eCryptfs: increment extent_offset once per loop interation
[linux-2.6-block.git] / fs / ecryptfs / crypto.c
CommitLineData
237fead6
MH
1/**
2 * eCryptfs: Linux filesystem encryption layer
3 *
4 * Copyright (C) 1997-2004 Erez Zadok
5 * Copyright (C) 2001-2004 Stony Brook University
dd2a3b7a 6 * Copyright (C) 2004-2007 International Business Machines Corp.
237fead6
MH
7 * Author(s): Michael A. Halcrow <mahalcro@us.ibm.com>
8 * Michael C. Thompson <mcthomps@us.ibm.com>
9 *
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License as
12 * published by the Free Software Foundation; either version 2 of the
13 * License, or (at your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful, but
16 * WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
23 * 02111-1307, USA.
24 */
25
26#include <linux/fs.h>
27#include <linux/mount.h>
28#include <linux/pagemap.h>
29#include <linux/random.h>
30#include <linux/compiler.h>
31#include <linux/key.h>
32#include <linux/namei.h>
33#include <linux/crypto.h>
34#include <linux/file.h>
35#include <linux/scatterlist.h>
36#include "ecryptfs_kernel.h"
37
38static int
39ecryptfs_decrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
40 struct page *dst_page, int dst_offset,
41 struct page *src_page, int src_offset, int size,
42 unsigned char *iv);
43static int
44ecryptfs_encrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
45 struct page *dst_page, int dst_offset,
46 struct page *src_page, int src_offset, int size,
47 unsigned char *iv);
48
49/**
50 * ecryptfs_to_hex
51 * @dst: Buffer to take hex character representation of contents of
52 * src; must be at least of size (src_size * 2)
53 * @src: Buffer to be converted to a hex string respresentation
54 * @src_size: number of bytes to convert
55 */
56void ecryptfs_to_hex(char *dst, char *src, size_t src_size)
57{
58 int x;
59
60 for (x = 0; x < src_size; x++)
61 sprintf(&dst[x * 2], "%.2x", (unsigned char)src[x]);
62}
63
64/**
65 * ecryptfs_from_hex
66 * @dst: Buffer to take the bytes from src hex; must be at least of
67 * size (src_size / 2)
68 * @src: Buffer to be converted from a hex string respresentation to raw value
69 * @dst_size: size of dst buffer, or number of hex characters pairs to convert
70 */
71void ecryptfs_from_hex(char *dst, char *src, int dst_size)
72{
73 int x;
74 char tmp[3] = { 0, };
75
76 for (x = 0; x < dst_size; x++) {
77 tmp[0] = src[x * 2];
78 tmp[1] = src[x * 2 + 1];
79 dst[x] = (unsigned char)simple_strtol(tmp, NULL, 16);
80 }
81}
82
83/**
84 * ecryptfs_calculate_md5 - calculates the md5 of @src
85 * @dst: Pointer to 16 bytes of allocated memory
86 * @crypt_stat: Pointer to crypt_stat struct for the current inode
87 * @src: Data to be md5'd
88 * @len: Length of @src
89 *
90 * Uses the allocated crypto context that crypt_stat references to
91 * generate the MD5 sum of the contents of src.
92 */
93static int ecryptfs_calculate_md5(char *dst,
94 struct ecryptfs_crypt_stat *crypt_stat,
95 char *src, int len)
96{
237fead6 97 struct scatterlist sg;
565d9724
MH
98 struct hash_desc desc = {
99 .tfm = crypt_stat->hash_tfm,
100 .flags = CRYPTO_TFM_REQ_MAY_SLEEP
101 };
102 int rc = 0;
237fead6 103
565d9724 104 mutex_lock(&crypt_stat->cs_hash_tfm_mutex);
237fead6 105 sg_init_one(&sg, (u8 *)src, len);
565d9724
MH
106 if (!desc.tfm) {
107 desc.tfm = crypto_alloc_hash(ECRYPTFS_DEFAULT_HASH, 0,
108 CRYPTO_ALG_ASYNC);
109 if (IS_ERR(desc.tfm)) {
110 rc = PTR_ERR(desc.tfm);
237fead6 111 ecryptfs_printk(KERN_ERR, "Error attempting to "
565d9724
MH
112 "allocate crypto context; rc = [%d]\n",
113 rc);
237fead6
MH
114 goto out;
115 }
565d9724 116 crypt_stat->hash_tfm = desc.tfm;
237fead6 117 }
565d9724
MH
118 crypto_hash_init(&desc);
119 crypto_hash_update(&desc, &sg, len);
120 crypto_hash_final(&desc, dst);
121 mutex_unlock(&crypt_stat->cs_hash_tfm_mutex);
237fead6
MH
122out:
123 return rc;
124}
125
cd9d67df
MH
126static int ecryptfs_crypto_api_algify_cipher_name(char **algified_name,
127 char *cipher_name,
128 char *chaining_modifier)
8bba066f
MH
129{
130 int cipher_name_len = strlen(cipher_name);
131 int chaining_modifier_len = strlen(chaining_modifier);
132 int algified_name_len;
133 int rc;
134
135 algified_name_len = (chaining_modifier_len + cipher_name_len + 3);
136 (*algified_name) = kmalloc(algified_name_len, GFP_KERNEL);
7bd473fc 137 if (!(*algified_name)) {
8bba066f
MH
138 rc = -ENOMEM;
139 goto out;
140 }
141 snprintf((*algified_name), algified_name_len, "%s(%s)",
142 chaining_modifier, cipher_name);
143 rc = 0;
144out:
145 return rc;
146}
147
237fead6
MH
148/**
149 * ecryptfs_derive_iv
150 * @iv: destination for the derived iv vale
151 * @crypt_stat: Pointer to crypt_stat struct for the current inode
d6a13c17 152 * @offset: Offset of the extent whose IV we are to derive
237fead6
MH
153 *
154 * Generate the initialization vector from the given root IV and page
155 * offset.
156 *
157 * Returns zero on success; non-zero on error.
158 */
159static int ecryptfs_derive_iv(char *iv, struct ecryptfs_crypt_stat *crypt_stat,
d6a13c17 160 loff_t offset)
237fead6
MH
161{
162 int rc = 0;
163 char dst[MD5_DIGEST_SIZE];
164 char src[ECRYPTFS_MAX_IV_BYTES + 16];
165
166 if (unlikely(ecryptfs_verbosity > 0)) {
167 ecryptfs_printk(KERN_DEBUG, "root iv:\n");
168 ecryptfs_dump_hex(crypt_stat->root_iv, crypt_stat->iv_bytes);
169 }
170 /* TODO: It is probably secure to just cast the least
171 * significant bits of the root IV into an unsigned long and
172 * add the offset to that rather than go through all this
173 * hashing business. -Halcrow */
174 memcpy(src, crypt_stat->root_iv, crypt_stat->iv_bytes);
175 memset((src + crypt_stat->iv_bytes), 0, 16);
d6a13c17 176 snprintf((src + crypt_stat->iv_bytes), 16, "%lld", offset);
237fead6
MH
177 if (unlikely(ecryptfs_verbosity > 0)) {
178 ecryptfs_printk(KERN_DEBUG, "source:\n");
179 ecryptfs_dump_hex(src, (crypt_stat->iv_bytes + 16));
180 }
181 rc = ecryptfs_calculate_md5(dst, crypt_stat, src,
182 (crypt_stat->iv_bytes + 16));
183 if (rc) {
184 ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
185 "MD5 while generating IV for a page\n");
186 goto out;
187 }
188 memcpy(iv, dst, crypt_stat->iv_bytes);
189 if (unlikely(ecryptfs_verbosity > 0)) {
190 ecryptfs_printk(KERN_DEBUG, "derived iv:\n");
191 ecryptfs_dump_hex(iv, crypt_stat->iv_bytes);
192 }
193out:
194 return rc;
195}
196
197/**
198 * ecryptfs_init_crypt_stat
199 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
200 *
201 * Initialize the crypt_stat structure.
202 */
203void
204ecryptfs_init_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
205{
206 memset((void *)crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
f4aad16a
MH
207 INIT_LIST_HEAD(&crypt_stat->keysig_list);
208 mutex_init(&crypt_stat->keysig_list_mutex);
237fead6
MH
209 mutex_init(&crypt_stat->cs_mutex);
210 mutex_init(&crypt_stat->cs_tfm_mutex);
565d9724 211 mutex_init(&crypt_stat->cs_hash_tfm_mutex);
e2bd99ec 212 crypt_stat->flags |= ECRYPTFS_STRUCT_INITIALIZED;
237fead6
MH
213}
214
215/**
fcd12835 216 * ecryptfs_destroy_crypt_stat
237fead6
MH
217 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
218 *
219 * Releases all memory associated with a crypt_stat struct.
220 */
fcd12835 221void ecryptfs_destroy_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
237fead6 222{
f4aad16a
MH
223 struct ecryptfs_key_sig *key_sig, *key_sig_tmp;
224
237fead6 225 if (crypt_stat->tfm)
8bba066f 226 crypto_free_blkcipher(crypt_stat->tfm);
565d9724
MH
227 if (crypt_stat->hash_tfm)
228 crypto_free_hash(crypt_stat->hash_tfm);
f4aad16a
MH
229 mutex_lock(&crypt_stat->keysig_list_mutex);
230 list_for_each_entry_safe(key_sig, key_sig_tmp,
231 &crypt_stat->keysig_list, crypt_stat_list) {
232 list_del(&key_sig->crypt_stat_list);
233 kmem_cache_free(ecryptfs_key_sig_cache, key_sig);
234 }
235 mutex_unlock(&crypt_stat->keysig_list_mutex);
237fead6
MH
236 memset(crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
237}
238
fcd12835 239void ecryptfs_destroy_mount_crypt_stat(
237fead6
MH
240 struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
241{
f4aad16a
MH
242 struct ecryptfs_global_auth_tok *auth_tok, *auth_tok_tmp;
243
244 if (!(mount_crypt_stat->flags & ECRYPTFS_MOUNT_CRYPT_STAT_INITIALIZED))
245 return;
246 mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
247 list_for_each_entry_safe(auth_tok, auth_tok_tmp,
248 &mount_crypt_stat->global_auth_tok_list,
249 mount_crypt_stat_list) {
250 list_del(&auth_tok->mount_crypt_stat_list);
251 mount_crypt_stat->num_global_auth_toks--;
252 if (auth_tok->global_auth_tok_key
253 && !(auth_tok->flags & ECRYPTFS_AUTH_TOK_INVALID))
254 key_put(auth_tok->global_auth_tok_key);
255 kmem_cache_free(ecryptfs_global_auth_tok_cache, auth_tok);
256 }
257 mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
237fead6
MH
258 memset(mount_crypt_stat, 0, sizeof(struct ecryptfs_mount_crypt_stat));
259}
260
261/**
262 * virt_to_scatterlist
263 * @addr: Virtual address
264 * @size: Size of data; should be an even multiple of the block size
265 * @sg: Pointer to scatterlist array; set to NULL to obtain only
266 * the number of scatterlist structs required in array
267 * @sg_size: Max array size
268 *
269 * Fills in a scatterlist array with page references for a passed
270 * virtual address.
