ext3: add support for extent_map library
[linux-2.6-block.git] / fs / ext3 / inode.c
CommitLineData
1da177e4
LT
1/*
2 * linux/fs/ext3/inode.c
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * Goal-directed block allocation by Stephen Tweedie
e9ad5620 16 * (sct@redhat.com), 1993, 1998
1da177e4
LT
17 * Big-endian to little-endian byte-swapping/bitmaps by
18 * David S. Miller (davem@caip.rutgers.edu), 1995
19 * 64-bit file support on 64-bit platforms by Jakub Jelinek
e9ad5620 20 * (jj@sunsite.ms.mff.cuni.cz)
1da177e4
LT
21 *
22 * Assorted race fixes, rewrite of ext3_get_block() by Al Viro, 2000
23 */
24
25#include <linux/module.h>
26#include <linux/fs.h>
27#include <linux/time.h>
28#include <linux/ext3_jbd.h>
29#include <linux/jbd.h>
1da177e4
LT
30#include <linux/highuid.h>
31#include <linux/pagemap.h>
32#include <linux/quotaops.h>
33#include <linux/string.h>
34#include <linux/buffer_head.h>
35#include <linux/writeback.h>
36#include <linux/mpage.h>
31bd2bc7 37#include <linux/extent_map.h>
1da177e4 38#include <linux/uio.h>
caa38fb0 39#include <linux/bio.h>
68c9d702 40#include <linux/fiemap.h>
b5ed3112 41#include <linux/namei.h>
1da177e4
LT
42#include "xattr.h"
43#include "acl.h"
44
45static int ext3_writepage_trans_blocks(struct inode *inode);
46
47/*
48 * Test whether an inode is a fast symlink.
49 */
d6859bfc 50static int ext3_inode_is_fast_symlink(struct inode *inode)
1da177e4
LT
51{
52 int ea_blocks = EXT3_I(inode)->i_file_acl ?
53 (inode->i_sb->s_blocksize >> 9) : 0;
54
d6859bfc 55 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
1da177e4
LT
56}
57
d6859bfc
AM
58/*
59 * The ext3 forget function must perform a revoke if we are freeing data
1da177e4 60 * which has been journaled. Metadata (eg. indirect blocks) must be
ae6ddcc5 61 * revoked in all cases.
1da177e4
LT
62 *
63 * "bh" may be NULL: a metadata block may have been freed from memory
64 * but there may still be a record of it in the journal, and that record
65 * still needs to be revoked.
66 */
d6859bfc 67int ext3_forget(handle_t *handle, int is_metadata, struct inode *inode,
1c2bf374 68 struct buffer_head *bh, ext3_fsblk_t blocknr)
1da177e4
LT
69{
70 int err;
71
72 might_sleep();
73
74 BUFFER_TRACE(bh, "enter");
75
76 jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
77 "data mode %lx\n",
78 bh, is_metadata, inode->i_mode,
79 test_opt(inode->i_sb, DATA_FLAGS));
80
81 /* Never use the revoke function if we are doing full data
82 * journaling: there is no need to, and a V1 superblock won't
83 * support it. Otherwise, only skip the revoke on un-journaled
84 * data blocks. */
85
86 if (test_opt(inode->i_sb, DATA_FLAGS) == EXT3_MOUNT_JOURNAL_DATA ||
87 (!is_metadata && !ext3_should_journal_data(inode))) {
88 if (bh) {
89 BUFFER_TRACE(bh, "call journal_forget");
90 return ext3_journal_forget(handle, bh);
91 }
92 return 0;
93 }
94
95 /*
96 * data!=journal && (is_metadata || should_journal_data(inode))
97 */
98 BUFFER_TRACE(bh, "call ext3_journal_revoke");
99 err = ext3_journal_revoke(handle, blocknr, bh);
100 if (err)
e05b6b52 101 ext3_abort(inode->i_sb, __func__,
1da177e4
LT
102 "error %d when attempting revoke", err);
103 BUFFER_TRACE(bh, "exit");
104 return err;
105}
106
107/*
d6859bfc 108 * Work out how many blocks we need to proceed with the next chunk of a
1da177e4
LT
109 * truncate transaction.
110 */
ae6ddcc5 111static unsigned long blocks_for_truncate(struct inode *inode)
1da177e4
LT
112{
113 unsigned long needed;
114
115 needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
116
117 /* Give ourselves just enough room to cope with inodes in which
118 * i_blocks is corrupt: we've seen disk corruptions in the past
119 * which resulted in random data in an inode which looked enough
120 * like a regular file for ext3 to try to delete it. Things
121 * will go a bit crazy if that happens, but at least we should
122 * try not to panic the whole kernel. */
123 if (needed < 2)
124 needed = 2;
125
126 /* But we need to bound the transaction so we don't overflow the
127 * journal. */
ae6ddcc5 128 if (needed > EXT3_MAX_TRANS_DATA)
1da177e4
LT
129 needed = EXT3_MAX_TRANS_DATA;
130
1f54587b 131 return EXT3_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
1da177e4
LT
132}
133
ae6ddcc5 134/*
1da177e4
LT
135 * Truncate transactions can be complex and absolutely huge. So we need to
136 * be able to restart the transaction at a conventient checkpoint to make
137 * sure we don't overflow the journal.
138 *
139 * start_transaction gets us a new handle for a truncate transaction,
140 * and extend_transaction tries to extend the existing one a bit. If
141 * extend fails, we need to propagate the failure up and restart the
ae6ddcc5 142 * transaction in the top-level truncate loop. --sct
1da177e4 143 */
ae6ddcc5 144static handle_t *start_transaction(struct inode *inode)
1da177e4
LT
145{
146 handle_t *result;
147
148 result = ext3_journal_start(inode, blocks_for_truncate(inode));
149 if (!IS_ERR(result))
150 return result;
151
152 ext3_std_error(inode->i_sb, PTR_ERR(result));
153 return result;
154}
155
156/*
157 * Try to extend this transaction for the purposes of truncation.
158 *
159 * Returns 0 if we managed to create more room. If we can't create more
160 * room, and the transaction must be restarted we return 1.
161 */
162static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
163{
164 if (handle->h_buffer_credits > EXT3_RESERVE_TRANS_BLOCKS)
165 return 0;
166 if (!ext3_journal_extend(handle, blocks_for_truncate(inode)))
167 return 0;
168 return 1;
169}
170
171/*
172 * Restart the transaction associated with *handle. This does a commit,
173 * so before we call here everything must be consistently dirtied against
174 * this transaction.
175 */
176static int ext3_journal_test_restart(handle_t *handle, struct inode *inode)
177{
178 jbd_debug(2, "restarting handle %p\n", handle);
179 return ext3_journal_restart(handle, blocks_for_truncate(inode));
180}
181
182/*
183 * Called at the last iput() if i_nlink is zero.
184 */
185void ext3_delete_inode (struct inode * inode)
186{
187 handle_t *handle;
188
fef26658
MF
189 truncate_inode_pages(&inode->i_data, 0);
190
1da177e4
LT
191 if (is_bad_inode(inode))
192 goto no_delete;
193
194 handle = start_transaction(inode);
195 if (IS_ERR(handle)) {
d6859bfc
AM
196 /*
197 * If we're going to skip the normal cleanup, we still need to
198 * make sure that the in-core orphan linked list is properly
199 * cleaned up.
200 */
1da177e4
LT
201 ext3_orphan_del(NULL, inode);
202 goto no_delete;
203 }
204
205 if (IS_SYNC(inode))
206 handle->h_sync = 1;
207 inode->i_size = 0;
208 if (inode->i_blocks)
209 ext3_truncate(inode);
210 /*
211 * Kill off the orphan record which ext3_truncate created.
212 * AKPM: I think this can be inside the above `if'.
213 * Note that ext3_orphan_del() has to be able to cope with the
214 * deletion of a non-existent orphan - this is because we don't
215 * know if ext3_truncate() actually created an orphan record.
216 * (Well, we could do this if we need to, but heck - it works)
217 */
218 ext3_orphan_del(handle, inode);
219 EXT3_I(inode)->i_dtime = get_seconds();
220
ae6ddcc5 221 /*
1da177e4
LT
222 * One subtle ordering requirement: if anything has gone wrong
223 * (transaction abort, IO errors, whatever), then we can still
224 * do these next steps (the fs will already have been marked as
225 * having errors), but we can't free the inode if the mark_dirty
ae6ddcc5 226 * fails.
1da177e4
LT
227 */
228 if (ext3_mark_inode_dirty(handle, inode))
229 /* If that failed, just do the required in-core inode clear. */
230 clear_inode(inode);
231 else
232 ext3_free_inode(handle, inode);
31bd2bc7 233 remove_extent_mappings(&EXT3_I(inode)->extent_tree, 0, (u64) -1);
1da177e4
LT
234 ext3_journal_stop(handle);
235 return;
236no_delete:
31bd2bc7 237 remove_extent_mappings(&EXT3_I(inode)->extent_tree, 0, (u64) -1);
1da177e4
LT
238 clear_inode(inode); /* We must guarantee clearing of inode... */
239}
240
1da177e4
LT
241typedef struct {
242 __le32 *p;
243 __le32 key;
244 struct buffer_head *bh;
245} Indirect;
246
247static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
248{
249 p->key = *(p->p = v);
250 p->bh = bh;
251}
252
d6859bfc 253static int verify_chain(Indirect *from, Indirect *to)
1da177e4
LT
254{
255 while (from <= to && from->key == *from->p)
256 from++;
257 return (from > to);
258}
259
260/**
261 * ext3_block_to_path - parse the block number into array of offsets
262 * @inode: inode in question (we are only interested in its superblock)
263 * @i_block: block number to be parsed
264 * @offsets: array to store the offsets in
265 * @boundary: set this non-zero if the referred-to block is likely to be
266 * followed (on disk) by an indirect block.
267 *
268 * To store the locations of file's data ext3 uses a data structure common
269 * for UNIX filesystems - tree of pointers anchored in the inode, with
270 * data blocks at leaves and indirect blocks in intermediate nodes.
271 * This function translates the block number into path in that tree -
272 * return value is the path length and @offsets[n] is the offset of
273 * pointer to (n+1)th node in the nth one. If @block is out of range
274 * (negative or too large) warning is printed and zero returned.
275 *
276 * Note: function doesn't find node addresses, so no IO is needed. All
277 * we need to know is the capacity of indirect blocks (taken from the
278 * inode->i_sb).
279 */
280
281/*
282 * Portability note: the last comparison (check that we fit into triple
283 * indirect block) is spelled differently, because otherwise on an
284 * architecture with 32-bit longs and 8Kb pages we might get into trouble
285 * if our filesystem had 8Kb blocks. We might use long long, but that would
286 * kill us on x86. Oh, well, at least the sign propagation does not matter -
287 * i_block would have to be negative in the very beginning, so we would not
288 * get there at all.
289 */
290
291static int ext3_block_to_path(struct inode *inode,
292 long i_block, int offsets[4], int *boundary)
293{
294 int ptrs = EXT3_ADDR_PER_BLOCK(inode->i_sb);
295 int ptrs_bits = EXT3_ADDR_PER_BLOCK_BITS(inode->i_sb);
296 const long direct_blocks = EXT3_NDIR_BLOCKS,
297 indirect_blocks = ptrs,
298 double_blocks = (1 << (ptrs_bits * 2));
299 int n = 0;
300 int final = 0;
301
302 if (i_block < 0) {
303 ext3_warning (inode->i_sb, "ext3_block_to_path", "block < 0");
304 } else if (i_block < direct_blocks) {
305 offsets[n++] = i_block;
306 final = direct_blocks;
307 } else if ( (i_block -= direct_blocks) < indirect_blocks) {
308 offsets[n++] = EXT3_IND_BLOCK;
309 offsets[n++] = i_block;
310 final = ptrs;
311 } else if ((i_block -= indirect_blocks) < double_blocks) {
312 offsets[n++] = EXT3_DIND_BLOCK;
313 offsets[n++] = i_block >> ptrs_bits;
314 offsets[n++] = i_block & (ptrs - 1);
315 final = ptrs;
316 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
317 offsets[n++] = EXT3_TIND_BLOCK;
318 offsets[n++] = i_block >> (ptrs_bits * 2);
319 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
320 offsets[n++] = i_block & (ptrs - 1);
321 final = ptrs;
322 } else {
d6859bfc 323 ext3_warning(inode->i_sb, "ext3_block_to_path", "block > big");
1da177e4
LT
324 }
325 if (boundary)
89747d36 326 *boundary = final - 1 - (i_block & (ptrs - 1));
1da177e4
LT
327 return n;
328}
329
330/**
331 * ext3_get_branch - read the chain of indirect blocks leading to data
332 * @inode: inode in question
333 * @depth: depth of the chain (1 - direct pointer, etc.)
334 * @offsets: offsets of pointers in inode/indirect blocks
335 * @chain: place to store the result
336 * @err: here we store the error value
337 *
338 * Function fills the array of triples <key, p, bh> and returns %NULL
339 * if everything went OK or the pointer to the last filled triple
340 * (incomplete one) otherwise. Upon the return chain[i].key contains
341 * the number of (i+1)-th block in the chain (as it is stored in memory,
342 * i.e. little-endian 32-bit), chain[i].p contains the address of that
343 * number (it points into struct inode for i==0 and into the bh->b_data
344 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
345 * block for i>0 and NULL for i==0. In other words, it holds the block
346 * numbers of the chain, addresses they were taken from (and where we can
347 * verify that chain did not change) and buffer_heads hosting these
348 * numbers.
349 *
350 * Function stops when it stumbles upon zero pointer (absent block)
351 * (pointer to last triple returned, *@err == 0)
352 * or when it gets an IO error reading an indirect block
353 * (ditto, *@err == -EIO)
354 * or when it notices that chain had been changed while it was reading
355 * (ditto, *@err == -EAGAIN)
356 * or when it reads all @depth-1 indirect blocks successfully and finds
357 * the whole chain, all way to the data (returns %NULL, *err == 0).
358 */
359static Indirect *ext3_get_branch(struct inode *inode, int depth, int *offsets,
360 Indirect chain[4], int *err)
361{
362 struct super_block *sb = inode->i_sb;
363 Indirect *p = chain;
364 struct buffer_head *bh;
365
366 *err = 0;
367 /* i_data is not going away, no lock needed */
368 add_chain (chain, NULL, EXT3_I(inode)->i_data + *offsets);
369 if (!p->key)
370 goto no_block;
371 while (--depth) {
372 bh = sb_bread(sb, le32_to_cpu(p->key));
373 if (!bh)
374 goto failure;
375 /* Reader: pointers */
376 if (!verify_chain(chain, p))
377 goto changed;
378 add_chain(++p, bh, (__le32*)bh->b_data + *++offsets);
379 /* Reader: end */
380 if (!p->key)
381 goto no_block;
382 }
383 return NULL;
384
385changed:
386 brelse(bh);
387 *err = -EAGAIN;
388 goto no_block;
389failure:
390 *err = -EIO;
391no_block:
392 return p;
393}
394
395/**
396 * ext3_find_near - find a place for allocation with sufficient locality
397 * @inode: owner
398 * @ind: descriptor of indirect block.
399 *
1cc8dcf5 400 * This function returns the preferred place for block allocation.
1da177e4
LT
401 * It is used when heuristic for sequential allocation fails.
402 * Rules are:
403 * + if there is a block to the left of our position - allocate near it.
404 * + if pointer will live in indirect block - allocate near that block.
405 * + if pointer will live in inode - allocate in the same
ae6ddcc5 406 * cylinder group.
1da177e4
LT
407 *
408 * In the latter case we colour the starting block by the callers PID to
409 * prevent it from clashing with concurrent allocations for a different inode
410 * in the same block group. The PID is used here so that functionally related
411 * files will be close-by on-disk.
412 *
413 * Caller must make sure that @ind is valid and will stay that way.
414 */
43d23f90 415static ext3_fsblk_t ext3_find_near(struct inode *inode, Indirect *ind)
1da177e4
LT
416{
417 struct ext3_inode_info *ei = EXT3_I(inode);
418 __le32 *start = ind->bh ? (__le32*) ind->bh->b_data : ei->i_data;
419 __le32 *p;
43d23f90
MC
420 ext3_fsblk_t bg_start;
421 ext3_grpblk_t colour;
1da177e4
LT
422
423 /* Try to find previous block */
d6859bfc 424 for (p = ind->p - 1; p >= start; p--) {
1da177e4
LT
425 if (*p)
426 return le32_to_cpu(*p);
d6859bfc 427 }
1da177e4
LT
428
429 /* No such thing, so let's try location of indirect block */
430 if (ind->bh)
431 return ind->bh->b_blocknr;
432
433 /*
d6859bfc
AM
434 * It is going to be referred to from the inode itself? OK, just put it
435 * into the same cylinder group then.
