
2387 * We stop writing back only if we are
2388 * not doing integrity sync. In case of
2389 * integrity sync we have to keep going
2390 * because someone may be concurrently
2391 * dirtying pages, and we might have
2392 * synced a lot of newly appeared dirty
2393 * pages, but have not synced all of the
2394 * old dirty pages.
2395 */
4f01b02c 2396 goto out;
8e48dcfb
TT
2397 }
2398 }
2399 pagevec_release(&pvec);
2400 cond_resched();
2401 }
4f01b02c
TT
2402 return 0;
2403ret_extent_tail:
2404 ret = MPAGE_DA_EXTENT_TAIL;
8eb9e5ce
TT
2405out:
2406 pagevec_release(&pvec);
2407 cond_resched();
8e48dcfb
TT
2408 return ret;
2409}
2410
2411
64769240 2412static int ext4_da_writepages(struct address_space *mapping,
a1d6cc56 2413 struct writeback_control *wbc)
64769240 2414{
22208ded
AK
2415 pgoff_t index;
2416 int range_whole = 0;
61628a3f 2417 handle_t *handle = NULL;
df22291f 2418 struct mpage_da_data mpd;
5e745b04 2419 struct inode *inode = mapping->host;
498e5f24 2420 int pages_written = 0;
55138e0b 2421 unsigned int max_pages;
2acf2c26 2422 int range_cyclic, cycled = 1, io_done = 0;
55138e0b
TT
2423 int needed_blocks, ret = 0;
2424 long desired_nr_to_write, nr_to_writebump = 0;
de89de6e 2425 loff_t range_start = wbc->range_start;
5e745b04 2426 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
72f84e65 2427 pgoff_t done_index = 0;
5b41d924 2428 pgoff_t end;
1bce63d1 2429 struct blk_plug plug;
61628a3f 2430
9bffad1e 2431 trace_ext4_da_writepages(inode, wbc);
ba80b101 2432
61628a3f
MC
2433 /*
2434 * No pages to write? This is mainly a kludge to avoid starting
2435 * a transaction for special inodes like journal inode on last iput()
2436 * because that could violate lock ordering on umount
2437 */
a1d6cc56 2438 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
61628a3f 2439 return 0;
2a21e37e
TT
2440
2441 /*
2442 * If the filesystem has aborted, it is read-only, so return
2443 * right away instead of dumping stack traces later on that
2444 * will obscure the real source of the problem. We test
4ab2f15b 2445 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2a21e37e
TT
2446 * the latter could be true if the filesystem is mounted
2447 * read-only, and in that case, ext4_da_writepages should
2448 * *never* be called, so if that ever happens, we would want
2449 * the stack trace.
2450 */
4ab2f15b 2451 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2a21e37e
TT
2452 return -EROFS;
2453
22208ded
AK
2454 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2455 range_whole = 1;
61628a3f 2456
2acf2c26
AK
2457 range_cyclic = wbc->range_cyclic;
2458 if (wbc->range_cyclic) {
22208ded 2459 index = mapping->writeback_index;
2acf2c26
AK
2460 if (index)
2461 cycled = 0;
2462 wbc->range_start = index << PAGE_CACHE_SHIFT;
2463 wbc->range_end = LLONG_MAX;
2464 wbc->range_cyclic = 0;
5b41d924
ES
2465 end = -1;
2466 } else {
22208ded 2467 index = wbc->range_start >> PAGE_CACHE_SHIFT;
5b41d924
ES
2468 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2469 }
a1d6cc56 2470
55138e0b
TT
2471 /*
2472 * This works around two forms of stupidity. The first is in
2473 * the writeback code, which caps the maximum number of pages
2474 * written to be 1024 pages. This is wrong on multiple
2475 * levels; different architectues have a different page size,
2476 * which changes the maximum amount of data which gets
2477 * written. Secondly, 4 megabytes is way too small. XFS
2478 * forces this value to be 16 megabytes by multiplying
2479 * nr_to_write parameter by four, and then relies on its
2480 * allocator to allocate larger extents to make them
2481 * contiguous. Unfortunately this brings us to the second
2482 * stupidity, which is that ext4's mballoc code only allocates
2483 * at most 2048 blocks. So we force contiguous writes up to
2484 * the number of dirty blocks in the inode, or
2485 * sbi->max_writeback_mb_bump whichever is smaller.
2486 */
2487 max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
b443e733
ES
2488 if (!range_cyclic && range_whole) {
2489 if (wbc->nr_to_write == LONG_MAX)
2490 desired_nr_to_write = wbc->nr_to_write;
2491 else
2492 desired_nr_to_write = wbc->nr_to_write * 8;
2493 } else
55138e0b
TT
2494 desired_nr_to_write = ext4_num_dirty_pages(inode, index,
2495 max_pages);
2496 if (desired_nr_to_write > max_pages)
2497 desired_nr_to_write = max_pages;
2498
2499 if (wbc->nr_to_write < desired_nr_to_write) {
2500 nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
2501 wbc->nr_to_write = desired_nr_to_write;
2502 }
2503
2acf2c26 2504retry:
6e6938b6 2505 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
5b41d924
ES
2506 tag_pages_for_writeback(mapping, index, end);
2507
1bce63d1 2508 blk_start_plug(&plug);
22208ded 2509 while (!ret && wbc->nr_to_write > 0) {
a1d6cc56
AK
2510
2511 /*
2512 * we insert one extent at a time. So we need
2513 * credit needed for single extent allocation.
2514 * journalled mode is currently not supported
2515 * by delalloc
2516 */
2517 BUG_ON(ext4_should_journal_data(inode));
525f4ed8 2518 needed_blocks = ext4_da_writepages_trans_blocks(inode);
a1d6cc56 2519
61628a3f 2520 /* start a new transaction*/
9924a92a
TT
2521 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2522 needed_blocks);
61628a3f
MC
2523 if (IS_ERR(handle)) {
2524 ret = PTR_ERR(handle);
1693918e 2525 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
fbe845dd 2526 "%ld pages, ino %lu; err %d", __func__,
a1d6cc56 2527 wbc->nr_to_write, inode->i_ino, ret);
3c1fcb2c 2528 blk_finish_plug(&plug);
61628a3f
MC
2529 goto out_writepages;
2530 }
f63e6005
TT
2531
2532 /*
8eb9e5ce 2533 * Now call write_cache_pages_da() to find the next
f63e6005 2534 * contiguous region of logical blocks that need
8eb9e5ce 2535 * blocks to be allocated by ext4 and submit them.
f63e6005 2536 */
9c3569b5
TM
2537 ret = write_cache_pages_da(handle, mapping,
2538 wbc, &mpd, &done_index);
f63e6005 2539 /*
af901ca1 2540 * If we have a contiguous extent of pages and we
f63e6005
TT
2541 * haven't done the I/O yet, map the blocks and submit
2542 * them for I/O.
2543 */
2544 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
5a87b7a5 2545 mpage_da_map_and_submit(&mpd);
f63e6005
TT
2546 ret = MPAGE_DA_EXTENT_TAIL;
2547 }
b3a3ca8c 2548 trace_ext4_da_write_pages(inode, &mpd);
f63e6005 2549 wbc->nr_to_write -= mpd.pages_written;
df22291f 2550
61628a3f 2551 ext4_journal_stop(handle);
df22291f 2552
8f64b32e 2553 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
22208ded
AK
2554 /* commit the transaction which would
2555 * free blocks released in the transaction
2556 * and try again
2557 */
df22291f 2558 jbd2_journal_force_commit_nested(sbi->s_journal);
22208ded
AK
2559 ret = 0;
2560 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
a1d6cc56 2561 /*
8de49e67
KM
2562 * Got one extent now try with rest of the pages.
2563 * If mpd.retval is set -EIO, journal is aborted.
2564 * So we don't need to write any more.
a1d6cc56 2565 */
22208ded 2566 pages_written += mpd.pages_written;
8de49e67 2567 ret = mpd.retval;
2acf2c26 2568 io_done = 1;
22208ded 2569 } else if (wbc->nr_to_write)
61628a3f
MC
2570 /*
2571 * There is no more writeout needed
2572 * or we requested for a noblocking writeout
2573 * and we found the device congested
2574 */
61628a3f 2575 break;
a1d6cc56 2576 }
1bce63d1 2577 blk_finish_plug(&plug);
2acf2c26
AK
2578 if (!io_done && !cycled) {
2579 cycled = 1;
2580 index = 0;
2581 wbc->range_start = index << PAGE_CACHE_SHIFT;
2582 wbc->range_end = mapping->writeback_index - 1;
2583 goto retry;
2584 }
22208ded
AK
2585
2586 /* Update index */
2acf2c26 2587 wbc->range_cyclic = range_cyclic;
22208ded
AK
2588 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2589 /*
2590 * set the writeback_index so that range_cyclic
2591 * mode will write it back later
2592 */
72f84e65 2593 mapping->writeback_index = done_index;
a1d6cc56 2594
61628a3f 2595out_writepages:
2faf2e19 2596 wbc->nr_to_write -= nr_to_writebump;
de89de6e 2597 wbc->range_start = range_start;
9bffad1e 2598 trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
61628a3f 2599 return ret;
64769240
AT
2600}
2601
79f0be8d
AK
2602static int ext4_nonda_switch(struct super_block *sb)
2603{
2604 s64 free_blocks, dirty_blocks;
2605 struct ext4_sb_info *sbi = EXT4_SB(sb);
2606
2607 /*
2608 * switch to non delalloc mode if we are running low
2609 * on free block. The free block accounting via percpu
179f7ebf 2610 * counters can get slightly wrong with percpu_counter_batch getting
79f0be8d
AK
2611 * accumulated on each CPU without updating global counters
2612 * Delalloc need an accurate free block accounting. So switch
2613 * to non delalloc when we are near to error range.
2614 */
57042651
TT
2615 free_blocks = EXT4_C2B(sbi,
2616 percpu_counter_read_positive(&sbi->s_freeclusters_counter));
2617 dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
00d4e736
TT
2618 /*
2619 * Start pushing delalloc when 1/2 of free blocks are dirty.
2620 */
2621 if (dirty_blocks && (free_blocks < 2 * dirty_blocks) &&
2622 !writeback_in_progress(sb->s_bdi) &&
2623 down_read_trylock(&sb->s_umount)) {
2624 writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2625 up_read(&sb->s_umount);
2626 }
2627
79f0be8d 2628 if (2 * free_blocks < 3 * dirty_blocks ||
df55c99d 2629 free_blocks < (dirty_blocks + EXT4_FREECLUSTERS_WATERMARK)) {
79f0be8d 2630 /*
c8afb446
ES
2631 * free block count is less than 150% of dirty blocks
2632 * or free blocks is less than watermark
79f0be8d
AK
2633 */
2634 return 1;
2635 }
2636 return 0;
2637}
2638
64769240 2639static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
de9a55b8
TT
2640 loff_t pos, unsigned len, unsigned flags,
2641 struct page **pagep, void **fsdata)
64769240 2642{
72b8ab9d 2643 int ret, retries = 0;
64769240
AT
2644 struct page *page;
2645 pgoff_t index;
64769240
AT
2646 struct inode *inode = mapping->host;
2647 handle_t *handle;
2648
2649 index = pos >> PAGE_CACHE_SHIFT;
79f0be8d
AK
2650
2651 if (ext4_nonda_switch(inode->i_sb)) {
2652 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2653 return ext4_write_begin(file, mapping, pos,
2654 len, flags, pagep, fsdata);
2655 }
2656 *fsdata = (void *)0;
9bffad1e 2657 trace_ext4_da_write_begin(inode, pos, len, flags);
9c3569b5
TM
2658
2659 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2660 ret = ext4_da_write_inline_data_begin(mapping, inode,
2661 pos, len, flags,
2662 pagep, fsdata);
2663 if (ret < 0)
47564bfb
TT
2664 return ret;
2665 if (ret == 1)
2666 return 0;
9c3569b5
TM
2667 }
2668
47564bfb
TT
2669 /*
2670 * grab_cache_page_write_begin() can take a long time if the
2671 * system is thrashing due to memory pressure, or if the page
2672 * is being written back. So grab it first before we start
2673 * the transaction handle. This also allows us to allocate
2674 * the page (if needed) without using GFP_NOFS.
2675 */
2676retry_grab:
2677 page = grab_cache_page_write_begin(mapping, index, flags);
2678 if (!page)
2679 return -ENOMEM;
2680 unlock_page(page);
2681
64769240
AT
2682 /*
2683 * With delayed allocation, we don't log the i_disksize update
2684 * if there is delayed block allocation. But we still need
2685 * to journalling the i_disksize update if writes to the end
2686 * of file which has an already mapped buffer.
2687 */
47564bfb 2688retry_journal:
9924a92a 2689 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 1);
64769240 2690 if (IS_ERR(handle)) {
47564bfb
TT
2691 page_cache_release(page);
2692 return PTR_ERR(handle);
64769240
AT
2693 }
2694
47564bfb
TT
2695 lock_page(page);
2696 if (page->mapping != mapping) {
2697 /* The page got truncated from under us */
2698 unlock_page(page);
2699 page_cache_release(page);
d5a0d4f7 2700 ext4_journal_stop(handle);
47564bfb 2701 goto retry_grab;
d5a0d4f7 2702 }
47564bfb
TT
2703 /* In case writeback began while the page was unlocked */
2704 wait_on_page_writeback(page);
64769240 2705
6e1db88d 2706 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
64769240
AT
2707 if (ret < 0) {
2708 unlock_page(page);
2709 ext4_journal_stop(handle);
ae4d5372
AK
2710 /*
2711 * block_write_begin may have instantiated a few blocks
2712 * outside i_size. Trim these off again. Don't need
2713 * i_size_read because we hold i_mutex.