271 *
272 * Returns the number of scatterlist structs in array used
273 */
274int virt_to_scatterlist(const void *addr, int size, struct scatterlist *sg,
275 int sg_size)
276{
277 int i = 0;
278 struct page *pg;
279 int offset;
280 int remainder_of_page;
281
68e3f5dd
HX
282 sg_init_table(sg, sg_size);
283
237fead6
MH
284 while (size > 0 && i < sg_size) {
285 pg = virt_to_page(addr);
286 offset = offset_in_page(addr);
642f1490
JA
287 if (sg)
288 sg_set_page(&sg[i], pg, 0, offset);
237fead6
MH
289 remainder_of_page = PAGE_CACHE_SIZE - offset;
290 if (size >= remainder_of_page) {
291 if (sg)
292 sg[i].length = remainder_of_page;
293 addr += remainder_of_page;
294 size -= remainder_of_page;
295 } else {
296 if (sg)
297 sg[i].length = size;
298 addr += size;
299 size = 0;
300 }
301 i++;
302 }
303 if (size > 0)
304 return -ENOMEM;
305 return i;
306}
307
308/**
309 * encrypt_scatterlist
310 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
311 * @dest_sg: Destination of encrypted data
312 * @src_sg: Data to be encrypted
313 * @size: Length of data to be encrypted
314 * @iv: iv to use during encryption
315 *
316 * Returns the number of bytes encrypted; negative value on error
317 */
318static int encrypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat,
319 struct scatterlist *dest_sg,
320 struct scatterlist *src_sg, int size,
321 unsigned char *iv)
322{
8bba066f
MH
323 struct blkcipher_desc desc = {
324 .tfm = crypt_stat->tfm,
325 .info = iv,
326 .flags = CRYPTO_TFM_REQ_MAY_SLEEP
327 };
237fead6
MH
328 int rc = 0;
329
330 BUG_ON(!crypt_stat || !crypt_stat->tfm
e2bd99ec 331 || !(crypt_stat->flags & ECRYPTFS_STRUCT_INITIALIZED));
237fead6
MH
332 if (unlikely(ecryptfs_verbosity > 0)) {
333 ecryptfs_printk(KERN_DEBUG, "Key size [%d]; key:\n",
334 crypt_stat->key_size);
335 ecryptfs_dump_hex(crypt_stat->key,
336 crypt_stat->key_size);
337 }
338 /* Consider doing this once, when the file is opened */
339 mutex_lock(&crypt_stat->cs_tfm_mutex);
8bba066f
MH
340 rc = crypto_blkcipher_setkey(crypt_stat->tfm, crypt_stat->key,
341 crypt_stat->key_size);
237fead6
MH
342 if (rc) {
343 ecryptfs_printk(KERN_ERR, "Error setting key; rc = [%d]\n",
344 rc);
345 mutex_unlock(&crypt_stat->cs_tfm_mutex);
346 rc = -EINVAL;
347 goto out;
348 }
349 ecryptfs_printk(KERN_DEBUG, "Encrypting [%d] bytes.\n", size);
8bba066f 350 crypto_blkcipher_encrypt_iv(&desc, dest_sg, src_sg, size);
237fead6
MH
351 mutex_unlock(&crypt_stat->cs_tfm_mutex);
352out:
353 return rc;
354}
355
0216f7f7
MH
356/**
357 * ecryptfs_lower_offset_for_extent
358 *
359 * Convert an eCryptfs page index into a lower byte offset
360 */
361void ecryptfs_lower_offset_for_extent(loff_t *offset, loff_t extent_num,
362 struct ecryptfs_crypt_stat *crypt_stat)
363{
364 (*offset) = ((crypt_stat->extent_size
365 * crypt_stat->num_header_extents_at_front)
366 + (crypt_stat->extent_size * extent_num));
367}
368
369/**
370 * ecryptfs_encrypt_extent
371 * @enc_extent_page: Allocated page into which to encrypt the data in
372 * @page
373 * @crypt_stat: crypt_stat containing cryptographic context for the
374 * encryption operation
375 * @page: Page containing plaintext data extent to encrypt
376 * @extent_offset: Page extent offset for use in generating IV
377 *
378 * Encrypts one extent of data.
379 *
380 * Return zero on success; non-zero otherwise
381 */
382static int ecryptfs_encrypt_extent(struct page *enc_extent_page,
383 struct ecryptfs_crypt_stat *crypt_stat,
384 struct page *page,
385 unsigned long extent_offset)
386{
d6a13c17 387 loff_t extent_base;
0216f7f7
MH
388 char extent_iv[ECRYPTFS_MAX_IV_BYTES];
389 int rc;
390
d6a13c17 391 extent_base = (((loff_t)page->index)
0216f7f7
MH
392 * (PAGE_CACHE_SIZE / crypt_stat->extent_size));
393 rc = ecryptfs_derive_iv(extent_iv, crypt_stat,
394 (extent_base + extent_offset));
395 if (rc) {
396 ecryptfs_printk(KERN_ERR, "Error attempting to "
397 "derive IV for extent [0x%.16x]; "
398 "rc = [%d]\n", (extent_base + extent_offset),
399 rc);
400 goto out;
401 }
402 if (unlikely(ecryptfs_verbosity > 0)) {
403 ecryptfs_printk(KERN_DEBUG, "Encrypting extent "
404 "with iv:\n");
405 ecryptfs_dump_hex(extent_iv, crypt_stat->iv_bytes);
406 ecryptfs_printk(KERN_DEBUG, "First 8 bytes before "
407 "encryption:\n");
408 ecryptfs_dump_hex((char *)
409 (page_address(page)
410 + (extent_offset * crypt_stat->extent_size)),
411 8);
412 }
413 rc = ecryptfs_encrypt_page_offset(crypt_stat, enc_extent_page, 0,
414 page, (extent_offset
415 * crypt_stat->extent_size),
416 crypt_stat->extent_size, extent_iv);
417 if (rc < 0) {
418 printk(KERN_ERR "%s: Error attempting to encrypt page with "
419 "page->index = [%ld], extent_offset = [%ld]; "
420 "rc = [%d]\n", __FUNCTION__, page->index, extent_offset,
421 rc);
422 goto out;
423 }
424 rc = 0;
425 if (unlikely(ecryptfs_verbosity > 0)) {
426 ecryptfs_printk(KERN_DEBUG, "Encrypt extent [0x%.16x]; "
427 "rc = [%d]\n", (extent_base + extent_offset),
428 rc);
429 ecryptfs_printk(KERN_DEBUG, "First 8 bytes after "
430 "encryption:\n");
431 ecryptfs_dump_hex((char *)(page_address(enc_extent_page)), 8);
432 }
433out:
434 return rc;
435}
436
237fead6
MH
437/**
438 * ecryptfs_encrypt_page
0216f7f7
MH
439 * @page: Page mapped from the eCryptfs inode for the file; contains
440 * decrypted content that needs to be encrypted (to a temporary
441 * page; not in place) and written out to the lower file
237fead6
MH
442 *
443 * Encrypt an eCryptfs page. This is done on a per-extent basis. Note
444 * that eCryptfs pages may straddle the lower pages -- for instance,
445 * if the file was created on a machine with an 8K page size
446 * (resulting in an 8K header), and then the file is copied onto a
447 * host with a 32K page size, then when reading page 0 of the eCryptfs
448 * file, 24K of page 0 of the lower file will be read and decrypted,
449 * and then 8K of page 1 of the lower file will be read and decrypted.
