mmc: sh_mobile_sdhi: enable SDIO IRQs for RCar Gen3
[linux-2.6-block.git] / fs / ext4 / inode.c
CommitLineData
ac27a0ec 1/*
617ba13b 2 * linux/fs/ext4/inode.c
ac27a0ec
DK
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
ac27a0ec
DK
15 * 64-bit file support on 64-bit platforms by Jakub Jelinek
16 * (jj@sunsite.ms.mff.cuni.cz)
17 *
617ba13b 18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
ac27a0ec
DK
19 */
20
ac27a0ec
DK
21#include <linux/fs.h>
22#include <linux/time.h>
ac27a0ec
DK
23#include <linux/highuid.h>
24#include <linux/pagemap.h>
c94c2acf 25#include <linux/dax.h>
ac27a0ec
DK
26#include <linux/quotaops.h>
27#include <linux/string.h>
28#include <linux/buffer_head.h>
29#include <linux/writeback.h>
64769240 30#include <linux/pagevec.h>
ac27a0ec 31#include <linux/mpage.h>
e83c1397 32#include <linux/namei.h>
ac27a0ec
DK
33#include <linux/uio.h>
34#include <linux/bio.h>
4c0425ff 35#include <linux/workqueue.h>
744692dc 36#include <linux/kernel.h>
6db26ffc 37#include <linux/printk.h>
5a0e3ad6 38#include <linux/slab.h>
00a1a053 39#include <linux/bitops.h>
9bffad1e 40
3dcf5451 41#include "ext4_jbd2.h"
ac27a0ec
DK
42#include "xattr.h"
43#include "acl.h"
9f125d64 44#include "truncate.h"
ac27a0ec 45
9bffad1e
TT
46#include <trace/events/ext4.h>
47
a1d6cc56
AK
48#define MPAGE_DA_EXTENT_TAIL 0x01
49
814525f4
DW
50static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
51 struct ext4_inode_info *ei)
52{
53 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
54 __u16 csum_lo;
55 __u16 csum_hi = 0;
56 __u32 csum;
57
171a7f21 58 csum_lo = le16_to_cpu(raw->i_checksum_lo);
814525f4
DW
59 raw->i_checksum_lo = 0;
60 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
61 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
171a7f21 62 csum_hi = le16_to_cpu(raw->i_checksum_hi);
814525f4
DW
63 raw->i_checksum_hi = 0;
64 }
65
66 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
67 EXT4_INODE_SIZE(inode->i_sb));
68
171a7f21 69 raw->i_checksum_lo = cpu_to_le16(csum_lo);
814525f4
DW
70 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
71 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
171a7f21 72 raw->i_checksum_hi = cpu_to_le16(csum_hi);
814525f4
DW
73
74 return csum;
75}
76
77static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
78 struct ext4_inode_info *ei)
79{
80 __u32 provided, calculated;
81
82 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
83 cpu_to_le32(EXT4_OS_LINUX) ||
9aa5d32b 84 !ext4_has_metadata_csum(inode->i_sb))
814525f4
DW
85 return 1;
86
87 provided = le16_to_cpu(raw->i_checksum_lo);
88 calculated = ext4_inode_csum(inode, raw, ei);
89 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
90 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
91 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
92 else
93 calculated &= 0xFFFF;
94
95 return provided == calculated;
96}
97
98static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
99 struct ext4_inode_info *ei)
100{
101 __u32 csum;
102
103 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
104 cpu_to_le32(EXT4_OS_LINUX) ||
9aa5d32b 105 !ext4_has_metadata_csum(inode->i_sb))
814525f4
DW
106 return;
107
108 csum = ext4_inode_csum(inode, raw, ei);
109 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
110 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
111 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
112 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
113}
114
678aaf48
JK
115static inline int ext4_begin_ordered_truncate(struct inode *inode,
116 loff_t new_size)
117{
7ff9c073 118 trace_ext4_begin_ordered_truncate(inode, new_size);
8aefcd55
TT
119 /*
120 * If jinode is zero, then we never opened the file for
121 * writing, so there's no need to call
122 * jbd2_journal_begin_ordered_truncate() since there's no
123 * outstanding writes we need to flush.
124 */
125 if (!EXT4_I(inode)->jinode)
126 return 0;
127 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
128 EXT4_I(inode)->jinode,
129 new_size);
678aaf48
JK
130}
131
d47992f8
LC
132static void ext4_invalidatepage(struct page *page, unsigned int offset,
133 unsigned int length);
cb20d518
TT
134static int __ext4_journalled_writepage(struct page *page, unsigned int len);
135static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
fffb2739
JK
136static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
137 int pextents);
64769240 138
ac27a0ec
DK
139/*
140 * Test whether an inode is a fast symlink.
141 */
f348c252 142int ext4_inode_is_fast_symlink(struct inode *inode)
ac27a0ec 143{
65eddb56
YY
144 int ea_blocks = EXT4_I(inode)->i_file_acl ?
145 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
ac27a0ec 146
bd9db175
ZL
147 if (ext4_has_inline_data(inode))
148 return 0;
149
ac27a0ec
DK
150 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
151}
152
ac27a0ec
DK
153/*
154 * Restart the transaction associated with *handle. This does a commit,
155 * so before we call here everything must be consistently dirtied against
156 * this transaction.
157 */
fa5d1113 158int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
487caeef 159 int nblocks)
ac27a0ec 160{
487caeef
JK
161 int ret;
162
163 /*
e35fd660 164 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
487caeef
JK
165 * moment, get_block can be called only for blocks inside i_size since
166 * page cache has been already dropped and writes are blocked by
167 * i_mutex. So we can safely drop the i_data_sem here.
168 */
0390131b 169 BUG_ON(EXT4_JOURNAL(inode) == NULL);
ac27a0ec 170 jbd_debug(2, "restarting handle %p\n", handle);
487caeef 171 up_write(&EXT4_I(inode)->i_data_sem);
8e8eaabe 172 ret = ext4_journal_restart(handle, nblocks);
487caeef 173 down_write(&EXT4_I(inode)->i_data_sem);
fa5d1113 174 ext4_discard_preallocations(inode);
487caeef
JK
175
176 return ret;
ac27a0ec
DK
177}
178
179/*
180 * Called at the last iput() if i_nlink is zero.
181 */
0930fcc1 182void ext4_evict_inode(struct inode *inode)
ac27a0ec
DK
183{
184 handle_t *handle;
bc965ab3 185 int err;
ac27a0ec 186
7ff9c073 187 trace_ext4_evict_inode(inode);
2581fdc8 188
0930fcc1 189 if (inode->i_nlink) {
2d859db3
JK
190 /*
191 * When journalling data dirty buffers are tracked only in the
192 * journal. So although mm thinks everything is clean and
193 * ready for reaping the inode might still have some pages to
194 * write in the running transaction or waiting to be
195 * checkpointed. Thus calling jbd2_journal_invalidatepage()
196 * (via truncate_inode_pages()) to discard these buffers can
197 * cause data loss. Also even if we did not discard these
198 * buffers, we would have no way to find them after the inode
199 * is reaped and thus user could see stale data if he tries to
200 * read them before the transaction is checkpointed. So be
201 * careful and force everything to disk here... We use
202 * ei->i_datasync_tid to store the newest transaction
203 * containing inode's data.
204 *
205 * Note that directories do not have this problem because they
206 * don't use page cache.
207 */
208 if (ext4_should_journal_data(inode) &&
2b405bfa
TT
209 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
210 inode->i_ino != EXT4_JOURNAL_INO) {
2d859db3
JK
211 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
212 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
213
d76a3a77 214 jbd2_complete_transaction(journal, commit_tid);
2d859db3
JK
215 filemap_write_and_wait(&inode->i_data);
216 }
91b0abe3 217 truncate_inode_pages_final(&inode->i_data);
5dc23bdd 218
0930fcc1
AV
219 goto no_delete;
220 }
221
e2bfb088
TT
222 if (is_bad_inode(inode))
223 goto no_delete;
224 dquot_initialize(inode);
907f4554 225
678aaf48
JK
226 if (ext4_should_order_data(inode))
227 ext4_begin_ordered_truncate(inode, 0);
91b0abe3 228 truncate_inode_pages_final(&inode->i_data);
ac27a0ec 229
8e8ad8a5
JK
230 /*
231 * Protect us against freezing - iput() caller didn't have to have any
232 * protection against it
233 */
234 sb_start_intwrite(inode->i_sb);
9924a92a
TT
235 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
236 ext4_blocks_for_truncate(inode)+3);
ac27a0ec 237 if (IS_ERR(handle)) {
bc965ab3 238 ext4_std_error(inode->i_sb, PTR_ERR(handle));
ac27a0ec
DK
239 /*
240 * If we're going to skip the normal cleanup, we still need to
241 * make sure that the in-core orphan linked list is properly
242 * cleaned up.
243 */
617ba13b 244 ext4_orphan_del(NULL, inode);
8e8ad8a5 245 sb_end_intwrite(inode->i_sb);
ac27a0ec
DK
246 goto no_delete;
247 }
248
249 if (IS_SYNC(inode))
0390131b 250 ext4_handle_sync(handle);
ac27a0ec 251 inode->i_size = 0;
bc965ab3
TT
252 err = ext4_mark_inode_dirty(handle, inode);
253 if (err) {
12062ddd 254 ext4_warning(inode->i_sb,
bc965ab3
TT
255 "couldn't mark inode dirty (err %d)", err);
256 goto stop_handle;
257 }
ac27a0ec 258 if (inode->i_blocks)
617ba13b 259 ext4_truncate(inode);
bc965ab3
TT
260
261 /*
262 * ext4_ext_truncate() doesn't reserve any slop when it
263 * restarts journal transactions; therefore there may not be
264 * enough credits left in the handle to remove the inode from
265 * the orphan list and set the dtime field.
266 */
0390131b 267 if (!ext4_handle_has_enough_credits(handle, 3)) {
bc965ab3
TT
268 err = ext4_journal_extend(handle, 3);
269 if (err > 0)
270 err = ext4_journal_restart(handle, 3);
271 if (err != 0) {
12062ddd 272 ext4_warning(inode->i_sb,
bc965ab3
TT
273 "couldn't extend journal (err %d)", err);
274 stop_handle:
275 ext4_journal_stop(handle);
45388219 276 ext4_orphan_del(NULL, inode);
8e8ad8a5 277 sb_end_intwrite(inode->i_sb);
bc965ab3
TT
278 goto no_delete;
279 }
280 }
281
ac27a0ec 282 /*
617ba13b 283 * Kill off the orphan record which ext4_truncate created.
ac27a0ec 284 * AKPM: I think this can be inside the above `if'.
617ba13b 285 * Note that ext4_orphan_del() has to be able to cope with the
ac27a0ec 286 * deletion of a non-existent orphan - this is because we don't
617ba13b 287 * know if ext4_truncate() actually created an orphan record.
ac27a0ec
DK
288 * (Well, we could do this if we need to, but heck - it works)
289 */
617ba13b
MC
290 ext4_orphan_del(handle, inode);
291 EXT4_I(inode)->i_dtime = get_seconds();
ac27a0ec
DK
292
293 /*
294 * One subtle ordering requirement: if anything has gone wrong
295 * (transaction abort, IO errors, whatever), then we can still
296 * do these next steps (the fs will already have been marked as
297 * having errors), but we can't free the inode if the mark_dirty
298 * fails.
299 */
617ba13b 300 if (ext4_mark_inode_dirty(handle, inode))
ac27a0ec 301 /* If that failed, just do the required in-core inode clear. */
0930fcc1 302 ext4_clear_inode(inode);
ac27a0ec 303 else
617ba13b
MC
304 ext4_free_inode(handle, inode);
305 ext4_journal_stop(handle);
8e8ad8a5 306 sb_end_intwrite(inode->i_sb);
ac27a0ec
DK
307 return;
308no_delete:
0930fcc1 309 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
ac27a0ec
DK
310}
311
a9e7f447
DM
312#ifdef CONFIG_QUOTA
313qsize_t *ext4_get_reserved_space(struct inode *inode)
60e58e0f 314{
a9e7f447 315 return &EXT4_I(inode)->i_reserved_quota;
60e58e0f 316}
a9e7f447 317#endif
9d0be502 318
0637c6f4
TT
319/*
320 * Called with i_data_sem down, which is important since we can call
321 * ext4_discard_preallocations() from here.
322 */
5f634d06
AK
323void ext4_da_update_reserve_space(struct inode *inode,
324 int used, int quota_claim)
12219aea
AK
325{
326 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 327 struct ext4_inode_info *ei = EXT4_I(inode);
0637c6f4
TT
328
329 spin_lock(&ei->i_block_reservation_lock);
d8990240 330 trace_ext4_da_update_reserve_space(inode, used, quota_claim);
0637c6f4 331 if (unlikely(used > ei->i_reserved_data_blocks)) {
8de5c325 332 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
1084f252 333 "with only %d reserved data blocks",
0637c6f4
TT
334 __func__, inode->i_ino, used,
335 ei->i_reserved_data_blocks);
336 WARN_ON(1);
337 used = ei->i_reserved_data_blocks;
338 }
12219aea 339
0637c6f4
TT
340 /* Update per-inode reservations */
341 ei->i_reserved_data_blocks -= used;
71d4f7d0 342 percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
6bc6e63f 343
12219aea 344 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f 345
72b8ab9d
ES
346 /* Update quota subsystem for data blocks */
347 if (quota_claim)
7b415bf6 348 dquot_claim_block(inode, EXT4_C2B(sbi, used));
72b8ab9d 349 else {
5f634d06
AK
350 /*
351 * We did fallocate with an offset that is already delayed
352 * allocated. So on delayed allocated writeback we should
72b8ab9d 353 * not re-claim the quota for fallocated blocks.
5f634d06 354 */
7b415bf6 355 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
5f634d06 356 }
d6014301
AK
357
358 /*
359 * If we have done all the pending block allocations and if
360 * there aren't any writers on the inode, we can discard the
361 * inode's preallocations.
362 */
0637c6f4
TT
363 if ((ei->i_reserved_data_blocks == 0) &&
364 (atomic_read(&inode->i_writecount) == 0))
d6014301 365 ext4_discard_preallocations(inode);
12219aea
AK
366}
367
e29136f8 368static int __check_block_validity(struct inode *inode, const char *func,
c398eda0
TT
369 unsigned int line,
370 struct ext4_map_blocks *map)
6fd058f7 371{
24676da4
TT
372 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
373 map->m_len)) {
c398eda0
TT
374 ext4_error_inode(inode, func, line, map->m_pblk,
375 "lblock %lu mapped to illegal pblock "
376 "(length %d)", (unsigned long) map->m_lblk,
377 map->m_len);
6a797d27 378 return -EFSCORRUPTED;
6fd058f7
TT
379 }
380 return 0;
381}
382
53085fac
JK
383int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
384 ext4_lblk_t len)
385{
386 int ret;
387
388 if (ext4_encrypted_inode(inode))
389 return ext4_encrypted_zeroout(inode, lblk, pblk, len);
390
391 ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
392 if (ret > 0)
393 ret = 0;
394
395 return ret;
396}
397
e29136f8 398#define check_block_validity(inode, map) \
c398eda0 399 __check_block_validity((inode), __func__, __LINE__, (map))
e29136f8 400
921f266b
DM
401#ifdef ES_AGGRESSIVE_TEST
402static void ext4_map_blocks_es_recheck(handle_t *handle,
403 struct inode *inode,
404 struct ext4_map_blocks *es_map,
405 struct ext4_map_blocks *map,
406 int flags)
407{
408 int retval;
409
410 map->m_flags = 0;
411 /*
412 * There is a race window that the result is not the same.
413 * e.g. xfstests #223 when dioread_nolock enables. The reason
414 * is that we lookup a block mapping in extent status tree with
415 * out taking i_data_sem. So at the time the unwritten extent
416 * could be converted.
417 */
2dcba478 418 down_read(&EXT4_I(inode)->i_data_sem);
921f266b
DM
419 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
420 retval = ext4_ext_map_blocks(handle, inode, map, flags &
421 EXT4_GET_BLOCKS_KEEP_SIZE);
422 } else {
423 retval = ext4_ind_map_blocks(handle, inode, map, flags &
424 EXT4_GET_BLOCKS_KEEP_SIZE);
425 }
2dcba478 426 up_read((&EXT4_I(inode)->i_data_sem));
921f266b
DM
427
428 /*
429 * We don't check m_len because extent will be collpased in status
430 * tree. So the m_len might not equal.
431 */
432 if (es_map->m_lblk != map->m_lblk ||
433 es_map->m_flags != map->m_flags ||
434 es_map->m_pblk != map->m_pblk) {
bdafe42a 435 printk("ES cache assertion failed for inode: %lu "
921f266b
DM
436 "es_cached ex [%d/%d/%llu/%x] != "
437 "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
438 inode->i_ino, es_map->m_lblk, es_map->m_len,
439 es_map->m_pblk, es_map->m_flags, map->m_lblk,
440 map->m_len, map->m_pblk, map->m_flags,
441 retval, flags);
442 }
443}
444#endif /* ES_AGGRESSIVE_TEST */
445
f5ab0d1f 446/*
e35fd660 447 * The ext4_map_blocks() function tries to look up the requested blocks,
2b2d6d01 448 * and returns if the blocks are already mapped.
f5ab0d1f 449 *
f5ab0d1f
MC
450 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
451 * and store the allocated blocks in the result buffer head and mark it
452 * mapped.
453 *
e35fd660
TT
454 * If file type is extents based, it will call ext4_ext_map_blocks(),
455 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
f5ab0d1f
MC
456 * based files
457 *
facab4d9
JK
458 * On success, it returns the number of blocks being mapped or allocated. if
459 * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
460 * is marked as unwritten. If the create == 1, it will mark @map as mapped.
f5ab0d1f
MC
461 *
462 * It returns 0 if plain look up failed (blocks have not been allocated), in
facab4d9
JK
463 * that case, @map is returned as unmapped but we still do fill map->m_len to
464 * indicate the length of a hole starting at map->m_lblk.
f5ab0d1f
MC
465 *
466 * It returns the error in case of allocation failure.
467 */
e35fd660
TT
468int ext4_map_blocks(handle_t *handle, struct inode *inode,
469 struct ext4_map_blocks *map, int flags)
0e855ac8 470{
d100eef2 471 struct extent_status es;
0e855ac8 472 int retval;
b8a86845 473 int ret = 0;
921f266b
DM
474#ifdef ES_AGGRESSIVE_TEST
475 struct ext4_map_blocks orig_map;
476
477 memcpy(&orig_map, map, sizeof(*map));
478#endif
f5ab0d1f 479
e35fd660
TT
480 map->m_flags = 0;
481 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
482 "logical block %lu\n", inode->i_ino, flags, map->m_len,
483 (unsigned long) map->m_lblk);
d100eef2 484
e861b5e9
TT
485 /*
486 * ext4_map_blocks returns an int, and m_len is an unsigned int
487 */
488 if (unlikely(map->m_len > INT_MAX))
489 map->m_len = INT_MAX;
490
4adb6ab3
KM
491 /* We can handle the block number less than EXT_MAX_BLOCKS */
492 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
6a797d27 493 return -EFSCORRUPTED;
4adb6ab3 494
d100eef2
ZL
495 /* Lookup extent status tree firstly */
496 if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
497 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
498 map->m_pblk = ext4_es_pblock(&es) +
499 map->m_lblk - es.es_lblk;
500 map->m_flags |= ext4_es_is_written(&es) ?
501 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
502 retval = es.es_len - (map->m_lblk - es.es_lblk);
503 if (retval > map->m_len)
504 retval = map->m_len;
505 map->m_len = retval;
506 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
facab4d9
JK
507 map->m_pblk = 0;
508 retval = es.es_len - (map->m_lblk - es.es_lblk);
509 if (retval > map->m_len)
510 retval = map->m_len;
511 map->m_len = retval;
d100eef2
ZL
512 retval = 0;
513 } else {
514 BUG_ON(1);
515 }
921f266b
DM
516#ifdef ES_AGGRESSIVE_TEST
517 ext4_map_blocks_es_recheck(handle, inode, map,
518 &orig_map, flags);
519#endif
d100eef2
ZL
520 goto found;
521 }
522
4df3d265 523 /*
b920c755
TT
524 * Try to see if we can get the block without requesting a new
525 * file system block.
4df3d265 526 */
2dcba478 527 down_read(&EXT4_I(inode)->i_data_sem);
12e9b892 528 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
a4e5d88b
DM
529 retval = ext4_ext_map_blocks(handle, inode, map, flags &
530 EXT4_GET_BLOCKS_KEEP_SIZE);
0e855ac8 531 } else {
a4e5d88b
DM
532 retval = ext4_ind_map_blocks(handle, inode, map, flags &
533 EXT4_GET_BLOCKS_KEEP_SIZE);
0e855ac8 534 }
f7fec032 535 if (retval > 0) {
3be78c73 536 unsigned int status;
f7fec032 537
44fb851d
ZL
538 if (unlikely(retval != map->m_len)) {
539 ext4_warning(inode->i_sb,
540 "ES len assertion failed for inode "
541 "%lu: retval %d != map->m_len %d",
542 inode->i_ino, retval, map->m_len);
543 WARN_ON(1);
921f266b 544 }
921f266b 545
f7fec032
ZL
546 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
547 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
548 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
d2dc317d 549 !(status & EXTENT_STATUS_WRITTEN) &&
f7fec032
ZL
550 ext4_find_delalloc_range(inode, map->m_lblk,
551 map->m_lblk + map->m_len - 1))
552 status |= EXTENT_STATUS_DELAYED;
553 ret = ext4_es_insert_extent(inode, map->m_lblk,
554 map->m_len, map->m_pblk, status);
555 if (ret < 0)
556 retval = ret;
557 }
2dcba478 558 up_read((&EXT4_I(inode)->i_data_sem));
f5ab0d1f 559
d100eef2 560found:
e35fd660 561 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
b8a86845 562 ret = check_block_validity(inode, map);
6fd058f7
TT
563 if (ret != 0)
564 return ret;
565 }
566
f5ab0d1f 567 /* If it is only a block(s) look up */
c2177057 568 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
f5ab0d1f
MC
569 return retval;
570
571 /*
572 * Returns if the blocks have already allocated
573 *
574 * Note that if blocks have been preallocated
df3ab170 575 * ext4_ext_get_block() returns the create = 0
f5ab0d1f
MC
576 * with buffer head unmapped.
577 */
e35fd660 578 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
b8a86845
LC
579 /*
580 * If we need to convert extent to unwritten
581 * we continue and do the actual work in
582 * ext4_ext_map_blocks()
583 */
584 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
585 return retval;
4df3d265 586
2a8964d6 587 /*
a25a4e1a
ZL
588 * Here we clear m_flags because after allocating an new extent,
589 * it will be set again.
2a8964d6 590 */
a25a4e1a 591 map->m_flags &= ~EXT4_MAP_FLAGS;
2a8964d6 592
4df3d265 593 /*
556615dc 594 * New blocks allocate and/or writing to unwritten extent
f5ab0d1f 595 * will possibly result in updating i_data, so we take
d91bd2c1 596 * the write lock of i_data_sem, and call get_block()
f5ab0d1f 597 * with create == 1 flag.
4df3d265 598 */
c8b459f4 599 down_write(&EXT4_I(inode)->i_data_sem);
d2a17637 600
4df3d265
AK
601 /*
602 * We need to check for EXT4 here because migrate
603 * could have changed the inode type in between
604 */
12e9b892 605 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
e35fd660 606 retval = ext4_ext_map_blocks(handle, inode, map, flags);
0e855ac8 607 } else {
e35fd660 608 retval = ext4_ind_map_blocks(handle, inode, map, flags);
267e4db9 609
e35fd660 610 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
267e4db9
AK
611 /*
612 * We allocated new blocks which will result in
613 * i_data's format changing. Force the migrate
614 * to fail by clearing migrate flags
615 */
19f5fb7a 616 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
267e4db9 617 }
d2a17637 618
5f634d06
AK
619 /*
620 * Update reserved blocks/metadata blocks after successful
621 * block allocation which had been deferred till now. We don't
622 * support fallocate for non extent files. So we can update
623 * reserve space here.
624 */
625 if ((retval > 0) &&
1296cc85 626 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
5f634d06
AK
627 ext4_da_update_reserve_space(inode, retval, 1);
628 }
2ac3b6e0 629
f7fec032 630 if (retval > 0) {
3be78c73 631 unsigned int status;
f7fec032 632
44fb851d
ZL
633 if (unlikely(retval != map->m_len)) {
634 ext4_warning(inode->i_sb,
635 "ES len assertion failed for inode "
636 "%lu: retval %d != map->m_len %d",
637 inode->i_ino, retval, map->m_len);
638 WARN_ON(1);
921f266b 639 }
921f266b 640
c86d8db3
JK
641 /*
642 * We have to zeroout blocks before inserting them into extent
643 * status tree. Otherwise someone could look them up there and
644 * use them before they are really zeroed.
645 */
646 if (flags & EXT4_GET_BLOCKS_ZERO &&
647 map->m_flags & EXT4_MAP_MAPPED &&
648 map->m_flags & EXT4_MAP_NEW) {
649 ret = ext4_issue_zeroout(inode, map->m_lblk,
650 map->m_pblk, map->m_len);
651 if (ret) {
652 retval = ret;
653 goto out_sem;
654 }
655 }
656
adb23551
ZL
657 /*
658 * If the extent has been zeroed out, we don't need to update
659 * extent status tree.
660 */
661 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
662 ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
663 if (ext4_es_is_written(&es))
c86d8db3 664 goto out_sem;
adb23551 665 }
f7fec032
ZL
666 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
667 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
668 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
d2dc317d 669 !(status & EXTENT_STATUS_WRITTEN) &&
f7fec032
ZL
670 ext4_find_delalloc_range(inode, map->m_lblk,
671 map->m_lblk + map->m_len - 1))
672 status |= EXTENT_STATUS_DELAYED;
673 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
674 map->m_pblk, status);
c86d8db3 675 if (ret < 0) {
f7fec032 676 retval = ret;
c86d8db3
JK
677 goto out_sem;
678 }
5356f261
AK
679 }
680
c86d8db3 681out_sem:
4df3d265 682 up_write((&EXT4_I(inode)->i_data_sem));
e35fd660 683 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
b8a86845 684 ret = check_block_validity(inode, map);
6fd058f7
TT
685 if (ret != 0)
686 return ret;
687 }
0e855ac8
AK
688 return retval;
689}
690
ed8ad838
JK
691/*
692 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
693 * we have to be careful as someone else may be manipulating b_state as well.
694 */
695static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
696{
697 unsigned long old_state;
698 unsigned long new_state;
699
700 flags &= EXT4_MAP_FLAGS;
701
702 /* Dummy buffer_head? Set non-atomically. */
703 if (!bh->b_page) {
704 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
705 return;
706 }
707 /*
708 * Someone else may be modifying b_state. Be careful! This is ugly but
709 * once we get rid of using bh as a container for mapping information
710 * to pass to / from get_block functions, this can go away.
711 */
712 do {
713 old_state = READ_ONCE(bh->b_state);
714 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
715 } while (unlikely(
716 cmpxchg(&bh->b_state, old_state, new_state) != old_state));
717}
718
2ed88685
TT
719static int _ext4_get_block(struct inode *inode, sector_t iblock,
720 struct buffer_head *bh, int flags)
ac27a0ec 721{
2ed88685 722 struct ext4_map_blocks map;
efe70c29 723 int ret = 0;
ac27a0ec 724
46c7f254
TM
725 if (ext4_has_inline_data(inode))
726 return -ERANGE;
727
2ed88685
TT
728 map.m_lblk = iblock;
729 map.m_len = bh->b_size >> inode->i_blkbits;
730
efe70c29
JK
731 ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
732 flags);
7fb5409d 733 if (ret > 0) {
2ed88685 734 map_bh(bh, inode->i_sb, map.m_pblk);
ed8ad838 735 ext4_update_bh_state(bh, map.m_flags);
2ed88685 736 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
7fb5409d 737 ret = 0;
ac27a0ec
DK
738 }
739 return ret;
740}
741
2ed88685
TT
742int ext4_get_block(struct inode *inode, sector_t iblock,
743 struct buffer_head *bh, int create)
744{
745 return _ext4_get_block(inode, iblock, bh,
746 create ? EXT4_GET_BLOCKS_CREATE : 0);
747}
748
705965bd
JK
749/*
750 * Get block function used when preparing for buffered write if we require
751 * creating an unwritten extent if blocks haven't been allocated. The extent
752 * will be converted to written after the IO is complete.
