Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/btrfs...
[linux-block.git] / fs / ext3 / inode.c
CommitLineData
1da177e4
LT
1/*
2 * linux/fs/ext3/inode.c
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * Goal-directed block allocation by Stephen Tweedie
e9ad5620 16 * (sct@redhat.com), 1993, 1998
1da177e4
LT
17 * Big-endian to little-endian byte-swapping/bitmaps by
18 * David S. Miller (davem@caip.rutgers.edu), 1995
19 * 64-bit file support on 64-bit platforms by Jakub Jelinek
e9ad5620 20 * (jj@sunsite.ms.mff.cuni.cz)
1da177e4
LT
21 *
22 * Assorted race fixes, rewrite of ext3_get_block() by Al Viro, 2000
23 */
24
25#include <linux/module.h>
26#include <linux/fs.h>
27#include <linux/time.h>
28#include <linux/ext3_jbd.h>
29#include <linux/jbd.h>
1da177e4
LT
30#include <linux/highuid.h>
31#include <linux/pagemap.h>
32#include <linux/quotaops.h>
33#include <linux/string.h>
34#include <linux/buffer_head.h>
35#include <linux/writeback.h>
36#include <linux/mpage.h>
37#include <linux/uio.h>
caa38fb0 38#include <linux/bio.h>
68c9d702 39#include <linux/fiemap.h>
b5ed3112 40#include <linux/namei.h>
1da177e4
LT
41#include "xattr.h"
42#include "acl.h"
43
44static int ext3_writepage_trans_blocks(struct inode *inode);
45
46/*
47 * Test whether an inode is a fast symlink.
48 */
d6859bfc 49static int ext3_inode_is_fast_symlink(struct inode *inode)
1da177e4
LT
50{
51 int ea_blocks = EXT3_I(inode)->i_file_acl ?
52 (inode->i_sb->s_blocksize >> 9) : 0;
53
d6859bfc 54 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
1da177e4
LT
55}
56
d6859bfc
AM
57/*
58 * The ext3 forget function must perform a revoke if we are freeing data
1da177e4 59 * which has been journaled. Metadata (eg. indirect blocks) must be
ae6ddcc5 60 * revoked in all cases.
1da177e4
LT
61 *
62 * "bh" may be NULL: a metadata block may have been freed from memory
63 * but there may still be a record of it in the journal, and that record
64 * still needs to be revoked.
65 */
d6859bfc 66int ext3_forget(handle_t *handle, int is_metadata, struct inode *inode,
1c2bf374 67 struct buffer_head *bh, ext3_fsblk_t blocknr)
1da177e4
LT
68{
69 int err;
70
71 might_sleep();
72
73 BUFFER_TRACE(bh, "enter");
74
75 jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
76 "data mode %lx\n",
77 bh, is_metadata, inode->i_mode,
78 test_opt(inode->i_sb, DATA_FLAGS));
79
80 /* Never use the revoke function if we are doing full data
81 * journaling: there is no need to, and a V1 superblock won't
82 * support it. Otherwise, only skip the revoke on un-journaled
83 * data blocks. */
84
85 if (test_opt(inode->i_sb, DATA_FLAGS) == EXT3_MOUNT_JOURNAL_DATA ||
86 (!is_metadata && !ext3_should_journal_data(inode))) {
87 if (bh) {
88 BUFFER_TRACE(bh, "call journal_forget");
89 return ext3_journal_forget(handle, bh);
90 }
91 return 0;
92 }
93
94 /*
95 * data!=journal && (is_metadata || should_journal_data(inode))
96 */
97 BUFFER_TRACE(bh, "call ext3_journal_revoke");
98 err = ext3_journal_revoke(handle, blocknr, bh);
99 if (err)
e05b6b52 100 ext3_abort(inode->i_sb, __func__,
1da177e4
LT
101 "error %d when attempting revoke", err);
102 BUFFER_TRACE(bh, "exit");
103 return err;
104}
105
106/*
d6859bfc 107 * Work out how many blocks we need to proceed with the next chunk of a
1da177e4
LT
108 * truncate transaction.
109 */
ae6ddcc5 110static unsigned long blocks_for_truncate(struct inode *inode)
1da177e4
LT
111{
112 unsigned long needed;
113
114 needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
115
116 /* Give ourselves just enough room to cope with inodes in which
117 * i_blocks is corrupt: we've seen disk corruptions in the past
118 * which resulted in random data in an inode which looked enough
119 * like a regular file for ext3 to try to delete it. Things
120 * will go a bit crazy if that happens, but at least we should
121 * try not to panic the whole kernel. */
122 if (needed < 2)
123 needed = 2;
124
125 /* But we need to bound the transaction so we don't overflow the
126 * journal. */
ae6ddcc5 127 if (needed > EXT3_MAX_TRANS_DATA)
1da177e4
LT
128 needed = EXT3_MAX_TRANS_DATA;
129
1f54587b 130 return EXT3_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
1da177e4
LT
131}
132
ae6ddcc5 133/*
1da177e4
LT
134 * Truncate transactions can be complex and absolutely huge. So we need to
135 * be able to restart the transaction at a conventient checkpoint to make
136 * sure we don't overflow the journal.
137 *
138 * start_transaction gets us a new handle for a truncate transaction,
139 * and extend_transaction tries to extend the existing one a bit. If
140 * extend fails, we need to propagate the failure up and restart the
ae6ddcc5 141 * transaction in the top-level truncate loop. --sct
1da177e4 142 */
ae6ddcc5 143static handle_t *start_transaction(struct inode *inode)
1da177e4
LT
144{
145 handle_t *result;
146
147 result = ext3_journal_start(inode, blocks_for_truncate(inode));
148 if (!IS_ERR(result))
149 return result;
150
151 ext3_std_error(inode->i_sb, PTR_ERR(result));
152 return result;
153}
154
155/*
156 * Try to extend this transaction for the purposes of truncation.
157 *
158 * Returns 0 if we managed to create more room. If we can't create more
159 * room, and the transaction must be restarted we return 1.
160 */
161static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
162{
163 if (handle->h_buffer_credits > EXT3_RESERVE_TRANS_BLOCKS)
164 return 0;
165 if (!ext3_journal_extend(handle, blocks_for_truncate(inode)))
166 return 0;
167 return 1;
168}
169
170/*
171 * Restart the transaction associated with *handle. This does a commit,
172 * so before we call here everything must be consistently dirtied against
173 * this transaction.
174 */
00171d3c 175static int truncate_restart_transaction(handle_t *handle, struct inode *inode)
1da177e4 176{
00171d3c
JK
177 int ret;
178
1da177e4 179 jbd_debug(2, "restarting handle %p\n", handle);
00171d3c
JK
180 /*
181 * Drop truncate_mutex to avoid deadlock with ext3_get_blocks_handle
182 * At this moment, get_block can be called only for blocks inside
183 * i_size since page cache has been already dropped and writes are
184 * blocked by i_mutex. So we can safely drop the truncate_mutex.
185 */
186 mutex_unlock(&EXT3_I(inode)->truncate_mutex);
187 ret = ext3_journal_restart(handle, blocks_for_truncate(inode));
188 mutex_lock(&EXT3_I(inode)->truncate_mutex);
189 return ret;
1da177e4
LT
190}
191
192/*
193 * Called at the last iput() if i_nlink is zero.
194 */
195void ext3_delete_inode (struct inode * inode)
196{
197 handle_t *handle;
198
fef26658
MF
199 truncate_inode_pages(&inode->i_data, 0);
200
1da177e4
LT
201 if (is_bad_inode(inode))
202 goto no_delete;
203
204 handle = start_transaction(inode);
205 if (IS_ERR(handle)) {
d6859bfc
AM
206 /*
207 * If we're going to skip the normal cleanup, we still need to
208 * make sure that the in-core orphan linked list is properly
209 * cleaned up.
210 */
1da177e4
LT
211 ext3_orphan_del(NULL, inode);
212 goto no_delete;
213 }
214
215 if (IS_SYNC(inode))
216 handle->h_sync = 1;
217 inode->i_size = 0;
218 if (inode->i_blocks)
219 ext3_truncate(inode);
220 /*
221 * Kill off the orphan record which ext3_truncate created.
222 * AKPM: I think this can be inside the above `if'.
223 * Note that ext3_orphan_del() has to be able to cope with the
224 * deletion of a non-existent orphan - this is because we don't
225 * know if ext3_truncate() actually created an orphan record.
226 * (Well, we could do this if we need to, but heck - it works)
227 */
228 ext3_orphan_del(handle, inode);
229 EXT3_I(inode)->i_dtime = get_seconds();
230
ae6ddcc5 231 /*
1da177e4
LT
232 * One subtle ordering requirement: if anything has gone wrong
233 * (transaction abort, IO errors, whatever), then we can still
234 * do these next steps (the fs will already have been marked as
235 * having errors), but we can't free the inode if the mark_dirty
ae6ddcc5 236 * fails.
1da177e4
LT
237 */
238 if (ext3_mark_inode_dirty(handle, inode))
239 /* If that failed, just do the required in-core inode clear. */
240 clear_inode(inode);
241 else
242 ext3_free_inode(handle, inode);
243 ext3_journal_stop(handle);
244 return;
245no_delete:
246 clear_inode(inode); /* We must guarantee clearing of inode... */
247}
248
1da177e4
LT
249typedef struct {
250 __le32 *p;
251 __le32 key;
252 struct buffer_head *bh;
253} Indirect;
254
255static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
256{
257 p->key = *(p->p = v);
258 p->bh = bh;
259}
260
d6859bfc 261static int verify_chain(Indirect *from, Indirect *to)
1da177e4
LT
262{
263 while (from <= to && from->key == *from->p)
264 from++;
265 return (from > to);
266}
267
268/**
269 * ext3_block_to_path - parse the block number into array of offsets
270 * @inode: inode in question (we are only interested in its superblock)
271 * @i_block: block number to be parsed
272 * @offsets: array to store the offsets in
273 * @boundary: set this non-zero if the referred-to block is likely to be
274 * followed (on disk) by an indirect block.
275 *
276 * To store the locations of file's data ext3 uses a data structure common
277 * for UNIX filesystems - tree of pointers anchored in the inode, with
278 * data blocks at leaves and indirect blocks in intermediate nodes.
279 * This function translates the block number into path in that tree -
280 * return value is the path length and @offsets[n] is the offset of
281 * pointer to (n+1)th node in the nth one. If @block is out of range
282 * (negative or too large) warning is printed and zero returned.
283 *
284 * Note: function doesn't find node addresses, so no IO is needed. All
285 * we need to know is the capacity of indirect blocks (taken from the
286 * inode->i_sb).
287 */
288
289/*
290 * Portability note: the last comparison (check that we fit into triple
291 * indirect block) is spelled differently, because otherwise on an
292 * architecture with 32-bit longs and 8Kb pages we might get into trouble
293 * if our filesystem had 8Kb blocks. We might use long long, but that would
294 * kill us on x86. Oh, well, at least the sign propagation does not matter -
295 * i_block would have to be negative in the very beginning, so we would not
296 * get there at all.
297 */
298
299static int ext3_block_to_path(struct inode *inode,
300 long i_block, int offsets[4], int *boundary)
301{
302 int ptrs = EXT3_ADDR_PER_BLOCK(inode->i_sb);
303 int ptrs_bits = EXT3_ADDR_PER_BLOCK_BITS(inode->i_sb);
304 const long direct_blocks = EXT3_NDIR_BLOCKS,
305 indirect_blocks = ptrs,
306 double_blocks = (1 << (ptrs_bits * 2));
307 int n = 0;
308 int final = 0;
309
310 if (i_block < 0) {
311 ext3_warning (inode->i_sb, "ext3_block_to_path", "block < 0");
312 } else if (i_block < direct_blocks) {
313 offsets[n++] = i_block;
314 final = direct_blocks;
315 } else if ( (i_block -= direct_blocks) < indirect_blocks) {
316 offsets[n++] = EXT3_IND_BLOCK;
317 offsets[n++] = i_block;
318 final = ptrs;
319 } else if ((i_block -= indirect_blocks) < double_blocks) {
320 offsets[n++] = EXT3_DIND_BLOCK;
321 offsets[n++] = i_block >> ptrs_bits;
322 offsets[n++] = i_block & (ptrs - 1);
323 final = ptrs;
324 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
325 offsets[n++] = EXT3_TIND_BLOCK;
326 offsets[n++] = i_block >> (ptrs_bits * 2);
327 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
328 offsets[n++] = i_block & (ptrs - 1);
329 final = ptrs;
330 } else {
d6859bfc 331 ext3_warning(inode->i_sb, "ext3_block_to_path", "block > big");
1da177e4
LT
332 }
333 if (boundary)
89747d36 334 *boundary = final - 1 - (i_block & (ptrs - 1));
1da177e4
LT
335 return n;
336}
337
338/**
339 * ext3_get_branch - read the chain of indirect blocks leading to data
340 * @inode: inode in question
341 * @depth: depth of the chain (1 - direct pointer, etc.)
342 * @offsets: offsets of pointers in inode/indirect blocks
343 * @chain: place to store the result
344 * @err: here we store the error value
345 *
346 * Function fills the array of triples <key, p, bh> and returns %NULL
347 * if everything went OK or the pointer to the last filled triple
348 * (incomplete one) otherwise. Upon the return chain[i].key contains
349 * the number of (i+1)-th block in the chain (as it is stored in memory,
350 * i.e. little-endian 32-bit), chain[i].p contains the address of that
351 * number (it points into struct inode for i==0 and into the bh->b_data
352 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
353 * block for i>0 and NULL for i==0. In other words, it holds the block
354 * numbers of the chain, addresses they were taken from (and where we can
355 * verify that chain did not change) and buffer_heads hosting these
356 * numbers.
357 *
358 * Function stops when it stumbles upon zero pointer (absent block)
359 * (pointer to last triple returned, *@err == 0)
360 * or when it gets an IO error reading an indirect block
361 * (ditto, *@err == -EIO)
362 * or when it notices that chain had been changed while it was reading
363 * (ditto, *@err == -EAGAIN)
364 * or when it reads all @depth-1 indirect blocks successfully and finds
365 * the whole chain, all way to the data (returns %NULL, *err == 0).
366 */
367static Indirect *ext3_get_branch(struct inode *inode, int depth, int *offsets,
368 Indirect chain[4], int *err)
369{
370 struct super_block *sb = inode->i_sb;
371 Indirect *p = chain;
372 struct buffer_head *bh;
373
374 *err = 0;
375 /* i_data is not going away, no lock needed */
376 add_chain (chain, NULL, EXT3_I(inode)->i_data + *offsets);
377 if (!p->key)
378 goto no_block;
379 while (--depth) {
380 bh = sb_bread(sb, le32_to_cpu(p->key));
381 if (!bh)
382 goto failure;
383 /* Reader: pointers */
384 if (!verify_chain(chain, p))
385 goto changed;
386 add_chain(++p, bh, (__le32*)bh->b_data + *++offsets);
387 /* Reader: end */
388 if (!p->key)
389 goto no_block;
390 }
391 return NULL;
392
393changed:
394 brelse(bh);
395 *err = -EAGAIN;
396 goto no_block;
397failure:
398 *err = -EIO;
399no_block:
400 return p;
401}
402
403/**
404 * ext3_find_near - find a place for allocation with sufficient locality
405 * @inode: owner
406 * @ind: descriptor of indirect block.
407 *
1cc8dcf5 408 * This function returns the preferred place for block allocation.
1da177e4
LT
409 * It is used when heuristic for sequential allocation fails.
410 * Rules are:
411 * + if there is a block to the left of our position - allocate near it.
412 * + if pointer will live in indirect block - allocate near that block.
413 * + if pointer will live in inode - allocate in the same
ae6ddcc5 414 * cylinder group.
1da177e4
LT
415 *
416 * In the latter case we colour the starting block by the callers PID to
417 * prevent it from clashing with concurrent allocations for a different inode
418 * in the same block group. The PID is used here so that functionally related
419 * files will be close-by on-disk.
420 *
421 * Caller must make sure that @ind is valid and will stay that way.
422 */
43d23f90 423static ext3_fsblk_t ext3_find_near(struct inode *inode, Indirect *ind)
1da177e4
LT
424{
425 struct ext3_inode_info *ei = EXT3_I(inode);
426 __le32 *start = ind->bh ? (__le32*) ind->bh->b_data : ei->i_data;
427 __le32 *p;
43d23f90
MC
428 ext3_fsblk_t bg_start;
429 ext3_grpblk_t colour;
1da177e4
LT
430
431 /* Try to find previous block */
d6859bfc 432 for (p = ind->p - 1; p >= start; p--) {
1da177e4
LT
433 if (*p)
434 return le32_to_cpu(*p);
d6859bfc 435 }
1da177e4
LT
436
437 /* No such thing, so let's try location of indirect block */
438 if (ind->bh)
439 return ind->bh->b_blocknr;
440
441 /*
d6859bfc
AM
442 * It is going to be referred to from the inode itself? OK, just put it
443 * into the same cylinder group then.