450 *
237fead6
MH
451 * Returns zero on success; negative on error
452 */
0216f7f7 453int ecryptfs_encrypt_page(struct page *page)
237fead6 454{
0216f7f7 455 struct inode *ecryptfs_inode;
237fead6 456 struct ecryptfs_crypt_stat *crypt_stat;
0216f7f7
MH
457 char *enc_extent_virt = NULL;
458 struct page *enc_extent_page;
459 loff_t extent_offset;
237fead6 460 int rc = 0;
0216f7f7
MH
461
462 ecryptfs_inode = page->mapping->host;
463 crypt_stat =
464 &(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
e2bd99ec 465 if (!(crypt_stat->flags & ECRYPTFS_ENCRYPTED)) {
0216f7f7
MH
466 rc = ecryptfs_write_lower_page_segment(ecryptfs_inode, page,
467 0, PAGE_CACHE_SIZE);
237fead6 468 if (rc)
0216f7f7
MH
469 printk(KERN_ERR "%s: Error attempting to copy "
470 "page at index [%ld]\n", __FUNCTION__,
471 page->index);
237fead6
MH
472 goto out;
473 }
0216f7f7
MH
474 enc_extent_virt = kmalloc(PAGE_CACHE_SIZE, GFP_USER);
475 if (!enc_extent_virt) {
476 rc = -ENOMEM;
477 ecryptfs_printk(KERN_ERR, "Error allocating memory for "
478 "encrypted extent\n");
479 goto out;
480 }
481 enc_extent_page = virt_to_page(enc_extent_virt);
482 for (extent_offset = 0;
483 extent_offset < (PAGE_CACHE_SIZE / crypt_stat->extent_size);
484 extent_offset++) {
485 loff_t offset;
486
487 rc = ecryptfs_encrypt_extent(enc_extent_page, crypt_stat, page,
488 extent_offset);
237fead6 489 if (rc) {
0216f7f7
MH
490 printk(KERN_ERR "%s: Error encrypting extent; "
491 "rc = [%d]\n", __FUNCTION__, rc);
237fead6
MH
492 goto out;
493 }
0216f7f7 494 ecryptfs_lower_offset_for_extent(
d6a13c17
MH
495 &offset, ((((loff_t)page->index)
496 * (PAGE_CACHE_SIZE
497 / crypt_stat->extent_size))
0216f7f7
MH
498 + extent_offset), crypt_stat);
499 rc = ecryptfs_write_lower(ecryptfs_inode, enc_extent_virt,
500 offset, crypt_stat->extent_size);
501 if (rc) {
502 ecryptfs_printk(KERN_ERR, "Error attempting "
503 "to write lower page; rc = [%d]"
504 "\n", rc);
505 goto out;
237fead6 506 }
237fead6 507 }
0216f7f7
MH
508out:
509 kfree(enc_extent_virt);
510 return rc;
511}
512
513static int ecryptfs_decrypt_extent(struct page *page,
514 struct ecryptfs_crypt_stat *crypt_stat,
515 struct page *enc_extent_page,
516 unsigned long extent_offset)
517{
d6a13c17 518 loff_t extent_base;
0216f7f7
MH
519 char extent_iv[ECRYPTFS_MAX_IV_BYTES];
520 int rc;
521
d6a13c17 522 extent_base = (((loff_t)page->index)
0216f7f7
MH
523 * (PAGE_CACHE_SIZE / crypt_stat->extent_size));
524 rc = ecryptfs_derive_iv(extent_iv, crypt_stat,
525 (extent_base + extent_offset));
237fead6 526 if (rc) {
0216f7f7
MH
527 ecryptfs_printk(KERN_ERR, "Error attempting to "
528 "derive IV for extent [0x%.16x]; "
529 "rc = [%d]\n", (extent_base + extent_offset),
530 rc);
531 goto out;
532 }
533 if (unlikely(ecryptfs_verbosity > 0)) {
534 ecryptfs_printk(KERN_DEBUG, "Decrypting extent "
535 "with iv:\n");
536 ecryptfs_dump_hex(extent_iv, crypt_stat->iv_bytes);
537 ecryptfs_printk(KERN_DEBUG, "First 8 bytes before "
538 "decryption:\n");
539 ecryptfs_dump_hex((char *)
540 (page_address(enc_extent_page)
541 + (extent_offset * crypt_stat->extent_size)),
542 8);
543 }
544 rc = ecryptfs_decrypt_page_offset(crypt_stat, page,
545 (extent_offset
546 * crypt_stat->extent_size),
547 enc_extent_page, 0,
548 crypt_stat->extent_size, extent_iv);
549 if (rc < 0) {
550 printk(KERN_ERR "%s: Error attempting to decrypt to page with "
551 "page->index = [%ld], extent_offset = [%ld]; "
552 "rc = [%d]\n", __FUNCTION__, page->index, extent_offset,
553 rc);
554 goto out;
555 }
556 rc = 0;
557 if (unlikely(ecryptfs_verbosity > 0)) {
558 ecryptfs_printk(KERN_DEBUG, "Decrypt extent [0x%.16x]; "
559 "rc = [%d]\n", (extent_base + extent_offset),
560 rc);
561 ecryptfs_printk(KERN_DEBUG, "First 8 bytes after "
562 "decryption:\n");
563 ecryptfs_dump_hex((char *)(page_address(page)
564 + (extent_offset
565 * crypt_stat->extent_size)), 8);
237fead6
MH
566 }
567out:
568 return rc;
569}
570
571/**
572 * ecryptfs_decrypt_page
0216f7f7
MH
573 * @page: Page mapped from the eCryptfs inode for the file; data read
574 * and decrypted from the lower file will be written into this
575 * page
237fead6
MH
576 *
577 * Decrypt an eCryptfs page. This is done on a per-extent basis. Note
578 * that eCryptfs pages may straddle the lower pages -- for instance,
579 * if the file was created on a machine with an 8K page size
580 * (resulting in an 8K header), and then the file is copied onto a
581 * host with a 32K page size, then when reading page 0 of the eCryptfs
582 * file, 24K of page 0 of the lower file will be read and decrypted,
583 * and then 8K of page 1 of the lower file will be read and decrypted.
584 *
585 * Returns zero on success; negative on error
586 */
0216f7f7 587int ecryptfs_decrypt_page(struct page *page)
237fead6 588{
0216f7f7 589 struct inode *ecryptfs_inode;
237fead6 590 struct ecryptfs_crypt_stat *crypt_stat;
0216f7f7
MH
591 char *enc_extent_virt = NULL;
592 struct page *enc_extent_page;
593 unsigned long extent_offset;
237fead6 594 int rc = 0;
237fead6 595
0216f7f7
MH
596 ecryptfs_inode = page->mapping->host;
597 crypt_stat =
598 &(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
e2bd99ec 599 if (!(crypt_stat->flags & ECRYPTFS_ENCRYPTED)) {
0216f7f7
MH
600 rc = ecryptfs_read_lower_page_segment(page, page->index, 0,
601 PAGE_CACHE_SIZE,
602 ecryptfs_inode);
237fead6 603 if (rc)
0216f7f7
MH
604 printk(KERN_ERR "%s: Error attempting to copy "
605 "page at index [%ld]\n", __FUNCTION__,
606 page->index);
16a72c45 607 goto out;
237fead6 608 }
0216f7f7
MH
609 enc_extent_virt = kmalloc(PAGE_CACHE_SIZE, GFP_USER);
610 if (!enc_extent_virt) {
237fead6 611 rc = -ENOMEM;
0216f7f7
MH
612 ecryptfs_printk(KERN_ERR, "Error allocating memory for "
613 "encrypted extent\n");
16a72c45 614 goto out;
237fead6 615 }
0216f7f7
MH
616 enc_extent_page = virt_to_page(enc_extent_virt);
617 for (extent_offset = 0;
618 extent_offset < (PAGE_CACHE_SIZE / crypt_stat->extent_size);
619 extent_offset++) {
620 loff_t offset;
621
622 ecryptfs_lower_offset_for_extent(
623 &offset, ((page->index * (PAGE_CACHE_SIZE
624 / crypt_stat->extent_size))
625 + extent_offset), crypt_stat);
626 rc = ecryptfs_read_lower(enc_extent_virt, offset,
627 crypt_stat->extent_size,
628 ecryptfs_inode);
237fead6 629 if (rc) {
0216f7f7
MH
630 ecryptfs_printk(KERN_ERR, "Error attempting "
631 "to read lower page; rc = [%d]"
632 "\n", rc);
16a72c45 633 goto out;
237fead6 634 }
0216f7f7
MH
635 rc = ecryptfs_decrypt_extent(page, crypt_stat, enc_extent_page,
636 extent_offset);
637 if (rc) {
638 printk(KERN_ERR "%s: Error encrypting extent; "
639 "rc = [%d]\n", __FUNCTION__, rc);
16a72c45 640 goto out;
237fead6 641 }
237fead6
MH
642 }
643out:
0216f7f7 644 kfree(enc_extent_virt);
237fead6
MH
645 return rc;
646}
647
648/**
649 * decrypt_scatterlist
22e78faf
MH
650 * @crypt_stat: Cryptographic context
651 * @dest_sg: The destination scatterlist to decrypt into
652 * @src_sg: The source scatterlist to decrypt from
653 * @size: The number of bytes to decrypt
654 * @iv: The initialization vector to use for the decryption
237fead6
MH
655 *
656 * Returns the number of bytes decrypted; negative value on error
657 */
658static int decrypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat,
659 struct scatterlist *dest_sg,
660 struct scatterlist *src_sg, int size,
661 unsigned char *iv)
662{
8bba066f
MH
663 struct blkcipher_desc desc = {
664 .tfm = crypt_stat->tfm,
665 .info = iv,
666 .flags = CRYPTO_TFM_REQ_MAY_SLEEP
667 };
237fead6
MH
668 int rc = 0;
669
670 /* Consider doing this once, when the file is opened */
671 mutex_lock(&crypt_stat->cs_tfm_mutex);
8bba066f
MH
672 rc = crypto_blkcipher_setkey(crypt_stat->tfm, crypt_stat->key,
673 crypt_stat->key_size);
237fead6
MH
674 if (rc) {
675 ecryptfs_printk(KERN_ERR, "Error setting key; rc = [%d]\n",
676 rc);
677 mutex_unlock(&crypt_stat->cs_tfm_mutex);
678 rc = -EINVAL;
679 goto out;
680 }
681 ecryptfs_printk(KERN_DEBUG, "Decrypting [%d] bytes.\n", size);
8bba066f 682 rc = crypto_blkcipher_decrypt_iv(&desc, dest_sg, src_sg, size);
237fead6
MH
683 mutex_unlock(&crypt_stat->cs_tfm_mutex);
684 if (rc) {
685 ecryptfs_printk(KERN_ERR, "Error decrypting; rc = [%d]\n",
686 rc);
687 goto out;
688 }
689 rc = size;
690out:
691 return rc;
692}
693
694/**
695 * ecryptfs_encrypt_page_offset
22e78faf
MH
696 * @crypt_stat: The cryptographic context
697 * @dst_page: The page to encrypt into
698 * @dst_offset: The offset in the page to encrypt into
699 * @src_page: The page to encrypt from
700 * @src_offset: The offset in the page to encrypt from
701 * @size: The number of bytes to encrypt
702 * @iv: The initialization vector to use for the encryption
237fead6
MH
703 *
704 * Returns the number of bytes encrypted
705 */
706static int
707ecryptfs_encrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
708 struct page *dst_page, int dst_offset,
709 struct page *src_page, int src_offset, int size,
710 unsigned char *iv)
711{
712 struct scatterlist src_sg, dst_sg;
713
60c74f81
JA
714 sg_init_table(&src_sg, 1);
715 sg_init_table(&dst_sg, 1);
716
642f1490
JA
717 sg_set_page(&src_sg, src_page, size, src_offset);
718 sg_set_page(&dst_sg, dst_page, size, dst_offset);
237fead6
MH
719 return encrypt_scatterlist(crypt_stat, &dst_sg, &src_sg, size, iv);
720}
721
722/**
723 * ecryptfs_decrypt_page_offset
22e78faf
MH
724 * @crypt_stat: The cryptographic context
725 * @dst_page: The page to decrypt into
726 * @dst_offset: The offset in the page to decrypt into
727 * @src_page: The page to decrypt from
728 * @src_offset: The offset in the page to decrypt from
729 * @size: The number of bytes to decrypt
730 * @iv: The initialization vector to use for the decryption
237fead6
MH
731 *
732 * Returns the number of bytes decrypted
733 */
734static int
735ecryptfs_decrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
736 struct page *dst_page, int dst_offset,
737 struct page *src_page, int src_offset, int size,
738 unsigned char *iv)
739{
740 struct scatterlist src_sg, dst_sg;
741
60c74f81 742 sg_init_table(&src_sg, 1);
642f1490
JA
743 sg_set_page(&src_sg, src_page, size, src_offset);
744
60c74f81 745 sg_init_table(&dst_sg, 1);
642f1490 746 sg_set_page(&dst_sg, dst_page, size, dst_offset);
60c74f81 747
237fead6
MH
748 return decrypt_scatterlist(crypt_stat, &dst_sg, &src_sg, size, iv);
749}
750
751#define ECRYPTFS_MAX_SCATTERLIST_LEN 4
752
753/**
754 * ecryptfs_init_crypt_ctx
755 * @crypt_stat: Uninitilized crypt stats structure
756 *
757 * Initialize the crypto context.