1da177e4 436 */
43d23f90 437 bg_start = ext3_group_first_block_no(inode->i_sb, ei->i_block_group);
1da177e4
LT
438 colour = (current->pid % 16) *
439 (EXT3_BLOCKS_PER_GROUP(inode->i_sb) / 16);
440 return bg_start + colour;
441}
442
443/**
1cc8dcf5 444 * ext3_find_goal - find a preferred place for allocation.
1da177e4
LT
445 * @inode: owner
446 * @block: block we want
1da177e4 447 * @partial: pointer to the last triple within a chain
1da177e4 448 *
1cc8dcf5 449 * Normally this function find the preferred place for block allocation,
fb01bfda 450 * returns it.
1da177e4
LT
451 */
452
43d23f90 453static ext3_fsblk_t ext3_find_goal(struct inode *inode, long block,
fb01bfda 454 Indirect *partial)
1da177e4 455{
d6859bfc
AM
456 struct ext3_block_alloc_info *block_i;
457
458 block_i = EXT3_I(inode)->i_block_alloc_info;
1da177e4
LT
459
460 /*
461 * try the heuristic for sequential allocation,
462 * failing that at least try to get decent locality.
463 */
464 if (block_i && (block == block_i->last_alloc_logical_block + 1)
465 && (block_i->last_alloc_physical_block != 0)) {
fe55c452 466 return block_i->last_alloc_physical_block + 1;
1da177e4
LT
467 }
468
fe55c452 469 return ext3_find_near(inode, partial);
1da177e4 470}
d6859bfc 471
b47b2478
MC
472/**
473 * ext3_blks_to_allocate: Look up the block map and count the number
474 * of direct blocks need to be allocated for the given branch.
475 *
e9ad5620 476 * @branch: chain of indirect blocks
b47b2478
MC
477 * @k: number of blocks need for indirect blocks
478 * @blks: number of data blocks to be mapped.
479 * @blocks_to_boundary: the offset in the indirect block
480 *
481 * return the total number of blocks to be allocate, including the
482 * direct and indirect blocks.
483 */
d6859bfc 484static int ext3_blks_to_allocate(Indirect *branch, int k, unsigned long blks,
b47b2478
MC
485 int blocks_to_boundary)
486{
487 unsigned long count = 0;
488
489 /*
490 * Simple case, [t,d]Indirect block(s) has not allocated yet
491 * then it's clear blocks on that path have not allocated
492 */
493 if (k > 0) {
d6859bfc 494 /* right now we don't handle cross boundary allocation */
b47b2478
MC
495 if (blks < blocks_to_boundary + 1)
496 count += blks;
497 else
498 count += blocks_to_boundary + 1;
499 return count;
500 }
501
502 count++;
503 while (count < blks && count <= blocks_to_boundary &&
504 le32_to_cpu(*(branch[0].p + count)) == 0) {
505 count++;
506 }
507 return count;
508}
509
510/**
511 * ext3_alloc_blocks: multiple allocate blocks needed for a branch
512 * @indirect_blks: the number of blocks need to allocate for indirect
513 * blocks
514 *
515 * @new_blocks: on return it will store the new block numbers for
516 * the indirect blocks(if needed) and the first direct block,
517 * @blks: on return it will store the total number of allocated
518 * direct blocks
519 */
520static int ext3_alloc_blocks(handle_t *handle, struct inode *inode,
43d23f90
MC
521 ext3_fsblk_t goal, int indirect_blks, int blks,
522 ext3_fsblk_t new_blocks[4], int *err)
b47b2478
MC
523{
524 int target, i;
525 unsigned long count = 0;
526 int index = 0;
43d23f90 527 ext3_fsblk_t current_block = 0;
b47b2478
MC
528 int ret = 0;
529
530 /*
531 * Here we try to allocate the requested multiple blocks at once,
532 * on a best-effort basis.
533 * To build a branch, we should allocate blocks for
534 * the indirect blocks(if not allocated yet), and at least
535 * the first direct block of this branch. That's the
536 * minimum number of blocks need to allocate(required)
537 */
538 target = blks + indirect_blks;
539
540 while (1) {
541 count = target;
542 /* allocating blocks for indirect blocks and direct blocks */
d6859bfc 543 current_block = ext3_new_blocks(handle,inode,goal,&count,err);
b47b2478
MC
544 if (*err)
545 goto failed_out;
546
547 target -= count;
548 /* allocate blocks for indirect blocks */
549 while (index < indirect_blks && count) {
550 new_blocks[index++] = current_block++;
551 count--;
552 }
553
554 if (count > 0)
555 break;
556 }
557
558 /* save the new block number for the first direct block */
559 new_blocks[index] = current_block;
560
561 /* total number of blocks allocated for direct blocks */
562 ret = count;
563 *err = 0;
564 return ret;
565failed_out:
566 for (i = 0; i <index; i++)
567 ext3_free_blocks(handle, inode, new_blocks[i], 1);
568 return ret;
569}
1da177e4
LT
570
571/**
572 * ext3_alloc_branch - allocate and set up a chain of blocks.
573 * @inode: owner
b47b2478
MC
574 * @indirect_blks: number of allocated indirect blocks
575 * @blks: number of allocated direct blocks
1da177e4
LT
576 * @offsets: offsets (in the blocks) to store the pointers to next.
577 * @branch: place to store the chain in.
578 *
b47b2478 579 * This function allocates blocks, zeroes out all but the last one,
1da177e4
LT
580 * links them into chain and (if we are synchronous) writes them to disk.
581 * In other words, it prepares a branch that can be spliced onto the
582 * inode. It stores the information about that chain in the branch[], in
583 * the same format as ext3_get_branch() would do. We are calling it after
584 * we had read the existing part of chain and partial points to the last
585 * triple of that (one with zero ->key). Upon the exit we have the same
5b116879 586 * picture as after the successful ext3_get_block(), except that in one
1da177e4
LT
587 * place chain is disconnected - *branch->p is still zero (we did not
588 * set the last link), but branch->key contains the number that should
589 * be placed into *branch->p to fill that gap.
590 *
591 * If allocation fails we free all blocks we've allocated (and forget
592 * their buffer_heads) and return the error value the from failed
593 * ext3_alloc_block() (normally -ENOSPC). Otherwise we set the chain
594 * as described above and return 0.
595 */
1da177e4 596static int ext3_alloc_branch(handle_t *handle, struct inode *inode,
43d23f90 597 int indirect_blks, int *blks, ext3_fsblk_t goal,
b47b2478 598 int *offsets, Indirect *branch)
1da177e4
LT
599{
600 int blocksize = inode->i_sb->s_blocksize;
b47b2478 601 int i, n = 0;
1da177e4 602 int err = 0;
b47b2478
MC
603 struct buffer_head *bh;
604 int num;
43d23f90
MC
605 ext3_fsblk_t new_blocks[4];
606 ext3_fsblk_t current_block;
1da177e4 607
b47b2478
MC
608 num = ext3_alloc_blocks(handle, inode, goal, indirect_blks,
609 *blks, new_blocks, &err);
610 if (err)
611 return err;
1da177e4 612
b47b2478
MC
613 branch[0].key = cpu_to_le32(new_blocks[0]);
614 /*
615 * metadata blocks and data blocks are allocated.
616 */
617 for (n = 1; n <= indirect_blks; n++) {
618 /*
619 * Get buffer_head for parent block, zero it out
620 * and set the pointer to new one, then send
621 * parent to disk.
622 */
623 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
624 branch[n].bh = bh;
625 lock_buffer(bh);
626 BUFFER_TRACE(bh, "call get_create_access");
627 err = ext3_journal_get_create_access(handle, bh);
628 if (err) {
1da177e4 629 unlock_buffer(bh);
b47b2478
MC
630 brelse(bh);
631 goto failed;
632 }
1da177e4 633
b47b2478
MC
634 memset(bh->b_data, 0, blocksize);
635 branch[n].p = (__le32 *) bh->b_data + offsets[n];
636 branch[n].key = cpu_to_le32(new_blocks[n]);
637 *branch[n].p = branch[n].key;
638 if ( n == indirect_blks) {
639 current_block = new_blocks[n];
640 /*
641 * End of chain, update the last new metablock of
642 * the chain to point to the new allocated
643 * data blocks numbers
644 */
645 for (i=1; i < num; i++)
646 *(branch[n].p + i) = cpu_to_le32(++current_block);
1da177e4 647 }
b47b2478
MC
648 BUFFER_TRACE(bh, "marking uptodate");
649 set_buffer_uptodate(bh);
650 unlock_buffer(bh);
1da177e4 651
b47b2478
MC
652 BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
653 err = ext3_journal_dirty_metadata(handle, bh);
654 if (err)
655 goto failed;
656 }
657 *blks = num;
658 return err;
659failed:
1da177e4 660 /* Allocation failed, free what we already allocated */
b47b2478 661 for (i = 1; i <= n ; i++) {
1da177e4
LT
662 BUFFER_TRACE(branch[i].bh, "call journal_forget");
663 ext3_journal_forget(handle, branch[i].bh);
664 }
b47b2478
MC
665 for (i = 0; i <indirect_blks; i++)
666 ext3_free_blocks(handle, inode, new_blocks[i], 1);
667
668 ext3_free_blocks(handle, inode, new_blocks[i], num);
669
1da177e4
LT
670 return err;
671}
672
673/**
d6859bfc
AM
674 * ext3_splice_branch - splice the allocated branch onto inode.
675 * @inode: owner
676 * @block: (logical) number of block we are adding
677 * @chain: chain of indirect blocks (with a missing link - see
678 * ext3_alloc_branch)
679 * @where: location of missing link
680 * @num: number of indirect blocks we are adding
681 * @blks: number of direct blocks we are adding
682 *
683 * This function fills the missing link and does all housekeeping needed in
684 * inode (->i_blocks, etc.). In case of success we end up with the full
685 * chain to new block and return 0.
1da177e4 686 */
d6859bfc
AM
687static int ext3_splice_branch(handle_t *handle, struct inode *inode,
688 long block, Indirect *where, int num, int blks)
1da177e4
LT
689{
690 int i;
691 int err = 0;
d6859bfc 692 struct ext3_block_alloc_info *block_i;
43d23f90 693 ext3_fsblk_t current_block;
d6859bfc
AM
694
695 block_i = EXT3_I(inode)->i_block_alloc_info;
1da177e4
LT
696 /*
697 * If we're splicing into a [td]indirect block (as opposed to the
698 * inode) then we need to get write access to the [td]indirect block
699 * before the splice.
700 */
701 if (where->bh) {
702 BUFFER_TRACE(where->bh, "get_write_access");
703 err = ext3_journal_get_write_access(handle, where->bh);
704 if (err)
705 goto err_out;
706 }
1da177e4
LT
707 /* That's it */
708
709 *where->p = where->key;
d6859bfc
AM
710
711 /*
712 * Update the host buffer_head or inode to point to more just allocated
713 * direct blocks blocks
714 */
b47b2478 715 if (num == 0 && blks > 1) {
5dea5176 716 current_block = le32_to_cpu(where->key) + 1;
b47b2478
MC
717 for (i = 1; i < blks; i++)
718 *(where->p + i ) = cpu_to_le32(current_block++);
719 }
1da177e4
LT
720
721 /*
722 * update the most recently allocated logical & physical block
723 * in i_block_alloc_info, to assist find the proper goal block for next
724 * allocation
725 */
726 if (block_i) {
b47b2478 727 block_i->last_alloc_logical_block = block + blks - 1;
d6859bfc 728 block_i->last_alloc_physical_block =
5dea5176 729 le32_to_cpu(where[num].key) + blks - 1;
1da177e4
LT
730 }
731
732 /* We are done with atomic stuff, now do the rest of housekeeping */
733
734 inode->i_ctime = CURRENT_TIME_SEC;
735 ext3_mark_inode_dirty(handle, inode);
736
737 /* had we spliced it onto indirect block? */
738 if (where->bh) {
739 /*
d6859bfc 740 * If we spliced it onto an indirect block, we haven't
1da177e4
LT
741 * altered the inode. Note however that if it is being spliced
742 * onto an indirect block at the very end of the file (the
743 * file is growing) then we *will* alter the inode to reflect
744 * the new i_size. But that is not done here - it is done in
745 * generic_commit_write->__mark_inode_dirty->ext3_dirty_inode.
746 */
747 jbd_debug(5, "splicing indirect only\n");
748 BUFFER_TRACE(where->bh, "call ext3_journal_dirty_metadata");
749 err = ext3_journal_dirty_metadata(handle, where->bh);
ae6ddcc5 750 if (err)
1da177e4
LT
751 goto err_out;
752 } else {
753 /*
754 * OK, we spliced it into the inode itself on a direct block.
755 * Inode was dirtied above.
756 */
757 jbd_debug(5, "splicing direct\n");
758 }
759 return err;
760
1da177e4 761err_out:
b47b2478 762 for (i = 1; i <= num; i++) {
1da177e4
LT
763 BUFFER_TRACE(where[i].bh, "call journal_forget");
764 ext3_journal_forget(handle, where[i].bh);
d6859bfc 765 ext3_free_blocks(handle,inode,le32_to_cpu(where[i-1].key),1);
1da177e4 766 }
b47b2478
MC
767 ext3_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks);
768
1da177e4
LT
769 return err;
770}
771
772/*
773 * Allocation strategy is simple: if we have to allocate something, we will
774 * have to go the whole way to leaf. So let's do it before attaching anything
775 * to tree, set linkage between the newborn blocks, write them if sync is
776 * required, recheck the path, free and repeat if check fails, otherwise
777 * set the last missing link (that will protect us from any truncate-generated
778 * removals - all blocks on the path are immune now) and possibly force the
779 * write on the parent block.
780 * That has a nice additional property: no special recovery from the failed
781 * allocations is needed - we simply release blocks and do not touch anything
782 * reachable from inode.
783 *
d6859bfc 784 * `handle' can be NULL if create == 0.
1da177e4
LT
785 *
786 * The BKL may not be held on entry here. Be sure to take it early.
89747d36
MC
787 * return > 0, # of blocks mapped or allocated.
788 * return = 0, if plain lookup failed.
789 * return < 0, error case.
1da177e4 790 */
d6859bfc
AM
791int ext3_get_blocks_handle(handle_t *handle, struct inode *inode,
792 sector_t iblock, unsigned long maxblocks,
793 struct buffer_head *bh_result,
89747d36 794 int create, int extend_disksize)
1da177e4
LT
795{
796 int err = -EIO;
797 int offsets[4];
798 Indirect chain[4];
799 Indirect *partial;
43d23f90 800 ext3_fsblk_t goal;
b47b2478 801 int indirect_blks;
89747d36
MC
802 int blocks_to_boundary = 0;
803 int depth;
1da177e4 804 struct ext3_inode_info *ei = EXT3_I(inode);
89747d36 805 int count = 0;
43d23f90 806 ext3_fsblk_t first_block = 0;
89747d36 807
1da177e4
LT
808
809 J_ASSERT(handle != NULL || create == 0);
d6859bfc 810 depth = ext3_block_to_path(inode,iblock,offsets,&blocks_to_boundary);
1da177e4
LT
811
812 if (depth == 0)
813 goto out;
814
1da177e4
LT
815 partial = ext3_get_branch(inode, depth, offsets, chain, &err);
816
817 /* Simplest case - block found, no allocation needed */
818 if (!partial) {
5dea5176 819 first_block = le32_to_cpu(chain[depth - 1].key);
1da177e4 820 clear_buffer_new(bh_result);
89747d36
MC
821 count++;
822 /*map more blocks*/
823 while (count < maxblocks && count <= blocks_to_boundary) {
43d23f90 824 ext3_fsblk_t blk;
5dea5176 825
89747d36
MC
826 if (!verify_chain(chain, partial)) {
827 /*
828 * Indirect block might be removed by
829 * truncate while we were reading it.
830 * Handling of that case: forget what we've
831 * got now. Flag the err as EAGAIN, so it
832 * will reread.
833 */
834 err = -EAGAIN;
835 count = 0;
836 break;
837 }
5dea5176
MC
838 blk = le32_to_cpu(*(chain[depth-1].p + count));
839
840 if (blk == first_block + count)
89747d36
MC
841 count++;
842 else
843 break;
844 }
845 if (err != -EAGAIN)
846 goto got_it;
1da177e4
LT
847 }
848
849 /* Next simple case - plain lookup or failed read of indirect block */
fe55c452
MC
850 if (!create || err == -EIO)
851 goto cleanup;
852
97461518 853 mutex_lock(&ei->truncate_mutex);
fe55c452
MC
854
855 /*
856 * If the indirect block is missing while we are reading
857 * the chain(ext3_get_branch() returns -EAGAIN err), or
858 * if the chain has been changed after we grab the semaphore,
859 * (either because another process truncated this branch, or
860 * another get_block allocated this branch) re-grab the chain to see if
861 * the request block has been allocated or not.