2714 */
2715 if (pos + len > inode->i_size)
b9a4207d 2716 ext4_truncate_failed_write(inode);
47564bfb
TT
2717
2718 if (ret == -ENOSPC &&
2719 ext4_should_retry_alloc(inode->i_sb, &retries))
2720 goto retry_journal;
2721
2722 page_cache_release(page);
2723 return ret;
64769240
AT
2724 }
2725
47564bfb 2726 *pagep = page;
64769240
AT
2727 return ret;
2728}
2729
632eaeab
MC
2730/*
2731 * Check if we should update i_disksize
2732 * when write to the end of file but not require block allocation
2733 */
2734static int ext4_da_should_update_i_disksize(struct page *page,
de9a55b8 2735 unsigned long offset)
632eaeab
MC
2736{
2737 struct buffer_head *bh;
2738 struct inode *inode = page->mapping->host;
2739 unsigned int idx;
2740 int i;
2741
2742 bh = page_buffers(page);
2743 idx = offset >> inode->i_blkbits;
2744
af5bc92d 2745 for (i = 0; i < idx; i++)
632eaeab
MC
2746 bh = bh->b_this_page;
2747
29fa89d0 2748 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
632eaeab
MC
2749 return 0;
2750 return 1;
2751}
2752
64769240 2753static int ext4_da_write_end(struct file *file,
de9a55b8
TT
2754 struct address_space *mapping,
2755 loff_t pos, unsigned len, unsigned copied,
2756 struct page *page, void *fsdata)
64769240
AT
2757{
2758 struct inode *inode = mapping->host;
2759 int ret = 0, ret2;
2760 handle_t *handle = ext4_journal_current_handle();
2761 loff_t new_i_size;
632eaeab 2762 unsigned long start, end;
79f0be8d
AK
2763 int write_mode = (int)(unsigned long)fsdata;
2764
2765 if (write_mode == FALL_BACK_TO_NONDELALLOC) {
3d2b1582
LC
2766 switch (ext4_inode_journal_mode(inode)) {
2767 case EXT4_INODE_ORDERED_DATA_MODE:
79f0be8d
AK
2768 return ext4_ordered_write_end(file, mapping, pos,
2769 len, copied, page, fsdata);
3d2b1582 2770 case EXT4_INODE_WRITEBACK_DATA_MODE:
79f0be8d
AK
2771 return ext4_writeback_write_end(file, mapping, pos,
2772 len, copied, page, fsdata);
3d2b1582 2773 default:
79f0be8d
AK
2774 BUG();
2775 }
2776 }
632eaeab 2777
9bffad1e 2778 trace_ext4_da_write_end(inode, pos, len, copied);
632eaeab 2779 start = pos & (PAGE_CACHE_SIZE - 1);
af5bc92d 2780 end = start + copied - 1;
64769240
AT
2781
2782 /*
2783 * generic_write_end() will run mark_inode_dirty() if i_size
2784 * changes. So let's piggyback the i_disksize mark_inode_dirty
2785 * into that.
2786 */
64769240 2787 new_i_size = pos + copied;
ea51d132 2788 if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
9c3569b5
TM
2789 if (ext4_has_inline_data(inode) ||
2790 ext4_da_should_update_i_disksize(page, end)) {
632eaeab 2791 down_write(&EXT4_I(inode)->i_data_sem);
f3b59291 2792 if (new_i_size > EXT4_I(inode)->i_disksize)
632eaeab 2793 EXT4_I(inode)->i_disksize = new_i_size;
632eaeab 2794 up_write(&EXT4_I(inode)->i_data_sem);
cf17fea6
AK
2795 /* We need to mark inode dirty even if
2796 * new_i_size is less that inode->i_size
2797 * bu greater than i_disksize.(hint delalloc)
2798 */
2799 ext4_mark_inode_dirty(handle, inode);
64769240 2800 }
632eaeab 2801 }
9c3569b5
TM
2802
2803 if (write_mode != CONVERT_INLINE_DATA &&
2804 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2805 ext4_has_inline_data(inode))
2806 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
2807 page);
2808 else
2809 ret2 = generic_write_end(file, mapping, pos, len, copied,
64769240 2810 page, fsdata);
9c3569b5 2811
64769240
AT
2812 copied = ret2;
2813 if (ret2 < 0)
2814 ret = ret2;
2815 ret2 = ext4_journal_stop(handle);
2816 if (!ret)
2817 ret = ret2;
2818
2819 return ret ? ret : copied;
2820}
2821
2822static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
2823{
64769240
AT
2824 /*
2825 * Drop reserved blocks
2826 */
2827 BUG_ON(!PageLocked(page));
2828 if (!page_has_buffers(page))
2829 goto out;
2830
d2a17637 2831 ext4_da_page_release_reservation(page, offset);
64769240
AT
2832
2833out:
2834 ext4_invalidatepage(page, offset);
2835
2836 return;
2837}
2838
ccd2506b
TT
2839/*
2840 * Force all delayed allocation blocks to be allocated for a given inode.
2841 */
2842int ext4_alloc_da_blocks(struct inode *inode)
2843{
fb40ba0d
TT
2844 trace_ext4_alloc_da_blocks(inode);
2845
ccd2506b
TT
2846 if (!EXT4_I(inode)->i_reserved_data_blocks &&
2847 !EXT4_I(inode)->i_reserved_meta_blocks)
2848 return 0;
2849
2850 /*
2851 * We do something simple for now. The filemap_flush() will
2852 * also start triggering a write of the data blocks, which is
2853 * not strictly speaking necessary (and for users of
2854 * laptop_mode, not even desirable). However, to do otherwise
2855 * would require replicating code paths in:
de9a55b8 2856 *
ccd2506b
TT
2857 * ext4_da_writepages() ->
2858 * write_cache_pages() ---> (via passed in callback function)
2859 * __mpage_da_writepage() -->
2860 * mpage_add_bh_to_extent()
2861 * mpage_da_map_blocks()
2862 *
2863 * The problem is that write_cache_pages(), located in
2864 * mm/page-writeback.c, marks pages clean in preparation for
2865 * doing I/O, which is not desirable if we're not planning on
2866 * doing I/O at all.
2867 *
2868 * We could call write_cache_pages(), and then redirty all of
380cf090 2869 * the pages by calling redirty_page_for_writepage() but that
ccd2506b
TT
2870 * would be ugly in the extreme. So instead we would need to
2871 * replicate parts of the code in the above functions,
25985edc 2872 * simplifying them because we wouldn't actually intend to
ccd2506b
TT
2873 * write out the pages, but rather only collect contiguous
2874 * logical block extents, call the multi-block allocator, and
2875 * then update the buffer heads with the block allocations.
de9a55b8 2876 *
ccd2506b
TT
2877 * For now, though, we'll cheat by calling filemap_flush(),
2878 * which will map the blocks, and start the I/O, but not
2879 * actually wait for the I/O to complete.
2880 */
2881 return filemap_flush(inode->i_mapping);
2882}
64769240 2883
ac27a0ec
DK
2884/*
2885 * bmap() is special. It gets used by applications such as lilo and by
2886 * the swapper to find the on-disk block of a specific piece of data.
2887 *
2888 * Naturally, this is dangerous if the block concerned is still in the
617ba13b 2889 * journal. If somebody makes a swapfile on an ext4 data-journaling
ac27a0ec
DK
2890 * filesystem and enables swap, then they may get a nasty shock when the
2891 * data getting swapped to that swapfile suddenly gets overwritten by
2892 * the original zero's written out previously to the journal and
2893 * awaiting writeback in the kernel's buffer cache.
2894 *
2895 * So, if we see any bmap calls here on a modified, data-journaled file,
2896 * take extra steps to flush any blocks which might be in the cache.
2897 */
617ba13b 2898static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
ac27a0ec
DK
2899{
2900 struct inode *inode = mapping->host;
2901 journal_t *journal;
2902 int err;
2903
46c7f254
TM
2904 /*
2905 * We can get here for an inline file via the FIBMAP ioctl
2906 */
2907 if (ext4_has_inline_data(inode))
2908 return 0;
2909
64769240
AT
2910 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2911 test_opt(inode->i_sb, DELALLOC)) {
2912 /*
2913 * With delalloc we want to sync the file
2914 * so that we can make sure we allocate
2915 * blocks for file
2916 */
2917 filemap_write_and_wait(mapping);
2918 }
2919
19f5fb7a
TT
2920 if (EXT4_JOURNAL(inode) &&
2921 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
ac27a0ec
DK
2922 /*
2923 * This is a REALLY heavyweight approach, but the use of
2924 * bmap on dirty files is expected to be extremely rare:
2925 * only if we run lilo or swapon on a freshly made file
2926 * do we expect this to happen.
2927 *
2928 * (bmap requires CAP_SYS_RAWIO so this does not
2929 * represent an unprivileged user DOS attack --- we'd be
2930 * in trouble if mortal users could trigger this path at
2931 * will.)
2932 *
617ba13b 2933 * NB. EXT4_STATE_JDATA is not set on files other than
ac27a0ec
DK
2934 * regular files. If somebody wants to bmap a directory
2935 * or symlink and gets confused because the buffer
2936 * hasn't yet been flushed to disk, they deserve
2937 * everything they get.
2938 */
2939
19f5fb7a 2940 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
617ba13b 2941 journal = EXT4_JOURNAL(inode);
dab291af
MC
2942 jbd2_journal_lock_updates(journal);
2943 err = jbd2_journal_flush(journal);
2944 jbd2_journal_unlock_updates(journal);
ac27a0ec
DK
2945
2946 if (err)
2947 return 0;
2948 }
2949
af5bc92d 2950 return generic_block_bmap(mapping, block, ext4_get_block);
ac27a0ec
DK
2951}
2952
617ba13b 2953static int ext4_readpage(struct file *file, struct page *page)
ac27a0ec 2954{
46c7f254
TM
2955 int ret = -EAGAIN;
2956 struct inode *inode = page->mapping->host;
2957
0562e0ba 2958 trace_ext4_readpage(page);
46c7f254
TM
2959
2960 if (ext4_has_inline_data(inode))
2961 ret = ext4_readpage_inline(inode, page);
2962
2963 if (ret == -EAGAIN)
2964 return mpage_readpage(page, ext4_get_block);
2965
2966 return ret;
ac27a0ec
DK
2967}
2968
2969static int
617ba13b 2970ext4_readpages(struct file *file, struct address_space *mapping,
ac27a0ec
DK
2971 struct list_head *pages, unsigned nr_pages)
2972{
46c7f254
TM
2973 struct inode *inode = mapping->host;
2974
2975 /* If the file has inline data, no need to do readpages. */
2976 if (ext4_has_inline_data(inode))
2977 return 0;
2978
617ba13b 2979 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
ac27a0ec
DK
2980}
2981
617ba13b 2982static void ext4_invalidatepage(struct page *page, unsigned long offset)
ac27a0ec 2983{
0562e0ba
JZ
2984 trace_ext4_invalidatepage(page, offset);
2985
4520fb3c
JK
2986 /* No journalling happens on data buffers when this function is used */
2987 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
2988
2989 block_invalidatepage(page, offset);
2990}
2991
53e87268
JK
2992static int __ext4_journalled_invalidatepage(struct page *page,
2993 unsigned long offset)
4520fb3c
JK
2994{
2995 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2996
2997 trace_ext4_journalled_invalidatepage(page, offset);
2998
ac27a0ec
DK
2999 /*
3000 * If it's a full truncate we just forget about the pending dirtying
3001 */
3002 if (offset == 0)
3003 ClearPageChecked(page);
3004
53e87268
JK
3005 return jbd2_journal_invalidatepage(journal, page, offset);
3006}
3007
3008/* Wrapper for aops... */
3009static void ext4_journalled_invalidatepage(struct page *page,
3010 unsigned long offset)
3011{
3012 WARN_ON(__ext4_journalled_invalidatepage(page, offset) < 0);
ac27a0ec
DK
3013}
3014
617ba13b 3015static int ext4_releasepage(struct page *page, gfp_t wait)
ac27a0ec 3016{
617ba13b 3017 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
ac27a0ec 3018
0562e0ba
JZ
3019 trace_ext4_releasepage(page);
3020
e1c36595
JK
3021 /* Page has dirty journalled data -> cannot release */
3022 if (PageChecked(page))
ac27a0ec 3023 return 0;
0390131b
FM
3024 if (journal)
3025 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3026 else
3027 return try_to_free_buffers(page);
ac27a0ec
DK
3028}
3029
2ed88685
TT
3030/*
3031 * ext4_get_block used when preparing for a DIO write or buffer write.
3032 * We allocate an uinitialized extent if blocks haven't been allocated.
3033 * The extent will be converted to initialized after the IO is complete.