758 *
759 * TODO: Performance: Keep a cache of initialized cipher contexts;
760 * only init if needed
761 */
762int ecryptfs_init_crypt_ctx(struct ecryptfs_crypt_stat *crypt_stat)
763{
8bba066f 764 char *full_alg_name;
237fead6
MH
765 int rc = -EINVAL;
766
767 if (!crypt_stat->cipher) {
768 ecryptfs_printk(KERN_ERR, "No cipher specified\n");
769 goto out;
770 }
771 ecryptfs_printk(KERN_DEBUG,
772 "Initializing cipher [%s]; strlen = [%d]; "
773 "key_size_bits = [%d]\n",
774 crypt_stat->cipher, (int)strlen(crypt_stat->cipher),
775 crypt_stat->key_size << 3);
776 if (crypt_stat->tfm) {
777 rc = 0;
778 goto out;
779 }
780 mutex_lock(&crypt_stat->cs_tfm_mutex);
8bba066f
MH
781 rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name,
782 crypt_stat->cipher, "cbc");
783 if (rc)
784 goto out;
785 crypt_stat->tfm = crypto_alloc_blkcipher(full_alg_name, 0,
786 CRYPTO_ALG_ASYNC);
787 kfree(full_alg_name);
de88777e
AM
788 if (IS_ERR(crypt_stat->tfm)) {
789 rc = PTR_ERR(crypt_stat->tfm);
237fead6
MH
790 ecryptfs_printk(KERN_ERR, "cryptfs: init_crypt_ctx(): "
791 "Error initializing cipher [%s]\n",
792 crypt_stat->cipher);
8bba066f 793 mutex_unlock(&crypt_stat->cs_tfm_mutex);
237fead6
MH
794 goto out;
795 }
f1ddcaf3 796 crypto_blkcipher_set_flags(crypt_stat->tfm, CRYPTO_TFM_REQ_WEAK_KEY);
8bba066f 797 mutex_unlock(&crypt_stat->cs_tfm_mutex);
237fead6
MH
798 rc = 0;
799out:
800 return rc;
801}
802
803static void set_extent_mask_and_shift(struct ecryptfs_crypt_stat *crypt_stat)
804{
805 int extent_size_tmp;
806
807 crypt_stat->extent_mask = 0xFFFFFFFF;
808 crypt_stat->extent_shift = 0;
809 if (crypt_stat->extent_size == 0)
810 return;
811 extent_size_tmp = crypt_stat->extent_size;
812 while ((extent_size_tmp & 0x01) == 0) {
813 extent_size_tmp >>= 1;
814 crypt_stat->extent_mask <<= 1;
815 crypt_stat->extent_shift++;
816 }
817}
818
819void ecryptfs_set_default_sizes(struct ecryptfs_crypt_stat *crypt_stat)
820{
821 /* Default values; may be overwritten as we are parsing the
822 * packets. */
823 crypt_stat->extent_size = ECRYPTFS_DEFAULT_EXTENT_SIZE;
824 set_extent_mask_and_shift(crypt_stat);
825 crypt_stat->iv_bytes = ECRYPTFS_DEFAULT_IV_BYTES;
dd2a3b7a
MH
826 if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
827 crypt_stat->num_header_extents_at_front = 0;
45eaab79
MH
828 else {
829 if (PAGE_CACHE_SIZE <= ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)
830 crypt_stat->num_header_extents_at_front =
831 (ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE
832 / crypt_stat->extent_size);
833 else
834 crypt_stat->num_header_extents_at_front =
835 (PAGE_CACHE_SIZE / crypt_stat->extent_size);
836 }
237fead6
MH
837}
838
839/**
840 * ecryptfs_compute_root_iv
841 * @crypt_stats
842 *
843 * On error, sets the root IV to all 0's.
844 */
845int ecryptfs_compute_root_iv(struct ecryptfs_crypt_stat *crypt_stat)
846{
847 int rc = 0;
848 char dst[MD5_DIGEST_SIZE];
849
850 BUG_ON(crypt_stat->iv_bytes > MD5_DIGEST_SIZE);
851 BUG_ON(crypt_stat->iv_bytes <= 0);
e2bd99ec 852 if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
237fead6
MH
853 rc = -EINVAL;
854 ecryptfs_printk(KERN_WARNING, "Session key not valid; "
855 "cannot generate root IV\n");
856 goto out;
857 }
858 rc = ecryptfs_calculate_md5(dst, crypt_stat, crypt_stat->key,
859 crypt_stat->key_size);
860 if (rc) {
861 ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
862 "MD5 while generating root IV\n");
863 goto out;
864 }
865 memcpy(crypt_stat->root_iv, dst, crypt_stat->iv_bytes);
866out:
867 if (rc) {
868 memset(crypt_stat->root_iv, 0, crypt_stat->iv_bytes);
e2bd99ec 869 crypt_stat->flags |= ECRYPTFS_SECURITY_WARNING;
237fead6
MH
870 }
871 return rc;
872}
873
874static void ecryptfs_generate_new_key(struct ecryptfs_crypt_stat *crypt_stat)
875{
876 get_random_bytes(crypt_stat->key, crypt_stat->key_size);
e2bd99ec 877 crypt_stat->flags |= ECRYPTFS_KEY_VALID;
237fead6
MH
878 ecryptfs_compute_root_iv(crypt_stat);
879 if (unlikely(ecryptfs_verbosity > 0)) {
880 ecryptfs_printk(KERN_DEBUG, "Generated new session key:\n");
881 ecryptfs_dump_hex(crypt_stat->key,
882 crypt_stat->key_size);
883 }
884}
885
17398957
MH
886/**
887 * ecryptfs_copy_mount_wide_flags_to_inode_flags
22e78faf
MH
888 * @crypt_stat: The inode's cryptographic context
889 * @mount_crypt_stat: The mount point's cryptographic context
17398957
MH
890 *
891 * This function propagates the mount-wide flags to individual inode
892 * flags.
893 */
894static void ecryptfs_copy_mount_wide_flags_to_inode_flags(
895 struct ecryptfs_crypt_stat *crypt_stat,
896 struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
897{
898 if (mount_crypt_stat->flags & ECRYPTFS_XATTR_METADATA_ENABLED)
899 crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
900 if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)
901 crypt_stat->flags |= ECRYPTFS_VIEW_AS_ENCRYPTED;
902}
903
f4aad16a
MH
904static int ecryptfs_copy_mount_wide_sigs_to_inode_sigs(
905 struct ecryptfs_crypt_stat *crypt_stat,
906 struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
907{
908 struct ecryptfs_global_auth_tok *global_auth_tok;
909 int rc = 0;
910
911 mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
912 list_for_each_entry(global_auth_tok,
913 &mount_crypt_stat->global_auth_tok_list,
914 mount_crypt_stat_list) {
915 rc = ecryptfs_add_keysig(crypt_stat, global_auth_tok->sig);
916 if (rc) {
917 printk(KERN_ERR "Error adding keysig; rc = [%d]\n", rc);
918 mutex_unlock(
919 &mount_crypt_stat->global_auth_tok_list_mutex);
920 goto out;
921 }
922 }
923 mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
924out:
925 return rc;
926}
927
237fead6
MH
928/**
929 * ecryptfs_set_default_crypt_stat_vals
22e78faf
MH
930 * @crypt_stat: The inode's cryptographic context
931 * @mount_crypt_stat: The mount point's cryptographic context
237fead6
MH
932 *
933 * Default values in the event that policy does not override them.
934 */
935static void ecryptfs_set_default_crypt_stat_vals(
936 struct ecryptfs_crypt_stat *crypt_stat,
937 struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
938{
17398957
MH
939 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
940 mount_crypt_stat);
237fead6
MH
941 ecryptfs_set_default_sizes(crypt_stat);
942 strcpy(crypt_stat->cipher, ECRYPTFS_DEFAULT_CIPHER);
943 crypt_stat->key_size = ECRYPTFS_DEFAULT_KEY_BYTES;
e2bd99ec 944 crypt_stat->flags &= ~(ECRYPTFS_KEY_VALID);
237fead6
MH
945 crypt_stat->file_version = ECRYPTFS_FILE_VERSION;
946 crypt_stat->mount_crypt_stat = mount_crypt_stat;
947}
948
949/**
950 * ecryptfs_new_file_context
22e78faf 951 * @ecryptfs_dentry: The eCryptfs dentry
237fead6
MH
952 *
953 * If the crypto context for the file has not yet been established,
954 * this is where we do that. Establishing a new crypto context
955 * involves the following decisions:
956 * - What cipher to use?
957 * - What set of authentication tokens to use?
958 * Here we just worry about getting enough information into the
959 * authentication tokens so that we know that they are available.
960 * We associate the available authentication tokens with the new file
961 * via the set of signatures in the crypt_stat struct. Later, when
962 * the headers are actually written out, we may again defer to
963 * userspace to perform the encryption of the session key; for the
964 * foreseeable future, this will be the case with public key packets.