862 *
863 * Since we already block the truncate/other get_block
864 * at this point, we will have the current copy of the chain when we
865 * splice the branch into the tree.
866 */
867 if (err == -EAGAIN || !verify_chain(chain, partial)) {
1da177e4 868 while (partial > chain) {
1da177e4
LT
869 brelse(partial->bh);
870 partial--;
871 }
fe55c452
MC
872 partial = ext3_get_branch(inode, depth, offsets, chain, &err);
873 if (!partial) {
89747d36 874 count++;
97461518 875 mutex_unlock(&ei->truncate_mutex);
fe55c452
MC
876 if (err)
877 goto cleanup;
878 clear_buffer_new(bh_result);
879 goto got_it;
880 }
1da177e4
LT
881 }
882
883 /*
fe55c452
MC
884 * Okay, we need to do block allocation. Lazily initialize the block
885 * allocation info here if necessary
886 */
887 if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
1da177e4 888 ext3_init_block_alloc_info(inode);
1da177e4 889
fb01bfda 890 goal = ext3_find_goal(inode, iblock, partial);
1da177e4 891
b47b2478
MC
892 /* the number of blocks need to allocate for [d,t]indirect blocks */
893 indirect_blks = (chain + depth) - partial - 1;
1da177e4 894
b47b2478
MC
895 /*
896 * Next look up the indirect map to count the totoal number of
897 * direct blocks to allocate for this branch.
898 */
899 count = ext3_blks_to_allocate(partial, indirect_blks,
900 maxblocks, blocks_to_boundary);
1da177e4
LT
901 /*
902 * Block out ext3_truncate while we alter the tree
903 */
b47b2478 904 err = ext3_alloc_branch(handle, inode, indirect_blks, &count, goal,
fe55c452 905 offsets + (partial - chain), partial);
1da177e4 906
fe55c452
MC
907 /*
908 * The ext3_splice_branch call will free and forget any buffers
1da177e4
LT
909 * on the new chain if there is a failure, but that risks using
910 * up transaction credits, especially for bitmaps where the
911 * credits cannot be returned. Can we handle this somehow? We
fe55c452
MC
912 * may need to return -EAGAIN upwards in the worst case. --sct
913 */
1da177e4 914 if (!err)
b47b2478
MC
915 err = ext3_splice_branch(handle, inode, iblock,
916 partial, indirect_blks, count);
fe55c452 917 /*
97461518 918 * i_disksize growing is protected by truncate_mutex. Don't forget to
fe55c452
MC
919 * protect it if you're about to implement concurrent
920 * ext3_get_block() -bzzz
921 */
1da177e4
LT
922 if (!err && extend_disksize && inode->i_size > ei->i_disksize)
923 ei->i_disksize = inode->i_size;
97461518 924 mutex_unlock(&ei->truncate_mutex);
1da177e4
LT
925 if (err)
926 goto cleanup;
927
928 set_buffer_new(bh_result);
fe55c452
MC
929got_it:
930 map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
20acaa18 931 if (count > blocks_to_boundary)
fe55c452 932 set_buffer_boundary(bh_result);
89747d36 933 err = count;
fe55c452
MC
934 /* Clean up and exit */
935 partial = chain + depth - 1; /* the whole chain */
936cleanup:
1da177e4 937 while (partial > chain) {
fe55c452 938 BUFFER_TRACE(partial->bh, "call brelse");
1da177e4
LT
939 brelse(partial->bh);
940 partial--;
941 }
fe55c452
MC
942 BUFFER_TRACE(bh_result, "returned");
943out:
944 return err;
1da177e4
LT
945}
946
bd1939de
JK
947/* Maximum number of blocks we map for direct IO at once. */
948#define DIO_MAX_BLOCKS 4096
949/*
950 * Number of credits we need for writing DIO_MAX_BLOCKS:
951 * We need sb + group descriptor + bitmap + inode -> 4
952 * For B blocks with A block pointers per block we need:
953 * 1 (triple ind.) + (B/A/A + 2) (doubly ind.) + (B/A + 2) (indirect).
954 * If we plug in 4096 for B and 256 for A (for 1KB block size), we get 25.
955 */
956#define DIO_CREDITS 25
1da177e4 957
f91a2ad2
BP
958static int ext3_get_block(struct inode *inode, sector_t iblock,
959 struct buffer_head *bh_result, int create)
1da177e4 960{
3e4fdaf8 961 handle_t *handle = ext3_journal_current_handle();
bd1939de 962 int ret = 0, started = 0;
1d8fa7a2 963 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
1da177e4 964
bd1939de
JK
965 if (create && !handle) { /* Direct IO write... */
966 if (max_blocks > DIO_MAX_BLOCKS)
967 max_blocks = DIO_MAX_BLOCKS;
968 handle = ext3_journal_start(inode, DIO_CREDITS +
969 2 * EXT3_QUOTA_TRANS_BLOCKS(inode->i_sb));
970 if (IS_ERR(handle)) {
1da177e4 971 ret = PTR_ERR(handle);
bd1939de 972 goto out;
1da177e4 973 }
bd1939de 974 started = 1;
1da177e4
LT
975 }
976
bd1939de 977 ret = ext3_get_blocks_handle(handle, inode, iblock,
89747d36 978 max_blocks, bh_result, create, 0);
bd1939de
JK
979 if (ret > 0) {
980 bh_result->b_size = (ret << inode->i_blkbits);
981 ret = 0;
89747d36 982 }
bd1939de
JK
983 if (started)
984 ext3_journal_stop(handle);
985out:
1da177e4
LT
986 return ret;
987}
988
68c9d702
JB
989int ext3_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
990 u64 start, u64 len)
991{
992 return generic_block_fiemap(inode, fieinfo, start, len,
993 ext3_get_block);
994}
995
31bd2bc7
JA
996static struct extent_map *ext3_map_extent(struct address_space *mapping,
997 struct page *page, size_t page_offset,
998 loff_t start, u64 len, int create,
999 gfp_t gfp_mask)
1000{
1001 struct extent_map_tree *tree = &EXT3_I(mapping->host)->extent_tree;
1002 handle_t *handle = NULL;
1003 struct extent_map *ret;
1004
1005 if (create) {
1006 handle = ext3_journal_start(mapping->host, len >> 9);
1007 if (IS_ERR(handle))
1008 return (struct extent_map *) handle;
1009 }
1010
1011 ret = map_extent_get_block(tree, mapping, start, len, create, gfp_mask,
1012 ext3_get_block);
1013 if (handle)
1014 ext3_journal_stop(handle);
1015
1016 return ret;
1017}
1018
1da177e4
LT
1019/*
1020 * `handle' can be NULL if create is zero
1021 */
d6859bfc
AM
1022struct buffer_head *ext3_getblk(handle_t *handle, struct inode *inode,
1023 long block, int create, int *errp)
1da177e4
LT
1024{
1025 struct buffer_head dummy;
1026 int fatal = 0, err;
1027
1028 J_ASSERT(handle != NULL || create == 0);
1029
1030 dummy.b_state = 0;
1031 dummy.b_blocknr = -1000;
1032 buffer_trace_init(&dummy.b_history);
89747d36
MC
1033 err = ext3_get_blocks_handle(handle, inode, block, 1,
1034 &dummy, create, 1);
3665d0e5
BP
1035 /*
1036 * ext3_get_blocks_handle() returns number of blocks
1037 * mapped. 0 in case of a HOLE.
1038 */
1039 if (err > 0) {
1040 if (err > 1)
1041 WARN_ON(1);
89747d36 1042 err = 0;
89747d36
MC
1043 }
1044 *errp = err;
1045 if (!err && buffer_mapped(&dummy)) {
1da177e4
LT
1046 struct buffer_head *bh;
1047 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
2973dfdb
GOC
1048 if (!bh) {
1049 *errp = -EIO;
1050 goto err;
1051 }
1da177e4
LT
1052 if (buffer_new(&dummy)) {
1053 J_ASSERT(create != 0);
c80544dc 1054 J_ASSERT(handle != NULL);
1da177e4 1055
d6859bfc
AM
1056 /*
1057 * Now that we do not always journal data, we should
1058 * keep in mind whether this should always journal the
1059 * new buffer as metadata. For now, regular file
1060 * writes use ext3_get_block instead, so it's not a
1061 * problem.
1062 */
1da177e4
LT
1063 lock_buffer(bh);
1064 BUFFER_TRACE(bh, "call get_create_access");
1065 fatal = ext3_journal_get_create_access(handle, bh);
1066 if (!fatal && !buffer_uptodate(bh)) {
d6859bfc 1067 memset(bh->b_data,0,inode->i_sb->s_blocksize);
1da177e4
LT
1068 set_buffer_uptodate(bh);
1069 }
1070 unlock_buffer(bh);
1071 BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
1072 err = ext3_journal_dirty_metadata(handle, bh);
1073 if (!fatal)
1074 fatal = err;
1075 } else {
1076 BUFFER_TRACE(bh, "not a new buffer");
1077 }
1078 if (fatal) {
1079 *errp = fatal;
1080 brelse(bh);
1081 bh = NULL;
1082 }
1083 return bh;
1084 }
2973dfdb 1085err:
1da177e4
LT
1086 return NULL;
1087}
1088
d6859bfc 1089struct buffer_head *ext3_bread(handle_t *handle, struct inode *inode,
1da177e4
LT
1090 int block, int create, int *err)
1091{
1092 struct buffer_head * bh;
1093
1094 bh = ext3_getblk(handle, inode, block, create, err);
1095 if (!bh)
1096 return bh;
1097 if (buffer_uptodate(bh))
1098 return bh;
caa38fb0 1099 ll_rw_block(READ_META, 1, &bh);
1da177e4
LT
1100 wait_on_buffer(bh);
1101 if (buffer_uptodate(bh))
1102 return bh;
1103 put_bh(bh);
1104 *err = -EIO;
1105 return NULL;
1106}
1107
1108static int walk_page_buffers( handle_t *handle,
1109 struct buffer_head *head,
1110 unsigned from,
1111 unsigned to,
1112 int *partial,
1113 int (*fn)( handle_t *handle,
1114 struct buffer_head *bh))
1115{
1116 struct buffer_head *bh;
1117 unsigned block_start, block_end;
1118 unsigned blocksize = head->b_size;
1119 int err, ret = 0;
1120 struct buffer_head *next;
1121
1122 for ( bh = head, block_start = 0;
1123 ret == 0 && (bh != head || !block_start);
e9ad5620 1124 block_start = block_end, bh = next)
1da177e4
LT
1125 {
1126 next = bh->b_this_page;
1127 block_end = block_start + blocksize;
1128 if (block_end <= from || block_start >= to) {
1129 if (partial && !buffer_uptodate(bh))
1130 *partial = 1;
1131 continue;
1132 }
1133 err = (*fn)(handle, bh);
1134 if (!ret)
1135 ret = err;
1136 }
1137 return ret;
1138}
1139
1140/*
1141 * To preserve ordering, it is essential that the hole instantiation and
1142 * the data write be encapsulated in a single transaction. We cannot
1143 * close off a transaction and start a new one between the ext3_get_block()
1144 * and the commit_write(). So doing the journal_start at the start of
1145 * prepare_write() is the right place.
1146 *
1147 * Also, this function can nest inside ext3_writepage() ->
1148 * block_write_full_page(). In that case, we *know* that ext3_writepage()
1149 * has generated enough buffer credits to do the whole page. So we won't
1150 * block on the journal in that case, which is good, because the caller may
1151 * be PF_MEMALLOC.
1152 *
1153 * By accident, ext3 can be reentered when a transaction is open via
1154 * quota file writes. If we were to commit the transaction while thus
1155 * reentered, there can be a deadlock - we would be holding a quota
1156 * lock, and the commit would never complete if another thread had a
1157 * transaction open and was blocking on the quota lock - a ranking
1158 * violation.
1159 *
1160 * So what we do is to rely on the fact that journal_stop/journal_start
1161 * will _not_ run commit under these circumstances because handle->h_ref
1162 * is elevated. We'll still have enough credits for the tiny quotafile
ae6ddcc5 1163 * write.
1da177e4 1164 */
d6859bfc
AM
1165static int do_journal_get_write_access(handle_t *handle,
1166 struct buffer_head *bh)
1da177e4
LT
1167{
1168 if (!buffer_mapped(bh) || buffer_freed(bh))
1169 return 0;
1170 return ext3_journal_get_write_access(handle, bh);
1171}
1172
f4fc66a8
NP
1173static int ext3_write_begin(struct file *file, struct address_space *mapping,
1174 loff_t pos, unsigned len, unsigned flags,
1175 struct page **pagep, void **fsdata)
1da177e4 1176{
f4fc66a8 1177 struct inode *inode = mapping->host;
1aa9b4b9 1178 int ret, needed_blocks = ext3_writepage_trans_blocks(inode);
1da177e4
LT
1179 handle_t *handle;
1180 int retries = 0;
f4fc66a8
NP
1181 struct page *page;
1182 pgoff_t index;
1183 unsigned from, to;
1184
1185 index = pos >> PAGE_CACHE_SHIFT;
1186 from = pos & (PAGE_CACHE_SIZE - 1);
1187 to = from + len;
1da177e4
LT
1188
1189retry:
54566b2c 1190 page = grab_cache_page_write_begin(mapping, index, flags);
f4fc66a8
NP
1191 if (!page)
1192 return -ENOMEM;
1193 *pagep = page;
1194
1da177e4 1195 handle = ext3_journal_start(inode, needed_blocks);
1aa9b4b9 1196 if (IS_ERR(handle)) {
f4fc66a8
NP
1197 unlock_page(page);
1198 page_cache_release(page);
1aa9b4b9
AM
1199 ret = PTR_ERR(handle);
1200 goto out;
1201 }
f4fc66a8
NP
1202 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
1203 ext3_get_block);
1da177e4 1204 if (ret)
f4fc66a8 1205 goto write_begin_failed;
1da177e4
LT
1206
1207 if (ext3_should_journal_data(inode)) {
1208 ret = walk_page_buffers(handle, page_buffers(page),
1209 from, to, NULL, do_journal_get_write_access);
1210 }
f4fc66a8
NP
1211write_begin_failed:
1212 if (ret) {
1aa9b4b9 1213 ext3_journal_stop(handle);
f4fc66a8
NP
1214 unlock_page(page);
1215 page_cache_release(page);
5ec8b75e
AK
1216 /*
1217 * block_write_begin may have instantiated a few blocks
1218 * outside i_size. Trim these off again. Don't need
1219 * i_size_read because we hold i_mutex.
1220 */
1221 if (pos + len > inode->i_size)
1222 vmtruncate(inode, inode->i_size);
f4fc66a8 1223 }
1da177e4
LT
1224 if (ret == -ENOSPC && ext3_should_retry_alloc(inode->i_sb, &retries))
1225 goto retry;
1aa9b4b9 1226out:
1da177e4
LT
1227 return ret;
1228}
1229
f4fc66a8 1230
d6859bfc 1231int ext3_journal_dirty_data(handle_t *handle, struct buffer_head *bh)
1da177e4
LT
1232{
1233 int err = journal_dirty_data(handle, bh);
1234 if (err)
e05b6b52 1235 ext3_journal_abort_handle(__func__, __func__,
f4fc66a8 1236 bh, handle, err);
1da177e4
LT
1237 return err;
1238}
1239
f4fc66a8
NP
1240/* For write_end() in data=journal mode */
1241static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1da177e4
LT
1242{
1243 if (!buffer_mapped(bh) || buffer_freed(bh))
1244 return 0;
1245 set_buffer_uptodate(bh);
1246 return ext3_journal_dirty_metadata(handle, bh);
1247}
1248
f4fc66a8
NP
1249/*
1250 * Generic write_end handler for ordered and writeback ext3 journal modes.
1251 * We can't use generic_write_end, because that unlocks the page and we need to
1252 * unlock the page after ext3_journal_stop, but ext3_journal_stop must run
1253 * after block_write_end.
1254 */
1255static int ext3_generic_write_end(struct file *file,
1256 struct address_space *mapping,
1257 loff_t pos, unsigned len, unsigned copied,
1258 struct page *page, void *fsdata)
1259{
1260 struct inode *inode = file->f_mapping->host;
1261
1262 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1263
1264 if (pos+copied > inode->i_size) {
1265 i_size_write(inode, pos+copied);
1266 mark_inode_dirty(inode);
1267 }
1268
1269 return copied;
1270}
1271
1da177e4
LT
1272/*
1273 * We need to pick up the new inode size which generic_commit_write gave us
1274 * `file' can be NULL - eg, when called from page_symlink().