1da177e4 444 */
43d23f90 445 bg_start = ext3_group_first_block_no(inode->i_sb, ei->i_block_group);
1da177e4
LT
446 colour = (current->pid % 16) *
447 (EXT3_BLOCKS_PER_GROUP(inode->i_sb) / 16);
448 return bg_start + colour;
449}
450
451/**
1cc8dcf5 452 * ext3_find_goal - find a preferred place for allocation.
1da177e4
LT
453 * @inode: owner
454 * @block: block we want
1da177e4 455 * @partial: pointer to the last triple within a chain
1da177e4 456 *
1cc8dcf5 457 * Normally this function find the preferred place for block allocation,
fb01bfda 458 * returns it.
1da177e4
LT
459 */
460
43d23f90 461static ext3_fsblk_t ext3_find_goal(struct inode *inode, long block,
fb01bfda 462 Indirect *partial)
1da177e4 463{
d6859bfc
AM
464 struct ext3_block_alloc_info *block_i;
465
466 block_i = EXT3_I(inode)->i_block_alloc_info;
1da177e4
LT
467
468 /*
469 * try the heuristic for sequential allocation,
470 * failing that at least try to get decent locality.
471 */
472 if (block_i && (block == block_i->last_alloc_logical_block + 1)
473 && (block_i->last_alloc_physical_block != 0)) {
fe55c452 474 return block_i->last_alloc_physical_block + 1;
1da177e4
LT
475 }
476
fe55c452 477 return ext3_find_near(inode, partial);
1da177e4 478}
d6859bfc 479
b47b2478
MC
480/**
481 * ext3_blks_to_allocate: Look up the block map and count the number
482 * of direct blocks need to be allocated for the given branch.
483 *
e9ad5620 484 * @branch: chain of indirect blocks
b47b2478
MC
485 * @k: number of blocks need for indirect blocks
486 * @blks: number of data blocks to be mapped.
487 * @blocks_to_boundary: the offset in the indirect block
488 *
489 * return the total number of blocks to be allocate, including the
490 * direct and indirect blocks.
491 */
d6859bfc 492static int ext3_blks_to_allocate(Indirect *branch, int k, unsigned long blks,
b47b2478
MC
493 int blocks_to_boundary)
494{
495 unsigned long count = 0;
496
497 /*
498 * Simple case, [t,d]Indirect block(s) has not allocated yet
499 * then it's clear blocks on that path have not allocated
500 */
501 if (k > 0) {
d6859bfc 502 /* right now we don't handle cross boundary allocation */
b47b2478
MC
503 if (blks < blocks_to_boundary + 1)
504 count += blks;
505 else
506 count += blocks_to_boundary + 1;
507 return count;
508 }
509
510 count++;
511 while (count < blks && count <= blocks_to_boundary &&
512 le32_to_cpu(*(branch[0].p + count)) == 0) {
513 count++;
514 }
515 return count;
516}
517
518/**
519 * ext3_alloc_blocks: multiple allocate blocks needed for a branch
520 * @indirect_blks: the number of blocks need to allocate for indirect
521 * blocks
522 *
523 * @new_blocks: on return it will store the new block numbers for
524 * the indirect blocks(if needed) and the first direct block,
525 * @blks: on return it will store the total number of allocated
526 * direct blocks
527 */
528static int ext3_alloc_blocks(handle_t *handle, struct inode *inode,
43d23f90
MC
529 ext3_fsblk_t goal, int indirect_blks, int blks,
530 ext3_fsblk_t new_blocks[4], int *err)
b47b2478
MC
531{
532 int target, i;
533 unsigned long count = 0;
534 int index = 0;
43d23f90 535 ext3_fsblk_t current_block = 0;
b47b2478
MC
536 int ret = 0;
537
538 /*
539 * Here we try to allocate the requested multiple blocks at once,
540 * on a best-effort basis.
541 * To build a branch, we should allocate blocks for
542 * the indirect blocks(if not allocated yet), and at least
543 * the first direct block of this branch. That's the
544 * minimum number of blocks need to allocate(required)
545 */
546 target = blks + indirect_blks;
547
548 while (1) {
549 count = target;
550 /* allocating blocks for indirect blocks and direct blocks */
d6859bfc 551 current_block = ext3_new_blocks(handle,inode,goal,&count,err);
b47b2478
MC
552 if (*err)
553 goto failed_out;
554
555 target -= count;
556 /* allocate blocks for indirect blocks */
557 while (index < indirect_blks && count) {
558 new_blocks[index++] = current_block++;
559 count--;
560 }
561
562 if (count > 0)
563 break;
564 }
565
566 /* save the new block number for the first direct block */
567 new_blocks[index] = current_block;
568
569 /* total number of blocks allocated for direct blocks */
570 ret = count;
571 *err = 0;
572 return ret;
573failed_out:
574 for (i = 0; i <index; i++)
575 ext3_free_blocks(handle, inode, new_blocks[i], 1);
576 return ret;
577}
1da177e4
LT
578
579/**
580 * ext3_alloc_branch - allocate and set up a chain of blocks.
581 * @inode: owner
b47b2478
MC
582 * @indirect_blks: number of allocated indirect blocks
583 * @blks: number of allocated direct blocks
1da177e4
LT
584 * @offsets: offsets (in the blocks) to store the pointers to next.
585 * @branch: place to store the chain in.
586 *
b47b2478 587 * This function allocates blocks, zeroes out all but the last one,
1da177e4
LT
588 * links them into chain and (if we are synchronous) writes them to disk.
589 * In other words, it prepares a branch that can be spliced onto the
590 * inode. It stores the information about that chain in the branch[], in
591 * the same format as ext3_get_branch() would do. We are calling it after
592 * we had read the existing part of chain and partial points to the last
593 * triple of that (one with zero ->key). Upon the exit we have the same
5b116879 594 * picture as after the successful ext3_get_block(), except that in one
1da177e4
LT
595 * place chain is disconnected - *branch->p is still zero (we did not
596 * set the last link), but branch->key contains the number that should
597 * be placed into *branch->p to fill that gap.
598 *
599 * If allocation fails we free all blocks we've allocated (and forget
600 * their buffer_heads) and return the error value the from failed
601 * ext3_alloc_block() (normally -ENOSPC). Otherwise we set the chain
602 * as described above and return 0.
603 */
1da177e4 604static int ext3_alloc_branch(handle_t *handle, struct inode *inode,
43d23f90 605 int indirect_blks, int *blks, ext3_fsblk_t goal,
b47b2478 606 int *offsets, Indirect *branch)
1da177e4
LT
607{
608 int blocksize = inode->i_sb->s_blocksize;
b47b2478 609 int i, n = 0;
1da177e4 610 int err = 0;
b47b2478
MC
611 struct buffer_head *bh;
612 int num;
43d23f90
MC
613 ext3_fsblk_t new_blocks[4];
614 ext3_fsblk_t current_block;
1da177e4 615
b47b2478
MC
616 num = ext3_alloc_blocks(handle, inode, goal, indirect_blks,
617 *blks, new_blocks, &err);
618 if (err)
619 return err;
1da177e4 620
b47b2478
MC
621 branch[0].key = cpu_to_le32(new_blocks[0]);
622 /*
623 * metadata blocks and data blocks are allocated.
624 */
625 for (n = 1; n <= indirect_blks; n++) {
626 /*
627 * Get buffer_head for parent block, zero it out
628 * and set the pointer to new one, then send
629 * parent to disk.
630 */
631 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
632 branch[n].bh = bh;
633 lock_buffer(bh);
634 BUFFER_TRACE(bh, "call get_create_access");
635 err = ext3_journal_get_create_access(handle, bh);
636 if (err) {
1da177e4 637 unlock_buffer(bh);
b47b2478
MC
638 brelse(bh);
639 goto failed;
640 }
1da177e4 641
b47b2478
MC
642 memset(bh->b_data, 0, blocksize);
643 branch[n].p = (__le32 *) bh->b_data + offsets[n];
644 branch[n].key = cpu_to_le32(new_blocks[n]);
645 *branch[n].p = branch[n].key;
646 if ( n == indirect_blks) {
647 current_block = new_blocks[n];
648 /*
649 * End of chain, update the last new metablock of
650 * the chain to point to the new allocated
651 * data blocks numbers
652 */
653 for (i=1; i < num; i++)
654 *(branch[n].p + i) = cpu_to_le32(++current_block);
1da177e4 655 }
b47b2478
MC
656 BUFFER_TRACE(bh, "marking uptodate");
657 set_buffer_uptodate(bh);
658 unlock_buffer(bh);
1da177e4 659
b47b2478
MC
660 BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
661 err = ext3_journal_dirty_metadata(handle, bh);
662 if (err)
663 goto failed;
664 }
665 *blks = num;
666 return err;
667failed:
1da177e4 668 /* Allocation failed, free what we already allocated */
b47b2478 669 for (i = 1; i <= n ; i++) {
1da177e4
LT
670 BUFFER_TRACE(branch[i].bh, "call journal_forget");
671 ext3_journal_forget(handle, branch[i].bh);
672 }
b47b2478
MC
673 for (i = 0; i <indirect_blks; i++)
674 ext3_free_blocks(handle, inode, new_blocks[i], 1);
675
676 ext3_free_blocks(handle, inode, new_blocks[i], num);
677
1da177e4
LT
678 return err;
679}
680
681/**
d6859bfc
AM
682 * ext3_splice_branch - splice the allocated branch onto inode.
683 * @inode: owner
684 * @block: (logical) number of block we are adding
685 * @chain: chain of indirect blocks (with a missing link - see
686 * ext3_alloc_branch)
687 * @where: location of missing link
688 * @num: number of indirect blocks we are adding
689 * @blks: number of direct blocks we are adding
690 *
691 * This function fills the missing link and does all housekeeping needed in
692 * inode (->i_blocks, etc.). In case of success we end up with the full
693 * chain to new block and return 0.
1da177e4 694 */
d6859bfc
AM
695static int ext3_splice_branch(handle_t *handle, struct inode *inode,
696 long block, Indirect *where, int num, int blks)
1da177e4
LT
697{
698 int i;
699 int err = 0;
d6859bfc 700 struct ext3_block_alloc_info *block_i;
43d23f90 701 ext3_fsblk_t current_block;
d6859bfc
AM
702
703 block_i = EXT3_I(inode)->i_block_alloc_info;
1da177e4
LT
704 /*
705 * If we're splicing into a [td]indirect block (as opposed to the
706 * inode) then we need to get write access to the [td]indirect block
707 * before the splice.
708 */
709 if (where->bh) {
710 BUFFER_TRACE(where->bh, "get_write_access");
711 err = ext3_journal_get_write_access(handle, where->bh);
712 if (err)
713 goto err_out;
714 }
1da177e4
LT
715 /* That's it */
716
717 *where->p = where->key;
d6859bfc
AM
718
719 /*
720 * Update the host buffer_head or inode to point to more just allocated
721 * direct blocks blocks
722 */
b47b2478 723 if (num == 0 && blks > 1) {
5dea5176 724 current_block = le32_to_cpu(where->key) + 1;
b47b2478
MC
725 for (i = 1; i < blks; i++)
726 *(where->p + i ) = cpu_to_le32(current_block++);
727 }
1da177e4
LT
728
729 /*
730 * update the most recently allocated logical & physical block
731 * in i_block_alloc_info, to assist find the proper goal block for next
732 * allocation
733 */
734 if (block_i) {
b47b2478 735 block_i->last_alloc_logical_block = block + blks - 1;
d6859bfc 736 block_i->last_alloc_physical_block =
5dea5176 737 le32_to_cpu(where[num].key) + blks - 1;
1da177e4
LT
738 }
739
740 /* We are done with atomic stuff, now do the rest of housekeeping */
741
742 inode->i_ctime = CURRENT_TIME_SEC;
743 ext3_mark_inode_dirty(handle, inode);
744
745 /* had we spliced it onto indirect block? */
746 if (where->bh) {
747 /*
d6859bfc 748 * If we spliced it onto an indirect block, we haven't
1da177e4
LT
749 * altered the inode. Note however that if it is being spliced
750 * onto an indirect block at the very end of the file (the
751 * file is growing) then we *will* alter the inode to reflect
752 * the new i_size. But that is not done here - it is done in
753 * generic_commit_write->__mark_inode_dirty->ext3_dirty_inode.
754 */
755 jbd_debug(5, "splicing indirect only\n");
756 BUFFER_TRACE(where->bh, "call ext3_journal_dirty_metadata");
757 err = ext3_journal_dirty_metadata(handle, where->bh);
ae6ddcc5 758 if (err)
1da177e4
LT
759 goto err_out;
760 } else {
761 /*
762 * OK, we spliced it into the inode itself on a direct block.
763 * Inode was dirtied above.
764 */
765 jbd_debug(5, "splicing direct\n");
766 }
767 return err;
768
1da177e4 769err_out:
b47b2478 770 for (i = 1; i <= num; i++) {
1da177e4
LT
771 BUFFER_TRACE(where[i].bh, "call journal_forget");
772 ext3_journal_forget(handle, where[i].bh);
d6859bfc 773 ext3_free_blocks(handle,inode,le32_to_cpu(where[i-1].key),1);
1da177e4 774 }
b47b2478
MC
775 ext3_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks);
776
1da177e4
LT
777 return err;
778}
779
780/*
781 * Allocation strategy is simple: if we have to allocate something, we will
782 * have to go the whole way to leaf. So let's do it before attaching anything
783 * to tree, set linkage between the newborn blocks, write them if sync is
784 * required, recheck the path, free and repeat if check fails, otherwise
785 * set the last missing link (that will protect us from any truncate-generated
786 * removals - all blocks on the path are immune now) and possibly force the
787 * write on the parent block.
788 * That has a nice additional property: no special recovery from the failed
789 * allocations is needed - we simply release blocks and do not touch anything
790 * reachable from inode.
791 *
d6859bfc 792 * `handle' can be NULL if create == 0.
1da177e4
LT
793 *
794 * The BKL may not be held on entry here. Be sure to take it early.
89747d36
MC
795 * return > 0, # of blocks mapped or allocated.
796 * return = 0, if plain lookup failed.
797 * return < 0, error case.
1da177e4 798 */
d6859bfc
AM
799int ext3_get_blocks_handle(handle_t *handle, struct inode *inode,
800 sector_t iblock, unsigned long maxblocks,
801 struct buffer_head *bh_result,
43237b54 802 int create)
1da177e4
LT
803{
804 int err = -EIO;
805 int offsets[4];
806 Indirect chain[4];
807 Indirect *partial;
43d23f90 808 ext3_fsblk_t goal;
b47b2478 809 int indirect_blks;
89747d36
MC
810 int blocks_to_boundary = 0;
811 int depth;
1da177e4 812 struct ext3_inode_info *ei = EXT3_I(inode);
89747d36 813 int count = 0;
43d23f90 814 ext3_fsblk_t first_block = 0;
89747d36 815
1da177e4
LT
816
817 J_ASSERT(handle != NULL || create == 0);
d6859bfc 818 depth = ext3_block_to_path(inode,iblock,offsets,&blocks_to_boundary);
1da177e4
LT
819
820 if (depth == 0)
821 goto out;
822
1da177e4
LT
823 partial = ext3_get_branch(inode, depth, offsets, chain, &err);
824
825 /* Simplest case - block found, no allocation needed */
826 if (!partial) {
5dea5176 827 first_block = le32_to_cpu(chain[depth - 1].key);
1da177e4 828 clear_buffer_new(bh_result);
89747d36
MC
829 count++;
830 /*map more blocks*/
831 while (count < maxblocks && count <= blocks_to_boundary) {
43d23f90 832 ext3_fsblk_t blk;
5dea5176 833
e8ef7aae 834 if (!verify_chain(chain, chain + depth - 1)) {
89747d36
MC
835 /*
836 * Indirect block might be removed by
837 * truncate while we were reading it.
838 * Handling of that case: forget what we've
839 * got now. Flag the err as EAGAIN, so it
840 * will reread.
841 */
842 err = -EAGAIN;
843 count = 0;
844 break;
845 }
5dea5176
MC
846 blk = le32_to_cpu(*(chain[depth-1].p + count));
847
848 if (blk == first_block + count)
89747d36
MC
849 count++;
850 else
851 break;
852 }
853 if (err != -EAGAIN)
854 goto got_it;
1da177e4
LT
855 }
856
857 /* Next simple case - plain lookup or failed read of indirect block */
fe55c452
MC
858 if (!create || err == -EIO)
859 goto cleanup;
860
97461518 861 mutex_lock(&ei->truncate_mutex);
fe55c452
MC
862
863 /*
864 * If the indirect block is missing while we are reading
865 * the chain(ext3_get_branch() returns -EAGAIN err), or
866 * if the chain has been changed after we grab the semaphore,
867 * (either because another process truncated this branch, or
868 * another get_block allocated this branch) re-grab the chain to see if
869 * the request block has been allocated or not.
