eCryptfs: set up and destroy persistent lower file
[linux-2.6-block.git] / fs / ecryptfs / crypto.c
CommitLineData
237fead6
MH
1/**
2 * eCryptfs: Linux filesystem encryption layer
3 *
4 * Copyright (C) 1997-2004 Erez Zadok
5 * Copyright (C) 2001-2004 Stony Brook University
dd2a3b7a 6 * Copyright (C) 2004-2007 International Business Machines Corp.
237fead6
MH
7 * Author(s): Michael A. Halcrow <mahalcro@us.ibm.com>
8 * Michael C. Thompson <mcthomps@us.ibm.com>
9 *
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License as
12 * published by the Free Software Foundation; either version 2 of the
13 * License, or (at your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful, but
16 * WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
23 * 02111-1307, USA.
24 */
25
26#include <linux/fs.h>
27#include <linux/mount.h>
28#include <linux/pagemap.h>
29#include <linux/random.h>
30#include <linux/compiler.h>
31#include <linux/key.h>
32#include <linux/namei.h>
33#include <linux/crypto.h>
34#include <linux/file.h>
35#include <linux/scatterlist.h>
36#include "ecryptfs_kernel.h"
37
38static int
39ecryptfs_decrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
40 struct page *dst_page, int dst_offset,
41 struct page *src_page, int src_offset, int size,
42 unsigned char *iv);
43static int
44ecryptfs_encrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
45 struct page *dst_page, int dst_offset,
46 struct page *src_page, int src_offset, int size,
47 unsigned char *iv);
48
49/**
50 * ecryptfs_to_hex
51 * @dst: Buffer to take hex character representation of contents of
52 * src; must be at least of size (src_size * 2)
53 * @src: Buffer to be converted to a hex string respresentation
54 * @src_size: number of bytes to convert
55 */
56void ecryptfs_to_hex(char *dst, char *src, size_t src_size)
57{
58 int x;
59
60 for (x = 0; x < src_size; x++)
61 sprintf(&dst[x * 2], "%.2x", (unsigned char)src[x]);
62}
63
64/**
65 * ecryptfs_from_hex
66 * @dst: Buffer to take the bytes from src hex; must be at least of
67 * size (src_size / 2)
68 * @src: Buffer to be converted from a hex string respresentation to raw value
69 * @dst_size: size of dst buffer, or number of hex characters pairs to convert
70 */
71void ecryptfs_from_hex(char *dst, char *src, int dst_size)
72{
73 int x;
74 char tmp[3] = { 0, };
75
76 for (x = 0; x < dst_size; x++) {
77 tmp[0] = src[x * 2];
78 tmp[1] = src[x * 2 + 1];
79 dst[x] = (unsigned char)simple_strtol(tmp, NULL, 16);
80 }
81}
82
83/**
84 * ecryptfs_calculate_md5 - calculates the md5 of @src
85 * @dst: Pointer to 16 bytes of allocated memory
86 * @crypt_stat: Pointer to crypt_stat struct for the current inode
87 * @src: Data to be md5'd
88 * @len: Length of @src
89 *
90 * Uses the allocated crypto context that crypt_stat references to
91 * generate the MD5 sum of the contents of src.
92 */
93static int ecryptfs_calculate_md5(char *dst,
94 struct ecryptfs_crypt_stat *crypt_stat,
95 char *src, int len)
96{
237fead6 97 struct scatterlist sg;
565d9724
MH
98 struct hash_desc desc = {
99 .tfm = crypt_stat->hash_tfm,
100 .flags = CRYPTO_TFM_REQ_MAY_SLEEP
101 };
102 int rc = 0;
237fead6 103
565d9724 104 mutex_lock(&crypt_stat->cs_hash_tfm_mutex);
237fead6 105 sg_init_one(&sg, (u8 *)src, len);
565d9724
MH
106 if (!desc.tfm) {
107 desc.tfm = crypto_alloc_hash(ECRYPTFS_DEFAULT_HASH, 0,
108 CRYPTO_ALG_ASYNC);
109 if (IS_ERR(desc.tfm)) {
110 rc = PTR_ERR(desc.tfm);
237fead6 111 ecryptfs_printk(KERN_ERR, "Error attempting to "
565d9724
MH
112 "allocate crypto context; rc = [%d]\n",
113 rc);
237fead6
MH
114 goto out;
115 }
565d9724 116 crypt_stat->hash_tfm = desc.tfm;
237fead6 117 }
565d9724
MH
118 crypto_hash_init(&desc);
119 crypto_hash_update(&desc, &sg, len);
120 crypto_hash_final(&desc, dst);
121 mutex_unlock(&crypt_stat->cs_hash_tfm_mutex);
237fead6
MH
122out:
123 return rc;
124}
125
cd9d67df
MH
126static int ecryptfs_crypto_api_algify_cipher_name(char **algified_name,
127 char *cipher_name,
128 char *chaining_modifier)
8bba066f
MH
129{
130 int cipher_name_len = strlen(cipher_name);
131 int chaining_modifier_len = strlen(chaining_modifier);
132 int algified_name_len;
133 int rc;
134
135 algified_name_len = (chaining_modifier_len + cipher_name_len + 3);
136 (*algified_name) = kmalloc(algified_name_len, GFP_KERNEL);
7bd473fc 137 if (!(*algified_name)) {
8bba066f
MH
138 rc = -ENOMEM;
139 goto out;
140 }
141 snprintf((*algified_name), algified_name_len, "%s(%s)",
142 chaining_modifier, cipher_name);
143 rc = 0;
144out:
145 return rc;
146}
147
237fead6
MH
148/**
149 * ecryptfs_derive_iv
150 * @iv: destination for the derived iv vale
151 * @crypt_stat: Pointer to crypt_stat struct for the current inode
152 * @offset: Offset of the page whose's iv we are to derive
153 *
154 * Generate the initialization vector from the given root IV and page
155 * offset.
156 *
157 * Returns zero on success; non-zero on error.
158 */
159static int ecryptfs_derive_iv(char *iv, struct ecryptfs_crypt_stat *crypt_stat,
160 pgoff_t offset)
161{
162 int rc = 0;
163 char dst[MD5_DIGEST_SIZE];
164 char src[ECRYPTFS_MAX_IV_BYTES + 16];
165
166 if (unlikely(ecryptfs_verbosity > 0)) {
167 ecryptfs_printk(KERN_DEBUG, "root iv:\n");
168 ecryptfs_dump_hex(crypt_stat->root_iv, crypt_stat->iv_bytes);
169 }
170 /* TODO: It is probably secure to just cast the least
171 * significant bits of the root IV into an unsigned long and
172 * add the offset to that rather than go through all this
173 * hashing business. -Halcrow */
174 memcpy(src, crypt_stat->root_iv, crypt_stat->iv_bytes);
175 memset((src + crypt_stat->iv_bytes), 0, 16);
176 snprintf((src + crypt_stat->iv_bytes), 16, "%ld", offset);
177 if (unlikely(ecryptfs_verbosity > 0)) {
178 ecryptfs_printk(KERN_DEBUG, "source:\n");
179 ecryptfs_dump_hex(src, (crypt_stat->iv_bytes + 16));
180 }
181 rc = ecryptfs_calculate_md5(dst, crypt_stat, src,
182 (crypt_stat->iv_bytes + 16));
183 if (rc) {
184 ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
185 "MD5 while generating IV for a page\n");
186 goto out;
187 }
188 memcpy(iv, dst, crypt_stat->iv_bytes);
189 if (unlikely(ecryptfs_verbosity > 0)) {
190 ecryptfs_printk(KERN_DEBUG, "derived iv:\n");
191 ecryptfs_dump_hex(iv, crypt_stat->iv_bytes);
192 }
193out:
194 return rc;
195}
196
197/**
198 * ecryptfs_init_crypt_stat
199 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
200 *
201 * Initialize the crypt_stat structure.
202 */
203void
204ecryptfs_init_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
205{
206 memset((void *)crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
f4aad16a
MH
207 INIT_LIST_HEAD(&crypt_stat->keysig_list);
208 mutex_init(&crypt_stat->keysig_list_mutex);
237fead6
MH
209 mutex_init(&crypt_stat->cs_mutex);
210 mutex_init(&crypt_stat->cs_tfm_mutex);
565d9724 211 mutex_init(&crypt_stat->cs_hash_tfm_mutex);
e2bd99ec 212 crypt_stat->flags |= ECRYPTFS_STRUCT_INITIALIZED;
237fead6
MH
213}
214
215/**
fcd12835 216 * ecryptfs_destroy_crypt_stat
237fead6
MH
217 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
218 *
219 * Releases all memory associated with a crypt_stat struct.
220 */
fcd12835 221void ecryptfs_destroy_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
237fead6 222{
f4aad16a
MH
223 struct ecryptfs_key_sig *key_sig, *key_sig_tmp;
224
237fead6 225 if (crypt_stat->tfm)
8bba066f 226 crypto_free_blkcipher(crypt_stat->tfm);
565d9724
MH
227 if (crypt_stat->hash_tfm)
228 crypto_free_hash(crypt_stat->hash_tfm);
f4aad16a
MH
229 mutex_lock(&crypt_stat->keysig_list_mutex);
230 list_for_each_entry_safe(key_sig, key_sig_tmp,
231 &crypt_stat->keysig_list, crypt_stat_list) {
232 list_del(&key_sig->crypt_stat_list);
233 kmem_cache_free(ecryptfs_key_sig_cache, key_sig);
234 }
235 mutex_unlock(&crypt_stat->keysig_list_mutex);
237fead6
MH
236 memset(crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
237}
238
fcd12835 239void ecryptfs_destroy_mount_crypt_stat(
237fead6
MH
240 struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
241{
f4aad16a
MH
242 struct ecryptfs_global_auth_tok *auth_tok, *auth_tok_tmp;
243
244 if (!(mount_crypt_stat->flags & ECRYPTFS_MOUNT_CRYPT_STAT_INITIALIZED))
245 return;
246 mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
247 list_for_each_entry_safe(auth_tok, auth_tok_tmp,
248 &mount_crypt_stat->global_auth_tok_list,
249 mount_crypt_stat_list) {
250 list_del(&auth_tok->mount_crypt_stat_list);
251 mount_crypt_stat->num_global_auth_toks--;
252 if (auth_tok->global_auth_tok_key
253 && !(auth_tok->flags & ECRYPTFS_AUTH_TOK_INVALID))
254 key_put(auth_tok->global_auth_tok_key);
255 kmem_cache_free(ecryptfs_global_auth_tok_cache, auth_tok);
256 }
257 mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
237fead6
MH
258 memset(mount_crypt_stat, 0, sizeof(struct ecryptfs_mount_crypt_stat));
259}
260
261/**
262 * virt_to_scatterlist
263 * @addr: Virtual address
264 * @size: Size of data; should be an even multiple of the block size
265 * @sg: Pointer to scatterlist array; set to NULL to obtain only
266 * the number of scatterlist structs required in array
267 * @sg_size: Max array size
268 *
269 * Fills in a scatterlist array with page references for a passed
270 * virtual address.