753 */
754int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
755 struct buffer_head *bh_result, int create)
756{
757 ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
758 inode->i_ino, create);
759 return _ext4_get_block(inode, iblock, bh_result,
760 EXT4_GET_BLOCKS_IO_CREATE_EXT);
761}
762
efe70c29
JK
763/* Maximum number of blocks we map for direct IO at once. */
764#define DIO_MAX_BLOCKS 4096
765
e84dfbe2
JK
766/*
767 * Get blocks function for the cases that need to start a transaction -
768 * generally difference cases of direct IO and DAX IO. It also handles retries
769 * in case of ENOSPC.
770 */
771static int ext4_get_block_trans(struct inode *inode, sector_t iblock,
772 struct buffer_head *bh_result, int flags)
efe70c29
JK
773{
774 int dio_credits;
e84dfbe2
JK
775 handle_t *handle;
776 int retries = 0;
777 int ret;
efe70c29
JK
778
779 /* Trim mapping request to maximum we can map at once for DIO */
780 if (bh_result->b_size >> inode->i_blkbits > DIO_MAX_BLOCKS)
781 bh_result->b_size = DIO_MAX_BLOCKS << inode->i_blkbits;
782 dio_credits = ext4_chunk_trans_blocks(inode,
783 bh_result->b_size >> inode->i_blkbits);
e84dfbe2
JK
784retry:
785 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
786 if (IS_ERR(handle))
787 return PTR_ERR(handle);
788
789 ret = _ext4_get_block(inode, iblock, bh_result, flags);
790 ext4_journal_stop(handle);
791
792 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
793 goto retry;
794 return ret;
efe70c29
JK
795}
796
705965bd
JK
797/* Get block function for DIO reads and writes to inodes without extents */
798int ext4_dio_get_block(struct inode *inode, sector_t iblock,
799 struct buffer_head *bh, int create)
800{
efe70c29
JK
801 /* We don't expect handle for direct IO */
802 WARN_ON_ONCE(ext4_journal_current_handle());
803
e84dfbe2
JK
804 if (!create)
805 return _ext4_get_block(inode, iblock, bh, 0);
806 return ext4_get_block_trans(inode, iblock, bh, EXT4_GET_BLOCKS_CREATE);
705965bd
JK
807}
808
809/*
109811c2 810 * Get block function for AIO DIO writes when we create unwritten extent if
705965bd
JK
811 * blocks are not allocated yet. The extent will be converted to written
812 * after IO is complete.
813 */
109811c2
JK
814static int ext4_dio_get_block_unwritten_async(struct inode *inode,
815 sector_t iblock, struct buffer_head *bh_result, int create)
705965bd 816{
efe70c29
JK
817 int ret;
818
efe70c29
JK
819 /* We don't expect handle for direct IO */
820 WARN_ON_ONCE(ext4_journal_current_handle());
821
e84dfbe2
JK
822 ret = ext4_get_block_trans(inode, iblock, bh_result,
823 EXT4_GET_BLOCKS_IO_CREATE_EXT);
efe70c29 824
109811c2
JK
825 /*
826 * When doing DIO using unwritten extents, we need io_end to convert
827 * unwritten extents to written on IO completion. We allocate io_end
828 * once we spot unwritten extent and store it in b_private. Generic
829 * DIO code keeps b_private set and furthermore passes the value to
830 * our completion callback in 'private' argument.
831 */
832 if (!ret && buffer_unwritten(bh_result)) {
833 if (!bh_result->b_private) {
834 ext4_io_end_t *io_end;
835
836 io_end = ext4_init_io_end(inode, GFP_KERNEL);
837 if (!io_end)
838 return -ENOMEM;
839 bh_result->b_private = io_end;
840 ext4_set_io_unwritten_flag(inode, io_end);
841 }
efe70c29 842 set_buffer_defer_completion(bh_result);
efe70c29
JK
843 }
844
845 return ret;
705965bd
JK
846}
847
109811c2
JK
848/*
849 * Get block function for non-AIO DIO writes when we create unwritten extent if
850 * blocks are not allocated yet. The extent will be converted to written
851 * after IO is complete from ext4_ext_direct_IO() function.
852 */
853static int ext4_dio_get_block_unwritten_sync(struct inode *inode,
854 sector_t iblock, struct buffer_head *bh_result, int create)
855{
109811c2
JK
856 int ret;
857
858 /* We don't expect handle for direct IO */
859 WARN_ON_ONCE(ext4_journal_current_handle());
860
e84dfbe2
JK
861 ret = ext4_get_block_trans(inode, iblock, bh_result,
862 EXT4_GET_BLOCKS_IO_CREATE_EXT);
109811c2
JK
863
864 /*
865 * Mark inode as having pending DIO writes to unwritten extents.
866 * ext4_ext_direct_IO() checks this flag and converts extents to
867 * written.
868 */
869 if (!ret && buffer_unwritten(bh_result))
870 ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
871
872 return ret;
873}
874
705965bd
JK
875static int ext4_dio_get_block_overwrite(struct inode *inode, sector_t iblock,
876 struct buffer_head *bh_result, int create)
877{
878 int ret;
879
880 ext4_debug("ext4_dio_get_block_overwrite: inode %lu, create flag %d\n",
881 inode->i_ino, create);
efe70c29
JK
882 /* We don't expect handle for direct IO */
883 WARN_ON_ONCE(ext4_journal_current_handle());
884
705965bd
JK
885 ret = _ext4_get_block(inode, iblock, bh_result, 0);
886 /*
887 * Blocks should have been preallocated! ext4_file_write_iter() checks
888 * that.
889 */
efe70c29 890 WARN_ON_ONCE(!buffer_mapped(bh_result) || buffer_unwritten(bh_result));
705965bd
JK
891
892 return ret;
893}
894
895
ac27a0ec
DK
896/*
897 * `handle' can be NULL if create is zero
898 */
617ba13b 899struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
c5e298ae 900 ext4_lblk_t block, int map_flags)
ac27a0ec 901{
2ed88685
TT
902 struct ext4_map_blocks map;
903 struct buffer_head *bh;
c5e298ae 904 int create = map_flags & EXT4_GET_BLOCKS_CREATE;
10560082 905 int err;
ac27a0ec
DK
906
907 J_ASSERT(handle != NULL || create == 0);
908
2ed88685
TT
909 map.m_lblk = block;
910 map.m_len = 1;
c5e298ae 911 err = ext4_map_blocks(handle, inode, &map, map_flags);
ac27a0ec 912
10560082
TT
913 if (err == 0)
914 return create ? ERR_PTR(-ENOSPC) : NULL;
2ed88685 915 if (err < 0)
10560082 916 return ERR_PTR(err);
2ed88685
TT
917
918 bh = sb_getblk(inode->i_sb, map.m_pblk);
10560082
TT
919 if (unlikely(!bh))
920 return ERR_PTR(-ENOMEM);
2ed88685
TT
921 if (map.m_flags & EXT4_MAP_NEW) {
922 J_ASSERT(create != 0);
923 J_ASSERT(handle != NULL);
ac27a0ec 924
2ed88685
TT
925 /*
926 * Now that we do not always journal data, we should
927 * keep in mind whether this should always journal the
928 * new buffer as metadata. For now, regular file
929 * writes use ext4_get_block instead, so it's not a
930 * problem.
931 */
932 lock_buffer(bh);
933 BUFFER_TRACE(bh, "call get_create_access");
10560082
TT
934 err = ext4_journal_get_create_access(handle, bh);
935 if (unlikely(err)) {
936 unlock_buffer(bh);
937 goto errout;
938 }
939 if (!buffer_uptodate(bh)) {
2ed88685
TT
940 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
941 set_buffer_uptodate(bh);
ac27a0ec 942 }
2ed88685
TT
943 unlock_buffer(bh);
944 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
945 err = ext4_handle_dirty_metadata(handle, inode, bh);
10560082
TT
946 if (unlikely(err))
947 goto errout;
948 } else
2ed88685 949 BUFFER_TRACE(bh, "not a new buffer");
2ed88685 950 return bh;
10560082
TT
951errout:
952 brelse(bh);
953 return ERR_PTR(err);
ac27a0ec
DK
954}
955
617ba13b 956struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
c5e298ae 957 ext4_lblk_t block, int map_flags)
ac27a0ec 958{
af5bc92d 959 struct buffer_head *bh;
ac27a0ec 960
c5e298ae 961 bh = ext4_getblk(handle, inode, block, map_flags);
1c215028 962 if (IS_ERR(bh))
ac27a0ec 963 return bh;
1c215028 964 if (!bh || buffer_uptodate(bh))
ac27a0ec 965 return bh;
65299a3b 966 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
ac27a0ec
DK
967 wait_on_buffer(bh);
968 if (buffer_uptodate(bh))
969 return bh;
970 put_bh(bh);
1c215028 971 return ERR_PTR(-EIO);
ac27a0ec
DK
972}
973
f19d5870
TM
974int ext4_walk_page_buffers(handle_t *handle,
975 struct buffer_head *head,
976 unsigned from,
977 unsigned to,
978 int *partial,
979 int (*fn)(handle_t *handle,
980 struct buffer_head *bh))
ac27a0ec
DK
981{
982 struct buffer_head *bh;
983 unsigned block_start, block_end;
984 unsigned blocksize = head->b_size;
985 int err, ret = 0;
986 struct buffer_head *next;
987
af5bc92d
TT
988 for (bh = head, block_start = 0;
989 ret == 0 && (bh != head || !block_start);
de9a55b8 990 block_start = block_end, bh = next) {
ac27a0ec
DK
991 next = bh->b_this_page;
992 block_end = block_start + blocksize;
993 if (block_end <= from || block_start >= to) {
994 if (partial && !buffer_uptodate(bh))
995 *partial = 1;
996 continue;
997 }
998 err = (*fn)(handle, bh);
999 if (!ret)
1000 ret = err;
1001 }
1002 return ret;
1003}
1004
1005/*
1006 * To preserve ordering, it is essential that the hole instantiation and
1007 * the data write be encapsulated in a single transaction. We cannot
617ba13b 1008 * close off a transaction and start a new one between the ext4_get_block()
dab291af 1009 * and the commit_write(). So doing the jbd2_journal_start at the start of
ac27a0ec
DK
1010 * prepare_write() is the right place.
1011 *
36ade451
JK
1012 * Also, this function can nest inside ext4_writepage(). In that case, we
1013 * *know* that ext4_writepage() has generated enough buffer credits to do the
1014 * whole page. So we won't block on the journal in that case, which is good,
1015 * because the caller may be PF_MEMALLOC.
ac27a0ec 1016 *
617ba13b 1017 * By accident, ext4 can be reentered when a transaction is open via
ac27a0ec
DK
1018 * quota file writes. If we were to commit the transaction while thus
1019 * reentered, there can be a deadlock - we would be holding a quota
1020 * lock, and the commit would never complete if another thread had a
1021 * transaction open and was blocking on the quota lock - a ranking
1022 * violation.
1023 *
dab291af 1024 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
ac27a0ec
DK
1025 * will _not_ run commit under these circumstances because handle->h_ref
1026 * is elevated. We'll still have enough credits for the tiny quotafile
1027 * write.
1028 */
f19d5870
TM
1029int do_journal_get_write_access(handle_t *handle,
1030 struct buffer_head *bh)
ac27a0ec 1031{
56d35a4c
JK
1032 int dirty = buffer_dirty(bh);
1033 int ret;
1034
ac27a0ec
DK
1035 if (!buffer_mapped(bh) || buffer_freed(bh))
1036 return 0;
56d35a4c 1037 /*
ebdec241 1038 * __block_write_begin() could have dirtied some buffers. Clean
56d35a4c
JK
1039 * the dirty bit as jbd2_journal_get_write_access() could complain
1040 * otherwise about fs integrity issues. Setting of the dirty bit
ebdec241 1041 * by __block_write_begin() isn't a real problem here as we clear
56d35a4c
JK
1042 * the bit before releasing a page lock and thus writeback cannot
1043 * ever write the buffer.
1044 */
1045 if (dirty)
1046 clear_buffer_dirty(bh);
5d601255 1047 BUFFER_TRACE(bh, "get write access");
56d35a4c
JK
1048 ret = ext4_journal_get_write_access(handle, bh);
1049 if (!ret && dirty)
1050 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1051 return ret;
ac27a0ec
DK
1052}
1053
2058f83a
MH
1054#ifdef CONFIG_EXT4_FS_ENCRYPTION
1055static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1056 get_block_t *get_block)
1057{
09cbfeaf 1058 unsigned from = pos & (PAGE_SIZE - 1);
2058f83a
MH
1059 unsigned to = from + len;
1060 struct inode *inode = page->mapping->host;
1061 unsigned block_start, block_end;
1062 sector_t block;
1063 int err = 0;
1064 unsigned blocksize = inode->i_sb->s_blocksize;
1065 unsigned bbits;
1066 struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
1067 bool decrypt = false;
1068
1069 BUG_ON(!PageLocked(page));
09cbfeaf
KS
1070 BUG_ON(from > PAGE_SIZE);
1071 BUG_ON(to > PAGE_SIZE);
2058f83a
MH
1072 BUG_ON(from > to);
1073
1074 if (!page_has_buffers(page))
1075 create_empty_buffers(page, blocksize, 0);
1076 head = page_buffers(page);
1077 bbits = ilog2(blocksize);
09cbfeaf 1078 block = (sector_t)page->index << (PAGE_SHIFT - bbits);
2058f83a
MH
1079
1080 for (bh = head, block_start = 0; bh != head || !block_start;
1081 block++, block_start = block_end, bh = bh->b_this_page) {
1082 block_end = block_start + blocksize;
1083 if (block_end <= from || block_start >= to) {
1084 if (PageUptodate(page)) {
1085 if (!buffer_uptodate(bh))
1086 set_buffer_uptodate(bh);
1087 }
1088 continue;
1089 }
1090 if (buffer_new(bh))
1091 clear_buffer_new(bh);
1092 if (!buffer_mapped(bh)) {
1093 WARN_ON(bh->b_size != blocksize);
1094 err = get_block(inode, block, bh, 1);
1095 if (err)
1096 break;
1097 if (buffer_new(bh)) {
1098 unmap_underlying_metadata(bh->b_bdev,
1099 bh->b_blocknr);
1100 if (PageUptodate(page)) {
1101 clear_buffer_new(bh);
1102 set_buffer_uptodate(bh);
1103 mark_buffer_dirty(bh);
1104 continue;
1105 }
1106 if (block_end > to || block_start < from)
1107 zero_user_segments(page, to, block_end,
1108 block_start, from);
1109 continue;
1110 }
1111 }
1112 if (PageUptodate(page)) {
1113 if (!buffer_uptodate(bh))
1114 set_buffer_uptodate(bh);
1115 continue;
1116 }
1117 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1118 !buffer_unwritten(bh) &&
1119 (block_start < from || block_end > to)) {
1120 ll_rw_block(READ, 1, &bh);
1121 *wait_bh++ = bh;
1122 decrypt = ext4_encrypted_inode(inode) &&
1123 S_ISREG(inode->i_mode);
1124 }
1125 }
1126 /*
1127 * If we issued read requests, let them complete.
1128 */
1129 while (wait_bh > wait) {
1130 wait_on_buffer(*--wait_bh);
1131 if (!buffer_uptodate(*wait_bh))
1132 err = -EIO;
1133 }
1134 if (unlikely(err))
1135 page_zero_new_buffers(page, from, to);
1136 else if (decrypt)
3684de8c 1137 err = ext4_decrypt(page);
2058f83a
MH
1138 return err;
1139}
1140#endif
1141
bfc1af65 1142static int ext4_write_begin(struct file *file, struct address_space *mapping,
de9a55b8
TT
1143 loff_t pos, unsigned len, unsigned flags,
1144 struct page **pagep, void **fsdata)
ac27a0ec 1145{
af5bc92d 1146 struct inode *inode = mapping->host;
1938a150 1147 int ret, needed_blocks;
ac27a0ec
DK
1148 handle_t *handle;
1149 int retries = 0;
af5bc92d 1150 struct page *page;
de9a55b8 1151 pgoff_t index;
af5bc92d 1152 unsigned from, to;
bfc1af65 1153
9bffad1e 1154 trace_ext4_write_begin(inode, pos, len, flags);
1938a150
AK
1155 /*
1156 * Reserve one block more for addition to orphan list in case
1157 * we allocate blocks but write fails for some reason
1158 */
1159 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
09cbfeaf
KS
1160 index = pos >> PAGE_SHIFT;
1161 from = pos & (PAGE_SIZE - 1);
af5bc92d 1162 to = from + len;
ac27a0ec 1163
f19d5870
TM
1164 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1165 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1166 flags, pagep);
1167 if (ret < 0)
47564bfb
TT
1168 return ret;
1169 if (ret == 1)
1170 return 0;
f19d5870
TM
1171 }
1172
47564bfb
TT
1173 /*
1174 * grab_cache_page_write_begin() can take a long time if the
1175 * system is thrashing due to memory pressure, or if the page
1176 * is being written back. So grab it first before we start
1177 * the transaction handle. This also allows us to allocate
1178 * the page (if needed) without using GFP_NOFS.
1179 */
1180retry_grab:
1181 page = grab_cache_page_write_begin(mapping, index, flags);
1182 if (!page)
1183 return -ENOMEM;
1184 unlock_page(page);
1185
1186retry_journal:
9924a92a 1187 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
af5bc92d 1188 if (IS_ERR(handle)) {
09cbfeaf 1189 put_page(page);
47564bfb 1190 return PTR_ERR(handle);
7479d2b9 1191 }
ac27a0ec 1192
47564bfb
TT
1193 lock_page(page);
1194 if (page->mapping != mapping) {
1195 /* The page got truncated from under us */
1196 unlock_page(page);
09cbfeaf 1197 put_page(page);
cf108bca 1198 ext4_journal_stop(handle);
47564bfb 1199 goto retry_grab;
cf108bca 1200 }
7afe5aa5
DM
1201 /* In case writeback began while the page was unlocked */
1202 wait_for_stable_page(page);
cf108bca 1203
2058f83a
MH
1204#ifdef CONFIG_EXT4_FS_ENCRYPTION
1205 if (ext4_should_dioread_nolock(inode))
1206 ret = ext4_block_write_begin(page, pos, len,
705965bd 1207 ext4_get_block_unwritten);
2058f83a
MH
1208 else
1209 ret = ext4_block_write_begin(page, pos, len,
1210 ext4_get_block);
1211#else
744692dc 1212 if (ext4_should_dioread_nolock(inode))
705965bd
JK
1213 ret = __block_write_begin(page, pos, len,
1214 ext4_get_block_unwritten);
744692dc 1215 else
6e1db88d 1216 ret = __block_write_begin(page, pos, len, ext4_get_block);
2058f83a 1217#endif
bfc1af65 1218 if (!ret && ext4_should_journal_data(inode)) {
f19d5870
TM
1219 ret = ext4_walk_page_buffers(handle, page_buffers(page),
1220 from, to, NULL,
1221 do_journal_get_write_access);
ac27a0ec 1222 }
bfc1af65
NP
1223
1224 if (ret) {
af5bc92d 1225 unlock_page(page);
ae4d5372 1226 /*
6e1db88d 1227 * __block_write_begin may have instantiated a few blocks
ae4d5372
AK
1228 * outside i_size. Trim these off again. Don't need
1229 * i_size_read because we hold i_mutex.
1938a150
AK
1230 *
1231 * Add inode to orphan list in case we crash before
1232 * truncate finishes
ae4d5372 1233 */
ffacfa7a 1234 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1938a150
AK
1235 ext4_orphan_add(handle, inode);
1236
1237 ext4_journal_stop(handle);
1238 if (pos + len > inode->i_size) {
b9a4207d 1239 ext4_truncate_failed_write(inode);
de9a55b8 1240 /*
ffacfa7a 1241 * If truncate failed early the inode might
1938a150
AK
1242 * still be on the orphan list; we need to
1243 * make sure the inode is removed from the
1244 * orphan list in that case.
1245 */
1246 if (inode->i_nlink)
1247 ext4_orphan_del(NULL, inode);
1248 }
bfc1af65 1249
47564bfb
TT
1250 if (ret == -ENOSPC &&
1251 ext4_should_retry_alloc(inode->i_sb, &retries))
1252 goto retry_journal;
09cbfeaf 1253 put_page(page);
47564bfb
TT
1254 return ret;
1255 }
1256 *pagep = page;
ac27a0ec
DK
1257 return ret;
1258}
1259
bfc1af65
NP
1260/* For write_end() in data=journal mode */
1261static int write_end_fn(handle_t *handle, struct buffer_head *bh)
ac27a0ec 1262{
13fca323 1263 int ret;
ac27a0ec
DK
1264 if (!buffer_mapped(bh) || buffer_freed(bh))
1265 return 0;
1266 set_buffer_uptodate(bh);
13fca323
TT
1267 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1268 clear_buffer_meta(bh);
1269 clear_buffer_prio(bh);
1270 return ret;
ac27a0ec
DK
1271}
1272
eed4333f
ZL
1273/*
1274 * We need to pick up the new inode size which generic_commit_write gave us
1275 * `file' can be NULL - eg, when called from page_symlink().
1276 *
1277 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1278 * buffers are managed internally.
1279 */
1280static int ext4_write_end(struct file *file,
1281 struct address_space *mapping,
1282 loff_t pos, unsigned len, unsigned copied,
1283 struct page *page, void *fsdata)
f8514083 1284{
f8514083 1285 handle_t *handle = ext4_journal_current_handle();
eed4333f 1286 struct inode *inode = mapping->host;
0572639f 1287 loff_t old_size = inode->i_size;
eed4333f
ZL
1288 int ret = 0, ret2;
1289 int i_size_changed = 0;
1290
1291 trace_ext4_write_end(inode, pos, len, copied);
1292 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) {
1293 ret = ext4_jbd2_file_inode(handle, inode);
1294 if (ret) {
1295 unlock_page(page);
09cbfeaf 1296 put_page(page);
eed4333f
ZL
1297 goto errout;
1298 }
1299 }
f8514083 1300
42c832de
TT
1301 if (ext4_has_inline_data(inode)) {
1302 ret = ext4_write_inline_data_end(inode, pos, len,
1303 copied, page);
1304 if (ret < 0)
1305 goto errout;
1306 copied = ret;
1307 } else
f19d5870
TM
1308 copied = block_write_end(file, mapping, pos,
1309 len, copied, page, fsdata);
f8514083 1310 /*
4631dbf6 1311 * it's important to update i_size while still holding page lock:
f8514083
AK
1312 * page writeout could otherwise come in and zero beyond i_size.
1313 */
4631dbf6 1314 i_size_changed = ext4_update_inode_size(inode, pos + copied);
f8514083 1315 unlock_page(page);
09cbfeaf 1316 put_page(page);
f8514083 1317
0572639f
XW
1318 if (old_size < pos)
1319 pagecache_isize_extended(inode, old_size, pos);
f8514083
AK
1320 /*
1321 * Don't mark the inode dirty under page lock. First, it unnecessarily
1322 * makes the holding time of page lock longer. Second, it forces lock
1323 * ordering of page lock and transaction start for journaling
1324 * filesystems.
1325 */
1326 if (i_size_changed)
1327 ext4_mark_inode_dirty(handle, inode);
1328
ffacfa7a 1329 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1330 /* if we have allocated more blocks and copied
1331 * less. We will have blocks allocated outside
1332 * inode->i_size. So truncate them
1333 */
1334 ext4_orphan_add(handle, inode);
74d553aa 1335errout:
617ba13b 1336 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1337 if (!ret)
1338 ret = ret2;
bfc1af65 1339
f8514083 1340 if (pos + len > inode->i_size) {
b9a4207d 1341 ext4_truncate_failed_write(inode);
de9a55b8 1342 /*
ffacfa7a 1343 * If truncate failed early the inode might still be
f8514083
AK
1344 * on the orphan list; we need to make sure the inode
1345 * is removed from the orphan list in that case.
1346 */
1347 if (inode->i_nlink)
1348 ext4_orphan_del(NULL, inode);
1349 }
1350
bfc1af65 1351 return ret ? ret : copied;
ac27a0ec
DK
1352}
1353
b90197b6
TT
1354/*
1355 * This is a private version of page_zero_new_buffers() which doesn't
1356 * set the buffer to be dirty, since in data=journalled mode we need
1357 * to call ext4_handle_dirty_metadata() instead.
1358 */
1359static void zero_new_buffers(struct page *page, unsigned from, unsigned to)
1360{
1361 unsigned int block_start = 0, block_end;
1362 struct buffer_head *head, *bh;
1363
1364 bh = head = page_buffers(page);
1365 do {
1366 block_end = block_start + bh->b_size;
1367 if (buffer_new(bh)) {
1368 if (block_end > from && block_start < to) {
1369 if (!PageUptodate(page)) {
1370 unsigned start, size;
1371
1372 start = max(from, block_start);
1373 size = min(to, block_end) - start;
1374
1375 zero_user(page, start, size);
1376 set_buffer_uptodate(bh);
1377 }
1378 clear_buffer_new(bh);
1379 }
1380 }
1381 block_start = block_end;
1382 bh = bh->b_this_page;
1383 } while (bh != head);
1384}
1385
bfc1af65 1386static int ext4_journalled_write_end(struct file *file,
de9a55b8
TT
1387 struct address_space *mapping,
1388 loff_t pos, unsigned len, unsigned copied,
1389 struct page *page, void *fsdata)
ac27a0ec 1390{
617ba13b 1391 handle_t *handle = ext4_journal_current_handle();
bfc1af65 1392 struct inode *inode = mapping->host;
0572639f 1393 loff_t old_size = inode->i_size;
ac27a0ec
DK
1394 int ret = 0, ret2;
1395 int partial = 0;
bfc1af65 1396 unsigned from, to;
4631dbf6 1397 int size_changed = 0;
ac27a0ec 1398
9bffad1e 1399 trace_ext4_journalled_write_end(inode, pos, len, copied);
09cbfeaf 1400 from = pos & (PAGE_SIZE - 1);
bfc1af65
NP
1401 to = from + len;
1402
441c8508
CW
1403 BUG_ON(!ext4_handle_valid(handle));
1404
3fdcfb66
TM
1405 if (ext4_has_inline_data(inode))
1406 copied = ext4_write_inline_data_end(inode, pos, len,
1407 copied, page);
1408 else {
1409 if (copied < len) {
1410 if (!PageUptodate(page))
1411 copied = 0;
b90197b6 1412 zero_new_buffers(page, from+copied, to);
3fdcfb66 1413 }
ac27a0ec 1414
3fdcfb66
TM
1415 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1416 to, &partial, write_end_fn);
1417 if (!partial)
1418 SetPageUptodate(page);
1419 }
4631dbf6 1420 size_changed = ext4_update_inode_size(inode, pos + copied);
19f5fb7a 1421 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2d859db3 1422 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
4631dbf6 1423 unlock_page(page);
09cbfeaf 1424 put_page(page);
4631dbf6 1425
0572639f
XW
1426 if (old_size < pos)
1427 pagecache_isize_extended(inode, old_size, pos);
1428
4631dbf6 1429 if (size_changed) {
617ba13b 1430 ret2 = ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
1431 if (!ret)
1432 ret = ret2;
1433 }
bfc1af65 1434
ffacfa7a 1435 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1436 /* if we have allocated more blocks and copied
1437 * less. We will have blocks allocated outside
1438 * inode->i_size. So truncate them
1439 */
1440 ext4_orphan_add(handle, inode);
1441
617ba13b 1442 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1443 if (!ret)
1444 ret = ret2;
f8514083 1445 if (pos + len > inode->i_size) {
b9a4207d 1446 ext4_truncate_failed_write(inode);
de9a55b8 1447 /*
ffacfa7a 1448 * If truncate failed early the inode might still be
f8514083
AK
1449 * on the orphan list; we need to make sure the inode
1450 * is removed from the orphan list in that case.
1451 */
1452 if (inode->i_nlink)
1453 ext4_orphan_del(NULL, inode);
1454 }
bfc1af65
NP
1455
1456 return ret ? ret : copied;
ac27a0ec 1457}
d2a17637 1458
9d0be502 1459/*
c27e43a1 1460 * Reserve space for a single cluster
9d0be502 1461 */
c27e43a1 1462static int ext4_da_reserve_space(struct inode *inode)
d2a17637 1463{
60e58e0f 1464 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 1465 struct ext4_inode_info *ei = EXT4_I(inode);
5dd4056d 1466 int ret;
03179fe9
TT
1467
1468 /*
1469 * We will charge metadata quota at writeout time; this saves
1470 * us from metadata over-estimation, though we may go over by
1471 * a small amount in the end. Here we just reserve for data.