870 *
871 * Since we already block the truncate/other get_block
872 * at this point, we will have the current copy of the chain when we
873 * splice the branch into the tree.
874 */
875 if (err == -EAGAIN || !verify_chain(chain, partial)) {
1da177e4 876 while (partial > chain) {
1da177e4
LT
877 brelse(partial->bh);
878 partial--;
879 }
fe55c452
MC
880 partial = ext3_get_branch(inode, depth, offsets, chain, &err);
881 if (!partial) {
89747d36 882 count++;
97461518 883 mutex_unlock(&ei->truncate_mutex);
fe55c452
MC
884 if (err)
885 goto cleanup;
886 clear_buffer_new(bh_result);
887 goto got_it;
888 }
1da177e4
LT
889 }
890
891 /*
fe55c452
MC
892 * Okay, we need to do block allocation. Lazily initialize the block
893 * allocation info here if necessary
894 */
895 if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
1da177e4 896 ext3_init_block_alloc_info(inode);
1da177e4 897
fb01bfda 898 goal = ext3_find_goal(inode, iblock, partial);
1da177e4 899
b47b2478
MC
900 /* the number of blocks need to allocate for [d,t]indirect blocks */
901 indirect_blks = (chain + depth) - partial - 1;
1da177e4 902
b47b2478
MC
903 /*
904 * Next look up the indirect map to count the totoal number of
905 * direct blocks to allocate for this branch.
906 */
907 count = ext3_blks_to_allocate(partial, indirect_blks,
908 maxblocks, blocks_to_boundary);
1da177e4
LT
909 /*
910 * Block out ext3_truncate while we alter the tree
911 */
b47b2478 912 err = ext3_alloc_branch(handle, inode, indirect_blks, &count, goal,
fe55c452 913 offsets + (partial - chain), partial);
1da177e4 914
fe55c452
MC
915 /*
916 * The ext3_splice_branch call will free and forget any buffers
1da177e4
LT
917 * on the new chain if there is a failure, but that risks using
918 * up transaction credits, especially for bitmaps where the
919 * credits cannot be returned. Can we handle this somehow? We
fe55c452
MC
920 * may need to return -EAGAIN upwards in the worst case. --sct
921 */
1da177e4 922 if (!err)
b47b2478
MC
923 err = ext3_splice_branch(handle, inode, iblock,
924 partial, indirect_blks, count);
97461518 925 mutex_unlock(&ei->truncate_mutex);
1da177e4
LT
926 if (err)
927 goto cleanup;
928
929 set_buffer_new(bh_result);
fe55c452
MC
930got_it:
931 map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
20acaa18 932 if (count > blocks_to_boundary)
fe55c452 933 set_buffer_boundary(bh_result);
89747d36 934 err = count;
fe55c452
MC
935 /* Clean up and exit */
936 partial = chain + depth - 1; /* the whole chain */
937cleanup:
1da177e4 938 while (partial > chain) {
fe55c452 939 BUFFER_TRACE(partial->bh, "call brelse");
1da177e4
LT
940 brelse(partial->bh);
941 partial--;
942 }
fe55c452
MC
943 BUFFER_TRACE(bh_result, "returned");
944out:
945 return err;
1da177e4
LT
946}
947
bd1939de
JK
948/* Maximum number of blocks we map for direct IO at once. */
949#define DIO_MAX_BLOCKS 4096
950/*
951 * Number of credits we need for writing DIO_MAX_BLOCKS:
952 * We need sb + group descriptor + bitmap + inode -> 4
953 * For B blocks with A block pointers per block we need:
954 * 1 (triple ind.) + (B/A/A + 2) (doubly ind.) + (B/A + 2) (indirect).
955 * If we plug in 4096 for B and 256 for A (for 1KB block size), we get 25.
956 */
957#define DIO_CREDITS 25
1da177e4 958
f91a2ad2
BP
959static int ext3_get_block(struct inode *inode, sector_t iblock,
960 struct buffer_head *bh_result, int create)
1da177e4 961{
3e4fdaf8 962 handle_t *handle = ext3_journal_current_handle();
bd1939de 963 int ret = 0, started = 0;
1d8fa7a2 964 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
1da177e4 965
bd1939de
JK
966 if (create && !handle) { /* Direct IO write... */
967 if (max_blocks > DIO_MAX_BLOCKS)
968 max_blocks = DIO_MAX_BLOCKS;
969 handle = ext3_journal_start(inode, DIO_CREDITS +
970 2 * EXT3_QUOTA_TRANS_BLOCKS(inode->i_sb));
971 if (IS_ERR(handle)) {
1da177e4 972 ret = PTR_ERR(handle);
bd1939de 973 goto out;
1da177e4 974 }
bd1939de 975 started = 1;
1da177e4
LT
976 }
977
bd1939de 978 ret = ext3_get_blocks_handle(handle, inode, iblock,
43237b54 979 max_blocks, bh_result, create);
bd1939de
JK
980 if (ret > 0) {
981 bh_result->b_size = (ret << inode->i_blkbits);
982 ret = 0;
89747d36 983 }
bd1939de
JK
984 if (started)
985 ext3_journal_stop(handle);
986out:
1da177e4
LT
987 return ret;
988}
989
68c9d702
JB
990int ext3_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
991 u64 start, u64 len)
992{
993 return generic_block_fiemap(inode, fieinfo, start, len,
994 ext3_get_block);
995}
996
1da177e4
LT
997/*
998 * `handle' can be NULL if create is zero
999 */
d6859bfc
AM
1000struct buffer_head *ext3_getblk(handle_t *handle, struct inode *inode,
1001 long block, int create, int *errp)
1da177e4
LT
1002{
1003 struct buffer_head dummy;
1004 int fatal = 0, err;
1005
1006 J_ASSERT(handle != NULL || create == 0);
1007
1008 dummy.b_state = 0;
1009 dummy.b_blocknr = -1000;
1010 buffer_trace_init(&dummy.b_history);
89747d36 1011 err = ext3_get_blocks_handle(handle, inode, block, 1,
43237b54 1012 &dummy, create);
3665d0e5
BP
1013 /*
1014 * ext3_get_blocks_handle() returns number of blocks
1015 * mapped. 0 in case of a HOLE.
1016 */
1017 if (err > 0) {
1018 if (err > 1)
1019 WARN_ON(1);
89747d36 1020 err = 0;
89747d36
MC
1021 }
1022 *errp = err;
1023 if (!err && buffer_mapped(&dummy)) {
1da177e4
LT
1024 struct buffer_head *bh;
1025 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
2973dfdb
GOC
1026 if (!bh) {
1027 *errp = -EIO;
1028 goto err;
1029 }
1da177e4
LT
1030 if (buffer_new(&dummy)) {
1031 J_ASSERT(create != 0);
c80544dc 1032 J_ASSERT(handle != NULL);
1da177e4 1033
d6859bfc
AM
1034 /*
1035 * Now that we do not always journal data, we should
1036 * keep in mind whether this should always journal the
1037 * new buffer as metadata. For now, regular file
1038 * writes use ext3_get_block instead, so it's not a
1039 * problem.
1040 */
1da177e4
LT
1041 lock_buffer(bh);
1042 BUFFER_TRACE(bh, "call get_create_access");
1043 fatal = ext3_journal_get_create_access(handle, bh);
1044 if (!fatal && !buffer_uptodate(bh)) {
d6859bfc 1045 memset(bh->b_data,0,inode->i_sb->s_blocksize);
1da177e4
LT
1046 set_buffer_uptodate(bh);
1047 }
1048 unlock_buffer(bh);
1049 BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
1050 err = ext3_journal_dirty_metadata(handle, bh);
1051 if (!fatal)
1052 fatal = err;
1053 } else {
1054 BUFFER_TRACE(bh, "not a new buffer");
1055 }
1056 if (fatal) {
1057 *errp = fatal;
1058 brelse(bh);
1059 bh = NULL;
1060 }
1061 return bh;
1062 }
2973dfdb 1063err:
1da177e4
LT
1064 return NULL;
1065}
1066
d6859bfc 1067struct buffer_head *ext3_bread(handle_t *handle, struct inode *inode,
1da177e4
LT
1068 int block, int create, int *err)
1069{
1070 struct buffer_head * bh;
1071
1072 bh = ext3_getblk(handle, inode, block, create, err);
1073 if (!bh)
1074 return bh;
1075 if (buffer_uptodate(bh))
1076 return bh;
caa38fb0 1077 ll_rw_block(READ_META, 1, &bh);
1da177e4
LT
1078 wait_on_buffer(bh);
1079 if (buffer_uptodate(bh))
1080 return bh;
1081 put_bh(bh);
1082 *err = -EIO;
1083 return NULL;
1084}
1085
1086static int walk_page_buffers( handle_t *handle,
1087 struct buffer_head *head,
1088 unsigned from,
1089 unsigned to,
1090 int *partial,
1091 int (*fn)( handle_t *handle,
1092 struct buffer_head *bh))
1093{
1094 struct buffer_head *bh;
1095 unsigned block_start, block_end;
1096 unsigned blocksize = head->b_size;
1097 int err, ret = 0;
1098 struct buffer_head *next;
1099
1100 for ( bh = head, block_start = 0;
1101 ret == 0 && (bh != head || !block_start);
e9ad5620 1102 block_start = block_end, bh = next)
1da177e4
LT
1103 {
1104 next = bh->b_this_page;
1105 block_end = block_start + blocksize;
1106 if (block_end <= from || block_start >= to) {
1107 if (partial && !buffer_uptodate(bh))
1108 *partial = 1;
1109 continue;
1110 }
1111 err = (*fn)(handle, bh);
1112 if (!ret)
1113 ret = err;
1114 }
1115 return ret;
1116}
1117
1118/*
1119 * To preserve ordering, it is essential that the hole instantiation and
1120 * the data write be encapsulated in a single transaction. We cannot
1121 * close off a transaction and start a new one between the ext3_get_block()
1122 * and the commit_write(). So doing the journal_start at the start of
1123 * prepare_write() is the right place.
1124 *
1125 * Also, this function can nest inside ext3_writepage() ->
1126 * block_write_full_page(). In that case, we *know* that ext3_writepage()
1127 * has generated enough buffer credits to do the whole page. So we won't
1128 * block on the journal in that case, which is good, because the caller may
1129 * be PF_MEMALLOC.
1130 *
1131 * By accident, ext3 can be reentered when a transaction is open via
1132 * quota file writes. If we were to commit the transaction while thus
1133 * reentered, there can be a deadlock - we would be holding a quota
1134 * lock, and the commit would never complete if another thread had a
1135 * transaction open and was blocking on the quota lock - a ranking
1136 * violation.
1137 *
1138 * So what we do is to rely on the fact that journal_stop/journal_start
1139 * will _not_ run commit under these circumstances because handle->h_ref
1140 * is elevated. We'll still have enough credits for the tiny quotafile
ae6ddcc5 1141 * write.
1da177e4 1142 */
d6859bfc
AM
1143static int do_journal_get_write_access(handle_t *handle,
1144 struct buffer_head *bh)
1da177e4
LT
1145{
1146 if (!buffer_mapped(bh) || buffer_freed(bh))
1147 return 0;
1148 return ext3_journal_get_write_access(handle, bh);
1149}
1150
f4fc66a8
NP
1151static int ext3_write_begin(struct file *file, struct address_space *mapping,
1152 loff_t pos, unsigned len, unsigned flags,
1153 struct page **pagep, void **fsdata)
1da177e4 1154{
f4fc66a8 1155 struct inode *inode = mapping->host;
695f6ae0 1156 int ret;
1da177e4
LT
1157 handle_t *handle;
1158 int retries = 0;
f4fc66a8
NP
1159 struct page *page;
1160 pgoff_t index;
1161 unsigned from, to;
695f6ae0
JK
1162 /* Reserve one block more for addition to orphan list in case
1163 * we allocate blocks but write fails for some reason */
1164 int needed_blocks = ext3_writepage_trans_blocks(inode) + 1;
f4fc66a8
NP
1165
1166 index = pos >> PAGE_CACHE_SHIFT;
1167 from = pos & (PAGE_CACHE_SIZE - 1);
1168 to = from + len;
1da177e4
LT
1169
1170retry:
54566b2c 1171 page = grab_cache_page_write_begin(mapping, index, flags);
f4fc66a8
NP
1172 if (!page)
1173 return -ENOMEM;
1174 *pagep = page;
1175
1da177e4 1176 handle = ext3_journal_start(inode, needed_blocks);
1aa9b4b9 1177 if (IS_ERR(handle)) {
f4fc66a8
NP
1178 unlock_page(page);
1179 page_cache_release(page);
1aa9b4b9
AM
1180 ret = PTR_ERR(handle);
1181 goto out;
1182 }
f4fc66a8
NP
1183 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
1184 ext3_get_block);
1da177e4 1185 if (ret)
f4fc66a8 1186 goto write_begin_failed;
1da177e4
LT
1187
1188 if (ext3_should_journal_data(inode)) {
1189 ret = walk_page_buffers(handle, page_buffers(page),
1190 from, to, NULL, do_journal_get_write_access);
1191 }
f4fc66a8
NP
1192write_begin_failed:
1193 if (ret) {
5ec8b75e
AK
1194 /*
1195 * block_write_begin may have instantiated a few blocks
1196 * outside i_size. Trim these off again. Don't need
1197 * i_size_read because we hold i_mutex.
695f6ae0
JK
1198 *
1199 * Add inode to orphan list in case we crash before truncate
9eaaa2d5
JK
1200 * finishes. Do this only if ext3_can_truncate() agrees so
1201 * that orphan processing code is happy.
5ec8b75e 1202 */
9eaaa2d5 1203 if (pos + len > inode->i_size && ext3_can_truncate(inode))
695f6ae0
JK
1204 ext3_orphan_add(handle, inode);
1205 ext3_journal_stop(handle);
1206 unlock_page(page);
1207 page_cache_release(page);
5ec8b75e 1208 if (pos + len > inode->i_size)
9eaaa2d5 1209 ext3_truncate(inode);
f4fc66a8 1210 }
1da177e4
LT
1211 if (ret == -ENOSPC && ext3_should_retry_alloc(inode->i_sb, &retries))
1212 goto retry;
1aa9b4b9 1213out:
1da177e4
LT
1214 return ret;
1215}
1216
f4fc66a8 1217
d6859bfc 1218int ext3_journal_dirty_data(handle_t *handle, struct buffer_head *bh)
1da177e4
LT
1219{
1220 int err = journal_dirty_data(handle, bh);
1221 if (err)
e05b6b52 1222 ext3_journal_abort_handle(__func__, __func__,
f4fc66a8 1223 bh, handle, err);
1da177e4
LT
1224 return err;
1225}
1226
695f6ae0
JK
1227/* For ordered writepage and write_end functions */
1228static int journal_dirty_data_fn(handle_t *handle, struct buffer_head *bh)
1229{
1230 /*
1231 * Write could have mapped the buffer but it didn't copy the data in
1232 * yet. So avoid filing such buffer into a transaction.
1233 */
1234 if (buffer_mapped(bh) && buffer_uptodate(bh))
1235 return ext3_journal_dirty_data(handle, bh);
1236 return 0;
1237}
1238
f4fc66a8
NP
1239/* For write_end() in data=journal mode */
1240static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1da177e4
LT
1241{
1242 if (!buffer_mapped(bh) || buffer_freed(bh))
1243 return 0;
1244 set_buffer_uptodate(bh);
1245 return ext3_journal_dirty_metadata(handle, bh);
1246}
1247
f4fc66a8 1248/*
695f6ae0
JK
1249 * This is nasty and subtle: ext3_write_begin() could have allocated blocks
1250 * for the whole page but later we failed to copy the data in. Update inode
1251 * size according to what we managed to copy. The rest is going to be
1252 * truncated in write_end function.
f4fc66a8 1253 */
695f6ae0 1254static void update_file_sizes(struct inode *inode, loff_t pos, unsigned copied)
f4fc66a8 1255{
695f6ae0
JK
1256 /* What matters to us is i_disksize. We don't write i_size anywhere */
1257 if (pos + copied > inode->i_size)
1258 i_size_write(inode, pos + copied);
1259 if (pos + copied > EXT3_I(inode)->i_disksize) {
1260 EXT3_I(inode)->i_disksize = pos + copied;
f4fc66a8
NP
1261 mark_inode_dirty(inode);
1262 }
f4fc66a8
NP
1263}
1264
1da177e4
LT
1265/*
1266 * We need to pick up the new inode size which generic_commit_write gave us
1267 * `file' can be NULL - eg, when called from page_symlink().
1268 *
1269 * ext3 never places buffers on inode->i_mapping->private_list. metadata
1270 * buffers are managed internally.