271 *
272 * Returns the number of scatterlist structs in array used
273 */
274int virt_to_scatterlist(const void *addr, int size, struct scatterlist *sg,
275 int sg_size)
276{
277 int i = 0;
278 struct page *pg;
279 int offset;
280 int remainder_of_page;
281
282 while (size > 0 && i < sg_size) {
283 pg = virt_to_page(addr);
284 offset = offset_in_page(addr);
285 if (sg) {
286 sg[i].page = pg;
287 sg[i].offset = offset;
288 }
289 remainder_of_page = PAGE_CACHE_SIZE - offset;
290 if (size >= remainder_of_page) {
291 if (sg)
292 sg[i].length = remainder_of_page;
293 addr += remainder_of_page;
294 size -= remainder_of_page;
295 } else {
296 if (sg)
297 sg[i].length = size;
298 addr += size;
299 size = 0;
300 }
301 i++;
302 }
303 if (size > 0)
304 return -ENOMEM;
305 return i;
306}
307
308/**
309 * encrypt_scatterlist
310 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
311 * @dest_sg: Destination of encrypted data
312 * @src_sg: Data to be encrypted
313 * @size: Length of data to be encrypted
314 * @iv: iv to use during encryption
315 *
316 * Returns the number of bytes encrypted; negative value on error
317 */
318static int encrypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat,
319 struct scatterlist *dest_sg,
320 struct scatterlist *src_sg, int size,
321 unsigned char *iv)
322{
8bba066f
MH
323 struct blkcipher_desc desc = {
324 .tfm = crypt_stat->tfm,
325 .info = iv,
326 .flags = CRYPTO_TFM_REQ_MAY_SLEEP
327 };
237fead6
MH
328 int rc = 0;
329
330 BUG_ON(!crypt_stat || !crypt_stat->tfm
e2bd99ec 331 || !(crypt_stat->flags & ECRYPTFS_STRUCT_INITIALIZED));
237fead6
MH
332 if (unlikely(ecryptfs_verbosity > 0)) {
333 ecryptfs_printk(KERN_DEBUG, "Key size [%d]; key:\n",
334 crypt_stat->key_size);
335 ecryptfs_dump_hex(crypt_stat->key,
336 crypt_stat->key_size);
337 }
338 /* Consider doing this once, when the file is opened */
339 mutex_lock(&crypt_stat->cs_tfm_mutex);
8bba066f
MH
340 rc = crypto_blkcipher_setkey(crypt_stat->tfm, crypt_stat->key,
341 crypt_stat->key_size);
237fead6
MH
342 if (rc) {
343 ecryptfs_printk(KERN_ERR, "Error setting key; rc = [%d]\n",
344 rc);
345 mutex_unlock(&crypt_stat->cs_tfm_mutex);
346 rc = -EINVAL;
347 goto out;
348 }
349 ecryptfs_printk(KERN_DEBUG, "Encrypting [%d] bytes.\n", size);
8bba066f 350 crypto_blkcipher_encrypt_iv(&desc, dest_sg, src_sg, size);
237fead6
MH
351 mutex_unlock(&crypt_stat->cs_tfm_mutex);
352out:
353 return rc;
354}
355
356static void
357ecryptfs_extent_to_lwr_pg_idx_and_offset(unsigned long *lower_page_idx,
358 int *byte_offset,
359 struct ecryptfs_crypt_stat *crypt_stat,
360 unsigned long extent_num)
361{
362 unsigned long lower_extent_num;
363 int extents_occupied_by_headers_at_front;
364 int bytes_occupied_by_headers_at_front;
365 int extent_offset;
366 int extents_per_page;
367
368 bytes_occupied_by_headers_at_front =
45eaab79
MH
369 (crypt_stat->extent_size
370 * crypt_stat->num_header_extents_at_front);
237fead6
MH
371 extents_occupied_by_headers_at_front =
372 ( bytes_occupied_by_headers_at_front
373 / crypt_stat->extent_size );
374 lower_extent_num = extents_occupied_by_headers_at_front + extent_num;
375 extents_per_page = PAGE_CACHE_SIZE / crypt_stat->extent_size;
376 (*lower_page_idx) = lower_extent_num / extents_per_page;
377 extent_offset = lower_extent_num % extents_per_page;
378 (*byte_offset) = extent_offset * crypt_stat->extent_size;
45eaab79
MH
379 ecryptfs_printk(KERN_DEBUG, " * crypt_stat->extent_size = "
380 "[%d]\n", crypt_stat->extent_size);
237fead6
MH
381 ecryptfs_printk(KERN_DEBUG, " * crypt_stat->"
382 "num_header_extents_at_front = [%d]\n",
383 crypt_stat->num_header_extents_at_front);
384 ecryptfs_printk(KERN_DEBUG, " * extents_occupied_by_headers_at_"
385 "front = [%d]\n", extents_occupied_by_headers_at_front);
386 ecryptfs_printk(KERN_DEBUG, " * lower_extent_num = [0x%.16x]\n",
387 lower_extent_num);
388 ecryptfs_printk(KERN_DEBUG, " * extents_per_page = [%d]\n",
389 extents_per_page);
390 ecryptfs_printk(KERN_DEBUG, " * (*lower_page_idx) = [0x%.16x]\n",
391 (*lower_page_idx));
392 ecryptfs_printk(KERN_DEBUG, " * extent_offset = [%d]\n",
393 extent_offset);
394 ecryptfs_printk(KERN_DEBUG, " * (*byte_offset) = [%d]\n",
395 (*byte_offset));
396}
397
398static int ecryptfs_write_out_page(struct ecryptfs_page_crypt_context *ctx,
399 struct page *lower_page,
400 struct inode *lower_inode,
401 int byte_offset_in_page, int bytes_to_write)
402{
403 int rc = 0;
404
405 if (ctx->mode == ECRYPTFS_PREPARE_COMMIT_MODE) {
406 rc = ecryptfs_commit_lower_page(lower_page, lower_inode,
407 ctx->param.lower_file,
408 byte_offset_in_page,
409 bytes_to_write);
410 if (rc) {
411 ecryptfs_printk(KERN_ERR, "Error calling lower "
412 "commit; rc = [%d]\n", rc);
413 goto out;
414 }
415 } else {
416 rc = ecryptfs_writepage_and_release_lower_page(lower_page,
417 lower_inode,
418 ctx->param.wbc);
419 if (rc) {
420 ecryptfs_printk(KERN_ERR, "Error calling lower "
421 "writepage(); rc = [%d]\n", rc);
422 goto out;
423 }
424 }
425out:
426 return rc;
427}
428
429static int ecryptfs_read_in_page(struct ecryptfs_page_crypt_context *ctx,
430 struct page **lower_page,
431 struct inode *lower_inode,
432 unsigned long lower_page_idx,
433 int byte_offset_in_page)
434{
435 int rc = 0;
436
437 if (ctx->mode == ECRYPTFS_PREPARE_COMMIT_MODE) {
438 /* TODO: Limit this to only the data extents that are
439 * needed */
440 rc = ecryptfs_get_lower_page(lower_page, lower_inode,
441 ctx->param.lower_file,
442 lower_page_idx,
443 byte_offset_in_page,
444 (PAGE_CACHE_SIZE
445 - byte_offset_in_page));
446 if (rc) {
447 ecryptfs_printk(
448 KERN_ERR, "Error attempting to grab, map, "
449 "and prepare_write lower page with index "
450 "[0x%.16x]; rc = [%d]\n", lower_page_idx, rc);
451 goto out;
452 }
453 } else {
9d8b8ce5
MH
454 *lower_page = grab_cache_page(lower_inode->i_mapping,
455 lower_page_idx);
456 if (!(*lower_page)) {
457 rc = -EINVAL;
237fead6
MH
458 ecryptfs_printk(
459 KERN_ERR, "Error attempting to grab and map "
460 "lower page with index [0x%.16x]; rc = [%d]\n",
461 lower_page_idx, rc);
462 goto out;
463 }
464 }
465out:
466 return rc;
467}
468
0216f7f7
MH
469/**
470 * ecryptfs_lower_offset_for_extent
471 *
472 * Convert an eCryptfs page index into a lower byte offset
473 */
474void ecryptfs_lower_offset_for_extent(loff_t *offset, loff_t extent_num,
475 struct ecryptfs_crypt_stat *crypt_stat)
476{
477 (*offset) = ((crypt_stat->extent_size
478 * crypt_stat->num_header_extents_at_front)
479 + (crypt_stat->extent_size * extent_num));
480}
481
482/**
483 * ecryptfs_encrypt_extent
484 * @enc_extent_page: Allocated page into which to encrypt the data in
485 * @page
486 * @crypt_stat: crypt_stat containing cryptographic context for the
487 * encryption operation
488 * @page: Page containing plaintext data extent to encrypt
489 * @extent_offset: Page extent offset for use in generating IV
490 *
491 * Encrypts one extent of data.