1472 */
1473 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1474 if (ret)
1475 return ret;
d2a17637 1476
0637c6f4 1477 spin_lock(&ei->i_block_reservation_lock);
71d4f7d0 1478 if (ext4_claim_free_clusters(sbi, 1, 0)) {
03179fe9 1479 spin_unlock(&ei->i_block_reservation_lock);
03179fe9 1480 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
d2a17637
MC
1481 return -ENOSPC;
1482 }
9d0be502 1483 ei->i_reserved_data_blocks++;
c27e43a1 1484 trace_ext4_da_reserve_space(inode);
0637c6f4 1485 spin_unlock(&ei->i_block_reservation_lock);
39bc680a 1486
d2a17637
MC
1487 return 0; /* success */
1488}
1489
12219aea 1490static void ext4_da_release_space(struct inode *inode, int to_free)
d2a17637
MC
1491{
1492 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 1493 struct ext4_inode_info *ei = EXT4_I(inode);
d2a17637 1494
cd213226
MC
1495 if (!to_free)
1496 return; /* Nothing to release, exit */
1497
d2a17637 1498 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
cd213226 1499
5a58ec87 1500 trace_ext4_da_release_space(inode, to_free);
0637c6f4 1501 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
cd213226 1502 /*
0637c6f4
TT
1503 * if there aren't enough reserved blocks, then the
1504 * counter is messed up somewhere. Since this
1505 * function is called from invalidate page, it's
1506 * harmless to return without any action.
cd213226 1507 */
8de5c325 1508 ext4_warning(inode->i_sb, "ext4_da_release_space: "
0637c6f4 1509 "ino %lu, to_free %d with only %d reserved "
1084f252 1510 "data blocks", inode->i_ino, to_free,
0637c6f4
TT
1511 ei->i_reserved_data_blocks);
1512 WARN_ON(1);
1513 to_free = ei->i_reserved_data_blocks;
cd213226 1514 }
0637c6f4 1515 ei->i_reserved_data_blocks -= to_free;
cd213226 1516
72b8ab9d 1517 /* update fs dirty data blocks counter */
57042651 1518 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
d2a17637 1519
d2a17637 1520 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f 1521
7b415bf6 1522 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
d2a17637
MC
1523}
1524
1525static void ext4_da_page_release_reservation(struct page *page,
ca99fdd2
LC
1526 unsigned int offset,
1527 unsigned int length)
d2a17637 1528{
9705acd6 1529 int to_release = 0, contiguous_blks = 0;
d2a17637
MC
1530 struct buffer_head *head, *bh;
1531 unsigned int curr_off = 0;
7b415bf6
AK
1532 struct inode *inode = page->mapping->host;
1533 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
ca99fdd2 1534 unsigned int stop = offset + length;
7b415bf6 1535 int num_clusters;
51865fda 1536 ext4_fsblk_t lblk;
d2a17637 1537
09cbfeaf 1538 BUG_ON(stop > PAGE_SIZE || stop < length);
ca99fdd2 1539
d2a17637
MC
1540 head = page_buffers(page);
1541 bh = head;
1542 do {
1543 unsigned int next_off = curr_off + bh->b_size;
1544
ca99fdd2
LC
1545 if (next_off > stop)
1546 break;
1547
d2a17637
MC
1548 if ((offset <= curr_off) && (buffer_delay(bh))) {
1549 to_release++;
9705acd6 1550 contiguous_blks++;
d2a17637 1551 clear_buffer_delay(bh);
9705acd6
LC
1552 } else if (contiguous_blks) {
1553 lblk = page->index <<
09cbfeaf 1554 (PAGE_SHIFT - inode->i_blkbits);
9705acd6
LC
1555 lblk += (curr_off >> inode->i_blkbits) -
1556 contiguous_blks;
1557 ext4_es_remove_extent(inode, lblk, contiguous_blks);
1558 contiguous_blks = 0;
d2a17637
MC
1559 }
1560 curr_off = next_off;
1561 } while ((bh = bh->b_this_page) != head);
7b415bf6 1562
9705acd6 1563 if (contiguous_blks) {
09cbfeaf 1564 lblk = page->index << (PAGE_SHIFT - inode->i_blkbits);
9705acd6
LC
1565 lblk += (curr_off >> inode->i_blkbits) - contiguous_blks;
1566 ext4_es_remove_extent(inode, lblk, contiguous_blks);
51865fda
ZL
1567 }
1568
7b415bf6
AK
1569 /* If we have released all the blocks belonging to a cluster, then we
1570 * need to release the reserved space for that cluster. */
1571 num_clusters = EXT4_NUM_B2C(sbi, to_release);
1572 while (num_clusters > 0) {
09cbfeaf 1573 lblk = (page->index << (PAGE_SHIFT - inode->i_blkbits)) +
7b415bf6
AK
1574 ((num_clusters - 1) << sbi->s_cluster_bits);
1575 if (sbi->s_cluster_ratio == 1 ||
7d1b1fbc 1576 !ext4_find_delalloc_cluster(inode, lblk))
7b415bf6
AK
1577 ext4_da_release_space(inode, 1);
1578
1579 num_clusters--;
1580 }
d2a17637 1581}
ac27a0ec 1582
64769240
AT
1583/*
1584 * Delayed allocation stuff
1585 */
1586
4e7ea81d
JK
1587struct mpage_da_data {
1588 struct inode *inode;
1589 struct writeback_control *wbc;
6b523df4 1590
4e7ea81d
JK
1591 pgoff_t first_page; /* The first page to write */
1592 pgoff_t next_page; /* Current page to examine */
1593 pgoff_t last_page; /* Last page to examine */
791b7f08 1594 /*
4e7ea81d
JK
1595 * Extent to map - this can be after first_page because that can be
1596 * fully mapped. We somewhat abuse m_flags to store whether the extent
1597 * is delalloc or unwritten.
791b7f08 1598 */
4e7ea81d
JK
1599 struct ext4_map_blocks map;
1600 struct ext4_io_submit io_submit; /* IO submission data */
1601};
64769240 1602
4e7ea81d
JK
1603static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1604 bool invalidate)
c4a0c46e
AK
1605{
1606 int nr_pages, i;
1607 pgoff_t index, end;
1608 struct pagevec pvec;
1609 struct inode *inode = mpd->inode;
1610 struct address_space *mapping = inode->i_mapping;
4e7ea81d
JK
1611
1612 /* This is necessary when next_page == 0. */
1613 if (mpd->first_page >= mpd->next_page)
1614 return;
c4a0c46e 1615
c7f5938a
CW
1616 index = mpd->first_page;
1617 end = mpd->next_page - 1;
4e7ea81d
JK
1618 if (invalidate) {
1619 ext4_lblk_t start, last;
09cbfeaf
KS
1620 start = index << (PAGE_SHIFT - inode->i_blkbits);
1621 last = end << (PAGE_SHIFT - inode->i_blkbits);
4e7ea81d
JK
1622 ext4_es_remove_extent(inode, start, last - start + 1);
1623 }
51865fda 1624
66bea92c 1625 pagevec_init(&pvec, 0);
c4a0c46e
AK
1626 while (index <= end) {
1627 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1628 if (nr_pages == 0)
1629 break;
1630 for (i = 0; i < nr_pages; i++) {
1631 struct page *page = pvec.pages[i];
9b1d0998 1632 if (page->index > end)
c4a0c46e 1633 break;
c4a0c46e
AK
1634 BUG_ON(!PageLocked(page));
1635 BUG_ON(PageWriteback(page));
4e7ea81d 1636 if (invalidate) {
09cbfeaf 1637 block_invalidatepage(page, 0, PAGE_SIZE);
4e7ea81d
JK
1638 ClearPageUptodate(page);
1639 }
c4a0c46e
AK
1640 unlock_page(page);
1641 }
9b1d0998
JK
1642 index = pvec.pages[nr_pages - 1]->index + 1;
1643 pagevec_release(&pvec);
c4a0c46e 1644 }
c4a0c46e
AK
1645}
1646
df22291f
AK
1647static void ext4_print_free_blocks(struct inode *inode)
1648{
1649 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
92b97816 1650 struct super_block *sb = inode->i_sb;
f78ee70d 1651 struct ext4_inode_info *ei = EXT4_I(inode);
92b97816
TT
1652
1653 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
5dee5437 1654 EXT4_C2B(EXT4_SB(inode->i_sb),
f78ee70d 1655 ext4_count_free_clusters(sb)));
92b97816
TT
1656 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1657 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
f78ee70d 1658 (long long) EXT4_C2B(EXT4_SB(sb),
57042651 1659 percpu_counter_sum(&sbi->s_freeclusters_counter)));
92b97816 1660 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
f78ee70d 1661 (long long) EXT4_C2B(EXT4_SB(sb),
7b415bf6 1662 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
92b97816
TT
1663 ext4_msg(sb, KERN_CRIT, "Block reservation details");
1664 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
f78ee70d 1665 ei->i_reserved_data_blocks);
df22291f
AK
1666 return;
1667}
1668
c364b22c 1669static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
29fa89d0 1670{
c364b22c 1671 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
29fa89d0
AK
1672}
1673
5356f261
AK
1674/*
1675 * This function is grabs code from the very beginning of
1676 * ext4_map_blocks, but assumes that the caller is from delayed write
1677 * time. This function looks up the requested blocks and sets the
1678 * buffer delay bit under the protection of i_data_sem.
1679 */
1680static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1681 struct ext4_map_blocks *map,
1682 struct buffer_head *bh)
1683{
d100eef2 1684 struct extent_status es;
5356f261
AK
1685 int retval;
1686 sector_t invalid_block = ~((sector_t) 0xffff);
921f266b
DM
1687#ifdef ES_AGGRESSIVE_TEST
1688 struct ext4_map_blocks orig_map;
1689
1690 memcpy(&orig_map, map, sizeof(*map));
1691#endif
5356f261
AK
1692
1693 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1694 invalid_block = ~0;
1695
1696 map->m_flags = 0;
1697 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1698 "logical block %lu\n", inode->i_ino, map->m_len,
1699 (unsigned long) map->m_lblk);
d100eef2
ZL
1700
1701 /* Lookup extent status tree firstly */
1702 if (ext4_es_lookup_extent(inode, iblock, &es)) {
d100eef2
ZL
1703 if (ext4_es_is_hole(&es)) {
1704 retval = 0;
c8b459f4 1705 down_read(&EXT4_I(inode)->i_data_sem);
d100eef2
ZL
1706 goto add_delayed;
1707 }
1708
1709 /*
1710 * Delayed extent could be allocated by fallocate.
1711 * So we need to check it.
1712 */
1713 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1714 map_bh(bh, inode->i_sb, invalid_block);
1715 set_buffer_new(bh);
1716 set_buffer_delay(bh);
1717 return 0;
1718 }
1719
1720 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1721 retval = es.es_len - (iblock - es.es_lblk);
1722 if (retval > map->m_len)
1723 retval = map->m_len;
1724 map->m_len = retval;
1725 if (ext4_es_is_written(&es))
1726 map->m_flags |= EXT4_MAP_MAPPED;
1727 else if (ext4_es_is_unwritten(&es))
1728 map->m_flags |= EXT4_MAP_UNWRITTEN;
1729 else
1730 BUG_ON(1);
1731
921f266b
DM
1732#ifdef ES_AGGRESSIVE_TEST
1733 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1734#endif
d100eef2
ZL
1735 return retval;
1736 }
1737
5356f261
AK
1738 /*
1739 * Try to see if we can get the block without requesting a new
1740 * file system block.
1741 */
c8b459f4 1742 down_read(&EXT4_I(inode)->i_data_sem);
cbd7584e 1743 if (ext4_has_inline_data(inode))
9c3569b5 1744 retval = 0;
cbd7584e 1745 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
2f8e0a7c 1746 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
5356f261 1747 else
2f8e0a7c 1748 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
5356f261 1749
d100eef2 1750add_delayed:
5356f261 1751 if (retval == 0) {
f7fec032 1752 int ret;
5356f261
AK
1753 /*
1754 * XXX: __block_prepare_write() unmaps passed block,
1755 * is it OK?
1756 */
386ad67c
LC
1757 /*
1758 * If the block was allocated from previously allocated cluster,
1759 * then we don't need to reserve it again. However we still need
1760 * to reserve metadata for every block we're going to write.
1761 */
c27e43a1 1762 if (EXT4_SB(inode->i_sb)->s_cluster_ratio == 1 ||
cbd7584e 1763 !ext4_find_delalloc_cluster(inode, map->m_lblk)) {
c27e43a1 1764 ret = ext4_da_reserve_space(inode);
f7fec032 1765 if (ret) {
5356f261 1766 /* not enough space to reserve */
f7fec032 1767 retval = ret;
5356f261 1768 goto out_unlock;
f7fec032 1769 }
5356f261
AK
1770 }
1771
f7fec032
ZL
1772 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1773 ~0, EXTENT_STATUS_DELAYED);
1774 if (ret) {
1775 retval = ret;
51865fda 1776 goto out_unlock;
f7fec032 1777 }
51865fda 1778
5356f261
AK
1779 map_bh(bh, inode->i_sb, invalid_block);
1780 set_buffer_new(bh);
1781 set_buffer_delay(bh);
f7fec032
ZL
1782 } else if (retval > 0) {
1783 int ret;
3be78c73 1784 unsigned int status;
f7fec032 1785
44fb851d
ZL
1786 if (unlikely(retval != map->m_len)) {
1787 ext4_warning(inode->i_sb,
1788 "ES len assertion failed for inode "
1789 "%lu: retval %d != map->m_len %d",
1790 inode->i_ino, retval, map->m_len);
1791 WARN_ON(1);
921f266b 1792 }
921f266b 1793
f7fec032
ZL
1794 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1795 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1796 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1797 map->m_pblk, status);
1798 if (ret != 0)
1799 retval = ret;
5356f261
AK
1800 }
1801
1802out_unlock:
1803 up_read((&EXT4_I(inode)->i_data_sem));
1804
1805 return retval;
1806}
1807
64769240 1808/*
d91bd2c1 1809 * This is a special get_block_t callback which is used by
b920c755
TT
1810 * ext4_da_write_begin(). It will either return mapped block or
1811 * reserve space for a single block.
29fa89d0
AK
1812 *
1813 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1814 * We also have b_blocknr = -1 and b_bdev initialized properly
1815 *
1816 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1817 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1818 * initialized properly.
64769240 1819 */
9c3569b5
TM
1820int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1821 struct buffer_head *bh, int create)
64769240 1822{
2ed88685 1823 struct ext4_map_blocks map;
64769240
AT
1824 int ret = 0;
1825
1826 BUG_ON(create == 0);
2ed88685
TT
1827 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1828
1829 map.m_lblk = iblock;
1830 map.m_len = 1;
64769240
AT
1831
1832 /*
1833 * first, we need to know whether the block is allocated already
1834 * preallocated blocks are unmapped but should treated
1835 * the same as allocated blocks.
1836 */
5356f261
AK
1837 ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1838 if (ret <= 0)
2ed88685 1839 return ret;
64769240 1840
2ed88685 1841 map_bh(bh, inode->i_sb, map.m_pblk);
ed8ad838 1842 ext4_update_bh_state(bh, map.m_flags);
2ed88685
TT
1843
1844 if (buffer_unwritten(bh)) {
1845 /* A delayed write to unwritten bh should be marked
1846 * new and mapped. Mapped ensures that we don't do
1847 * get_block multiple times when we write to the same
1848 * offset and new ensures that we do proper zero out
1849 * for partial write.
1850 */
1851 set_buffer_new(bh);
c8205636 1852 set_buffer_mapped(bh);
2ed88685
TT
1853 }
1854 return 0;
64769240 1855}
61628a3f 1856
62e086be
AK
1857static int bget_one(handle_t *handle, struct buffer_head *bh)
1858{
1859 get_bh(bh);
1860 return 0;
1861}
1862
1863static int bput_one(handle_t *handle, struct buffer_head *bh)
1864{
1865 put_bh(bh);
1866 return 0;
1867}
1868
1869static int __ext4_journalled_writepage(struct page *page,
62e086be
AK
1870 unsigned int len)
1871{
1872 struct address_space *mapping = page->mapping;
1873 struct inode *inode = mapping->host;
3fdcfb66 1874 struct buffer_head *page_bufs = NULL;
62e086be 1875 handle_t *handle = NULL;
3fdcfb66
TM
1876 int ret = 0, err = 0;
1877 int inline_data = ext4_has_inline_data(inode);
1878 struct buffer_head *inode_bh = NULL;
62e086be 1879
cb20d518 1880 ClearPageChecked(page);
3fdcfb66
TM
1881
1882 if (inline_data) {
1883 BUG_ON(page->index != 0);
1884 BUG_ON(len > ext4_get_max_inline_size(inode));
1885 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1886 if (inode_bh == NULL)
1887 goto out;
1888 } else {
1889 page_bufs = page_buffers(page);
1890 if (!page_bufs) {
1891 BUG();
1892 goto out;
1893 }
1894 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1895 NULL, bget_one);
1896 }
bdf96838
TT
1897 /*
1898 * We need to release the page lock before we start the
1899 * journal, so grab a reference so the page won't disappear
1900 * out from under us.
1901 */
1902 get_page(page);
62e086be
AK
1903 unlock_page(page);
1904
9924a92a
TT
1905 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1906 ext4_writepage_trans_blocks(inode));
62e086be
AK
1907 if (IS_ERR(handle)) {
1908 ret = PTR_ERR(handle);
bdf96838
TT
1909 put_page(page);
1910 goto out_no_pagelock;
62e086be 1911 }
441c8508
CW
1912 BUG_ON(!ext4_handle_valid(handle));
1913
bdf96838
TT
1914 lock_page(page);
1915 put_page(page);
1916 if (page->mapping != mapping) {
1917 /* The page got truncated from under us */
1918 ext4_journal_stop(handle);
1919 ret = 0;
1920 goto out;
1921 }
1922
3fdcfb66 1923 if (inline_data) {
5d601255 1924 BUFFER_TRACE(inode_bh, "get write access");
3fdcfb66 1925 ret = ext4_journal_get_write_access(handle, inode_bh);
62e086be 1926
3fdcfb66
TM
1927 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
1928
1929 } else {
1930 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1931 do_journal_get_write_access);
1932
1933 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1934 write_end_fn);
1935 }
62e086be
AK
1936 if (ret == 0)
1937 ret = err;
2d859db3 1938 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
62e086be
AK
1939 err = ext4_journal_stop(handle);
1940 if (!ret)
1941 ret = err;
1942
3fdcfb66 1943 if (!ext4_has_inline_data(inode))
8c9367fd 1944 ext4_walk_page_buffers(NULL, page_bufs, 0, len,
3fdcfb66 1945 NULL, bput_one);
19f5fb7a 1946 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
62e086be 1947out:
bdf96838
TT
1948 unlock_page(page);
1949out_no_pagelock:
3fdcfb66 1950 brelse(inode_bh);
62e086be
AK
1951 return ret;
1952}
1953
61628a3f 1954/*
43ce1d23
AK
1955 * Note that we don't need to start a transaction unless we're journaling data
1956 * because we should have holes filled from ext4_page_mkwrite(). We even don't
1957 * need to file the inode to the transaction's list in ordered mode because if
1958 * we are writing back data added by write(), the inode is already there and if
25985edc 1959 * we are writing back data modified via mmap(), no one guarantees in which
43ce1d23
AK
1960 * transaction the data will hit the disk. In case we are journaling data, we
1961 * cannot start transaction directly because transaction start ranks above page
1962 * lock so we have to do some magic.
1963 *
b920c755 1964 * This function can get called via...
20970ba6 1965 * - ext4_writepages after taking page lock (have journal handle)
b920c755 1966 * - journal_submit_inode_data_buffers (no journal handle)
f6463b0d 1967 * - shrink_page_list via the kswapd/direct reclaim (no journal handle)
b920c755 1968 * - grab_page_cache when doing write_begin (have journal handle)
43ce1d23
AK
1969 *
1970 * We don't do any block allocation in this function. If we have page with
1971 * multiple blocks we need to write those buffer_heads that are mapped. This
1972 * is important for mmaped based write. So if we do with blocksize 1K
1973 * truncate(f, 1024);
1974 * a = mmap(f, 0, 4096);
1975 * a[0] = 'a';
1976 * truncate(f, 4096);
1977 * we have in the page first buffer_head mapped via page_mkwrite call back
90802ed9 1978 * but other buffer_heads would be unmapped but dirty (dirty done via the
43ce1d23
AK
1979 * do_wp_page). So writepage should write the first block. If we modify
1980 * the mmap area beyond 1024 we will again get a page_fault and the
1981 * page_mkwrite callback will do the block allocation and mark the
1982 * buffer_heads mapped.
1983 *
1984 * We redirty the page if we have any buffer_heads that is either delay or
1985 * unwritten in the page.
1986 *
1987 * We can get recursively called as show below.
1988 *
1989 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1990 * ext4_writepage()
1991 *
1992 * But since we don't do any block allocation we should not deadlock.
1993 * Page also have the dirty flag cleared so we don't get recurive page_lock.
61628a3f 1994 */
43ce1d23 1995static int ext4_writepage(struct page *page,
62e086be 1996 struct writeback_control *wbc)
64769240 1997{
f8bec370 1998 int ret = 0;
61628a3f 1999 loff_t size;
498e5f24 2000 unsigned int len;
744692dc 2001 struct buffer_head *page_bufs = NULL;
61628a3f 2002 struct inode *inode = page->mapping->host;
36ade451 2003 struct ext4_io_submit io_submit;
1c8349a1 2004 bool keep_towrite = false;
61628a3f 2005
a9c667f8 2006 trace_ext4_writepage(page);
f0e6c985 2007 size = i_size_read(inode);
09cbfeaf
KS
2008 if (page->index == size >> PAGE_SHIFT)
2009 len = size & ~PAGE_MASK;
f0e6c985 2010 else
09cbfeaf 2011 len = PAGE_SIZE;
64769240 2012
a42afc5f 2013 page_bufs = page_buffers(page);
a42afc5f 2014 /*
fe386132
JK
2015 * We cannot do block allocation or other extent handling in this
2016 * function. If there are buffers needing that, we have to redirty
2017 * the page. But we may reach here when we do a journal commit via
2018 * journal_submit_inode_data_buffers() and in that case we must write
2019 * allocated buffers to achieve data=ordered mode guarantees.
cccd147a
TT
2020 *
2021 * Also, if there is only one buffer per page (the fs block
2022 * size == the page size), if one buffer needs block
2023 * allocation or needs to modify the extent tree to clear the
2024 * unwritten flag, we know that the page can't be written at
2025 * all, so we might as well refuse the write immediately.
2026 * Unfortunately if the block size != page size, we can't as
2027 * easily detect this case using ext4_walk_page_buffers(), but
2028 * for the extremely common case, this is an optimization that
2029 * skips a useless round trip through ext4_bio_write_page().
a42afc5f 2030 */
f19d5870
TM
2031 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2032 ext4_bh_delay_or_unwritten)) {
f8bec370 2033 redirty_page_for_writepage(wbc, page);
cccd147a 2034 if ((current->flags & PF_MEMALLOC) ||
09cbfeaf 2035 (inode->i_sb->s_blocksize == PAGE_SIZE)) {
fe386132
JK
2036 /*
2037 * For memory cleaning there's no point in writing only
2038 * some buffers. So just bail out. Warn if we came here
2039 * from direct reclaim.
2040 */
2041 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2042 == PF_MEMALLOC);
f0e6c985
AK
2043 unlock_page(page);
2044 return 0;
2045 }
1c8349a1 2046 keep_towrite = true;
a42afc5f 2047 }
64769240 2048
cb20d518 2049 if (PageChecked(page) && ext4_should_journal_data(inode))
43ce1d23
AK
2050 /*
2051 * It's mmapped pagecache. Add buffers and journal it. There
2052 * doesn't seem much point in redirtying the page here.
2053 */
3f0ca309 2054 return __ext4_journalled_writepage(page, len);
43ce1d23 2055
97a851ed
JK
2056 ext4_io_submit_init(&io_submit, wbc);
2057 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2058 if (!io_submit.io_end) {
2059 redirty_page_for_writepage(wbc, page);
2060 unlock_page(page);
2061 return -ENOMEM;
2062 }
1c8349a1 2063 ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
36ade451 2064 ext4_io_submit(&io_submit);
97a851ed
JK
2065 /* Drop io_end reference we got from init */
2066 ext4_put_io_end_defer(io_submit.io_end);
64769240
AT
2067 return ret;
2068}
2069
5f1132b2
JK
2070static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2071{
2072 int len;
2073 loff_t size = i_size_read(mpd->inode);
2074 int err;
2075
2076 BUG_ON(page->index != mpd->first_page);
09cbfeaf
KS
2077 if (page->index == size >> PAGE_SHIFT)
2078 len = size & ~PAGE_MASK;
5f1132b2 2079 else
09cbfeaf 2080 len = PAGE_SIZE;
5f1132b2 2081 clear_page_dirty_for_io(page);
1c8349a1 2082 err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
5f1132b2
JK
2083 if (!err)
2084 mpd->wbc->nr_to_write--;
2085 mpd->first_page++;
2086
2087 return err;
2088}
2089
4e7ea81d
JK
2090#define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
2091
61628a3f 2092/*
fffb2739
JK
2093 * mballoc gives us at most this number of blocks...
2094 * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
70261f56 2095 * The rest of mballoc seems to handle chunks up to full group size.
61628a3f 2096 */
fffb2739 2097#define MAX_WRITEPAGES_EXTENT_LEN 2048
525f4ed8 2098
4e7ea81d
JK
2099/*
2100 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2101 *
2102 * @mpd - extent of blocks
2103 * @lblk - logical number of the block in the file
09930042 2104 * @bh - buffer head we want to add to the extent
4e7ea81d 2105 *
09930042
JK
2106 * The function is used to collect contig. blocks in the same state. If the
2107 * buffer doesn't require mapping for writeback and we haven't started the
2108 * extent of buffers to map yet, the function returns 'true' immediately - the
2109 * caller can write the buffer right away. Otherwise the function returns true
2110 * if the block has been added to the extent, false if the block couldn't be
2111 * added.
4e7ea81d 2112 */
09930042
JK
2113static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2114 struct buffer_head *bh)
4e7ea81d
JK
2115{
2116 struct ext4_map_blocks *map = &mpd->map;
2117
09930042
JK
2118 /* Buffer that doesn't need mapping for writeback? */
2119 if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2120 (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2121 /* So far no extent to map => we write the buffer right away */
2122 if (map->m_len == 0)
2123 return true;
2124 return false;
2125 }
4e7ea81d
JK
2126
2127 /* First block in the extent? */
2128 if (map->m_len == 0) {
2129 map->m_lblk = lblk;
2130 map->m_len = 1;
09930042
JK
2131 map->m_flags = bh->b_state & BH_FLAGS;
2132 return true;
4e7ea81d
JK
2133 }
2134
09930042
JK
2135 /* Don't go larger than mballoc is willing to allocate */
2136 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2137 return false;
2138
4e7ea81d
JK
2139 /* Can we merge the block to our big extent? */
2140 if (lblk == map->m_lblk + map->m_len &&
09930042 2141 (bh->b_state & BH_FLAGS) == map->m_flags) {
4e7ea81d 2142 map->m_len++;
09930042 2143 return true;
4e7ea81d 2144 }
09930042 2145 return false;
4e7ea81d
JK
2146}
2147
5f1132b2
JK
2148/*
2149 * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2150 *
2151 * @mpd - extent of blocks for mapping
2152 * @head - the first buffer in the page
2153 * @bh - buffer we should start processing from
2154 * @lblk - logical number of the block in the file corresponding to @bh
2155 *
2156 * Walk through page buffers from @bh upto @head (exclusive) and either submit
2157 * the page for IO if all buffers in this page were mapped and there's no
2158 * accumulated extent of buffers to map or add buffers in the page to the
2159 * extent of buffers to map. The function returns 1 if the caller can continue
2160 * by processing the next page, 0 if it should stop adding buffers to the
2161 * extent to map because we cannot extend it anymore. It can also return value
2162 * < 0 in case of error during IO submission.