1271 */
f4fc66a8
NP
1272static int ext3_ordered_write_end(struct file *file,
1273 struct address_space *mapping,
1274 loff_t pos, unsigned len, unsigned copied,
1275 struct page *page, void *fsdata)
1da177e4
LT
1276{
1277 handle_t *handle = ext3_journal_current_handle();
f4fc66a8
NP
1278 struct inode *inode = file->f_mapping->host;
1279 unsigned from, to;
1da177e4
LT
1280 int ret = 0, ret2;
1281
695f6ae0 1282 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
f4fc66a8 1283
695f6ae0
JK
1284 from = pos & (PAGE_CACHE_SIZE - 1);
1285 to = from + copied;
1da177e4 1286 ret = walk_page_buffers(handle, page_buffers(page),
695f6ae0 1287 from, to, NULL, journal_dirty_data_fn);
1da177e4 1288
695f6ae0
JK
1289 if (ret == 0)
1290 update_file_sizes(inode, pos, copied);
1291 /*
1292 * There may be allocated blocks outside of i_size because
1293 * we failed to copy some data. Prepare for truncate.
1294 */
9eaaa2d5 1295 if (pos + len > inode->i_size && ext3_can_truncate(inode))
695f6ae0 1296 ext3_orphan_add(handle, inode);
1da177e4
LT
1297 ret2 = ext3_journal_stop(handle);
1298 if (!ret)
1299 ret = ret2;
f4fc66a8
NP
1300 unlock_page(page);
1301 page_cache_release(page);
1302
695f6ae0 1303 if (pos + len > inode->i_size)
9eaaa2d5 1304 ext3_truncate(inode);
f4fc66a8 1305 return ret ? ret : copied;
1da177e4
LT
1306}
1307
f4fc66a8
NP
1308static int ext3_writeback_write_end(struct file *file,
1309 struct address_space *mapping,
1310 loff_t pos, unsigned len, unsigned copied,
1311 struct page *page, void *fsdata)
1da177e4
LT
1312{
1313 handle_t *handle = ext3_journal_current_handle();
f4fc66a8 1314 struct inode *inode = file->f_mapping->host;
695f6ae0 1315 int ret;
1da177e4 1316
695f6ae0
JK
1317 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1318 update_file_sizes(inode, pos, copied);
1319 /*
1320 * There may be allocated blocks outside of i_size because
1321 * we failed to copy some data. Prepare for truncate.
1322 */
9eaaa2d5 1323 if (pos + len > inode->i_size && ext3_can_truncate(inode))
695f6ae0
JK
1324 ext3_orphan_add(handle, inode);
1325 ret = ext3_journal_stop(handle);
f4fc66a8
NP
1326 unlock_page(page);
1327 page_cache_release(page);
1328
695f6ae0 1329 if (pos + len > inode->i_size)
9eaaa2d5 1330 ext3_truncate(inode);
f4fc66a8 1331 return ret ? ret : copied;
1da177e4
LT
1332}
1333
f4fc66a8
NP
1334static int ext3_journalled_write_end(struct file *file,
1335 struct address_space *mapping,
1336 loff_t pos, unsigned len, unsigned copied,
1337 struct page *page, void *fsdata)
1da177e4
LT
1338{
1339 handle_t *handle = ext3_journal_current_handle();
f4fc66a8 1340 struct inode *inode = mapping->host;
1da177e4
LT
1341 int ret = 0, ret2;
1342 int partial = 0;
f4fc66a8 1343 unsigned from, to;
1da177e4 1344
f4fc66a8
NP
1345 from = pos & (PAGE_CACHE_SIZE - 1);
1346 to = from + len;
1347
1348 if (copied < len) {
1349 if (!PageUptodate(page))
1350 copied = 0;
695f6ae0
JK
1351 page_zero_new_buffers(page, from + copied, to);
1352 to = from + copied;
f4fc66a8 1353 }
1da177e4
LT
1354
1355 ret = walk_page_buffers(handle, page_buffers(page), from,
f4fc66a8 1356 to, &partial, write_end_fn);
1da177e4
LT
1357 if (!partial)
1358 SetPageUptodate(page);
695f6ae0
JK
1359
1360 if (pos + copied > inode->i_size)
1361 i_size_write(inode, pos + copied);
1362 /*
1363 * There may be allocated blocks outside of i_size because
1364 * we failed to copy some data. Prepare for truncate.
1365 */
9eaaa2d5 1366 if (pos + len > inode->i_size && ext3_can_truncate(inode))
695f6ae0 1367 ext3_orphan_add(handle, inode);
1da177e4
LT
1368 EXT3_I(inode)->i_state |= EXT3_STATE_JDATA;
1369 if (inode->i_size > EXT3_I(inode)->i_disksize) {
1370 EXT3_I(inode)->i_disksize = inode->i_size;
1371 ret2 = ext3_mark_inode_dirty(handle, inode);
ae6ddcc5 1372 if (!ret)
1da177e4
LT
1373 ret = ret2;
1374 }
f4fc66a8 1375
1da177e4
LT
1376 ret2 = ext3_journal_stop(handle);
1377 if (!ret)
1378 ret = ret2;
f4fc66a8
NP
1379 unlock_page(page);
1380 page_cache_release(page);
1381
695f6ae0 1382 if (pos + len > inode->i_size)
9eaaa2d5 1383 ext3_truncate(inode);
f4fc66a8 1384 return ret ? ret : copied;
1da177e4
LT
1385}
1386
ae6ddcc5 1387/*
1da177e4
LT
1388 * bmap() is special. It gets used by applications such as lilo and by
1389 * the swapper to find the on-disk block of a specific piece of data.
1390 *
1391 * Naturally, this is dangerous if the block concerned is still in the
1392 * journal. If somebody makes a swapfile on an ext3 data-journaling
1393 * filesystem and enables swap, then they may get a nasty shock when the
1394 * data getting swapped to that swapfile suddenly gets overwritten by
1395 * the original zero's written out previously to the journal and
ae6ddcc5 1396 * awaiting writeback in the kernel's buffer cache.
1da177e4
LT
1397 *
1398 * So, if we see any bmap calls here on a modified, data-journaled file,
ae6ddcc5 1399 * take extra steps to flush any blocks which might be in the cache.
1da177e4
LT
1400 */
1401static sector_t ext3_bmap(struct address_space *mapping, sector_t block)
1402{
1403 struct inode *inode = mapping->host;
1404 journal_t *journal;
1405 int err;
1406
1407 if (EXT3_I(inode)->i_state & EXT3_STATE_JDATA) {
ae6ddcc5 1408 /*
1da177e4
LT
1409 * This is a REALLY heavyweight approach, but the use of
1410 * bmap on dirty files is expected to be extremely rare:
1411 * only if we run lilo or swapon on a freshly made file
ae6ddcc5 1412 * do we expect this to happen.
1da177e4
LT
1413 *
1414 * (bmap requires CAP_SYS_RAWIO so this does not
1415 * represent an unprivileged user DOS attack --- we'd be
1416 * in trouble if mortal users could trigger this path at
ae6ddcc5 1417 * will.)
1da177e4
LT
1418 *
1419 * NB. EXT3_STATE_JDATA is not set on files other than
1420 * regular files. If somebody wants to bmap a directory
1421 * or symlink and gets confused because the buffer
1422 * hasn't yet been flushed to disk, they deserve
1423 * everything they get.
1424 */
1425
1426 EXT3_I(inode)->i_state &= ~EXT3_STATE_JDATA;
1427 journal = EXT3_JOURNAL(inode);
1428 journal_lock_updates(journal);
1429 err = journal_flush(journal);
1430 journal_unlock_updates(journal);
1431
1432 if (err)
1433 return 0;
1434 }
1435
1436 return generic_block_bmap(mapping,block,ext3_get_block);
1437}
1438
1439static int bget_one(handle_t *handle, struct buffer_head *bh)
1440{
1441 get_bh(bh);
1442 return 0;
1443}
1444
1445static int bput_one(handle_t *handle, struct buffer_head *bh)
1446{
1447 put_bh(bh);
1448 return 0;
1449}
1450
9e80d407
JK
1451static int buffer_unmapped(handle_t *handle, struct buffer_head *bh)
1452{
1453 return !buffer_mapped(bh);
1454}
695f6ae0 1455
1da177e4
LT
1456/*
1457 * Note that we always start a transaction even if we're not journalling
1458 * data. This is to preserve ordering: any hole instantiation within
1459 * __block_write_full_page -> ext3_get_block() should be journalled
1460 * along with the data so we don't crash and then get metadata which
1461 * refers to old data.
1462 *
1463 * In all journalling modes block_write_full_page() will start the I/O.
1464 *
1465 * Problem:
1466 *
1467 * ext3_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1468 * ext3_writepage()
1469 *
1470 * Similar for:
1471 *
1472 * ext3_file_write() -> generic_file_write() -> __alloc_pages() -> ...
1473 *
1474 * Same applies to ext3_get_block(). We will deadlock on various things like
97461518 1475 * lock_journal and i_truncate_mutex.
1da177e4
LT
1476 *
1477 * Setting PF_MEMALLOC here doesn't work - too many internal memory
1478 * allocations fail.
1479 *
1480 * 16May01: If we're reentered then journal_current_handle() will be
1481 * non-zero. We simply *return*.
1482 *
1483 * 1 July 2001: @@@ FIXME:
1484 * In journalled data mode, a data buffer may be metadata against the
1485 * current transaction. But the same file is part of a shared mapping
1486 * and someone does a writepage() on it.
1487 *
1488 * We will move the buffer onto the async_data list, but *after* it has
1489 * been dirtied. So there's a small window where we have dirty data on
1490 * BJ_Metadata.
1491 *
1492 * Note that this only applies to the last partial page in the file. The
1493 * bit which block_write_full_page() uses prepare/commit for. (That's
1494 * broken code anyway: it's wrong for msync()).
1495 *
1496 * It's a rare case: affects the final partial page, for journalled data
1497 * where the file is subject to bith write() and writepage() in the same
1498 * transction. To fix it we'll need a custom block_write_full_page().
1499 * We'll probably need that anyway for journalling writepage() output.
1500 *
1501 * We don't honour synchronous mounts for writepage(). That would be
1502 * disastrous. Any write() or metadata operation will sync the fs for
1503 * us.
1504 *
1505 * AKPM2: if all the page's buffers are mapped to disk and !data=journal,
1506 * we don't need to open a transaction here.
1507 */
1508static int ext3_ordered_writepage(struct page *page,
d6859bfc 1509 struct writeback_control *wbc)
1da177e4
LT
1510{
1511 struct inode *inode = page->mapping->host;
1512 struct buffer_head *page_bufs;
1513 handle_t *handle = NULL;
1514 int ret = 0;
1515 int err;
1516
1517 J_ASSERT(PageLocked(page));
1518
1519 /*
1520 * We give up here if we're reentered, because it might be for a
1521 * different filesystem.
1522 */
1523 if (ext3_journal_current_handle())
1524 goto out_fail;
1525
9e80d407
JK
1526 if (!page_has_buffers(page)) {
1527 create_empty_buffers(page, inode->i_sb->s_blocksize,
1528 (1 << BH_Dirty)|(1 << BH_Uptodate));
430db323
JK
1529 page_bufs = page_buffers(page);
1530 } else {
1531 page_bufs = page_buffers(page);
1532 if (!walk_page_buffers(NULL, page_bufs, 0, PAGE_CACHE_SIZE,
1533 NULL, buffer_unmapped)) {
1534 /* Provide NULL get_block() to catch bugs if buffers
1535 * weren't really mapped */
1536 return block_write_full_page(page, NULL, wbc);
1537 }
9e80d407 1538 }
1da177e4
LT
1539 handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
1540
1541 if (IS_ERR(handle)) {
1542 ret = PTR_ERR(handle);
1543 goto out_fail;
1544 }
1545
1da177e4
LT
1546 walk_page_buffers(handle, page_bufs, 0,
1547 PAGE_CACHE_SIZE, NULL, bget_one);
1548
1549 ret = block_write_full_page(page, ext3_get_block, wbc);
1550
1551 /*
1552 * The page can become unlocked at any point now, and
1553 * truncate can then come in and change things. So we
1554 * can't touch *page from now on. But *page_bufs is
1555 * safe due to elevated refcount.
1556 */
1557
1558 /*
ae6ddcc5 1559 * And attach them to the current transaction. But only if
1da177e4
LT
1560 * block_write_full_page() succeeded. Otherwise they are unmapped,
1561 * and generally junk.
1562 */
1563 if (ret == 0) {
1564 err = walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE,
1565 NULL, journal_dirty_data_fn);
1566 if (!ret)
1567 ret = err;
1568 }
1569 walk_page_buffers(handle, page_bufs, 0,
1570 PAGE_CACHE_SIZE, NULL, bput_one);
1571 err = ext3_journal_stop(handle);
1572 if (!ret)
1573 ret = err;
1574 return ret;
1575
1576out_fail:
1577 redirty_page_for_writepage(wbc, page);
1578 unlock_page(page);
1579 return ret;
1580}
1581
1da177e4
LT
1582static int ext3_writeback_writepage(struct page *page,
1583 struct writeback_control *wbc)
1584{
1585 struct inode *inode = page->mapping->host;
1586 handle_t *handle = NULL;
1587 int ret = 0;
1588 int err;
1589
1590 if (ext3_journal_current_handle())
1591 goto out_fail;
1592
430db323
JK
1593 if (page_has_buffers(page)) {
1594 if (!walk_page_buffers(NULL, page_buffers(page), 0,
1595 PAGE_CACHE_SIZE, NULL, buffer_unmapped)) {
1596 /* Provide NULL get_block() to catch bugs if buffers
1597 * weren't really mapped */
1598 return block_write_full_page(page, NULL, wbc);
1599 }
1600 }
1601
1da177e4
LT
1602 handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
1603 if (IS_ERR(handle)) {
1604 ret = PTR_ERR(handle);
1605 goto out_fail;
1606 }
1607
0e31f51d 1608 if (test_opt(inode->i_sb, NOBH) && ext3_should_writeback_data(inode))
1da177e4
LT
1609 ret = nobh_writepage(page, ext3_get_block, wbc);
1610 else
1611 ret = block_write_full_page(page, ext3_get_block, wbc);
1612
1613 err = ext3_journal_stop(handle);
1614 if (!ret)
1615 ret = err;
1616 return ret;
1617
1618out_fail:
1619 redirty_page_for_writepage(wbc, page);
1620 unlock_page(page);
1621 return ret;
1622}
1623
1624static int ext3_journalled_writepage(struct page *page,
1625 struct writeback_control *wbc)
1626{
1627 struct inode *inode = page->mapping->host;
1628 handle_t *handle = NULL;
1629 int ret = 0;
1630 int err;
1631
1632 if (ext3_journal_current_handle())
1633 goto no_write;
1634
1635 handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
1636 if (IS_ERR(handle)) {
1637 ret = PTR_ERR(handle);
1638 goto no_write;
1639 }
1640
1641 if (!page_has_buffers(page) || PageChecked(page)) {
1642 /*
1643 * It's mmapped pagecache. Add buffers and journal it. There
1644 * doesn't seem much point in redirtying the page here.
1645 */
1646 ClearPageChecked(page);
1647 ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
1648 ext3_get_block);
ab4eb43c
DL
1649 if (ret != 0) {
1650 ext3_journal_stop(handle);
1da177e4 1651 goto out_unlock;
ab4eb43c 1652 }
1da177e4
LT
1653 ret = walk_page_buffers(handle, page_buffers(page), 0,
1654 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
1655
1656 err = walk_page_buffers(handle, page_buffers(page), 0,
f4fc66a8 1657 PAGE_CACHE_SIZE, NULL, write_end_fn);
1da177e4
LT
1658 if (ret == 0)
1659 ret = err;
1660 EXT3_I(inode)->i_state |= EXT3_STATE_JDATA;
1661 unlock_page(page);
1662 } else {
1663 /*
1664 * It may be a page full of checkpoint-mode buffers. We don't
1665 * really know unless we go poke around in the buffer_heads.
1666 * But block_write_full_page will do the right thing.
1667 */
1668 ret = block_write_full_page(page, ext3_get_block, wbc);
1669 }
1670 err = ext3_journal_stop(handle);
1671 if (!ret)
1672 ret = err;
1673out:
1674 return ret;
1675
1676no_write:
1677 redirty_page_for_writepage(wbc, page);
1678out_unlock:
1679 unlock_page(page);
1680 goto out;
1681}
1682
1683static int ext3_readpage(struct file *file, struct page *page)
1684{
1685 return mpage_readpage(page, ext3_get_block);
1686}
1687
1688static int
1689ext3_readpages(struct file *file, struct address_space *mapping,
1690 struct list_head *pages, unsigned nr_pages)
1691{
1692 return mpage_readpages(mapping, pages, nr_pages, ext3_get_block);
1693}
1694
2ff28e22 1695static void ext3_invalidatepage(struct page *page, unsigned long offset)
1da177e4
LT
1696{
1697 journal_t *journal = EXT3_JOURNAL(page->mapping->host);
1698
1699 /*
1700 * If it's a full truncate we just forget about the pending dirtying
1701 */
1702 if (offset == 0)
1703 ClearPageChecked(page);
1704
2ff28e22 1705 journal_invalidatepage(journal, page, offset);
1da177e4
LT
1706}
1707
27496a8c 1708static int ext3_releasepage(struct page *page, gfp_t wait)
1da177e4
LT
1709{
1710 journal_t *journal = EXT3_JOURNAL(page->mapping->host);
1711
1712 WARN_ON(PageChecked(page));
1713 if (!page_has_buffers(page))
1714 return 0;
1715 return journal_try_to_free_buffers(journal, page, wait);
1716}
1717
1718/*
1719 * If the O_DIRECT write will extend the file then add this inode to the
1720 * orphan list. So recovery will truncate it back to the original size
1721 * if the machine crashes during the write.