492 *
493 * Return zero on success; non-zero otherwise
494 */
495static int ecryptfs_encrypt_extent(struct page *enc_extent_page,
496 struct ecryptfs_crypt_stat *crypt_stat,
497 struct page *page,
498 unsigned long extent_offset)
499{
500 unsigned long extent_base;
501 char extent_iv[ECRYPTFS_MAX_IV_BYTES];
502 int rc;
503
504 extent_base = (page->index
505 * (PAGE_CACHE_SIZE / crypt_stat->extent_size));
506 rc = ecryptfs_derive_iv(extent_iv, crypt_stat,
507 (extent_base + extent_offset));
508 if (rc) {
509 ecryptfs_printk(KERN_ERR, "Error attempting to "
510 "derive IV for extent [0x%.16x]; "
511 "rc = [%d]\n", (extent_base + extent_offset),
512 rc);
513 goto out;
514 }
515 if (unlikely(ecryptfs_verbosity > 0)) {
516 ecryptfs_printk(KERN_DEBUG, "Encrypting extent "
517 "with iv:\n");
518 ecryptfs_dump_hex(extent_iv, crypt_stat->iv_bytes);
519 ecryptfs_printk(KERN_DEBUG, "First 8 bytes before "
520 "encryption:\n");
521 ecryptfs_dump_hex((char *)
522 (page_address(page)
523 + (extent_offset * crypt_stat->extent_size)),
524 8);
525 }
526 rc = ecryptfs_encrypt_page_offset(crypt_stat, enc_extent_page, 0,
527 page, (extent_offset
528 * crypt_stat->extent_size),
529 crypt_stat->extent_size, extent_iv);
530 if (rc < 0) {
531 printk(KERN_ERR "%s: Error attempting to encrypt page with "
532 "page->index = [%ld], extent_offset = [%ld]; "
533 "rc = [%d]\n", __FUNCTION__, page->index, extent_offset,
534 rc);
535 goto out;
536 }
537 rc = 0;
538 if (unlikely(ecryptfs_verbosity > 0)) {
539 ecryptfs_printk(KERN_DEBUG, "Encrypt extent [0x%.16x]; "
540 "rc = [%d]\n", (extent_base + extent_offset),
541 rc);
542 ecryptfs_printk(KERN_DEBUG, "First 8 bytes after "
543 "encryption:\n");
544 ecryptfs_dump_hex((char *)(page_address(enc_extent_page)), 8);
545 }
546out:
547 return rc;
548}
549
237fead6
MH
550/**
551 * ecryptfs_encrypt_page
0216f7f7
MH
552 * @page: Page mapped from the eCryptfs inode for the file; contains
553 * decrypted content that needs to be encrypted (to a temporary
554 * page; not in place) and written out to the lower file
237fead6
MH
555 *
556 * Encrypt an eCryptfs page. This is done on a per-extent basis. Note
557 * that eCryptfs pages may straddle the lower pages -- for instance,
558 * if the file was created on a machine with an 8K page size
559 * (resulting in an 8K header), and then the file is copied onto a
560 * host with a 32K page size, then when reading page 0 of the eCryptfs
561 * file, 24K of page 0 of the lower file will be read and decrypted,
562 * and then 8K of page 1 of the lower file will be read and decrypted.
563 *
237fead6
MH
564 * Returns zero on success; negative on error
565 */
0216f7f7 566int ecryptfs_encrypt_page(struct page *page)
237fead6 567{
0216f7f7 568 struct inode *ecryptfs_inode;
237fead6 569 struct ecryptfs_crypt_stat *crypt_stat;
0216f7f7
MH
570 char *enc_extent_virt = NULL;
571 struct page *enc_extent_page;
572 loff_t extent_offset;
237fead6 573 int rc = 0;
0216f7f7
MH
574
575 ecryptfs_inode = page->mapping->host;
576 crypt_stat =
577 &(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
e2bd99ec 578 if (!(crypt_stat->flags & ECRYPTFS_ENCRYPTED)) {
0216f7f7
MH
579 rc = ecryptfs_write_lower_page_segment(ecryptfs_inode, page,
580 0, PAGE_CACHE_SIZE);
237fead6 581 if (rc)
0216f7f7
MH
582 printk(KERN_ERR "%s: Error attempting to copy "
583 "page at index [%ld]\n", __FUNCTION__,
584 page->index);
237fead6
MH
585 goto out;
586 }
0216f7f7
MH
587 enc_extent_virt = kmalloc(PAGE_CACHE_SIZE, GFP_USER);
588 if (!enc_extent_virt) {
589 rc = -ENOMEM;
590 ecryptfs_printk(KERN_ERR, "Error allocating memory for "
591 "encrypted extent\n");
592 goto out;
593 }
594 enc_extent_page = virt_to_page(enc_extent_virt);
595 for (extent_offset = 0;
596 extent_offset < (PAGE_CACHE_SIZE / crypt_stat->extent_size);
597 extent_offset++) {
598 loff_t offset;
599
600 rc = ecryptfs_encrypt_extent(enc_extent_page, crypt_stat, page,
601 extent_offset);
237fead6 602 if (rc) {
0216f7f7
MH
603 printk(KERN_ERR "%s: Error encrypting extent; "
604 "rc = [%d]\n", __FUNCTION__, rc);
237fead6
MH
605 goto out;
606 }
0216f7f7
MH
607 ecryptfs_lower_offset_for_extent(
608 &offset, ((page->index * (PAGE_CACHE_SIZE
609 / crypt_stat->extent_size))
610 + extent_offset), crypt_stat);
611 rc = ecryptfs_write_lower(ecryptfs_inode, enc_extent_virt,
612 offset, crypt_stat->extent_size);
613 if (rc) {
614 ecryptfs_printk(KERN_ERR, "Error attempting "
615 "to write lower page; rc = [%d]"
616 "\n", rc);
617 goto out;
237fead6 618 }
237fead6
MH
619 extent_offset++;
620 }
0216f7f7
MH
621out:
622 kfree(enc_extent_virt);
623 return rc;
624}
625
626static int ecryptfs_decrypt_extent(struct page *page,
627 struct ecryptfs_crypt_stat *crypt_stat,
628 struct page *enc_extent_page,
629 unsigned long extent_offset)
630{
631 unsigned long extent_base;
632 char extent_iv[ECRYPTFS_MAX_IV_BYTES];
633 int rc;
634
635 extent_base = (page->index
636 * (PAGE_CACHE_SIZE / crypt_stat->extent_size));
637 rc = ecryptfs_derive_iv(extent_iv, crypt_stat,
638 (extent_base + extent_offset));
237fead6 639 if (rc) {
0216f7f7
MH
640 ecryptfs_printk(KERN_ERR, "Error attempting to "
641 "derive IV for extent [0x%.16x]; "
642 "rc = [%d]\n", (extent_base + extent_offset),
643 rc);
644 goto out;
645 }
646 if (unlikely(ecryptfs_verbosity > 0)) {
647 ecryptfs_printk(KERN_DEBUG, "Decrypting extent "
648 "with iv:\n");
649 ecryptfs_dump_hex(extent_iv, crypt_stat->iv_bytes);
650 ecryptfs_printk(KERN_DEBUG, "First 8 bytes before "
651 "decryption:\n");
652 ecryptfs_dump_hex((char *)
653 (page_address(enc_extent_page)
654 + (extent_offset * crypt_stat->extent_size)),
655 8);
656 }
657 rc = ecryptfs_decrypt_page_offset(crypt_stat, page,
658 (extent_offset
659 * crypt_stat->extent_size),
660 enc_extent_page, 0,
661 crypt_stat->extent_size, extent_iv);
662 if (rc < 0) {
663 printk(KERN_ERR "%s: Error attempting to decrypt to page with "
664 "page->index = [%ld], extent_offset = [%ld]; "
665 "rc = [%d]\n", __FUNCTION__, page->index, extent_offset,
666 rc);
667 goto out;
668 }
669 rc = 0;
670 if (unlikely(ecryptfs_verbosity > 0)) {
671 ecryptfs_printk(KERN_DEBUG, "Decrypt extent [0x%.16x]; "
672 "rc = [%d]\n", (extent_base + extent_offset),
673 rc);
674 ecryptfs_printk(KERN_DEBUG, "First 8 bytes after "
675 "decryption:\n");
676 ecryptfs_dump_hex((char *)(page_address(page)
677 + (extent_offset
678 * crypt_stat->extent_size)), 8);
237fead6
MH
679 }
680out:
681 return rc;
682}
683
684/**
685 * ecryptfs_decrypt_page
0216f7f7
MH
686 * @page: Page mapped from the eCryptfs inode for the file; data read
687 * and decrypted from the lower file will be written into this
688 * page
237fead6
MH
689 *
690 * Decrypt an eCryptfs page. This is done on a per-extent basis. Note
691 * that eCryptfs pages may straddle the lower pages -- for instance,
692 * if the file was created on a machine with an 8K page size
693 * (resulting in an 8K header), and then the file is copied onto a
694 * host with a 32K page size, then when reading page 0 of the eCryptfs
695 * file, 24K of page 0 of the lower file will be read and decrypted,
696 * and then 8K of page 1 of the lower file will be read and decrypted.