2163 */
2164static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2165 struct buffer_head *head,
2166 struct buffer_head *bh,
2167 ext4_lblk_t lblk)
4e7ea81d
JK
2168{
2169 struct inode *inode = mpd->inode;
5f1132b2 2170 int err;
4e7ea81d
JK
2171 ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1)
2172 >> inode->i_blkbits;
2173
2174 do {
2175 BUG_ON(buffer_locked(bh));
2176
09930042 2177 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
4e7ea81d
JK
2178 /* Found extent to map? */
2179 if (mpd->map.m_len)
5f1132b2 2180 return 0;
09930042 2181 /* Everything mapped so far and we hit EOF */
5f1132b2 2182 break;
4e7ea81d 2183 }
4e7ea81d 2184 } while (lblk++, (bh = bh->b_this_page) != head);
5f1132b2
JK
2185 /* So far everything mapped? Submit the page for IO. */
2186 if (mpd->map.m_len == 0) {
2187 err = mpage_submit_page(mpd, head->b_page);
2188 if (err < 0)
2189 return err;
2190 }
2191 return lblk < blocks;
4e7ea81d
JK
2192}
2193
2194/*
2195 * mpage_map_buffers - update buffers corresponding to changed extent and
2196 * submit fully mapped pages for IO
2197 *
2198 * @mpd - description of extent to map, on return next extent to map
2199 *
2200 * Scan buffers corresponding to changed extent (we expect corresponding pages
2201 * to be already locked) and update buffer state according to new extent state.
2202 * We map delalloc buffers to their physical location, clear unwritten bits,
556615dc 2203 * and mark buffers as uninit when we perform writes to unwritten extents
4e7ea81d
JK
2204 * and do extent conversion after IO is finished. If the last page is not fully
2205 * mapped, we update @map to the next extent in the last page that needs
2206 * mapping. Otherwise we submit the page for IO.
2207 */
2208static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2209{
2210 struct pagevec pvec;
2211 int nr_pages, i;
2212 struct inode *inode = mpd->inode;
2213 struct buffer_head *head, *bh;
09cbfeaf 2214 int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
4e7ea81d
JK
2215 pgoff_t start, end;
2216 ext4_lblk_t lblk;
2217 sector_t pblock;
2218 int err;
2219
2220 start = mpd->map.m_lblk >> bpp_bits;
2221 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2222 lblk = start << bpp_bits;
2223 pblock = mpd->map.m_pblk;
2224
2225 pagevec_init(&pvec, 0);
2226 while (start <= end) {
2227 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start,
2228 PAGEVEC_SIZE);
2229 if (nr_pages == 0)
2230 break;
2231 for (i = 0; i < nr_pages; i++) {
2232 struct page *page = pvec.pages[i];
2233
2234 if (page->index > end)
2235 break;
70261f56 2236 /* Up to 'end' pages must be contiguous */
4e7ea81d
JK
2237 BUG_ON(page->index != start);
2238 bh = head = page_buffers(page);
2239 do {
2240 if (lblk < mpd->map.m_lblk)
2241 continue;
2242 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2243 /*
2244 * Buffer after end of mapped extent.
2245 * Find next buffer in the page to map.
2246 */
2247 mpd->map.m_len = 0;
2248 mpd->map.m_flags = 0;
5f1132b2
JK
2249 /*
2250 * FIXME: If dioread_nolock supports
2251 * blocksize < pagesize, we need to make
2252 * sure we add size mapped so far to
2253 * io_end->size as the following call
2254 * can submit the page for IO.
2255 */
2256 err = mpage_process_page_bufs(mpd, head,
2257 bh, lblk);
4e7ea81d 2258 pagevec_release(&pvec);
5f1132b2
JK
2259 if (err > 0)
2260 err = 0;
2261 return err;
4e7ea81d
JK
2262 }
2263 if (buffer_delay(bh)) {
2264 clear_buffer_delay(bh);
2265 bh->b_blocknr = pblock++;
2266 }
4e7ea81d 2267 clear_buffer_unwritten(bh);
5f1132b2 2268 } while (lblk++, (bh = bh->b_this_page) != head);
4e7ea81d
JK
2269
2270 /*
2271 * FIXME: This is going to break if dioread_nolock
2272 * supports blocksize < pagesize as we will try to
2273 * convert potentially unmapped parts of inode.
2274 */
09cbfeaf 2275 mpd->io_submit.io_end->size += PAGE_SIZE;
4e7ea81d
JK
2276 /* Page fully mapped - let IO run! */
2277 err = mpage_submit_page(mpd, page);
2278 if (err < 0) {
2279 pagevec_release(&pvec);
2280 return err;
2281 }
2282 start++;
2283 }
2284 pagevec_release(&pvec);
2285 }
2286 /* Extent fully mapped and matches with page boundary. We are done. */
2287 mpd->map.m_len = 0;
2288 mpd->map.m_flags = 0;
2289 return 0;
2290}
2291
2292static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2293{
2294 struct inode *inode = mpd->inode;
2295 struct ext4_map_blocks *map = &mpd->map;
2296 int get_blocks_flags;
090f32ee 2297 int err, dioread_nolock;
4e7ea81d
JK
2298
2299 trace_ext4_da_write_pages_extent(inode, map);
2300 /*
2301 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
556615dc 2302 * to convert an unwritten extent to be initialized (in the case
4e7ea81d
JK
2303 * where we have written into one or more preallocated blocks). It is
2304 * possible that we're going to need more metadata blocks than
2305 * previously reserved. However we must not fail because we're in
2306 * writeback and there is nothing we can do about it so it might result
2307 * in data loss. So use reserved blocks to allocate metadata if
2308 * possible.
2309 *
754cfed6
TT
2310 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2311 * the blocks in question are delalloc blocks. This indicates
2312 * that the blocks and quotas has already been checked when
2313 * the data was copied into the page cache.
4e7ea81d
JK
2314 */
2315 get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2316 EXT4_GET_BLOCKS_METADATA_NOFAIL;
090f32ee
LC
2317 dioread_nolock = ext4_should_dioread_nolock(inode);
2318 if (dioread_nolock)
4e7ea81d
JK
2319 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2320 if (map->m_flags & (1 << BH_Delay))
2321 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2322
2323 err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2324 if (err < 0)
2325 return err;
090f32ee 2326 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
6b523df4
JK
2327 if (!mpd->io_submit.io_end->handle &&
2328 ext4_handle_valid(handle)) {
2329 mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2330 handle->h_rsv_handle = NULL;
2331 }
3613d228 2332 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
6b523df4 2333 }
4e7ea81d
JK
2334
2335 BUG_ON(map->m_len == 0);
2336 if (map->m_flags & EXT4_MAP_NEW) {
2337 struct block_device *bdev = inode->i_sb->s_bdev;
2338 int i;
2339
2340 for (i = 0; i < map->m_len; i++)
2341 unmap_underlying_metadata(bdev, map->m_pblk + i);
2342 }
2343 return 0;
2344}
2345
2346/*
2347 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2348 * mpd->len and submit pages underlying it for IO
2349 *
2350 * @handle - handle for journal operations
2351 * @mpd - extent to map
7534e854
JK
2352 * @give_up_on_write - we set this to true iff there is a fatal error and there
2353 * is no hope of writing the data. The caller should discard
2354 * dirty pages to avoid infinite loops.
4e7ea81d
JK
2355 *
2356 * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2357 * delayed, blocks are allocated, if it is unwritten, we may need to convert
2358 * them to initialized or split the described range from larger unwritten
2359 * extent. Note that we need not map all the described range since allocation
2360 * can return less blocks or the range is covered by more unwritten extents. We
2361 * cannot map more because we are limited by reserved transaction credits. On
2362 * the other hand we always make sure that the last touched page is fully
2363 * mapped so that it can be written out (and thus forward progress is
2364 * guaranteed). After mapping we submit all mapped pages for IO.
2365 */
2366static int mpage_map_and_submit_extent(handle_t *handle,
cb530541
TT
2367 struct mpage_da_data *mpd,
2368 bool *give_up_on_write)
4e7ea81d
JK
2369{
2370 struct inode *inode = mpd->inode;
2371 struct ext4_map_blocks *map = &mpd->map;
2372 int err;
2373 loff_t disksize;
6603120e 2374 int progress = 0;
4e7ea81d
JK
2375
2376 mpd->io_submit.io_end->offset =
2377 ((loff_t)map->m_lblk) << inode->i_blkbits;
27d7c4ed 2378 do {
4e7ea81d
JK
2379 err = mpage_map_one_extent(handle, mpd);
2380 if (err < 0) {
2381 struct super_block *sb = inode->i_sb;
2382
cb530541
TT
2383 if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2384 goto invalidate_dirty_pages;
4e7ea81d 2385 /*
cb530541
TT
2386 * Let the uper layers retry transient errors.
2387 * In the case of ENOSPC, if ext4_count_free_blocks()
2388 * is non-zero, a commit should free up blocks.
4e7ea81d 2389 */
cb530541 2390 if ((err == -ENOMEM) ||
6603120e
DM
2391 (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2392 if (progress)
2393 goto update_disksize;
cb530541 2394 return err;
6603120e 2395 }
cb530541
TT
2396 ext4_msg(sb, KERN_CRIT,
2397 "Delayed block allocation failed for "
2398 "inode %lu at logical offset %llu with"
2399 " max blocks %u with error %d",
2400 inode->i_ino,
2401 (unsigned long long)map->m_lblk,
2402 (unsigned)map->m_len, -err);
2403 ext4_msg(sb, KERN_CRIT,
2404 "This should not happen!! Data will "
2405 "be lost\n");
2406 if (err == -ENOSPC)
2407 ext4_print_free_blocks(inode);
2408 invalidate_dirty_pages:
2409 *give_up_on_write = true;
4e7ea81d
JK
2410 return err;
2411 }
6603120e 2412 progress = 1;
4e7ea81d
JK
2413 /*
2414 * Update buffer state, submit mapped pages, and get us new
2415 * extent to map
2416 */
2417 err = mpage_map_and_submit_buffers(mpd);
2418 if (err < 0)
6603120e 2419 goto update_disksize;
27d7c4ed 2420 } while (map->m_len);
4e7ea81d 2421
6603120e 2422update_disksize:
622cad13
TT
2423 /*
2424 * Update on-disk size after IO is submitted. Races with
2425 * truncate are avoided by checking i_size under i_data_sem.
2426 */
09cbfeaf 2427 disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
4e7ea81d
JK
2428 if (disksize > EXT4_I(inode)->i_disksize) {
2429 int err2;
622cad13
TT
2430 loff_t i_size;
2431
2432 down_write(&EXT4_I(inode)->i_data_sem);
2433 i_size = i_size_read(inode);
2434 if (disksize > i_size)
2435 disksize = i_size;
2436 if (disksize > EXT4_I(inode)->i_disksize)
2437 EXT4_I(inode)->i_disksize = disksize;
4e7ea81d 2438 err2 = ext4_mark_inode_dirty(handle, inode);
622cad13 2439 up_write(&EXT4_I(inode)->i_data_sem);
4e7ea81d
JK
2440 if (err2)
2441 ext4_error(inode->i_sb,
2442 "Failed to mark inode %lu dirty",
2443 inode->i_ino);
2444 if (!err)
2445 err = err2;
2446 }
2447 return err;
2448}
2449
fffb2739
JK
2450/*
2451 * Calculate the total number of credits to reserve for one writepages
20970ba6 2452 * iteration. This is called from ext4_writepages(). We map an extent of
70261f56 2453 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
fffb2739
JK
2454 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2455 * bpp - 1 blocks in bpp different extents.
2456 */
525f4ed8
MC
2457static int ext4_da_writepages_trans_blocks(struct inode *inode)
2458{
fffb2739 2459 int bpp = ext4_journal_blocks_per_page(inode);
525f4ed8 2460
fffb2739
JK
2461 return ext4_meta_trans_blocks(inode,
2462 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
525f4ed8 2463}
61628a3f 2464
8e48dcfb 2465/*
4e7ea81d
JK
2466 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2467 * and underlying extent to map
2468 *
2469 * @mpd - where to look for pages
2470 *
2471 * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2472 * IO immediately. When we find a page which isn't mapped we start accumulating
2473 * extent of buffers underlying these pages that needs mapping (formed by
2474 * either delayed or unwritten buffers). We also lock the pages containing
2475 * these buffers. The extent found is returned in @mpd structure (starting at
2476 * mpd->lblk with length mpd->len blocks).
2477 *
2478 * Note that this function can attach bios to one io_end structure which are
2479 * neither logically nor physically contiguous. Although it may seem as an
2480 * unnecessary complication, it is actually inevitable in blocksize < pagesize
2481 * case as we need to track IO to all buffers underlying a page in one io_end.
8e48dcfb 2482 */
4e7ea81d 2483static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
8e48dcfb 2484{
4e7ea81d
JK
2485 struct address_space *mapping = mpd->inode->i_mapping;
2486 struct pagevec pvec;
2487 unsigned int nr_pages;
aeac589a 2488 long left = mpd->wbc->nr_to_write;
4e7ea81d
JK
2489 pgoff_t index = mpd->first_page;
2490 pgoff_t end = mpd->last_page;
2491 int tag;
2492 int i, err = 0;
2493 int blkbits = mpd->inode->i_blkbits;
2494 ext4_lblk_t lblk;
2495 struct buffer_head *head;
8e48dcfb 2496
4e7ea81d 2497 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
5b41d924
ES
2498 tag = PAGECACHE_TAG_TOWRITE;
2499 else
2500 tag = PAGECACHE_TAG_DIRTY;
2501
4e7ea81d
JK
2502 pagevec_init(&pvec, 0);
2503 mpd->map.m_len = 0;
2504 mpd->next_page = index;
4f01b02c 2505 while (index <= end) {
5b41d924 2506 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
8e48dcfb
TT
2507 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2508 if (nr_pages == 0)
4e7ea81d 2509 goto out;
8e48dcfb
TT
2510
2511 for (i = 0; i < nr_pages; i++) {
2512 struct page *page = pvec.pages[i];
2513
2514 /*
2515 * At this point, the page may be truncated or
2516 * invalidated (changing page->mapping to NULL), or
2517 * even swizzled back from swapper_space to tmpfs file
2518 * mapping. However, page->index will not change
2519 * because we have a reference on the page.
2520 */
4f01b02c
TT
2521 if (page->index > end)
2522 goto out;
8e48dcfb 2523
aeac589a
ML
2524 /*
2525 * Accumulated enough dirty pages? This doesn't apply
2526 * to WB_SYNC_ALL mode. For integrity sync we have to
2527 * keep going because someone may be concurrently
2528 * dirtying pages, and we might have synced a lot of
2529 * newly appeared dirty pages, but have not synced all
2530 * of the old dirty pages.
2531 */
2532 if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2533 goto out;
2534
4e7ea81d
JK
2535 /* If we can't merge this page, we are done. */
2536 if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2537 goto out;
78aaced3 2538
8e48dcfb 2539 lock_page(page);
8e48dcfb 2540 /*
4e7ea81d
JK
2541 * If the page is no longer dirty, or its mapping no
2542 * longer corresponds to inode we are writing (which
2543 * means it has been truncated or invalidated), or the
2544 * page is already under writeback and we are not doing
2545 * a data integrity writeback, skip the page
8e48dcfb 2546 */
4f01b02c
TT
2547 if (!PageDirty(page) ||
2548 (PageWriteback(page) &&
4e7ea81d 2549 (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
4f01b02c 2550 unlikely(page->mapping != mapping)) {
8e48dcfb
TT
2551 unlock_page(page);
2552 continue;
2553 }
2554
7cb1a535 2555 wait_on_page_writeback(page);
8e48dcfb 2556 BUG_ON(PageWriteback(page));
8e48dcfb 2557
4e7ea81d 2558 if (mpd->map.m_len == 0)
8eb9e5ce 2559 mpd->first_page = page->index;
8eb9e5ce 2560 mpd->next_page = page->index + 1;
f8bec370 2561 /* Add all dirty buffers to mpd */
4e7ea81d 2562 lblk = ((ext4_lblk_t)page->index) <<
09cbfeaf 2563 (PAGE_SHIFT - blkbits);
f8bec370 2564 head = page_buffers(page);
5f1132b2
JK
2565 err = mpage_process_page_bufs(mpd, head, head, lblk);
2566 if (err <= 0)
4e7ea81d 2567 goto out;
5f1132b2 2568 err = 0;
aeac589a 2569 left--;
8e48dcfb
TT
2570 }
2571 pagevec_release(&pvec);
2572 cond_resched();
2573 }
4f01b02c 2574 return 0;
8eb9e5ce
TT
2575out:
2576 pagevec_release(&pvec);
4e7ea81d 2577 return err;
8e48dcfb
TT
2578}
2579
20970ba6
TT
2580static int __writepage(struct page *page, struct writeback_control *wbc,
2581 void *data)
2582{
2583 struct address_space *mapping = data;
2584 int ret = ext4_writepage(page, wbc);
2585 mapping_set_error(mapping, ret);
2586 return ret;
2587}
2588
2589static int ext4_writepages(struct address_space *mapping,
2590 struct writeback_control *wbc)
64769240 2591{
4e7ea81d
JK
2592 pgoff_t writeback_index = 0;
2593 long nr_to_write = wbc->nr_to_write;
22208ded 2594 int range_whole = 0;
4e7ea81d 2595 int cycled = 1;
61628a3f 2596 handle_t *handle = NULL;
df22291f 2597 struct mpage_da_data mpd;
5e745b04 2598 struct inode *inode = mapping->host;
6b523df4 2599 int needed_blocks, rsv_blocks = 0, ret = 0;
5e745b04 2600 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
4e7ea81d 2601 bool done;
1bce63d1 2602 struct blk_plug plug;
cb530541 2603 bool give_up_on_write = false;
61628a3f 2604
20970ba6 2605 trace_ext4_writepages(inode, wbc);
ba80b101 2606
7f6d5b52
RZ
2607 if (dax_mapping(mapping))
2608 return dax_writeback_mapping_range(mapping, inode->i_sb->s_bdev,
2609 wbc);
2610
61628a3f
MC
2611 /*
2612 * No pages to write? This is mainly a kludge to avoid starting
2613 * a transaction for special inodes like journal inode on last iput()
2614 * because that could violate lock ordering on umount
2615 */
a1d6cc56 2616 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
bbf023c7 2617 goto out_writepages;
2a21e37e 2618
20970ba6
TT
2619 if (ext4_should_journal_data(inode)) {
2620 struct blk_plug plug;
20970ba6
TT
2621
2622 blk_start_plug(&plug);
2623 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2624 blk_finish_plug(&plug);
bbf023c7 2625 goto out_writepages;
20970ba6
TT
2626 }
2627
2a21e37e
TT
2628 /*
2629 * If the filesystem has aborted, it is read-only, so return
2630 * right away instead of dumping stack traces later on that
2631 * will obscure the real source of the problem. We test
4ab2f15b 2632 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2a21e37e 2633 * the latter could be true if the filesystem is mounted
20970ba6 2634 * read-only, and in that case, ext4_writepages should
2a21e37e
TT
2635 * *never* be called, so if that ever happens, we would want
2636 * the stack trace.
2637 */
bbf023c7
ML
2638 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2639 ret = -EROFS;
2640 goto out_writepages;
2641 }
2a21e37e 2642
6b523df4
JK
2643 if (ext4_should_dioread_nolock(inode)) {
2644 /*
70261f56 2645 * We may need to convert up to one extent per block in
6b523df4
JK
2646 * the page and we may dirty the inode.
2647 */
09cbfeaf 2648 rsv_blocks = 1 + (PAGE_SIZE >> inode->i_blkbits);
6b523df4
JK
2649 }
2650
4e7ea81d
JK
2651 /*
2652 * If we have inline data and arrive here, it means that
2653 * we will soon create the block for the 1st page, so
2654 * we'd better clear the inline data here.
2655 */
2656 if (ext4_has_inline_data(inode)) {
2657 /* Just inode will be modified... */
2658 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2659 if (IS_ERR(handle)) {
2660 ret = PTR_ERR(handle);
2661 goto out_writepages;
2662 }
2663 BUG_ON(ext4_test_inode_state(inode,
2664 EXT4_STATE_MAY_INLINE_DATA));
2665 ext4_destroy_inline_data(handle, inode);
2666 ext4_journal_stop(handle);
2667 }
2668
22208ded
AK
2669 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2670 range_whole = 1;
61628a3f 2671
2acf2c26 2672 if (wbc->range_cyclic) {
4e7ea81d
JK
2673 writeback_index = mapping->writeback_index;
2674 if (writeback_index)
2acf2c26 2675 cycled = 0;
4e7ea81d
JK
2676 mpd.first_page = writeback_index;
2677 mpd.last_page = -1;
5b41d924 2678 } else {
09cbfeaf
KS
2679 mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2680 mpd.last_page = wbc->range_end >> PAGE_SHIFT;
5b41d924 2681 }
a1d6cc56 2682
4e7ea81d
JK
2683 mpd.inode = inode;
2684 mpd.wbc = wbc;
2685 ext4_io_submit_init(&mpd.io_submit, wbc);
2acf2c26 2686retry:
6e6938b6 2687 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
4e7ea81d
JK
2688 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2689 done = false;
1bce63d1 2690 blk_start_plug(&plug);
4e7ea81d
JK
2691 while (!done && mpd.first_page <= mpd.last_page) {
2692 /* For each extent of pages we use new io_end */
2693 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2694 if (!mpd.io_submit.io_end) {
2695 ret = -ENOMEM;
2696 break;
2697 }
a1d6cc56
AK
2698
2699 /*
4e7ea81d
JK
2700 * We have two constraints: We find one extent to map and we
2701 * must always write out whole page (makes a difference when
2702 * blocksize < pagesize) so that we don't block on IO when we
2703 * try to write out the rest of the page. Journalled mode is
2704 * not supported by delalloc.
a1d6cc56
AK
2705 */
2706 BUG_ON(ext4_should_journal_data(inode));
525f4ed8 2707 needed_blocks = ext4_da_writepages_trans_blocks(inode);
a1d6cc56 2708
4e7ea81d 2709 /* start a new transaction */
6b523df4
JK
2710 handle = ext4_journal_start_with_reserve(inode,
2711 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
61628a3f
MC
2712 if (IS_ERR(handle)) {
2713 ret = PTR_ERR(handle);
1693918e 2714 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
fbe845dd 2715 "%ld pages, ino %lu; err %d", __func__,
a1d6cc56 2716 wbc->nr_to_write, inode->i_ino, ret);
4e7ea81d
JK
2717 /* Release allocated io_end */
2718 ext4_put_io_end(mpd.io_submit.io_end);
2719 break;
61628a3f 2720 }
f63e6005 2721
4e7ea81d
JK
2722 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2723 ret = mpage_prepare_extent_to_map(&mpd);
2724 if (!ret) {
2725 if (mpd.map.m_len)
cb530541
TT
2726 ret = mpage_map_and_submit_extent(handle, &mpd,
2727 &give_up_on_write);
4e7ea81d
JK
2728 else {
2729 /*
2730 * We scanned the whole range (or exhausted
2731 * nr_to_write), submitted what was mapped and
2732 * didn't find anything needing mapping. We are
2733 * done.
2734 */
2735 done = true;
2736 }
f63e6005 2737 }
61628a3f 2738 ext4_journal_stop(handle);
4e7ea81d
JK
2739 /* Submit prepared bio */
2740 ext4_io_submit(&mpd.io_submit);
2741 /* Unlock pages we didn't use */
cb530541 2742 mpage_release_unused_pages(&mpd, give_up_on_write);
4e7ea81d
JK
2743 /* Drop our io_end reference we got from init */
2744 ext4_put_io_end(mpd.io_submit.io_end);
2745
2746 if (ret == -ENOSPC && sbi->s_journal) {
2747 /*
2748 * Commit the transaction which would
22208ded
AK
2749 * free blocks released in the transaction
2750 * and try again
2751 */
df22291f 2752 jbd2_journal_force_commit_nested(sbi->s_journal);
22208ded 2753 ret = 0;
4e7ea81d
JK
2754 continue;
2755 }
2756 /* Fatal error - ENOMEM, EIO... */
2757 if (ret)
61628a3f 2758 break;
a1d6cc56 2759 }
1bce63d1 2760 blk_finish_plug(&plug);
9c12a831 2761 if (!ret && !cycled && wbc->nr_to_write > 0) {
2acf2c26 2762 cycled = 1;
4e7ea81d
JK
2763 mpd.last_page = writeback_index - 1;
2764 mpd.first_page = 0;
2acf2c26
AK
2765 goto retry;
2766 }
22208ded
AK
2767
2768 /* Update index */
22208ded
AK
2769 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2770 /*
4e7ea81d 2771 * Set the writeback_index so that range_cyclic
22208ded
AK
2772 * mode will write it back later
2773 */
4e7ea81d 2774 mapping->writeback_index = mpd.first_page;
a1d6cc56 2775
61628a3f 2776out_writepages:
20970ba6
TT
2777 trace_ext4_writepages_result(inode, wbc, ret,
2778 nr_to_write - wbc->nr_to_write);
61628a3f 2779 return ret;
64769240
AT
2780}
2781
79f0be8d
AK
2782static int ext4_nonda_switch(struct super_block *sb)
2783{
5c1ff336 2784 s64 free_clusters, dirty_clusters;
79f0be8d
AK
2785 struct ext4_sb_info *sbi = EXT4_SB(sb);
2786
2787 /*
2788 * switch to non delalloc mode if we are running low
2789 * on free block. The free block accounting via percpu
179f7ebf 2790 * counters can get slightly wrong with percpu_counter_batch getting
79f0be8d
AK
2791 * accumulated on each CPU without updating global counters
2792 * Delalloc need an accurate free block accounting. So switch
2793 * to non delalloc when we are near to error range.
2794 */
5c1ff336
EW
2795 free_clusters =
2796 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2797 dirty_clusters =
2798 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
00d4e736
TT
2799 /*
2800 * Start pushing delalloc when 1/2 of free blocks are dirty.
2801 */
5c1ff336 2802 if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
10ee27a0 2803 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
00d4e736 2804
5c1ff336
EW
2805 if (2 * free_clusters < 3 * dirty_clusters ||
2806 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
79f0be8d 2807 /*
c8afb446
ES
2808 * free block count is less than 150% of dirty blocks
2809 * or free blocks is less than watermark
79f0be8d
AK
2810 */
2811 return 1;
2812 }
2813 return 0;
2814}
2815
0ff8947f
ES
2816/* We always reserve for an inode update; the superblock could be there too */
2817static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2818{
e2b911c5 2819 if (likely(ext4_has_feature_large_file(inode->i_sb)))
0ff8947f
ES
2820 return 1;
2821
2822 if (pos + len <= 0x7fffffffULL)
2823 return 1;
2824
2825 /* We might need to update the superblock to set LARGE_FILE */
2826 return 2;
2827}
2828
64769240 2829static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
de9a55b8
TT
2830 loff_t pos, unsigned len, unsigned flags,
2831 struct page **pagep, void **fsdata)
64769240 2832{
72b8ab9d 2833 int ret, retries = 0;
64769240
AT
2834 struct page *page;
2835 pgoff_t index;
64769240
AT
2836 struct inode *inode = mapping->host;
2837 handle_t *handle;
2838
09cbfeaf 2839 index = pos >> PAGE_SHIFT;
79f0be8d
AK
2840
2841 if (ext4_nonda_switch(inode->i_sb)) {
2842 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2843 return ext4_write_begin(file, mapping, pos,
2844 len, flags, pagep, fsdata);
2845 }
2846 *fsdata = (void *)0;
9bffad1e 2847 trace_ext4_da_write_begin(inode, pos, len, flags);
9c3569b5
TM
2848
2849 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2850 ret = ext4_da_write_inline_data_begin(mapping, inode,
2851 pos, len, flags,
2852 pagep, fsdata);
2853 if (ret < 0)
47564bfb
TT
2854 return ret;
2855 if (ret == 1)
2856 return 0;
9c3569b5
TM
2857 }
2858
47564bfb
TT
2859 /*
2860 * grab_cache_page_write_begin() can take a long time if the
2861 * system is thrashing due to memory pressure, or if the page
2862 * is being written back. So grab it first before we start
2863 * the transaction handle. This also allows us to allocate
2864 * the page (if needed) without using GFP_NOFS.