1275 *
1276 * ext3 never places buffers on inode->i_mapping->private_list. metadata
1277 * buffers are managed internally.
1278 */
f4fc66a8
NP
1279static int ext3_ordered_write_end(struct file *file,
1280 struct address_space *mapping,
1281 loff_t pos, unsigned len, unsigned copied,
1282 struct page *page, void *fsdata)
1da177e4
LT
1283{
1284 handle_t *handle = ext3_journal_current_handle();
f4fc66a8
NP
1285 struct inode *inode = file->f_mapping->host;
1286 unsigned from, to;
1da177e4
LT
1287 int ret = 0, ret2;
1288
f4fc66a8
NP
1289 from = pos & (PAGE_CACHE_SIZE - 1);
1290 to = from + len;
1291
1da177e4
LT
1292 ret = walk_page_buffers(handle, page_buffers(page),
1293 from, to, NULL, ext3_journal_dirty_data);
1294
1295 if (ret == 0) {
1296 /*
f4fc66a8 1297 * generic_write_end() will run mark_inode_dirty() if i_size
1da177e4
LT
1298 * changes. So let's piggyback the i_disksize mark_inode_dirty
1299 * into that.
1300 */
1301 loff_t new_i_size;
1302
f4fc66a8 1303 new_i_size = pos + copied;
1da177e4
LT
1304 if (new_i_size > EXT3_I(inode)->i_disksize)
1305 EXT3_I(inode)->i_disksize = new_i_size;
7c2f3d6f 1306 ret2 = ext3_generic_write_end(file, mapping, pos, len, copied,
f4fc66a8 1307 page, fsdata);
7c2f3d6f
RK
1308 copied = ret2;
1309 if (ret2 < 0)
1310 ret = ret2;
1da177e4
LT
1311 }
1312 ret2 = ext3_journal_stop(handle);
1313 if (!ret)
1314 ret = ret2;
f4fc66a8
NP
1315 unlock_page(page);
1316 page_cache_release(page);
1317
1318 return ret ? ret : copied;
1da177e4
LT
1319}
1320
f4fc66a8
NP
1321static int ext3_writeback_write_end(struct file *file,
1322 struct address_space *mapping,
1323 loff_t pos, unsigned len, unsigned copied,
1324 struct page *page, void *fsdata)
1da177e4
LT
1325{
1326 handle_t *handle = ext3_journal_current_handle();
f4fc66a8 1327 struct inode *inode = file->f_mapping->host;
1da177e4
LT
1328 int ret = 0, ret2;
1329 loff_t new_i_size;
1330
f4fc66a8 1331 new_i_size = pos + copied;
1da177e4
LT
1332 if (new_i_size > EXT3_I(inode)->i_disksize)
1333 EXT3_I(inode)->i_disksize = new_i_size;
1334
7c2f3d6f 1335 ret2 = ext3_generic_write_end(file, mapping, pos, len, copied,
f4fc66a8 1336 page, fsdata);
7c2f3d6f
RK
1337 copied = ret2;
1338 if (ret2 < 0)
1339 ret = ret2;
1da177e4
LT
1340
1341 ret2 = ext3_journal_stop(handle);
1342 if (!ret)
1343 ret = ret2;
f4fc66a8
NP
1344 unlock_page(page);
1345 page_cache_release(page);
1346
1347 return ret ? ret : copied;
1da177e4
LT
1348}
1349
f4fc66a8
NP
1350static int ext3_journalled_write_end(struct file *file,
1351 struct address_space *mapping,
1352 loff_t pos, unsigned len, unsigned copied,
1353 struct page *page, void *fsdata)
1da177e4
LT
1354{
1355 handle_t *handle = ext3_journal_current_handle();
f4fc66a8 1356 struct inode *inode = mapping->host;
1da177e4
LT
1357 int ret = 0, ret2;
1358 int partial = 0;
f4fc66a8 1359 unsigned from, to;
1da177e4 1360
f4fc66a8
NP
1361 from = pos & (PAGE_CACHE_SIZE - 1);
1362 to = from + len;
1363
1364 if (copied < len) {
1365 if (!PageUptodate(page))
1366 copied = 0;
1367 page_zero_new_buffers(page, from+copied, to);
1368 }
1da177e4
LT
1369
1370 ret = walk_page_buffers(handle, page_buffers(page), from,
f4fc66a8 1371 to, &partial, write_end_fn);
1da177e4
LT
1372 if (!partial)
1373 SetPageUptodate(page);
f4fc66a8
NP
1374 if (pos+copied > inode->i_size)
1375 i_size_write(inode, pos+copied);
1da177e4
LT
1376 EXT3_I(inode)->i_state |= EXT3_STATE_JDATA;
1377 if (inode->i_size > EXT3_I(inode)->i_disksize) {
1378 EXT3_I(inode)->i_disksize = inode->i_size;
1379 ret2 = ext3_mark_inode_dirty(handle, inode);
ae6ddcc5 1380 if (!ret)
1da177e4
LT
1381 ret = ret2;
1382 }
f4fc66a8 1383
1da177e4
LT
1384 ret2 = ext3_journal_stop(handle);
1385 if (!ret)
1386 ret = ret2;
f4fc66a8
NP
1387 unlock_page(page);
1388 page_cache_release(page);
1389
1390 return ret ? ret : copied;
1da177e4
LT
1391}
1392
ae6ddcc5 1393/*
1da177e4
LT
1394 * bmap() is special. It gets used by applications such as lilo and by
1395 * the swapper to find the on-disk block of a specific piece of data.
1396 *
1397 * Naturally, this is dangerous if the block concerned is still in the
1398 * journal. If somebody makes a swapfile on an ext3 data-journaling
1399 * filesystem and enables swap, then they may get a nasty shock when the
1400 * data getting swapped to that swapfile suddenly gets overwritten by
1401 * the original zero's written out previously to the journal and
ae6ddcc5 1402 * awaiting writeback in the kernel's buffer cache.
1da177e4
LT
1403 *
1404 * So, if we see any bmap calls here on a modified, data-journaled file,
ae6ddcc5 1405 * take extra steps to flush any blocks which might be in the cache.
1da177e4
LT
1406 */
1407static sector_t ext3_bmap(struct address_space *mapping, sector_t block)
1408{
1409 struct inode *inode = mapping->host;
1410 journal_t *journal;
1411 int err;
1412
1413 if (EXT3_I(inode)->i_state & EXT3_STATE_JDATA) {
ae6ddcc5 1414 /*
1da177e4
LT
1415 * This is a REALLY heavyweight approach, but the use of
1416 * bmap on dirty files is expected to be extremely rare:
1417 * only if we run lilo or swapon on a freshly made file
ae6ddcc5 1418 * do we expect this to happen.
1da177e4
LT
1419 *
1420 * (bmap requires CAP_SYS_RAWIO so this does not
1421 * represent an unprivileged user DOS attack --- we'd be
1422 * in trouble if mortal users could trigger this path at
ae6ddcc5 1423 * will.)
1da177e4
LT
1424 *
1425 * NB. EXT3_STATE_JDATA is not set on files other than
1426 * regular files. If somebody wants to bmap a directory
1427 * or symlink and gets confused because the buffer
1428 * hasn't yet been flushed to disk, they deserve
1429 * everything they get.
1430 */
1431
1432 EXT3_I(inode)->i_state &= ~EXT3_STATE_JDATA;
1433 journal = EXT3_JOURNAL(inode);
1434 journal_lock_updates(journal);
1435 err = journal_flush(journal);
1436 journal_unlock_updates(journal);
1437
1438 if (err)
1439 return 0;
1440 }
1441
1442 return generic_block_bmap(mapping,block,ext3_get_block);
1443}
1444
1445static int bget_one(handle_t *handle, struct buffer_head *bh)
1446{
1447 get_bh(bh);
1448 return 0;
1449}
1450
1451static int bput_one(handle_t *handle, struct buffer_head *bh)
1452{
1453 put_bh(bh);
1454 return 0;
1455}
1456
1457static int journal_dirty_data_fn(handle_t *handle, struct buffer_head *bh)
1458{
1459 if (buffer_mapped(bh))
1460 return ext3_journal_dirty_data(handle, bh);
1461 return 0;
1462}
1463
1464/*
1465 * Note that we always start a transaction even if we're not journalling
1466 * data. This is to preserve ordering: any hole instantiation within
1467 * __block_write_full_page -> ext3_get_block() should be journalled
1468 * along with the data so we don't crash and then get metadata which
1469 * refers to old data.
1470 *
1471 * In all journalling modes block_write_full_page() will start the I/O.
1472 *
1473 * Problem:
1474 *
1475 * ext3_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1476 * ext3_writepage()
1477 *
1478 * Similar for:
1479 *
1480 * ext3_file_write() -> generic_file_write() -> __alloc_pages() -> ...
1481 *
1482 * Same applies to ext3_get_block(). We will deadlock on various things like
97461518 1483 * lock_journal and i_truncate_mutex.
1da177e4
LT
1484 *
1485 * Setting PF_MEMALLOC here doesn't work - too many internal memory
1486 * allocations fail.
1487 *
1488 * 16May01: If we're reentered then journal_current_handle() will be
1489 * non-zero. We simply *return*.
1490 *
1491 * 1 July 2001: @@@ FIXME:
1492 * In journalled data mode, a data buffer may be metadata against the
1493 * current transaction. But the same file is part of a shared mapping
1494 * and someone does a writepage() on it.
1495 *
1496 * We will move the buffer onto the async_data list, but *after* it has
1497 * been dirtied. So there's a small window where we have dirty data on
1498 * BJ_Metadata.
1499 *
1500 * Note that this only applies to the last partial page in the file. The
1501 * bit which block_write_full_page() uses prepare/commit for. (That's
1502 * broken code anyway: it's wrong for msync()).
1503 *
1504 * It's a rare case: affects the final partial page, for journalled data
1505 * where the file is subject to bith write() and writepage() in the same
1506 * transction. To fix it we'll need a custom block_write_full_page().
1507 * We'll probably need that anyway for journalling writepage() output.
1508 *
1509 * We don't honour synchronous mounts for writepage(). That would be
1510 * disastrous. Any write() or metadata operation will sync the fs for
1511 * us.
1512 *
1513 * AKPM2: if all the page's buffers are mapped to disk and !data=journal,
1514 * we don't need to open a transaction here.
1515 */
1516static int ext3_ordered_writepage(struct page *page,
d6859bfc 1517 struct writeback_control *wbc)
1da177e4
LT
1518{
1519 struct inode *inode = page->mapping->host;
1520 struct buffer_head *page_bufs;
1521 handle_t *handle = NULL;
1522 int ret = 0;
1523 int err;
1524
1525 J_ASSERT(PageLocked(page));
1526
1527 /*
1528 * We give up here if we're reentered, because it might be for a
1529 * different filesystem.
1530 */
1531 if (ext3_journal_current_handle())
1532 goto out_fail;
1533
1534 handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
1535
1536 if (IS_ERR(handle)) {
1537 ret = PTR_ERR(handle);
1538 goto out_fail;
1539 }
1540
1541 if (!page_has_buffers(page)) {
1542 create_empty_buffers(page, inode->i_sb->s_blocksize,
1543 (1 << BH_Dirty)|(1 << BH_Uptodate));
1544 }
1545 page_bufs = page_buffers(page);
1546 walk_page_buffers(handle, page_bufs, 0,
1547 PAGE_CACHE_SIZE, NULL, bget_one);
1548
1549 ret = block_write_full_page(page, ext3_get_block, wbc);
1550
1551 /*
1552 * The page can become unlocked at any point now, and
1553 * truncate can then come in and change things. So we
1554 * can't touch *page from now on. But *page_bufs is
1555 * safe due to elevated refcount.
1556 */
1557
1558 /*
ae6ddcc5 1559 * And attach them to the current transaction. But only if
1da177e4
LT
1560 * block_write_full_page() succeeded. Otherwise they are unmapped,
1561 * and generally junk.
1562 */
1563 if (ret == 0) {
1564 err = walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE,
1565 NULL, journal_dirty_data_fn);
1566 if (!ret)
1567 ret = err;
1568 }
1569 walk_page_buffers(handle, page_bufs, 0,
1570 PAGE_CACHE_SIZE, NULL, bput_one);
1571 err = ext3_journal_stop(handle);
1572 if (!ret)
1573 ret = err;
1574 return ret;
1575
1576out_fail:
1577 redirty_page_for_writepage(wbc, page);
1578 unlock_page(page);
1579 return ret;
1580}
1581
1da177e4
LT
1582static int ext3_writeback_writepage(struct page *page,
1583 struct writeback_control *wbc)
1584{
1585 struct inode *inode = page->mapping->host;
1586 handle_t *handle = NULL;
1587 int ret = 0;
1588 int err;
1589
1590 if (ext3_journal_current_handle())
1591 goto out_fail;
1592
1593 handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
1594 if (IS_ERR(handle)) {
1595 ret = PTR_ERR(handle);
1596 goto out_fail;
1597 }
1598
0e31f51d 1599 if (test_opt(inode->i_sb, NOBH) && ext3_should_writeback_data(inode))
1da177e4
LT
1600 ret = nobh_writepage(page, ext3_get_block, wbc);
1601 else
1602 ret = block_write_full_page(page, ext3_get_block, wbc);
1603
1604 err = ext3_journal_stop(handle);
1605 if (!ret)
1606 ret = err;
1607 return ret;
1608
1609out_fail:
1610 redirty_page_for_writepage(wbc, page);
1611 unlock_page(page);
1612 return ret;
1613}
1614
1615static int ext3_journalled_writepage(struct page *page,
1616 struct writeback_control *wbc)
1617{
1618 struct inode *inode = page->mapping->host;
1619 handle_t *handle = NULL;
1620 int ret = 0;
1621 int err;
1622
1623 if (ext3_journal_current_handle())
1624 goto no_write;
1625
1626 handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
1627 if (IS_ERR(handle)) {
1628 ret = PTR_ERR(handle);
1629 goto no_write;
1630 }
1631
1632 if (!page_has_buffers(page) || PageChecked(page)) {
1633 /*
1634 * It's mmapped pagecache. Add buffers and journal it. There
1635 * doesn't seem much point in redirtying the page here.
1636 */
1637 ClearPageChecked(page);
1638 ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
1639 ext3_get_block);
ab4eb43c
DL
1640 if (ret != 0) {
1641 ext3_journal_stop(handle);
1da177e4 1642 goto out_unlock;
ab4eb43c 1643 }
1da177e4
LT
1644 ret = walk_page_buffers(handle, page_buffers(page), 0,
1645 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
1646
1647 err = walk_page_buffers(handle, page_buffers(page), 0,
f4fc66a8 1648 PAGE_CACHE_SIZE, NULL, write_end_fn);
1da177e4
LT
1649 if (ret == 0)
1650 ret = err;
1651 EXT3_I(inode)->i_state |= EXT3_STATE_JDATA;
1652 unlock_page(page);
1653 } else {
1654 /*
1655 * It may be a page full of checkpoint-mode buffers. We don't
1656 * really know unless we go poke around in the buffer_heads.
1657 * But block_write_full_page will do the right thing.
1658 */
1659 ret = block_write_full_page(page, ext3_get_block, wbc);
1660 }
1661 err = ext3_journal_stop(handle);
1662 if (!ret)
1663 ret = err;
1664out:
1665 return ret;
1666
1667no_write:
1668 redirty_page_for_writepage(wbc, page);
1669out_unlock:
1670 unlock_page(page);
1671 goto out;
1672}
1673
1674static int ext3_readpage(struct file *file, struct page *page)
1675{
1676 return mpage_readpage(page, ext3_get_block);
1677}
1678
1679static int
1680ext3_readpages(struct file *file, struct address_space *mapping,
1681 struct list_head *pages, unsigned nr_pages)
1682{
1683 return mpage_readpages(mapping, pages, nr_pages, ext3_get_block);
1684}
1685
2ff28e22 1686static void ext3_invalidatepage(struct page *page, unsigned long offset)
1da177e4
LT
1687{
1688 journal_t *journal = EXT3_JOURNAL(page->mapping->host);
1689
1690 /*
1691 * If it's a full truncate we just forget about the pending dirtying
1692 */
1693 if (offset == 0)
1694 ClearPageChecked(page);
1695
2ff28e22 1696 journal_invalidatepage(journal, page, offset);
1da177e4
LT
1697}
1698
27496a8c 1699static int ext3_releasepage(struct page *page, gfp_t wait)
1da177e4
LT
1700{
1701 journal_t *journal = EXT3_JOURNAL(page->mapping->host);
1702
1703 WARN_ON(PageChecked(page));
1704 if (!page_has_buffers(page))
1705 return 0;
1706 return journal_try_to_free_buffers(journal, page, wait);
1707}
1708
1709/*
1710 * If the O_DIRECT write will extend the file then add this inode to the
1711 * orphan list. So recovery will truncate it back to the original size
1712 * if the machine crashes during the write.