697 *
698 * Returns zero on success; negative on error
699 */
0216f7f7 700int ecryptfs_decrypt_page(struct page *page)
237fead6 701{
0216f7f7 702 struct inode *ecryptfs_inode;
237fead6 703 struct ecryptfs_crypt_stat *crypt_stat;
0216f7f7
MH
704 char *enc_extent_virt = NULL;
705 struct page *enc_extent_page;
706 unsigned long extent_offset;
237fead6 707 int rc = 0;
237fead6 708
0216f7f7
MH
709 ecryptfs_inode = page->mapping->host;
710 crypt_stat =
711 &(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
e2bd99ec 712 if (!(crypt_stat->flags & ECRYPTFS_ENCRYPTED)) {
0216f7f7
MH
713 rc = ecryptfs_read_lower_page_segment(page, page->index, 0,
714 PAGE_CACHE_SIZE,
715 ecryptfs_inode);
237fead6 716 if (rc)
0216f7f7
MH
717 printk(KERN_ERR "%s: Error attempting to copy "
718 "page at index [%ld]\n", __FUNCTION__,
719 page->index);
720 goto out_clear_uptodate;
237fead6 721 }
0216f7f7
MH
722 enc_extent_virt = kmalloc(PAGE_CACHE_SIZE, GFP_USER);
723 if (!enc_extent_virt) {
237fead6 724 rc = -ENOMEM;
0216f7f7
MH
725 ecryptfs_printk(KERN_ERR, "Error allocating memory for "
726 "encrypted extent\n");
727 goto out_clear_uptodate;
237fead6 728 }
0216f7f7
MH
729 enc_extent_page = virt_to_page(enc_extent_virt);
730 for (extent_offset = 0;
731 extent_offset < (PAGE_CACHE_SIZE / crypt_stat->extent_size);
732 extent_offset++) {
733 loff_t offset;
734
735 ecryptfs_lower_offset_for_extent(
736 &offset, ((page->index * (PAGE_CACHE_SIZE
737 / crypt_stat->extent_size))
738 + extent_offset), crypt_stat);
739 rc = ecryptfs_read_lower(enc_extent_virt, offset,
740 crypt_stat->extent_size,
741 ecryptfs_inode);
237fead6 742 if (rc) {
0216f7f7
MH
743 ecryptfs_printk(KERN_ERR, "Error attempting "
744 "to read lower page; rc = [%d]"
745 "\n", rc);
746 goto out_clear_uptodate;
237fead6 747 }
0216f7f7
MH
748 rc = ecryptfs_decrypt_extent(page, crypt_stat, enc_extent_page,
749 extent_offset);
750 if (rc) {
751 printk(KERN_ERR "%s: Error encrypting extent; "
752 "rc = [%d]\n", __FUNCTION__, rc);
753 goto out_clear_uptodate;
237fead6
MH
754 }
755 extent_offset++;
756 }
0216f7f7
MH
757 SetPageUptodate(page);
758 goto out;
759out_clear_uptodate:
760 ClearPageUptodate(page);
237fead6 761out:
0216f7f7 762 kfree(enc_extent_virt);
237fead6
MH
763 return rc;
764}
765
766/**
767 * decrypt_scatterlist
22e78faf
MH
768 * @crypt_stat: Cryptographic context
769 * @dest_sg: The destination scatterlist to decrypt into
770 * @src_sg: The source scatterlist to decrypt from
771 * @size: The number of bytes to decrypt
772 * @iv: The initialization vector to use for the decryption
237fead6
MH
773 *
774 * Returns the number of bytes decrypted; negative value on error
775 */
776static int decrypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat,
777 struct scatterlist *dest_sg,
778 struct scatterlist *src_sg, int size,
779 unsigned char *iv)
780{
8bba066f
MH
781 struct blkcipher_desc desc = {
782 .tfm = crypt_stat->tfm,
783 .info = iv,
784 .flags = CRYPTO_TFM_REQ_MAY_SLEEP
785 };
237fead6
MH
786 int rc = 0;
787
788 /* Consider doing this once, when the file is opened */
789 mutex_lock(&crypt_stat->cs_tfm_mutex);
8bba066f
MH
790 rc = crypto_blkcipher_setkey(crypt_stat->tfm, crypt_stat->key,
791 crypt_stat->key_size);
237fead6
MH
792 if (rc) {
793 ecryptfs_printk(KERN_ERR, "Error setting key; rc = [%d]\n",
794 rc);
795 mutex_unlock(&crypt_stat->cs_tfm_mutex);
796 rc = -EINVAL;
797 goto out;
798 }
799 ecryptfs_printk(KERN_DEBUG, "Decrypting [%d] bytes.\n", size);
8bba066f 800 rc = crypto_blkcipher_decrypt_iv(&desc, dest_sg, src_sg, size);
237fead6
MH
801 mutex_unlock(&crypt_stat->cs_tfm_mutex);
802 if (rc) {
803 ecryptfs_printk(KERN_ERR, "Error decrypting; rc = [%d]\n",
804 rc);
805 goto out;
806 }
807 rc = size;
808out:
809 return rc;
810}
811
812/**
813 * ecryptfs_encrypt_page_offset
22e78faf
MH
814 * @crypt_stat: The cryptographic context
815 * @dst_page: The page to encrypt into
816 * @dst_offset: The offset in the page to encrypt into
817 * @src_page: The page to encrypt from
818 * @src_offset: The offset in the page to encrypt from
819 * @size: The number of bytes to encrypt
820 * @iv: The initialization vector to use for the encryption
237fead6
MH
821 *
822 * Returns the number of bytes encrypted
823 */
824static int
825ecryptfs_encrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
826 struct page *dst_page, int dst_offset,
827 struct page *src_page, int src_offset, int size,
828 unsigned char *iv)
829{
830 struct scatterlist src_sg, dst_sg;
831
832 src_sg.page = src_page;
833 src_sg.offset = src_offset;
834 src_sg.length = size;
835 dst_sg.page = dst_page;
836 dst_sg.offset = dst_offset;
837 dst_sg.length = size;
838 return encrypt_scatterlist(crypt_stat, &dst_sg, &src_sg, size, iv);
839}
840
841/**
842 * ecryptfs_decrypt_page_offset
22e78faf
MH
843 * @crypt_stat: The cryptographic context
844 * @dst_page: The page to decrypt into
845 * @dst_offset: The offset in the page to decrypt into
846 * @src_page: The page to decrypt from
847 * @src_offset: The offset in the page to decrypt from
848 * @size: The number of bytes to decrypt
849 * @iv: The initialization vector to use for the decryption
237fead6
MH
850 *
851 * Returns the number of bytes decrypted
852 */
853static int
854ecryptfs_decrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
855 struct page *dst_page, int dst_offset,
856 struct page *src_page, int src_offset, int size,
857 unsigned char *iv)
858{
859 struct scatterlist src_sg, dst_sg;
860
861 src_sg.page = src_page;
862 src_sg.offset = src_offset;
863 src_sg.length = size;
864 dst_sg.page = dst_page;
865 dst_sg.offset = dst_offset;
866 dst_sg.length = size;
867 return decrypt_scatterlist(crypt_stat, &dst_sg, &src_sg, size, iv);
868}
869
870#define ECRYPTFS_MAX_SCATTERLIST_LEN 4
871
872/**
873 * ecryptfs_init_crypt_ctx
874 * @crypt_stat: Uninitilized crypt stats structure
875 *
876 * Initialize the crypto context.
877 *
878 * TODO: Performance: Keep a cache of initialized cipher contexts;
879 * only init if needed
880 */
881int ecryptfs_init_crypt_ctx(struct ecryptfs_crypt_stat *crypt_stat)
882{
8bba066f 883 char *full_alg_name;
237fead6
MH
884 int rc = -EINVAL;
885
886 if (!crypt_stat->cipher) {
887 ecryptfs_printk(KERN_ERR, "No cipher specified\n");
888 goto out;
889 }
890 ecryptfs_printk(KERN_DEBUG,
891 "Initializing cipher [%s]; strlen = [%d]; "
892 "key_size_bits = [%d]\n",
893 crypt_stat->cipher, (int)strlen(crypt_stat->cipher),
894 crypt_stat->key_size << 3);
895 if (crypt_stat->tfm) {
896 rc = 0;
897 goto out;
898 }
899 mutex_lock(&crypt_stat->cs_tfm_mutex);
8bba066f
MH
900 rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name,
901 crypt_stat->cipher, "cbc");
902 if (rc)
903 goto out;
904 crypt_stat->tfm = crypto_alloc_blkcipher(full_alg_name, 0,
905 CRYPTO_ALG_ASYNC);
906 kfree(full_alg_name);
de88777e
AM
907 if (IS_ERR(crypt_stat->tfm)) {
908 rc = PTR_ERR(crypt_stat->tfm);
237fead6
MH
909 ecryptfs_printk(KERN_ERR, "cryptfs: init_crypt_ctx(): "
910 "Error initializing cipher [%s]\n",
911 crypt_stat->cipher);
8bba066f 912 mutex_unlock(&crypt_stat->cs_tfm_mutex);
237fead6
MH
913 goto out;
914 }
f1ddcaf3 915 crypto_blkcipher_set_flags(crypt_stat->tfm, CRYPTO_TFM_REQ_WEAK_KEY);
8bba066f 916 mutex_unlock(&crypt_stat->cs_tfm_mutex);
237fead6
MH
917 rc = 0;
918out:
919 return rc;
920}
921
922static void set_extent_mask_and_shift(struct ecryptfs_crypt_stat *crypt_stat)
923{
924 int extent_size_tmp;
925
926 crypt_stat->extent_mask = 0xFFFFFFFF;
927 crypt_stat->extent_shift = 0;
928 if (crypt_stat->extent_size == 0)
929 return;
930 extent_size_tmp = crypt_stat->extent_size;
931 while ((extent_size_tmp & 0x01) == 0) {
932 extent_size_tmp >>= 1;
933 crypt_stat->extent_mask <<= 1;
934 crypt_stat->extent_shift++;
935 }
936}
937
938void ecryptfs_set_default_sizes(struct ecryptfs_crypt_stat *crypt_stat)
939{
940 /* Default values; may be overwritten as we are parsing the
941 * packets. */
942 crypt_stat->extent_size = ECRYPTFS_DEFAULT_EXTENT_SIZE;
943 set_extent_mask_and_shift(crypt_stat);
944 crypt_stat->iv_bytes = ECRYPTFS_DEFAULT_IV_BYTES;
dd2a3b7a
MH
945 if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
946 crypt_stat->num_header_extents_at_front = 0;
45eaab79
MH
947 else {
948 if (PAGE_CACHE_SIZE <= ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)
949 crypt_stat->num_header_extents_at_front =
950 (ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE
951 / crypt_stat->extent_size);
952 else
953 crypt_stat->num_header_extents_at_front =
954 (PAGE_CACHE_SIZE / crypt_stat->extent_size);
955 }
237fead6
MH
956}
957
958/**
959 * ecryptfs_compute_root_iv
960 * @crypt_stats
961 *
962 * On error, sets the root IV to all 0's.
963 */
964int ecryptfs_compute_root_iv(struct ecryptfs_crypt_stat *crypt_stat)
965{
966 int rc = 0;
967 char dst[MD5_DIGEST_SIZE];
968
969 BUG_ON(crypt_stat->iv_bytes > MD5_DIGEST_SIZE);
970 BUG_ON(crypt_stat->iv_bytes <= 0);
e2bd99ec 971 if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
237fead6
MH
972 rc = -EINVAL;
973 ecryptfs_printk(KERN_WARNING, "Session key not valid; "
974 "cannot generate root IV\n");
975 goto out;
976 }
977 rc = ecryptfs_calculate_md5(dst, crypt_stat, crypt_stat->key,
978 crypt_stat->key_size);
979 if (rc) {
980 ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
981 "MD5 while generating root IV\n");
982 goto out;
983 }
984 memcpy(crypt_stat->root_iv, dst, crypt_stat->iv_bytes);
985out:
986 if (rc) {
987 memset(crypt_stat->root_iv, 0, crypt_stat->iv_bytes);
e2bd99ec 988 crypt_stat->flags |= ECRYPTFS_SECURITY_WARNING;
237fead6
MH
989 }
990 return rc;
991}
992
993static void ecryptfs_generate_new_key(struct ecryptfs_crypt_stat *crypt_stat)
994{
995 get_random_bytes(crypt_stat->key, crypt_stat->key_size);
e2bd99ec 996 crypt_stat->flags |= ECRYPTFS_KEY_VALID;
237fead6
MH
997 ecryptfs_compute_root_iv(crypt_stat);
998 if (unlikely(ecryptfs_verbosity > 0)) {
999 ecryptfs_printk(KERN_DEBUG, "Generated new session key:\n");
1000 ecryptfs_dump_hex(crypt_stat->key,
1001 crypt_stat->key_size);
1002 }
1003}
1004
17398957
MH
1005/**
1006 * ecryptfs_copy_mount_wide_flags_to_inode_flags
22e78faf
MH
1007 * @crypt_stat: The inode's cryptographic context
1008 * @mount_crypt_stat: The mount point's cryptographic context
17398957
MH
1009 *
1010 * This function propagates the mount-wide flags to individual inode
1011 * flags.