2865 */
2866retry_grab:
2867 page = grab_cache_page_write_begin(mapping, index, flags);
2868 if (!page)
2869 return -ENOMEM;
2870 unlock_page(page);
2871
64769240
AT
2872 /*
2873 * With delayed allocation, we don't log the i_disksize update
2874 * if there is delayed block allocation. But we still need
2875 * to journalling the i_disksize update if writes to the end
2876 * of file which has an already mapped buffer.
2877 */
47564bfb 2878retry_journal:
0ff8947f
ES
2879 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2880 ext4_da_write_credits(inode, pos, len));
64769240 2881 if (IS_ERR(handle)) {
09cbfeaf 2882 put_page(page);
47564bfb 2883 return PTR_ERR(handle);
64769240
AT
2884 }
2885
47564bfb
TT
2886 lock_page(page);
2887 if (page->mapping != mapping) {
2888 /* The page got truncated from under us */
2889 unlock_page(page);
09cbfeaf 2890 put_page(page);
d5a0d4f7 2891 ext4_journal_stop(handle);
47564bfb 2892 goto retry_grab;
d5a0d4f7 2893 }
47564bfb 2894 /* In case writeback began while the page was unlocked */
7afe5aa5 2895 wait_for_stable_page(page);
64769240 2896
2058f83a
MH
2897#ifdef CONFIG_EXT4_FS_ENCRYPTION
2898 ret = ext4_block_write_begin(page, pos, len,
2899 ext4_da_get_block_prep);
2900#else
6e1db88d 2901 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2058f83a 2902#endif
64769240
AT
2903 if (ret < 0) {
2904 unlock_page(page);
2905 ext4_journal_stop(handle);
ae4d5372
AK
2906 /*
2907 * block_write_begin may have instantiated a few blocks
2908 * outside i_size. Trim these off again. Don't need
2909 * i_size_read because we hold i_mutex.
2910 */
2911 if (pos + len > inode->i_size)
b9a4207d 2912 ext4_truncate_failed_write(inode);
47564bfb
TT
2913
2914 if (ret == -ENOSPC &&
2915 ext4_should_retry_alloc(inode->i_sb, &retries))
2916 goto retry_journal;
2917
09cbfeaf 2918 put_page(page);
47564bfb 2919 return ret;
64769240
AT
2920 }
2921
47564bfb 2922 *pagep = page;
64769240
AT
2923 return ret;
2924}
2925
632eaeab
MC
2926/*
2927 * Check if we should update i_disksize
2928 * when write to the end of file but not require block allocation
2929 */
2930static int ext4_da_should_update_i_disksize(struct page *page,
de9a55b8 2931 unsigned long offset)
632eaeab
MC
2932{
2933 struct buffer_head *bh;
2934 struct inode *inode = page->mapping->host;
2935 unsigned int idx;
2936 int i;
2937
2938 bh = page_buffers(page);
2939 idx = offset >> inode->i_blkbits;
2940
af5bc92d 2941 for (i = 0; i < idx; i++)
632eaeab
MC
2942 bh = bh->b_this_page;
2943
29fa89d0 2944 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
632eaeab
MC
2945 return 0;
2946 return 1;
2947}
2948
64769240 2949static int ext4_da_write_end(struct file *file,
de9a55b8
TT
2950 struct address_space *mapping,
2951 loff_t pos, unsigned len, unsigned copied,
2952 struct page *page, void *fsdata)
64769240
AT
2953{
2954 struct inode *inode = mapping->host;
2955 int ret = 0, ret2;
2956 handle_t *handle = ext4_journal_current_handle();
2957 loff_t new_i_size;
632eaeab 2958 unsigned long start, end;
79f0be8d
AK
2959 int write_mode = (int)(unsigned long)fsdata;
2960
74d553aa
TT
2961 if (write_mode == FALL_BACK_TO_NONDELALLOC)
2962 return ext4_write_end(file, mapping, pos,
2963 len, copied, page, fsdata);
632eaeab 2964
9bffad1e 2965 trace_ext4_da_write_end(inode, pos, len, copied);
09cbfeaf 2966 start = pos & (PAGE_SIZE - 1);
af5bc92d 2967 end = start + copied - 1;
64769240
AT
2968
2969 /*
2970 * generic_write_end() will run mark_inode_dirty() if i_size
2971 * changes. So let's piggyback the i_disksize mark_inode_dirty
2972 * into that.
2973 */
64769240 2974 new_i_size = pos + copied;
ea51d132 2975 if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
9c3569b5
TM
2976 if (ext4_has_inline_data(inode) ||
2977 ext4_da_should_update_i_disksize(page, end)) {
ee124d27 2978 ext4_update_i_disksize(inode, new_i_size);
cf17fea6
AK
2979 /* We need to mark inode dirty even if
2980 * new_i_size is less that inode->i_size
2981 * bu greater than i_disksize.(hint delalloc)
2982 */
2983 ext4_mark_inode_dirty(handle, inode);
64769240 2984 }
632eaeab 2985 }
9c3569b5
TM
2986
2987 if (write_mode != CONVERT_INLINE_DATA &&
2988 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2989 ext4_has_inline_data(inode))
2990 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
2991 page);
2992 else
2993 ret2 = generic_write_end(file, mapping, pos, len, copied,
64769240 2994 page, fsdata);
9c3569b5 2995
64769240
AT
2996 copied = ret2;
2997 if (ret2 < 0)
2998 ret = ret2;
2999 ret2 = ext4_journal_stop(handle);
3000 if (!ret)
3001 ret = ret2;
3002
3003 return ret ? ret : copied;
3004}
3005
d47992f8
LC
3006static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
3007 unsigned int length)
64769240 3008{
64769240
AT
3009 /*
3010 * Drop reserved blocks
3011 */
3012 BUG_ON(!PageLocked(page));
3013 if (!page_has_buffers(page))
3014 goto out;
3015
ca99fdd2 3016 ext4_da_page_release_reservation(page, offset, length);
64769240
AT
3017
3018out:
d47992f8 3019 ext4_invalidatepage(page, offset, length);
64769240
AT
3020
3021 return;
3022}
3023
ccd2506b
TT
3024/*
3025 * Force all delayed allocation blocks to be allocated for a given inode.
3026 */
3027int ext4_alloc_da_blocks(struct inode *inode)
3028{
fb40ba0d
TT
3029 trace_ext4_alloc_da_blocks(inode);
3030
71d4f7d0 3031 if (!EXT4_I(inode)->i_reserved_data_blocks)
ccd2506b
TT
3032 return 0;
3033
3034 /*
3035 * We do something simple for now. The filemap_flush() will
3036 * also start triggering a write of the data blocks, which is
3037 * not strictly speaking necessary (and for users of
3038 * laptop_mode, not even desirable). However, to do otherwise
3039 * would require replicating code paths in:
de9a55b8 3040 *
20970ba6 3041 * ext4_writepages() ->
ccd2506b
TT
3042 * write_cache_pages() ---> (via passed in callback function)
3043 * __mpage_da_writepage() -->
3044 * mpage_add_bh_to_extent()
3045 * mpage_da_map_blocks()
3046 *
3047 * The problem is that write_cache_pages(), located in
3048 * mm/page-writeback.c, marks pages clean in preparation for
3049 * doing I/O, which is not desirable if we're not planning on
3050 * doing I/O at all.
3051 *
3052 * We could call write_cache_pages(), and then redirty all of
380cf090 3053 * the pages by calling redirty_page_for_writepage() but that
ccd2506b
TT
3054 * would be ugly in the extreme. So instead we would need to
3055 * replicate parts of the code in the above functions,
25985edc 3056 * simplifying them because we wouldn't actually intend to
ccd2506b
TT
3057 * write out the pages, but rather only collect contiguous
3058 * logical block extents, call the multi-block allocator, and
3059 * then update the buffer heads with the block allocations.
de9a55b8 3060 *
ccd2506b
TT
3061 * For now, though, we'll cheat by calling filemap_flush(),
3062 * which will map the blocks, and start the I/O, but not
3063 * actually wait for the I/O to complete.
3064 */
3065 return filemap_flush(inode->i_mapping);
3066}
64769240 3067
ac27a0ec
DK
3068/*
3069 * bmap() is special. It gets used by applications such as lilo and by
3070 * the swapper to find the on-disk block of a specific piece of data.
3071 *
3072 * Naturally, this is dangerous if the block concerned is still in the
617ba13b 3073 * journal. If somebody makes a swapfile on an ext4 data-journaling
ac27a0ec
DK
3074 * filesystem and enables swap, then they may get a nasty shock when the
3075 * data getting swapped to that swapfile suddenly gets overwritten by
3076 * the original zero's written out previously to the journal and
3077 * awaiting writeback in the kernel's buffer cache.
3078 *
3079 * So, if we see any bmap calls here on a modified, data-journaled file,
3080 * take extra steps to flush any blocks which might be in the cache.
3081 */
617ba13b 3082static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
ac27a0ec
DK
3083{
3084 struct inode *inode = mapping->host;
3085 journal_t *journal;
3086 int err;
3087
46c7f254
TM
3088 /*
3089 * We can get here for an inline file via the FIBMAP ioctl
3090 */
3091 if (ext4_has_inline_data(inode))
3092 return 0;
3093
64769240
AT
3094 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3095 test_opt(inode->i_sb, DELALLOC)) {
3096 /*
3097 * With delalloc we want to sync the file
3098 * so that we can make sure we allocate
3099 * blocks for file
3100 */
3101 filemap_write_and_wait(mapping);
3102 }
3103
19f5fb7a
TT
3104 if (EXT4_JOURNAL(inode) &&
3105 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
ac27a0ec
DK
3106 /*
3107 * This is a REALLY heavyweight approach, but the use of
3108 * bmap on dirty files is expected to be extremely rare:
3109 * only if we run lilo or swapon on a freshly made file
3110 * do we expect this to happen.
3111 *
3112 * (bmap requires CAP_SYS_RAWIO so this does not
3113 * represent an unprivileged user DOS attack --- we'd be
3114 * in trouble if mortal users could trigger this path at
3115 * will.)
3116 *
617ba13b 3117 * NB. EXT4_STATE_JDATA is not set on files other than
ac27a0ec
DK
3118 * regular files. If somebody wants to bmap a directory
3119 * or symlink and gets confused because the buffer
3120 * hasn't yet been flushed to disk, they deserve
3121 * everything they get.
3122 */
3123
19f5fb7a 3124 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
617ba13b 3125 journal = EXT4_JOURNAL(inode);
dab291af
MC
3126 jbd2_journal_lock_updates(journal);
3127 err = jbd2_journal_flush(journal);
3128 jbd2_journal_unlock_updates(journal);
ac27a0ec
DK
3129
3130 if (err)
3131 return 0;
3132 }
3133
af5bc92d 3134 return generic_block_bmap(mapping, block, ext4_get_block);
ac27a0ec
DK
3135}
3136
617ba13b 3137static int ext4_readpage(struct file *file, struct page *page)
ac27a0ec 3138{
46c7f254
TM
3139 int ret = -EAGAIN;
3140 struct inode *inode = page->mapping->host;
3141
0562e0ba 3142 trace_ext4_readpage(page);
46c7f254
TM
3143
3144 if (ext4_has_inline_data(inode))
3145 ret = ext4_readpage_inline(inode, page);
3146
3147 if (ret == -EAGAIN)
f64e02fe 3148 return ext4_mpage_readpages(page->mapping, NULL, page, 1);
46c7f254
TM
3149
3150 return ret;
ac27a0ec
DK
3151}
3152
3153static int
617ba13b 3154ext4_readpages(struct file *file, struct address_space *mapping,
ac27a0ec
DK
3155 struct list_head *pages, unsigned nr_pages)
3156{
46c7f254
TM
3157 struct inode *inode = mapping->host;
3158
3159 /* If the file has inline data, no need to do readpages. */
3160 if (ext4_has_inline_data(inode))
3161 return 0;
3162
f64e02fe 3163 return ext4_mpage_readpages(mapping, pages, NULL, nr_pages);
ac27a0ec
DK
3164}
3165
d47992f8
LC
3166static void ext4_invalidatepage(struct page *page, unsigned int offset,
3167 unsigned int length)
ac27a0ec 3168{
ca99fdd2 3169 trace_ext4_invalidatepage(page, offset, length);
0562e0ba 3170
4520fb3c
JK
3171 /* No journalling happens on data buffers when this function is used */
3172 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3173
ca99fdd2 3174 block_invalidatepage(page, offset, length);
4520fb3c
JK
3175}
3176
53e87268 3177static int __ext4_journalled_invalidatepage(struct page *page,
ca99fdd2
LC
3178 unsigned int offset,
3179 unsigned int length)
4520fb3c
JK
3180{
3181 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3182
ca99fdd2 3183 trace_ext4_journalled_invalidatepage(page, offset, length);
4520fb3c 3184
ac27a0ec
DK
3185 /*
3186 * If it's a full truncate we just forget about the pending dirtying
3187 */
09cbfeaf 3188 if (offset == 0 && length == PAGE_SIZE)
ac27a0ec
DK
3189 ClearPageChecked(page);
3190
ca99fdd2 3191 return jbd2_journal_invalidatepage(journal, page, offset, length);
53e87268
JK
3192}
3193
3194/* Wrapper for aops... */
3195static void ext4_journalled_invalidatepage(struct page *page,
d47992f8
LC
3196 unsigned int offset,
3197 unsigned int length)
53e87268 3198{
ca99fdd2 3199 WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
ac27a0ec
DK
3200}
3201
617ba13b 3202static int ext4_releasepage(struct page *page, gfp_t wait)
ac27a0ec 3203{
617ba13b 3204 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
ac27a0ec 3205
0562e0ba
JZ
3206 trace_ext4_releasepage(page);
3207
e1c36595
JK
3208 /* Page has dirty journalled data -> cannot release */
3209 if (PageChecked(page))
ac27a0ec 3210 return 0;
0390131b
FM
3211 if (journal)
3212 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3213 else
3214 return try_to_free_buffers(page);
ac27a0ec
DK
3215}
3216
ba5843f5
JK
3217#ifdef CONFIG_FS_DAX
3218int ext4_dax_mmap_get_block(struct inode *inode, sector_t iblock,
3219 struct buffer_head *bh_result, int create)
ed923b57 3220{
ba5843f5
JK
3221 int ret, err;
3222 int credits;
3223 struct ext4_map_blocks map;
3224 handle_t *handle = NULL;
3225 int flags = 0;
c86d8db3 3226
ba5843f5 3227 ext4_debug("ext4_dax_mmap_get_block: inode %lu, create flag %d\n",
ed923b57 3228 inode->i_ino, create);
ba5843f5
JK
3229 map.m_lblk = iblock;
3230 map.m_len = bh_result->b_size >> inode->i_blkbits;
3231 credits = ext4_chunk_trans_blocks(inode, map.m_len);
3232 if (create) {
3233 flags |= EXT4_GET_BLOCKS_PRE_IO | EXT4_GET_BLOCKS_CREATE_ZERO;
3234 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, credits);
3235 if (IS_ERR(handle)) {
3236 ret = PTR_ERR(handle);
3237 return ret;
3238 }
3239 }
3240
3241 ret = ext4_map_blocks(handle, inode, &map, flags);
3242 if (create) {
3243 err = ext4_journal_stop(handle);
3244 if (ret >= 0 && err < 0)
3245 ret = err;
3246 }
3247 if (ret <= 0)
3248 goto out;
3249 if (map.m_flags & EXT4_MAP_UNWRITTEN) {
3250 int err2;
3251
3252 /*
3253 * We are protected by i_mmap_sem so we know block cannot go
3254 * away from under us even though we dropped i_data_sem.
3255 * Convert extent to written and write zeros there.
3256 *
3257 * Note: We may get here even when create == 0.
3258 */
3259 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, credits);
3260 if (IS_ERR(handle)) {
3261 ret = PTR_ERR(handle);
3262 goto out;
3263 }
3264
3265 err = ext4_map_blocks(handle, inode, &map,
3266 EXT4_GET_BLOCKS_CONVERT | EXT4_GET_BLOCKS_CREATE_ZERO);
3267 if (err < 0)
3268 ret = err;
3269 err2 = ext4_journal_stop(handle);
3270 if (err2 < 0 && ret > 0)
3271 ret = err2;
3272 }
3273out:
3274 WARN_ON_ONCE(ret == 0 && create);
3275 if (ret > 0) {
3276 map_bh(bh_result, inode->i_sb, map.m_pblk);
ba5843f5
JK
3277 /*
3278 * At least for now we have to clear BH_New so that DAX code
3279 * doesn't attempt to zero blocks again in a racy way.
3280 */
e3fb8eb1
JK
3281 map.m_flags &= ~EXT4_MAP_NEW;
3282 ext4_update_bh_state(bh_result, map.m_flags);
ba5843f5
JK
3283 bh_result->b_size = map.m_len << inode->i_blkbits;
3284 ret = 0;
3285 }
3286 return ret;
ed923b57 3287}
ba5843f5 3288#endif
ed923b57 3289
187372a3 3290static int ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
7b7a8665 3291 ssize_t size, void *private)
4c0425ff 3292{
109811c2 3293 ext4_io_end_t *io_end = private;
4c0425ff 3294
97a851ed 3295 /* if not async direct IO just return */
7b7a8665 3296 if (!io_end)
187372a3 3297 return 0;
4b70df18 3298
88635ca2 3299 ext_debug("ext4_end_io_dio(): io_end 0x%p "
ace36ad4 3300 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
109811c2 3301 io_end, io_end->inode->i_ino, iocb, offset, size);
8d5d02e6 3302
74c66bcb
JK
3303 /*
3304 * Error during AIO DIO. We cannot convert unwritten extents as the
3305 * data was not written. Just clear the unwritten flag and drop io_end.
3306 */
3307 if (size <= 0) {
3308 ext4_clear_io_unwritten_flag(io_end);
3309 size = 0;
3310 }
4c0425ff
MC
3311 io_end->offset = offset;
3312 io_end->size = size;
7b7a8665 3313 ext4_put_io_end(io_end);
187372a3
CH
3314
3315 return 0;
4c0425ff 3316}
c7064ef1 3317
4c0425ff
MC
3318/*
3319 * For ext4 extent files, ext4 will do direct-io write to holes,
3320 * preallocated extents, and those write extend the file, no need to
3321 * fall back to buffered IO.
3322 *
556615dc 3323 * For holes, we fallocate those blocks, mark them as unwritten
69c499d1 3324 * If those blocks were preallocated, we mark sure they are split, but
556615dc 3325 * still keep the range to write as unwritten.
4c0425ff 3326 *
69c499d1 3327 * The unwritten extents will be converted to written when DIO is completed.
8d5d02e6 3328 * For async direct IO, since the IO may still pending when return, we
25985edc 3329 * set up an end_io call back function, which will do the conversion
8d5d02e6 3330 * when async direct IO completed.
4c0425ff
MC
3331 *
3332 * If the O_DIRECT write will extend the file then add this inode to the
3333 * orphan list. So recovery will truncate it back to the original size
3334 * if the machine crashes during the write.
3335 *
3336 */
6f673763
OS
3337static ssize_t ext4_ext_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
3338 loff_t offset)
4c0425ff
MC
3339{
3340 struct file *file = iocb->ki_filp;
3341 struct inode *inode = file->f_mapping->host;
3342 ssize_t ret;
a6cbcd4a 3343 size_t count = iov_iter_count(iter);
69c499d1
TT
3344 int overwrite = 0;
3345 get_block_t *get_block_func = NULL;
3346 int dio_flags = 0;
4c0425ff 3347 loff_t final_size = offset + count;
729f52c6 3348
69c499d1 3349 /* Use the old path for reads and writes beyond i_size. */
6f673763
OS
3350 if (iov_iter_rw(iter) != WRITE || final_size > inode->i_size)
3351 return ext4_ind_direct_IO(iocb, iter, offset);
4bd809db 3352
69c499d1 3353 BUG_ON(iocb->private == NULL);
4bd809db 3354
e8340395
JK
3355 /*
3356 * Make all waiters for direct IO properly wait also for extent
3357 * conversion. This also disallows race between truncate() and
3358 * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3359 */
6f673763 3360 if (iov_iter_rw(iter) == WRITE)
fe0f07d0 3361 inode_dio_begin(inode);
e8340395 3362
69c499d1
TT
3363 /* If we do a overwrite dio, i_mutex locking can be released */
3364 overwrite = *((int *)iocb->private);
4bd809db 3365
2dcba478 3366 if (overwrite)
5955102c 3367 inode_unlock(inode);
8d5d02e6 3368
69c499d1
TT
3369 /*
3370 * We could direct write to holes and fallocate.
3371 *
109811c2
JK
3372 * Allocated blocks to fill the hole are marked as unwritten to prevent
3373 * parallel buffered read to expose the stale data before DIO complete
3374 * the data IO.
69c499d1 3375 *
109811c2
JK
3376 * As to previously fallocated extents, ext4 get_block will just simply
3377 * mark the buffer mapped but still keep the extents unwritten.
69c499d1 3378 *
109811c2
JK
3379 * For non AIO case, we will convert those unwritten extents to written
3380 * after return back from blockdev_direct_IO. That way we save us from
3381 * allocating io_end structure and also the overhead of offloading
3382 * the extent convertion to a workqueue.
69c499d1
TT
3383 *
3384 * For async DIO, the conversion needs to be deferred when the
3385 * IO is completed. The ext4 end_io callback function will be
3386 * called to take care of the conversion work. Here for async
3387 * case, we allocate an io_end structure to hook to the iocb.
3388 */
3389 iocb->private = NULL;
109811c2 3390 if (overwrite)
705965bd 3391 get_block_func = ext4_dio_get_block_overwrite;
109811c2
JK
3392 else if (is_sync_kiocb(iocb)) {
3393 get_block_func = ext4_dio_get_block_unwritten_sync;
3394 dio_flags = DIO_LOCKING;
69c499d1 3395 } else {
109811c2 3396 get_block_func = ext4_dio_get_block_unwritten_async;
69c499d1
TT
3397 dio_flags = DIO_LOCKING;
3398 }
2058f83a
MH
3399#ifdef CONFIG_EXT4_FS_ENCRYPTION
3400 BUG_ON(ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode));
3401#endif
923ae0ff 3402 if (IS_DAX(inode))
a95cd631 3403 ret = dax_do_io(iocb, inode, iter, offset, get_block_func,
923ae0ff
RZ
3404 ext4_end_io_dio, dio_flags);
3405 else
17f8c842 3406 ret = __blockdev_direct_IO(iocb, inode,
923ae0ff
RZ
3407 inode->i_sb->s_bdev, iter, offset,
3408 get_block_func,
3409 ext4_end_io_dio, NULL, dio_flags);
69c499d1 3410
97a851ed 3411 if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
69c499d1
TT
3412 EXT4_STATE_DIO_UNWRITTEN)) {
3413 int err;
3414 /*
3415 * for non AIO case, since the IO is already
3416 * completed, we could do the conversion right here
3417 */
6b523df4 3418 err = ext4_convert_unwritten_extents(NULL, inode,
69c499d1
TT
3419 offset, ret);
3420 if (err < 0)
3421 ret = err;
3422 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3423 }
4bd809db 3424
6f673763 3425 if (iov_iter_rw(iter) == WRITE)
fe0f07d0 3426 inode_dio_end(inode);
69c499d1 3427 /* take i_mutex locking again if we do a ovewrite dio */
2dcba478 3428 if (overwrite)
5955102c 3429 inode_lock(inode);
8d5d02e6 3430
69c499d1 3431 return ret;
4c0425ff
MC
3432}
3433
22c6186e
OS
3434static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
3435 loff_t offset)
4c0425ff
MC
3436{
3437 struct file *file = iocb->ki_filp;
3438 struct inode *inode = file->f_mapping->host;
a6cbcd4a 3439 size_t count = iov_iter_count(iter);
0562e0ba 3440 ssize_t ret;
4c0425ff 3441
2058f83a
MH
3442#ifdef CONFIG_EXT4_FS_ENCRYPTION
3443 if (ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode))
3444 return 0;
3445#endif
3446
84ebd795
TT
3447 /*
3448 * If we are doing data journalling we don't support O_DIRECT
3449 */
3450 if (ext4_should_journal_data(inode))
3451 return 0;
3452
46c7f254
TM
3453 /* Let buffer I/O handle the inline data case. */
3454 if (ext4_has_inline_data(inode))
3455 return 0;
3456
6f673763 3457 trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
12e9b892 3458 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
6f673763 3459 ret = ext4_ext_direct_IO(iocb, iter, offset);
0562e0ba 3460 else
6f673763
OS
3461 ret = ext4_ind_direct_IO(iocb, iter, offset);
3462 trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret);
0562e0ba 3463 return ret;
4c0425ff
MC
3464}
3465
ac27a0ec 3466/*
617ba13b 3467 * Pages can be marked dirty completely asynchronously from ext4's journalling
ac27a0ec
DK
3468 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3469 * much here because ->set_page_dirty is called under VFS locks. The page is
3470 * not necessarily locked.
3471 *
3472 * We cannot just dirty the page and leave attached buffers clean, because the
3473 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3474 * or jbddirty because all the journalling code will explode.
3475 *
3476 * So what we do is to mark the page "pending dirty" and next time writepage
3477 * is called, propagate that into the buffers appropriately.