965 *
966 * Returns zero on success; non-zero otherwise
967 */
237fead6
MH
968int ecryptfs_new_file_context(struct dentry *ecryptfs_dentry)
969{
237fead6
MH
970 struct ecryptfs_crypt_stat *crypt_stat =
971 &ecryptfs_inode_to_private(ecryptfs_dentry->d_inode)->crypt_stat;
972 struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
973 &ecryptfs_superblock_to_private(
974 ecryptfs_dentry->d_sb)->mount_crypt_stat;
975 int cipher_name_len;
f4aad16a 976 int rc = 0;
237fead6
MH
977
978 ecryptfs_set_default_crypt_stat_vals(crypt_stat, mount_crypt_stat);
af655dc6 979 crypt_stat->flags |= (ECRYPTFS_ENCRYPTED | ECRYPTFS_KEY_VALID);
f4aad16a
MH
980 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
981 mount_crypt_stat);
982 rc = ecryptfs_copy_mount_wide_sigs_to_inode_sigs(crypt_stat,
983 mount_crypt_stat);
984 if (rc) {
985 printk(KERN_ERR "Error attempting to copy mount-wide key sigs "
986 "to the inode key sigs; rc = [%d]\n", rc);
987 goto out;
988 }
989 cipher_name_len =
990 strlen(mount_crypt_stat->global_default_cipher_name);
991 memcpy(crypt_stat->cipher,
992 mount_crypt_stat->global_default_cipher_name,
993 cipher_name_len);
994 crypt_stat->cipher[cipher_name_len] = '\0';
995 crypt_stat->key_size =
996 mount_crypt_stat->global_default_cipher_key_size;
997 ecryptfs_generate_new_key(crypt_stat);
237fead6
MH
998 rc = ecryptfs_init_crypt_ctx(crypt_stat);
999 if (rc)
1000 ecryptfs_printk(KERN_ERR, "Error initializing cryptographic "
1001 "context for cipher [%s]: rc = [%d]\n",
1002 crypt_stat->cipher, rc);
f4aad16a 1003out:
237fead6
MH
1004 return rc;
1005}
1006
1007/**
1008 * contains_ecryptfs_marker - check for the ecryptfs marker
1009 * @data: The data block in which to check
1010 *
1011 * Returns one if marker found; zero if not found
1012 */
dd2a3b7a 1013static int contains_ecryptfs_marker(char *data)
237fead6
MH
1014{
1015 u32 m_1, m_2;
1016
1017 memcpy(&m_1, data, 4);
1018 m_1 = be32_to_cpu(m_1);
1019 memcpy(&m_2, (data + 4), 4);
1020 m_2 = be32_to_cpu(m_2);
1021 if ((m_1 ^ MAGIC_ECRYPTFS_MARKER) == m_2)
1022 return 1;
1023 ecryptfs_printk(KERN_DEBUG, "m_1 = [0x%.8x]; m_2 = [0x%.8x]; "
1024 "MAGIC_ECRYPTFS_MARKER = [0x%.8x]\n", m_1, m_2,
1025 MAGIC_ECRYPTFS_MARKER);
1026 ecryptfs_printk(KERN_DEBUG, "(m_1 ^ MAGIC_ECRYPTFS_MARKER) = "
1027 "[0x%.8x]\n", (m_1 ^ MAGIC_ECRYPTFS_MARKER));
1028 return 0;
1029}
1030
1031struct ecryptfs_flag_map_elem {
1032 u32 file_flag;
1033 u32 local_flag;
1034};
1035
1036/* Add support for additional flags by adding elements here. */
1037static struct ecryptfs_flag_map_elem ecryptfs_flag_map[] = {
1038 {0x00000001, ECRYPTFS_ENABLE_HMAC},
dd2a3b7a
MH
1039 {0x00000002, ECRYPTFS_ENCRYPTED},
1040 {0x00000004, ECRYPTFS_METADATA_IN_XATTR}
237fead6
MH
1041};
1042
1043/**
1044 * ecryptfs_process_flags
22e78faf 1045 * @crypt_stat: The cryptographic context
237fead6
MH
1046 * @page_virt: Source data to be parsed
1047 * @bytes_read: Updated with the number of bytes read
1048 *
1049 * Returns zero on success; non-zero if the flag set is invalid
1050 */
1051static int ecryptfs_process_flags(struct ecryptfs_crypt_stat *crypt_stat,
1052 char *page_virt, int *bytes_read)
1053{
1054 int rc = 0;
1055 int i;
1056 u32 flags;
1057
1058 memcpy(&flags, page_virt, 4);
1059 flags = be32_to_cpu(flags);
1060 for (i = 0; i < ((sizeof(ecryptfs_flag_map)
1061 / sizeof(struct ecryptfs_flag_map_elem))); i++)
1062 if (flags & ecryptfs_flag_map[i].file_flag) {
e2bd99ec 1063 crypt_stat->flags |= ecryptfs_flag_map[i].local_flag;
237fead6 1064 } else
e2bd99ec 1065 crypt_stat->flags &= ~(ecryptfs_flag_map[i].local_flag);
237fead6
MH
1066 /* Version is in top 8 bits of the 32-bit flag vector */
1067 crypt_stat->file_version = ((flags >> 24) & 0xFF);
1068 (*bytes_read) = 4;
1069 return rc;
1070}
1071
1072/**
1073 * write_ecryptfs_marker
1074 * @page_virt: The pointer to in a page to begin writing the marker
1075 * @written: Number of bytes written
1076 *
1077 * Marker = 0x3c81b7f5
1078 */
1079static void write_ecryptfs_marker(char *page_virt, size_t *written)
1080{
1081 u32 m_1, m_2;
1082
1083 get_random_bytes(&m_1, (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2));
1084 m_2 = (m_1 ^ MAGIC_ECRYPTFS_MARKER);
1085 m_1 = cpu_to_be32(m_1);
1086 memcpy(page_virt, &m_1, (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2));
1087 m_2 = cpu_to_be32(m_2);
1088 memcpy(page_virt + (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2), &m_2,
1089 (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2));
1090 (*written) = MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
1091}
1092
1093static void
1094write_ecryptfs_flags(char *page_virt, struct ecryptfs_crypt_stat *crypt_stat,
1095 size_t *written)
1096{
1097 u32 flags = 0;
1098 int i;
1099
1100 for (i = 0; i < ((sizeof(ecryptfs_flag_map)
1101 / sizeof(struct ecryptfs_flag_map_elem))); i++)
e2bd99ec 1102 if (crypt_stat->flags & ecryptfs_flag_map[i].local_flag)
237fead6
MH
1103 flags |= ecryptfs_flag_map[i].file_flag;
1104 /* Version is in top 8 bits of the 32-bit flag vector */
1105 flags |= ((((u8)crypt_stat->file_version) << 24) & 0xFF000000);
1106 flags = cpu_to_be32(flags);
1107 memcpy(page_virt, &flags, 4);
1108 (*written) = 4;
1109}
1110
1111struct ecryptfs_cipher_code_str_map_elem {
1112 char cipher_str[16];
1113 u16 cipher_code;
1114};
1115
1116/* Add support for additional ciphers by adding elements here. The
1117 * cipher_code is whatever OpenPGP applicatoins use to identify the
1118 * ciphers. List in order of probability. */
1119static struct ecryptfs_cipher_code_str_map_elem
1120ecryptfs_cipher_code_str_map[] = {
1121 {"aes",RFC2440_CIPHER_AES_128 },
1122 {"blowfish", RFC2440_CIPHER_BLOWFISH},
1123 {"des3_ede", RFC2440_CIPHER_DES3_EDE},
1124 {"cast5", RFC2440_CIPHER_CAST_5},
1125 {"twofish", RFC2440_CIPHER_TWOFISH},
1126 {"cast6", RFC2440_CIPHER_CAST_6},
1127 {"aes", RFC2440_CIPHER_AES_192},
1128 {"aes", RFC2440_CIPHER_AES_256}
1129};
1130
1131/**
1132 * ecryptfs_code_for_cipher_string
22e78faf 1133 * @crypt_stat: The cryptographic context
237fead6
MH
1134 *
1135 * Returns zero on no match, or the cipher code on match
1136 */
1137u16 ecryptfs_code_for_cipher_string(struct ecryptfs_crypt_stat *crypt_stat)
1138{
1139 int i;
1140 u16 code = 0;
1141 struct ecryptfs_cipher_code_str_map_elem *map =
1142 ecryptfs_cipher_code_str_map;
1143
1144 if (strcmp(crypt_stat->cipher, "aes") == 0) {
1145 switch (crypt_stat->key_size) {
1146 case 16:
1147 code = RFC2440_CIPHER_AES_128;
1148 break;
1149 case 24:
1150 code = RFC2440_CIPHER_AES_192;
1151 break;
1152 case 32:
1153 code = RFC2440_CIPHER_AES_256;
1154 }
1155 } else {
1156 for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
1157 if (strcmp(crypt_stat->cipher, map[i].cipher_str) == 0){
1158 code = map[i].cipher_code;
1159 break;
1160 }
1161 }
1162 return code;
1163}
1164
1165/**
1166 * ecryptfs_cipher_code_to_string
1167 * @str: Destination to write out the cipher name
1168 * @cipher_code: The code to convert to cipher name string
1169 *
1170 * Returns zero on success
1171 */
1172int ecryptfs_cipher_code_to_string(char *str, u16 cipher_code)
1173{
1174 int rc = 0;
1175 int i;
1176
1177 str[0] = '\0';
1178 for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
1179 if (cipher_code == ecryptfs_cipher_code_str_map[i].cipher_code)
1180 strcpy(str, ecryptfs_cipher_code_str_map[i].cipher_str);
1181 if (str[0] == '\0') {
1182 ecryptfs_printk(KERN_WARNING, "Cipher code not recognized: "
1183 "[%d]\n", cipher_code);
1184 rc = -EINVAL;
1185 }
1186 return rc;
1187}
1188
d7cdc5fe
MH
1189int ecryptfs_read_and_validate_header_region(char *data,
1190 struct inode *ecryptfs_inode)
dd2a3b7a 1191{
d7cdc5fe
MH
1192 struct ecryptfs_crypt_stat *crypt_stat =
1193 &(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
dd2a3b7a
MH
1194 int rc;
1195
d7cdc5fe
MH
1196 rc = ecryptfs_read_lower(data, 0, crypt_stat->extent_size,
1197 ecryptfs_inode);
1198 if (rc) {
1199 printk(KERN_ERR "%s: Error reading header region; rc = [%d]\n",
1200 __FUNCTION__, rc);
dd2a3b7a 1201 goto out;
d7cdc5fe
MH
1202 }
1203 if (!contains_ecryptfs_marker(data + ECRYPTFS_FILE_SIZE_BYTES)) {
dd2a3b7a 1204 rc = -EINVAL;
d7cdc5fe
MH
1205 ecryptfs_printk(KERN_DEBUG, "Valid marker not found\n");
1206 }
dd2a3b7a
MH
1207out:
1208 return rc;
1209}
1210
e77a56dd
MH
1211void
1212ecryptfs_write_header_metadata(char *virt,
1213 struct ecryptfs_crypt_stat *crypt_stat,
1214 size_t *written)
237fead6
MH
1215{
1216 u32 header_extent_size;
1217 u16 num_header_extents_at_front;
1218
45eaab79 1219 header_extent_size = (u32)crypt_stat->extent_size;
237fead6
MH
1220 num_header_extents_at_front =
1221 (u16)crypt_stat->num_header_extents_at_front;
1222 header_extent_size = cpu_to_be32(header_extent_size);
1223 memcpy(virt, &header_extent_size, 4);
1224 virt += 4;
1225 num_header_extents_at_front = cpu_to_be16(num_header_extents_at_front);
1226 memcpy(virt, &num_header_extents_at_front, 2);
1227 (*written) = 6;
1228}
1229
1230struct kmem_cache *ecryptfs_header_cache_0;
1231struct kmem_cache *ecryptfs_header_cache_1;
1232struct kmem_cache *ecryptfs_header_cache_2;
1233
1234/**
1235 * ecryptfs_write_headers_virt
22e78faf
MH
1236 * @page_virt: The virtual address to write the headers to
1237 * @size: Set to the number of bytes written by this function
1238 * @crypt_stat: The cryptographic context
1239 * @ecryptfs_dentry: The eCryptfs dentry
237fead6
MH
1240 *
1241 * Format version: 1
1242 *
1243 * Header Extent:
1244 * Octets 0-7: Unencrypted file size (big-endian)
1245 * Octets 8-15: eCryptfs special marker
1246 * Octets 16-19: Flags
1247 * Octet 16: File format version number (between 0 and 255)
1248 * Octets 17-18: Reserved
1249 * Octet 19: Bit 1 (lsb): Reserved
1250 * Bit 2: Encrypted?