1722 *
1723 * If the O_DIRECT write is intantiating holes inside i_size and the machine
bd1939de
JK
1724 * crashes then stale disk data _may_ be exposed inside the file. But current
1725 * VFS code falls back into buffered path in that case so we are safe.
1da177e4
LT
1726 */
1727static ssize_t ext3_direct_IO(int rw, struct kiocb *iocb,
1728 const struct iovec *iov, loff_t offset,
1729 unsigned long nr_segs)
1730{
1731 struct file *file = iocb->ki_filp;
1732 struct inode *inode = file->f_mapping->host;
1733 struct ext3_inode_info *ei = EXT3_I(inode);
bd1939de 1734 handle_t *handle;
1da177e4
LT
1735 ssize_t ret;
1736 int orphan = 0;
1737 size_t count = iov_length(iov, nr_segs);
1738
1739 if (rw == WRITE) {
1740 loff_t final_size = offset + count;
1741
1da177e4 1742 if (final_size > inode->i_size) {
bd1939de
JK
1743 /* Credits for sb + inode write */
1744 handle = ext3_journal_start(inode, 2);
1745 if (IS_ERR(handle)) {
1746 ret = PTR_ERR(handle);
1747 goto out;
1748 }
1da177e4 1749 ret = ext3_orphan_add(handle, inode);
bd1939de
JK
1750 if (ret) {
1751 ext3_journal_stop(handle);
1752 goto out;
1753 }
1da177e4
LT
1754 orphan = 1;
1755 ei->i_disksize = inode->i_size;
bd1939de 1756 ext3_journal_stop(handle);
1da177e4
LT
1757 }
1758 }
1759
ae6ddcc5 1760 ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
1da177e4 1761 offset, nr_segs,
f91a2ad2 1762 ext3_get_block, NULL);
1da177e4 1763
bd1939de 1764 if (orphan) {
1da177e4
LT
1765 int err;
1766
bd1939de
JK
1767 /* Credits for sb + inode write */
1768 handle = ext3_journal_start(inode, 2);
1769 if (IS_ERR(handle)) {
1770 /* This is really bad luck. We've written the data
1771 * but cannot extend i_size. Bail out and pretend
1772 * the write failed... */
1773 ret = PTR_ERR(handle);
1774 goto out;
1775 }
1776 if (inode->i_nlink)
1da177e4 1777 ext3_orphan_del(handle, inode);
bd1939de 1778 if (ret > 0) {
1da177e4
LT
1779 loff_t end = offset + ret;
1780 if (end > inode->i_size) {
1781 ei->i_disksize = end;
1782 i_size_write(inode, end);
1783 /*
1784 * We're going to return a positive `ret'
1785 * here due to non-zero-length I/O, so there's
1786 * no way of reporting error returns from
1787 * ext3_mark_inode_dirty() to userspace. So
1788 * ignore it.
1789 */
1790 ext3_mark_inode_dirty(handle, inode);
1791 }
1792 }
1793 err = ext3_journal_stop(handle);
1794 if (ret == 0)
1795 ret = err;
1796 }
1797out:
1798 return ret;
1799}
1800
1801/*
1802 * Pages can be marked dirty completely asynchronously from ext3's journalling
1803 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
1804 * much here because ->set_page_dirty is called under VFS locks. The page is
1805 * not necessarily locked.
1806 *
1807 * We cannot just dirty the page and leave attached buffers clean, because the
1808 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
1809 * or jbddirty because all the journalling code will explode.
1810 *
1811 * So what we do is to mark the page "pending dirty" and next time writepage
1812 * is called, propagate that into the buffers appropriately.
1813 */
1814static int ext3_journalled_set_page_dirty(struct page *page)
1815{
1816 SetPageChecked(page);
1817 return __set_page_dirty_nobuffers(page);
1818}
1819
f5e54d6e 1820static const struct address_space_operations ext3_ordered_aops = {
8ab22b9a
HH
1821 .readpage = ext3_readpage,
1822 .readpages = ext3_readpages,
1823 .writepage = ext3_ordered_writepage,
1824 .sync_page = block_sync_page,
1825 .write_begin = ext3_write_begin,
1826 .write_end = ext3_ordered_write_end,
1827 .bmap = ext3_bmap,
1828 .invalidatepage = ext3_invalidatepage,
1829 .releasepage = ext3_releasepage,
1830 .direct_IO = ext3_direct_IO,
1831 .migratepage = buffer_migrate_page,
1832 .is_partially_uptodate = block_is_partially_uptodate,
1da177e4
LT
1833};
1834
f5e54d6e 1835static const struct address_space_operations ext3_writeback_aops = {
8ab22b9a
HH
1836 .readpage = ext3_readpage,
1837 .readpages = ext3_readpages,
1838 .writepage = ext3_writeback_writepage,
1839 .sync_page = block_sync_page,
1840 .write_begin = ext3_write_begin,
1841 .write_end = ext3_writeback_write_end,
1842 .bmap = ext3_bmap,
1843 .invalidatepage = ext3_invalidatepage,
1844 .releasepage = ext3_releasepage,
1845 .direct_IO = ext3_direct_IO,
1846 .migratepage = buffer_migrate_page,
1847 .is_partially_uptodate = block_is_partially_uptodate,
1da177e4
LT
1848};
1849
f5e54d6e 1850static const struct address_space_operations ext3_journalled_aops = {
8ab22b9a
HH
1851 .readpage = ext3_readpage,
1852 .readpages = ext3_readpages,
1853 .writepage = ext3_journalled_writepage,
1854 .sync_page = block_sync_page,
1855 .write_begin = ext3_write_begin,
1856 .write_end = ext3_journalled_write_end,
1857 .set_page_dirty = ext3_journalled_set_page_dirty,
1858 .bmap = ext3_bmap,
1859 .invalidatepage = ext3_invalidatepage,
1860 .releasepage = ext3_releasepage,
1861 .is_partially_uptodate = block_is_partially_uptodate,
1da177e4
LT
1862};
1863
1864void ext3_set_aops(struct inode *inode)
1865{
1866 if (ext3_should_order_data(inode))
1867 inode->i_mapping->a_ops = &ext3_ordered_aops;
1868 else if (ext3_should_writeback_data(inode))
1869 inode->i_mapping->a_ops = &ext3_writeback_aops;
1870 else
1871 inode->i_mapping->a_ops = &ext3_journalled_aops;
1872}
1873
1874/*
1875 * ext3_block_truncate_page() zeroes out a mapping from file offset `from'
1876 * up to the end of the block which corresponds to `from'.
1877 * This required during truncate. We need to physically zero the tail end
1878 * of that block so it doesn't yield old data if the file is later grown.
1879 */
1880static int ext3_block_truncate_page(handle_t *handle, struct page *page,
1881 struct address_space *mapping, loff_t from)
1882{
43d23f90 1883 ext3_fsblk_t index = from >> PAGE_CACHE_SHIFT;
1da177e4
LT
1884 unsigned offset = from & (PAGE_CACHE_SIZE-1);
1885 unsigned blocksize, iblock, length, pos;
1886 struct inode *inode = mapping->host;
1887 struct buffer_head *bh;
1888 int err = 0;
1da177e4
LT
1889
1890 blocksize = inode->i_sb->s_blocksize;
1891 length = blocksize - (offset & (blocksize - 1));
1892 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
1893
1894 /*
1895 * For "nobh" option, we can only work if we don't need to
1896 * read-in the page - otherwise we create buffers to do the IO.
1897 */
cd6ef84e
BP
1898 if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
1899 ext3_should_writeback_data(inode) && PageUptodate(page)) {
eebd2aa3 1900 zero_user(page, offset, length);
cd6ef84e
BP
1901 set_page_dirty(page);
1902 goto unlock;
1da177e4
LT
1903 }
1904
1905 if (!page_has_buffers(page))
1906 create_empty_buffers(page, blocksize, 0);
1907
1908 /* Find the buffer that contains "offset" */
1909 bh = page_buffers(page);
1910 pos = blocksize;
1911 while (offset >= pos) {
1912 bh = bh->b_this_page;
1913 iblock++;
1914 pos += blocksize;
1915 }
1916
1917 err = 0;
1918 if (buffer_freed(bh)) {
1919 BUFFER_TRACE(bh, "freed: skip");
1920 goto unlock;
1921 }
1922
1923 if (!buffer_mapped(bh)) {
1924 BUFFER_TRACE(bh, "unmapped");
1925 ext3_get_block(inode, iblock, bh, 0);
1926 /* unmapped? It's a hole - nothing to do */
1927 if (!buffer_mapped(bh)) {
1928 BUFFER_TRACE(bh, "still unmapped");
1929 goto unlock;
1930 }
1931 }
1932
1933 /* Ok, it's mapped. Make sure it's up-to-date */
1934 if (PageUptodate(page))
1935 set_buffer_uptodate(bh);
1936
1937 if (!buffer_uptodate(bh)) {
1938 err = -EIO;
1939 ll_rw_block(READ, 1, &bh);
1940 wait_on_buffer(bh);
1941 /* Uhhuh. Read error. Complain and punt. */
1942 if (!buffer_uptodate(bh))
1943 goto unlock;
1944 }
1945
1946 if (ext3_should_journal_data(inode)) {
1947 BUFFER_TRACE(bh, "get write access");
1948 err = ext3_journal_get_write_access(handle, bh);
1949 if (err)
1950 goto unlock;
1951 }
1952
eebd2aa3 1953 zero_user(page, offset, length);
1da177e4
LT
1954 BUFFER_TRACE(bh, "zeroed end of block");
1955
1956 err = 0;
1957 if (ext3_should_journal_data(inode)) {
1958 err = ext3_journal_dirty_metadata(handle, bh);
1959 } else {
1960 if (ext3_should_order_data(inode))
1961 err = ext3_journal_dirty_data(handle, bh);
1962 mark_buffer_dirty(bh);
1963 }
1964
1965unlock:
1966 unlock_page(page);
1967 page_cache_release(page);
1968 return err;
1969}
1970
1971/*
1972 * Probably it should be a library function... search for first non-zero word
1973 * or memcmp with zero_page, whatever is better for particular architecture.
1974 * Linus?
1975 */
1976static inline int all_zeroes(__le32 *p, __le32 *q)
1977{
1978 while (p < q)
1979 if (*p++)
1980 return 0;
1981 return 1;
1982}
1983
1984/**
1985 * ext3_find_shared - find the indirect blocks for partial truncation.
1986 * @inode: inode in question
1987 * @depth: depth of the affected branch
1988 * @offsets: offsets of pointers in that branch (see ext3_block_to_path)
1989 * @chain: place to store the pointers to partial indirect blocks
1990 * @top: place to the (detached) top of branch
1991 *
1992 * This is a helper function used by ext3_truncate().
1993 *
1994 * When we do truncate() we may have to clean the ends of several
1995 * indirect blocks but leave the blocks themselves alive. Block is
1996 * partially truncated if some data below the new i_size is refered
1997 * from it (and it is on the path to the first completely truncated
1998 * data block, indeed). We have to free the top of that path along
1999 * with everything to the right of the path. Since no allocation
2000 * past the truncation point is possible until ext3_truncate()
2001 * finishes, we may safely do the latter, but top of branch may
2002 * require special attention - pageout below the truncation point
2003 * might try to populate it.
2004 *
2005 * We atomically detach the top of branch from the tree, store the
2006 * block number of its root in *@top, pointers to buffer_heads of
2007 * partially truncated blocks - in @chain[].bh and pointers to
2008 * their last elements that should not be removed - in
2009 * @chain[].p. Return value is the pointer to last filled element
2010 * of @chain.
2011 *
2012 * The work left to caller to do the actual freeing of subtrees:
2013 * a) free the subtree starting from *@top
2014 * b) free the subtrees whose roots are stored in
2015 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
2016 * c) free the subtrees growing from the inode past the @chain[0].
2017 * (no partially truncated stuff there). */
2018
d6859bfc
AM
2019static Indirect *ext3_find_shared(struct inode *inode, int depth,
2020 int offsets[4], Indirect chain[4], __le32 *top)
1da177e4
LT
2021{
2022 Indirect *partial, *p;
2023 int k, err;
2024
2025 *top = 0;
2026 /* Make k index the deepest non-null offest + 1 */
2027 for (k = depth; k > 1 && !offsets[k-1]; k--)
2028 ;
2029 partial = ext3_get_branch(inode, k, offsets, chain, &err);
2030 /* Writer: pointers */
2031 if (!partial)
2032 partial = chain + k-1;
2033 /*
2034 * If the branch acquired continuation since we've looked at it -
2035 * fine, it should all survive and (new) top doesn't belong to us.
2036 */
2037 if (!partial->key && *partial->p)
2038 /* Writer: end */
2039 goto no_top;
2040 for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--)
2041 ;
2042 /*
2043 * OK, we've found the last block that must survive. The rest of our
2044 * branch should be detached before unlocking. However, if that rest
2045 * of branch is all ours and does not grow immediately from the inode
2046 * it's easier to cheat and just decrement partial->p.
2047 */
2048 if (p == chain + k - 1 && p > chain) {
2049 p->p--;
2050 } else {
2051 *top = *p->p;
2052 /* Nope, don't do this in ext3. Must leave the tree intact */
2053#if 0
2054 *p->p = 0;
2055#endif
2056 }
2057 /* Writer: end */
2058
d6859bfc 2059 while(partial > p) {
1da177e4
LT
2060 brelse(partial->bh);
2061 partial--;
2062 }
2063no_top:
2064 return partial;
2065}
2066
2067/*
2068 * Zero a number of block pointers in either an inode or an indirect block.
2069 * If we restart the transaction we must again get write access to the
2070 * indirect block for further modification.
2071 *
2072 * We release `count' blocks on disk, but (last - first) may be greater
2073 * than `count' because there can be holes in there.
2074 */
d6859bfc 2075static void ext3_clear_blocks(handle_t *handle, struct inode *inode,
43d23f90 2076 struct buffer_head *bh, ext3_fsblk_t block_to_free,
d6859bfc 2077 unsigned long count, __le32 *first, __le32 *last)
1da177e4
LT
2078{
2079 __le32 *p;
2080 if (try_to_extend_transaction(handle, inode)) {
2081 if (bh) {
2082 BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
2083 ext3_journal_dirty_metadata(handle, bh);
2084 }
2085 ext3_mark_inode_dirty(handle, inode);
00171d3c 2086 truncate_restart_transaction(handle, inode);
1da177e4
LT
2087 if (bh) {
2088 BUFFER_TRACE(bh, "retaking write access");
2089 ext3_journal_get_write_access(handle, bh);
2090 }
2091 }
2092
2093 /*
2094 * Any buffers which are on the journal will be in memory. We find
2095 * them on the hash table so journal_revoke() will run journal_forget()
2096 * on them. We've already detached each block from the file, so
2097 * bforget() in journal_forget() should be safe.
2098 *
2099 * AKPM: turn on bforget in journal_forget()!!!
2100 */
2101 for (p = first; p < last; p++) {
2102 u32 nr = le32_to_cpu(*p);
2103 if (nr) {
2104 struct buffer_head *bh;
2105
2106 *p = 0;
2107 bh = sb_find_get_block(inode->i_sb, nr);
2108 ext3_forget(handle, 0, inode, bh, nr);
2109 }
2110 }
2111
2112 ext3_free_blocks(handle, inode, block_to_free, count);
2113}
2114
2115/**
2116 * ext3_free_data - free a list of data blocks
2117 * @handle: handle for this transaction
2118 * @inode: inode we are dealing with
2119 * @this_bh: indirect buffer_head which contains *@first and *@last
2120 * @first: array of block numbers
2121 * @last: points immediately past the end of array
2122 *
2123 * We are freeing all blocks refered from that array (numbers are stored as
2124 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
2125 *
2126 * We accumulate contiguous runs of blocks to free. Conveniently, if these
2127 * blocks are contiguous then releasing them at one time will only affect one
2128 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
2129 * actually use a lot of journal space.
2130 *
2131 * @this_bh will be %NULL if @first and @last point into the inode's direct
2132 * block pointers.