3034 */
f19d5870 3035int ext4_get_block_write(struct inode *inode, sector_t iblock,
4c0425ff
MC
3036 struct buffer_head *bh_result, int create)
3037{
c7064ef1 3038 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
8d5d02e6 3039 inode->i_ino, create);
2ed88685
TT
3040 return _ext4_get_block(inode, iblock, bh_result,
3041 EXT4_GET_BLOCKS_IO_CREATE_EXT);
4c0425ff
MC
3042}
3043
729f52c6 3044static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
8b0f165f 3045 struct buffer_head *bh_result, int create)
729f52c6 3046{
8b0f165f
AP
3047 ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
3048 inode->i_ino, create);
3049 return _ext4_get_block(inode, iblock, bh_result,
3050 EXT4_GET_BLOCKS_NO_LOCK);
729f52c6
ZL
3051}
3052
4c0425ff 3053static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
552ef802
CH
3054 ssize_t size, void *private, int ret,
3055 bool is_async)
4c0425ff 3056{
72c5052d 3057 struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
4c0425ff 3058 ext4_io_end_t *io_end = iocb->private;
4c0425ff 3059
4b70df18
M
3060 /* if not async direct IO or dio with 0 bytes write, just return */
3061 if (!io_end || !size)
552ef802 3062 goto out;
4b70df18 3063
88635ca2 3064 ext_debug("ext4_end_io_dio(): io_end 0x%p "
ace36ad4 3065 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
8d5d02e6
MC
3066 iocb->private, io_end->inode->i_ino, iocb, offset,
3067 size);
8d5d02e6 3068
b5a7e970
TT
3069 iocb->private = NULL;
3070
8d5d02e6 3071 /* if not aio dio with unwritten extents, just free io and return */
bd2d0210 3072 if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
8d5d02e6 3073 ext4_free_io_end(io_end);
5b3ff237 3074out:
091e26df 3075 inode_dio_done(inode);
5b3ff237
JZ
3076 if (is_async)
3077 aio_complete(iocb, ret, 0);
3078 return;
8d5d02e6
MC
3079 }
3080
4c0425ff
MC
3081 io_end->offset = offset;
3082 io_end->size = size;
5b3ff237
JZ
3083 if (is_async) {
3084 io_end->iocb = iocb;
3085 io_end->result = ret;
3086 }
4c0425ff 3087
28a535f9 3088 ext4_add_complete_io(io_end);
4c0425ff 3089}
c7064ef1 3090
4c0425ff
MC
3091/*
3092 * For ext4 extent files, ext4 will do direct-io write to holes,
3093 * preallocated extents, and those write extend the file, no need to
3094 * fall back to buffered IO.
3095 *
b595076a 3096 * For holes, we fallocate those blocks, mark them as uninitialized
69c499d1 3097 * If those blocks were preallocated, we mark sure they are split, but
b595076a 3098 * still keep the range to write as uninitialized.
4c0425ff 3099 *
69c499d1 3100 * The unwritten extents will be converted to written when DIO is completed.
8d5d02e6 3101 * For async direct IO, since the IO may still pending when return, we
25985edc 3102 * set up an end_io call back function, which will do the conversion
8d5d02e6 3103 * when async direct IO completed.
4c0425ff
MC
3104 *
3105 * If the O_DIRECT write will extend the file then add this inode to the
3106 * orphan list. So recovery will truncate it back to the original size
3107 * if the machine crashes during the write.
3108 *
3109 */
3110static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
3111 const struct iovec *iov, loff_t offset,
3112 unsigned long nr_segs)
3113{
3114 struct file *file = iocb->ki_filp;
3115 struct inode *inode = file->f_mapping->host;
3116 ssize_t ret;
3117 size_t count = iov_length(iov, nr_segs);
69c499d1
TT
3118 int overwrite = 0;
3119 get_block_t *get_block_func = NULL;
3120 int dio_flags = 0;
4c0425ff 3121 loff_t final_size = offset + count;
729f52c6 3122
69c499d1
TT
3123 /* Use the old path for reads and writes beyond i_size. */
3124 if (rw != WRITE || final_size > inode->i_size)
3125 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
4bd809db 3126
69c499d1 3127 BUG_ON(iocb->private == NULL);
4bd809db 3128
69c499d1
TT
3129 /* If we do a overwrite dio, i_mutex locking can be released */
3130 overwrite = *((int *)iocb->private);
4bd809db 3131
69c499d1
TT
3132 if (overwrite) {
3133 atomic_inc(&inode->i_dio_count);
3134 down_read(&EXT4_I(inode)->i_data_sem);
3135 mutex_unlock(&inode->i_mutex);
3136 }
8d5d02e6 3137
69c499d1
TT
3138 /*
3139 * We could direct write to holes and fallocate.
3140 *
3141 * Allocated blocks to fill the hole are marked as
3142 * uninitialized to prevent parallel buffered read to expose
3143 * the stale data before DIO complete the data IO.
3144 *
3145 * As to previously fallocated extents, ext4 get_block will
3146 * just simply mark the buffer mapped but still keep the
3147 * extents uninitialized.
3148 *
3149 * For non AIO case, we will convert those unwritten extents
3150 * to written after return back from blockdev_direct_IO.
3151 *
3152 * For async DIO, the conversion needs to be deferred when the
3153 * IO is completed. The ext4 end_io callback function will be
3154 * called to take care of the conversion work. Here for async
3155 * case, we allocate an io_end structure to hook to the iocb.
3156 */
3157 iocb->private = NULL;
3158 ext4_inode_aio_set(inode, NULL);
3159 if (!is_sync_kiocb(iocb)) {
3160 ext4_io_end_t *io_end = ext4_init_io_end(inode, GFP_NOFS);
3161 if (!io_end) {
3162 ret = -ENOMEM;
3163 goto retake_lock;
8b0f165f 3164 }
69c499d1
TT
3165 io_end->flag |= EXT4_IO_END_DIRECT;
3166 iocb->private = io_end;
8d5d02e6 3167 /*
69c499d1
TT
3168 * we save the io structure for current async direct
3169 * IO, so that later ext4_map_blocks() could flag the
3170 * io structure whether there is a unwritten extents
3171 * needs to be converted when IO is completed.
8d5d02e6 3172 */
69c499d1
TT
3173 ext4_inode_aio_set(inode, io_end);
3174 }
4bd809db 3175
69c499d1
TT
3176 if (overwrite) {
3177 get_block_func = ext4_get_block_write_nolock;
3178 } else {
3179 get_block_func = ext4_get_block_write;
3180 dio_flags = DIO_LOCKING;
3181 }
3182 ret = __blockdev_direct_IO(rw, iocb, inode,
3183 inode->i_sb->s_bdev, iov,
3184 offset, nr_segs,
3185 get_block_func,
3186 ext4_end_io_dio,
3187 NULL,
3188 dio_flags);
3189
3190 if (iocb->private)
3191 ext4_inode_aio_set(inode, NULL);
3192 /*
3193 * The io_end structure takes a reference to the inode, that
3194 * structure needs to be destroyed and the reference to the
3195 * inode need to be dropped, when IO is complete, even with 0
3196 * byte write, or failed.
3197 *
3198 * In the successful AIO DIO case, the io_end structure will
3199 * be destroyed and the reference to the inode will be dropped
3200 * after the end_io call back function is called.
3201 *
3202 * In the case there is 0 byte write, or error case, since VFS
3203 * direct IO won't invoke the end_io call back function, we
3204 * need to free the end_io structure here.
3205 */
3206 if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
3207 ext4_free_io_end(iocb->private);
3208 iocb->private = NULL;
3209 } else if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3210 EXT4_STATE_DIO_UNWRITTEN)) {
3211 int err;
3212 /*
3213 * for non AIO case, since the IO is already
3214 * completed, we could do the conversion right here
3215 */
3216 err = ext4_convert_unwritten_extents(inode,
3217 offset, ret);
3218 if (err < 0)
3219 ret = err;
3220 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3221 }
4bd809db 3222
69c499d1
TT
3223retake_lock:
3224 /* take i_mutex locking again if we do a ovewrite dio */
3225 if (overwrite) {
3226 inode_dio_done(inode);
3227 up_read(&EXT4_I(inode)->i_data_sem);
3228 mutex_lock(&inode->i_mutex);
4c0425ff 3229 }
8d5d02e6 3230
69c499d1 3231 return ret;
4c0425ff
MC
3232}
3233
3234static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3235 const struct iovec *iov, loff_t offset,
3236 unsigned long nr_segs)
3237{
3238 struct file *file = iocb->ki_filp;
3239 struct inode *inode = file->f_mapping->host;
0562e0ba 3240 ssize_t ret;
4c0425ff 3241
84ebd795
TT
3242 /*
3243 * If we are doing data journalling we don't support O_DIRECT
3244 */
3245 if (ext4_should_journal_data(inode))
3246 return 0;
3247
46c7f254
TM
3248 /* Let buffer I/O handle the inline data case. */
3249 if (ext4_has_inline_data(inode))
3250 return 0;
3251
0562e0ba 3252 trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
12e9b892 3253 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
0562e0ba
JZ
3254 ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3255 else
3256 ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3257 trace_ext4_direct_IO_exit(inode, offset,
3258 iov_length(iov, nr_segs), rw, ret);
3259 return ret;
4c0425ff
MC
3260}
3261
ac27a0ec 3262/*
617ba13b 3263 * Pages can be marked dirty completely asynchronously from ext4's journalling
ac27a0ec
DK
3264 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3265 * much here because ->set_page_dirty is called under VFS locks. The page is
3266 * not necessarily locked.
3267 *
3268 * We cannot just dirty the page and leave attached buffers clean, because the
3269 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3270 * or jbddirty because all the journalling code will explode.
3271 *
3272 * So what we do is to mark the page "pending dirty" and next time writepage
3273 * is called, propagate that into the buffers appropriately.
3274 */
617ba13b 3275static int ext4_journalled_set_page_dirty(struct page *page)
ac27a0ec
DK
3276{
3277 SetPageChecked(page);
3278 return __set_page_dirty_nobuffers(page);
3279}
3280
617ba13b 3281static const struct address_space_operations ext4_ordered_aops = {
8ab22b9a
HH
3282 .readpage = ext4_readpage,
3283 .readpages = ext4_readpages,
43ce1d23 3284 .writepage = ext4_writepage,
8ab22b9a
HH
3285 .write_begin = ext4_write_begin,
3286 .write_end = ext4_ordered_write_end,
3287 .bmap = ext4_bmap,
3288 .invalidatepage = ext4_invalidatepage,
3289 .releasepage = ext4_releasepage,
3290 .direct_IO = ext4_direct_IO,
3291 .migratepage = buffer_migrate_page,
3292 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3293 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
3294};
3295
617ba13b 3296static const struct address_space_operations ext4_writeback_aops = {
8ab22b9a
HH
3297 .readpage = ext4_readpage,
3298 .readpages = ext4_readpages,
43ce1d23 3299 .writepage = ext4_writepage,
8ab22b9a
HH
3300 .write_begin = ext4_write_begin,
3301 .write_end = ext4_writeback_write_end,
3302 .bmap = ext4_bmap,
3303 .invalidatepage = ext4_invalidatepage,
3304 .releasepage = ext4_releasepage,
3305 .direct_IO = ext4_direct_IO,
3306 .migratepage = buffer_migrate_page,
3307 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3308 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
3309};
3310
617ba13b 3311static const struct address_space_operations ext4_journalled_aops = {
8ab22b9a
HH
3312 .readpage = ext4_readpage,
3313 .readpages = ext4_readpages,
43ce1d23 3314 .writepage = ext4_writepage,
8ab22b9a
HH
3315 .write_begin = ext4_write_begin,
3316 .write_end = ext4_journalled_write_end,
3317 .set_page_dirty = ext4_journalled_set_page_dirty,
3318 .bmap = ext4_bmap,
4520fb3c 3319 .invalidatepage = ext4_journalled_invalidatepage,
8ab22b9a 3320 .releasepage = ext4_releasepage,
84ebd795 3321 .direct_IO = ext4_direct_IO,
8ab22b9a 3322 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3323 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
3324};
3325
64769240 3326static const struct address_space_operations ext4_da_aops = {
8ab22b9a
HH
3327 .readpage = ext4_readpage,
3328 .readpages = ext4_readpages,
43ce1d23 3329 .writepage = ext4_writepage,
8ab22b9a 3330 .writepages = ext4_da_writepages,
8ab22b9a
HH
3331 .write_begin = ext4_da_write_begin,
3332 .write_end = ext4_da_write_end,
3333 .bmap = ext4_bmap,
3334 .invalidatepage = ext4_da_invalidatepage,
3335 .releasepage = ext4_releasepage,
3336 .direct_IO = ext4_direct_IO,
3337 .migratepage = buffer_migrate_page,
3338 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3339 .error_remove_page = generic_error_remove_page,
64769240
AT
3340};
3341
617ba13b 3342void ext4_set_aops(struct inode *inode)
ac27a0ec 3343{
3d2b1582
LC
3344 switch (ext4_inode_journal_mode(inode)) {
3345 case EXT4_INODE_ORDERED_DATA_MODE:
3346 if (test_opt(inode->i_sb, DELALLOC))
3347 inode->i_mapping->a_ops = &ext4_da_aops;
3348 else
3349 inode->i_mapping->a_ops = &ext4_ordered_aops;
3350 break;
3351 case EXT4_INODE_WRITEBACK_DATA_MODE:
3352 if (test_opt(inode->i_sb, DELALLOC))
3353 inode->i_mapping->a_ops = &ext4_da_aops;
3354 else
3355 inode->i_mapping->a_ops = &ext4_writeback_aops;
3356 break;
3357 case EXT4_INODE_JOURNAL_DATA_MODE:
617ba13b 3358 inode->i_mapping->a_ops = &ext4_journalled_aops;
3d2b1582
LC
3359 break;
3360 default:
3361 BUG();
3362 }
ac27a0ec
DK
3363}
3364
4e96b2db
AH
3365
3366/*
3367 * ext4_discard_partial_page_buffers()
3368 * Wrapper function for ext4_discard_partial_page_buffers_no_lock.