1713 *
1714 * If the O_DIRECT write is intantiating holes inside i_size and the machine
bd1939de
JK
1715 * crashes then stale disk data _may_ be exposed inside the file. But current
1716 * VFS code falls back into buffered path in that case so we are safe.
1da177e4
LT
1717 */
1718static ssize_t ext3_direct_IO(int rw, struct kiocb *iocb,
1719 const struct iovec *iov, loff_t offset,
1720 unsigned long nr_segs)
1721{
1722 struct file *file = iocb->ki_filp;
1723 struct inode *inode = file->f_mapping->host;
1724 struct ext3_inode_info *ei = EXT3_I(inode);
bd1939de 1725 handle_t *handle;
1da177e4
LT
1726 ssize_t ret;
1727 int orphan = 0;
1728 size_t count = iov_length(iov, nr_segs);
1729
1730 if (rw == WRITE) {
1731 loff_t final_size = offset + count;
1732
1da177e4 1733 if (final_size > inode->i_size) {
bd1939de
JK
1734 /* Credits for sb + inode write */
1735 handle = ext3_journal_start(inode, 2);
1736 if (IS_ERR(handle)) {
1737 ret = PTR_ERR(handle);
1738 goto out;
1739 }
1da177e4 1740 ret = ext3_orphan_add(handle, inode);
bd1939de
JK
1741 if (ret) {
1742 ext3_journal_stop(handle);
1743 goto out;
1744 }
1da177e4
LT
1745 orphan = 1;
1746 ei->i_disksize = inode->i_size;
bd1939de 1747 ext3_journal_stop(handle);
1da177e4
LT
1748 }
1749 }
1750
ae6ddcc5 1751 ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
1da177e4 1752 offset, nr_segs,
f91a2ad2 1753 ext3_get_block, NULL);
1da177e4 1754
bd1939de 1755 if (orphan) {
1da177e4
LT
1756 int err;
1757
bd1939de
JK
1758 /* Credits for sb + inode write */
1759 handle = ext3_journal_start(inode, 2);
1760 if (IS_ERR(handle)) {
1761 /* This is really bad luck. We've written the data
1762 * but cannot extend i_size. Bail out and pretend
1763 * the write failed... */
1764 ret = PTR_ERR(handle);
1765 goto out;
1766 }
1767 if (inode->i_nlink)
1da177e4 1768 ext3_orphan_del(handle, inode);
bd1939de 1769 if (ret > 0) {
1da177e4
LT
1770 loff_t end = offset + ret;
1771 if (end > inode->i_size) {
1772 ei->i_disksize = end;
1773 i_size_write(inode, end);
1774 /*
1775 * We're going to return a positive `ret'
1776 * here due to non-zero-length I/O, so there's
1777 * no way of reporting error returns from
1778 * ext3_mark_inode_dirty() to userspace. So
1779 * ignore it.
1780 */
1781 ext3_mark_inode_dirty(handle, inode);
1782 }
1783 }
1784 err = ext3_journal_stop(handle);
1785 if (ret == 0)
1786 ret = err;
1787 }
1788out:
1789 return ret;
1790}
1791
1792/*
1793 * Pages can be marked dirty completely asynchronously from ext3's journalling
1794 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
1795 * much here because ->set_page_dirty is called under VFS locks. The page is
1796 * not necessarily locked.
1797 *
1798 * We cannot just dirty the page and leave attached buffers clean, because the
1799 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
1800 * or jbddirty because all the journalling code will explode.
1801 *
1802 * So what we do is to mark the page "pending dirty" and next time writepage
1803 * is called, propagate that into the buffers appropriately.
1804 */
1805static int ext3_journalled_set_page_dirty(struct page *page)
1806{
1807 SetPageChecked(page);
1808 return __set_page_dirty_nobuffers(page);
1809}
1810
f5e54d6e 1811static const struct address_space_operations ext3_ordered_aops = {
8ab22b9a
HH
1812 .readpage = ext3_readpage,
1813 .readpages = ext3_readpages,
1814 .writepage = ext3_ordered_writepage,
1815 .sync_page = block_sync_page,
1816 .write_begin = ext3_write_begin,
1817 .write_end = ext3_ordered_write_end,
1818 .bmap = ext3_bmap,
1819 .invalidatepage = ext3_invalidatepage,
1820 .releasepage = ext3_releasepage,
1821 .direct_IO = ext3_direct_IO,
1822 .migratepage = buffer_migrate_page,
1823 .is_partially_uptodate = block_is_partially_uptodate,
31bd2bc7 1824 .map_extent = ext3_map_extent,
1da177e4
LT
1825};
1826
f5e54d6e 1827static const struct address_space_operations ext3_writeback_aops = {
8ab22b9a
HH
1828 .readpage = ext3_readpage,
1829 .readpages = ext3_readpages,
1830 .writepage = ext3_writeback_writepage,
1831 .sync_page = block_sync_page,
1832 .write_begin = ext3_write_begin,
1833 .write_end = ext3_writeback_write_end,
1834 .bmap = ext3_bmap,
1835 .invalidatepage = ext3_invalidatepage,
1836 .releasepage = ext3_releasepage,
1837 .direct_IO = ext3_direct_IO,
1838 .migratepage = buffer_migrate_page,
1839 .is_partially_uptodate = block_is_partially_uptodate,
31bd2bc7 1840 .map_extent = ext3_map_extent,
1da177e4
LT
1841};
1842
f5e54d6e 1843static const struct address_space_operations ext3_journalled_aops = {
8ab22b9a
HH
1844 .readpage = ext3_readpage,
1845 .readpages = ext3_readpages,
1846 .writepage = ext3_journalled_writepage,
1847 .sync_page = block_sync_page,
1848 .write_begin = ext3_write_begin,
1849 .write_end = ext3_journalled_write_end,
1850 .set_page_dirty = ext3_journalled_set_page_dirty,
1851 .bmap = ext3_bmap,
1852 .invalidatepage = ext3_invalidatepage,
1853 .releasepage = ext3_releasepage,
1854 .is_partially_uptodate = block_is_partially_uptodate,
31bd2bc7 1855 .map_extent = ext3_map_extent,
1da177e4
LT
1856};
1857
1858void ext3_set_aops(struct inode *inode)
1859{
1860 if (ext3_should_order_data(inode))
1861 inode->i_mapping->a_ops = &ext3_ordered_aops;
1862 else if (ext3_should_writeback_data(inode))
1863 inode->i_mapping->a_ops = &ext3_writeback_aops;
1864 else
1865 inode->i_mapping->a_ops = &ext3_journalled_aops;
1866}
1867
1868/*
1869 * ext3_block_truncate_page() zeroes out a mapping from file offset `from'
1870 * up to the end of the block which corresponds to `from'.
1871 * This required during truncate. We need to physically zero the tail end
1872 * of that block so it doesn't yield old data if the file is later grown.
1873 */
1874static int ext3_block_truncate_page(handle_t *handle, struct page *page,
1875 struct address_space *mapping, loff_t from)
1876{
43d23f90 1877 ext3_fsblk_t index = from >> PAGE_CACHE_SHIFT;
1da177e4
LT
1878 unsigned offset = from & (PAGE_CACHE_SIZE-1);
1879 unsigned blocksize, iblock, length, pos;
1880 struct inode *inode = mapping->host;
1881 struct buffer_head *bh;
1882 int err = 0;
1da177e4
LT
1883
1884 blocksize = inode->i_sb->s_blocksize;
1885 length = blocksize - (offset & (blocksize - 1));
1886 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
1887
1888 /*
1889 * For "nobh" option, we can only work if we don't need to
1890 * read-in the page - otherwise we create buffers to do the IO.
1891 */
cd6ef84e
BP
1892 if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
1893 ext3_should_writeback_data(inode) && PageUptodate(page)) {
eebd2aa3 1894 zero_user(page, offset, length);
cd6ef84e
BP
1895 set_page_dirty(page);
1896 goto unlock;
1da177e4
LT
1897 }
1898
1899 if (!page_has_buffers(page))
1900 create_empty_buffers(page, blocksize, 0);
1901
1902 /* Find the buffer that contains "offset" */
1903 bh = page_buffers(page);
1904 pos = blocksize;
1905 while (offset >= pos) {
1906 bh = bh->b_this_page;
1907 iblock++;
1908 pos += blocksize;
1909 }
1910
1911 err = 0;
1912 if (buffer_freed(bh)) {
1913 BUFFER_TRACE(bh, "freed: skip");
1914 goto unlock;
1915 }
1916
1917 if (!buffer_mapped(bh)) {
1918 BUFFER_TRACE(bh, "unmapped");
1919 ext3_get_block(inode, iblock, bh, 0);
1920 /* unmapped? It's a hole - nothing to do */
1921 if (!buffer_mapped(bh)) {
1922 BUFFER_TRACE(bh, "still unmapped");
1923 goto unlock;
1924 }
1925 }
1926
1927 /* Ok, it's mapped. Make sure it's up-to-date */
1928 if (PageUptodate(page))
1929 set_buffer_uptodate(bh);
1930
1931 if (!buffer_uptodate(bh)) {
1932 err = -EIO;
1933 ll_rw_block(READ, 1, &bh);
1934 wait_on_buffer(bh);
1935 /* Uhhuh. Read error. Complain and punt. */
1936 if (!buffer_uptodate(bh))
1937 goto unlock;
1938 }
1939
1940 if (ext3_should_journal_data(inode)) {
1941 BUFFER_TRACE(bh, "get write access");
1942 err = ext3_journal_get_write_access(handle, bh);
1943 if (err)
1944 goto unlock;
1945 }
1946
eebd2aa3 1947 zero_user(page, offset, length);
1da177e4
LT
1948 BUFFER_TRACE(bh, "zeroed end of block");
1949
1950 err = 0;
1951 if (ext3_should_journal_data(inode)) {
1952 err = ext3_journal_dirty_metadata(handle, bh);
1953 } else {
1954 if (ext3_should_order_data(inode))
1955 err = ext3_journal_dirty_data(handle, bh);
1956 mark_buffer_dirty(bh);
1957 }
1958
1959unlock:
1960 unlock_page(page);
1961 page_cache_release(page);
1962 return err;
1963}
1964
1965/*
1966 * Probably it should be a library function... search for first non-zero word
1967 * or memcmp with zero_page, whatever is better for particular architecture.
1968 * Linus?
1969 */
1970static inline int all_zeroes(__le32 *p, __le32 *q)
1971{
1972 while (p < q)
1973 if (*p++)
1974 return 0;
1975 return 1;
1976}
1977
1978/**
1979 * ext3_find_shared - find the indirect blocks for partial truncation.
1980 * @inode: inode in question
1981 * @depth: depth of the affected branch
1982 * @offsets: offsets of pointers in that branch (see ext3_block_to_path)
1983 * @chain: place to store the pointers to partial indirect blocks
1984 * @top: place to the (detached) top of branch
1985 *
1986 * This is a helper function used by ext3_truncate().
1987 *
1988 * When we do truncate() we may have to clean the ends of several
1989 * indirect blocks but leave the blocks themselves alive. Block is
1990 * partially truncated if some data below the new i_size is refered
1991 * from it (and it is on the path to the first completely truncated
1992 * data block, indeed). We have to free the top of that path along
1993 * with everything to the right of the path. Since no allocation
1994 * past the truncation point is possible until ext3_truncate()
1995 * finishes, we may safely do the latter, but top of branch may
1996 * require special attention - pageout below the truncation point
1997 * might try to populate it.
1998 *
1999 * We atomically detach the top of branch from the tree, store the
2000 * block number of its root in *@top, pointers to buffer_heads of
2001 * partially truncated blocks - in @chain[].bh and pointers to
2002 * their last elements that should not be removed - in
2003 * @chain[].p. Return value is the pointer to last filled element
2004 * of @chain.
2005 *
2006 * The work left to caller to do the actual freeing of subtrees:
2007 * a) free the subtree starting from *@top
2008 * b) free the subtrees whose roots are stored in
2009 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
2010 * c) free the subtrees growing from the inode past the @chain[0].
2011 * (no partially truncated stuff there). */
2012
d6859bfc
AM
2013static Indirect *ext3_find_shared(struct inode *inode, int depth,
2014 int offsets[4], Indirect chain[4], __le32 *top)
1da177e4
LT
2015{
2016 Indirect *partial, *p;
2017 int k, err;
2018
2019 *top = 0;
2020 /* Make k index the deepest non-null offest + 1 */
2021 for (k = depth; k > 1 && !offsets[k-1]; k--)
2022 ;
2023 partial = ext3_get_branch(inode, k, offsets, chain, &err);
2024 /* Writer: pointers */
2025 if (!partial)
2026 partial = chain + k-1;
2027 /*
2028 * If the branch acquired continuation since we've looked at it -
2029 * fine, it should all survive and (new) top doesn't belong to us.
2030 */
2031 if (!partial->key && *partial->p)
2032 /* Writer: end */
2033 goto no_top;
2034 for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--)
2035 ;
2036 /*
2037 * OK, we've found the last block that must survive. The rest of our
2038 * branch should be detached before unlocking. However, if that rest
2039 * of branch is all ours and does not grow immediately from the inode
2040 * it's easier to cheat and just decrement partial->p.
2041 */
2042 if (p == chain + k - 1 && p > chain) {
2043 p->p--;
2044 } else {
2045 *top = *p->p;
2046 /* Nope, don't do this in ext3. Must leave the tree intact */
2047#if 0
2048 *p->p = 0;
2049#endif
2050 }
2051 /* Writer: end */
2052
d6859bfc 2053 while(partial > p) {
1da177e4
LT
2054 brelse(partial->bh);
2055 partial--;
2056 }
2057no_top:
2058 return partial;
2059}
2060
2061/*
2062 * Zero a number of block pointers in either an inode or an indirect block.
2063 * If we restart the transaction we must again get write access to the
2064 * indirect block for further modification.
2065 *
2066 * We release `count' blocks on disk, but (last - first) may be greater
2067 * than `count' because there can be holes in there.
2068 */
d6859bfc 2069static void ext3_clear_blocks(handle_t *handle, struct inode *inode,
43d23f90 2070 struct buffer_head *bh, ext3_fsblk_t block_to_free,
d6859bfc 2071 unsigned long count, __le32 *first, __le32 *last)
1da177e4
LT
2072{
2073 __le32 *p;
2074 if (try_to_extend_transaction(handle, inode)) {
2075 if (bh) {
2076 BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
2077 ext3_journal_dirty_metadata(handle, bh);
2078 }
2079 ext3_mark_inode_dirty(handle, inode);
2080 ext3_journal_test_restart(handle, inode);
2081 if (bh) {
2082 BUFFER_TRACE(bh, "retaking write access");
2083 ext3_journal_get_write_access(handle, bh);
2084 }
2085 }
2086
2087 /*
2088 * Any buffers which are on the journal will be in memory. We find
2089 * them on the hash table so journal_revoke() will run journal_forget()
2090 * on them. We've already detached each block from the file, so
2091 * bforget() in journal_forget() should be safe.
2092 *
2093 * AKPM: turn on bforget in journal_forget()!!!
2094 */
2095 for (p = first; p < last; p++) {
2096 u32 nr = le32_to_cpu(*p);
2097 if (nr) {
2098 struct buffer_head *bh;
2099
2100 *p = 0;
2101 bh = sb_find_get_block(inode->i_sb, nr);
2102 ext3_forget(handle, 0, inode, bh, nr);
2103 }
2104 }
2105
2106 ext3_free_blocks(handle, inode, block_to_free, count);
2107}
2108
2109/**
2110 * ext3_free_data - free a list of data blocks
2111 * @handle: handle for this transaction
2112 * @inode: inode we are dealing with
2113 * @this_bh: indirect buffer_head which contains *@first and *@last
2114 * @first: array of block numbers
2115 * @last: points immediately past the end of array
2116 *
2117 * We are freeing all blocks refered from that array (numbers are stored as
2118 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
2119 *
2120 * We accumulate contiguous runs of blocks to free. Conveniently, if these
2121 * blocks are contiguous then releasing them at one time will only affect one
2122 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
2123 * actually use a lot of journal space.
2124 *
2125 * @this_bh will be %NULL if @first and @last point into the inode's direct
2126 * block pointers.