1251 * Bits 3-8: Reserved
1252 * Octets 20-23: Header extent size (big-endian)
1253 * Octets 24-25: Number of header extents at front of file
1254 * (big-endian)
1255 * Octet 26: Begin RFC 2440 authentication token packet set
1256 * Data Extent 0:
1257 * Lower data (CBC encrypted)
1258 * Data Extent 1:
1259 * Lower data (CBC encrypted)
1260 * ...
1261 *
1262 * Returns zero on success
1263 */
dd2a3b7a
MH
1264static int ecryptfs_write_headers_virt(char *page_virt, size_t *size,
1265 struct ecryptfs_crypt_stat *crypt_stat,
1266 struct dentry *ecryptfs_dentry)
237fead6
MH
1267{
1268 int rc;
1269 size_t written;
1270 size_t offset;
1271
1272 offset = ECRYPTFS_FILE_SIZE_BYTES;
1273 write_ecryptfs_marker((page_virt + offset), &written);
1274 offset += written;
1275 write_ecryptfs_flags((page_virt + offset), crypt_stat, &written);
1276 offset += written;
e77a56dd
MH
1277 ecryptfs_write_header_metadata((page_virt + offset), crypt_stat,
1278 &written);
237fead6
MH
1279 offset += written;
1280 rc = ecryptfs_generate_key_packet_set((page_virt + offset), crypt_stat,
1281 ecryptfs_dentry, &written,
1282 PAGE_CACHE_SIZE - offset);
1283 if (rc)
1284 ecryptfs_printk(KERN_WARNING, "Error generating key packet "
1285 "set; rc = [%d]\n", rc);
dd2a3b7a
MH
1286 if (size) {
1287 offset += written;
1288 *size = offset;
1289 }
1290 return rc;
1291}
1292
22e78faf
MH
1293static int
1294ecryptfs_write_metadata_to_contents(struct ecryptfs_crypt_stat *crypt_stat,
d7cdc5fe
MH
1295 struct dentry *ecryptfs_dentry,
1296 char *page_virt)
dd2a3b7a 1297{
dd2a3b7a
MH
1298 int current_header_page;
1299 int header_pages;
d7cdc5fe 1300 int rc;
dd2a3b7a 1301
d7cdc5fe
MH
1302 rc = ecryptfs_write_lower(ecryptfs_dentry->d_inode, page_virt,
1303 0, PAGE_CACHE_SIZE);
1304 if (rc) {
1305 printk(KERN_ERR "%s: Error attempting to write header "
1306 "information to lower file; rc = [%d]\n", __FUNCTION__,
1307 rc);
70456600
MH
1308 goto out;
1309 }
45eaab79 1310 header_pages = ((crypt_stat->extent_size
dd2a3b7a
MH
1311 * crypt_stat->num_header_extents_at_front)
1312 / PAGE_CACHE_SIZE);
1313 memset(page_virt, 0, PAGE_CACHE_SIZE);
1314 current_header_page = 1;
1315 while (current_header_page < header_pages) {
d7cdc5fe
MH
1316 loff_t offset;
1317
d6a13c17 1318 offset = (((loff_t)current_header_page) << PAGE_CACHE_SHIFT);
d7cdc5fe
MH
1319 if ((rc = ecryptfs_write_lower(ecryptfs_dentry->d_inode,
1320 page_virt, offset,
1321 PAGE_CACHE_SIZE))) {
1322 printk(KERN_ERR "%s: Error attempting to write header "
1323 "information to lower file; rc = [%d]\n",
1324 __FUNCTION__, rc);
70456600
MH
1325 goto out;
1326 }
dd2a3b7a
MH
1327 current_header_page++;
1328 }
70456600
MH
1329out:
1330 return rc;
dd2a3b7a
MH
1331}
1332
22e78faf
MH
1333static int
1334ecryptfs_write_metadata_to_xattr(struct dentry *ecryptfs_dentry,
1335 struct ecryptfs_crypt_stat *crypt_stat,
1336 char *page_virt, size_t size)
dd2a3b7a
MH
1337{
1338 int rc;
1339
1340 rc = ecryptfs_setxattr(ecryptfs_dentry, ECRYPTFS_XATTR_NAME, page_virt,
1341 size, 0);
237fead6
MH
1342 return rc;
1343}
1344
1345/**
dd2a3b7a 1346 * ecryptfs_write_metadata
22e78faf 1347 * @ecryptfs_dentry: The eCryptfs dentry
237fead6
MH
1348 *
1349 * Write the file headers out. This will likely involve a userspace
1350 * callout, in which the session key is encrypted with one or more
1351 * public keys and/or the passphrase necessary to do the encryption is
1352 * retrieved via a prompt. Exactly what happens at this point should
1353 * be policy-dependent.
1354 *
d7cdc5fe
MH
1355 * TODO: Support header information spanning multiple pages
1356 *
237fead6
MH
1357 * Returns zero on success; non-zero on error
1358 */
d7cdc5fe 1359int ecryptfs_write_metadata(struct dentry *ecryptfs_dentry)
237fead6 1360{
d7cdc5fe
MH
1361 struct ecryptfs_crypt_stat *crypt_stat =
1362 &ecryptfs_inode_to_private(ecryptfs_dentry->d_inode)->crypt_stat;
237fead6 1363 char *page_virt;
d7cdc5fe 1364 size_t size = 0;
237fead6
MH
1365 int rc = 0;
1366
e2bd99ec
MH
1367 if (likely(crypt_stat->flags & ECRYPTFS_ENCRYPTED)) {
1368 if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
d7cdc5fe 1369 printk(KERN_ERR "Key is invalid; bailing out\n");
237fead6
MH
1370 rc = -EINVAL;
1371 goto out;
1372 }
1373 } else {
1374 rc = -EINVAL;
1375 ecryptfs_printk(KERN_WARNING,
1376 "Called with crypt_stat->encrypted == 0\n");
1377 goto out;
1378 }
1379 /* Released in this function */
c3762229 1380 page_virt = kmem_cache_zalloc(ecryptfs_header_cache_0, GFP_USER);
237fead6
MH
1381 if (!page_virt) {
1382 ecryptfs_printk(KERN_ERR, "Out of memory\n");
1383 rc = -ENOMEM;
1384 goto out;
1385 }
dd2a3b7a
MH
1386 rc = ecryptfs_write_headers_virt(page_virt, &size, crypt_stat,
1387 ecryptfs_dentry);
237fead6
MH
1388 if (unlikely(rc)) {
1389 ecryptfs_printk(KERN_ERR, "Error whilst writing headers\n");
1390 memset(page_virt, 0, PAGE_CACHE_SIZE);
1391 goto out_free;
1392 }
dd2a3b7a
MH
1393 if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
1394 rc = ecryptfs_write_metadata_to_xattr(ecryptfs_dentry,
1395 crypt_stat, page_virt,
1396 size);
1397 else
d7cdc5fe
MH
1398 rc = ecryptfs_write_metadata_to_contents(crypt_stat,
1399 ecryptfs_dentry,
dd2a3b7a
MH
1400 page_virt);
1401 if (rc) {
1402 printk(KERN_ERR "Error writing metadata out to lower file; "
1403 "rc = [%d]\n", rc);
1404 goto out_free;
237fead6 1405 }
237fead6
MH
1406out_free:
1407 kmem_cache_free(ecryptfs_header_cache_0, page_virt);
1408out:
1409 return rc;
1410}
1411
dd2a3b7a
MH
1412#define ECRYPTFS_DONT_VALIDATE_HEADER_SIZE 0
1413#define ECRYPTFS_VALIDATE_HEADER_SIZE 1
237fead6 1414static int parse_header_metadata(struct ecryptfs_crypt_stat *crypt_stat,
dd2a3b7a
MH
1415 char *virt, int *bytes_read,
1416 int validate_header_size)
237fead6
MH
1417{
1418 int rc = 0;
1419 u32 header_extent_size;
1420 u16 num_header_extents_at_front;
1421
ecbdc936 1422 memcpy(&header_extent_size, virt, sizeof(u32));
237fead6 1423 header_extent_size = be32_to_cpu(header_extent_size);
ecbdc936
MH
1424 virt += sizeof(u32);
1425 memcpy(&num_header_extents_at_front, virt, sizeof(u16));
237fead6 1426 num_header_extents_at_front = be16_to_cpu(num_header_extents_at_front);
237fead6
MH
1427 crypt_stat->num_header_extents_at_front =
1428 (int)num_header_extents_at_front;
45eaab79 1429 (*bytes_read) = (sizeof(u32) + sizeof(u16));
dd2a3b7a 1430 if ((validate_header_size == ECRYPTFS_VALIDATE_HEADER_SIZE)
45eaab79 1431 && ((crypt_stat->extent_size
dd2a3b7a
MH
1432 * crypt_stat->num_header_extents_at_front)
1433 < ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)) {
237fead6 1434 rc = -EINVAL;
45eaab79
MH
1435 printk(KERN_WARNING "Invalid number of header extents: [%zd]\n",
1436 crypt_stat->num_header_extents_at_front);
237fead6
MH
1437 }
1438 return rc;
1439}
1440
1441/**
1442 * set_default_header_data
22e78faf 1443 * @crypt_stat: The cryptographic context
237fead6
MH
1444 *
1445 * For version 0 file format; this function is only for backwards
1446 * compatibility for files created with the prior versions of
1447 * eCryptfs.