2133 */
2134static void ext3_free_data(handle_t *handle, struct inode *inode,
2135 struct buffer_head *this_bh,
2136 __le32 *first, __le32 *last)
2137{
43d23f90 2138 ext3_fsblk_t block_to_free = 0; /* Starting block # of a run */
ae6ddcc5 2139 unsigned long count = 0; /* Number of blocks in the run */
1da177e4
LT
2140 __le32 *block_to_free_p = NULL; /* Pointer into inode/ind
2141 corresponding to
2142 block_to_free */
43d23f90 2143 ext3_fsblk_t nr; /* Current block # */
1da177e4
LT
2144 __le32 *p; /* Pointer into inode/ind
2145 for current block */
2146 int err;
2147
2148 if (this_bh) { /* For indirect block */
2149 BUFFER_TRACE(this_bh, "get_write_access");
2150 err = ext3_journal_get_write_access(handle, this_bh);
2151 /* Important: if we can't update the indirect pointers
2152 * to the blocks, we can't free them. */
2153 if (err)
2154 return;
2155 }
2156
2157 for (p = first; p < last; p++) {
2158 nr = le32_to_cpu(*p);
2159 if (nr) {
2160 /* accumulate blocks to free if they're contiguous */
2161 if (count == 0) {
2162 block_to_free = nr;
2163 block_to_free_p = p;
2164 count = 1;
2165 } else if (nr == block_to_free + count) {
2166 count++;
2167 } else {
ae6ddcc5 2168 ext3_clear_blocks(handle, inode, this_bh,
1da177e4
LT
2169 block_to_free,
2170 count, block_to_free_p, p);
2171 block_to_free = nr;
2172 block_to_free_p = p;
2173 count = 1;
2174 }
2175 }
2176 }
2177
2178 if (count > 0)
2179 ext3_clear_blocks(handle, inode, this_bh, block_to_free,
2180 count, block_to_free_p, p);
2181
2182 if (this_bh) {
2183 BUFFER_TRACE(this_bh, "call ext3_journal_dirty_metadata");
3ccc3167
DG
2184
2185 /*
2186 * The buffer head should have an attached journal head at this
2187 * point. However, if the data is corrupted and an indirect
2188 * block pointed to itself, it would have been detached when
2189 * the block was cleared. Check for this instead of OOPSing.
2190 */
2191 if (bh2jh(this_bh))
2192 ext3_journal_dirty_metadata(handle, this_bh);
2193 else
2194 ext3_error(inode->i_sb, "ext3_free_data",
2195 "circular indirect block detected, "
2196 "inode=%lu, block=%llu",
2197 inode->i_ino,
2198 (unsigned long long)this_bh->b_blocknr);
1da177e4
LT
2199 }
2200}
2201
2202/**
2203 * ext3_free_branches - free an array of branches
2204 * @handle: JBD handle for this transaction
2205 * @inode: inode we are dealing with
2206 * @parent_bh: the buffer_head which contains *@first and *@last
2207 * @first: array of block numbers
2208 * @last: pointer immediately past the end of array
2209 * @depth: depth of the branches to free
2210 *
2211 * We are freeing all blocks refered from these branches (numbers are
2212 * stored as little-endian 32-bit) and updating @inode->i_blocks
2213 * appropriately.
2214 */
2215static void ext3_free_branches(handle_t *handle, struct inode *inode,
2216 struct buffer_head *parent_bh,
2217 __le32 *first, __le32 *last, int depth)
2218{
43d23f90 2219 ext3_fsblk_t nr;
1da177e4
LT
2220 __le32 *p;
2221
2222 if (is_handle_aborted(handle))
2223 return;
2224
2225 if (depth--) {
2226 struct buffer_head *bh;
2227 int addr_per_block = EXT3_ADDR_PER_BLOCK(inode->i_sb);
2228 p = last;
2229 while (--p >= first) {
2230 nr = le32_to_cpu(*p);
2231 if (!nr)
2232 continue; /* A hole */
2233
2234 /* Go read the buffer for the next level down */
2235 bh = sb_bread(inode->i_sb, nr);
2236
2237 /*
2238 * A read failure? Report error and clear slot
2239 * (should be rare).
2240 */
2241 if (!bh) {
2242 ext3_error(inode->i_sb, "ext3_free_branches",
eee194e7 2243 "Read failure, inode=%lu, block="E3FSBLK,
1da177e4
LT
2244 inode->i_ino, nr);
2245 continue;
2246 }
2247
2248 /* This zaps the entire block. Bottom up. */
2249 BUFFER_TRACE(bh, "free child branches");
2250 ext3_free_branches(handle, inode, bh,
2251 (__le32*)bh->b_data,
2252 (__le32*)bh->b_data + addr_per_block,
2253 depth);
2254
2255 /*
2256 * We've probably journalled the indirect block several
2257 * times during the truncate. But it's no longer
2258 * needed and we now drop it from the transaction via
2259 * journal_revoke().
2260 *
2261 * That's easy if it's exclusively part of this
2262 * transaction. But if it's part of the committing
2263 * transaction then journal_forget() will simply
2264 * brelse() it. That means that if the underlying
2265 * block is reallocated in ext3_get_block(),
2266 * unmap_underlying_metadata() will find this block
2267 * and will try to get rid of it. damn, damn.
2268 *
2269 * If this block has already been committed to the
2270 * journal, a revoke record will be written. And
2271 * revoke records must be emitted *before* clearing
2272 * this block's bit in the bitmaps.
2273 */
2274 ext3_forget(handle, 1, inode, bh, bh->b_blocknr);
2275
2276 /*
2277 * Everything below this this pointer has been
2278 * released. Now let this top-of-subtree go.
2279 *
2280 * We want the freeing of this indirect block to be
2281 * atomic in the journal with the updating of the
2282 * bitmap block which owns it. So make some room in
2283 * the journal.
2284 *
2285 * We zero the parent pointer *after* freeing its
2286 * pointee in the bitmaps, so if extend_transaction()
2287 * for some reason fails to put the bitmap changes and
2288 * the release into the same transaction, recovery
2289 * will merely complain about releasing a free block,
2290 * rather than leaking blocks.
2291 */
2292 if (is_handle_aborted(handle))
2293 return;
2294 if (try_to_extend_transaction(handle, inode)) {
2295 ext3_mark_inode_dirty(handle, inode);
00171d3c 2296 truncate_restart_transaction(handle, inode);
1da177e4
LT
2297 }
2298
2299 ext3_free_blocks(handle, inode, nr, 1);
2300
2301 if (parent_bh) {
2302 /*
2303 * The block which we have just freed is
2304 * pointed to by an indirect block: journal it
2305 */
2306 BUFFER_TRACE(parent_bh, "get_write_access");
2307 if (!ext3_journal_get_write_access(handle,
2308 parent_bh)){
2309 *p = 0;
2310 BUFFER_TRACE(parent_bh,
2311 "call ext3_journal_dirty_metadata");
ae6ddcc5 2312 ext3_journal_dirty_metadata(handle,
1da177e4
LT
2313 parent_bh);
2314 }
2315 }
2316 }
2317 } else {
2318 /* We have reached the bottom of the tree. */
2319 BUFFER_TRACE(parent_bh, "free data blocks");
2320 ext3_free_data(handle, inode, parent_bh, first, last);
2321 }
2322}
2323
ae76dd9a
DG
2324int ext3_can_truncate(struct inode *inode)
2325{
2326 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
2327 return 0;
2328 if (S_ISREG(inode->i_mode))
2329 return 1;
2330 if (S_ISDIR(inode->i_mode))
2331 return 1;
2332 if (S_ISLNK(inode->i_mode))
2333 return !ext3_inode_is_fast_symlink(inode);
2334 return 0;
2335}
2336
1da177e4
LT
2337/*
2338 * ext3_truncate()
2339 *
2340 * We block out ext3_get_block() block instantiations across the entire
2341 * transaction, and VFS/VM ensures that ext3_truncate() cannot run
2342 * simultaneously on behalf of the same inode.
2343 *
2344 * As we work through the truncate and commmit bits of it to the journal there
2345 * is one core, guiding principle: the file's tree must always be consistent on
2346 * disk. We must be able to restart the truncate after a crash.
2347 *
2348 * The file's tree may be transiently inconsistent in memory (although it
2349 * probably isn't), but whenever we close off and commit a journal transaction,
2350 * the contents of (the filesystem + the journal) must be consistent and
2351 * restartable. It's pretty simple, really: bottom up, right to left (although
2352 * left-to-right works OK too).
2353 *
2354 * Note that at recovery time, journal replay occurs *before* the restart of
2355 * truncate against the orphan inode list.
2356 *
2357 * The committed inode has the new, desired i_size (which is the same as
2358 * i_disksize in this case). After a crash, ext3_orphan_cleanup() will see
2359 * that this inode's truncate did not complete and it will again call
2360 * ext3_truncate() to have another go. So there will be instantiated blocks
2361 * to the right of the truncation point in a crashed ext3 filesystem. But
2362 * that's fine - as long as they are linked from the inode, the post-crash
2363 * ext3_truncate() run will find them and release them.
2364 */
d6859bfc 2365void ext3_truncate(struct inode *inode)
1da177e4
LT
2366{
2367 handle_t *handle;
2368 struct ext3_inode_info *ei = EXT3_I(inode);
2369 __le32 *i_data = ei->i_data;
2370 int addr_per_block = EXT3_ADDR_PER_BLOCK(inode->i_sb);
2371 struct address_space *mapping = inode->i_mapping;
2372 int offsets[4];
2373 Indirect chain[4];
2374 Indirect *partial;
2375 __le32 nr = 0;
2376 int n;
2377 long last_block;
2378 unsigned blocksize = inode->i_sb->s_blocksize;
2379 struct page *page;
2380
ae76dd9a 2381 if (!ext3_can_truncate(inode))
ef43618a 2382 goto out_notrans;
1da177e4 2383
f7ab34ea
TT
2384 if (inode->i_size == 0 && ext3_should_writeback_data(inode))
2385 ei->i_state |= EXT3_STATE_FLUSH_ON_CLOSE;
2386
1da177e4
LT
2387 /*
2388 * We have to lock the EOF page here, because lock_page() nests
2389 * outside journal_start().
2390 */
2391 if ((inode->i_size & (blocksize - 1)) == 0) {
2392 /* Block boundary? Nothing to do */
2393 page = NULL;
2394 } else {
2395 page = grab_cache_page(mapping,
2396 inode->i_size >> PAGE_CACHE_SHIFT);
2397 if (!page)
ef43618a 2398 goto out_notrans;
1da177e4
LT
2399 }
2400
2401 handle = start_transaction(inode);
2402 if (IS_ERR(handle)) {
2403 if (page) {
2404 clear_highpage(page);
2405 flush_dcache_page(page);
2406 unlock_page(page);
2407 page_cache_release(page);
2408 }
ef43618a 2409 goto out_notrans;
1da177e4
LT
2410 }
2411
2412 last_block = (inode->i_size + blocksize-1)
2413 >> EXT3_BLOCK_SIZE_BITS(inode->i_sb);
2414
2415 if (page)
2416 ext3_block_truncate_page(handle, page, mapping, inode->i_size);
2417
2418 n = ext3_block_to_path(inode, last_block, offsets, NULL);
2419 if (n == 0)
2420 goto out_stop; /* error */
2421
2422 /*
2423 * OK. This truncate is going to happen. We add the inode to the
2424 * orphan list, so that if this truncate spans multiple transactions,
2425 * and we crash, we will resume the truncate when the filesystem
2426 * recovers. It also marks the inode dirty, to catch the new size.
2427 *
2428 * Implication: the file must always be in a sane, consistent
2429 * truncatable state while each transaction commits.
2430 */
2431 if (ext3_orphan_add(handle, inode))
2432 goto out_stop;
2433
2434 /*
2435 * The orphan list entry will now protect us from any crash which
2436 * occurs before the truncate completes, so it is now safe to propagate
2437 * the new, shorter inode size (held for now in i_size) into the
2438 * on-disk inode. We do this via i_disksize, which is the value which
2439 * ext3 *really* writes onto the disk inode.
2440 */
2441 ei->i_disksize = inode->i_size;
2442
2443 /*
2444 * From here we block out all ext3_get_block() callers who want to
2445 * modify the block allocation tree.
2446 */
97461518 2447 mutex_lock(&ei->truncate_mutex);
1da177e4
LT
2448
2449 if (n == 1) { /* direct blocks */
2450 ext3_free_data(handle, inode, NULL, i_data+offsets[0],
2451 i_data + EXT3_NDIR_BLOCKS);
2452 goto do_indirects;
2453 }
2454
2455 partial = ext3_find_shared(inode, n, offsets, chain, &nr);
2456 /* Kill the top of shared branch (not detached) */
2457 if (nr) {
2458 if (partial == chain) {
2459 /* Shared branch grows from the inode */
2460 ext3_free_branches(handle, inode, NULL,
2461 &nr, &nr+1, (chain+n-1) - partial);
2462 *partial->p = 0;
2463 /*
2464 * We mark the inode dirty prior to restart,
2465 * and prior to stop. No need for it here.
2466 */
2467 } else {
2468 /* Shared branch grows from an indirect block */
2469 BUFFER_TRACE(partial->bh, "get_write_access");
2470 ext3_free_branches(handle, inode, partial->bh,
2471 partial->p,
2472 partial->p+1, (chain+n-1) - partial);
2473 }
2474 }
2475 /* Clear the ends of indirect blocks on the shared branch */
2476 while (partial > chain) {
2477 ext3_free_branches(handle, inode, partial->bh, partial->p + 1,
2478 (__le32*)partial->bh->b_data+addr_per_block,
2479 (chain+n-1) - partial);
2480 BUFFER_TRACE(partial->bh, "call brelse");
2481 brelse (partial->bh);
2482 partial--;
2483 }
2484do_indirects:
2485 /* Kill the remaining (whole) subtrees */
2486 switch (offsets[0]) {
d6859bfc
AM
2487 default:
2488 nr = i_data[EXT3_IND_BLOCK];
2489 if (nr) {
2490 ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
2491 i_data[EXT3_IND_BLOCK] = 0;
2492 }
2493 case EXT3_IND_BLOCK:
2494 nr = i_data[EXT3_DIND_BLOCK];
2495 if (nr) {
2496 ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
2497 i_data[EXT3_DIND_BLOCK] = 0;
2498 }
2499 case EXT3_DIND_BLOCK:
2500 nr = i_data[EXT3_TIND_BLOCK];
2501 if (nr) {
2502 ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
2503 i_data[EXT3_TIND_BLOCK] = 0;
2504 }
2505 case EXT3_TIND_BLOCK:
2506 ;
1da177e4
LT
2507 }
2508
2509 ext3_discard_reservation(inode);
2510
97461518 2511 mutex_unlock(&ei->truncate_mutex);
1da177e4
LT
2512 inode->i_mtime = inode->i_ctime = CURRENT_TIME_SEC;
2513 ext3_mark_inode_dirty(handle, inode);
2514
d6859bfc
AM
2515 /*
2516 * In a multi-transaction truncate, we only make the final transaction
2517 * synchronous
2518 */
1da177e4
LT
2519 if (IS_SYNC(inode))
2520 handle->h_sync = 1;
2521out_stop:
2522 /*
2523 * If this was a simple ftruncate(), and the file will remain alive
2524 * then we need to clear up the orphan record which we created above.
2525 * However, if this was a real unlink then we were called by
2526 * ext3_delete_inode(), and we allow that function to clean up the
2527 * orphan info for us.
2528 */
2529 if (inode->i_nlink)
2530 ext3_orphan_del(handle, inode);
2531
2532 ext3_journal_stop(handle);
ef43618a
JK
2533 return;
2534out_notrans:
2535 /*
2536 * Delete the inode from orphan list so that it doesn't stay there
2537 * forever and trigger assertion on umount.
2538 */
2539 if (inode->i_nlink)
2540 ext3_orphan_del(NULL, inode);
1da177e4
LT
2541}
2542
43d23f90 2543static ext3_fsblk_t ext3_get_inode_block(struct super_block *sb,
1da177e4
LT
2544 unsigned long ino, struct ext3_iloc *iloc)
2545{
e0e369a7 2546 unsigned long block_group;
43d23f90
MC
2547 unsigned long offset;
2548 ext3_fsblk_t block;
e0e369a7 2549 struct ext3_group_desc *gdp;
1da177e4 2550
2ccb48eb
NB
2551 if (!ext3_valid_inum(sb, ino)) {
2552 /*
2553 * This error is already checked for in namei.c unless we are
2554 * looking at an NFS filehandle, in which case no error
2555 * report is needed
2556 */
1da177e4
LT
2557 return 0;
2558 }
2ccb48eb 2559
1da177e4 2560 block_group = (ino - 1) / EXT3_INODES_PER_GROUP(sb);
e0e369a7
AM
2561 gdp = ext3_get_group_desc(sb, block_group, NULL);
2562 if (!gdp)
1da177e4 2563 return 0;
1da177e4
LT
2564 /*
2565 * Figure out the offset within the block group inode table
2566 */
2567 offset = ((ino - 1) % EXT3_INODES_PER_GROUP(sb)) *
2568 EXT3_INODE_SIZE(sb);
e0e369a7 2569 block = le32_to_cpu(gdp->bg_inode_table) +
1da177e4
LT
2570 (offset >> EXT3_BLOCK_SIZE_BITS(sb));
2571
2572 iloc->block_group = block_group;
2573 iloc->offset = offset & (EXT3_BLOCK_SIZE(sb) - 1);
2574 return block;
2575}
2576
2577/*
2578 * ext3_get_inode_loc returns with an extra refcount against the inode's
2579 * underlying buffer_head on success. If 'in_mem' is true, we have all
2580 * data in memory that is needed to recreate the on-disk version of this
2581 * inode.