3478 */
617ba13b 3479static int ext4_journalled_set_page_dirty(struct page *page)
ac27a0ec
DK
3480{
3481 SetPageChecked(page);
3482 return __set_page_dirty_nobuffers(page);
3483}
3484
74d553aa 3485static const struct address_space_operations ext4_aops = {
8ab22b9a
HH
3486 .readpage = ext4_readpage,
3487 .readpages = ext4_readpages,
43ce1d23 3488 .writepage = ext4_writepage,
20970ba6 3489 .writepages = ext4_writepages,
8ab22b9a 3490 .write_begin = ext4_write_begin,
74d553aa 3491 .write_end = ext4_write_end,
8ab22b9a
HH
3492 .bmap = ext4_bmap,
3493 .invalidatepage = ext4_invalidatepage,
3494 .releasepage = ext4_releasepage,
3495 .direct_IO = ext4_direct_IO,
3496 .migratepage = buffer_migrate_page,
3497 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3498 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
3499};
3500
617ba13b 3501static const struct address_space_operations ext4_journalled_aops = {
8ab22b9a
HH
3502 .readpage = ext4_readpage,
3503 .readpages = ext4_readpages,
43ce1d23 3504 .writepage = ext4_writepage,
20970ba6 3505 .writepages = ext4_writepages,
8ab22b9a
HH
3506 .write_begin = ext4_write_begin,
3507 .write_end = ext4_journalled_write_end,
3508 .set_page_dirty = ext4_journalled_set_page_dirty,
3509 .bmap = ext4_bmap,
4520fb3c 3510 .invalidatepage = ext4_journalled_invalidatepage,
8ab22b9a 3511 .releasepage = ext4_releasepage,
84ebd795 3512 .direct_IO = ext4_direct_IO,
8ab22b9a 3513 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3514 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
3515};
3516
64769240 3517static const struct address_space_operations ext4_da_aops = {
8ab22b9a
HH
3518 .readpage = ext4_readpage,
3519 .readpages = ext4_readpages,
43ce1d23 3520 .writepage = ext4_writepage,
20970ba6 3521 .writepages = ext4_writepages,
8ab22b9a
HH
3522 .write_begin = ext4_da_write_begin,
3523 .write_end = ext4_da_write_end,
3524 .bmap = ext4_bmap,
3525 .invalidatepage = ext4_da_invalidatepage,
3526 .releasepage = ext4_releasepage,
3527 .direct_IO = ext4_direct_IO,
3528 .migratepage = buffer_migrate_page,
3529 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3530 .error_remove_page = generic_error_remove_page,
64769240
AT
3531};
3532
617ba13b 3533void ext4_set_aops(struct inode *inode)
ac27a0ec 3534{
3d2b1582
LC
3535 switch (ext4_inode_journal_mode(inode)) {
3536 case EXT4_INODE_ORDERED_DATA_MODE:
74d553aa 3537 ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3d2b1582
LC
3538 break;
3539 case EXT4_INODE_WRITEBACK_DATA_MODE:
74d553aa 3540 ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3d2b1582
LC
3541 break;
3542 case EXT4_INODE_JOURNAL_DATA_MODE:
617ba13b 3543 inode->i_mapping->a_ops = &ext4_journalled_aops;
74d553aa 3544 return;
3d2b1582
LC
3545 default:
3546 BUG();
3547 }
74d553aa
TT
3548 if (test_opt(inode->i_sb, DELALLOC))
3549 inode->i_mapping->a_ops = &ext4_da_aops;
3550 else
3551 inode->i_mapping->a_ops = &ext4_aops;
ac27a0ec
DK
3552}
3553
923ae0ff 3554static int __ext4_block_zero_page_range(handle_t *handle,
d863dc36
LC
3555 struct address_space *mapping, loff_t from, loff_t length)
3556{
09cbfeaf
KS
3557 ext4_fsblk_t index = from >> PAGE_SHIFT;
3558 unsigned offset = from & (PAGE_SIZE-1);
923ae0ff 3559 unsigned blocksize, pos;
d863dc36
LC
3560 ext4_lblk_t iblock;
3561 struct inode *inode = mapping->host;
3562 struct buffer_head *bh;
3563 struct page *page;
3564 int err = 0;
3565
09cbfeaf 3566 page = find_or_create_page(mapping, from >> PAGE_SHIFT,
c62d2555 3567 mapping_gfp_constraint(mapping, ~__GFP_FS));
d863dc36
LC
3568 if (!page)
3569 return -ENOMEM;
3570
3571 blocksize = inode->i_sb->s_blocksize;
d863dc36 3572
09cbfeaf 3573 iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
d863dc36
LC
3574
3575 if (!page_has_buffers(page))
3576 create_empty_buffers(page, blocksize, 0);
3577
3578 /* Find the buffer that contains "offset" */
3579 bh = page_buffers(page);
3580 pos = blocksize;
3581 while (offset >= pos) {
3582 bh = bh->b_this_page;
3583 iblock++;
3584 pos += blocksize;
3585 }
d863dc36
LC
3586 if (buffer_freed(bh)) {
3587 BUFFER_TRACE(bh, "freed: skip");
3588 goto unlock;
3589 }
d863dc36
LC
3590 if (!buffer_mapped(bh)) {
3591 BUFFER_TRACE(bh, "unmapped");
3592 ext4_get_block(inode, iblock, bh, 0);
3593 /* unmapped? It's a hole - nothing to do */
3594 if (!buffer_mapped(bh)) {
3595 BUFFER_TRACE(bh, "still unmapped");
3596 goto unlock;
3597 }
3598 }
3599
3600 /* Ok, it's mapped. Make sure it's up-to-date */
3601 if (PageUptodate(page))
3602 set_buffer_uptodate(bh);
3603
3604 if (!buffer_uptodate(bh)) {
3605 err = -EIO;
3606 ll_rw_block(READ, 1, &bh);
3607 wait_on_buffer(bh);
3608 /* Uhhuh. Read error. Complain and punt. */
3609 if (!buffer_uptodate(bh))
3610 goto unlock;
c9c7429c
MH
3611 if (S_ISREG(inode->i_mode) &&
3612 ext4_encrypted_inode(inode)) {
3613 /* We expect the key to be set. */
3614 BUG_ON(!ext4_has_encryption_key(inode));
09cbfeaf 3615 BUG_ON(blocksize != PAGE_SIZE);
3684de8c 3616 WARN_ON_ONCE(ext4_decrypt(page));
c9c7429c 3617 }
d863dc36 3618 }
d863dc36
LC
3619 if (ext4_should_journal_data(inode)) {
3620 BUFFER_TRACE(bh, "get write access");
3621 err = ext4_journal_get_write_access(handle, bh);
3622 if (err)
3623 goto unlock;
3624 }
d863dc36 3625 zero_user(page, offset, length);
d863dc36
LC
3626 BUFFER_TRACE(bh, "zeroed end of block");
3627
d863dc36
LC
3628 if (ext4_should_journal_data(inode)) {
3629 err = ext4_handle_dirty_metadata(handle, inode, bh);
0713ed0c 3630 } else {
353eefd3 3631 err = 0;
d863dc36 3632 mark_buffer_dirty(bh);
0713ed0c
LC
3633 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE))
3634 err = ext4_jbd2_file_inode(handle, inode);
3635 }
d863dc36
LC
3636
3637unlock:
3638 unlock_page(page);
09cbfeaf 3639 put_page(page);
d863dc36
LC
3640 return err;
3641}
3642
923ae0ff
RZ
3643/*
3644 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3645 * starting from file offset 'from'. The range to be zero'd must
3646 * be contained with in one block. If the specified range exceeds
3647 * the end of the block it will be shortened to end of the block
3648 * that cooresponds to 'from'
3649 */
3650static int ext4_block_zero_page_range(handle_t *handle,
3651 struct address_space *mapping, loff_t from, loff_t length)
3652{
3653 struct inode *inode = mapping->host;
09cbfeaf 3654 unsigned offset = from & (PAGE_SIZE-1);
923ae0ff
RZ
3655 unsigned blocksize = inode->i_sb->s_blocksize;
3656 unsigned max = blocksize - (offset & (blocksize - 1));
3657
3658 /*
3659 * correct length if it does not fall between
3660 * 'from' and the end of the block
3661 */
3662 if (length > max || length < 0)
3663 length = max;
3664
3665 if (IS_DAX(inode))
3666 return dax_zero_page_range(inode, from, length, ext4_get_block);
3667 return __ext4_block_zero_page_range(handle, mapping, from, length);
3668}
3669
94350ab5
MW
3670/*
3671 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3672 * up to the end of the block which corresponds to `from'.
3673 * This required during truncate. We need to physically zero the tail end
3674 * of that block so it doesn't yield old data if the file is later grown.
3675 */
c197855e 3676static int ext4_block_truncate_page(handle_t *handle,
94350ab5
MW
3677 struct address_space *mapping, loff_t from)
3678{
09cbfeaf 3679 unsigned offset = from & (PAGE_SIZE-1);
94350ab5
MW
3680 unsigned length;
3681 unsigned blocksize;
3682 struct inode *inode = mapping->host;
3683
3684 blocksize = inode->i_sb->s_blocksize;
3685 length = blocksize - (offset & (blocksize - 1));
3686
3687 return ext4_block_zero_page_range(handle, mapping, from, length);
3688}
3689
a87dd18c
LC
3690int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3691 loff_t lstart, loff_t length)
3692{
3693 struct super_block *sb = inode->i_sb;
3694 struct address_space *mapping = inode->i_mapping;
e1be3a92 3695 unsigned partial_start, partial_end;
a87dd18c
LC
3696 ext4_fsblk_t start, end;
3697 loff_t byte_end = (lstart + length - 1);
3698 int err = 0;
3699
e1be3a92
LC
3700 partial_start = lstart & (sb->s_blocksize - 1);
3701 partial_end = byte_end & (sb->s_blocksize - 1);
3702
a87dd18c
LC
3703 start = lstart >> sb->s_blocksize_bits;
3704 end = byte_end >> sb->s_blocksize_bits;
3705
3706 /* Handle partial zero within the single block */
e1be3a92
LC
3707 if (start == end &&
3708 (partial_start || (partial_end != sb->s_blocksize - 1))) {
a87dd18c
LC
3709 err = ext4_block_zero_page_range(handle, mapping,
3710 lstart, length);
3711 return err;
3712 }
3713 /* Handle partial zero out on the start of the range */
e1be3a92 3714 if (partial_start) {
a87dd18c
LC
3715 err = ext4_block_zero_page_range(handle, mapping,
3716 lstart, sb->s_blocksize);
3717 if (err)
3718 return err;
3719 }
3720 /* Handle partial zero out on the end of the range */
e1be3a92 3721 if (partial_end != sb->s_blocksize - 1)
a87dd18c 3722 err = ext4_block_zero_page_range(handle, mapping,
e1be3a92
LC
3723 byte_end - partial_end,
3724 partial_end + 1);
a87dd18c
LC
3725 return err;
3726}
3727
91ef4caf
DG
3728int ext4_can_truncate(struct inode *inode)
3729{
91ef4caf
DG
3730 if (S_ISREG(inode->i_mode))
3731 return 1;
3732 if (S_ISDIR(inode->i_mode))
3733 return 1;
3734 if (S_ISLNK(inode->i_mode))
3735 return !ext4_inode_is_fast_symlink(inode);
3736 return 0;
3737}
3738
01127848
JK
3739/*
3740 * We have to make sure i_disksize gets properly updated before we truncate
3741 * page cache due to hole punching or zero range. Otherwise i_disksize update
3742 * can get lost as it may have been postponed to submission of writeback but
3743 * that will never happen after we truncate page cache.
3744 */
3745int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
3746 loff_t len)
3747{
3748 handle_t *handle;
3749 loff_t size = i_size_read(inode);
3750
5955102c 3751 WARN_ON(!inode_is_locked(inode));
01127848
JK
3752 if (offset > size || offset + len < size)
3753 return 0;
3754
3755 if (EXT4_I(inode)->i_disksize >= size)
3756 return 0;
3757
3758 handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
3759 if (IS_ERR(handle))
3760 return PTR_ERR(handle);
3761 ext4_update_i_disksize(inode, size);
3762 ext4_mark_inode_dirty(handle, inode);
3763 ext4_journal_stop(handle);
3764
3765 return 0;
3766}
3767
a4bb6b64
AH
3768/*
3769 * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3770 * associated with the given offset and length
3771 *
3772 * @inode: File inode
3773 * @offset: The offset where the hole will begin
3774 * @len: The length of the hole
3775 *
4907cb7b 3776 * Returns: 0 on success or negative on failure
a4bb6b64
AH
3777 */
3778
aeb2817a 3779int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
a4bb6b64 3780{
26a4c0c6
TT
3781 struct super_block *sb = inode->i_sb;
3782 ext4_lblk_t first_block, stop_block;
3783 struct address_space *mapping = inode->i_mapping;
a87dd18c 3784 loff_t first_block_offset, last_block_offset;
26a4c0c6
TT
3785 handle_t *handle;
3786 unsigned int credits;
3787 int ret = 0;
3788
a4bb6b64 3789 if (!S_ISREG(inode->i_mode))
73355192 3790 return -EOPNOTSUPP;
a4bb6b64 3791
b8a86845 3792 trace_ext4_punch_hole(inode, offset, length, 0);
aaddea81 3793
26a4c0c6
TT
3794 /*
3795 * Write out all dirty pages to avoid race conditions
3796 * Then release them.
3797 */
3798 if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3799 ret = filemap_write_and_wait_range(mapping, offset,
3800 offset + length - 1);
3801 if (ret)
3802 return ret;
3803 }
3804
5955102c 3805 inode_lock(inode);
9ef06cec 3806
26a4c0c6
TT
3807 /* No need to punch hole beyond i_size */
3808 if (offset >= inode->i_size)
3809 goto out_mutex;
3810
3811 /*
3812 * If the hole extends beyond i_size, set the hole
3813 * to end after the page that contains i_size
3814 */
3815 if (offset + length > inode->i_size) {
3816 length = inode->i_size +
09cbfeaf 3817 PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
26a4c0c6
TT
3818 offset;
3819 }
3820
a361293f
JK
3821 if (offset & (sb->s_blocksize - 1) ||
3822 (offset + length) & (sb->s_blocksize - 1)) {
3823 /*
3824 * Attach jinode to inode for jbd2 if we do any zeroing of
3825 * partial block
3826 */
3827 ret = ext4_inode_attach_jinode(inode);
3828 if (ret < 0)
3829 goto out_mutex;
3830
3831 }
3832
ea3d7209
JK
3833 /* Wait all existing dio workers, newcomers will block on i_mutex */
3834 ext4_inode_block_unlocked_dio(inode);
3835 inode_dio_wait(inode);
3836
3837 /*
3838 * Prevent page faults from reinstantiating pages we have released from
3839 * page cache.
3840 */
3841 down_write(&EXT4_I(inode)->i_mmap_sem);
a87dd18c
LC
3842 first_block_offset = round_up(offset, sb->s_blocksize);
3843 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
26a4c0c6 3844
a87dd18c 3845 /* Now release the pages and zero block aligned part of pages*/
01127848
JK
3846 if (last_block_offset > first_block_offset) {
3847 ret = ext4_update_disksize_before_punch(inode, offset, length);
3848 if (ret)
3849 goto out_dio;
a87dd18c
LC
3850 truncate_pagecache_range(inode, first_block_offset,
3851 last_block_offset);
01127848 3852 }
26a4c0c6
TT
3853
3854 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3855 credits = ext4_writepage_trans_blocks(inode);
3856 else
3857 credits = ext4_blocks_for_truncate(inode);
3858 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3859 if (IS_ERR(handle)) {
3860 ret = PTR_ERR(handle);
3861 ext4_std_error(sb, ret);
3862 goto out_dio;
3863 }
3864
a87dd18c
LC
3865 ret = ext4_zero_partial_blocks(handle, inode, offset,
3866 length);
3867 if (ret)
3868 goto out_stop;
26a4c0c6
TT
3869
3870 first_block = (offset + sb->s_blocksize - 1) >>
3871 EXT4_BLOCK_SIZE_BITS(sb);
3872 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
3873
3874 /* If there are no blocks to remove, return now */
3875 if (first_block >= stop_block)
3876 goto out_stop;
3877
3878 down_write(&EXT4_I(inode)->i_data_sem);
3879 ext4_discard_preallocations(inode);
3880
3881 ret = ext4_es_remove_extent(inode, first_block,
3882 stop_block - first_block);
3883 if (ret) {
3884 up_write(&EXT4_I(inode)->i_data_sem);
3885 goto out_stop;
3886 }
3887
3888 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3889 ret = ext4_ext_remove_space(inode, first_block,
3890 stop_block - 1);
3891 else
4f579ae7 3892 ret = ext4_ind_remove_space(handle, inode, first_block,
26a4c0c6
TT
3893 stop_block);
3894
819c4920 3895 up_write(&EXT4_I(inode)->i_data_sem);
26a4c0c6
TT
3896 if (IS_SYNC(inode))
3897 ext4_handle_sync(handle);
e251f9bc 3898
26a4c0c6
TT
3899 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3900 ext4_mark_inode_dirty(handle, inode);
3901out_stop:
3902 ext4_journal_stop(handle);
3903out_dio:
ea3d7209 3904 up_write(&EXT4_I(inode)->i_mmap_sem);
26a4c0c6
TT
3905 ext4_inode_resume_unlocked_dio(inode);
3906out_mutex:
5955102c 3907 inode_unlock(inode);
26a4c0c6 3908 return ret;
a4bb6b64
AH
3909}
3910
a361293f
JK
3911int ext4_inode_attach_jinode(struct inode *inode)
3912{
3913 struct ext4_inode_info *ei = EXT4_I(inode);
3914 struct jbd2_inode *jinode;
3915
3916 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
3917 return 0;
3918
3919 jinode = jbd2_alloc_inode(GFP_KERNEL);
3920 spin_lock(&inode->i_lock);
3921 if (!ei->jinode) {
3922 if (!jinode) {
3923 spin_unlock(&inode->i_lock);
3924 return -ENOMEM;
3925 }
3926 ei->jinode = jinode;
3927 jbd2_journal_init_jbd_inode(ei->jinode, inode);
3928 jinode = NULL;
3929 }
3930 spin_unlock(&inode->i_lock);
3931 if (unlikely(jinode != NULL))
3932 jbd2_free_inode(jinode);
3933 return 0;
3934}
3935
ac27a0ec 3936/*
617ba13b 3937 * ext4_truncate()
ac27a0ec 3938 *
617ba13b
MC
3939 * We block out ext4_get_block() block instantiations across the entire
3940 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
ac27a0ec
DK
3941 * simultaneously on behalf of the same inode.
3942 *
42b2aa86 3943 * As we work through the truncate and commit bits of it to the journal there
ac27a0ec
DK
3944 * is one core, guiding principle: the file's tree must always be consistent on
3945 * disk. We must be able to restart the truncate after a crash.
3946 *
3947 * The file's tree may be transiently inconsistent in memory (although it
3948 * probably isn't), but whenever we close off and commit a journal transaction,
3949 * the contents of (the filesystem + the journal) must be consistent and
3950 * restartable. It's pretty simple, really: bottom up, right to left (although
3951 * left-to-right works OK too).
3952 *
3953 * Note that at recovery time, journal replay occurs *before* the restart of
3954 * truncate against the orphan inode list.
3955 *
3956 * The committed inode has the new, desired i_size (which is the same as
617ba13b 3957 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
ac27a0ec 3958 * that this inode's truncate did not complete and it will again call
617ba13b
MC
3959 * ext4_truncate() to have another go. So there will be instantiated blocks
3960 * to the right of the truncation point in a crashed ext4 filesystem. But
ac27a0ec 3961 * that's fine - as long as they are linked from the inode, the post-crash
617ba13b 3962 * ext4_truncate() run will find them and release them.
ac27a0ec 3963 */
617ba13b 3964void ext4_truncate(struct inode *inode)
ac27a0ec 3965{
819c4920
TT
3966 struct ext4_inode_info *ei = EXT4_I(inode);
3967 unsigned int credits;
3968 handle_t *handle;
3969 struct address_space *mapping = inode->i_mapping;
819c4920 3970
19b5ef61
TT
3971 /*
3972 * There is a possibility that we're either freeing the inode
e04027e8 3973 * or it's a completely new inode. In those cases we might not
19b5ef61
TT
3974 * have i_mutex locked because it's not necessary.
3975 */
3976 if (!(inode->i_state & (I_NEW|I_FREEING)))
5955102c 3977 WARN_ON(!inode_is_locked(inode));
0562e0ba
JZ
3978 trace_ext4_truncate_enter(inode);
3979
91ef4caf 3980 if (!ext4_can_truncate(inode))
ac27a0ec
DK
3981 return;
3982
12e9b892 3983 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
c8d46e41 3984
5534fb5b 3985 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
19f5fb7a 3986 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
7d8f9f7d 3987
aef1c851
TM
3988 if (ext4_has_inline_data(inode)) {
3989 int has_inline = 1;
3990
3991 ext4_inline_data_truncate(inode, &has_inline);
3992 if (has_inline)
3993 return;
3994 }
3995
a361293f
JK
3996 /* If we zero-out tail of the page, we have to create jinode for jbd2 */
3997 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
3998 if (ext4_inode_attach_jinode(inode) < 0)
3999 return;
4000 }
4001
819c4920
TT
4002 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4003 credits = ext4_writepage_trans_blocks(inode);
4004 else
4005 credits = ext4_blocks_for_truncate(inode);
4006
4007 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4008 if (IS_ERR(handle)) {
4009 ext4_std_error(inode->i_sb, PTR_ERR(handle));
4010 return;
4011 }
4012
eb3544c6
LC
4013 if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4014 ext4_block_truncate_page(handle, mapping, inode->i_size);
819c4920
TT
4015
4016 /*
4017 * We add the inode to the orphan list, so that if this
4018 * truncate spans multiple transactions, and we crash, we will
4019 * resume the truncate when the filesystem recovers. It also
4020 * marks the inode dirty, to catch the new size.
4021 *
4022 * Implication: the file must always be in a sane, consistent
4023 * truncatable state while each transaction commits.
4024 */
4025 if (ext4_orphan_add(handle, inode))
4026 goto out_stop;
4027
4028 down_write(&EXT4_I(inode)->i_data_sem);
4029
4030 ext4_discard_preallocations(inode);
4031
ff9893dc 4032 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
819c4920 4033 ext4_ext_truncate(handle, inode);
ff9893dc 4034 else
819c4920
TT
4035 ext4_ind_truncate(handle, inode);
4036
4037 up_write(&ei->i_data_sem);
4038
4039 if (IS_SYNC(inode))
4040 ext4_handle_sync(handle);
4041
4042out_stop:
4043 /*
4044 * If this was a simple ftruncate() and the file will remain alive,
4045 * then we need to clear up the orphan record which we created above.
4046 * However, if this was a real unlink then we were called by
58d86a50 4047 * ext4_evict_inode(), and we allow that function to clean up the
819c4920
TT
4048 * orphan info for us.
4049 */
4050 if (inode->i_nlink)
4051 ext4_orphan_del(handle, inode);
4052
4053 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4054 ext4_mark_inode_dirty(handle, inode);
4055 ext4_journal_stop(handle);
ac27a0ec 4056
0562e0ba 4057 trace_ext4_truncate_exit(inode);
ac27a0ec
DK
4058}
4059
ac27a0ec 4060/*
617ba13b 4061 * ext4_get_inode_loc returns with an extra refcount against the inode's
ac27a0ec
DK
4062 * underlying buffer_head on success. If 'in_mem' is true, we have all
4063 * data in memory that is needed to recreate the on-disk version of this
4064 * inode.
4065 */
617ba13b
MC
4066static int __ext4_get_inode_loc(struct inode *inode,
4067 struct ext4_iloc *iloc, int in_mem)
ac27a0ec 4068{
240799cd
TT
4069 struct ext4_group_desc *gdp;
4070 struct buffer_head *bh;
4071 struct super_block *sb = inode->i_sb;
4072 ext4_fsblk_t block;
4073 int inodes_per_block, inode_offset;
4074
3a06d778 4075 iloc->bh = NULL;
240799cd 4076 if (!ext4_valid_inum(sb, inode->i_ino))
6a797d27 4077 return -EFSCORRUPTED;
ac27a0ec 4078
240799cd
TT
4079 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4080 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4081 if (!gdp)
ac27a0ec
DK
4082 return -EIO;
4083
240799cd
TT
4084 /*
4085 * Figure out the offset within the block group inode table
4086 */
00d09882 4087 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
240799cd
TT
4088 inode_offset = ((inode->i_ino - 1) %
4089 EXT4_INODES_PER_GROUP(sb));
4090 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4091 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4092
4093 bh = sb_getblk(sb, block);
aebf0243 4094 if (unlikely(!bh))
860d21e2 4095 return -ENOMEM;
ac27a0ec
DK
4096 if (!buffer_uptodate(bh)) {
4097 lock_buffer(bh);
9c83a923
HK
4098
4099 /*
4100 * If the buffer has the write error flag, we have failed
4101 * to write out another inode in the same block. In this
4102 * case, we don't have to read the block because we may
4103 * read the old inode data successfully.
4104 */
4105 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4106 set_buffer_uptodate(bh);
4107
ac27a0ec
DK
4108 if (buffer_uptodate(bh)) {
4109 /* someone brought it uptodate while we waited */
4110 unlock_buffer(bh);
4111 goto has_buffer;
4112 }
4113
4114 /*
4115 * If we have all information of the inode in memory and this
4116 * is the only valid inode in the block, we need not read the
4117 * block.
4118 */
4119 if (in_mem) {
4120 struct buffer_head *bitmap_bh;
240799cd 4121 int i, start;
ac27a0ec 4122
240799cd 4123 start = inode_offset & ~(inodes_per_block - 1);
ac27a0ec 4124
240799cd
TT
4125 /* Is the inode bitmap in cache? */
4126 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
aebf0243 4127 if (unlikely(!bitmap_bh))
ac27a0ec
DK
4128 goto make_io;
4129
4130 /*
4131 * If the inode bitmap isn't in cache then the
4132 * optimisation may end up performing two reads instead
4133 * of one, so skip it.
4134 */
4135 if (!buffer_uptodate(bitmap_bh)) {
4136 brelse(bitmap_bh);
4137 goto make_io;
4138 }
240799cd 4139 for (i = start; i < start + inodes_per_block; i++) {
ac27a0ec
DK
4140 if (i == inode_offset)
4141 continue;
617ba13b 4142 if (ext4_test_bit(i, bitmap_bh->b_data))
ac27a0ec
DK
4143 break;
4144 }
4145 brelse(bitmap_bh);
240799cd 4146 if (i == start + inodes_per_block) {
ac27a0ec
DK
4147 /* all other inodes are free, so skip I/O */
4148 memset(bh->b_data, 0, bh->b_size);
4149 set_buffer_uptodate(bh);
4150 unlock_buffer(bh);
4151 goto has_buffer;
4152 }
4153 }
4154
4155make_io:
240799cd
TT
4156 /*
4157 * If we need to do any I/O, try to pre-readahead extra
4158 * blocks from the inode table.
4159 */
4160 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4161 ext4_fsblk_t b, end, table;
4162 unsigned num;
0d606e2c 4163 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
240799cd
TT
4164
4165 table = ext4_inode_table(sb, gdp);
b713a5ec 4166 /* s_inode_readahead_blks is always a power of 2 */
0d606e2c 4167 b = block & ~((ext4_fsblk_t) ra_blks - 1);
240799cd
TT
4168 if (table > b)
4169 b = table;
0d606e2c 4170 end = b + ra_blks;
240799cd 4171 num = EXT4_INODES_PER_GROUP(sb);
feb0ab32 4172 if (ext4_has_group_desc_csum(sb))
560671a0 4173 num -= ext4_itable_unused_count(sb, gdp);
240799cd
TT
4174 table += num / inodes_per_block;
4175 if (end > table)
4176 end = table;
4177 while (b <= end)
4178 sb_breadahead(sb, b++);
4179 }
4180
ac27a0ec
DK
4181 /*
4182 * There are other valid inodes in the buffer, this inode
4183 * has in-inode xattrs, or we don't have this inode in memory.
4184 * Read the block from disk.