2127 */
2128static void ext3_free_data(handle_t *handle, struct inode *inode,
2129 struct buffer_head *this_bh,
2130 __le32 *first, __le32 *last)
2131{
43d23f90 2132 ext3_fsblk_t block_to_free = 0; /* Starting block # of a run */
ae6ddcc5 2133 unsigned long count = 0; /* Number of blocks in the run */
1da177e4
LT
2134 __le32 *block_to_free_p = NULL; /* Pointer into inode/ind
2135 corresponding to
2136 block_to_free */
43d23f90 2137 ext3_fsblk_t nr; /* Current block # */
1da177e4
LT
2138 __le32 *p; /* Pointer into inode/ind
2139 for current block */
2140 int err;
2141
2142 if (this_bh) { /* For indirect block */
2143 BUFFER_TRACE(this_bh, "get_write_access");
2144 err = ext3_journal_get_write_access(handle, this_bh);
2145 /* Important: if we can't update the indirect pointers
2146 * to the blocks, we can't free them. */
2147 if (err)
2148 return;
2149 }
2150
2151 for (p = first; p < last; p++) {
2152 nr = le32_to_cpu(*p);
2153 if (nr) {
2154 /* accumulate blocks to free if they're contiguous */
2155 if (count == 0) {
2156 block_to_free = nr;
2157 block_to_free_p = p;
2158 count = 1;
2159 } else if (nr == block_to_free + count) {
2160 count++;
2161 } else {
ae6ddcc5 2162 ext3_clear_blocks(handle, inode, this_bh,
1da177e4
LT
2163 block_to_free,
2164 count, block_to_free_p, p);
2165 block_to_free = nr;
2166 block_to_free_p = p;
2167 count = 1;
2168 }
2169 }
2170 }
2171
2172 if (count > 0)
2173 ext3_clear_blocks(handle, inode, this_bh, block_to_free,
2174 count, block_to_free_p, p);
2175
2176 if (this_bh) {
2177 BUFFER_TRACE(this_bh, "call ext3_journal_dirty_metadata");
3ccc3167
DG
2178
2179 /*
2180 * The buffer head should have an attached journal head at this
2181 * point. However, if the data is corrupted and an indirect
2182 * block pointed to itself, it would have been detached when
2183 * the block was cleared. Check for this instead of OOPSing.
2184 */
2185 if (bh2jh(this_bh))
2186 ext3_journal_dirty_metadata(handle, this_bh);
2187 else
2188 ext3_error(inode->i_sb, "ext3_free_data",
2189 "circular indirect block detected, "
2190 "inode=%lu, block=%llu",
2191 inode->i_ino,
2192 (unsigned long long)this_bh->b_blocknr);
1da177e4
LT
2193 }
2194}
2195
2196/**
2197 * ext3_free_branches - free an array of branches
2198 * @handle: JBD handle for this transaction
2199 * @inode: inode we are dealing with
2200 * @parent_bh: the buffer_head which contains *@first and *@last
2201 * @first: array of block numbers
2202 * @last: pointer immediately past the end of array
2203 * @depth: depth of the branches to free
2204 *
2205 * We are freeing all blocks refered from these branches (numbers are
2206 * stored as little-endian 32-bit) and updating @inode->i_blocks
2207 * appropriately.
2208 */
2209static void ext3_free_branches(handle_t *handle, struct inode *inode,
2210 struct buffer_head *parent_bh,
2211 __le32 *first, __le32 *last, int depth)
2212{
43d23f90 2213 ext3_fsblk_t nr;
1da177e4
LT
2214 __le32 *p;
2215
2216 if (is_handle_aborted(handle))
2217 return;
2218
2219 if (depth--) {
2220 struct buffer_head *bh;
2221 int addr_per_block = EXT3_ADDR_PER_BLOCK(inode->i_sb);
2222 p = last;
2223 while (--p >= first) {
2224 nr = le32_to_cpu(*p);
2225 if (!nr)
2226 continue; /* A hole */
2227
2228 /* Go read the buffer for the next level down */
2229 bh = sb_bread(inode->i_sb, nr);
2230
2231 /*
2232 * A read failure? Report error and clear slot
2233 * (should be rare).
2234 */
2235 if (!bh) {
2236 ext3_error(inode->i_sb, "ext3_free_branches",
eee194e7 2237 "Read failure, inode=%lu, block="E3FSBLK,
1da177e4
LT
2238 inode->i_ino, nr);
2239 continue;
2240 }
2241
2242 /* This zaps the entire block. Bottom up. */
2243 BUFFER_TRACE(bh, "free child branches");
2244 ext3_free_branches(handle, inode, bh,
2245 (__le32*)bh->b_data,
2246 (__le32*)bh->b_data + addr_per_block,
2247 depth);
2248
2249 /*
2250 * We've probably journalled the indirect block several
2251 * times during the truncate. But it's no longer
2252 * needed and we now drop it from the transaction via
2253 * journal_revoke().
2254 *
2255 * That's easy if it's exclusively part of this
2256 * transaction. But if it's part of the committing
2257 * transaction then journal_forget() will simply
2258 * brelse() it. That means that if the underlying
2259 * block is reallocated in ext3_get_block(),
2260 * unmap_underlying_metadata() will find this block
2261 * and will try to get rid of it. damn, damn.
2262 *
2263 * If this block has already been committed to the
2264 * journal, a revoke record will be written. And
2265 * revoke records must be emitted *before* clearing
2266 * this block's bit in the bitmaps.
2267 */
2268 ext3_forget(handle, 1, inode, bh, bh->b_blocknr);
2269
2270 /*
2271 * Everything below this this pointer has been
2272 * released. Now let this top-of-subtree go.
2273 *
2274 * We want the freeing of this indirect block to be
2275 * atomic in the journal with the updating of the
2276 * bitmap block which owns it. So make some room in
2277 * the journal.
2278 *
2279 * We zero the parent pointer *after* freeing its
2280 * pointee in the bitmaps, so if extend_transaction()
2281 * for some reason fails to put the bitmap changes and
2282 * the release into the same transaction, recovery
2283 * will merely complain about releasing a free block,
2284 * rather than leaking blocks.
2285 */
2286 if (is_handle_aborted(handle))
2287 return;
2288 if (try_to_extend_transaction(handle, inode)) {
2289 ext3_mark_inode_dirty(handle, inode);
2290 ext3_journal_test_restart(handle, inode);
2291 }
2292
2293 ext3_free_blocks(handle, inode, nr, 1);
2294
2295 if (parent_bh) {
2296 /*
2297 * The block which we have just freed is
2298 * pointed to by an indirect block: journal it
2299 */
2300 BUFFER_TRACE(parent_bh, "get_write_access");
2301 if (!ext3_journal_get_write_access(handle,
2302 parent_bh)){
2303 *p = 0;
2304 BUFFER_TRACE(parent_bh,
2305 "call ext3_journal_dirty_metadata");
ae6ddcc5 2306 ext3_journal_dirty_metadata(handle,
1da177e4
LT
2307 parent_bh);
2308 }
2309 }
2310 }
2311 } else {
2312 /* We have reached the bottom of the tree. */
2313 BUFFER_TRACE(parent_bh, "free data blocks");
2314 ext3_free_data(handle, inode, parent_bh, first, last);
2315 }
2316}
2317
ae76dd9a
DG
2318int ext3_can_truncate(struct inode *inode)
2319{
2320 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
2321 return 0;
2322 if (S_ISREG(inode->i_mode))
2323 return 1;
2324 if (S_ISDIR(inode->i_mode))
2325 return 1;
2326 if (S_ISLNK(inode->i_mode))
2327 return !ext3_inode_is_fast_symlink(inode);
2328 return 0;
2329}
2330
1da177e4
LT
2331/*
2332 * ext3_truncate()
2333 *
2334 * We block out ext3_get_block() block instantiations across the entire
2335 * transaction, and VFS/VM ensures that ext3_truncate() cannot run
2336 * simultaneously on behalf of the same inode.
2337 *
2338 * As we work through the truncate and commmit bits of it to the journal there
2339 * is one core, guiding principle: the file's tree must always be consistent on
2340 * disk. We must be able to restart the truncate after a crash.
2341 *
2342 * The file's tree may be transiently inconsistent in memory (although it
2343 * probably isn't), but whenever we close off and commit a journal transaction,
2344 * the contents of (the filesystem + the journal) must be consistent and
2345 * restartable. It's pretty simple, really: bottom up, right to left (although
2346 * left-to-right works OK too).
2347 *
2348 * Note that at recovery time, journal replay occurs *before* the restart of
2349 * truncate against the orphan inode list.
2350 *
2351 * The committed inode has the new, desired i_size (which is the same as
2352 * i_disksize in this case). After a crash, ext3_orphan_cleanup() will see
2353 * that this inode's truncate did not complete and it will again call
2354 * ext3_truncate() to have another go. So there will be instantiated blocks
2355 * to the right of the truncation point in a crashed ext3 filesystem. But
2356 * that's fine - as long as they are linked from the inode, the post-crash
2357 * ext3_truncate() run will find them and release them.
2358 */
d6859bfc 2359void ext3_truncate(struct inode *inode)
1da177e4
LT
2360{
2361 handle_t *handle;
2362 struct ext3_inode_info *ei = EXT3_I(inode);
2363 __le32 *i_data = ei->i_data;
2364 int addr_per_block = EXT3_ADDR_PER_BLOCK(inode->i_sb);
2365 struct address_space *mapping = inode->i_mapping;
2366 int offsets[4];
2367 Indirect chain[4];
2368 Indirect *partial;
2369 __le32 nr = 0;
2370 int n;
2371 long last_block;
2372 unsigned blocksize = inode->i_sb->s_blocksize;
2373 struct page *page;
2374
ae76dd9a 2375 if (!ext3_can_truncate(inode))
1da177e4
LT
2376 return;
2377
2378 /*
2379 * We have to lock the EOF page here, because lock_page() nests
2380 * outside journal_start().
2381 */
2382 if ((inode->i_size & (blocksize - 1)) == 0) {
2383 /* Block boundary? Nothing to do */
2384 page = NULL;
2385 } else {
2386 page = grab_cache_page(mapping,
2387 inode->i_size >> PAGE_CACHE_SHIFT);
2388 if (!page)
2389 return;
2390 }
2391
2392 handle = start_transaction(inode);
2393 if (IS_ERR(handle)) {
2394 if (page) {
2395 clear_highpage(page);
2396 flush_dcache_page(page);
2397 unlock_page(page);
2398 page_cache_release(page);
2399 }
2400 return; /* AKPM: return what? */
2401 }
2402
2403 last_block = (inode->i_size + blocksize-1)
2404 >> EXT3_BLOCK_SIZE_BITS(inode->i_sb);
2405
2406 if (page)
2407 ext3_block_truncate_page(handle, page, mapping, inode->i_size);
2408
2409 n = ext3_block_to_path(inode, last_block, offsets, NULL);
2410 if (n == 0)
2411 goto out_stop; /* error */
2412
2413 /*
2414 * OK. This truncate is going to happen. We add the inode to the
2415 * orphan list, so that if this truncate spans multiple transactions,
2416 * and we crash, we will resume the truncate when the filesystem
2417 * recovers. It also marks the inode dirty, to catch the new size.
2418 *
2419 * Implication: the file must always be in a sane, consistent
2420 * truncatable state while each transaction commits.
2421 */
2422 if (ext3_orphan_add(handle, inode))
2423 goto out_stop;
2424
2425 /*
2426 * The orphan list entry will now protect us from any crash which
2427 * occurs before the truncate completes, so it is now safe to propagate
2428 * the new, shorter inode size (held for now in i_size) into the
2429 * on-disk inode. We do this via i_disksize, which is the value which
2430 * ext3 *really* writes onto the disk inode.
2431 */
2432 ei->i_disksize = inode->i_size;
2433
2434 /*
2435 * From here we block out all ext3_get_block() callers who want to
2436 * modify the block allocation tree.
2437 */
97461518 2438 mutex_lock(&ei->truncate_mutex);
1da177e4
LT
2439
2440 if (n == 1) { /* direct blocks */
2441 ext3_free_data(handle, inode, NULL, i_data+offsets[0],
2442 i_data + EXT3_NDIR_BLOCKS);
2443 goto do_indirects;
2444 }
2445
2446 partial = ext3_find_shared(inode, n, offsets, chain, &nr);
2447 /* Kill the top of shared branch (not detached) */
2448 if (nr) {
2449 if (partial == chain) {
2450 /* Shared branch grows from the inode */
2451 ext3_free_branches(handle, inode, NULL,
2452 &nr, &nr+1, (chain+n-1) - partial);
2453 *partial->p = 0;
2454 /*
2455 * We mark the inode dirty prior to restart,
2456 * and prior to stop. No need for it here.
2457 */
2458 } else {
2459 /* Shared branch grows from an indirect block */
2460 BUFFER_TRACE(partial->bh, "get_write_access");
2461 ext3_free_branches(handle, inode, partial->bh,
2462 partial->p,
2463 partial->p+1, (chain+n-1) - partial);
2464 }
2465 }
2466 /* Clear the ends of indirect blocks on the shared branch */
2467 while (partial > chain) {
2468 ext3_free_branches(handle, inode, partial->bh, partial->p + 1,
2469 (__le32*)partial->bh->b_data+addr_per_block,
2470 (chain+n-1) - partial);
2471 BUFFER_TRACE(partial->bh, "call brelse");
2472 brelse (partial->bh);
2473 partial--;
2474 }
2475do_indirects:
2476 /* Kill the remaining (whole) subtrees */
2477 switch (offsets[0]) {
d6859bfc
AM
2478 default:
2479 nr = i_data[EXT3_IND_BLOCK];
2480 if (nr) {
2481 ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
2482 i_data[EXT3_IND_BLOCK] = 0;
2483 }
2484 case EXT3_IND_BLOCK:
2485 nr = i_data[EXT3_DIND_BLOCK];
2486 if (nr) {
2487 ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
2488 i_data[EXT3_DIND_BLOCK] = 0;
2489 }
2490 case EXT3_DIND_BLOCK:
2491 nr = i_data[EXT3_TIND_BLOCK];
2492 if (nr) {
2493 ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
2494 i_data[EXT3_TIND_BLOCK] = 0;
2495 }
2496 case EXT3_TIND_BLOCK:
2497 ;
1da177e4
LT
2498 }
2499
2500 ext3_discard_reservation(inode);
2501
97461518 2502 mutex_unlock(&ei->truncate_mutex);
1da177e4
LT
2503 inode->i_mtime = inode->i_ctime = CURRENT_TIME_SEC;
2504 ext3_mark_inode_dirty(handle, inode);
2505
d6859bfc
AM
2506 /*
2507 * In a multi-transaction truncate, we only make the final transaction
2508 * synchronous
2509 */
1da177e4
LT
2510 if (IS_SYNC(inode))
2511 handle->h_sync = 1;
2512out_stop:
2513 /*
2514 * If this was a simple ftruncate(), and the file will remain alive
2515 * then we need to clear up the orphan record which we created above.
2516 * However, if this was a real unlink then we were called by
2517 * ext3_delete_inode(), and we allow that function to clean up the
2518 * orphan info for us.
2519 */
2520 if (inode->i_nlink)
2521 ext3_orphan_del(handle, inode);
2522
2523 ext3_journal_stop(handle);
2524}
2525
43d23f90 2526static ext3_fsblk_t ext3_get_inode_block(struct super_block *sb,
1da177e4
LT
2527 unsigned long ino, struct ext3_iloc *iloc)
2528{
e0e369a7 2529 unsigned long block_group;
43d23f90
MC
2530 unsigned long offset;
2531 ext3_fsblk_t block;
e0e369a7 2532 struct ext3_group_desc *gdp;
1da177e4 2533
2ccb48eb
NB
2534 if (!ext3_valid_inum(sb, ino)) {
2535 /*
2536 * This error is already checked for in namei.c unless we are
2537 * looking at an NFS filehandle, in which case no error
2538 * report is needed
2539 */
1da177e4
LT
2540 return 0;
2541 }
2ccb48eb 2542
1da177e4 2543 block_group = (ino - 1) / EXT3_INODES_PER_GROUP(sb);
e0e369a7
AM
2544 gdp = ext3_get_group_desc(sb, block_group, NULL);
2545 if (!gdp)
1da177e4 2546 return 0;
1da177e4
LT
2547 /*
2548 * Figure out the offset within the block group inode table
2549 */
2550 offset = ((ino - 1) % EXT3_INODES_PER_GROUP(sb)) *
2551 EXT3_INODE_SIZE(sb);
e0e369a7 2552 block = le32_to_cpu(gdp->bg_inode_table) +
1da177e4
LT
2553 (offset >> EXT3_BLOCK_SIZE_BITS(sb));
2554
2555 iloc->block_group = block_group;
2556 iloc->offset = offset & (EXT3_BLOCK_SIZE(sb) - 1);
2557 return block;
2558}
2559
2560/*
2561 * ext3_get_inode_loc returns with an extra refcount against the inode's
2562 * underlying buffer_head on success. If 'in_mem' is true, we have all
2563 * data in memory that is needed to recreate the on-disk version of this
2564 * inode.