3369 * This function finds and locks the page containing the offset
3370 * "from" and passes it to ext4_discard_partial_page_buffers_no_lock.
3371 * Calling functions that already have the page locked should call
3372 * ext4_discard_partial_page_buffers_no_lock directly.
3373 */
3374int ext4_discard_partial_page_buffers(handle_t *handle,
3375 struct address_space *mapping, loff_t from,
3376 loff_t length, int flags)
3377{
3378 struct inode *inode = mapping->host;
3379 struct page *page;
3380 int err = 0;
3381
3382 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3383 mapping_gfp_mask(mapping) & ~__GFP_FS);
3384 if (!page)
5129d05f 3385 return -ENOMEM;
4e96b2db
AH
3386
3387 err = ext4_discard_partial_page_buffers_no_lock(handle, inode, page,
3388 from, length, flags);
3389
3390 unlock_page(page);
3391 page_cache_release(page);
3392 return err;
3393}
3394
3395/*
3396 * ext4_discard_partial_page_buffers_no_lock()
3397 * Zeros a page range of length 'length' starting from offset 'from'.
3398 * Buffer heads that correspond to the block aligned regions of the
3399 * zeroed range will be unmapped. Unblock aligned regions
3400 * will have the corresponding buffer head mapped if needed so that
3401 * that region of the page can be updated with the partial zero out.
3402 *
3403 * This function assumes that the page has already been locked. The
3404 * The range to be discarded must be contained with in the given page.
3405 * If the specified range exceeds the end of the page it will be shortened
3406 * to the end of the page that corresponds to 'from'. This function is
3407 * appropriate for updating a page and it buffer heads to be unmapped and
3408 * zeroed for blocks that have been either released, or are going to be
3409 * released.
3410 *
3411 * handle: The journal handle
3412 * inode: The files inode
3413 * page: A locked page that contains the offset "from"
4907cb7b 3414 * from: The starting byte offset (from the beginning of the file)
4e96b2db
AH
3415 * to begin discarding
3416 * len: The length of bytes to discard
3417 * flags: Optional flags that may be used:
3418 *
3419 * EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED
3420 * Only zero the regions of the page whose buffer heads
3421 * have already been unmapped. This flag is appropriate
4907cb7b 3422 * for updating the contents of a page whose blocks may
4e96b2db
AH
3423 * have already been released, and we only want to zero
3424 * out the regions that correspond to those released blocks.
3425 *
4907cb7b 3426 * Returns zero on success or negative on failure.
4e96b2db 3427 */
5f163cc7 3428static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
4e96b2db
AH
3429 struct inode *inode, struct page *page, loff_t from,
3430 loff_t length, int flags)
3431{
3432 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3433 unsigned int offset = from & (PAGE_CACHE_SIZE-1);
3434 unsigned int blocksize, max, pos;
4e96b2db
AH
3435 ext4_lblk_t iblock;
3436 struct buffer_head *bh;
3437 int err = 0;
3438
3439 blocksize = inode->i_sb->s_blocksize;
3440 max = PAGE_CACHE_SIZE - offset;
3441
3442 if (index != page->index)
3443 return -EINVAL;
3444
3445 /*
3446 * correct length if it does not fall between
3447 * 'from' and the end of the page
3448 */
3449 if (length > max || length < 0)
3450 length = max;
3451
3452 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3453
093e6e36
YY
3454 if (!page_has_buffers(page))
3455 create_empty_buffers(page, blocksize, 0);
4e96b2db
AH
3456
3457 /* Find the buffer that contains "offset" */
3458 bh = page_buffers(page);
3459 pos = blocksize;
3460 while (offset >= pos) {
3461 bh = bh->b_this_page;
3462 iblock++;
3463 pos += blocksize;
3464 }
3465
3466 pos = offset;
3467 while (pos < offset + length) {
e260daf2
YY
3468 unsigned int end_of_block, range_to_discard;
3469
4e96b2db
AH
3470 err = 0;
3471
3472 /* The length of space left to zero and unmap */
3473 range_to_discard = offset + length - pos;
3474
3475 /* The length of space until the end of the block */
3476 end_of_block = blocksize - (pos & (blocksize-1));
3477
3478 /*
3479 * Do not unmap or zero past end of block
3480 * for this buffer head
3481 */
3482 if (range_to_discard > end_of_block)
3483 range_to_discard = end_of_block;
3484
3485
3486 /*
3487 * Skip this buffer head if we are only zeroing unampped
3488 * regions of the page
3489 */
3490 if (flags & EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED &&
3491 buffer_mapped(bh))
3492 goto next;
3493
3494 /* If the range is block aligned, unmap */
3495 if (range_to_discard == blocksize) {
3496 clear_buffer_dirty(bh);
3497 bh->b_bdev = NULL;
3498 clear_buffer_mapped(bh);
3499 clear_buffer_req(bh);
3500 clear_buffer_new(bh);
3501 clear_buffer_delay(bh);
3502 clear_buffer_unwritten(bh);
3503 clear_buffer_uptodate(bh);
3504 zero_user(page, pos, range_to_discard);
3505 BUFFER_TRACE(bh, "Buffer discarded");
3506 goto next;
3507 }
3508
3509 /*
3510 * If this block is not completely contained in the range
3511 * to be discarded, then it is not going to be released. Because
3512 * we need to keep this block, we need to make sure this part
3513 * of the page is uptodate before we modify it by writeing
3514 * partial zeros on it.
3515 */
3516 if (!buffer_mapped(bh)) {
3517 /*
3518 * Buffer head must be mapped before we can read
3519 * from the block
3520 */
3521 BUFFER_TRACE(bh, "unmapped");
3522 ext4_get_block(inode, iblock, bh, 0);
3523 /* unmapped? It's a hole - nothing to do */
3524 if (!buffer_mapped(bh)) {
3525 BUFFER_TRACE(bh, "still unmapped");
3526 goto next;
3527 }
3528 }
3529
3530 /* Ok, it's mapped. Make sure it's up-to-date */
3531 if (PageUptodate(page))
3532 set_buffer_uptodate(bh);
3533
3534 if (!buffer_uptodate(bh)) {
3535 err = -EIO;
3536 ll_rw_block(READ, 1, &bh);
3537 wait_on_buffer(bh);
3538 /* Uhhuh. Read error. Complain and punt.*/
3539 if (!buffer_uptodate(bh))
3540 goto next;
3541 }
3542
3543 if (ext4_should_journal_data(inode)) {
3544 BUFFER_TRACE(bh, "get write access");
3545 err = ext4_journal_get_write_access(handle, bh);
3546 if (err)
3547 goto next;
3548 }
3549
3550 zero_user(page, pos, range_to_discard);
3551
3552 err = 0;
3553 if (ext4_should_journal_data(inode)) {
3554 err = ext4_handle_dirty_metadata(handle, inode, bh);
decbd919 3555 } else
4e96b2db 3556 mark_buffer_dirty(bh);
4e96b2db
AH
3557
3558 BUFFER_TRACE(bh, "Partial buffer zeroed");
3559next:
3560 bh = bh->b_this_page;
3561 iblock++;
3562 pos += range_to_discard;
3563 }
3564
3565 return err;
3566}
3567
91ef4caf
DG
3568int ext4_can_truncate(struct inode *inode)
3569{
91ef4caf
DG
3570 if (S_ISREG(inode->i_mode))
3571 return 1;
3572 if (S_ISDIR(inode->i_mode))
3573 return 1;
3574 if (S_ISLNK(inode->i_mode))
3575 return !ext4_inode_is_fast_symlink(inode);
3576 return 0;
3577}
3578
a4bb6b64
AH
3579/*
3580 * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3581 * associated with the given offset and length
3582 *
3583 * @inode: File inode
3584 * @offset: The offset where the hole will begin
3585 * @len: The length of the hole
3586 *
4907cb7b 3587 * Returns: 0 on success or negative on failure
a4bb6b64
AH
3588 */
3589
3590int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
3591{
3592 struct inode *inode = file->f_path.dentry->d_inode;
3593 if (!S_ISREG(inode->i_mode))
73355192 3594 return -EOPNOTSUPP;
a4bb6b64 3595
8bad6fc8
ZL
3596 if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3597 return ext4_ind_punch_hole(file, offset, length);
a4bb6b64 3598
bab08ab9
TT
3599 if (EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) {
3600 /* TODO: Add support for bigalloc file systems */
73355192 3601 return -EOPNOTSUPP;
bab08ab9
TT
3602 }
3603
aaddea81
ZL
3604 trace_ext4_punch_hole(inode, offset, length);
3605
a4bb6b64
AH
3606 return ext4_ext_punch_hole(file, offset, length);
3607}
3608
ac27a0ec 3609/*
617ba13b 3610 * ext4_truncate()
ac27a0ec 3611 *
617ba13b
MC
3612 * We block out ext4_get_block() block instantiations across the entire
3613 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
ac27a0ec
DK
3614 * simultaneously on behalf of the same inode.
3615 *
42b2aa86 3616 * As we work through the truncate and commit bits of it to the journal there
ac27a0ec
DK
3617 * is one core, guiding principle: the file's tree must always be consistent on
3618 * disk. We must be able to restart the truncate after a crash.
3619 *
3620 * The file's tree may be transiently inconsistent in memory (although it
3621 * probably isn't), but whenever we close off and commit a journal transaction,
3622 * the contents of (the filesystem + the journal) must be consistent and
3623 * restartable. It's pretty simple, really: bottom up, right to left (although
3624 * left-to-right works OK too).
3625 *
3626 * Note that at recovery time, journal replay occurs *before* the restart of
3627 * truncate against the orphan inode list.
3628 *
3629 * The committed inode has the new, desired i_size (which is the same as
617ba13b 3630 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
ac27a0ec 3631 * that this inode's truncate did not complete and it will again call
617ba13b
MC
3632 * ext4_truncate() to have another go. So there will be instantiated blocks
3633 * to the right of the truncation point in a crashed ext4 filesystem. But
ac27a0ec 3634 * that's fine - as long as they are linked from the inode, the post-crash
617ba13b 3635 * ext4_truncate() run will find them and release them.
ac27a0ec 3636 */
617ba13b 3637void ext4_truncate(struct inode *inode)
ac27a0ec 3638{
0562e0ba
JZ
3639 trace_ext4_truncate_enter(inode);
3640
91ef4caf 3641 if (!ext4_can_truncate(inode))
ac27a0ec
DK
3642 return;
3643
12e9b892 3644 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
c8d46e41 3645
5534fb5b 3646 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
19f5fb7a 3647 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
7d8f9f7d 3648
aef1c851
TM
3649 if (ext4_has_inline_data(inode)) {
3650 int has_inline = 1;
3651
3652 ext4_inline_data_truncate(inode, &has_inline);
3653 if (has_inline)
3654 return;
3655 }
3656
ff9893dc 3657 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
cf108bca 3658 ext4_ext_truncate(inode);
ff9893dc
AG
3659 else
3660 ext4_ind_truncate(inode);
ac27a0ec 3661
0562e0ba 3662 trace_ext4_truncate_exit(inode);
ac27a0ec
DK
3663}
3664
ac27a0ec 3665/*
617ba13b 3666 * ext4_get_inode_loc returns with an extra refcount against the inode's
ac27a0ec
DK
3667 * underlying buffer_head on success. If 'in_mem' is true, we have all
3668 * data in memory that is needed to recreate the on-disk version of this
3669 * inode.
3670 */
617ba13b
MC
3671static int __ext4_get_inode_loc(struct inode *inode,
3672 struct ext4_iloc *iloc, int in_mem)
ac27a0ec 3673{
240799cd
TT
3674 struct ext4_group_desc *gdp;
3675 struct buffer_head *bh;
3676 struct super_block *sb = inode->i_sb;
3677 ext4_fsblk_t block;
3678 int inodes_per_block, inode_offset;
3679
3a06d778 3680 iloc->bh = NULL;
240799cd
TT
3681 if (!ext4_valid_inum(sb, inode->i_ino))
3682 return -EIO;
ac27a0ec 3683
240799cd
TT
3684 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3685 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3686 if (!gdp)
ac27a0ec
DK
3687 return -EIO;
3688
240799cd
TT
3689 /*
3690 * Figure out the offset within the block group inode table
3691 */
00d09882 3692 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
240799cd
TT
3693 inode_offset = ((inode->i_ino - 1) %
3694 EXT4_INODES_PER_GROUP(sb));
3695 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3696 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3697
3698 bh = sb_getblk(sb, block);
aebf0243 3699 if (unlikely(!bh))
860d21e2 3700 return -ENOMEM;
ac27a0ec
DK
3701 if (!buffer_uptodate(bh)) {
3702 lock_buffer(bh);
9c83a923
HK
3703
3704 /*
3705 * If the buffer has the write error flag, we have failed
3706 * to write out another inode in the same block. In this
3707 * case, we don't have to read the block because we may
3708 * read the old inode data successfully.