1448 */
1449static void set_default_header_data(struct ecryptfs_crypt_stat *crypt_stat)
1450{
45eaab79 1451 crypt_stat->num_header_extents_at_front = 2;
237fead6
MH
1452}
1453
1454/**
1455 * ecryptfs_read_headers_virt
22e78faf
MH
1456 * @page_virt: The virtual address into which to read the headers
1457 * @crypt_stat: The cryptographic context
1458 * @ecryptfs_dentry: The eCryptfs dentry
1459 * @validate_header_size: Whether to validate the header size while reading
237fead6
MH
1460 *
1461 * Read/parse the header data. The header format is detailed in the
1462 * comment block for the ecryptfs_write_headers_virt() function.
1463 *
1464 * Returns zero on success
1465 */
1466static int ecryptfs_read_headers_virt(char *page_virt,
1467 struct ecryptfs_crypt_stat *crypt_stat,
dd2a3b7a
MH
1468 struct dentry *ecryptfs_dentry,
1469 int validate_header_size)
237fead6
MH
1470{
1471 int rc = 0;
1472 int offset;
1473 int bytes_read;
1474
1475 ecryptfs_set_default_sizes(crypt_stat);
1476 crypt_stat->mount_crypt_stat = &ecryptfs_superblock_to_private(
1477 ecryptfs_dentry->d_sb)->mount_crypt_stat;
1478 offset = ECRYPTFS_FILE_SIZE_BYTES;
1479 rc = contains_ecryptfs_marker(page_virt + offset);
1480 if (rc == 0) {
1481 rc = -EINVAL;
1482 goto out;
1483 }
1484 offset += MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
1485 rc = ecryptfs_process_flags(crypt_stat, (page_virt + offset),
1486 &bytes_read);
1487 if (rc) {
1488 ecryptfs_printk(KERN_WARNING, "Error processing flags\n");
1489 goto out;
1490 }
1491 if (crypt_stat->file_version > ECRYPTFS_SUPPORTED_FILE_VERSION) {
1492 ecryptfs_printk(KERN_WARNING, "File version is [%d]; only "
1493 "file version [%d] is supported by this "
1494 "version of eCryptfs\n",
1495 crypt_stat->file_version,
1496 ECRYPTFS_SUPPORTED_FILE_VERSION);
1497 rc = -EINVAL;
1498 goto out;
1499 }
1500 offset += bytes_read;
1501 if (crypt_stat->file_version >= 1) {
1502 rc = parse_header_metadata(crypt_stat, (page_virt + offset),
dd2a3b7a 1503 &bytes_read, validate_header_size);
237fead6
MH
1504 if (rc) {
1505 ecryptfs_printk(KERN_WARNING, "Error reading header "
1506 "metadata; rc = [%d]\n", rc);
1507 }
1508 offset += bytes_read;
1509 } else
1510 set_default_header_data(crypt_stat);
1511 rc = ecryptfs_parse_packet_set(crypt_stat, (page_virt + offset),
1512 ecryptfs_dentry);
1513out:
1514 return rc;
1515}
1516
1517/**
dd2a3b7a 1518 * ecryptfs_read_xattr_region
22e78faf 1519 * @page_virt: The vitual address into which to read the xattr data
2ed92554 1520 * @ecryptfs_inode: The eCryptfs inode
dd2a3b7a
MH
1521 *
1522 * Attempts to read the crypto metadata from the extended attribute
1523 * region of the lower file.
22e78faf
MH
1524 *
1525 * Returns zero on success; non-zero on error
dd2a3b7a 1526 */
d7cdc5fe 1527int ecryptfs_read_xattr_region(char *page_virt, struct inode *ecryptfs_inode)
dd2a3b7a 1528{
d7cdc5fe
MH
1529 struct dentry *lower_dentry =
1530 ecryptfs_inode_to_private(ecryptfs_inode)->lower_file->f_dentry;
dd2a3b7a
MH
1531 ssize_t size;
1532 int rc = 0;
1533
d7cdc5fe
MH
1534 size = ecryptfs_getxattr_lower(lower_dentry, ECRYPTFS_XATTR_NAME,
1535 page_virt, ECRYPTFS_DEFAULT_EXTENT_SIZE);
dd2a3b7a 1536 if (size < 0) {
d7cdc5fe 1537 printk(KERN_ERR "Error attempting to read the [%s] "
dd2a3b7a
MH
1538 "xattr from the lower file; return value = [%zd]\n",
1539 ECRYPTFS_XATTR_NAME, size);
1540 rc = -EINVAL;
1541 goto out;
1542 }
1543out:
1544 return rc;
1545}
1546
1547int ecryptfs_read_and_validate_xattr_region(char *page_virt,
1548 struct dentry *ecryptfs_dentry)
1549{
1550 int rc;
1551
d7cdc5fe 1552 rc = ecryptfs_read_xattr_region(page_virt, ecryptfs_dentry->d_inode);
dd2a3b7a
MH
1553 if (rc)
1554 goto out;
1555 if (!contains_ecryptfs_marker(page_virt + ECRYPTFS_FILE_SIZE_BYTES)) {
1556 printk(KERN_WARNING "Valid data found in [%s] xattr, but "
1557 "the marker is invalid\n", ECRYPTFS_XATTR_NAME);
1558 rc = -EINVAL;
1559 }
1560out:
1561 return rc;
1562}
1563
1564/**
1565 * ecryptfs_read_metadata
1566 *
1567 * Common entry point for reading file metadata. From here, we could
1568 * retrieve the header information from the header region of the file,
1569 * the xattr region of the file, or some other repostory that is
1570 * stored separately from the file itself. The current implementation
1571 * supports retrieving the metadata information from the file contents
1572 * and from the xattr region.
237fead6
MH
1573 *
1574 * Returns zero if valid headers found and parsed; non-zero otherwise
1575 */
d7cdc5fe 1576int ecryptfs_read_metadata(struct dentry *ecryptfs_dentry)
237fead6
MH
1577{
1578 int rc = 0;
1579 char *page_virt = NULL;
d7cdc5fe 1580 struct inode *ecryptfs_inode = ecryptfs_dentry->d_inode;
237fead6 1581 struct ecryptfs_crypt_stat *crypt_stat =
d7cdc5fe 1582 &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
e77a56dd
MH
1583 struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
1584 &ecryptfs_superblock_to_private(
1585 ecryptfs_dentry->d_sb)->mount_crypt_stat;
237fead6 1586
e77a56dd
MH
1587 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
1588 mount_crypt_stat);
237fead6 1589 /* Read the first page from the underlying file */
f7267c0c 1590 page_virt = kmem_cache_alloc(ecryptfs_header_cache_1, GFP_USER);
237fead6
MH
1591 if (!page_virt) {
1592 rc = -ENOMEM;
d7cdc5fe
MH
1593 printk(KERN_ERR "%s: Unable to allocate page_virt\n",
1594 __FUNCTION__);
237fead6
MH
1595 goto out;
1596 }
d7cdc5fe
MH
1597 rc = ecryptfs_read_lower(page_virt, 0, crypt_stat->extent_size,
1598 ecryptfs_inode);
1599 if (!rc)
1600 rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
1601 ecryptfs_dentry,
1602 ECRYPTFS_VALIDATE_HEADER_SIZE);
237fead6 1603 if (rc) {
d7cdc5fe 1604 rc = ecryptfs_read_xattr_region(page_virt, ecryptfs_inode);
dd2a3b7a
MH
1605 if (rc) {
1606 printk(KERN_DEBUG "Valid eCryptfs headers not found in "
1607 "file header region or xattr region\n");
1608 rc = -EINVAL;
1609 goto out;
1610 }
1611 rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
1612 ecryptfs_dentry,
1613 ECRYPTFS_DONT_VALIDATE_HEADER_SIZE);
1614 if (rc) {
1615 printk(KERN_DEBUG "Valid eCryptfs headers not found in "
1616 "file xattr region either\n");
1617 rc = -EINVAL;
1618 }
1619 if (crypt_stat->mount_crypt_stat->flags
1620 & ECRYPTFS_XATTR_METADATA_ENABLED) {
1621 crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
1622 } else {
1623 printk(KERN_WARNING "Attempt to access file with "
1624 "crypto metadata only in the extended attribute "
1625 "region, but eCryptfs was mounted without "
1626 "xattr support enabled. eCryptfs will not treat "
1627 "this like an encrypted file.\n");
1628 rc = -EINVAL;
1629 }
237fead6
MH
1630 }
1631out:
1632 if (page_virt) {
1633 memset(page_virt, 0, PAGE_CACHE_SIZE);
1634 kmem_cache_free(ecryptfs_header_cache_1, page_virt);
1635 }
1636 return rc;
1637}
1638
1639/**
1640 * ecryptfs_encode_filename - converts a plaintext file name to cipher text
1641 * @crypt_stat: The crypt_stat struct associated with the file anem to encode
1642 * @name: The plaintext name
1643 * @length: The length of the plaintext
1644 * @encoded_name: The encypted name
1645 *
1646 * Encrypts and encodes a filename into something that constitutes a
1647 * valid filename for a filesystem, with printable characters.
1648 *
1649 * We assume that we have a properly initialized crypto context,
1650 * pointed to by crypt_stat->tfm.