1012 */
1013static void ecryptfs_copy_mount_wide_flags_to_inode_flags(
1014 struct ecryptfs_crypt_stat *crypt_stat,
1015 struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
1016{
1017 if (mount_crypt_stat->flags & ECRYPTFS_XATTR_METADATA_ENABLED)
1018 crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
1019 if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)
1020 crypt_stat->flags |= ECRYPTFS_VIEW_AS_ENCRYPTED;
1021}
1022
f4aad16a
MH
1023static int ecryptfs_copy_mount_wide_sigs_to_inode_sigs(
1024 struct ecryptfs_crypt_stat *crypt_stat,
1025 struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
1026{
1027 struct ecryptfs_global_auth_tok *global_auth_tok;
1028 int rc = 0;
1029
1030 mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
1031 list_for_each_entry(global_auth_tok,
1032 &mount_crypt_stat->global_auth_tok_list,
1033 mount_crypt_stat_list) {
1034 rc = ecryptfs_add_keysig(crypt_stat, global_auth_tok->sig);
1035 if (rc) {
1036 printk(KERN_ERR "Error adding keysig; rc = [%d]\n", rc);
1037 mutex_unlock(
1038 &mount_crypt_stat->global_auth_tok_list_mutex);
1039 goto out;
1040 }
1041 }
1042 mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
1043out:
1044 return rc;
1045}
1046
237fead6
MH
1047/**
1048 * ecryptfs_set_default_crypt_stat_vals
22e78faf
MH
1049 * @crypt_stat: The inode's cryptographic context
1050 * @mount_crypt_stat: The mount point's cryptographic context
237fead6
MH
1051 *
1052 * Default values in the event that policy does not override them.
1053 */
1054static void ecryptfs_set_default_crypt_stat_vals(
1055 struct ecryptfs_crypt_stat *crypt_stat,
1056 struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
1057{
17398957
MH
1058 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
1059 mount_crypt_stat);
237fead6
MH
1060 ecryptfs_set_default_sizes(crypt_stat);
1061 strcpy(crypt_stat->cipher, ECRYPTFS_DEFAULT_CIPHER);
1062 crypt_stat->key_size = ECRYPTFS_DEFAULT_KEY_BYTES;
e2bd99ec 1063 crypt_stat->flags &= ~(ECRYPTFS_KEY_VALID);
237fead6
MH
1064 crypt_stat->file_version = ECRYPTFS_FILE_VERSION;
1065 crypt_stat->mount_crypt_stat = mount_crypt_stat;
1066}
1067
1068/**
1069 * ecryptfs_new_file_context
22e78faf 1070 * @ecryptfs_dentry: The eCryptfs dentry
237fead6
MH
1071 *
1072 * If the crypto context for the file has not yet been established,
1073 * this is where we do that. Establishing a new crypto context
1074 * involves the following decisions:
1075 * - What cipher to use?
1076 * - What set of authentication tokens to use?
1077 * Here we just worry about getting enough information into the
1078 * authentication tokens so that we know that they are available.
1079 * We associate the available authentication tokens with the new file
1080 * via the set of signatures in the crypt_stat struct. Later, when
1081 * the headers are actually written out, we may again defer to
1082 * userspace to perform the encryption of the session key; for the
1083 * foreseeable future, this will be the case with public key packets.
1084 *
1085 * Returns zero on success; non-zero otherwise
1086 */
237fead6
MH
1087int ecryptfs_new_file_context(struct dentry *ecryptfs_dentry)
1088{
237fead6
MH
1089 struct ecryptfs_crypt_stat *crypt_stat =
1090 &ecryptfs_inode_to_private(ecryptfs_dentry->d_inode)->crypt_stat;
1091 struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
1092 &ecryptfs_superblock_to_private(
1093 ecryptfs_dentry->d_sb)->mount_crypt_stat;
1094 int cipher_name_len;
f4aad16a 1095 int rc = 0;
237fead6
MH
1096
1097 ecryptfs_set_default_crypt_stat_vals(crypt_stat, mount_crypt_stat);
af655dc6 1098 crypt_stat->flags |= (ECRYPTFS_ENCRYPTED | ECRYPTFS_KEY_VALID);
f4aad16a
MH
1099 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
1100 mount_crypt_stat);
1101 rc = ecryptfs_copy_mount_wide_sigs_to_inode_sigs(crypt_stat,
1102 mount_crypt_stat);
1103 if (rc) {
1104 printk(KERN_ERR "Error attempting to copy mount-wide key sigs "
1105 "to the inode key sigs; rc = [%d]\n", rc);
1106 goto out;
1107 }
1108 cipher_name_len =
1109 strlen(mount_crypt_stat->global_default_cipher_name);
1110 memcpy(crypt_stat->cipher,
1111 mount_crypt_stat->global_default_cipher_name,
1112 cipher_name_len);
1113 crypt_stat->cipher[cipher_name_len] = '\0';
1114 crypt_stat->key_size =
1115 mount_crypt_stat->global_default_cipher_key_size;
1116 ecryptfs_generate_new_key(crypt_stat);
237fead6
MH
1117 rc = ecryptfs_init_crypt_ctx(crypt_stat);
1118 if (rc)
1119 ecryptfs_printk(KERN_ERR, "Error initializing cryptographic "
1120 "context for cipher [%s]: rc = [%d]\n",
1121 crypt_stat->cipher, rc);
f4aad16a 1122out:
237fead6
MH
1123 return rc;
1124}
1125
1126/**
1127 * contains_ecryptfs_marker - check for the ecryptfs marker
1128 * @data: The data block in which to check
1129 *
1130 * Returns one if marker found; zero if not found
1131 */
dd2a3b7a 1132static int contains_ecryptfs_marker(char *data)
237fead6
MH
1133{
1134 u32 m_1, m_2;
1135
1136 memcpy(&m_1, data, 4);
1137 m_1 = be32_to_cpu(m_1);
1138 memcpy(&m_2, (data + 4), 4);
1139 m_2 = be32_to_cpu(m_2);
1140 if ((m_1 ^ MAGIC_ECRYPTFS_MARKER) == m_2)
1141 return 1;
1142 ecryptfs_printk(KERN_DEBUG, "m_1 = [0x%.8x]; m_2 = [0x%.8x]; "
1143 "MAGIC_ECRYPTFS_MARKER = [0x%.8x]\n", m_1, m_2,
1144 MAGIC_ECRYPTFS_MARKER);
1145 ecryptfs_printk(KERN_DEBUG, "(m_1 ^ MAGIC_ECRYPTFS_MARKER) = "
1146 "[0x%.8x]\n", (m_1 ^ MAGIC_ECRYPTFS_MARKER));
1147 return 0;
1148}
1149
1150struct ecryptfs_flag_map_elem {
1151 u32 file_flag;
1152 u32 local_flag;
1153};
1154
1155/* Add support for additional flags by adding elements here. */
1156static struct ecryptfs_flag_map_elem ecryptfs_flag_map[] = {
1157 {0x00000001, ECRYPTFS_ENABLE_HMAC},
dd2a3b7a
MH
1158 {0x00000002, ECRYPTFS_ENCRYPTED},
1159 {0x00000004, ECRYPTFS_METADATA_IN_XATTR}
237fead6
MH
1160};
1161
1162/**
1163 * ecryptfs_process_flags
22e78faf 1164 * @crypt_stat: The cryptographic context
237fead6
MH
1165 * @page_virt: Source data to be parsed
1166 * @bytes_read: Updated with the number of bytes read
1167 *
1168 * Returns zero on success; non-zero if the flag set is invalid
1169 */
1170static int ecryptfs_process_flags(struct ecryptfs_crypt_stat *crypt_stat,
1171 char *page_virt, int *bytes_read)
1172{
1173 int rc = 0;
1174 int i;
1175 u32 flags;
1176
1177 memcpy(&flags, page_virt, 4);
1178 flags = be32_to_cpu(flags);
1179 for (i = 0; i < ((sizeof(ecryptfs_flag_map)
1180 / sizeof(struct ecryptfs_flag_map_elem))); i++)
1181 if (flags & ecryptfs_flag_map[i].file_flag) {
e2bd99ec 1182 crypt_stat->flags |= ecryptfs_flag_map[i].local_flag;
237fead6 1183 } else
e2bd99ec 1184 crypt_stat->flags &= ~(ecryptfs_flag_map[i].local_flag);
237fead6
MH
1185 /* Version is in top 8 bits of the 32-bit flag vector */
1186 crypt_stat->file_version = ((flags >> 24) & 0xFF);
1187 (*bytes_read) = 4;
1188 return rc;
1189}
1190
1191/**
1192 * write_ecryptfs_marker
1193 * @page_virt: The pointer to in a page to begin writing the marker
1194 * @written: Number of bytes written
1195 *
1196 * Marker = 0x3c81b7f5
1197 */
1198static void write_ecryptfs_marker(char *page_virt, size_t *written)
1199{
1200 u32 m_1, m_2;
1201
1202 get_random_bytes(&m_1, (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2));
1203 m_2 = (m_1 ^ MAGIC_ECRYPTFS_MARKER);
1204 m_1 = cpu_to_be32(m_1);
1205 memcpy(page_virt, &m_1, (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2));
1206 m_2 = cpu_to_be32(m_2);
1207 memcpy(page_virt + (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2), &m_2,
1208 (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2));
1209 (*written) = MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
1210}
1211
1212static void
1213write_ecryptfs_flags(char *page_virt, struct ecryptfs_crypt_stat *crypt_stat,
1214 size_t *written)
1215{
1216 u32 flags = 0;
1217 int i;
1218
1219 for (i = 0; i < ((sizeof(ecryptfs_flag_map)
1220 / sizeof(struct ecryptfs_flag_map_elem))); i++)
e2bd99ec 1221 if (crypt_stat->flags & ecryptfs_flag_map[i].local_flag)
237fead6
MH
1222 flags |= ecryptfs_flag_map[i].file_flag;
1223 /* Version is in top 8 bits of the 32-bit flag vector */
1224 flags |= ((((u8)crypt_stat->file_version) << 24) & 0xFF000000);
1225 flags = cpu_to_be32(flags);
1226 memcpy(page_virt, &flags, 4);
1227 (*written) = 4;
1228}
1229
1230struct ecryptfs_cipher_code_str_map_elem {
1231 char cipher_str[16];
1232 u16 cipher_code;
1233};
1234
1235/* Add support for additional ciphers by adding elements here. The
1236 * cipher_code is whatever OpenPGP applicatoins use to identify the
1237 * ciphers. List in order of probability. */
1238static struct ecryptfs_cipher_code_str_map_elem