2582 */
2583static int __ext3_get_inode_loc(struct inode *inode,
2584 struct ext3_iloc *iloc, int in_mem)
2585{
43d23f90 2586 ext3_fsblk_t block;
1da177e4
LT
2587 struct buffer_head *bh;
2588
2589 block = ext3_get_inode_block(inode->i_sb, inode->i_ino, iloc);
2590 if (!block)
2591 return -EIO;
2592
2593 bh = sb_getblk(inode->i_sb, block);
2594 if (!bh) {
2595 ext3_error (inode->i_sb, "ext3_get_inode_loc",
2596 "unable to read inode block - "
43d23f90
MC
2597 "inode=%lu, block="E3FSBLK,
2598 inode->i_ino, block);
1da177e4
LT
2599 return -EIO;
2600 }
2601 if (!buffer_uptodate(bh)) {
2602 lock_buffer(bh);
95450f5a
HK
2603
2604 /*
2605 * If the buffer has the write error flag, we have failed
2606 * to write out another inode in the same block. In this
2607 * case, we don't have to read the block because we may
2608 * read the old inode data successfully.
2609 */
2610 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
2611 set_buffer_uptodate(bh);
2612
1da177e4
LT
2613 if (buffer_uptodate(bh)) {
2614 /* someone brought it uptodate while we waited */
2615 unlock_buffer(bh);
2616 goto has_buffer;
2617 }
2618
2619 /*
2620 * If we have all information of the inode in memory and this
2621 * is the only valid inode in the block, we need not read the
2622 * block.
2623 */
2624 if (in_mem) {
2625 struct buffer_head *bitmap_bh;
2626 struct ext3_group_desc *desc;
2627 int inodes_per_buffer;
2628 int inode_offset, i;
2629 int block_group;
2630 int start;
2631
2632 block_group = (inode->i_ino - 1) /
2633 EXT3_INODES_PER_GROUP(inode->i_sb);
2634 inodes_per_buffer = bh->b_size /
2635 EXT3_INODE_SIZE(inode->i_sb);
2636 inode_offset = ((inode->i_ino - 1) %
2637 EXT3_INODES_PER_GROUP(inode->i_sb));
2638 start = inode_offset & ~(inodes_per_buffer - 1);
2639
2640 /* Is the inode bitmap in cache? */
2641 desc = ext3_get_group_desc(inode->i_sb,
2642 block_group, NULL);
2643 if (!desc)
2644 goto make_io;
2645
2646 bitmap_bh = sb_getblk(inode->i_sb,
2647 le32_to_cpu(desc->bg_inode_bitmap));
2648 if (!bitmap_bh)
2649 goto make_io;
2650
2651 /*
2652 * If the inode bitmap isn't in cache then the
2653 * optimisation may end up performing two reads instead
2654 * of one, so skip it.
2655 */
2656 if (!buffer_uptodate(bitmap_bh)) {
2657 brelse(bitmap_bh);
2658 goto make_io;
2659 }
2660 for (i = start; i < start + inodes_per_buffer; i++) {
2661 if (i == inode_offset)
2662 continue;
2663 if (ext3_test_bit(i, bitmap_bh->b_data))
2664 break;
2665 }
2666 brelse(bitmap_bh);
2667 if (i == start + inodes_per_buffer) {
2668 /* all other inodes are free, so skip I/O */
2669 memset(bh->b_data, 0, bh->b_size);
2670 set_buffer_uptodate(bh);
2671 unlock_buffer(bh);
2672 goto has_buffer;
2673 }
2674 }
2675
2676make_io:
2677 /*
2678 * There are other valid inodes in the buffer, this inode
2679 * has in-inode xattrs, or we don't have this inode in memory.
2680 * Read the block from disk.
2681 */
2682 get_bh(bh);
2683 bh->b_end_io = end_buffer_read_sync;
caa38fb0 2684 submit_bh(READ_META, bh);
1da177e4
LT
2685 wait_on_buffer(bh);
2686 if (!buffer_uptodate(bh)) {
2687 ext3_error(inode->i_sb, "ext3_get_inode_loc",
2688 "unable to read inode block - "
43d23f90 2689 "inode=%lu, block="E3FSBLK,
1da177e4
LT
2690 inode->i_ino, block);
2691 brelse(bh);
2692 return -EIO;
2693 }
2694 }
2695has_buffer:
2696 iloc->bh = bh;
2697 return 0;
2698}
2699
2700int ext3_get_inode_loc(struct inode *inode, struct ext3_iloc *iloc)
2701{
2702 /* We have all inode data except xattrs in memory here. */
2703 return __ext3_get_inode_loc(inode, iloc,
2704 !(EXT3_I(inode)->i_state & EXT3_STATE_XATTR));
2705}
2706
2707void ext3_set_inode_flags(struct inode *inode)
2708{
2709 unsigned int flags = EXT3_I(inode)->i_flags;
2710
2711 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
2712 if (flags & EXT3_SYNC_FL)
2713 inode->i_flags |= S_SYNC;
2714 if (flags & EXT3_APPEND_FL)
2715 inode->i_flags |= S_APPEND;
2716 if (flags & EXT3_IMMUTABLE_FL)
2717 inode->i_flags |= S_IMMUTABLE;
2718 if (flags & EXT3_NOATIME_FL)
2719 inode->i_flags |= S_NOATIME;
2720 if (flags & EXT3_DIRSYNC_FL)
2721 inode->i_flags |= S_DIRSYNC;
2722}
2723
28be5abb
JK
2724/* Propagate flags from i_flags to EXT3_I(inode)->i_flags */
2725void ext3_get_inode_flags(struct ext3_inode_info *ei)
2726{
2727 unsigned int flags = ei->vfs_inode.i_flags;
2728
2729 ei->i_flags &= ~(EXT3_SYNC_FL|EXT3_APPEND_FL|
2730 EXT3_IMMUTABLE_FL|EXT3_NOATIME_FL|EXT3_DIRSYNC_FL);
2731 if (flags & S_SYNC)
2732 ei->i_flags |= EXT3_SYNC_FL;
2733 if (flags & S_APPEND)
2734 ei->i_flags |= EXT3_APPEND_FL;
2735 if (flags & S_IMMUTABLE)
2736 ei->i_flags |= EXT3_IMMUTABLE_FL;
2737 if (flags & S_NOATIME)
2738 ei->i_flags |= EXT3_NOATIME_FL;
2739 if (flags & S_DIRSYNC)
2740 ei->i_flags |= EXT3_DIRSYNC_FL;
2741}
2742
473043dc 2743struct inode *ext3_iget(struct super_block *sb, unsigned long ino)
1da177e4
LT
2744{
2745 struct ext3_iloc iloc;
2746 struct ext3_inode *raw_inode;
473043dc 2747 struct ext3_inode_info *ei;
1da177e4 2748 struct buffer_head *bh;
473043dc
DH
2749 struct inode *inode;
2750 long ret;
1da177e4
LT
2751 int block;
2752
473043dc
DH
2753 inode = iget_locked(sb, ino);
2754 if (!inode)
2755 return ERR_PTR(-ENOMEM);
2756 if (!(inode->i_state & I_NEW))
2757 return inode;
2758
2759 ei = EXT3_I(inode);
1da177e4
LT
2760 ei->i_block_alloc_info = NULL;
2761
473043dc
DH
2762 ret = __ext3_get_inode_loc(inode, &iloc, 0);
2763 if (ret < 0)
1da177e4
LT
2764 goto bad_inode;
2765 bh = iloc.bh;
2766 raw_inode = ext3_raw_inode(&iloc);
2767 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
2768 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
2769 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
2770 if(!(test_opt (inode->i_sb, NO_UID32))) {
2771 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
2772 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
2773 }
2774 inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
2775 inode->i_size = le32_to_cpu(raw_inode->i_size);
4d7bf11d
MR
2776 inode->i_atime.tv_sec = (signed)le32_to_cpu(raw_inode->i_atime);
2777 inode->i_ctime.tv_sec = (signed)le32_to_cpu(raw_inode->i_ctime);
2778 inode->i_mtime.tv_sec = (signed)le32_to_cpu(raw_inode->i_mtime);
1da177e4
LT
2779 inode->i_atime.tv_nsec = inode->i_ctime.tv_nsec = inode->i_mtime.tv_nsec = 0;
2780
2781 ei->i_state = 0;
2782 ei->i_dir_start_lookup = 0;
2783 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
2784 /* We now have enough fields to check if the inode was active or not.
2785 * This is needed because nfsd might try to access dead inodes
2786 * the test is that same one that e2fsck uses
2787 * NeilBrown 1999oct15
2788 */
2789 if (inode->i_nlink == 0) {
2790 if (inode->i_mode == 0 ||
2791 !(EXT3_SB(inode->i_sb)->s_mount_state & EXT3_ORPHAN_FS)) {
2792 /* this inode is deleted */
2793 brelse (bh);
473043dc 2794 ret = -ESTALE;
1da177e4
LT
2795 goto bad_inode;
2796 }
2797 /* The only unlinked inodes we let through here have
2798 * valid i_mode and are being read by the orphan
2799 * recovery code: that's fine, we're about to complete
2800 * the process of deleting those. */
2801 }
1da177e4
LT
2802 inode->i_blocks = le32_to_cpu(raw_inode->i_blocks);
2803 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
2804#ifdef EXT3_FRAGMENTS
2805 ei->i_faddr = le32_to_cpu(raw_inode->i_faddr);
2806 ei->i_frag_no = raw_inode->i_frag;
2807 ei->i_frag_size = raw_inode->i_fsize;
2808#endif
2809 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl);
2810 if (!S_ISREG(inode->i_mode)) {
2811 ei->i_dir_acl = le32_to_cpu(raw_inode->i_dir_acl);
2812 } else {
2813 inode->i_size |=
2814 ((__u64)le32_to_cpu(raw_inode->i_size_high)) << 32;
2815 }
2816 ei->i_disksize = inode->i_size;
2817 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
2818 ei->i_block_group = iloc.block_group;
2819 /*
2820 * NOTE! The in-memory inode i_data array is in little-endian order
2821 * even on big-endian machines: we do NOT byteswap the block numbers!
2822 */
2823 for (block = 0; block < EXT3_N_BLOCKS; block++)
2824 ei->i_data[block] = raw_inode->i_block[block];
2825 INIT_LIST_HEAD(&ei->i_orphan);
2826
2827 if (inode->i_ino >= EXT3_FIRST_INO(inode->i_sb) + 1 &&
2828 EXT3_INODE_SIZE(inode->i_sb) > EXT3_GOOD_OLD_INODE_SIZE) {
2829 /*
2830 * When mke2fs creates big inodes it does not zero out
2831 * the unused bytes above EXT3_GOOD_OLD_INODE_SIZE,
2832 * so ignore those first few inodes.
2833 */
2834 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
2835 if (EXT3_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
e4a10a36
KK
2836 EXT3_INODE_SIZE(inode->i_sb)) {
2837 brelse (bh);
473043dc 2838 ret = -EIO;
1da177e4 2839 goto bad_inode;
e4a10a36 2840 }
1da177e4
LT
2841 if (ei->i_extra_isize == 0) {
2842 /* The extra space is currently unused. Use it. */
2843 ei->i_extra_isize = sizeof(struct ext3_inode) -
2844 EXT3_GOOD_OLD_INODE_SIZE;
2845 } else {
2846 __le32 *magic = (void *)raw_inode +
2847 EXT3_GOOD_OLD_INODE_SIZE +
2848 ei->i_extra_isize;
2849 if (*magic == cpu_to_le32(EXT3_XATTR_MAGIC))
2850 ei->i_state |= EXT3_STATE_XATTR;
2851 }
2852 } else
2853 ei->i_extra_isize = 0;
2854
2855 if (S_ISREG(inode->i_mode)) {
2856 inode->i_op = &ext3_file_inode_operations;
2857 inode->i_fop = &ext3_file_operations;
2858 ext3_set_aops(inode);
2859 } else if (S_ISDIR(inode->i_mode)) {
2860 inode->i_op = &ext3_dir_inode_operations;
2861 inode->i_fop = &ext3_dir_operations;
2862 } else if (S_ISLNK(inode->i_mode)) {
b5ed3112 2863 if (ext3_inode_is_fast_symlink(inode)) {
1da177e4 2864 inode->i_op = &ext3_fast_symlink_inode_operations;
b5ed3112
DG
2865 nd_terminate_link(ei->i_data, inode->i_size,
2866 sizeof(ei->i_data) - 1);
2867 } else {
1da177e4
LT
2868 inode->i_op = &ext3_symlink_inode_operations;
2869 ext3_set_aops(inode);
2870 }
2871 } else {
2872 inode->i_op = &ext3_special_inode_operations;
2873 if (raw_inode->i_block[0])
2874 init_special_inode(inode, inode->i_mode,
2875 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
ae6ddcc5 2876 else
1da177e4
LT
2877 init_special_inode(inode, inode->i_mode,
2878 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
2879 }
2880 brelse (iloc.bh);
2881 ext3_set_inode_flags(inode);
473043dc
DH
2882 unlock_new_inode(inode);
2883 return inode;
1da177e4
LT
2884
2885bad_inode:
473043dc
DH
2886 iget_failed(inode);
2887 return ERR_PTR(ret);
1da177e4
LT
2888}
2889
2890/*
2891 * Post the struct inode info into an on-disk inode location in the
2892 * buffer-cache. This gobbles the caller's reference to the
2893 * buffer_head in the inode location struct.
2894 *
2895 * The caller must have write access to iloc->bh.
2896 */
ae6ddcc5
MC
2897static int ext3_do_update_inode(handle_t *handle,
2898 struct inode *inode,
1da177e4
LT
2899 struct ext3_iloc *iloc)
2900{
2901 struct ext3_inode *raw_inode = ext3_raw_inode(iloc);
2902 struct ext3_inode_info *ei = EXT3_I(inode);
2903 struct buffer_head *bh = iloc->bh;
2904 int err = 0, rc, block;
2905
4f003fd3
CM
2906again:
2907 /* we can't allow multiple procs in here at once, its a bit racey */
2908 lock_buffer(bh);
2909
1da177e4
LT
2910 /* For fields not not tracking in the in-memory inode,
2911 * initialise them to zero for new inodes. */
2912 if (ei->i_state & EXT3_STATE_NEW)
2913 memset(raw_inode, 0, EXT3_SB(inode->i_sb)->s_inode_size);
2914
28be5abb 2915 ext3_get_inode_flags(ei);
1da177e4
LT
2916 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
2917 if(!(test_opt(inode->i_sb, NO_UID32))) {
2918 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
2919 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
2920/*
2921 * Fix up interoperability with old kernels. Otherwise, old inodes get
2922 * re-used with the upper 16 bits of the uid/gid intact
2923 */
2924 if(!ei->i_dtime) {
2925 raw_inode->i_uid_high =
2926 cpu_to_le16(high_16_bits(inode->i_uid));
2927 raw_inode->i_gid_high =
2928 cpu_to_le16(high_16_bits(inode->i_gid));
2929 } else {
2930 raw_inode->i_uid_high = 0;
2931 raw_inode->i_gid_high = 0;
2932 }
2933 } else {
2934 raw_inode->i_uid_low =
2935 cpu_to_le16(fs_high2lowuid(inode->i_uid));
2936 raw_inode->i_gid_low =
2937 cpu_to_le16(fs_high2lowgid(inode->i_gid));
2938 raw_inode->i_uid_high = 0;
2939 raw_inode->i_gid_high = 0;
2940 }
2941 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
2942 raw_inode->i_size = cpu_to_le32(ei->i_disksize);
2943 raw_inode->i_atime = cpu_to_le32(inode->i_atime.tv_sec);
2944 raw_inode->i_ctime = cpu_to_le32(inode->i_ctime.tv_sec);
2945 raw_inode->i_mtime = cpu_to_le32(inode->i_mtime.tv_sec);
2946 raw_inode->i_blocks = cpu_to_le32(inode->i_blocks);
2947 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
2948 raw_inode->i_flags = cpu_to_le32(ei->i_flags);
2949#ifdef EXT3_FRAGMENTS
2950 raw_inode->i_faddr = cpu_to_le32(ei->i_faddr);
2951 raw_inode->i_frag = ei->i_frag_no;
2952 raw_inode->i_fsize = ei->i_frag_size;
2953#endif
2954 raw_inode->i_file_acl = cpu_to_le32(ei->i_file_acl);
2955 if (!S_ISREG(inode->i_mode)) {
2956 raw_inode->i_dir_acl = cpu_to_le32(ei->i_dir_acl);
2957 } else {
2958 raw_inode->i_size_high =
2959 cpu_to_le32(ei->i_disksize >> 32);
2960 if (ei->i_disksize > 0x7fffffffULL) {
2961 struct super_block *sb = inode->i_sb;
2962 if (!EXT3_HAS_RO_COMPAT_FEATURE(sb,
2963 EXT3_FEATURE_RO_COMPAT_LARGE_FILE) ||
2964 EXT3_SB(sb)->s_es->s_rev_level ==
2965 cpu_to_le32(EXT3_GOOD_OLD_REV)) {
2966 /* If this is the first large file
2967 * created, add a flag to the superblock.