2565 */
2566static int __ext3_get_inode_loc(struct inode *inode,
2567 struct ext3_iloc *iloc, int in_mem)
2568{
43d23f90 2569 ext3_fsblk_t block;
1da177e4
LT
2570 struct buffer_head *bh;
2571
2572 block = ext3_get_inode_block(inode->i_sb, inode->i_ino, iloc);
2573 if (!block)
2574 return -EIO;
2575
2576 bh = sb_getblk(inode->i_sb, block);
2577 if (!bh) {
2578 ext3_error (inode->i_sb, "ext3_get_inode_loc",
2579 "unable to read inode block - "
43d23f90
MC
2580 "inode=%lu, block="E3FSBLK,
2581 inode->i_ino, block);
1da177e4
LT
2582 return -EIO;
2583 }
2584 if (!buffer_uptodate(bh)) {
2585 lock_buffer(bh);
95450f5a
HK
2586
2587 /*
2588 * If the buffer has the write error flag, we have failed
2589 * to write out another inode in the same block. In this
2590 * case, we don't have to read the block because we may
2591 * read the old inode data successfully.
2592 */
2593 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
2594 set_buffer_uptodate(bh);
2595
1da177e4
LT
2596 if (buffer_uptodate(bh)) {
2597 /* someone brought it uptodate while we waited */
2598 unlock_buffer(bh);
2599 goto has_buffer;
2600 }
2601
2602 /*
2603 * If we have all information of the inode in memory and this
2604 * is the only valid inode in the block, we need not read the
2605 * block.
2606 */
2607 if (in_mem) {
2608 struct buffer_head *bitmap_bh;
2609 struct ext3_group_desc *desc;
2610 int inodes_per_buffer;
2611 int inode_offset, i;
2612 int block_group;
2613 int start;
2614
2615 block_group = (inode->i_ino - 1) /
2616 EXT3_INODES_PER_GROUP(inode->i_sb);
2617 inodes_per_buffer = bh->b_size /
2618 EXT3_INODE_SIZE(inode->i_sb);
2619 inode_offset = ((inode->i_ino - 1) %
2620 EXT3_INODES_PER_GROUP(inode->i_sb));
2621 start = inode_offset & ~(inodes_per_buffer - 1);
2622
2623 /* Is the inode bitmap in cache? */
2624 desc = ext3_get_group_desc(inode->i_sb,
2625 block_group, NULL);
2626 if (!desc)
2627 goto make_io;
2628
2629 bitmap_bh = sb_getblk(inode->i_sb,
2630 le32_to_cpu(desc->bg_inode_bitmap));
2631 if (!bitmap_bh)
2632 goto make_io;
2633
2634 /*
2635 * If the inode bitmap isn't in cache then the
2636 * optimisation may end up performing two reads instead
2637 * of one, so skip it.
2638 */
2639 if (!buffer_uptodate(bitmap_bh)) {
2640 brelse(bitmap_bh);
2641 goto make_io;
2642 }
2643 for (i = start; i < start + inodes_per_buffer; i++) {
2644 if (i == inode_offset)
2645 continue;
2646 if (ext3_test_bit(i, bitmap_bh->b_data))
2647 break;
2648 }
2649 brelse(bitmap_bh);
2650 if (i == start + inodes_per_buffer) {
2651 /* all other inodes are free, so skip I/O */
2652 memset(bh->b_data, 0, bh->b_size);
2653 set_buffer_uptodate(bh);
2654 unlock_buffer(bh);
2655 goto has_buffer;
2656 }
2657 }
2658
2659make_io:
2660 /*
2661 * There are other valid inodes in the buffer, this inode
2662 * has in-inode xattrs, or we don't have this inode in memory.
2663 * Read the block from disk.
2664 */
2665 get_bh(bh);
2666 bh->b_end_io = end_buffer_read_sync;
caa38fb0 2667 submit_bh(READ_META, bh);
1da177e4
LT
2668 wait_on_buffer(bh);
2669 if (!buffer_uptodate(bh)) {
2670 ext3_error(inode->i_sb, "ext3_get_inode_loc",
2671 "unable to read inode block - "
43d23f90 2672 "inode=%lu, block="E3FSBLK,
1da177e4
LT
2673 inode->i_ino, block);
2674 brelse(bh);
2675 return -EIO;
2676 }
2677 }
2678has_buffer:
2679 iloc->bh = bh;
2680 return 0;
2681}
2682
2683int ext3_get_inode_loc(struct inode *inode, struct ext3_iloc *iloc)
2684{
2685 /* We have all inode data except xattrs in memory here. */
2686 return __ext3_get_inode_loc(inode, iloc,
2687 !(EXT3_I(inode)->i_state & EXT3_STATE_XATTR));
2688}
2689
2690void ext3_set_inode_flags(struct inode *inode)
2691{
2692 unsigned int flags = EXT3_I(inode)->i_flags;
2693
2694 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
2695 if (flags & EXT3_SYNC_FL)
2696 inode->i_flags |= S_SYNC;
2697 if (flags & EXT3_APPEND_FL)
2698 inode->i_flags |= S_APPEND;
2699 if (flags & EXT3_IMMUTABLE_FL)
2700 inode->i_flags |= S_IMMUTABLE;
2701 if (flags & EXT3_NOATIME_FL)
2702 inode->i_flags |= S_NOATIME;
2703 if (flags & EXT3_DIRSYNC_FL)
2704 inode->i_flags |= S_DIRSYNC;
2705}
2706
28be5abb
JK
2707/* Propagate flags from i_flags to EXT3_I(inode)->i_flags */
2708void ext3_get_inode_flags(struct ext3_inode_info *ei)
2709{
2710 unsigned int flags = ei->vfs_inode.i_flags;
2711
2712 ei->i_flags &= ~(EXT3_SYNC_FL|EXT3_APPEND_FL|
2713 EXT3_IMMUTABLE_FL|EXT3_NOATIME_FL|EXT3_DIRSYNC_FL);
2714 if (flags & S_SYNC)
2715 ei->i_flags |= EXT3_SYNC_FL;
2716 if (flags & S_APPEND)
2717 ei->i_flags |= EXT3_APPEND_FL;
2718 if (flags & S_IMMUTABLE)
2719 ei->i_flags |= EXT3_IMMUTABLE_FL;
2720 if (flags & S_NOATIME)
2721 ei->i_flags |= EXT3_NOATIME_FL;
2722 if (flags & S_DIRSYNC)
2723 ei->i_flags |= EXT3_DIRSYNC_FL;
2724}
2725
473043dc 2726struct inode *ext3_iget(struct super_block *sb, unsigned long ino)
1da177e4
LT
2727{
2728 struct ext3_iloc iloc;
2729 struct ext3_inode *raw_inode;
473043dc 2730 struct ext3_inode_info *ei;
1da177e4 2731 struct buffer_head *bh;
473043dc
DH
2732 struct inode *inode;
2733 long ret;
1da177e4
LT
2734 int block;
2735
473043dc
DH
2736 inode = iget_locked(sb, ino);
2737 if (!inode)
2738 return ERR_PTR(-ENOMEM);
2739 if (!(inode->i_state & I_NEW))
2740 return inode;
2741
2742 ei = EXT3_I(inode);
1da177e4
LT
2743#ifdef CONFIG_EXT3_FS_POSIX_ACL
2744 ei->i_acl = EXT3_ACL_NOT_CACHED;
2745 ei->i_default_acl = EXT3_ACL_NOT_CACHED;
2746#endif
2747 ei->i_block_alloc_info = NULL;
2748
473043dc
DH
2749 ret = __ext3_get_inode_loc(inode, &iloc, 0);
2750 if (ret < 0)
1da177e4
LT
2751 goto bad_inode;
2752 bh = iloc.bh;
2753 raw_inode = ext3_raw_inode(&iloc);
2754 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
2755 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
2756 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
2757 if(!(test_opt (inode->i_sb, NO_UID32))) {
2758 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
2759 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
2760 }
2761 inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
2762 inode->i_size = le32_to_cpu(raw_inode->i_size);
4d7bf11d
MR
2763 inode->i_atime.tv_sec = (signed)le32_to_cpu(raw_inode->i_atime);
2764 inode->i_ctime.tv_sec = (signed)le32_to_cpu(raw_inode->i_ctime);
2765 inode->i_mtime.tv_sec = (signed)le32_to_cpu(raw_inode->i_mtime);
1da177e4
LT
2766 inode->i_atime.tv_nsec = inode->i_ctime.tv_nsec = inode->i_mtime.tv_nsec = 0;
2767
2768 ei->i_state = 0;
2769 ei->i_dir_start_lookup = 0;
2770 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
2771 /* We now have enough fields to check if the inode was active or not.
2772 * This is needed because nfsd might try to access dead inodes
2773 * the test is that same one that e2fsck uses
2774 * NeilBrown 1999oct15
2775 */
2776 if (inode->i_nlink == 0) {
2777 if (inode->i_mode == 0 ||
2778 !(EXT3_SB(inode->i_sb)->s_mount_state & EXT3_ORPHAN_FS)) {
2779 /* this inode is deleted */
2780 brelse (bh);
473043dc 2781 ret = -ESTALE;
1da177e4
LT
2782 goto bad_inode;
2783 }
2784 /* The only unlinked inodes we let through here have
2785 * valid i_mode and are being read by the orphan
2786 * recovery code: that's fine, we're about to complete
2787 * the process of deleting those. */
2788 }
1da177e4
LT
2789 inode->i_blocks = le32_to_cpu(raw_inode->i_blocks);
2790 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
2791#ifdef EXT3_FRAGMENTS
2792 ei->i_faddr = le32_to_cpu(raw_inode->i_faddr);
2793 ei->i_frag_no = raw_inode->i_frag;
2794 ei->i_frag_size = raw_inode->i_fsize;
2795#endif
2796 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl);
2797 if (!S_ISREG(inode->i_mode)) {
2798 ei->i_dir_acl = le32_to_cpu(raw_inode->i_dir_acl);
2799 } else {
2800 inode->i_size |=
2801 ((__u64)le32_to_cpu(raw_inode->i_size_high)) << 32;
2802 }
2803 ei->i_disksize = inode->i_size;
2804 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
2805 ei->i_block_group = iloc.block_group;
2806 /*
2807 * NOTE! The in-memory inode i_data array is in little-endian order
2808 * even on big-endian machines: we do NOT byteswap the block numbers!
2809 */
2810 for (block = 0; block < EXT3_N_BLOCKS; block++)
2811 ei->i_data[block] = raw_inode->i_block[block];
2812 INIT_LIST_HEAD(&ei->i_orphan);
2813
2814 if (inode->i_ino >= EXT3_FIRST_INO(inode->i_sb) + 1 &&
2815 EXT3_INODE_SIZE(inode->i_sb) > EXT3_GOOD_OLD_INODE_SIZE) {
2816 /*
2817 * When mke2fs creates big inodes it does not zero out
2818 * the unused bytes above EXT3_GOOD_OLD_INODE_SIZE,
2819 * so ignore those first few inodes.
2820 */
2821 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
2822 if (EXT3_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
e4a10a36
KK
2823 EXT3_INODE_SIZE(inode->i_sb)) {
2824 brelse (bh);
473043dc 2825 ret = -EIO;
1da177e4 2826 goto bad_inode;
e4a10a36 2827 }
1da177e4
LT
2828 if (ei->i_extra_isize == 0) {
2829 /* The extra space is currently unused. Use it. */
2830 ei->i_extra_isize = sizeof(struct ext3_inode) -
2831 EXT3_GOOD_OLD_INODE_SIZE;
2832 } else {
2833 __le32 *magic = (void *)raw_inode +
2834 EXT3_GOOD_OLD_INODE_SIZE +
2835 ei->i_extra_isize;
2836 if (*magic == cpu_to_le32(EXT3_XATTR_MAGIC))
2837 ei->i_state |= EXT3_STATE_XATTR;
2838 }
2839 } else
2840 ei->i_extra_isize = 0;
2841
2842 if (S_ISREG(inode->i_mode)) {
2843 inode->i_op = &ext3_file_inode_operations;
2844 inode->i_fop = &ext3_file_operations;
2845 ext3_set_aops(inode);
2846 } else if (S_ISDIR(inode->i_mode)) {
2847 inode->i_op = &ext3_dir_inode_operations;
2848 inode->i_fop = &ext3_dir_operations;
2849 } else if (S_ISLNK(inode->i_mode)) {
b5ed3112 2850 if (ext3_inode_is_fast_symlink(inode)) {
1da177e4 2851 inode->i_op = &ext3_fast_symlink_inode_operations;
b5ed3112
DG
2852 nd_terminate_link(ei->i_data, inode->i_size,
2853 sizeof(ei->i_data) - 1);
2854 } else {
1da177e4
LT
2855 inode->i_op = &ext3_symlink_inode_operations;
2856 ext3_set_aops(inode);
2857 }
2858 } else {
2859 inode->i_op = &ext3_special_inode_operations;
2860 if (raw_inode->i_block[0])
2861 init_special_inode(inode, inode->i_mode,
2862 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
ae6ddcc5 2863 else
1da177e4
LT
2864 init_special_inode(inode, inode->i_mode,
2865 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
2866 }
31bd2bc7 2867 extent_map_tree_init(&ei->extent_tree);
1da177e4
LT
2868 brelse (iloc.bh);
2869 ext3_set_inode_flags(inode);
473043dc
DH
2870 unlock_new_inode(inode);
2871 return inode;
1da177e4
LT
2872
2873bad_inode:
473043dc
DH
2874 iget_failed(inode);
2875 return ERR_PTR(ret);
1da177e4
LT
2876}
2877
2878/*
2879 * Post the struct inode info into an on-disk inode location in the
2880 * buffer-cache. This gobbles the caller's reference to the
2881 * buffer_head in the inode location struct.
2882 *
2883 * The caller must have write access to iloc->bh.
2884 */
ae6ddcc5
MC
2885static int ext3_do_update_inode(handle_t *handle,
2886 struct inode *inode,
1da177e4
LT
2887 struct ext3_iloc *iloc)
2888{
2889 struct ext3_inode *raw_inode = ext3_raw_inode(iloc);
2890 struct ext3_inode_info *ei = EXT3_I(inode);
2891 struct buffer_head *bh = iloc->bh;
2892 int err = 0, rc, block;
2893
2894 /* For fields not not tracking in the in-memory inode,
2895 * initialise them to zero for new inodes. */
2896 if (ei->i_state & EXT3_STATE_NEW)
2897 memset(raw_inode, 0, EXT3_SB(inode->i_sb)->s_inode_size);
2898
28be5abb 2899 ext3_get_inode_flags(ei);
1da177e4
LT
2900 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
2901 if(!(test_opt(inode->i_sb, NO_UID32))) {
2902 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
2903 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
2904/*
2905 * Fix up interoperability with old kernels. Otherwise, old inodes get
2906 * re-used with the upper 16 bits of the uid/gid intact
2907 */
2908 if(!ei->i_dtime) {
2909 raw_inode->i_uid_high =
2910 cpu_to_le16(high_16_bits(inode->i_uid));
2911 raw_inode->i_gid_high =
2912 cpu_to_le16(high_16_bits(inode->i_gid));
2913 } else {
2914 raw_inode->i_uid_high = 0;
2915 raw_inode->i_gid_high = 0;
2916 }
2917 } else {
2918 raw_inode->i_uid_low =
2919 cpu_to_le16(fs_high2lowuid(inode->i_uid));
2920 raw_inode->i_gid_low =
2921 cpu_to_le16(fs_high2lowgid(inode->i_gid));
2922 raw_inode->i_uid_high = 0;
2923 raw_inode->i_gid_high = 0;
2924 }
2925 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
2926 raw_inode->i_size = cpu_to_le32(ei->i_disksize);
2927 raw_inode->i_atime = cpu_to_le32(inode->i_atime.tv_sec);
2928 raw_inode->i_ctime = cpu_to_le32(inode->i_ctime.tv_sec);
2929 raw_inode->i_mtime = cpu_to_le32(inode->i_mtime.tv_sec);
2930 raw_inode->i_blocks = cpu_to_le32(inode->i_blocks);
2931 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
2932 raw_inode->i_flags = cpu_to_le32(ei->i_flags);
2933#ifdef EXT3_FRAGMENTS
2934 raw_inode->i_faddr = cpu_to_le32(ei->i_faddr);
2935 raw_inode->i_frag = ei->i_frag_no;
2936 raw_inode->i_fsize = ei->i_frag_size;
2937#endif
2938 raw_inode->i_file_acl = cpu_to_le32(ei->i_file_acl);
2939 if (!S_ISREG(inode->i_mode)) {
2940 raw_inode->i_dir_acl = cpu_to_le32(ei->i_dir_acl);
2941 } else {
2942 raw_inode->i_size_high =
2943 cpu_to_le32(ei->i_disksize >> 32);
2944 if (ei->i_disksize > 0x7fffffffULL) {
2945 struct super_block *sb = inode->i_sb;
2946 if (!EXT3_HAS_RO_COMPAT_FEATURE(sb,
2947 EXT3_FEATURE_RO_COMPAT_LARGE_FILE) ||
2948 EXT3_SB(sb)->s_es->s_rev_level ==
2949 cpu_to_le32(EXT3_GOOD_OLD_REV)) {
2950 /* If this is the first large file
2951 * created, add a flag to the superblock.