3709 */
3710 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3711 set_buffer_uptodate(bh);
3712
ac27a0ec
DK
3713 if (buffer_uptodate(bh)) {
3714 /* someone brought it uptodate while we waited */
3715 unlock_buffer(bh);
3716 goto has_buffer;
3717 }
3718
3719 /*
3720 * If we have all information of the inode in memory and this
3721 * is the only valid inode in the block, we need not read the
3722 * block.
3723 */
3724 if (in_mem) {
3725 struct buffer_head *bitmap_bh;
240799cd 3726 int i, start;
ac27a0ec 3727
240799cd 3728 start = inode_offset & ~(inodes_per_block - 1);
ac27a0ec 3729
240799cd
TT
3730 /* Is the inode bitmap in cache? */
3731 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
aebf0243 3732 if (unlikely(!bitmap_bh))
ac27a0ec
DK
3733 goto make_io;
3734
3735 /*
3736 * If the inode bitmap isn't in cache then the
3737 * optimisation may end up performing two reads instead
3738 * of one, so skip it.
3739 */
3740 if (!buffer_uptodate(bitmap_bh)) {
3741 brelse(bitmap_bh);
3742 goto make_io;
3743 }
240799cd 3744 for (i = start; i < start + inodes_per_block; i++) {
ac27a0ec
DK
3745 if (i == inode_offset)
3746 continue;
617ba13b 3747 if (ext4_test_bit(i, bitmap_bh->b_data))
ac27a0ec
DK
3748 break;
3749 }
3750 brelse(bitmap_bh);
240799cd 3751 if (i == start + inodes_per_block) {
ac27a0ec
DK
3752 /* all other inodes are free, so skip I/O */
3753 memset(bh->b_data, 0, bh->b_size);
3754 set_buffer_uptodate(bh);
3755 unlock_buffer(bh);
3756 goto has_buffer;
3757 }
3758 }
3759
3760make_io:
240799cd
TT
3761 /*
3762 * If we need to do any I/O, try to pre-readahead extra
3763 * blocks from the inode table.
3764 */
3765 if (EXT4_SB(sb)->s_inode_readahead_blks) {
3766 ext4_fsblk_t b, end, table;
3767 unsigned num;
3768
3769 table = ext4_inode_table(sb, gdp);
b713a5ec 3770 /* s_inode_readahead_blks is always a power of 2 */
240799cd
TT
3771 b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
3772 if (table > b)
3773 b = table;
3774 end = b + EXT4_SB(sb)->s_inode_readahead_blks;
3775 num = EXT4_INODES_PER_GROUP(sb);
feb0ab32 3776 if (ext4_has_group_desc_csum(sb))
560671a0 3777 num -= ext4_itable_unused_count(sb, gdp);
240799cd
TT
3778 table += num / inodes_per_block;
3779 if (end > table)
3780 end = table;
3781 while (b <= end)
3782 sb_breadahead(sb, b++);
3783 }
3784
ac27a0ec
DK
3785 /*
3786 * There are other valid inodes in the buffer, this inode
3787 * has in-inode xattrs, or we don't have this inode in memory.
3788 * Read the block from disk.
3789 */
0562e0ba 3790 trace_ext4_load_inode(inode);
ac27a0ec
DK
3791 get_bh(bh);
3792 bh->b_end_io = end_buffer_read_sync;
65299a3b 3793 submit_bh(READ | REQ_META | REQ_PRIO, bh);
ac27a0ec
DK
3794 wait_on_buffer(bh);
3795 if (!buffer_uptodate(bh)) {
c398eda0
TT
3796 EXT4_ERROR_INODE_BLOCK(inode, block,
3797 "unable to read itable block");
ac27a0ec
DK
3798 brelse(bh);
3799 return -EIO;
3800 }
3801 }
3802has_buffer:
3803 iloc->bh = bh;
3804 return 0;
3805}
3806
617ba13b 3807int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
3808{
3809 /* We have all inode data except xattrs in memory here. */
617ba13b 3810 return __ext4_get_inode_loc(inode, iloc,
19f5fb7a 3811 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
ac27a0ec
DK
3812}
3813
617ba13b 3814void ext4_set_inode_flags(struct inode *inode)
ac27a0ec 3815{
617ba13b 3816 unsigned int flags = EXT4_I(inode)->i_flags;
ac27a0ec
DK
3817
3818 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
617ba13b 3819 if (flags & EXT4_SYNC_FL)
ac27a0ec 3820 inode->i_flags |= S_SYNC;
617ba13b 3821 if (flags & EXT4_APPEND_FL)
ac27a0ec 3822 inode->i_flags |= S_APPEND;
617ba13b 3823 if (flags & EXT4_IMMUTABLE_FL)
ac27a0ec 3824 inode->i_flags |= S_IMMUTABLE;
617ba13b 3825 if (flags & EXT4_NOATIME_FL)
ac27a0ec 3826 inode->i_flags |= S_NOATIME;
617ba13b 3827 if (flags & EXT4_DIRSYNC_FL)
ac27a0ec
DK
3828 inode->i_flags |= S_DIRSYNC;
3829}
3830
ff9ddf7e
JK
3831/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3832void ext4_get_inode_flags(struct ext4_inode_info *ei)
3833{
84a8dce2
DM
3834 unsigned int vfs_fl;
3835 unsigned long old_fl, new_fl;
3836
3837 do {
3838 vfs_fl = ei->vfs_inode.i_flags;
3839 old_fl = ei->i_flags;
3840 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3841 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
3842 EXT4_DIRSYNC_FL);
3843 if (vfs_fl & S_SYNC)
3844 new_fl |= EXT4_SYNC_FL;
3845 if (vfs_fl & S_APPEND)
3846 new_fl |= EXT4_APPEND_FL;
3847 if (vfs_fl & S_IMMUTABLE)
3848 new_fl |= EXT4_IMMUTABLE_FL;
3849 if (vfs_fl & S_NOATIME)
3850 new_fl |= EXT4_NOATIME_FL;
3851 if (vfs_fl & S_DIRSYNC)
3852 new_fl |= EXT4_DIRSYNC_FL;
3853 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
ff9ddf7e 3854}
de9a55b8 3855
0fc1b451 3856static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
de9a55b8 3857 struct ext4_inode_info *ei)
0fc1b451
AK
3858{
3859 blkcnt_t i_blocks ;
8180a562
AK
3860 struct inode *inode = &(ei->vfs_inode);
3861 struct super_block *sb = inode->i_sb;
0fc1b451
AK
3862
3863 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3864 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3865 /* we are using combined 48 bit field */
3866 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3867 le32_to_cpu(raw_inode->i_blocks_lo);
07a03824 3868 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
8180a562
AK
3869 /* i_blocks represent file system block size */
3870 return i_blocks << (inode->i_blkbits - 9);
3871 } else {
3872 return i_blocks;
3873 }
0fc1b451
AK
3874 } else {
3875 return le32_to_cpu(raw_inode->i_blocks_lo);
3876 }
3877}
ff9ddf7e 3878
152a7b0a
TM
3879static inline void ext4_iget_extra_inode(struct inode *inode,
3880 struct ext4_inode *raw_inode,
3881 struct ext4_inode_info *ei)
3882{
3883 __le32 *magic = (void *)raw_inode +
3884 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
67cf5b09 3885 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
152a7b0a 3886 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
67cf5b09 3887 ext4_find_inline_data_nolock(inode);
f19d5870
TM
3888 } else
3889 EXT4_I(inode)->i_inline_off = 0;
152a7b0a
TM
3890}
3891
1d1fe1ee 3892struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
ac27a0ec 3893{
617ba13b
MC
3894 struct ext4_iloc iloc;
3895 struct ext4_inode *raw_inode;
1d1fe1ee 3896 struct ext4_inode_info *ei;
1d1fe1ee 3897 struct inode *inode;
b436b9be 3898 journal_t *journal = EXT4_SB(sb)->s_journal;
1d1fe1ee 3899 long ret;
ac27a0ec 3900 int block;
08cefc7a
EB
3901 uid_t i_uid;
3902 gid_t i_gid;
ac27a0ec 3903
1d1fe1ee
DH
3904 inode = iget_locked(sb, ino);
3905 if (!inode)
3906 return ERR_PTR(-ENOMEM);
3907 if (!(inode->i_state & I_NEW))
3908 return inode;
3909
3910 ei = EXT4_I(inode);
7dc57615 3911 iloc.bh = NULL;
ac27a0ec 3912
1d1fe1ee
DH
3913 ret = __ext4_get_inode_loc(inode, &iloc, 0);
3914 if (ret < 0)
ac27a0ec 3915 goto bad_inode;
617ba13b 3916 raw_inode = ext4_raw_inode(&iloc);
814525f4
DW
3917
3918 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3919 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
3920 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
3921 EXT4_INODE_SIZE(inode->i_sb)) {
3922 EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
3923 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
3924 EXT4_INODE_SIZE(inode->i_sb));
3925 ret = -EIO;
3926 goto bad_inode;
3927 }
3928 } else
3929 ei->i_extra_isize = 0;
3930
3931 /* Precompute checksum seed for inode metadata */
3932 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3933 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
3934 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3935 __u32 csum;
3936 __le32 inum = cpu_to_le32(inode->i_ino);
3937 __le32 gen = raw_inode->i_generation;
3938 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
3939 sizeof(inum));
3940 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
3941 sizeof(gen));
3942 }
3943
3944 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
3945 EXT4_ERROR_INODE(inode, "checksum invalid");
3946 ret = -EIO;
3947 goto bad_inode;
3948 }
3949
ac27a0ec 3950 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
08cefc7a
EB
3951 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
3952 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
af5bc92d 3953 if (!(test_opt(inode->i_sb, NO_UID32))) {
08cefc7a
EB
3954 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
3955 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
ac27a0ec 3956 }
08cefc7a
EB
3957 i_uid_write(inode, i_uid);
3958 i_gid_write(inode, i_gid);
bfe86848 3959 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
ac27a0ec 3960
353eb83c 3961 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
67cf5b09 3962 ei->i_inline_off = 0;
ac27a0ec
DK
3963 ei->i_dir_start_lookup = 0;
3964 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
3965 /* We now have enough fields to check if the inode was active or not.
3966 * This is needed because nfsd might try to access dead inodes
3967 * the test is that same one that e2fsck uses
3968 * NeilBrown 1999oct15
3969 */
3970 if (inode->i_nlink == 0) {
3971 if (inode->i_mode == 0 ||
617ba13b 3972 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
ac27a0ec 3973 /* this inode is deleted */
1d1fe1ee 3974 ret = -ESTALE;
ac27a0ec
DK
3975 goto bad_inode;
3976 }
3977 /* The only unlinked inodes we let through here have
3978 * valid i_mode and are being read by the orphan
3979 * recovery code: that's fine, we're about to complete
3980 * the process of deleting those. */
3981 }
ac27a0ec 3982 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
0fc1b451 3983 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
7973c0c1 3984 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
a9e81742 3985 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
a1ddeb7e
BP
3986 ei->i_file_acl |=
3987 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
a48380f7 3988 inode->i_size = ext4_isize(raw_inode);
ac27a0ec 3989 ei->i_disksize = inode->i_size;
a9e7f447
DM
3990#ifdef CONFIG_QUOTA
3991 ei->i_reserved_quota = 0;
3992#endif
ac27a0ec
DK
3993 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
3994 ei->i_block_group = iloc.block_group;
a4912123 3995 ei->i_last_alloc_group = ~0;
ac27a0ec
DK
3996 /*
3997 * NOTE! The in-memory inode i_data array is in little-endian order
3998 * even on big-endian machines: we do NOT byteswap the block numbers!
3999 */
617ba13b 4000 for (block = 0; block < EXT4_N_BLOCKS; block++)
ac27a0ec
DK
4001 ei->i_data[block] = raw_inode->i_block[block];
4002 INIT_LIST_HEAD(&ei->i_orphan);
4003
b436b9be
JK
4004 /*
4005 * Set transaction id's of transactions that have to be committed
4006 * to finish f[data]sync. We set them to currently running transaction
4007 * as we cannot be sure that the inode or some of its metadata isn't
4008 * part of the transaction - the inode could have been reclaimed and
4009 * now it is reread from disk.