2968 */
4f003fd3 2969 unlock_buffer(bh);
1da177e4
LT
2970 err = ext3_journal_get_write_access(handle,
2971 EXT3_SB(sb)->s_sbh);
2972 if (err)
2973 goto out_brelse;
4f003fd3 2974
1da177e4
LT
2975 ext3_update_dynamic_rev(sb);
2976 EXT3_SET_RO_COMPAT_FEATURE(sb,
2977 EXT3_FEATURE_RO_COMPAT_LARGE_FILE);
1da177e4
LT
2978 handle->h_sync = 1;
2979 err = ext3_journal_dirty_metadata(handle,
2980 EXT3_SB(sb)->s_sbh);
4f003fd3
CM
2981 /* get our lock and start over */
2982 goto again;
1da177e4
LT
2983 }
2984 }
2985 }
2986 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
2987 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
2988 if (old_valid_dev(inode->i_rdev)) {
2989 raw_inode->i_block[0] =
2990 cpu_to_le32(old_encode_dev(inode->i_rdev));
2991 raw_inode->i_block[1] = 0;
2992 } else {
2993 raw_inode->i_block[0] = 0;
2994 raw_inode->i_block[1] =
2995 cpu_to_le32(new_encode_dev(inode->i_rdev));
2996 raw_inode->i_block[2] = 0;
2997 }
2998 } else for (block = 0; block < EXT3_N_BLOCKS; block++)
2999 raw_inode->i_block[block] = ei->i_data[block];
3000
ff87b37d 3001 if (ei->i_extra_isize)
1da177e4
LT
3002 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
3003
3004 BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
4f003fd3 3005 unlock_buffer(bh);
1da177e4
LT
3006 rc = ext3_journal_dirty_metadata(handle, bh);
3007 if (!err)
3008 err = rc;
3009 ei->i_state &= ~EXT3_STATE_NEW;
3010
3011out_brelse:
3012 brelse (bh);
3013 ext3_std_error(inode->i_sb, err);
3014 return err;
3015}
3016
3017/*
3018 * ext3_write_inode()
3019 *
3020 * We are called from a few places:
3021 *
3022 * - Within generic_file_write() for O_SYNC files.
3023 * Here, there will be no transaction running. We wait for any running
3024 * trasnaction to commit.
3025 *
3026 * - Within sys_sync(), kupdate and such.
3027 * We wait on commit, if tol to.
3028 *
3029 * - Within prune_icache() (PF_MEMALLOC == true)
3030 * Here we simply return. We can't afford to block kswapd on the
3031 * journal commit.
3032 *
3033 * In all cases it is actually safe for us to return without doing anything,
3034 * because the inode has been copied into a raw inode buffer in
3035 * ext3_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
3036 * knfsd.
3037 *
3038 * Note that we are absolutely dependent upon all inode dirtiers doing the
3039 * right thing: they *must* call mark_inode_dirty() after dirtying info in
3040 * which we are interested.
3041 *
3042 * It would be a bug for them to not do this. The code:
3043 *
3044 * mark_inode_dirty(inode)
3045 * stuff();
3046 * inode->i_size = expr;
3047 *
3048 * is in error because a kswapd-driven write_inode() could occur while
3049 * `stuff()' is running, and the new i_size will be lost. Plus the inode
3050 * will no longer be on the superblock's dirty inode list.
3051 */
3052int ext3_write_inode(struct inode *inode, int wait)
3053{
3054 if (current->flags & PF_MEMALLOC)
3055 return 0;
3056
3057 if (ext3_journal_current_handle()) {
9ad163ae 3058 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
1da177e4
LT
3059 dump_stack();
3060 return -EIO;
3061 }
3062
3063 if (!wait)
3064 return 0;
3065
3066 return ext3_force_commit(inode->i_sb);
3067}
3068
3069/*
3070 * ext3_setattr()
3071 *
3072 * Called from notify_change.
3073 *
3074 * We want to trap VFS attempts to truncate the file as soon as
3075 * possible. In particular, we want to make sure that when the VFS
3076 * shrinks i_size, we put the inode on the orphan list and modify
3077 * i_disksize immediately, so that during the subsequent flushing of
3078 * dirty pages and freeing of disk blocks, we can guarantee that any
3079 * commit will leave the blocks being flushed in an unused state on
3080 * disk. (On recovery, the inode will get truncated and the blocks will
3081 * be freed, so we have a strong guarantee that no future commit will
ae6ddcc5 3082 * leave these blocks visible to the user.)
1da177e4
LT
3083 *
3084 * Called with inode->sem down.
3085 */
3086int ext3_setattr(struct dentry *dentry, struct iattr *attr)
3087{
3088 struct inode *inode = dentry->d_inode;
3089 int error, rc = 0;
3090 const unsigned int ia_valid = attr->ia_valid;
3091
3092 error = inode_change_ok(inode, attr);
3093 if (error)
3094 return error;
3095
3096 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
3097 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
3098 handle_t *handle;
3099
3100 /* (user+group)*(old+new) structure, inode write (sb,
3101 * inode block, ? - but truncate inode update has it) */
1f54587b
JK
3102 handle = ext3_journal_start(inode, 2*(EXT3_QUOTA_INIT_BLOCKS(inode->i_sb)+
3103 EXT3_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
1da177e4
LT
3104 if (IS_ERR(handle)) {
3105 error = PTR_ERR(handle);
3106 goto err_out;
3107 }
81a05227 3108 error = vfs_dq_transfer(inode, attr) ? -EDQUOT : 0;
1da177e4
LT
3109 if (error) {
3110 ext3_journal_stop(handle);
3111 return error;
3112 }
3113 /* Update corresponding info in inode so that everything is in
3114 * one transaction */
3115 if (attr->ia_valid & ATTR_UID)
3116 inode->i_uid = attr->ia_uid;
3117 if (attr->ia_valid & ATTR_GID)
3118 inode->i_gid = attr->ia_gid;
3119 error = ext3_mark_inode_dirty(handle, inode);
3120 ext3_journal_stop(handle);
3121 }
3122
3123 if (S_ISREG(inode->i_mode) &&
3124 attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
3125 handle_t *handle;
3126
3127 handle = ext3_journal_start(inode, 3);
3128 if (IS_ERR(handle)) {
3129 error = PTR_ERR(handle);
3130 goto err_out;
3131 }
3132
3133 error = ext3_orphan_add(handle, inode);
3134 EXT3_I(inode)->i_disksize = attr->ia_size;
3135 rc = ext3_mark_inode_dirty(handle, inode);
3136 if (!error)
3137 error = rc;
3138 ext3_journal_stop(handle);
3139 }
3140
3141 rc = inode_setattr(inode, attr);
3142
1da177e4
LT
3143 if (!rc && (ia_valid & ATTR_MODE))
3144 rc = ext3_acl_chmod(inode);
3145
3146err_out:
3147 ext3_std_error(inode->i_sb, error);
3148 if (!error)
3149 error = rc;
3150 return error;
3151}
3152
3153
3154/*
d6859bfc 3155 * How many blocks doth make a writepage()?
1da177e4
LT
3156 *
3157 * With N blocks per page, it may be:
3158 * N data blocks
3159 * 2 indirect block
3160 * 2 dindirect
3161 * 1 tindirect
3162 * N+5 bitmap blocks (from the above)
3163 * N+5 group descriptor summary blocks
3164 * 1 inode block
3165 * 1 superblock.
3166 * 2 * EXT3_SINGLEDATA_TRANS_BLOCKS for the quote files
3167 *
3168 * 3 * (N + 5) + 2 + 2 * EXT3_SINGLEDATA_TRANS_BLOCKS
3169 *
3170 * With ordered or writeback data it's the same, less the N data blocks.
3171 *
3172 * If the inode's direct blocks can hold an integral number of pages then a
3173 * page cannot straddle two indirect blocks, and we can only touch one indirect
3174 * and dindirect block, and the "5" above becomes "3".
3175 *
3176 * This still overestimates under most circumstances. If we were to pass the
3177 * start and end offsets in here as well we could do block_to_path() on each
3178 * block and work out the exact number of indirects which are touched. Pah.
3179 */
3180
3181static int ext3_writepage_trans_blocks(struct inode *inode)
3182{
3183 int bpp = ext3_journal_blocks_per_page(inode);
3184 int indirects = (EXT3_NDIR_BLOCKS % bpp) ? 5 : 3;
3185 int ret;
3186
3187 if (ext3_should_journal_data(inode))
3188 ret = 3 * (bpp + indirects) + 2;
3189 else
3190 ret = 2 * (bpp + indirects) + 2;
3191
3192#ifdef CONFIG_QUOTA
81a05227 3193 /* We know that structure was already allocated during vfs_dq_init so
1da177e4 3194 * we will be updating only the data blocks + inodes */
1f54587b 3195 ret += 2*EXT3_QUOTA_TRANS_BLOCKS(inode->i_sb);
1da177e4
LT
3196#endif
3197
3198 return ret;
3199}
3200
3201/*
3202 * The caller must have previously called ext3_reserve_inode_write().
3203 * Give this, we know that the caller already has write access to iloc->bh.
3204 */
3205int ext3_mark_iloc_dirty(handle_t *handle,
3206 struct inode *inode, struct ext3_iloc *iloc)
3207{
3208 int err = 0;
3209
3210 /* the do_update_inode consumes one bh->b_count */
3211 get_bh(iloc->bh);
3212
3213 /* ext3_do_update_inode() does journal_dirty_metadata */
3214 err = ext3_do_update_inode(handle, inode, iloc);
3215 put_bh(iloc->bh);
3216 return err;
3217}
3218
ae6ddcc5 3219/*
1da177e4 3220 * On success, We end up with an outstanding reference count against
ae6ddcc5 3221 * iloc->bh. This _must_ be cleaned up later.
1da177e4
LT
3222 */
3223
3224int
ae6ddcc5 3225ext3_reserve_inode_write(handle_t *handle, struct inode *inode,
1da177e4
LT
3226 struct ext3_iloc *iloc)
3227{
3228 int err = 0;
3229 if (handle) {
3230 err = ext3_get_inode_loc(inode, iloc);
3231 if (!err) {
3232 BUFFER_TRACE(iloc->bh, "get_write_access");
3233 err = ext3_journal_get_write_access(handle, iloc->bh);
3234 if (err) {
3235 brelse(iloc->bh);
3236 iloc->bh = NULL;
3237 }
3238 }
3239 }
3240 ext3_std_error(inode->i_sb, err);
3241 return err;
3242}
3243
3244/*
d6859bfc
AM
3245 * What we do here is to mark the in-core inode as clean with respect to inode
3246 * dirtiness (it may still be data-dirty).
1da177e4
LT
3247 * This means that the in-core inode may be reaped by prune_icache
3248 * without having to perform any I/O. This is a very good thing,
3249 * because *any* task may call prune_icache - even ones which
3250 * have a transaction open against a different journal.
3251 *
3252 * Is this cheating? Not really. Sure, we haven't written the
3253 * inode out, but prune_icache isn't a user-visible syncing function.
3254 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
3255 * we start and wait on commits.
3256 *
3257 * Is this efficient/effective? Well, we're being nice to the system
3258 * by cleaning up our inodes proactively so they can be reaped
3259 * without I/O. But we are potentially leaving up to five seconds'
3260 * worth of inodes floating about which prune_icache wants us to
3261 * write out. One way to fix that would be to get prune_icache()
3262 * to do a write_super() to free up some memory. It has the desired
3263 * effect.
3264 */
3265int ext3_mark_inode_dirty(handle_t *handle, struct inode *inode)
3266{
3267 struct ext3_iloc iloc;
3268 int err;
3269
3270 might_sleep();
3271 err = ext3_reserve_inode_write(handle, inode, &iloc);
3272 if (!err)
3273 err = ext3_mark_iloc_dirty(handle, inode, &iloc);
3274 return err;
3275}
3276
3277/*
d6859bfc 3278 * ext3_dirty_inode() is called from __mark_inode_dirty()
1da177e4
LT
3279 *
3280 * We're really interested in the case where a file is being extended.
3281 * i_size has been changed by generic_commit_write() and we thus need
3282 * to include the updated inode in the current transaction.
3283 *
81a05227 3284 * Also, vfs_dq_alloc_space() will always dirty the inode when blocks
1da177e4
LT
3285 * are allocated to the file.
3286 *
3287 * If the inode is marked synchronous, we don't honour that here - doing
3288 * so would cause a commit on atime updates, which we don't bother doing.
3289 * We handle synchronous inodes at the highest possible level.
3290 */
3291void ext3_dirty_inode(struct inode *inode)
3292{
3293 handle_t *current_handle = ext3_journal_current_handle();
3294 handle_t *handle;
3295
3296 handle = ext3_journal_start(inode, 2);
3297 if (IS_ERR(handle))
3298 goto out;
3299 if (current_handle &&
3300 current_handle->h_transaction != handle->h_transaction) {
3301 /* This task has a transaction open against a different fs */
3302 printk(KERN_EMERG "%s: transactions do not match!\n",
e05b6b52 3303 __func__);
1da177e4
LT
3304 } else {
3305 jbd_debug(5, "marking dirty. outer handle=%p\n",
3306 current_handle);
3307 ext3_mark_inode_dirty(handle, inode);
3308 }
3309 ext3_journal_stop(handle);
3310out:
3311 return;
3312}
3313
d6859bfc 3314#if 0
ae6ddcc5 3315/*
1da177e4
LT
3316 * Bind an inode's backing buffer_head into this transaction, to prevent
3317 * it from being flushed to disk early. Unlike
3318 * ext3_reserve_inode_write, this leaves behind no bh reference and
3319 * returns no iloc structure, so the caller needs to repeat the iloc
3320 * lookup to mark the inode dirty later.
3321 */
d6859bfc 3322static int ext3_pin_inode(handle_t *handle, struct inode *inode)
1da177e4
LT
3323{
3324 struct ext3_iloc iloc;
3325
3326 int err = 0;
3327 if (handle) {
3328 err = ext3_get_inode_loc(inode, &iloc);
3329 if (!err) {
3330 BUFFER_TRACE(iloc.bh, "get_write_access");
3331 err = journal_get_write_access(handle, iloc.bh);
3332 if (!err)
ae6ddcc5 3333 err = ext3_journal_dirty_metadata(handle,
1da177e4
LT
3334 iloc.bh);
3335 brelse(iloc.bh);
3336 }
3337 }
3338 ext3_std_error(inode->i_sb, err);
3339 return err;
3340}
3341#endif
3342
3343int ext3_change_inode_journal_flag(struct inode *inode, int val)
3344{
3345 journal_t *journal;
3346 handle_t *handle;
3347 int err;
3348
3349 /*
3350 * We have to be very careful here: changing a data block's
3351 * journaling status dynamically is dangerous. If we write a
3352 * data block to the journal, change the status and then delete
3353 * that block, we risk forgetting to revoke the old log record
3354 * from the journal and so a subsequent replay can corrupt data.
3355 * So, first we make sure that the journal is empty and that
3356 * nobody is changing anything.
3357 */
3358
3359 journal = EXT3_JOURNAL(inode);
e3a68e30 3360 if (is_journal_aborted(journal))
1da177e4
LT
3361 return -EROFS;
3362
3363 journal_lock_updates(journal);
3364 journal_flush(journal);
3365
3366 /*
3367 * OK, there are no updates running now, and all cached data is
3368 * synced to disk. We are now in a completely consistent state
3369 * which doesn't have anything in the journal, and we know that
3370 * no filesystem updates are running, so it is safe to modify
3371 * the inode's in-core data-journaling state flag now.
3372 */
3373
3374 if (val)
3375 EXT3_I(inode)->i_flags |= EXT3_JOURNAL_DATA_FL;
3376 else
3377 EXT3_I(inode)->i_flags &= ~EXT3_JOURNAL_DATA_FL;
3378 ext3_set_aops(inode);
3379
3380 journal_unlock_updates(journal);
3381
3382 /* Finally we can mark the inode as dirty. */
3383
3384 handle = ext3_journal_start(inode, 1);
3385 if (IS_ERR(handle))
3386 return PTR_ERR(handle);
3387
3388 err = ext3_mark_inode_dirty(handle, inode);
3389 handle->h_sync = 1;
3390 ext3_journal_stop(handle);
3391 ext3_std_error(inode->i_sb, err);
3392
3393 return err;
3394}