2952 */
2953 err = ext3_journal_get_write_access(handle,
2954 EXT3_SB(sb)->s_sbh);
2955 if (err)
2956 goto out_brelse;
2957 ext3_update_dynamic_rev(sb);
2958 EXT3_SET_RO_COMPAT_FEATURE(sb,
2959 EXT3_FEATURE_RO_COMPAT_LARGE_FILE);
2960 sb->s_dirt = 1;
2961 handle->h_sync = 1;
2962 err = ext3_journal_dirty_metadata(handle,
2963 EXT3_SB(sb)->s_sbh);
2964 }
2965 }
2966 }
2967 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
2968 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
2969 if (old_valid_dev(inode->i_rdev)) {
2970 raw_inode->i_block[0] =
2971 cpu_to_le32(old_encode_dev(inode->i_rdev));
2972 raw_inode->i_block[1] = 0;
2973 } else {
2974 raw_inode->i_block[0] = 0;
2975 raw_inode->i_block[1] =
2976 cpu_to_le32(new_encode_dev(inode->i_rdev));
2977 raw_inode->i_block[2] = 0;
2978 }
2979 } else for (block = 0; block < EXT3_N_BLOCKS; block++)
2980 raw_inode->i_block[block] = ei->i_data[block];
2981
ff87b37d 2982 if (ei->i_extra_isize)
1da177e4
LT
2983 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
2984
2985 BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
2986 rc = ext3_journal_dirty_metadata(handle, bh);
2987 if (!err)
2988 err = rc;
2989 ei->i_state &= ~EXT3_STATE_NEW;
2990
2991out_brelse:
2992 brelse (bh);
2993 ext3_std_error(inode->i_sb, err);
2994 return err;
2995}
2996
2997/*
2998 * ext3_write_inode()
2999 *
3000 * We are called from a few places:
3001 *
3002 * - Within generic_file_write() for O_SYNC files.
3003 * Here, there will be no transaction running. We wait for any running
3004 * trasnaction to commit.
3005 *
3006 * - Within sys_sync(), kupdate and such.
3007 * We wait on commit, if tol to.
3008 *
3009 * - Within prune_icache() (PF_MEMALLOC == true)
3010 * Here we simply return. We can't afford to block kswapd on the
3011 * journal commit.
3012 *
3013 * In all cases it is actually safe for us to return without doing anything,
3014 * because the inode has been copied into a raw inode buffer in
3015 * ext3_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
3016 * knfsd.
3017 *
3018 * Note that we are absolutely dependent upon all inode dirtiers doing the
3019 * right thing: they *must* call mark_inode_dirty() after dirtying info in
3020 * which we are interested.
3021 *
3022 * It would be a bug for them to not do this. The code:
3023 *
3024 * mark_inode_dirty(inode)
3025 * stuff();
3026 * inode->i_size = expr;
3027 *
3028 * is in error because a kswapd-driven write_inode() could occur while
3029 * `stuff()' is running, and the new i_size will be lost. Plus the inode
3030 * will no longer be on the superblock's dirty inode list.
3031 */
3032int ext3_write_inode(struct inode *inode, int wait)
3033{
3034 if (current->flags & PF_MEMALLOC)
3035 return 0;
3036
3037 if (ext3_journal_current_handle()) {
9ad163ae 3038 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
1da177e4
LT
3039 dump_stack();
3040 return -EIO;
3041 }
3042
3043 if (!wait)
3044 return 0;
3045
3046 return ext3_force_commit(inode->i_sb);
3047}
3048
3049/*
3050 * ext3_setattr()
3051 *
3052 * Called from notify_change.
3053 *
3054 * We want to trap VFS attempts to truncate the file as soon as
3055 * possible. In particular, we want to make sure that when the VFS
3056 * shrinks i_size, we put the inode on the orphan list and modify
3057 * i_disksize immediately, so that during the subsequent flushing of
3058 * dirty pages and freeing of disk blocks, we can guarantee that any
3059 * commit will leave the blocks being flushed in an unused state on
3060 * disk. (On recovery, the inode will get truncated and the blocks will
3061 * be freed, so we have a strong guarantee that no future commit will
ae6ddcc5 3062 * leave these blocks visible to the user.)
1da177e4
LT
3063 *
3064 * Called with inode->sem down.
3065 */
3066int ext3_setattr(struct dentry *dentry, struct iattr *attr)
3067{
3068 struct inode *inode = dentry->d_inode;
3069 int error, rc = 0;
3070 const unsigned int ia_valid = attr->ia_valid;
3071
3072 error = inode_change_ok(inode, attr);
3073 if (error)
3074 return error;
3075
3076 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
3077 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
3078 handle_t *handle;
3079
3080 /* (user+group)*(old+new) structure, inode write (sb,
3081 * inode block, ? - but truncate inode update has it) */
1f54587b
JK
3082 handle = ext3_journal_start(inode, 2*(EXT3_QUOTA_INIT_BLOCKS(inode->i_sb)+
3083 EXT3_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
1da177e4
LT
3084 if (IS_ERR(handle)) {
3085 error = PTR_ERR(handle);
3086 goto err_out;
3087 }
3088 error = DQUOT_TRANSFER(inode, attr) ? -EDQUOT : 0;
3089 if (error) {
3090 ext3_journal_stop(handle);
3091 return error;
3092 }
3093 /* Update corresponding info in inode so that everything is in
3094 * one transaction */
3095 if (attr->ia_valid & ATTR_UID)
3096 inode->i_uid = attr->ia_uid;
3097 if (attr->ia_valid & ATTR_GID)
3098 inode->i_gid = attr->ia_gid;
3099 error = ext3_mark_inode_dirty(handle, inode);
3100 ext3_journal_stop(handle);
3101 }
3102
3103 if (S_ISREG(inode->i_mode) &&
3104 attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
3105 handle_t *handle;
3106
3107 handle = ext3_journal_start(inode, 3);
3108 if (IS_ERR(handle)) {
3109 error = PTR_ERR(handle);
3110 goto err_out;
3111 }
3112
3113 error = ext3_orphan_add(handle, inode);
3114 EXT3_I(inode)->i_disksize = attr->ia_size;
3115 rc = ext3_mark_inode_dirty(handle, inode);
3116 if (!error)
3117 error = rc;
3118 ext3_journal_stop(handle);
3119 }
3120
3121 rc = inode_setattr(inode, attr);
3122
3123 /* If inode_setattr's call to ext3_truncate failed to get a
3124 * transaction handle at all, we need to clean up the in-core
3125 * orphan list manually. */
3126 if (inode->i_nlink)
3127 ext3_orphan_del(NULL, inode);
3128
3129 if (!rc && (ia_valid & ATTR_MODE))
3130 rc = ext3_acl_chmod(inode);
3131
3132err_out:
3133 ext3_std_error(inode->i_sb, error);
3134 if (!error)
3135 error = rc;
3136 return error;
3137}
3138
3139
3140/*
d6859bfc 3141 * How many blocks doth make a writepage()?
1da177e4
LT
3142 *
3143 * With N blocks per page, it may be:
3144 * N data blocks
3145 * 2 indirect block
3146 * 2 dindirect
3147 * 1 tindirect
3148 * N+5 bitmap blocks (from the above)
3149 * N+5 group descriptor summary blocks
3150 * 1 inode block
3151 * 1 superblock.
3152 * 2 * EXT3_SINGLEDATA_TRANS_BLOCKS for the quote files
3153 *
3154 * 3 * (N + 5) + 2 + 2 * EXT3_SINGLEDATA_TRANS_BLOCKS
3155 *
3156 * With ordered or writeback data it's the same, less the N data blocks.
3157 *
3158 * If the inode's direct blocks can hold an integral number of pages then a
3159 * page cannot straddle two indirect blocks, and we can only touch one indirect
3160 * and dindirect block, and the "5" above becomes "3".
3161 *
3162 * This still overestimates under most circumstances. If we were to pass the
3163 * start and end offsets in here as well we could do block_to_path() on each
3164 * block and work out the exact number of indirects which are touched. Pah.
3165 */
3166
3167static int ext3_writepage_trans_blocks(struct inode *inode)
3168{
3169 int bpp = ext3_journal_blocks_per_page(inode);
3170 int indirects = (EXT3_NDIR_BLOCKS % bpp) ? 5 : 3;
3171 int ret;
3172
3173 if (ext3_should_journal_data(inode))
3174 ret = 3 * (bpp + indirects) + 2;
3175 else
3176 ret = 2 * (bpp + indirects) + 2;
3177
3178#ifdef CONFIG_QUOTA
3179 /* We know that structure was already allocated during DQUOT_INIT so
3180 * we will be updating only the data blocks + inodes */
1f54587b 3181 ret += 2*EXT3_QUOTA_TRANS_BLOCKS(inode->i_sb);
1da177e4
LT
3182#endif
3183
3184 return ret;
3185}
3186
3187/*
3188 * The caller must have previously called ext3_reserve_inode_write().
3189 * Give this, we know that the caller already has write access to iloc->bh.
3190 */
3191int ext3_mark_iloc_dirty(handle_t *handle,
3192 struct inode *inode, struct ext3_iloc *iloc)
3193{
3194 int err = 0;
3195
3196 /* the do_update_inode consumes one bh->b_count */
3197 get_bh(iloc->bh);
3198
3199 /* ext3_do_update_inode() does journal_dirty_metadata */
3200 err = ext3_do_update_inode(handle, inode, iloc);
3201 put_bh(iloc->bh);
3202 return err;
3203}
3204
ae6ddcc5 3205/*
1da177e4 3206 * On success, We end up with an outstanding reference count against
ae6ddcc5 3207 * iloc->bh. This _must_ be cleaned up later.
1da177e4
LT
3208 */
3209
3210int
ae6ddcc5 3211ext3_reserve_inode_write(handle_t *handle, struct inode *inode,
1da177e4
LT
3212 struct ext3_iloc *iloc)
3213{
3214 int err = 0;
3215 if (handle) {
3216 err = ext3_get_inode_loc(inode, iloc);
3217 if (!err) {
3218 BUFFER_TRACE(iloc->bh, "get_write_access");
3219 err = ext3_journal_get_write_access(handle, iloc->bh);
3220 if (err) {
3221 brelse(iloc->bh);
3222 iloc->bh = NULL;
3223 }
3224 }
3225 }
3226 ext3_std_error(inode->i_sb, err);
3227 return err;
3228}
3229
3230/*
d6859bfc
AM
3231 * What we do here is to mark the in-core inode as clean with respect to inode
3232 * dirtiness (it may still be data-dirty).
1da177e4
LT
3233 * This means that the in-core inode may be reaped by prune_icache
3234 * without having to perform any I/O. This is a very good thing,
3235 * because *any* task may call prune_icache - even ones which
3236 * have a transaction open against a different journal.
3237 *
3238 * Is this cheating? Not really. Sure, we haven't written the
3239 * inode out, but prune_icache isn't a user-visible syncing function.
3240 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
3241 * we start and wait on commits.
3242 *
3243 * Is this efficient/effective? Well, we're being nice to the system
3244 * by cleaning up our inodes proactively so they can be reaped
3245 * without I/O. But we are potentially leaving up to five seconds'
3246 * worth of inodes floating about which prune_icache wants us to
3247 * write out. One way to fix that would be to get prune_icache()
3248 * to do a write_super() to free up some memory. It has the desired
3249 * effect.
3250 */
3251int ext3_mark_inode_dirty(handle_t *handle, struct inode *inode)
3252{
3253 struct ext3_iloc iloc;
3254 int err;
3255
3256 might_sleep();
3257 err = ext3_reserve_inode_write(handle, inode, &iloc);
3258 if (!err)
3259 err = ext3_mark_iloc_dirty(handle, inode, &iloc);
3260 return err;
3261}
3262
3263/*
d6859bfc 3264 * ext3_dirty_inode() is called from __mark_inode_dirty()
1da177e4
LT
3265 *
3266 * We're really interested in the case where a file is being extended.
3267 * i_size has been changed by generic_commit_write() and we thus need
3268 * to include the updated inode in the current transaction.
3269 *
3270 * Also, DQUOT_ALLOC_SPACE() will always dirty the inode when blocks
3271 * are allocated to the file.
3272 *
3273 * If the inode is marked synchronous, we don't honour that here - doing
3274 * so would cause a commit on atime updates, which we don't bother doing.
3275 * We handle synchronous inodes at the highest possible level.
3276 */
3277void ext3_dirty_inode(struct inode *inode)
3278{
3279 handle_t *current_handle = ext3_journal_current_handle();
3280 handle_t *handle;
3281
3282 handle = ext3_journal_start(inode, 2);
3283 if (IS_ERR(handle))
3284 goto out;
3285 if (current_handle &&
3286 current_handle->h_transaction != handle->h_transaction) {
3287 /* This task has a transaction open against a different fs */
3288 printk(KERN_EMERG "%s: transactions do not match!\n",
e05b6b52 3289 __func__);
1da177e4
LT
3290 } else {
3291 jbd_debug(5, "marking dirty. outer handle=%p\n",
3292 current_handle);
3293 ext3_mark_inode_dirty(handle, inode);
3294 }
3295 ext3_journal_stop(handle);
3296out:
3297 return;
3298}
3299
d6859bfc 3300#if 0
ae6ddcc5 3301/*
1da177e4
LT
3302 * Bind an inode's backing buffer_head into this transaction, to prevent
3303 * it from being flushed to disk early. Unlike
3304 * ext3_reserve_inode_write, this leaves behind no bh reference and
3305 * returns no iloc structure, so the caller needs to repeat the iloc
3306 * lookup to mark the inode dirty later.
3307 */
d6859bfc 3308static int ext3_pin_inode(handle_t *handle, struct inode *inode)
1da177e4
LT
3309{
3310 struct ext3_iloc iloc;
3311
3312 int err = 0;
3313 if (handle) {
3314 err = ext3_get_inode_loc(inode, &iloc);
3315 if (!err) {
3316 BUFFER_TRACE(iloc.bh, "get_write_access");
3317 err = journal_get_write_access(handle, iloc.bh);
3318 if (!err)
ae6ddcc5 3319 err = ext3_journal_dirty_metadata(handle,
1da177e4
LT
3320 iloc.bh);
3321 brelse(iloc.bh);
3322 }
3323 }
3324 ext3_std_error(inode->i_sb, err);
3325 return err;
3326}
3327#endif
3328
3329int ext3_change_inode_journal_flag(struct inode *inode, int val)
3330{
3331 journal_t *journal;
3332 handle_t *handle;
3333 int err;
3334
3335 /*
3336 * We have to be very careful here: changing a data block's
3337 * journaling status dynamically is dangerous. If we write a
3338 * data block to the journal, change the status and then delete
3339 * that block, we risk forgetting to revoke the old log record
3340 * from the journal and so a subsequent replay can corrupt data.
3341 * So, first we make sure that the journal is empty and that
3342 * nobody is changing anything.
3343 */
3344
3345 journal = EXT3_JOURNAL(inode);
e3a68e30 3346 if (is_journal_aborted(journal))
1da177e4
LT
3347 return -EROFS;
3348
3349 journal_lock_updates(journal);
3350 journal_flush(journal);
3351
3352 /*
3353 * OK, there are no updates running now, and all cached data is
3354 * synced to disk. We are now in a completely consistent state
3355 * which doesn't have anything in the journal, and we know that
3356 * no filesystem updates are running, so it is safe to modify
3357 * the inode's in-core data-journaling state flag now.
3358 */
3359
3360 if (val)
3361 EXT3_I(inode)->i_flags |= EXT3_JOURNAL_DATA_FL;
3362 else
3363 EXT3_I(inode)->i_flags &= ~EXT3_JOURNAL_DATA_FL;
3364 ext3_set_aops(inode);
3365
3366 journal_unlock_updates(journal);
3367
3368 /* Finally we can mark the inode as dirty. */
3369
3370 handle = ext3_journal_start(inode, 1);
3371 if (IS_ERR(handle))
3372 return PTR_ERR(handle);
3373
3374 err = ext3_mark_inode_dirty(handle, inode);
3375 handle->h_sync = 1;
3376 ext3_journal_stop(handle);
3377 ext3_std_error(inode->i_sb, err);
3378
3379 return err;
3380}