4010 */
4011 if (journal) {
4012 transaction_t *transaction;
4013 tid_t tid;
4014
a931da6a 4015 read_lock(&journal->j_state_lock);
b436b9be
JK
4016 if (journal->j_running_transaction)
4017 transaction = journal->j_running_transaction;
4018 else
4019 transaction = journal->j_committing_transaction;
4020 if (transaction)
4021 tid = transaction->t_tid;
4022 else
4023 tid = journal->j_commit_sequence;
a931da6a 4024 read_unlock(&journal->j_state_lock);
b436b9be
JK
4025 ei->i_sync_tid = tid;
4026 ei->i_datasync_tid = tid;
4027 }
4028
0040d987 4029 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
ac27a0ec
DK
4030 if (ei->i_extra_isize == 0) {
4031 /* The extra space is currently unused. Use it. */
617ba13b
MC
4032 ei->i_extra_isize = sizeof(struct ext4_inode) -
4033 EXT4_GOOD_OLD_INODE_SIZE;
ac27a0ec 4034 } else {
152a7b0a 4035 ext4_iget_extra_inode(inode, raw_inode, ei);
ac27a0ec 4036 }
814525f4 4037 }
ac27a0ec 4038
ef7f3835
KS
4039 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4040 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4041 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4042 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4043
25ec56b5
JNC
4044 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4045 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4046 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4047 inode->i_version |=
4048 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4049 }
4050
c4b5a614 4051 ret = 0;
485c26ec 4052 if (ei->i_file_acl &&
1032988c 4053 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
24676da4
TT
4054 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4055 ei->i_file_acl);
485c26ec
TT
4056 ret = -EIO;
4057 goto bad_inode;
f19d5870
TM
4058 } else if (!ext4_has_inline_data(inode)) {
4059 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4060 if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4061 (S_ISLNK(inode->i_mode) &&
4062 !ext4_inode_is_fast_symlink(inode))))
4063 /* Validate extent which is part of inode */
4064 ret = ext4_ext_check_inode(inode);
4065 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4066 (S_ISLNK(inode->i_mode) &&
4067 !ext4_inode_is_fast_symlink(inode))) {
4068 /* Validate block references which are part of inode */
4069 ret = ext4_ind_check_inode(inode);
4070 }
fe2c8191 4071 }
567f3e9a 4072 if (ret)
de9a55b8 4073 goto bad_inode;
7a262f7c 4074
ac27a0ec 4075 if (S_ISREG(inode->i_mode)) {
617ba13b
MC
4076 inode->i_op = &ext4_file_inode_operations;
4077 inode->i_fop = &ext4_file_operations;
4078 ext4_set_aops(inode);
ac27a0ec 4079 } else if (S_ISDIR(inode->i_mode)) {
617ba13b
MC
4080 inode->i_op = &ext4_dir_inode_operations;
4081 inode->i_fop = &ext4_dir_operations;
ac27a0ec 4082 } else if (S_ISLNK(inode->i_mode)) {
e83c1397 4083 if (ext4_inode_is_fast_symlink(inode)) {
617ba13b 4084 inode->i_op = &ext4_fast_symlink_inode_operations;
e83c1397
DG
4085 nd_terminate_link(ei->i_data, inode->i_size,
4086 sizeof(ei->i_data) - 1);
4087 } else {
617ba13b
MC
4088 inode->i_op = &ext4_symlink_inode_operations;
4089 ext4_set_aops(inode);
ac27a0ec 4090 }
563bdd61
TT
4091 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4092 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
617ba13b 4093 inode->i_op = &ext4_special_inode_operations;
ac27a0ec
DK
4094 if (raw_inode->i_block[0])
4095 init_special_inode(inode, inode->i_mode,
4096 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4097 else
4098 init_special_inode(inode, inode->i_mode,
4099 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
563bdd61 4100 } else {
563bdd61 4101 ret = -EIO;
24676da4 4102 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
563bdd61 4103 goto bad_inode;
ac27a0ec 4104 }
af5bc92d 4105 brelse(iloc.bh);
617ba13b 4106 ext4_set_inode_flags(inode);
1d1fe1ee
DH
4107 unlock_new_inode(inode);
4108 return inode;
ac27a0ec
DK
4109
4110bad_inode:
567f3e9a 4111 brelse(iloc.bh);
1d1fe1ee
DH
4112 iget_failed(inode);
4113 return ERR_PTR(ret);
ac27a0ec
DK
4114}
4115
0fc1b451
AK
4116static int ext4_inode_blocks_set(handle_t *handle,
4117 struct ext4_inode *raw_inode,
4118 struct ext4_inode_info *ei)
4119{
4120 struct inode *inode = &(ei->vfs_inode);
4121 u64 i_blocks = inode->i_blocks;
4122 struct super_block *sb = inode->i_sb;
0fc1b451
AK
4123
4124 if (i_blocks <= ~0U) {
4125 /*
4907cb7b 4126 * i_blocks can be represented in a 32 bit variable
0fc1b451
AK
4127 * as multiple of 512 bytes
4128 */
8180a562 4129 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 4130 raw_inode->i_blocks_high = 0;
84a8dce2 4131 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
f287a1a5
TT
4132 return 0;
4133 }
4134 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4135 return -EFBIG;
4136
4137 if (i_blocks <= 0xffffffffffffULL) {
0fc1b451
AK
4138 /*
4139 * i_blocks can be represented in a 48 bit variable
4140 * as multiple of 512 bytes
4141 */
8180a562 4142 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 4143 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
84a8dce2 4144 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
0fc1b451 4145 } else {
84a8dce2 4146 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
8180a562
AK
4147 /* i_block is stored in file system block size */
4148 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4149 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4150 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
0fc1b451 4151 }
f287a1a5 4152 return 0;
0fc1b451
AK
4153}
4154
ac27a0ec
DK
4155/*
4156 * Post the struct inode info into an on-disk inode location in the
4157 * buffer-cache. This gobbles the caller's reference to the
4158 * buffer_head in the inode location struct.
4159 *
4160 * The caller must have write access to iloc->bh.
4161 */
617ba13b 4162static int ext4_do_update_inode(handle_t *handle,
ac27a0ec 4163 struct inode *inode,
830156c7 4164 struct ext4_iloc *iloc)
ac27a0ec 4165{
617ba13b
MC
4166 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4167 struct ext4_inode_info *ei = EXT4_I(inode);
ac27a0ec
DK
4168 struct buffer_head *bh = iloc->bh;
4169 int err = 0, rc, block;
b71fc079 4170 int need_datasync = 0;
08cefc7a
EB
4171 uid_t i_uid;
4172 gid_t i_gid;
ac27a0ec
DK
4173
4174 /* For fields not not tracking in the in-memory inode,
4175 * initialise them to zero for new inodes. */
19f5fb7a 4176 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
617ba13b 4177 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
ac27a0ec 4178
ff9ddf7e 4179 ext4_get_inode_flags(ei);
ac27a0ec 4180 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
08cefc7a
EB
4181 i_uid = i_uid_read(inode);
4182 i_gid = i_gid_read(inode);
af5bc92d 4183 if (!(test_opt(inode->i_sb, NO_UID32))) {
08cefc7a
EB
4184 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4185 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
ac27a0ec
DK
4186/*
4187 * Fix up interoperability with old kernels. Otherwise, old inodes get
4188 * re-used with the upper 16 bits of the uid/gid intact
4189 */
af5bc92d 4190 if (!ei->i_dtime) {
ac27a0ec 4191 raw_inode->i_uid_high =
08cefc7a 4192 cpu_to_le16(high_16_bits(i_uid));
ac27a0ec 4193 raw_inode->i_gid_high =
08cefc7a 4194 cpu_to_le16(high_16_bits(i_gid));
ac27a0ec
DK
4195 } else {
4196 raw_inode->i_uid_high = 0;
4197 raw_inode->i_gid_high = 0;
4198 }
4199 } else {
08cefc7a
EB
4200 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4201 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
ac27a0ec
DK
4202 raw_inode->i_uid_high = 0;
4203 raw_inode->i_gid_high = 0;
4204 }
4205 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
ef7f3835
KS
4206
4207 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4208 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4209 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4210 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4211
0fc1b451
AK
4212 if (ext4_inode_blocks_set(handle, raw_inode, ei))
4213 goto out_brelse;
ac27a0ec 4214 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
353eb83c 4215 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
9b8f1f01
MC
4216 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4217 cpu_to_le32(EXT4_OS_HURD))
a1ddeb7e
BP
4218 raw_inode->i_file_acl_high =
4219 cpu_to_le16(ei->i_file_acl >> 32);
7973c0c1 4220 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
b71fc079
JK
4221 if (ei->i_disksize != ext4_isize(raw_inode)) {
4222 ext4_isize_set(raw_inode, ei->i_disksize);
4223 need_datasync = 1;
4224 }
a48380f7
AK
4225 if (ei->i_disksize > 0x7fffffffULL) {
4226 struct super_block *sb = inode->i_sb;
4227 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4228 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4229 EXT4_SB(sb)->s_es->s_rev_level ==
4230 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4231 /* If this is the first large file
4232 * created, add a flag to the superblock.
4233 */
4234 err = ext4_journal_get_write_access(handle,
4235 EXT4_SB(sb)->s_sbh);
4236 if (err)
4237 goto out_brelse;
4238 ext4_update_dynamic_rev(sb);
4239 EXT4_SET_RO_COMPAT_FEATURE(sb,
617ba13b 4240 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
0390131b 4241 ext4_handle_sync(handle);
b50924c2 4242 err = ext4_handle_dirty_super(handle, sb);
ac27a0ec
DK
4243 }
4244 }
4245 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4246 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4247 if (old_valid_dev(inode->i_rdev)) {
4248 raw_inode->i_block[0] =
4249 cpu_to_le32(old_encode_dev(inode->i_rdev));
4250 raw_inode->i_block[1] = 0;
4251 } else {
4252 raw_inode->i_block[0] = 0;
4253 raw_inode->i_block[1] =
4254 cpu_to_le32(new_encode_dev(inode->i_rdev));
4255 raw_inode->i_block[2] = 0;
4256 }
f19d5870 4257 } else if (!ext4_has_inline_data(inode)) {
de9a55b8
TT
4258 for (block = 0; block < EXT4_N_BLOCKS; block++)
4259 raw_inode->i_block[block] = ei->i_data[block];
f19d5870 4260 }
ac27a0ec 4261
25ec56b5
JNC
4262 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4263 if (ei->i_extra_isize) {
4264 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4265 raw_inode->i_version_hi =
4266 cpu_to_le32(inode->i_version >> 32);
ac27a0ec 4267 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
25ec56b5
JNC
4268 }
4269
814525f4
DW
4270 ext4_inode_csum_set(inode, raw_inode, ei);
4271
830156c7 4272 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
73b50c1c 4273 rc = ext4_handle_dirty_metadata(handle, NULL, bh);
830156c7
FM
4274 if (!err)
4275 err = rc;
19f5fb7a 4276 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
ac27a0ec 4277
b71fc079 4278 ext4_update_inode_fsync_trans(handle, inode, need_datasync);
ac27a0ec 4279out_brelse:
af5bc92d 4280 brelse(bh);
617ba13b 4281 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4282 return err;
4283}
4284
4285/*
617ba13b 4286 * ext4_write_inode()
ac27a0ec
DK
4287 *
4288 * We are called from a few places:
4289 *
4290 * - Within generic_file_write() for O_SYNC files.
4291 * Here, there will be no transaction running. We wait for any running
4907cb7b 4292 * transaction to commit.
ac27a0ec
DK
4293 *
4294 * - Within sys_sync(), kupdate and such.
4295 * We wait on commit, if tol to.
4296 *
4297 * - Within prune_icache() (PF_MEMALLOC == true)
4298 * Here we simply return. We can't afford to block kswapd on the
4299 * journal commit.
4300 *
4301 * In all cases it is actually safe for us to return without doing anything,
4302 * because the inode has been copied into a raw inode buffer in
617ba13b 4303 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
ac27a0ec
DK
4304 * knfsd.
4305 *
4306 * Note that we are absolutely dependent upon all inode dirtiers doing the
4307 * right thing: they *must* call mark_inode_dirty() after dirtying info in
4308 * which we are interested.
4309 *
4310 * It would be a bug for them to not do this. The code:
4311 *
4312 * mark_inode_dirty(inode)
4313 * stuff();
4314 * inode->i_size = expr;
4315 *
4316 * is in error because a kswapd-driven write_inode() could occur while
4317 * `stuff()' is running, and the new i_size will be lost. Plus the inode
4318 * will no longer be on the superblock's dirty inode list.
4319 */
a9185b41 4320int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
ac27a0ec 4321{
91ac6f43
FM
4322 int err;
4323
ac27a0ec
DK
4324 if (current->flags & PF_MEMALLOC)
4325 return 0;
4326
91ac6f43
FM
4327 if (EXT4_SB(inode->i_sb)->s_journal) {
4328 if (ext4_journal_current_handle()) {
4329 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4330 dump_stack();
4331 return -EIO;
4332 }
ac27a0ec 4333
a9185b41 4334 if (wbc->sync_mode != WB_SYNC_ALL)
91ac6f43
FM
4335 return 0;
4336
4337 err = ext4_force_commit(inode->i_sb);
4338 } else {
4339 struct ext4_iloc iloc;
ac27a0ec 4340
8b472d73 4341 err = __ext4_get_inode_loc(inode, &iloc, 0);
91ac6f43
FM
4342 if (err)
4343 return err;
a9185b41 4344 if (wbc->sync_mode == WB_SYNC_ALL)
830156c7
FM
4345 sync_dirty_buffer(iloc.bh);
4346 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
c398eda0
TT
4347 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4348 "IO error syncing inode");
830156c7
FM
4349 err = -EIO;
4350 }
fd2dd9fb 4351 brelse(iloc.bh);
91ac6f43
FM
4352 }
4353 return err;
ac27a0ec
DK
4354}
4355
53e87268
JK
4356/*
4357 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4358 * buffers that are attached to a page stradding i_size and are undergoing
4359 * commit. In that case we have to wait for commit to finish and try again.