1239ecryptfs_cipher_code_str_map[] = {
1240 {"aes",RFC2440_CIPHER_AES_128 },
1241 {"blowfish", RFC2440_CIPHER_BLOWFISH},
1242 {"des3_ede", RFC2440_CIPHER_DES3_EDE},
1243 {"cast5", RFC2440_CIPHER_CAST_5},
1244 {"twofish", RFC2440_CIPHER_TWOFISH},
1245 {"cast6", RFC2440_CIPHER_CAST_6},
1246 {"aes", RFC2440_CIPHER_AES_192},
1247 {"aes", RFC2440_CIPHER_AES_256}
1248};
1249
1250/**
1251 * ecryptfs_code_for_cipher_string
22e78faf 1252 * @crypt_stat: The cryptographic context
237fead6
MH
1253 *
1254 * Returns zero on no match, or the cipher code on match
1255 */
1256u16 ecryptfs_code_for_cipher_string(struct ecryptfs_crypt_stat *crypt_stat)
1257{
1258 int i;
1259 u16 code = 0;
1260 struct ecryptfs_cipher_code_str_map_elem *map =
1261 ecryptfs_cipher_code_str_map;
1262
1263 if (strcmp(crypt_stat->cipher, "aes") == 0) {
1264 switch (crypt_stat->key_size) {
1265 case 16:
1266 code = RFC2440_CIPHER_AES_128;
1267 break;
1268 case 24:
1269 code = RFC2440_CIPHER_AES_192;
1270 break;
1271 case 32:
1272 code = RFC2440_CIPHER_AES_256;
1273 }
1274 } else {
1275 for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
1276 if (strcmp(crypt_stat->cipher, map[i].cipher_str) == 0){
1277 code = map[i].cipher_code;
1278 break;
1279 }
1280 }
1281 return code;
1282}
1283
1284/**
1285 * ecryptfs_cipher_code_to_string
1286 * @str: Destination to write out the cipher name
1287 * @cipher_code: The code to convert to cipher name string
1288 *
1289 * Returns zero on success
1290 */
1291int ecryptfs_cipher_code_to_string(char *str, u16 cipher_code)
1292{
1293 int rc = 0;
1294 int i;
1295
1296 str[0] = '\0';
1297 for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
1298 if (cipher_code == ecryptfs_cipher_code_str_map[i].cipher_code)
1299 strcpy(str, ecryptfs_cipher_code_str_map[i].cipher_str);
1300 if (str[0] == '\0') {
1301 ecryptfs_printk(KERN_WARNING, "Cipher code not recognized: "
1302 "[%d]\n", cipher_code);
1303 rc = -EINVAL;
1304 }
1305 return rc;
1306}
1307
1308/**
1309 * ecryptfs_read_header_region
22e78faf
MH
1310 * @data: The virtual address to write header region data into
1311 * @dentry: The lower dentry
1312 * @mnt: The lower VFS mount
237fead6
MH
1313 *
1314 * Returns zero on success; non-zero otherwise
1315 */
dd2a3b7a
MH
1316static int ecryptfs_read_header_region(char *data, struct dentry *dentry,
1317 struct vfsmount *mnt)
237fead6 1318{
7ff1d74f 1319 struct file *lower_file;
237fead6
MH
1320 mm_segment_t oldfs;
1321 int rc;
1322
5dda6992
MH
1323 rc = ecryptfs_open_lower_file(&lower_file, dentry, mnt, O_RDONLY);
1324 if (rc) {
7ff1d74f
MH
1325 printk(KERN_ERR
1326 "Error opening lower_file to read header region\n");
237fead6
MH
1327 goto out;
1328 }
7ff1d74f 1329 lower_file->f_pos = 0;
237fead6
MH
1330 oldfs = get_fs();
1331 set_fs(get_ds());
7ff1d74f
MH
1332 rc = lower_file->f_op->read(lower_file, (char __user *)data,
1333 ECRYPTFS_DEFAULT_EXTENT_SIZE, &lower_file->f_pos);
237fead6 1334 set_fs(oldfs);
5dda6992
MH
1335 rc = ecryptfs_close_lower_file(lower_file);
1336 if (rc) {
7ff1d74f
MH
1337 printk(KERN_ERR "Error closing lower_file\n");
1338 goto out;
1339 }
237fead6
MH
1340 rc = 0;
1341out:
1342 return rc;
1343}
1344
dd2a3b7a
MH
1345int ecryptfs_read_and_validate_header_region(char *data, struct dentry *dentry,
1346 struct vfsmount *mnt)
1347{
1348 int rc;
1349
1350 rc = ecryptfs_read_header_region(data, dentry, mnt);
1351 if (rc)
1352 goto out;
1353 if (!contains_ecryptfs_marker(data + ECRYPTFS_FILE_SIZE_BYTES))
1354 rc = -EINVAL;
1355out:
1356 return rc;
1357}
1358
1359
e77a56dd
MH
1360void
1361ecryptfs_write_header_metadata(char *virt,
1362 struct ecryptfs_crypt_stat *crypt_stat,
1363 size_t *written)
237fead6
MH
1364{
1365 u32 header_extent_size;
1366 u16 num_header_extents_at_front;
1367
45eaab79 1368 header_extent_size = (u32)crypt_stat->extent_size;
237fead6
MH
1369 num_header_extents_at_front =
1370 (u16)crypt_stat->num_header_extents_at_front;
1371 header_extent_size = cpu_to_be32(header_extent_size);
1372 memcpy(virt, &header_extent_size, 4);
1373 virt += 4;
1374 num_header_extents_at_front = cpu_to_be16(num_header_extents_at_front);
1375 memcpy(virt, &num_header_extents_at_front, 2);
1376 (*written) = 6;
1377}
1378
1379struct kmem_cache *ecryptfs_header_cache_0;
1380struct kmem_cache *ecryptfs_header_cache_1;
1381struct kmem_cache *ecryptfs_header_cache_2;
1382
1383/**
1384 * ecryptfs_write_headers_virt
22e78faf
MH
1385 * @page_virt: The virtual address to write the headers to
1386 * @size: Set to the number of bytes written by this function
1387 * @crypt_stat: The cryptographic context
1388 * @ecryptfs_dentry: The eCryptfs dentry
237fead6
MH
1389 *
1390 * Format version: 1
1391 *
1392 * Header Extent:
1393 * Octets 0-7: Unencrypted file size (big-endian)
1394 * Octets 8-15: eCryptfs special marker
1395 * Octets 16-19: Flags
1396 * Octet 16: File format version number (between 0 and 255)
1397 * Octets 17-18: Reserved
1398 * Octet 19: Bit 1 (lsb): Reserved
1399 * Bit 2: Encrypted?
1400 * Bits 3-8: Reserved
1401 * Octets 20-23: Header extent size (big-endian)
1402 * Octets 24-25: Number of header extents at front of file
1403 * (big-endian)
1404 * Octet 26: Begin RFC 2440 authentication token packet set
1405 * Data Extent 0:
1406 * Lower data (CBC encrypted)
1407 * Data Extent 1:
1408 * Lower data (CBC encrypted)
1409 * ...
1410 *
1411 * Returns zero on success
1412 */
dd2a3b7a
MH
1413static int ecryptfs_write_headers_virt(char *page_virt, size_t *size,
1414 struct ecryptfs_crypt_stat *crypt_stat,
1415 struct dentry *ecryptfs_dentry)
237fead6
MH
1416{
1417 int rc;
1418 size_t written;
1419 size_t offset;
1420
1421 offset = ECRYPTFS_FILE_SIZE_BYTES;
1422 write_ecryptfs_marker((page_virt + offset), &written);
1423 offset += written;
1424 write_ecryptfs_flags((page_virt + offset), crypt_stat, &written);
1425 offset += written;
e77a56dd
MH
1426 ecryptfs_write_header_metadata((page_virt + offset), crypt_stat,
1427 &written);
237fead6
MH
1428 offset += written;
1429 rc = ecryptfs_generate_key_packet_set((page_virt + offset), crypt_stat,
1430 ecryptfs_dentry, &written,
1431 PAGE_CACHE_SIZE - offset);
1432 if (rc)
1433 ecryptfs_printk(KERN_WARNING, "Error generating key packet "
1434 "set; rc = [%d]\n", rc);
dd2a3b7a
MH
1435 if (size) {
1436 offset += written;
1437 *size = offset;
1438 }
1439 return rc;
1440}
1441
22e78faf
MH
1442static int
1443ecryptfs_write_metadata_to_contents(struct ecryptfs_crypt_stat *crypt_stat,
1444 struct file *lower_file, char *page_virt)
dd2a3b7a
MH
1445{
1446 mm_segment_t oldfs;
1447 int current_header_page;
1448 int header_pages;
70456600
MH
1449 ssize_t size;
1450 int rc = 0;
dd2a3b7a
MH
1451
1452 lower_file->f_pos = 0;
1453 oldfs = get_fs();
1454 set_fs(get_ds());
70456600
MH
1455 size = vfs_write(lower_file, (char __user *)page_virt, PAGE_CACHE_SIZE,
1456 &lower_file->f_pos);
1457 if (size < 0) {
1458 rc = (int)size;
1459 printk(KERN_ERR "Error attempting to write lower page; "
1460 "rc = [%d]\n", rc);
1461 set_fs(oldfs);
1462 goto out;
1463 }
45eaab79 1464 header_pages = ((crypt_stat->extent_size
dd2a3b7a
MH
1465 * crypt_stat->num_header_extents_at_front)
1466 / PAGE_CACHE_SIZE);
1467 memset(page_virt, 0, PAGE_CACHE_SIZE);
1468 current_header_page = 1;
1469 while (current_header_page < header_pages) {
70456600
MH
1470 size = vfs_write(lower_file, (char __user *)page_virt,
1471 PAGE_CACHE_SIZE, &lower_file->f_pos);
1472 if (size < 0) {
1473 rc = (int)size;
1474 printk(KERN_ERR "Error attempting to write lower page; "
1475 "rc = [%d]\n", rc);
1476 set_fs(oldfs);
1477 goto out;
1478 }
dd2a3b7a
MH
1479 current_header_page++;
1480 }
1481 set_fs(oldfs);
70456600
MH
1482out:
1483 return rc;
dd2a3b7a
MH
1484}
1485
22e78faf
MH
1486static int
1487ecryptfs_write_metadata_to_xattr(struct dentry *ecryptfs_dentry,
1488 struct ecryptfs_crypt_stat *crypt_stat,
1489 char *page_virt, size_t size)
dd2a3b7a
MH
1490{
1491 int rc;
1492
1493 rc = ecryptfs_setxattr(ecryptfs_dentry, ECRYPTFS_XATTR_NAME, page_virt,
1494 size, 0);
237fead6
MH
1495 return rc;
1496}
1497
1498/**
dd2a3b7a 1499 * ecryptfs_write_metadata
22e78faf 1500 * @ecryptfs_dentry: The eCryptfs dentry
237fead6
MH
1501 * @lower_file: The lower file struct, which was returned from dentry_open
1502 *
1503 * Write the file headers out. This will likely involve a userspace
1504 * callout, in which the session key is encrypted with one or more
1505 * public keys and/or the passphrase necessary to do the encryption is
1506 * retrieved via a prompt. Exactly what happens at this point should
1507 * be policy-dependent.