4185 */
0562e0ba 4186 trace_ext4_load_inode(inode);
ac27a0ec
DK
4187 get_bh(bh);
4188 bh->b_end_io = end_buffer_read_sync;
65299a3b 4189 submit_bh(READ | REQ_META | REQ_PRIO, bh);
ac27a0ec
DK
4190 wait_on_buffer(bh);
4191 if (!buffer_uptodate(bh)) {
c398eda0
TT
4192 EXT4_ERROR_INODE_BLOCK(inode, block,
4193 "unable to read itable block");
ac27a0ec
DK
4194 brelse(bh);
4195 return -EIO;
4196 }
4197 }
4198has_buffer:
4199 iloc->bh = bh;
4200 return 0;
4201}
4202
617ba13b 4203int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
4204{
4205 /* We have all inode data except xattrs in memory here. */
617ba13b 4206 return __ext4_get_inode_loc(inode, iloc,
19f5fb7a 4207 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
ac27a0ec
DK
4208}
4209
617ba13b 4210void ext4_set_inode_flags(struct inode *inode)
ac27a0ec 4211{
617ba13b 4212 unsigned int flags = EXT4_I(inode)->i_flags;
00a1a053 4213 unsigned int new_fl = 0;
ac27a0ec 4214
617ba13b 4215 if (flags & EXT4_SYNC_FL)
00a1a053 4216 new_fl |= S_SYNC;
617ba13b 4217 if (flags & EXT4_APPEND_FL)
00a1a053 4218 new_fl |= S_APPEND;
617ba13b 4219 if (flags & EXT4_IMMUTABLE_FL)
00a1a053 4220 new_fl |= S_IMMUTABLE;
617ba13b 4221 if (flags & EXT4_NOATIME_FL)
00a1a053 4222 new_fl |= S_NOATIME;
617ba13b 4223 if (flags & EXT4_DIRSYNC_FL)
00a1a053 4224 new_fl |= S_DIRSYNC;
0a6cf913 4225 if (test_opt(inode->i_sb, DAX) && S_ISREG(inode->i_mode))
923ae0ff 4226 new_fl |= S_DAX;
5f16f322 4227 inode_set_flags(inode, new_fl,
923ae0ff 4228 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX);
ac27a0ec
DK
4229}
4230
ff9ddf7e
JK
4231/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4232void ext4_get_inode_flags(struct ext4_inode_info *ei)
4233{
84a8dce2
DM
4234 unsigned int vfs_fl;
4235 unsigned long old_fl, new_fl;
4236
4237 do {
4238 vfs_fl = ei->vfs_inode.i_flags;
4239 old_fl = ei->i_flags;
4240 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4241 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
4242 EXT4_DIRSYNC_FL);
4243 if (vfs_fl & S_SYNC)
4244 new_fl |= EXT4_SYNC_FL;
4245 if (vfs_fl & S_APPEND)
4246 new_fl |= EXT4_APPEND_FL;
4247 if (vfs_fl & S_IMMUTABLE)
4248 new_fl |= EXT4_IMMUTABLE_FL;
4249 if (vfs_fl & S_NOATIME)
4250 new_fl |= EXT4_NOATIME_FL;
4251 if (vfs_fl & S_DIRSYNC)
4252 new_fl |= EXT4_DIRSYNC_FL;
4253 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
ff9ddf7e 4254}
de9a55b8 4255
0fc1b451 4256static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
de9a55b8 4257 struct ext4_inode_info *ei)
0fc1b451
AK
4258{
4259 blkcnt_t i_blocks ;
8180a562
AK
4260 struct inode *inode = &(ei->vfs_inode);
4261 struct super_block *sb = inode->i_sb;
0fc1b451 4262
e2b911c5 4263 if (ext4_has_feature_huge_file(sb)) {
0fc1b451
AK
4264 /* we are using combined 48 bit field */
4265 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4266 le32_to_cpu(raw_inode->i_blocks_lo);
07a03824 4267 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
8180a562
AK
4268 /* i_blocks represent file system block size */
4269 return i_blocks << (inode->i_blkbits - 9);
4270 } else {
4271 return i_blocks;
4272 }
0fc1b451
AK
4273 } else {
4274 return le32_to_cpu(raw_inode->i_blocks_lo);
4275 }
4276}
ff9ddf7e 4277
152a7b0a
TM
4278static inline void ext4_iget_extra_inode(struct inode *inode,
4279 struct ext4_inode *raw_inode,
4280 struct ext4_inode_info *ei)
4281{
4282 __le32 *magic = (void *)raw_inode +
4283 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
67cf5b09 4284 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
152a7b0a 4285 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
67cf5b09 4286 ext4_find_inline_data_nolock(inode);
f19d5870
TM
4287 } else
4288 EXT4_I(inode)->i_inline_off = 0;
152a7b0a
TM
4289}
4290
040cb378
LX
4291int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4292{
4293 if (!EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb, EXT4_FEATURE_RO_COMPAT_PROJECT))
4294 return -EOPNOTSUPP;
4295 *projid = EXT4_I(inode)->i_projid;
4296 return 0;
4297}
4298
1d1fe1ee 4299struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
ac27a0ec 4300{
617ba13b
MC
4301 struct ext4_iloc iloc;
4302 struct ext4_inode *raw_inode;
1d1fe1ee 4303 struct ext4_inode_info *ei;
1d1fe1ee 4304 struct inode *inode;
b436b9be 4305 journal_t *journal = EXT4_SB(sb)->s_journal;
1d1fe1ee 4306 long ret;
ac27a0ec 4307 int block;
08cefc7a
EB
4308 uid_t i_uid;
4309 gid_t i_gid;
040cb378 4310 projid_t i_projid;
ac27a0ec 4311
1d1fe1ee
DH
4312 inode = iget_locked(sb, ino);
4313 if (!inode)
4314 return ERR_PTR(-ENOMEM);
4315 if (!(inode->i_state & I_NEW))
4316 return inode;
4317
4318 ei = EXT4_I(inode);
7dc57615 4319 iloc.bh = NULL;
ac27a0ec 4320
1d1fe1ee
DH
4321 ret = __ext4_get_inode_loc(inode, &iloc, 0);
4322 if (ret < 0)
ac27a0ec 4323 goto bad_inode;
617ba13b 4324 raw_inode = ext4_raw_inode(&iloc);
814525f4
DW
4325
4326 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4327 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4328 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4329 EXT4_INODE_SIZE(inode->i_sb)) {
4330 EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
4331 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
4332 EXT4_INODE_SIZE(inode->i_sb));
6a797d27 4333 ret = -EFSCORRUPTED;
814525f4
DW
4334 goto bad_inode;
4335 }
4336 } else
4337 ei->i_extra_isize = 0;
4338
4339 /* Precompute checksum seed for inode metadata */
9aa5d32b 4340 if (ext4_has_metadata_csum(sb)) {
814525f4
DW
4341 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4342 __u32 csum;
4343 __le32 inum = cpu_to_le32(inode->i_ino);
4344 __le32 gen = raw_inode->i_generation;
4345 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4346 sizeof(inum));
4347 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4348 sizeof(gen));
4349 }
4350
4351 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4352 EXT4_ERROR_INODE(inode, "checksum invalid");
6a797d27 4353 ret = -EFSBADCRC;
814525f4
DW
4354 goto bad_inode;
4355 }
4356
ac27a0ec 4357 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
08cefc7a
EB
4358 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4359 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
040cb378
LX
4360 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_PROJECT) &&
4361 EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4362 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4363 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4364 else
4365 i_projid = EXT4_DEF_PROJID;
4366
af5bc92d 4367 if (!(test_opt(inode->i_sb, NO_UID32))) {
08cefc7a
EB
4368 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4369 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
ac27a0ec 4370 }
08cefc7a
EB
4371 i_uid_write(inode, i_uid);
4372 i_gid_write(inode, i_gid);
040cb378 4373 ei->i_projid = make_kprojid(&init_user_ns, i_projid);
bfe86848 4374 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
ac27a0ec 4375
353eb83c 4376 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
67cf5b09 4377 ei->i_inline_off = 0;
ac27a0ec
DK
4378 ei->i_dir_start_lookup = 0;
4379 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4380 /* We now have enough fields to check if the inode was active or not.
4381 * This is needed because nfsd might try to access dead inodes
4382 * the test is that same one that e2fsck uses
4383 * NeilBrown 1999oct15
4384 */
4385 if (inode->i_nlink == 0) {
393d1d1d
DTB
4386 if ((inode->i_mode == 0 ||
4387 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4388 ino != EXT4_BOOT_LOADER_INO) {
ac27a0ec 4389 /* this inode is deleted */
1d1fe1ee 4390 ret = -ESTALE;
ac27a0ec
DK
4391 goto bad_inode;
4392 }
4393 /* The only unlinked inodes we let through here have
4394 * valid i_mode and are being read by the orphan
4395 * recovery code: that's fine, we're about to complete
393d1d1d
DTB
4396 * the process of deleting those.
4397 * OR it is the EXT4_BOOT_LOADER_INO which is
4398 * not initialized on a new filesystem. */
ac27a0ec 4399 }
ac27a0ec 4400 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
0fc1b451 4401 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
7973c0c1 4402 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
e2b911c5 4403 if (ext4_has_feature_64bit(sb))
a1ddeb7e
BP
4404 ei->i_file_acl |=
4405 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
a48380f7 4406 inode->i_size = ext4_isize(raw_inode);
ac27a0ec 4407 ei->i_disksize = inode->i_size;
a9e7f447
DM
4408#ifdef CONFIG_QUOTA
4409 ei->i_reserved_quota = 0;
4410#endif
ac27a0ec
DK
4411 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4412 ei->i_block_group = iloc.block_group;
a4912123 4413 ei->i_last_alloc_group = ~0;
ac27a0ec
DK
4414 /*
4415 * NOTE! The in-memory inode i_data array is in little-endian order
4416 * even on big-endian machines: we do NOT byteswap the block numbers!
4417 */
617ba13b 4418 for (block = 0; block < EXT4_N_BLOCKS; block++)
ac27a0ec
DK
4419 ei->i_data[block] = raw_inode->i_block[block];
4420 INIT_LIST_HEAD(&ei->i_orphan);
4421
b436b9be
JK
4422 /*
4423 * Set transaction id's of transactions that have to be committed
4424 * to finish f[data]sync. We set them to currently running transaction
4425 * as we cannot be sure that the inode or some of its metadata isn't
4426 * part of the transaction - the inode could have been reclaimed and
4427 * now it is reread from disk.
4428 */
4429 if (journal) {
4430 transaction_t *transaction;
4431 tid_t tid;
4432
a931da6a 4433 read_lock(&journal->j_state_lock);
b436b9be
JK
4434 if (journal->j_running_transaction)
4435 transaction = journal->j_running_transaction;
4436 else
4437 transaction = journal->j_committing_transaction;
4438 if (transaction)
4439 tid = transaction->t_tid;
4440 else
4441 tid = journal->j_commit_sequence;
a931da6a 4442 read_unlock(&journal->j_state_lock);
b436b9be
JK
4443 ei->i_sync_tid = tid;
4444 ei->i_datasync_tid = tid;
4445 }
4446
0040d987 4447 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
ac27a0ec
DK
4448 if (ei->i_extra_isize == 0) {
4449 /* The extra space is currently unused. Use it. */
617ba13b
MC
4450 ei->i_extra_isize = sizeof(struct ext4_inode) -
4451 EXT4_GOOD_OLD_INODE_SIZE;
ac27a0ec 4452 } else {
152a7b0a 4453 ext4_iget_extra_inode(inode, raw_inode, ei);
ac27a0ec 4454 }
814525f4 4455 }
ac27a0ec 4456
ef7f3835
KS
4457 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4458 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4459 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4460 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4461
ed3654eb 4462 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
c4f65706
TT
4463 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4464 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4465 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4466 inode->i_version |=
4467 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4468 }
25ec56b5
JNC
4469 }
4470
c4b5a614 4471 ret = 0;
485c26ec 4472 if (ei->i_file_acl &&
1032988c 4473 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
24676da4
TT
4474 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4475 ei->i_file_acl);
6a797d27 4476 ret = -EFSCORRUPTED;
485c26ec 4477 goto bad_inode;
f19d5870
TM
4478 } else if (!ext4_has_inline_data(inode)) {
4479 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4480 if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4481 (S_ISLNK(inode->i_mode) &&
4482 !ext4_inode_is_fast_symlink(inode))))
4483 /* Validate extent which is part of inode */
4484 ret = ext4_ext_check_inode(inode);
4485 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4486 (S_ISLNK(inode->i_mode) &&
4487 !ext4_inode_is_fast_symlink(inode))) {
4488 /* Validate block references which are part of inode */
4489 ret = ext4_ind_check_inode(inode);
4490 }
fe2c8191 4491 }
567f3e9a 4492 if (ret)
de9a55b8 4493 goto bad_inode;
7a262f7c 4494
ac27a0ec 4495 if (S_ISREG(inode->i_mode)) {
617ba13b 4496 inode->i_op = &ext4_file_inode_operations;
be64f884 4497 inode->i_fop = &ext4_file_operations;
617ba13b 4498 ext4_set_aops(inode);
ac27a0ec 4499 } else if (S_ISDIR(inode->i_mode)) {
617ba13b
MC
4500 inode->i_op = &ext4_dir_inode_operations;
4501 inode->i_fop = &ext4_dir_operations;
ac27a0ec 4502 } else if (S_ISLNK(inode->i_mode)) {
a7a67e8a
AV
4503 if (ext4_encrypted_inode(inode)) {
4504 inode->i_op = &ext4_encrypted_symlink_inode_operations;
4505 ext4_set_aops(inode);
4506 } else if (ext4_inode_is_fast_symlink(inode)) {
75e7566b 4507 inode->i_link = (char *)ei->i_data;
617ba13b 4508 inode->i_op = &ext4_fast_symlink_inode_operations;
e83c1397
DG
4509 nd_terminate_link(ei->i_data, inode->i_size,
4510 sizeof(ei->i_data) - 1);
4511 } else {
617ba13b
MC
4512 inode->i_op = &ext4_symlink_inode_operations;
4513 ext4_set_aops(inode);
ac27a0ec 4514 }
21fc61c7 4515 inode_nohighmem(inode);
563bdd61
TT
4516 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4517 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
617ba13b 4518 inode->i_op = &ext4_special_inode_operations;
ac27a0ec
DK
4519 if (raw_inode->i_block[0])
4520 init_special_inode(inode, inode->i_mode,
4521 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4522 else
4523 init_special_inode(inode, inode->i_mode,
4524 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
393d1d1d
DTB
4525 } else if (ino == EXT4_BOOT_LOADER_INO) {
4526 make_bad_inode(inode);
563bdd61 4527 } else {
6a797d27 4528 ret = -EFSCORRUPTED;
24676da4 4529 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
563bdd61 4530 goto bad_inode;
ac27a0ec 4531 }
af5bc92d 4532 brelse(iloc.bh);
617ba13b 4533 ext4_set_inode_flags(inode);
1d1fe1ee
DH
4534 unlock_new_inode(inode);
4535 return inode;
ac27a0ec
DK
4536
4537bad_inode:
567f3e9a 4538 brelse(iloc.bh);
1d1fe1ee
DH
4539 iget_failed(inode);
4540 return ERR_PTR(ret);
ac27a0ec
DK
4541}
4542
f4bb2981
TT
4543struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino)
4544{
4545 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
6a797d27 4546 return ERR_PTR(-EFSCORRUPTED);
f4bb2981
TT
4547 return ext4_iget(sb, ino);
4548}
4549
0fc1b451
AK
4550static int ext4_inode_blocks_set(handle_t *handle,
4551 struct ext4_inode *raw_inode,
4552 struct ext4_inode_info *ei)
4553{
4554 struct inode *inode = &(ei->vfs_inode);
4555 u64 i_blocks = inode->i_blocks;
4556 struct super_block *sb = inode->i_sb;
0fc1b451
AK
4557
4558 if (i_blocks <= ~0U) {
4559 /*
4907cb7b 4560 * i_blocks can be represented in a 32 bit variable
0fc1b451
AK
4561 * as multiple of 512 bytes
4562 */
8180a562 4563 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 4564 raw_inode->i_blocks_high = 0;
84a8dce2 4565 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
f287a1a5
TT
4566 return 0;
4567 }
e2b911c5 4568 if (!ext4_has_feature_huge_file(sb))
f287a1a5
TT
4569 return -EFBIG;
4570
4571 if (i_blocks <= 0xffffffffffffULL) {
0fc1b451
AK
4572 /*
4573 * i_blocks can be represented in a 48 bit variable
4574 * as multiple of 512 bytes
4575 */
8180a562 4576 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 4577 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
84a8dce2 4578 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
0fc1b451 4579 } else {
84a8dce2 4580 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
8180a562
AK
4581 /* i_block is stored in file system block size */
4582 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4583 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4584 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
0fc1b451 4585 }
f287a1a5 4586 return 0;
0fc1b451
AK
4587}
4588
a26f4992
TT
4589struct other_inode {
4590 unsigned long orig_ino;
4591 struct ext4_inode *raw_inode;
4592};
4593
4594static int other_inode_match(struct inode * inode, unsigned long ino,
4595 void *data)
4596{
4597 struct other_inode *oi = (struct other_inode *) data;
4598
4599 if ((inode->i_ino != ino) ||
4600 (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4601 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
4602 ((inode->i_state & I_DIRTY_TIME) == 0))
4603 return 0;
4604 spin_lock(&inode->i_lock);
4605 if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4606 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) == 0) &&
4607 (inode->i_state & I_DIRTY_TIME)) {
4608 struct ext4_inode_info *ei = EXT4_I(inode);
4609
4610 inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED);
4611 spin_unlock(&inode->i_lock);
4612
4613 spin_lock(&ei->i_raw_lock);
4614 EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode);
4615 EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode);
4616 EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode);
4617 ext4_inode_csum_set(inode, oi->raw_inode, ei);
4618 spin_unlock(&ei->i_raw_lock);
4619 trace_ext4_other_inode_update_time(inode, oi->orig_ino);
4620 return -1;
4621 }
4622 spin_unlock(&inode->i_lock);
4623 return -1;
4624}
4625
4626/*
4627 * Opportunistically update the other time fields for other inodes in
4628 * the same inode table block.
4629 */
4630static void ext4_update_other_inodes_time(struct super_block *sb,
4631 unsigned long orig_ino, char *buf)
4632{
4633 struct other_inode oi;
4634 unsigned long ino;
4635 int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4636 int inode_size = EXT4_INODE_SIZE(sb);
4637
4638 oi.orig_ino = orig_ino;
0f0ff9a9
TT
4639 /*
4640 * Calculate the first inode in the inode table block. Inode
4641 * numbers are one-based. That is, the first inode in a block
4642 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
4643 */
4644 ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
a26f4992
TT
4645 for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
4646 if (ino == orig_ino)
4647 continue;
4648 oi.raw_inode = (struct ext4_inode *) buf;
4649 (void) find_inode_nowait(sb, ino, other_inode_match, &oi);
4650 }
4651}
4652
ac27a0ec
DK
4653/*
4654 * Post the struct inode info into an on-disk inode location in the
4655 * buffer-cache. This gobbles the caller's reference to the
4656 * buffer_head in the inode location struct.
4657 *
4658 * The caller must have write access to iloc->bh.
4659 */
617ba13b 4660static int ext4_do_update_inode(handle_t *handle,
ac27a0ec 4661 struct inode *inode,
830156c7 4662 struct ext4_iloc *iloc)
ac27a0ec 4663{
617ba13b
MC
4664 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4665 struct ext4_inode_info *ei = EXT4_I(inode);
ac27a0ec 4666 struct buffer_head *bh = iloc->bh;
202ee5df 4667 struct super_block *sb = inode->i_sb;
ac27a0ec 4668 int err = 0, rc, block;
202ee5df 4669 int need_datasync = 0, set_large_file = 0;
08cefc7a
EB
4670 uid_t i_uid;
4671 gid_t i_gid;
040cb378 4672 projid_t i_projid;
ac27a0ec 4673
202ee5df
TT
4674 spin_lock(&ei->i_raw_lock);
4675
4676 /* For fields not tracked in the in-memory inode,
ac27a0ec 4677 * initialise them to zero for new inodes. */
19f5fb7a 4678 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
617ba13b 4679 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
ac27a0ec 4680
ff9ddf7e 4681 ext4_get_inode_flags(ei);
ac27a0ec 4682 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
08cefc7a
EB
4683 i_uid = i_uid_read(inode);
4684 i_gid = i_gid_read(inode);
040cb378 4685 i_projid = from_kprojid(&init_user_ns, ei->i_projid);
af5bc92d 4686 if (!(test_opt(inode->i_sb, NO_UID32))) {
08cefc7a
EB
4687 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4688 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
ac27a0ec
DK
4689/*
4690 * Fix up interoperability with old kernels. Otherwise, old inodes get
4691 * re-used with the upper 16 bits of the uid/gid intact
4692 */
af5bc92d 4693 if (!ei->i_dtime) {
ac27a0ec 4694 raw_inode->i_uid_high =
08cefc7a 4695 cpu_to_le16(high_16_bits(i_uid));
ac27a0ec 4696 raw_inode->i_gid_high =
08cefc7a 4697 cpu_to_le16(high_16_bits(i_gid));
ac27a0ec
DK
4698 } else {
4699 raw_inode->i_uid_high = 0;
4700 raw_inode->i_gid_high = 0;
4701 }
4702 } else {
08cefc7a
EB
4703 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4704 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
ac27a0ec
DK
4705 raw_inode->i_uid_high = 0;
4706 raw_inode->i_gid_high = 0;
4707 }
4708 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
ef7f3835
KS
4709
4710 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4711 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4712 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4713 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4714
bce92d56
LX
4715 err = ext4_inode_blocks_set(handle, raw_inode, ei);
4716 if (err) {
202ee5df 4717 spin_unlock(&ei->i_raw_lock);
0fc1b451 4718 goto out_brelse;
202ee5df 4719 }
ac27a0ec 4720 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
353eb83c 4721 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
ed3654eb 4722 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
a1ddeb7e
BP
4723 raw_inode->i_file_acl_high =
4724 cpu_to_le16(ei->i_file_acl >> 32);
7973c0c1 4725 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
b71fc079
JK
4726 if (ei->i_disksize != ext4_isize(raw_inode)) {
4727 ext4_isize_set(raw_inode, ei->i_disksize);
4728 need_datasync = 1;
4729 }
a48380f7 4730 if (ei->i_disksize > 0x7fffffffULL) {
e2b911c5 4731 if (!ext4_has_feature_large_file(sb) ||
a48380f7 4732 EXT4_SB(sb)->s_es->s_rev_level ==
202ee5df
TT
4733 cpu_to_le32(EXT4_GOOD_OLD_REV))
4734 set_large_file = 1;
ac27a0ec
DK
4735 }
4736 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4737 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4738 if (old_valid_dev(inode->i_rdev)) {
4739 raw_inode->i_block[0] =
4740 cpu_to_le32(old_encode_dev(inode->i_rdev));
4741 raw_inode->i_block[1] = 0;
4742 } else {
4743 raw_inode->i_block[0] = 0;
4744 raw_inode->i_block[1] =
4745 cpu_to_le32(new_encode_dev(inode->i_rdev));
4746 raw_inode->i_block[2] = 0;
4747 }
f19d5870 4748 } else if (!ext4_has_inline_data(inode)) {
de9a55b8
TT
4749 for (block = 0; block < EXT4_N_BLOCKS; block++)
4750 raw_inode->i_block[block] = ei->i_data[block];
f19d5870 4751 }
ac27a0ec 4752
ed3654eb 4753 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
c4f65706
TT
4754 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4755 if (ei->i_extra_isize) {
4756 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4757 raw_inode->i_version_hi =
4758 cpu_to_le32(inode->i_version >> 32);
4759 raw_inode->i_extra_isize =
4760 cpu_to_le16(ei->i_extra_isize);
4761 }
25ec56b5 4762 }
040cb378
LX
4763
4764 BUG_ON(!EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
4765 EXT4_FEATURE_RO_COMPAT_PROJECT) &&
4766 i_projid != EXT4_DEF_PROJID);
4767
4768 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4769 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4770 raw_inode->i_projid = cpu_to_le32(i_projid);
4771
814525f4 4772 ext4_inode_csum_set(inode, raw_inode, ei);
202ee5df 4773 spin_unlock(&ei->i_raw_lock);
a26f4992
TT
4774 if (inode->i_sb->s_flags & MS_LAZYTIME)
4775 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
4776 bh->b_data);
202ee5df 4777
830156c7 4778 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
73b50c1c 4779 rc = ext4_handle_dirty_metadata(handle, NULL, bh);
830156c7
FM
4780 if (!err)
4781 err = rc;
19f5fb7a 4782 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
202ee5df 4783 if (set_large_file) {
5d601255 4784 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
202ee5df
TT
4785 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
4786 if (err)
4787 goto out_brelse;
4788 ext4_update_dynamic_rev(sb);
e2b911c5 4789 ext4_set_feature_large_file(sb);
202ee5df
TT
4790 ext4_handle_sync(handle);
4791 err = ext4_handle_dirty_super(handle, sb);
4792 }
b71fc079 4793 ext4_update_inode_fsync_trans(handle, inode, need_datasync);
ac27a0ec 4794out_brelse:
af5bc92d 4795 brelse(bh);
617ba13b 4796 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4797 return err;
4798}
4799
4800/*
617ba13b 4801 * ext4_write_inode()
ac27a0ec
DK
4802 *
4803 * We are called from a few places:
4804 *
87f7e416 4805 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
ac27a0ec 4806 * Here, there will be no transaction running. We wait for any running
4907cb7b 4807 * transaction to commit.
ac27a0ec 4808 *
87f7e416
TT
4809 * - Within flush work (sys_sync(), kupdate and such).
4810 * We wait on commit, if told to.
ac27a0ec 4811 *
87f7e416
TT
4812 * - Within iput_final() -> write_inode_now()
4813 * We wait on commit, if told to.
ac27a0ec
DK
4814 *
4815 * In all cases it is actually safe for us to return without doing anything,
4816 * because the inode has been copied into a raw inode buffer in
87f7e416
TT
4817 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL
4818 * writeback.
ac27a0ec
DK
4819 *
4820 * Note that we are absolutely dependent upon all inode dirtiers doing the
4821 * right thing: they *must* call mark_inode_dirty() after dirtying info in
4822 * which we are interested.
4823 *
4824 * It would be a bug for them to not do this. The code:
4825 *
4826 * mark_inode_dirty(inode)
4827 * stuff();
4828 * inode->i_size = expr;
4829 *
87f7e416
TT
4830 * is in error because write_inode() could occur while `stuff()' is running,
4831 * and the new i_size will be lost. Plus the inode will no longer be on the
4832 * superblock's dirty inode list.
ac27a0ec 4833 */
a9185b41 4834int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
ac27a0ec 4835{
91ac6f43
FM
4836 int err;
4837
87f7e416 4838 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
ac27a0ec
DK
4839 return 0;
4840
91ac6f43
FM
4841 if (EXT4_SB(inode->i_sb)->s_journal) {
4842 if (ext4_journal_current_handle()) {
4843 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4844 dump_stack();
4845 return -EIO;
4846 }
ac27a0ec 4847
10542c22
JK
4848 /*
4849 * No need to force transaction in WB_SYNC_NONE mode. Also
4850 * ext4_sync_fs() will force the commit after everything is
4851 * written.
4852 */
4853 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
91ac6f43
FM
4854 return 0;
4855
4856 err = ext4_force_commit(inode->i_sb);
4857 } else {
4858 struct ext4_iloc iloc;
ac27a0ec 4859
8b472d73 4860 err = __ext4_get_inode_loc(inode, &iloc, 0);
91ac6f43
FM
4861 if (err)
4862 return err;
10542c22
JK
4863 /*
4864 * sync(2) will flush the whole buffer cache. No need to do
4865 * it here separately for each inode.
4866 */
4867 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
830156c7
FM
4868 sync_dirty_buffer(iloc.bh);
4869 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
c398eda0
TT
4870 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4871 "IO error syncing inode");
830156c7
FM
4872 err = -EIO;
4873 }
fd2dd9fb 4874 brelse(iloc.bh);
91ac6f43
FM
4875 }
4876 return err;
ac27a0ec
DK
4877}
4878
53e87268
JK
4879/*
4880 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4881 * buffers that are attached to a page stradding i_size and are undergoing
4882 * commit. In that case we have to wait for commit to finish and try again.
4883 */
4884static void ext4_wait_for_tail_page_commit(struct inode *inode)
4885{
4886 struct page *page;
4887 unsigned offset;
4888 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4889 tid_t commit_tid = 0;
4890 int ret;
4891
09cbfeaf 4892 offset = inode->i_size & (PAGE_SIZE - 1);
53e87268
JK
4893 /*
4894 * All buffers in the last page remain valid? Then there's nothing to
ea1754a0 4895 * do. We do the check mainly to optimize the common PAGE_SIZE ==
53e87268
JK
4896 * blocksize case
4897 */
09cbfeaf 4898 if (offset > PAGE_SIZE - (1 << inode->i_blkbits))
53e87268
JK
4899 return;
4900 while (1) {
4901 page = find_lock_page(inode->i_mapping,
09cbfeaf 4902 inode->i_size >> PAGE_SHIFT);
53e87268
JK
4903 if (!page)
4904 return;
ca99fdd2 4905 ret = __ext4_journalled_invalidatepage(page, offset,
09cbfeaf 4906 PAGE_SIZE - offset);
53e87268 4907 unlock_page(page);
09cbfeaf 4908 put_page(page);
53e87268
JK
4909 if (ret != -EBUSY)
4910 return;
4911 commit_tid = 0;
4912 read_lock(&journal->j_state_lock);
4913 if (journal->j_committing_transaction)
4914 commit_tid = journal->j_committing_transaction->t_tid;
4915 read_unlock(&journal->j_state_lock);
4916 if (commit_tid)
4917 jbd2_log_wait_commit(journal, commit_tid);
4918 }
4919}
4920
ac27a0ec 4921/*
617ba13b 4922 * ext4_setattr()
ac27a0ec
DK
4923 *
4924 * Called from notify_change.
4925 *
4926 * We want to trap VFS attempts to truncate the file as soon as
4927 * possible. In particular, we want to make sure that when the VFS
4928 * shrinks i_size, we put the inode on the orphan list and modify
4929 * i_disksize immediately, so that during the subsequent flushing of
4930 * dirty pages and freeing of disk blocks, we can guarantee that any
4931 * commit will leave the blocks being flushed in an unused state on
4932 * disk. (On recovery, the inode will get truncated and the blocks will
4933 * be freed, so we have a strong guarantee that no future commit will
4934 * leave these blocks visible to the user.)
4935 *
678aaf48
JK
4936 * Another thing we have to assure is that if we are in ordered mode
4937 * and inode is still attached to the committing transaction, we must
4938 * we start writeout of all the dirty pages which are being truncated.
4939 * This way we are sure that all the data written in the previous
4940 * transaction are already on disk (truncate waits for pages under
4941 * writeback).