4360 */
4361static void ext4_wait_for_tail_page_commit(struct inode *inode)
4362{
4363 struct page *page;
4364 unsigned offset;
4365 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4366 tid_t commit_tid = 0;
4367 int ret;
4368
4369 offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
4370 /*
4371 * All buffers in the last page remain valid? Then there's nothing to
4372 * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
4373 * blocksize case
4374 */
4375 if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
4376 return;
4377 while (1) {
4378 page = find_lock_page(inode->i_mapping,
4379 inode->i_size >> PAGE_CACHE_SHIFT);
4380 if (!page)
4381 return;
4382 ret = __ext4_journalled_invalidatepage(page, offset);
4383 unlock_page(page);
4384 page_cache_release(page);
4385 if (ret != -EBUSY)
4386 return;
4387 commit_tid = 0;
4388 read_lock(&journal->j_state_lock);
4389 if (journal->j_committing_transaction)
4390 commit_tid = journal->j_committing_transaction->t_tid;
4391 read_unlock(&journal->j_state_lock);
4392 if (commit_tid)
4393 jbd2_log_wait_commit(journal, commit_tid);
4394 }
4395}
4396
ac27a0ec 4397/*
617ba13b 4398 * ext4_setattr()
ac27a0ec
DK
4399 *
4400 * Called from notify_change.
4401 *
4402 * We want to trap VFS attempts to truncate the file as soon as
4403 * possible. In particular, we want to make sure that when the VFS
4404 * shrinks i_size, we put the inode on the orphan list and modify
4405 * i_disksize immediately, so that during the subsequent flushing of
4406 * dirty pages and freeing of disk blocks, we can guarantee that any
4407 * commit will leave the blocks being flushed in an unused state on
4408 * disk. (On recovery, the inode will get truncated and the blocks will
4409 * be freed, so we have a strong guarantee that no future commit will
4410 * leave these blocks visible to the user.)
4411 *
678aaf48
JK
4412 * Another thing we have to assure is that if we are in ordered mode
4413 * and inode is still attached to the committing transaction, we must
4414 * we start writeout of all the dirty pages which are being truncated.
4415 * This way we are sure that all the data written in the previous
4416 * transaction are already on disk (truncate waits for pages under
4417 * writeback).
4418 *
4419 * Called with inode->i_mutex down.
ac27a0ec 4420 */
617ba13b 4421int ext4_setattr(struct dentry *dentry, struct iattr *attr)
ac27a0ec
DK
4422{
4423 struct inode *inode = dentry->d_inode;
4424 int error, rc = 0;
3d287de3 4425 int orphan = 0;
ac27a0ec
DK
4426 const unsigned int ia_valid = attr->ia_valid;
4427
4428 error = inode_change_ok(inode, attr);
4429 if (error)
4430 return error;
4431
12755627 4432 if (is_quota_modification(inode, attr))
871a2931 4433 dquot_initialize(inode);
08cefc7a
EB
4434 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4435 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
ac27a0ec
DK
4436 handle_t *handle;
4437
4438 /* (user+group)*(old+new) structure, inode write (sb,
4439 * inode block, ? - but truncate inode update has it) */
9924a92a
TT
4440 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4441 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
4442 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
ac27a0ec
DK
4443 if (IS_ERR(handle)) {
4444 error = PTR_ERR(handle);
4445 goto err_out;
4446 }
b43fa828 4447 error = dquot_transfer(inode, attr);
ac27a0ec 4448 if (error) {
617ba13b 4449 ext4_journal_stop(handle);
ac27a0ec
DK
4450 return error;
4451 }
4452 /* Update corresponding info in inode so that everything is in
4453 * one transaction */
4454 if (attr->ia_valid & ATTR_UID)
4455 inode->i_uid = attr->ia_uid;
4456 if (attr->ia_valid & ATTR_GID)
4457 inode->i_gid = attr->ia_gid;
617ba13b
MC
4458 error = ext4_mark_inode_dirty(handle, inode);
4459 ext4_journal_stop(handle);
ac27a0ec
DK
4460 }
4461
e2b46574 4462 if (attr->ia_valid & ATTR_SIZE) {
562c72aa 4463
12e9b892 4464 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
e2b46574
ES
4465 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4466
0c095c7f
TT
4467 if (attr->ia_size > sbi->s_bitmap_maxbytes)
4468 return -EFBIG;
e2b46574
ES
4469 }
4470 }
4471
ac27a0ec 4472 if (S_ISREG(inode->i_mode) &&
c8d46e41 4473 attr->ia_valid & ATTR_SIZE &&
072bd7ea 4474 (attr->ia_size < inode->i_size)) {
ac27a0ec
DK
4475 handle_t *handle;
4476
9924a92a 4477 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
ac27a0ec
DK
4478 if (IS_ERR(handle)) {
4479 error = PTR_ERR(handle);
4480 goto err_out;
4481 }
3d287de3
DM
4482 if (ext4_handle_valid(handle)) {
4483 error = ext4_orphan_add(handle, inode);
4484 orphan = 1;
4485 }
617ba13b
MC
4486 EXT4_I(inode)->i_disksize = attr->ia_size;
4487 rc = ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
4488 if (!error)
4489 error = rc;
617ba13b 4490 ext4_journal_stop(handle);
678aaf48
JK
4491
4492 if (ext4_should_order_data(inode)) {
4493 error = ext4_begin_ordered_truncate(inode,
4494 attr->ia_size);
4495 if (error) {
4496 /* Do as much error cleanup as possible */
9924a92a
TT
4497 handle = ext4_journal_start(inode,
4498 EXT4_HT_INODE, 3);
678aaf48
JK
4499 if (IS_ERR(handle)) {
4500 ext4_orphan_del(NULL, inode);
4501 goto err_out;
4502 }
4503 ext4_orphan_del(handle, inode);
3d287de3 4504 orphan = 0;
678aaf48
JK
4505 ext4_journal_stop(handle);
4506 goto err_out;
4507 }
4508 }
ac27a0ec
DK
4509 }
4510
072bd7ea 4511 if (attr->ia_valid & ATTR_SIZE) {
53e87268
JK
4512 if (attr->ia_size != inode->i_size) {
4513 loff_t oldsize = inode->i_size;
4514
4515 i_size_write(inode, attr->ia_size);
4516 /*
4517 * Blocks are going to be removed from the inode. Wait
4518 * for dio in flight. Temporarily disable
4519 * dioread_nolock to prevent livelock.
4520 */
1b65007e 4521 if (orphan) {
53e87268
JK
4522 if (!ext4_should_journal_data(inode)) {
4523 ext4_inode_block_unlocked_dio(inode);
4524 inode_dio_wait(inode);
4525 ext4_inode_resume_unlocked_dio(inode);
4526 } else
4527 ext4_wait_for_tail_page_commit(inode);
1b65007e 4528 }
53e87268
JK
4529 /*
4530 * Truncate pagecache after we've waited for commit
4531 * in data=journal mode to make pages freeable.
4532 */
4533 truncate_pagecache(inode, oldsize, inode->i_size);
1c9114f9 4534 }
afcff5d8 4535 ext4_truncate(inode);
072bd7ea 4536 }
ac27a0ec 4537
1025774c
CH
4538 if (!rc) {
4539 setattr_copy(inode, attr);
4540 mark_inode_dirty(inode);
4541 }
4542
4543 /*
4544 * If the call to ext4_truncate failed to get a transaction handle at
4545 * all, we need to clean up the in-core orphan list manually.
4546 */
3d287de3 4547 if (orphan && inode->i_nlink)
617ba13b 4548 ext4_orphan_del(NULL, inode);
ac27a0ec
DK
4549
4550 if (!rc && (ia_valid & ATTR_MODE))
617ba13b 4551 rc = ext4_acl_chmod(inode);
ac27a0ec
DK
4552
4553err_out:
617ba13b 4554 ext4_std_error(inode->i_sb, error);
ac27a0ec
DK
4555 if (!error)
4556 error = rc;
4557 return error;
4558}
4559
3e3398a0
MC
4560int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4561 struct kstat *stat)
4562{
4563 struct inode *inode;
4564 unsigned long delalloc_blocks;
4565
4566 inode = dentry->d_inode;
4567 generic_fillattr(inode, stat);
4568
4569 /*
4570 * We can't update i_blocks if the block allocation is delayed
4571 * otherwise in the case of system crash before the real block
4572 * allocation is done, we will have i_blocks inconsistent with
4573 * on-disk file blocks.
4574 * We always keep i_blocks updated together with real
4575 * allocation. But to not confuse with user, stat
4576 * will return the blocks that include the delayed allocation
4577 * blocks for this file.
4578 */
96607551
TM
4579 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
4580 EXT4_I(inode)->i_reserved_data_blocks);
3e3398a0
MC
4581
4582 stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
4583 return 0;
4584}
ac27a0ec 4585
a02908f1
MC
4586static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4587{
12e9b892 4588 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
8bb2b247 4589 return ext4_ind_trans_blocks(inode, nrblocks, chunk);
ac51d837 4590 return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
a02908f1 4591}
ac51d837 4592
ac27a0ec 4593/*
a02908f1
MC
4594 * Account for index blocks, block groups bitmaps and block group
4595 * descriptor blocks if modify datablocks and index blocks
4596 * worse case, the indexs blocks spread over different block groups
ac27a0ec 4597 *
a02908f1 4598 * If datablocks are discontiguous, they are possible to spread over
4907cb7b 4599 * different block groups too. If they are contiguous, with flexbg,
a02908f1 4600 * they could still across block group boundary.
ac27a0ec 4601 *
a02908f1
MC
4602 * Also account for superblock, inode, quota and xattr blocks
4603 */
1f109d5a 4604static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
a02908f1 4605{
8df9675f
TT
4606 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4607 int gdpblocks;
a02908f1
MC
4608 int idxblocks;
4609 int ret = 0;
4610
4611 /*
4612 * How many index blocks need to touch to modify nrblocks?
4613 * The "Chunk" flag indicating whether the nrblocks is
4614 * physically contiguous on disk
4615 *
4616 * For Direct IO and fallocate, they calls get_block to allocate
4617 * one single extent at a time, so they could set the "Chunk" flag
4618 */
4619 idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4620
4621 ret = idxblocks;
4622
4623 /*
4624 * Now let's see how many group bitmaps and group descriptors need
4625 * to account
4626 */
4627 groups = idxblocks;
4628 if (chunk)
4629 groups += 1;
4630 else
4631 groups += nrblocks;
4632
4633 gdpblocks = groups;
8df9675f
TT
4634 if (groups > ngroups)
4635 groups = ngroups;
a02908f1
MC
4636 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4637 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4638
4639 /* bitmaps and block group descriptor blocks */
4640 ret += groups + gdpblocks;
4641
4642 /* Blocks for super block, inode, quota and xattr blocks */
4643 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4644
4645 return ret;
4646}
4647
4648/*
25985edc 4649 * Calculate the total number of credits to reserve to fit
f3bd1f3f
MC
4650 * the modification of a single pages into a single transaction,
4651 * which may include multiple chunks of block allocations.
ac27a0ec 4652 *
525f4ed8 4653 * This could be called via ext4_write_begin()
ac27a0ec 4654 *
525f4ed8 4655 * We need to consider the worse case, when
a02908f1 4656 * one new block per extent.
ac27a0ec 4657 */
a86c6181 4658int ext4_writepage_trans_blocks(struct inode *inode)
ac27a0ec 4659{
617ba13b 4660 int bpp = ext4_journal_blocks_per_page(inode);
ac27a0ec
DK
4661 int ret;
4662
a02908f1 4663 ret = ext4_meta_trans_blocks(inode, bpp, 0);
a86c6181 4664
a02908f1 4665 /* Account for data blocks for journalled mode */
617ba13b 4666 if (ext4_should_journal_data(inode))
a02908f1 4667 ret += bpp;
ac27a0ec
DK
4668 return ret;
4669}
f3bd1f3f
MC
4670
4671/*
4672 * Calculate the journal credits for a chunk of data modification.
4673 *
4674 * This is called from DIO, fallocate or whoever calling
79e83036 4675 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
f3bd1f3f
MC
4676 *
4677 * journal buffers for data blocks are not included here, as DIO
4678 * and fallocate do no need to journal data buffers.
4679 */
4680int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4681{
4682 return ext4_meta_trans_blocks(inode, nrblocks, 1);
4683}
4684
ac27a0ec 4685/*
617ba13b 4686 * The caller must have previously called ext4_reserve_inode_write().
ac27a0ec
DK
4687 * Give this, we know that the caller already has write access to iloc->bh.
4688 */
617ba13b 4689int ext4_mark_iloc_dirty(handle_t *handle,
de9a55b8 4690 struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
4691{
4692 int err = 0;
4693
c64db50e 4694 if (IS_I_VERSION(inode))
25ec56b5
JNC
4695 inode_inc_iversion(inode);
4696
ac27a0ec
DK
4697 /* the do_update_inode consumes one bh->b_count */
4698 get_bh(iloc->bh);
4699
dab291af 4700 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
830156c7 4701 err = ext4_do_update_inode(handle, inode, iloc);
ac27a0ec
DK
4702 put_bh(iloc->bh);
4703 return err;
4704}
4705
4706/*
4707 * On success, We end up with an outstanding reference count against
4708 * iloc->bh. This _must_ be cleaned up later.