1508 *
1509 * Returns zero on success; non-zero on error
1510 */
dd2a3b7a
MH
1511int ecryptfs_write_metadata(struct dentry *ecryptfs_dentry,
1512 struct file *lower_file)
237fead6 1513{
237fead6
MH
1514 struct ecryptfs_crypt_stat *crypt_stat;
1515 char *page_virt;
dd2a3b7a 1516 size_t size;
237fead6
MH
1517 int rc = 0;
1518
1519 crypt_stat = &ecryptfs_inode_to_private(
1520 ecryptfs_dentry->d_inode)->crypt_stat;
e2bd99ec
MH
1521 if (likely(crypt_stat->flags & ECRYPTFS_ENCRYPTED)) {
1522 if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
237fead6
MH
1523 ecryptfs_printk(KERN_DEBUG, "Key is "
1524 "invalid; bailing out\n");
1525 rc = -EINVAL;
1526 goto out;
1527 }
1528 } else {
1529 rc = -EINVAL;
1530 ecryptfs_printk(KERN_WARNING,
1531 "Called with crypt_stat->encrypted == 0\n");
1532 goto out;
1533 }
1534 /* Released in this function */
c3762229 1535 page_virt = kmem_cache_zalloc(ecryptfs_header_cache_0, GFP_USER);
237fead6
MH
1536 if (!page_virt) {
1537 ecryptfs_printk(KERN_ERR, "Out of memory\n");
1538 rc = -ENOMEM;
1539 goto out;
1540 }
dd2a3b7a
MH
1541 rc = ecryptfs_write_headers_virt(page_virt, &size, crypt_stat,
1542 ecryptfs_dentry);
237fead6
MH
1543 if (unlikely(rc)) {
1544 ecryptfs_printk(KERN_ERR, "Error whilst writing headers\n");
1545 memset(page_virt, 0, PAGE_CACHE_SIZE);
1546 goto out_free;
1547 }
dd2a3b7a
MH
1548 if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
1549 rc = ecryptfs_write_metadata_to_xattr(ecryptfs_dentry,
1550 crypt_stat, page_virt,
1551 size);
1552 else
1553 rc = ecryptfs_write_metadata_to_contents(crypt_stat, lower_file,
1554 page_virt);
1555 if (rc) {
1556 printk(KERN_ERR "Error writing metadata out to lower file; "
1557 "rc = [%d]\n", rc);
1558 goto out_free;
237fead6 1559 }
237fead6
MH
1560out_free:
1561 kmem_cache_free(ecryptfs_header_cache_0, page_virt);
1562out:
1563 return rc;
1564}
1565
dd2a3b7a
MH
1566#define ECRYPTFS_DONT_VALIDATE_HEADER_SIZE 0
1567#define ECRYPTFS_VALIDATE_HEADER_SIZE 1
237fead6 1568static int parse_header_metadata(struct ecryptfs_crypt_stat *crypt_stat,
dd2a3b7a
MH
1569 char *virt, int *bytes_read,
1570 int validate_header_size)
237fead6
MH
1571{
1572 int rc = 0;
1573 u32 header_extent_size;
1574 u16 num_header_extents_at_front;
1575
1576 memcpy(&header_extent_size, virt, 4);
1577 header_extent_size = be32_to_cpu(header_extent_size);
1578 virt += 4;
1579 memcpy(&num_header_extents_at_front, virt, 2);
1580 num_header_extents_at_front = be16_to_cpu(num_header_extents_at_front);
237fead6
MH
1581 crypt_stat->num_header_extents_at_front =
1582 (int)num_header_extents_at_front;
45eaab79 1583 (*bytes_read) = (sizeof(u32) + sizeof(u16));
dd2a3b7a 1584 if ((validate_header_size == ECRYPTFS_VALIDATE_HEADER_SIZE)
45eaab79 1585 && ((crypt_stat->extent_size
dd2a3b7a
MH
1586 * crypt_stat->num_header_extents_at_front)
1587 < ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)) {
237fead6 1588 rc = -EINVAL;
45eaab79
MH
1589 printk(KERN_WARNING "Invalid number of header extents: [%zd]\n",
1590 crypt_stat->num_header_extents_at_front);
237fead6
MH
1591 }
1592 return rc;
1593}
1594
1595/**
1596 * set_default_header_data
22e78faf 1597 * @crypt_stat: The cryptographic context
237fead6
MH
1598 *
1599 * For version 0 file format; this function is only for backwards
1600 * compatibility for files created with the prior versions of
1601 * eCryptfs.
1602 */
1603static void set_default_header_data(struct ecryptfs_crypt_stat *crypt_stat)
1604{
45eaab79 1605 crypt_stat->num_header_extents_at_front = 2;
237fead6
MH
1606}
1607
1608/**
1609 * ecryptfs_read_headers_virt
22e78faf
MH
1610 * @page_virt: The virtual address into which to read the headers
1611 * @crypt_stat: The cryptographic context
1612 * @ecryptfs_dentry: The eCryptfs dentry
1613 * @validate_header_size: Whether to validate the header size while reading
237fead6
MH
1614 *
1615 * Read/parse the header data. The header format is detailed in the
1616 * comment block for the ecryptfs_write_headers_virt() function.
1617 *
1618 * Returns zero on success
1619 */
1620static int ecryptfs_read_headers_virt(char *page_virt,
1621 struct ecryptfs_crypt_stat *crypt_stat,
dd2a3b7a
MH
1622 struct dentry *ecryptfs_dentry,
1623 int validate_header_size)
237fead6
MH
1624{
1625 int rc = 0;
1626 int offset;
1627 int bytes_read;
1628
1629 ecryptfs_set_default_sizes(crypt_stat);
1630 crypt_stat->mount_crypt_stat = &ecryptfs_superblock_to_private(
1631 ecryptfs_dentry->d_sb)->mount_crypt_stat;
1632 offset = ECRYPTFS_FILE_SIZE_BYTES;
1633 rc = contains_ecryptfs_marker(page_virt + offset);
1634 if (rc == 0) {
1635 rc = -EINVAL;
1636 goto out;
1637 }
1638 offset += MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
1639 rc = ecryptfs_process_flags(crypt_stat, (page_virt + offset),
1640 &bytes_read);
1641 if (rc) {
1642 ecryptfs_printk(KERN_WARNING, "Error processing flags\n");
1643 goto out;
1644 }
1645 if (crypt_stat->file_version > ECRYPTFS_SUPPORTED_FILE_VERSION) {
1646 ecryptfs_printk(KERN_WARNING, "File version is [%d]; only "
1647 "file version [%d] is supported by this "
1648 "version of eCryptfs\n",
1649 crypt_stat->file_version,
1650 ECRYPTFS_SUPPORTED_FILE_VERSION);
1651 rc = -EINVAL;
1652 goto out;
1653 }
1654 offset += bytes_read;
1655 if (crypt_stat->file_version >= 1) {
1656 rc = parse_header_metadata(crypt_stat, (page_virt + offset),
dd2a3b7a 1657 &bytes_read, validate_header_size);
237fead6
MH
1658 if (rc) {
1659 ecryptfs_printk(KERN_WARNING, "Error reading header "
1660 "metadata; rc = [%d]\n", rc);
1661 }
1662 offset += bytes_read;
1663 } else
1664 set_default_header_data(crypt_stat);
1665 rc = ecryptfs_parse_packet_set(crypt_stat, (page_virt + offset),
1666 ecryptfs_dentry);
1667out:
1668 return rc;
1669}
1670
1671/**
dd2a3b7a 1672 * ecryptfs_read_xattr_region
22e78faf
MH
1673 * @page_virt: The vitual address into which to read the xattr data
1674 * @ecryptfs_dentry: The eCryptfs dentry
dd2a3b7a
MH
1675 *
1676 * Attempts to read the crypto metadata from the extended attribute
1677 * region of the lower file.
22e78faf
MH
1678 *
1679 * Returns zero on success; non-zero on error
dd2a3b7a
MH
1680 */
1681int ecryptfs_read_xattr_region(char *page_virt, struct dentry *ecryptfs_dentry)
1682{
1683 ssize_t size;
1684 int rc = 0;
1685
1686 size = ecryptfs_getxattr(ecryptfs_dentry, ECRYPTFS_XATTR_NAME,
1687 page_virt, ECRYPTFS_DEFAULT_EXTENT_SIZE);
1688 if (size < 0) {
1689 printk(KERN_DEBUG "Error attempting to read the [%s] "
1690 "xattr from the lower file; return value = [%zd]\n",
1691 ECRYPTFS_XATTR_NAME, size);
1692 rc = -EINVAL;
1693 goto out;
1694 }
1695out:
1696 return rc;
1697}
1698
1699int ecryptfs_read_and_validate_xattr_region(char *page_virt,
1700 struct dentry *ecryptfs_dentry)
1701{
1702 int rc;
1703
1704 rc = ecryptfs_read_xattr_region(page_virt, ecryptfs_dentry);
1705 if (rc)
1706 goto out;
1707 if (!contains_ecryptfs_marker(page_virt + ECRYPTFS_FILE_SIZE_BYTES)) {
1708 printk(KERN_WARNING "Valid data found in [%s] xattr, but "
1709 "the marker is invalid\n", ECRYPTFS_XATTR_NAME);
1710 rc = -EINVAL;
1711 }
1712out:
1713 return rc;
1714}
1715
1716/**
1717 * ecryptfs_read_metadata
22e78faf
MH
1718 * @ecryptfs_dentry: The eCryptfs dentry
1719 * @lower_file: The lower file from which to read the metadata
dd2a3b7a
MH
1720 *
1721 * Common entry point for reading file metadata. From here, we could
1722 * retrieve the header information from the header region of the file,
1723 * the xattr region of the file, or some other repostory that is
1724 * stored separately from the file itself. The current implementation
1725 * supports retrieving the metadata information from the file contents
1726 * and from the xattr region.