4942 *
4943 * Called with inode->i_mutex down.
ac27a0ec 4944 */
617ba13b 4945int ext4_setattr(struct dentry *dentry, struct iattr *attr)
ac27a0ec 4946{
2b0143b5 4947 struct inode *inode = d_inode(dentry);
ac27a0ec 4948 int error, rc = 0;
3d287de3 4949 int orphan = 0;
ac27a0ec
DK
4950 const unsigned int ia_valid = attr->ia_valid;
4951
4952 error = inode_change_ok(inode, attr);
4953 if (error)
4954 return error;
4955
a7cdadee
JK
4956 if (is_quota_modification(inode, attr)) {
4957 error = dquot_initialize(inode);
4958 if (error)
4959 return error;
4960 }
08cefc7a
EB
4961 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4962 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
ac27a0ec
DK
4963 handle_t *handle;
4964
4965 /* (user+group)*(old+new) structure, inode write (sb,
4966 * inode block, ? - but truncate inode update has it) */
9924a92a
TT
4967 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4968 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
4969 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
ac27a0ec
DK
4970 if (IS_ERR(handle)) {
4971 error = PTR_ERR(handle);
4972 goto err_out;
4973 }
b43fa828 4974 error = dquot_transfer(inode, attr);
ac27a0ec 4975 if (error) {
617ba13b 4976 ext4_journal_stop(handle);
ac27a0ec
DK
4977 return error;
4978 }
4979 /* Update corresponding info in inode so that everything is in
4980 * one transaction */
4981 if (attr->ia_valid & ATTR_UID)
4982 inode->i_uid = attr->ia_uid;
4983 if (attr->ia_valid & ATTR_GID)
4984 inode->i_gid = attr->ia_gid;
617ba13b
MC
4985 error = ext4_mark_inode_dirty(handle, inode);
4986 ext4_journal_stop(handle);
ac27a0ec
DK
4987 }
4988
3da40c7b 4989 if (attr->ia_valid & ATTR_SIZE) {
5208386c 4990 handle_t *handle;
3da40c7b
JB
4991 loff_t oldsize = inode->i_size;
4992 int shrink = (attr->ia_size <= inode->i_size);
562c72aa 4993
12e9b892 4994 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
e2b46574
ES
4995 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4996
0c095c7f
TT
4997 if (attr->ia_size > sbi->s_bitmap_maxbytes)
4998 return -EFBIG;
e2b46574 4999 }
3da40c7b
JB
5000 if (!S_ISREG(inode->i_mode))
5001 return -EINVAL;
dff6efc3
CH
5002
5003 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
5004 inode_inc_iversion(inode);
5005
3da40c7b 5006 if (ext4_should_order_data(inode) &&
5208386c 5007 (attr->ia_size < inode->i_size)) {
3da40c7b 5008 error = ext4_begin_ordered_truncate(inode,
678aaf48 5009 attr->ia_size);
3da40c7b
JB
5010 if (error)
5011 goto err_out;
5012 }
5013 if (attr->ia_size != inode->i_size) {
5208386c
JK
5014 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5015 if (IS_ERR(handle)) {
5016 error = PTR_ERR(handle);
5017 goto err_out;
5018 }
3da40c7b 5019 if (ext4_handle_valid(handle) && shrink) {
5208386c
JK
5020 error = ext4_orphan_add(handle, inode);
5021 orphan = 1;
5022 }
911af577
EG
5023 /*
5024 * Update c/mtime on truncate up, ext4_truncate() will
5025 * update c/mtime in shrink case below
5026 */
5027 if (!shrink) {
5028 inode->i_mtime = ext4_current_time(inode);
5029 inode->i_ctime = inode->i_mtime;
5030 }
90e775b7 5031 down_write(&EXT4_I(inode)->i_data_sem);
5208386c
JK
5032 EXT4_I(inode)->i_disksize = attr->ia_size;
5033 rc = ext4_mark_inode_dirty(handle, inode);
5034 if (!error)
5035 error = rc;
90e775b7
JK
5036 /*
5037 * We have to update i_size under i_data_sem together
5038 * with i_disksize to avoid races with writeback code
5039 * running ext4_wb_update_i_disksize().
5040 */
5041 if (!error)
5042 i_size_write(inode, attr->ia_size);
5043 up_write(&EXT4_I(inode)->i_data_sem);
5208386c
JK
5044 ext4_journal_stop(handle);
5045 if (error) {
3da40c7b
JB
5046 if (orphan)
5047 ext4_orphan_del(NULL, inode);
678aaf48
JK
5048 goto err_out;
5049 }
d6320cbf 5050 }
3da40c7b
JB
5051 if (!shrink)
5052 pagecache_isize_extended(inode, oldsize, inode->i_size);
53e87268 5053
5208386c
JK
5054 /*
5055 * Blocks are going to be removed from the inode. Wait
5056 * for dio in flight. Temporarily disable
5057 * dioread_nolock to prevent livelock.
5058 */
5059 if (orphan) {
5060 if (!ext4_should_journal_data(inode)) {
5061 ext4_inode_block_unlocked_dio(inode);
5062 inode_dio_wait(inode);
5063 ext4_inode_resume_unlocked_dio(inode);
5064 } else
5065 ext4_wait_for_tail_page_commit(inode);
1c9114f9 5066 }
ea3d7209 5067 down_write(&EXT4_I(inode)->i_mmap_sem);
5208386c
JK
5068 /*
5069 * Truncate pagecache after we've waited for commit
5070 * in data=journal mode to make pages freeable.
5071 */
923ae0ff 5072 truncate_pagecache(inode, inode->i_size);
3da40c7b
JB
5073 if (shrink)
5074 ext4_truncate(inode);
ea3d7209 5075 up_write(&EXT4_I(inode)->i_mmap_sem);
072bd7ea 5076 }
ac27a0ec 5077
1025774c
CH
5078 if (!rc) {
5079 setattr_copy(inode, attr);
5080 mark_inode_dirty(inode);
5081 }
5082
5083 /*
5084 * If the call to ext4_truncate failed to get a transaction handle at
5085 * all, we need to clean up the in-core orphan list manually.
5086 */
3d287de3 5087 if (orphan && inode->i_nlink)
617ba13b 5088 ext4_orphan_del(NULL, inode);
ac27a0ec
DK
5089
5090 if (!rc && (ia_valid & ATTR_MODE))
64e178a7 5091 rc = posix_acl_chmod(inode, inode->i_mode);
ac27a0ec
DK
5092
5093err_out:
617ba13b 5094 ext4_std_error(inode->i_sb, error);
ac27a0ec
DK
5095 if (!error)
5096 error = rc;
5097 return error;
5098}
5099
3e3398a0
MC
5100int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
5101 struct kstat *stat)
5102{
5103 struct inode *inode;
8af8eecc 5104 unsigned long long delalloc_blocks;
3e3398a0 5105
2b0143b5 5106 inode = d_inode(dentry);
3e3398a0
MC
5107 generic_fillattr(inode, stat);
5108
9206c561
AD
5109 /*
5110 * If there is inline data in the inode, the inode will normally not
5111 * have data blocks allocated (it may have an external xattr block).
5112 * Report at least one sector for such files, so tools like tar, rsync,
5113 * others doen't incorrectly think the file is completely sparse.
5114 */
5115 if (unlikely(ext4_has_inline_data(inode)))
5116 stat->blocks += (stat->size + 511) >> 9;
5117
3e3398a0
MC
5118 /*
5119 * We can't update i_blocks if the block allocation is delayed
5120 * otherwise in the case of system crash before the real block
5121 * allocation is done, we will have i_blocks inconsistent with
5122 * on-disk file blocks.
5123 * We always keep i_blocks updated together with real
5124 * allocation. But to not confuse with user, stat
5125 * will return the blocks that include the delayed allocation
5126 * blocks for this file.
5127 */
96607551 5128 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
9206c561
AD
5129 EXT4_I(inode)->i_reserved_data_blocks);
5130 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
3e3398a0
MC
5131 return 0;
5132}
ac27a0ec 5133
fffb2739
JK
5134static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5135 int pextents)
a02908f1 5136{
12e9b892 5137 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
fffb2739
JK
5138 return ext4_ind_trans_blocks(inode, lblocks);
5139 return ext4_ext_index_trans_blocks(inode, pextents);
a02908f1 5140}
ac51d837 5141
ac27a0ec 5142/*
a02908f1
MC
5143 * Account for index blocks, block groups bitmaps and block group
5144 * descriptor blocks if modify datablocks and index blocks
5145 * worse case, the indexs blocks spread over different block groups
ac27a0ec 5146 *
a02908f1 5147 * If datablocks are discontiguous, they are possible to spread over
4907cb7b 5148 * different block groups too. If they are contiguous, with flexbg,
a02908f1 5149 * they could still across block group boundary.
ac27a0ec 5150 *
a02908f1
MC
5151 * Also account for superblock, inode, quota and xattr blocks
5152 */
fffb2739
JK
5153static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5154 int pextents)
a02908f1 5155{
8df9675f
TT
5156 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5157 int gdpblocks;
a02908f1
MC
5158 int idxblocks;
5159 int ret = 0;
5160
5161 /*
fffb2739
JK
5162 * How many index blocks need to touch to map @lblocks logical blocks
5163 * to @pextents physical extents?
a02908f1 5164 */
fffb2739 5165 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
a02908f1
MC
5166
5167 ret = idxblocks;
5168
5169 /*
5170 * Now let's see how many group bitmaps and group descriptors need
5171 * to account
5172 */
fffb2739 5173 groups = idxblocks + pextents;
a02908f1 5174 gdpblocks = groups;
8df9675f
TT
5175 if (groups > ngroups)
5176 groups = ngroups;
a02908f1
MC
5177 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5178 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5179
5180 /* bitmaps and block group descriptor blocks */
5181 ret += groups + gdpblocks;
5182
5183 /* Blocks for super block, inode, quota and xattr blocks */
5184 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5185
5186 return ret;
5187}
5188
5189/*
25985edc 5190 * Calculate the total number of credits to reserve to fit
f3bd1f3f
MC
5191 * the modification of a single pages into a single transaction,
5192 * which may include multiple chunks of block allocations.
ac27a0ec 5193 *
525f4ed8 5194 * This could be called via ext4_write_begin()
ac27a0ec 5195 *
525f4ed8 5196 * We need to consider the worse case, when
a02908f1 5197 * one new block per extent.
ac27a0ec 5198 */
a86c6181 5199int ext4_writepage_trans_blocks(struct inode *inode)
ac27a0ec 5200{
617ba13b 5201 int bpp = ext4_journal_blocks_per_page(inode);
ac27a0ec
DK
5202 int ret;
5203
fffb2739 5204 ret = ext4_meta_trans_blocks(inode, bpp, bpp);
a86c6181 5205
a02908f1 5206 /* Account for data blocks for journalled mode */
617ba13b 5207 if (ext4_should_journal_data(inode))
a02908f1 5208 ret += bpp;
ac27a0ec
DK
5209 return ret;
5210}
f3bd1f3f
MC
5211
5212/*
5213 * Calculate the journal credits for a chunk of data modification.
5214 *
5215 * This is called from DIO, fallocate or whoever calling
79e83036 5216 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
f3bd1f3f
MC
5217 *
5218 * journal buffers for data blocks are not included here, as DIO
5219 * and fallocate do no need to journal data buffers.
5220 */
5221int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5222{
5223 return ext4_meta_trans_blocks(inode, nrblocks, 1);
5224}
5225
ac27a0ec 5226/*
617ba13b 5227 * The caller must have previously called ext4_reserve_inode_write().
ac27a0ec
DK
5228 * Give this, we know that the caller already has write access to iloc->bh.
5229 */
617ba13b 5230int ext4_mark_iloc_dirty(handle_t *handle,
de9a55b8 5231 struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
5232{
5233 int err = 0;
5234
c64db50e 5235 if (IS_I_VERSION(inode))
25ec56b5
JNC
5236 inode_inc_iversion(inode);
5237
ac27a0ec
DK
5238 /* the do_update_inode consumes one bh->b_count */
5239 get_bh(iloc->bh);
5240
dab291af 5241 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
830156c7 5242 err = ext4_do_update_inode(handle, inode, iloc);
ac27a0ec
DK
5243 put_bh(iloc->bh);
5244 return err;
5245}
5246
5247/*
5248 * On success, We end up with an outstanding reference count against
5249 * iloc->bh. This _must_ be cleaned up later.
5250 */
5251
5252int
617ba13b
MC
5253ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5254 struct ext4_iloc *iloc)
ac27a0ec 5255{
0390131b
FM
5256 int err;
5257
5258 err = ext4_get_inode_loc(inode, iloc);
5259 if (!err) {
5260 BUFFER_TRACE(iloc->bh, "get_write_access");
5261 err = ext4_journal_get_write_access(handle, iloc->bh);
5262 if (err) {
5263 brelse(iloc->bh);
5264 iloc->bh = NULL;
ac27a0ec
DK
5265 }
5266 }
617ba13b 5267 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5268 return err;
5269}
5270
6dd4ee7c
KS
5271/*
5272 * Expand an inode by new_extra_isize bytes.
5273 * Returns 0 on success or negative error number on failure.
5274 */
1d03ec98
AK
5275static int ext4_expand_extra_isize(struct inode *inode,
5276 unsigned int new_extra_isize,
5277 struct ext4_iloc iloc,
5278 handle_t *handle)
6dd4ee7c
KS
5279{
5280 struct ext4_inode *raw_inode;
5281 struct ext4_xattr_ibody_header *header;
6dd4ee7c
KS
5282
5283 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5284 return 0;
5285
5286 raw_inode = ext4_raw_inode(&iloc);
5287
5288 header = IHDR(inode, raw_inode);
6dd4ee7c
KS
5289
5290 /* No extended attributes present */
19f5fb7a
TT
5291 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5292 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
6dd4ee7c
KS
5293 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5294 new_extra_isize);
5295 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5296 return 0;
5297 }
5298
5299 /* try to expand with EAs present */
5300 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5301 raw_inode, handle);
5302}
5303
ac27a0ec
DK
5304/*
5305 * What we do here is to mark the in-core inode as clean with respect to inode
5306 * dirtiness (it may still be data-dirty).
5307 * This means that the in-core inode may be reaped by prune_icache
5308 * without having to perform any I/O. This is a very good thing,
5309 * because *any* task may call prune_icache - even ones which
5310 * have a transaction open against a different journal.
5311 *
5312 * Is this cheating? Not really. Sure, we haven't written the
5313 * inode out, but prune_icache isn't a user-visible syncing function.
5314 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5315 * we start and wait on commits.
ac27a0ec 5316 */
617ba13b 5317int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
ac27a0ec 5318{
617ba13b 5319 struct ext4_iloc iloc;
6dd4ee7c
KS
5320 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5321 static unsigned int mnt_count;
5322 int err, ret;
ac27a0ec
DK
5323
5324 might_sleep();
7ff9c073 5325 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
617ba13b 5326 err = ext4_reserve_inode_write(handle, inode, &iloc);
5e1021f2
EG
5327 if (err)
5328 return err;
0390131b
FM
5329 if (ext4_handle_valid(handle) &&
5330 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
19f5fb7a 5331 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
6dd4ee7c
KS
5332 /*
5333 * We need extra buffer credits since we may write into EA block
5334 * with this same handle. If journal_extend fails, then it will
5335 * only result in a minor loss of functionality for that inode.
5336 * If this is felt to be critical, then e2fsck should be run to
5337 * force a large enough s_min_extra_isize.
5338 */
5339 if ((jbd2_journal_extend(handle,
5340 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5341 ret = ext4_expand_extra_isize(inode,
5342 sbi->s_want_extra_isize,
5343 iloc, handle);
5344 if (ret) {
19f5fb7a
TT
5345 ext4_set_inode_state(inode,
5346 EXT4_STATE_NO_EXPAND);
c1bddad9
AK
5347 if (mnt_count !=
5348 le16_to_cpu(sbi->s_es->s_mnt_count)) {
12062ddd 5349 ext4_warning(inode->i_sb,
6dd4ee7c
KS
5350 "Unable to expand inode %lu. Delete"
5351 " some EAs or run e2fsck.",
5352 inode->i_ino);
c1bddad9
AK
5353 mnt_count =
5354 le16_to_cpu(sbi->s_es->s_mnt_count);
6dd4ee7c
KS
5355 }
5356 }
5357 }
5358 }
5e1021f2 5359 return ext4_mark_iloc_dirty(handle, inode, &iloc);
ac27a0ec
DK
5360}
5361
5362/*
617ba13b 5363 * ext4_dirty_inode() is called from __mark_inode_dirty()
ac27a0ec
DK
5364 *
5365 * We're really interested in the case where a file is being extended.
5366 * i_size has been changed by generic_commit_write() and we thus need
5367 * to include the updated inode in the current transaction.
5368 *
5dd4056d 5369 * Also, dquot_alloc_block() will always dirty the inode when blocks
ac27a0ec
DK
5370 * are allocated to the file.
5371 *
5372 * If the inode is marked synchronous, we don't honour that here - doing
5373 * so would cause a commit on atime updates, which we don't bother doing.
5374 * We handle synchronous inodes at the highest possible level.
0ae45f63
TT
5375 *
5376 * If only the I_DIRTY_TIME flag is set, we can skip everything. If
5377 * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
5378 * to copy into the on-disk inode structure are the timestamp files.
ac27a0ec 5379 */
aa385729 5380void ext4_dirty_inode(struct inode *inode, int flags)
ac27a0ec 5381{
ac27a0ec
DK
5382 handle_t *handle;
5383
0ae45f63
TT
5384 if (flags == I_DIRTY_TIME)
5385 return;
9924a92a 5386 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
ac27a0ec
DK
5387 if (IS_ERR(handle))
5388 goto out;
f3dc272f 5389
f3dc272f
CW
5390 ext4_mark_inode_dirty(handle, inode);
5391
617ba13b 5392 ext4_journal_stop(handle);
ac27a0ec
DK
5393out:
5394 return;
5395}
5396
5397#if 0
5398/*
5399 * Bind an inode's backing buffer_head into this transaction, to prevent
5400 * it from being flushed to disk early. Unlike
617ba13b 5401 * ext4_reserve_inode_write, this leaves behind no bh reference and
ac27a0ec
DK
5402 * returns no iloc structure, so the caller needs to repeat the iloc
5403 * lookup to mark the inode dirty later.
5404 */
617ba13b 5405static int ext4_pin_inode(handle_t *handle, struct inode *inode)
ac27a0ec 5406{
617ba13b 5407 struct ext4_iloc iloc;
ac27a0ec
DK
5408
5409 int err = 0;
5410 if (handle) {
617ba13b 5411 err = ext4_get_inode_loc(inode, &iloc);
ac27a0ec
DK
5412 if (!err) {
5413 BUFFER_TRACE(iloc.bh, "get_write_access");
dab291af 5414 err = jbd2_journal_get_write_access(handle, iloc.bh);
ac27a0ec 5415 if (!err)
0390131b 5416 err = ext4_handle_dirty_metadata(handle,
73b50c1c 5417 NULL,
0390131b 5418 iloc.bh);
ac27a0ec
DK
5419 brelse(iloc.bh);
5420 }
5421 }
617ba13b 5422 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5423 return err;
5424}
5425#endif
5426
617ba13b 5427int ext4_change_inode_journal_flag(struct inode *inode, int val)
ac27a0ec
DK
5428{
5429 journal_t *journal;
5430 handle_t *handle;
5431 int err;
5432
5433 /*
5434 * We have to be very careful here: changing a data block's
5435 * journaling status dynamically is dangerous. If we write a
5436 * data block to the journal, change the status and then delete
5437 * that block, we risk forgetting to revoke the old log record
5438 * from the journal and so a subsequent replay can corrupt data.
5439 * So, first we make sure that the journal is empty and that
5440 * nobody is changing anything.
5441 */
5442
617ba13b 5443 journal = EXT4_JOURNAL(inode);
0390131b
FM
5444 if (!journal)
5445 return 0;
d699594d 5446 if (is_journal_aborted(journal))
ac27a0ec 5447 return -EROFS;
2aff57b0
YY
5448 /* We have to allocate physical blocks for delalloc blocks
5449 * before flushing journal. otherwise delalloc blocks can not
5450 * be allocated any more. even more truncate on delalloc blocks
5451 * could trigger BUG by flushing delalloc blocks in journal.
5452 * There is no delalloc block in non-journal data mode.
5453 */
5454 if (val && test_opt(inode->i_sb, DELALLOC)) {
5455 err = ext4_alloc_da_blocks(inode);
5456 if (err < 0)
5457 return err;
5458 }
ac27a0ec 5459
17335dcc
DM
5460 /* Wait for all existing dio workers */
5461 ext4_inode_block_unlocked_dio(inode);
5462 inode_dio_wait(inode);
5463
dab291af 5464 jbd2_journal_lock_updates(journal);
ac27a0ec
DK
5465
5466 /*
5467 * OK, there are no updates running now, and all cached data is
5468 * synced to disk. We are now in a completely consistent state
5469 * which doesn't have anything in the journal, and we know that
5470 * no filesystem updates are running, so it is safe to modify
5471 * the inode's in-core data-journaling state flag now.
5472 */
5473
5474 if (val)
12e9b892 5475 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5872ddaa 5476 else {
4f879ca6
JK
5477 err = jbd2_journal_flush(journal);
5478 if (err < 0) {
5479 jbd2_journal_unlock_updates(journal);
5480 ext4_inode_resume_unlocked_dio(inode);
5481 return err;
5482 }
12e9b892 5483 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5872ddaa 5484 }
617ba13b 5485 ext4_set_aops(inode);
ac27a0ec 5486
dab291af 5487 jbd2_journal_unlock_updates(journal);
17335dcc 5488 ext4_inode_resume_unlocked_dio(inode);
ac27a0ec
DK
5489
5490 /* Finally we can mark the inode as dirty. */
5491
9924a92a 5492 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
ac27a0ec
DK
5493 if (IS_ERR(handle))
5494 return PTR_ERR(handle);
5495
617ba13b 5496 err = ext4_mark_inode_dirty(handle, inode);
0390131b 5497 ext4_handle_sync(handle);
617ba13b
MC
5498 ext4_journal_stop(handle);
5499 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5500
5501 return err;
5502}
2e9ee850
AK
5503
5504static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5505{
5506 return !buffer_mapped(bh);
5507}
5508
c2ec175c 5509int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2e9ee850 5510{
c2ec175c 5511 struct page *page = vmf->page;
2e9ee850
AK
5512 loff_t size;
5513 unsigned long len;
9ea7df53 5514 int ret;
2e9ee850 5515 struct file *file = vma->vm_file;
496ad9aa 5516 struct inode *inode = file_inode(file);
2e9ee850 5517 struct address_space *mapping = inode->i_mapping;
9ea7df53
JK
5518 handle_t *handle;
5519 get_block_t *get_block;
5520 int retries = 0;
2e9ee850 5521
8e8ad8a5 5522 sb_start_pagefault(inode->i_sb);
041bbb6d 5523 file_update_time(vma->vm_file);
ea3d7209
JK
5524
5525 down_read(&EXT4_I(inode)->i_mmap_sem);
9ea7df53
JK
5526 /* Delalloc case is easy... */
5527 if (test_opt(inode->i_sb, DELALLOC) &&
5528 !ext4_should_journal_data(inode) &&
5529 !ext4_nonda_switch(inode->i_sb)) {
5530 do {
5c500029 5531 ret = block_page_mkwrite(vma, vmf,
9ea7df53
JK
5532 ext4_da_get_block_prep);
5533 } while (ret == -ENOSPC &&
5534 ext4_should_retry_alloc(inode->i_sb, &retries));
5535 goto out_ret;
2e9ee850 5536 }
0e499890
DW
5537
5538 lock_page(page);
9ea7df53
JK
5539 size = i_size_read(inode);
5540 /* Page got truncated from under us? */
5541 if (page->mapping != mapping || page_offset(page) > size) {
5542 unlock_page(page);
5543 ret = VM_FAULT_NOPAGE;
5544 goto out;
0e499890 5545 }
2e9ee850 5546
09cbfeaf
KS
5547 if (page->index == size >> PAGE_SHIFT)
5548 len = size & ~PAGE_MASK;
2e9ee850 5549 else
09cbfeaf 5550 len = PAGE_SIZE;
a827eaff 5551 /*
9ea7df53
JK
5552 * Return if we have all the buffers mapped. This avoids the need to do
5553 * journal_start/journal_stop which can block and take a long time
a827eaff 5554 */
2e9ee850 5555 if (page_has_buffers(page)) {
f19d5870
TM
5556 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5557 0, len, NULL,
5558 ext4_bh_unmapped)) {
9ea7df53 5559 /* Wait so that we don't change page under IO */
1d1d1a76 5560 wait_for_stable_page(page);
9ea7df53
JK
5561 ret = VM_FAULT_LOCKED;
5562 goto out;
a827eaff 5563 }
2e9ee850 5564 }
a827eaff 5565 unlock_page(page);
9ea7df53
JK
5566 /* OK, we need to fill the hole... */
5567 if (ext4_should_dioread_nolock(inode))
705965bd 5568 get_block = ext4_get_block_unwritten;
9ea7df53
JK
5569 else
5570 get_block = ext4_get_block;
5571retry_alloc:
9924a92a
TT
5572 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5573 ext4_writepage_trans_blocks(inode));
9ea7df53 5574 if (IS_ERR(handle)) {
c2ec175c 5575 ret = VM_FAULT_SIGBUS;
9ea7df53
JK
5576 goto out;
5577 }
5c500029 5578 ret = block_page_mkwrite(vma, vmf, get_block);
9ea7df53 5579 if (!ret && ext4_should_journal_data(inode)) {
f19d5870 5580 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
09cbfeaf 5581 PAGE_SIZE, NULL, do_journal_get_write_access)) {
9ea7df53
JK
5582 unlock_page(page);
5583 ret = VM_FAULT_SIGBUS;
fcbb5515 5584 ext4_journal_stop(handle);
9ea7df53
JK
5585 goto out;
5586 }
5587 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5588 }
5589 ext4_journal_stop(handle);
5590 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5591 goto retry_alloc;
5592out_ret:
5593 ret = block_page_mkwrite_return(ret);
5594out:
ea3d7209 5595 up_read(&EXT4_I(inode)->i_mmap_sem);
8e8ad8a5 5596 sb_end_pagefault(inode->i_sb);
2e9ee850
AK
5597 return ret;
5598}
ea3d7209
JK
5599
5600int ext4_filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
5601{
5602 struct inode *inode = file_inode(vma->vm_file);
5603 int err;
5604
5605 down_read(&EXT4_I(inode)->i_mmap_sem);
5606 err = filemap_fault(vma, vmf);
5607 up_read(&EXT4_I(inode)->i_mmap_sem);
5608
5609 return err;
5610}
2d90c160
JK
5611
5612/*
5613 * Find the first extent at or after @lblk in an inode that is not a hole.
5614 * Search for @map_len blocks at most. The extent is returned in @result.
5615 *
5616 * The function returns 1 if we found an extent. The function returns 0 in
5617 * case there is no extent at or after @lblk and in that case also sets
5618 * @result->es_len to 0. In case of error, the error code is returned.
5619 */
5620int ext4_get_next_extent(struct inode *inode, ext4_lblk_t lblk,
5621 unsigned int map_len, struct extent_status *result)
5622{
5623 struct ext4_map_blocks map;
5624 struct extent_status es = {};
5625 int ret;
5626
5627 map.m_lblk = lblk;
5628 map.m_len = map_len;
5629
5630 /*
5631 * For non-extent based files this loop may iterate several times since
5632 * we do not determine full hole size.
5633 */
5634 while (map.m_len > 0) {
5635 ret = ext4_map_blocks(NULL, inode, &map, 0);
5636 if (ret < 0)
5637 return ret;
5638 /* There's extent covering m_lblk? Just return it. */
5639 if (ret > 0) {
5640 int status;
5641
5642 ext4_es_store_pblock(result, map.m_pblk);
5643 result->es_lblk = map.m_lblk;
5644 result->es_len = map.m_len;
5645 if (map.m_flags & EXT4_MAP_UNWRITTEN)
5646 status = EXTENT_STATUS_UNWRITTEN;
5647 else
5648 status = EXTENT_STATUS_WRITTEN;
5649 ext4_es_store_status(result, status);
5650 return 1;
5651 }
5652 ext4_es_find_delayed_extent_range(inode, map.m_lblk,
5653 map.m_lblk + map.m_len - 1,
5654 &es);
5655 /* Is delalloc data before next block in extent tree? */
5656 if (es.es_len && es.es_lblk < map.m_lblk + map.m_len) {
5657 ext4_lblk_t offset = 0;
5658
5659 if (es.es_lblk < lblk)
5660 offset = lblk - es.es_lblk;
5661 result->es_lblk = es.es_lblk + offset;
5662 ext4_es_store_pblock(result,
5663 ext4_es_pblock(&es) + offset);
5664 result->es_len = es.es_len - offset;
5665 ext4_es_store_status(result, ext4_es_status(&es));
5666
5667 return 1;
5668 }
5669 /* There's a hole at m_lblk, advance us after it */
5670 map.m_lblk += map.m_len;
5671 map_len -= map.m_len;
5672 map.m_len = map_len;
5673 cond_resched();
5674 }
5675 result->es_len = 0;
5676 return 0;
5677}