1651 *
1652 * TODO: Implement filename decoding and decryption here, in place of
1653 * memcpy. We are keeping the framework around for now to (1)
1654 * facilitate testing of the components needed to implement filename
1655 * encryption and (2) to provide a code base from which other
1656 * developers in the community can easily implement this feature.
1657 *
1658 * Returns the length of encoded filename; negative if error
1659 */
1660int
1661ecryptfs_encode_filename(struct ecryptfs_crypt_stat *crypt_stat,
1662 const char *name, int length, char **encoded_name)
1663{
1664 int error = 0;
1665
1666 (*encoded_name) = kmalloc(length + 2, GFP_KERNEL);
1667 if (!(*encoded_name)) {
1668 error = -ENOMEM;
1669 goto out;
1670 }
1671 /* TODO: Filename encryption is a scheduled feature for a
1672 * future version of eCryptfs. This function is here only for
1673 * the purpose of providing a framework for other developers
1674 * to easily implement filename encryption. Hint: Replace this
1675 * memcpy() with a call to encrypt and encode the
1676 * filename, the set the length accordingly. */
1677 memcpy((void *)(*encoded_name), (void *)name, length);
1678 (*encoded_name)[length] = '\0';
1679 error = length + 1;
1680out:
1681 return error;
1682}
1683
1684/**
1685 * ecryptfs_decode_filename - converts the cipher text name to plaintext
1686 * @crypt_stat: The crypt_stat struct associated with the file
1687 * @name: The filename in cipher text
1688 * @length: The length of the cipher text name
1689 * @decrypted_name: The plaintext name
1690 *
1691 * Decodes and decrypts the filename.
1692 *
1693 * We assume that we have a properly initialized crypto context,
1694 * pointed to by crypt_stat->tfm.
1695 *
1696 * TODO: Implement filename decoding and decryption here, in place of
1697 * memcpy. We are keeping the framework around for now to (1)
1698 * facilitate testing of the components needed to implement filename
1699 * encryption and (2) to provide a code base from which other
1700 * developers in the community can easily implement this feature.
1701 *
1702 * Returns the length of decoded filename; negative if error
1703 */
1704int
1705ecryptfs_decode_filename(struct ecryptfs_crypt_stat *crypt_stat,
1706 const char *name, int length, char **decrypted_name)
1707{
1708 int error = 0;
1709
1710 (*decrypted_name) = kmalloc(length + 2, GFP_KERNEL);
1711 if (!(*decrypted_name)) {
1712 error = -ENOMEM;
1713 goto out;
1714 }
1715 /* TODO: Filename encryption is a scheduled feature for a
1716 * future version of eCryptfs. This function is here only for
1717 * the purpose of providing a framework for other developers
1718 * to easily implement filename encryption. Hint: Replace this
1719 * memcpy() with a call to decode and decrypt the
1720 * filename, the set the length accordingly. */
1721 memcpy((void *)(*decrypted_name), (void *)name, length);
1722 (*decrypted_name)[length + 1] = '\0'; /* Only for convenience
1723 * in printing out the
1724 * string in debug
1725 * messages */
1726 error = length;
1727out:
1728 return error;
1729}
1730
1731/**
f4aad16a 1732 * ecryptfs_process_key_cipher - Perform key cipher initialization.
237fead6 1733 * @key_tfm: Crypto context for key material, set by this function
e5d9cbde
MH
1734 * @cipher_name: Name of the cipher
1735 * @key_size: Size of the key in bytes
237fead6
MH
1736 *
1737 * Returns zero on success. Any crypto_tfm structs allocated here
1738 * should be released by other functions, such as on a superblock put
1739 * event, regardless of whether this function succeeds for fails.
1740 */
cd9d67df 1741static int
f4aad16a
MH
1742ecryptfs_process_key_cipher(struct crypto_blkcipher **key_tfm,
1743 char *cipher_name, size_t *key_size)
237fead6
MH
1744{
1745 char dummy_key[ECRYPTFS_MAX_KEY_BYTES];
8bba066f 1746 char *full_alg_name;
237fead6
MH
1747 int rc;
1748
e5d9cbde
MH
1749 *key_tfm = NULL;
1750 if (*key_size > ECRYPTFS_MAX_KEY_BYTES) {
237fead6
MH
1751 rc = -EINVAL;
1752 printk(KERN_ERR "Requested key size is [%Zd] bytes; maximum "
e5d9cbde 1753 "allowable is [%d]\n", *key_size, ECRYPTFS_MAX_KEY_BYTES);
237fead6
MH
1754 goto out;
1755 }
8bba066f
MH
1756 rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name, cipher_name,
1757 "ecb");
1758 if (rc)
1759 goto out;
1760 *key_tfm = crypto_alloc_blkcipher(full_alg_name, 0, CRYPTO_ALG_ASYNC);
1761 kfree(full_alg_name);
1762 if (IS_ERR(*key_tfm)) {
1763 rc = PTR_ERR(*key_tfm);
237fead6 1764 printk(KERN_ERR "Unable to allocate crypto cipher with name "
8bba066f 1765 "[%s]; rc = [%d]\n", cipher_name, rc);
237fead6
MH
1766 goto out;
1767 }
8bba066f
MH
1768 crypto_blkcipher_set_flags(*key_tfm, CRYPTO_TFM_REQ_WEAK_KEY);
1769 if (*key_size == 0) {
1770 struct blkcipher_alg *alg = crypto_blkcipher_alg(*key_tfm);
1771
1772 *key_size = alg->max_keysize;
1773 }
e5d9cbde 1774 get_random_bytes(dummy_key, *key_size);
8bba066f 1775 rc = crypto_blkcipher_setkey(*key_tfm, dummy_key, *key_size);
237fead6
MH
1776 if (rc) {
1777 printk(KERN_ERR "Error attempting to set key of size [%Zd] for "
e5d9cbde 1778 "cipher [%s]; rc = [%d]\n", *key_size, cipher_name, rc);
237fead6
MH
1779 rc = -EINVAL;
1780 goto out;
1781 }
1782out:
1783 return rc;
1784}
f4aad16a
MH
1785
1786struct kmem_cache *ecryptfs_key_tfm_cache;
1787struct list_head key_tfm_list;
1788struct mutex key_tfm_list_mutex;
1789
1790int ecryptfs_init_crypto(void)
1791{
1792 mutex_init(&key_tfm_list_mutex);
1793 INIT_LIST_HEAD(&key_tfm_list);
1794 return 0;
1795}
1796
fcd12835 1797int ecryptfs_destroy_crypto(void)
f4aad16a
MH
1798{
1799 struct ecryptfs_key_tfm *key_tfm, *key_tfm_tmp;
1800
1801 mutex_lock(&key_tfm_list_mutex);
1802 list_for_each_entry_safe(key_tfm, key_tfm_tmp, &key_tfm_list,
1803 key_tfm_list) {
1804 list_del(&key_tfm->key_tfm_list);
1805 if (key_tfm->key_tfm)
1806 crypto_free_blkcipher(key_tfm->key_tfm);
1807 kmem_cache_free(ecryptfs_key_tfm_cache, key_tfm);
1808 }
1809 mutex_unlock(&key_tfm_list_mutex);
1810 return 0;
1811}
1812
1813int
1814ecryptfs_add_new_key_tfm(struct ecryptfs_key_tfm **key_tfm, char *cipher_name,
1815 size_t key_size)
1816{
1817 struct ecryptfs_key_tfm *tmp_tfm;
1818 int rc = 0;
1819
1820 tmp_tfm = kmem_cache_alloc(ecryptfs_key_tfm_cache, GFP_KERNEL);
1821 if (key_tfm != NULL)
1822 (*key_tfm) = tmp_tfm;
1823 if (!tmp_tfm) {
1824 rc = -ENOMEM;
1825 printk(KERN_ERR "Error attempting to allocate from "
1826 "ecryptfs_key_tfm_cache\n");
1827 goto out;
1828 }
1829 mutex_init(&tmp_tfm->key_tfm_mutex);
1830 strncpy(tmp_tfm->cipher_name, cipher_name,
1831 ECRYPTFS_MAX_CIPHER_NAME_SIZE);
1832 tmp_tfm->key_size = key_size;
5dda6992
MH
1833 rc = ecryptfs_process_key_cipher(&tmp_tfm->key_tfm,
1834 tmp_tfm->cipher_name,
1835 &tmp_tfm->key_size);
1836 if (rc) {
f4aad16a
MH
1837 printk(KERN_ERR "Error attempting to initialize key TFM "
1838 "cipher with name = [%s]; rc = [%d]\n",
1839 tmp_tfm->cipher_name, rc);
1840 kmem_cache_free(ecryptfs_key_tfm_cache, tmp_tfm);
1841 if (key_tfm != NULL)
1842 (*key_tfm) = NULL;
1843 goto out;
1844 }
1845 mutex_lock(&key_tfm_list_mutex);
1846 list_add(&tmp_tfm->key_tfm_list, &key_tfm_list);
1847 mutex_unlock(&key_tfm_list_mutex);
1848out:
1849 return rc;
1850}
1851
1852int ecryptfs_get_tfm_and_mutex_for_cipher_name(struct crypto_blkcipher **tfm,
1853 struct mutex **tfm_mutex,
1854 char *cipher_name)
1855{
1856 struct ecryptfs_key_tfm *key_tfm;
1857 int rc = 0;
1858
1859 (*tfm) = NULL;
1860 (*tfm_mutex) = NULL;
1861 mutex_lock(&key_tfm_list_mutex);
1862 list_for_each_entry(key_tfm, &key_tfm_list, key_tfm_list) {
1863 if (strcmp(key_tfm->cipher_name, cipher_name) == 0) {
1864 (*tfm) = key_tfm->key_tfm;
1865 (*tfm_mutex) = &key_tfm->key_tfm_mutex;
1866 mutex_unlock(&key_tfm_list_mutex);
1867 goto out;
1868 }
1869 }
1870 mutex_unlock(&key_tfm_list_mutex);
5dda6992
MH
1871 rc = ecryptfs_add_new_key_tfm(&key_tfm, cipher_name, 0);
1872 if (rc) {
f4aad16a
MH
1873 printk(KERN_ERR "Error adding new key_tfm to list; rc = [%d]\n",
1874 rc);
1875 goto out;
1876 }
1877 (*tfm) = key_tfm->key_tfm;
1878 (*tfm_mutex) = &key_tfm->key_tfm_mutex;
1879out:
1880 return rc;
1881}