4709 */
4710
4711int
617ba13b
MC
4712ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4713 struct ext4_iloc *iloc)
ac27a0ec 4714{
0390131b
FM
4715 int err;
4716
4717 err = ext4_get_inode_loc(inode, iloc);
4718 if (!err) {
4719 BUFFER_TRACE(iloc->bh, "get_write_access");
4720 err = ext4_journal_get_write_access(handle, iloc->bh);
4721 if (err) {
4722 brelse(iloc->bh);
4723 iloc->bh = NULL;
ac27a0ec
DK
4724 }
4725 }
617ba13b 4726 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4727 return err;
4728}
4729
6dd4ee7c
KS
4730/*
4731 * Expand an inode by new_extra_isize bytes.
4732 * Returns 0 on success or negative error number on failure.
4733 */
1d03ec98
AK
4734static int ext4_expand_extra_isize(struct inode *inode,
4735 unsigned int new_extra_isize,
4736 struct ext4_iloc iloc,
4737 handle_t *handle)
6dd4ee7c
KS
4738{
4739 struct ext4_inode *raw_inode;
4740 struct ext4_xattr_ibody_header *header;
6dd4ee7c
KS
4741
4742 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4743 return 0;
4744
4745 raw_inode = ext4_raw_inode(&iloc);
4746
4747 header = IHDR(inode, raw_inode);
6dd4ee7c
KS
4748
4749 /* No extended attributes present */
19f5fb7a
TT
4750 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4751 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
6dd4ee7c
KS
4752 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4753 new_extra_isize);
4754 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4755 return 0;
4756 }
4757
4758 /* try to expand with EAs present */
4759 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4760 raw_inode, handle);
4761}
4762
ac27a0ec
DK
4763/*
4764 * What we do here is to mark the in-core inode as clean with respect to inode
4765 * dirtiness (it may still be data-dirty).
4766 * This means that the in-core inode may be reaped by prune_icache
4767 * without having to perform any I/O. This is a very good thing,
4768 * because *any* task may call prune_icache - even ones which
4769 * have a transaction open against a different journal.
4770 *
4771 * Is this cheating? Not really. Sure, we haven't written the
4772 * inode out, but prune_icache isn't a user-visible syncing function.
4773 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4774 * we start and wait on commits.
ac27a0ec 4775 */
617ba13b 4776int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
ac27a0ec 4777{
617ba13b 4778 struct ext4_iloc iloc;
6dd4ee7c
KS
4779 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4780 static unsigned int mnt_count;
4781 int err, ret;
ac27a0ec
DK
4782
4783 might_sleep();
7ff9c073 4784 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
617ba13b 4785 err = ext4_reserve_inode_write(handle, inode, &iloc);
0390131b
FM
4786 if (ext4_handle_valid(handle) &&
4787 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
19f5fb7a 4788 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
6dd4ee7c
KS
4789 /*
4790 * We need extra buffer credits since we may write into EA block
4791 * with this same handle. If journal_extend fails, then it will
4792 * only result in a minor loss of functionality for that inode.
4793 * If this is felt to be critical, then e2fsck should be run to
4794 * force a large enough s_min_extra_isize.
4795 */
4796 if ((jbd2_journal_extend(handle,
4797 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4798 ret = ext4_expand_extra_isize(inode,
4799 sbi->s_want_extra_isize,
4800 iloc, handle);
4801 if (ret) {
19f5fb7a
TT
4802 ext4_set_inode_state(inode,
4803 EXT4_STATE_NO_EXPAND);
c1bddad9
AK
4804 if (mnt_count !=
4805 le16_to_cpu(sbi->s_es->s_mnt_count)) {
12062ddd 4806 ext4_warning(inode->i_sb,
6dd4ee7c
KS
4807 "Unable to expand inode %lu. Delete"
4808 " some EAs or run e2fsck.",
4809 inode->i_ino);
c1bddad9
AK
4810 mnt_count =
4811 le16_to_cpu(sbi->s_es->s_mnt_count);
6dd4ee7c
KS
4812 }
4813 }
4814 }
4815 }
ac27a0ec 4816 if (!err)
617ba13b 4817 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
ac27a0ec
DK
4818 return err;
4819}
4820
4821/*
617ba13b 4822 * ext4_dirty_inode() is called from __mark_inode_dirty()
ac27a0ec
DK
4823 *
4824 * We're really interested in the case where a file is being extended.
4825 * i_size has been changed by generic_commit_write() and we thus need
4826 * to include the updated inode in the current transaction.
4827 *
5dd4056d 4828 * Also, dquot_alloc_block() will always dirty the inode when blocks
ac27a0ec
DK
4829 * are allocated to the file.
4830 *
4831 * If the inode is marked synchronous, we don't honour that here - doing
4832 * so would cause a commit on atime updates, which we don't bother doing.
4833 * We handle synchronous inodes at the highest possible level.
4834 */
aa385729 4835void ext4_dirty_inode(struct inode *inode, int flags)
ac27a0ec 4836{
ac27a0ec
DK
4837 handle_t *handle;
4838
9924a92a 4839 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
ac27a0ec
DK
4840 if (IS_ERR(handle))
4841 goto out;
f3dc272f 4842
f3dc272f
CW
4843 ext4_mark_inode_dirty(handle, inode);
4844
617ba13b 4845 ext4_journal_stop(handle);
ac27a0ec
DK
4846out:
4847 return;
4848}
4849
4850#if 0
4851/*
4852 * Bind an inode's backing buffer_head into this transaction, to prevent
4853 * it from being flushed to disk early. Unlike
617ba13b 4854 * ext4_reserve_inode_write, this leaves behind no bh reference and
ac27a0ec
DK
4855 * returns no iloc structure, so the caller needs to repeat the iloc
4856 * lookup to mark the inode dirty later.
4857 */
617ba13b 4858static int ext4_pin_inode(handle_t *handle, struct inode *inode)
ac27a0ec 4859{
617ba13b 4860 struct ext4_iloc iloc;
ac27a0ec
DK
4861
4862 int err = 0;
4863 if (handle) {
617ba13b 4864 err = ext4_get_inode_loc(inode, &iloc);
ac27a0ec
DK
4865 if (!err) {
4866 BUFFER_TRACE(iloc.bh, "get_write_access");
dab291af 4867 err = jbd2_journal_get_write_access(handle, iloc.bh);
ac27a0ec 4868 if (!err)
0390131b 4869 err = ext4_handle_dirty_metadata(handle,
73b50c1c 4870 NULL,
0390131b 4871 iloc.bh);
ac27a0ec
DK
4872 brelse(iloc.bh);
4873 }
4874 }
617ba13b 4875 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4876 return err;
4877}
4878#endif
4879
617ba13b 4880int ext4_change_inode_journal_flag(struct inode *inode, int val)
ac27a0ec
DK
4881{
4882 journal_t *journal;
4883 handle_t *handle;
4884 int err;
4885
4886 /*
4887 * We have to be very careful here: changing a data block's
4888 * journaling status dynamically is dangerous. If we write a
4889 * data block to the journal, change the status and then delete
4890 * that block, we risk forgetting to revoke the old log record
4891 * from the journal and so a subsequent replay can corrupt data.
4892 * So, first we make sure that the journal is empty and that
4893 * nobody is changing anything.
4894 */
4895
617ba13b 4896 journal = EXT4_JOURNAL(inode);
0390131b
FM
4897 if (!journal)
4898 return 0;
d699594d 4899 if (is_journal_aborted(journal))
ac27a0ec 4900 return -EROFS;
2aff57b0
YY
4901 /* We have to allocate physical blocks for delalloc blocks
4902 * before flushing journal. otherwise delalloc blocks can not
4903 * be allocated any more. even more truncate on delalloc blocks
4904 * could trigger BUG by flushing delalloc blocks in journal.
4905 * There is no delalloc block in non-journal data mode.
4906 */
4907 if (val && test_opt(inode->i_sb, DELALLOC)) {
4908 err = ext4_alloc_da_blocks(inode);
4909 if (err < 0)
4910 return err;
4911 }
ac27a0ec 4912
17335dcc
DM
4913 /* Wait for all existing dio workers */
4914 ext4_inode_block_unlocked_dio(inode);
4915 inode_dio_wait(inode);
4916
dab291af 4917 jbd2_journal_lock_updates(journal);
ac27a0ec
DK
4918
4919 /*
4920 * OK, there are no updates running now, and all cached data is
4921 * synced to disk. We are now in a completely consistent state
4922 * which doesn't have anything in the journal, and we know that
4923 * no filesystem updates are running, so it is safe to modify
4924 * the inode's in-core data-journaling state flag now.
4925 */
4926
4927 if (val)
12e9b892 4928 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5872ddaa
YY
4929 else {
4930 jbd2_journal_flush(journal);
12e9b892 4931 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5872ddaa 4932 }
617ba13b 4933 ext4_set_aops(inode);
ac27a0ec 4934
dab291af 4935 jbd2_journal_unlock_updates(journal);
17335dcc 4936 ext4_inode_resume_unlocked_dio(inode);
ac27a0ec
DK
4937
4938 /* Finally we can mark the inode as dirty. */
4939
9924a92a 4940 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
ac27a0ec
DK
4941 if (IS_ERR(handle))
4942 return PTR_ERR(handle);
4943
617ba13b 4944 err = ext4_mark_inode_dirty(handle, inode);
0390131b 4945 ext4_handle_sync(handle);
617ba13b
MC
4946 ext4_journal_stop(handle);
4947 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4948
4949 return err;
4950}
2e9ee850
AK
4951
4952static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
4953{
4954 return !buffer_mapped(bh);
4955}
4956
c2ec175c 4957int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2e9ee850 4958{
c2ec175c 4959 struct page *page = vmf->page;
2e9ee850
AK
4960 loff_t size;
4961 unsigned long len;
9ea7df53 4962 int ret;
2e9ee850
AK
4963 struct file *file = vma->vm_file;
4964 struct inode *inode = file->f_path.dentry->d_inode;
4965 struct address_space *mapping = inode->i_mapping;
9ea7df53
JK
4966 handle_t *handle;
4967 get_block_t *get_block;
4968 int retries = 0;
2e9ee850 4969
8e8ad8a5 4970 sb_start_pagefault(inode->i_sb);
041bbb6d 4971 file_update_time(vma->vm_file);
9ea7df53
JK
4972 /* Delalloc case is easy... */
4973 if (test_opt(inode->i_sb, DELALLOC) &&
4974 !ext4_should_journal_data(inode) &&
4975 !ext4_nonda_switch(inode->i_sb)) {
4976 do {
4977 ret = __block_page_mkwrite(vma, vmf,
4978 ext4_da_get_block_prep);
4979 } while (ret == -ENOSPC &&
4980 ext4_should_retry_alloc(inode->i_sb, &retries));
4981 goto out_ret;
2e9ee850 4982 }
0e499890
DW
4983
4984 lock_page(page);
9ea7df53
JK
4985 size = i_size_read(inode);
4986 /* Page got truncated from under us? */
4987 if (page->mapping != mapping || page_offset(page) > size) {
4988 unlock_page(page);
4989 ret = VM_FAULT_NOPAGE;
4990 goto out;
0e499890 4991 }
2e9ee850
AK
4992
4993 if (page->index == size >> PAGE_CACHE_SHIFT)
4994 len = size & ~PAGE_CACHE_MASK;
4995 else
4996 len = PAGE_CACHE_SIZE;
a827eaff 4997 /*
9ea7df53
JK
4998 * Return if we have all the buffers mapped. This avoids the need to do
4999 * journal_start/journal_stop which can block and take a long time
a827eaff 5000 */
2e9ee850 5001 if (page_has_buffers(page)) {
f19d5870
TM
5002 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5003 0, len, NULL,
5004 ext4_bh_unmapped)) {
9ea7df53
JK
5005 /* Wait so that we don't change page under IO */
5006 wait_on_page_writeback(page);
5007 ret = VM_FAULT_LOCKED;
5008 goto out;
a827eaff 5009 }
2e9ee850 5010 }
a827eaff 5011 unlock_page(page);
9ea7df53
JK
5012 /* OK, we need to fill the hole... */
5013 if (ext4_should_dioread_nolock(inode))
5014 get_block = ext4_get_block_write;
5015 else
5016 get_block = ext4_get_block;
5017retry_alloc:
9924a92a
TT
5018 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5019 ext4_writepage_trans_blocks(inode));
9ea7df53 5020 if (IS_ERR(handle)) {
c2ec175c 5021 ret = VM_FAULT_SIGBUS;
9ea7df53
JK
5022 goto out;
5023 }
5024 ret = __block_page_mkwrite(vma, vmf, get_block);
5025 if (!ret && ext4_should_journal_data(inode)) {
f19d5870 5026 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
9ea7df53
JK
5027 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
5028 unlock_page(page);
5029 ret = VM_FAULT_SIGBUS;
fcbb5515 5030 ext4_journal_stop(handle);
9ea7df53
JK
5031 goto out;
5032 }
5033 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5034 }
5035 ext4_journal_stop(handle);
5036 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5037 goto retry_alloc;
5038out_ret:
5039 ret = block_page_mkwrite_return(ret);
5040out:
8e8ad8a5 5041 sb_end_pagefault(inode->i_sb);
2e9ee850
AK
5042 return ret;
5043}