237fead6
MH
1727 *
1728 * Returns zero if valid headers found and parsed; non-zero otherwise
1729 */
dd2a3b7a
MH
1730int ecryptfs_read_metadata(struct dentry *ecryptfs_dentry,
1731 struct file *lower_file)
237fead6
MH
1732{
1733 int rc = 0;
1734 char *page_virt = NULL;
1735 mm_segment_t oldfs;
1736 ssize_t bytes_read;
1737 struct ecryptfs_crypt_stat *crypt_stat =
1738 &ecryptfs_inode_to_private(ecryptfs_dentry->d_inode)->crypt_stat;
e77a56dd
MH
1739 struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
1740 &ecryptfs_superblock_to_private(
1741 ecryptfs_dentry->d_sb)->mount_crypt_stat;
237fead6 1742
e77a56dd
MH
1743 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
1744 mount_crypt_stat);
237fead6 1745 /* Read the first page from the underlying file */
f7267c0c 1746 page_virt = kmem_cache_alloc(ecryptfs_header_cache_1, GFP_USER);
237fead6
MH
1747 if (!page_virt) {
1748 rc = -ENOMEM;
1749 ecryptfs_printk(KERN_ERR, "Unable to allocate page_virt\n");
1750 goto out;
1751 }
1752 lower_file->f_pos = 0;
1753 oldfs = get_fs();
1754 set_fs(get_ds());
1755 bytes_read = lower_file->f_op->read(lower_file,
1756 (char __user *)page_virt,
1757 ECRYPTFS_DEFAULT_EXTENT_SIZE,
1758 &lower_file->f_pos);
1759 set_fs(oldfs);
1760 if (bytes_read != ECRYPTFS_DEFAULT_EXTENT_SIZE) {
1761 rc = -EINVAL;
1762 goto out;
1763 }
1764 rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
dd2a3b7a
MH
1765 ecryptfs_dentry,
1766 ECRYPTFS_VALIDATE_HEADER_SIZE);
237fead6 1767 if (rc) {
dd2a3b7a
MH
1768 rc = ecryptfs_read_xattr_region(page_virt,
1769 ecryptfs_dentry);
1770 if (rc) {
1771 printk(KERN_DEBUG "Valid eCryptfs headers not found in "
1772 "file header region or xattr region\n");
1773 rc = -EINVAL;
1774 goto out;
1775 }
1776 rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
1777 ecryptfs_dentry,
1778 ECRYPTFS_DONT_VALIDATE_HEADER_SIZE);
1779 if (rc) {
1780 printk(KERN_DEBUG "Valid eCryptfs headers not found in "
1781 "file xattr region either\n");
1782 rc = -EINVAL;
1783 }
1784 if (crypt_stat->mount_crypt_stat->flags
1785 & ECRYPTFS_XATTR_METADATA_ENABLED) {
1786 crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
1787 } else {
1788 printk(KERN_WARNING "Attempt to access file with "
1789 "crypto metadata only in the extended attribute "
1790 "region, but eCryptfs was mounted without "
1791 "xattr support enabled. eCryptfs will not treat "
1792 "this like an encrypted file.\n");
1793 rc = -EINVAL;
1794 }
237fead6
MH
1795 }
1796out:
1797 if (page_virt) {
1798 memset(page_virt, 0, PAGE_CACHE_SIZE);
1799 kmem_cache_free(ecryptfs_header_cache_1, page_virt);
1800 }
1801 return rc;
1802}
1803
1804/**
1805 * ecryptfs_encode_filename - converts a plaintext file name to cipher text
1806 * @crypt_stat: The crypt_stat struct associated with the file anem to encode
1807 * @name: The plaintext name
1808 * @length: The length of the plaintext
1809 * @encoded_name: The encypted name
1810 *
1811 * Encrypts and encodes a filename into something that constitutes a
1812 * valid filename for a filesystem, with printable characters.
1813 *
1814 * We assume that we have a properly initialized crypto context,
1815 * pointed to by crypt_stat->tfm.
1816 *
1817 * TODO: Implement filename decoding and decryption here, in place of
1818 * memcpy. We are keeping the framework around for now to (1)
1819 * facilitate testing of the components needed to implement filename
1820 * encryption and (2) to provide a code base from which other
1821 * developers in the community can easily implement this feature.
1822 *
1823 * Returns the length of encoded filename; negative if error
1824 */
1825int
1826ecryptfs_encode_filename(struct ecryptfs_crypt_stat *crypt_stat,
1827 const char *name, int length, char **encoded_name)
1828{
1829 int error = 0;
1830
1831 (*encoded_name) = kmalloc(length + 2, GFP_KERNEL);
1832 if (!(*encoded_name)) {
1833 error = -ENOMEM;
1834 goto out;
1835 }
1836 /* TODO: Filename encryption is a scheduled feature for a
1837 * future version of eCryptfs. This function is here only for
1838 * the purpose of providing a framework for other developers
1839 * to easily implement filename encryption. Hint: Replace this
1840 * memcpy() with a call to encrypt and encode the
1841 * filename, the set the length accordingly. */
1842 memcpy((void *)(*encoded_name), (void *)name, length);
1843 (*encoded_name)[length] = '\0';
1844 error = length + 1;
1845out:
1846 return error;
1847}
1848
1849/**
1850 * ecryptfs_decode_filename - converts the cipher text name to plaintext
1851 * @crypt_stat: The crypt_stat struct associated with the file
1852 * @name: The filename in cipher text
1853 * @length: The length of the cipher text name
1854 * @decrypted_name: The plaintext name
1855 *
1856 * Decodes and decrypts the filename.
1857 *
1858 * We assume that we have a properly initialized crypto context,
1859 * pointed to by crypt_stat->tfm.
1860 *
1861 * TODO: Implement filename decoding and decryption here, in place of
1862 * memcpy. We are keeping the framework around for now to (1)
1863 * facilitate testing of the components needed to implement filename
1864 * encryption and (2) to provide a code base from which other
1865 * developers in the community can easily implement this feature.
1866 *
1867 * Returns the length of decoded filename; negative if error
1868 */
1869int
1870ecryptfs_decode_filename(struct ecryptfs_crypt_stat *crypt_stat,
1871 const char *name, int length, char **decrypted_name)
1872{
1873 int error = 0;
1874
1875 (*decrypted_name) = kmalloc(length + 2, GFP_KERNEL);
1876 if (!(*decrypted_name)) {
1877 error = -ENOMEM;
1878 goto out;
1879 }
1880 /* TODO: Filename encryption is a scheduled feature for a
1881 * future version of eCryptfs. This function is here only for
1882 * the purpose of providing a framework for other developers
1883 * to easily implement filename encryption. Hint: Replace this
1884 * memcpy() with a call to decode and decrypt the
1885 * filename, the set the length accordingly. */
1886 memcpy((void *)(*decrypted_name), (void *)name, length);
1887 (*decrypted_name)[length + 1] = '\0'; /* Only for convenience
1888 * in printing out the
1889 * string in debug
1890 * messages */
1891 error = length;
1892out:
1893 return error;
1894}
1895
1896/**
f4aad16a 1897 * ecryptfs_process_key_cipher - Perform key cipher initialization.
237fead6 1898 * @key_tfm: Crypto context for key material, set by this function
e5d9cbde
MH
1899 * @cipher_name: Name of the cipher
1900 * @key_size: Size of the key in bytes
237fead6
MH
1901 *
1902 * Returns zero on success. Any crypto_tfm structs allocated here
1903 * should be released by other functions, such as on a superblock put
1904 * event, regardless of whether this function succeeds for fails.
1905 */
cd9d67df 1906static int
f4aad16a
MH
1907ecryptfs_process_key_cipher(struct crypto_blkcipher **key_tfm,
1908 char *cipher_name, size_t *key_size)
237fead6
MH
1909{
1910 char dummy_key[ECRYPTFS_MAX_KEY_BYTES];
8bba066f 1911 char *full_alg_name;
237fead6
MH
1912 int rc;
1913
e5d9cbde
MH
1914 *key_tfm = NULL;
1915 if (*key_size > ECRYPTFS_MAX_KEY_BYTES) {
237fead6
MH
1916 rc = -EINVAL;
1917 printk(KERN_ERR "Requested key size is [%Zd] bytes; maximum "
e5d9cbde 1918 "allowable is [%d]\n", *key_size, ECRYPTFS_MAX_KEY_BYTES);
237fead6
MH
1919 goto out;
1920 }
8bba066f
MH
1921 rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name, cipher_name,
1922 "ecb");
1923 if (rc)
1924 goto out;
1925 *key_tfm = crypto_alloc_blkcipher(full_alg_name, 0, CRYPTO_ALG_ASYNC);
1926 kfree(full_alg_name);
1927 if (IS_ERR(*key_tfm)) {
1928 rc = PTR_ERR(*key_tfm);
237fead6 1929 printk(KERN_ERR "Unable to allocate crypto cipher with name "
8bba066f 1930 "[%s]; rc = [%d]\n", cipher_name, rc);
237fead6
MH
1931 goto out;
1932 }
8bba066f
MH
1933 crypto_blkcipher_set_flags(*key_tfm, CRYPTO_TFM_REQ_WEAK_KEY);
1934 if (*key_size == 0) {
1935 struct blkcipher_alg *alg = crypto_blkcipher_alg(*key_tfm);
1936
1937 *key_size = alg->max_keysize;
1938 }
e5d9cbde 1939 get_random_bytes(dummy_key, *key_size);
8bba066f 1940 rc = crypto_blkcipher_setkey(*key_tfm, dummy_key, *key_size);
237fead6
MH
1941 if (rc) {
1942 printk(KERN_ERR "Error attempting to set key of size [%Zd] for "
e5d9cbde 1943 "cipher [%s]; rc = [%d]\n", *key_size, cipher_name, rc);
237fead6
MH
1944 rc = -EINVAL;
1945 goto out;
1946 }
1947out:
1948 return rc;
1949}
f4aad16a
MH
1950
1951struct kmem_cache *ecryptfs_key_tfm_cache;
1952struct list_head key_tfm_list;
1953struct mutex key_tfm_list_mutex;
1954
1955int ecryptfs_init_crypto(void)
1956{
1957 mutex_init(&key_tfm_list_mutex);
1958 INIT_LIST_HEAD(&key_tfm_list);
1959 return 0;
1960}
1961
fcd12835 1962int ecryptfs_destroy_crypto(void)
f4aad16a
MH
1963{
1964 struct ecryptfs_key_tfm *key_tfm, *key_tfm_tmp;
1965
1966 mutex_lock(&key_tfm_list_mutex);
1967 list_for_each_entry_safe(key_tfm, key_tfm_tmp, &key_tfm_list,
1968 key_tfm_list) {
1969 list_del(&key_tfm->key_tfm_list);
1970 if (key_tfm->key_tfm)
1971 crypto_free_blkcipher(key_tfm->key_tfm);
1972 kmem_cache_free(ecryptfs_key_tfm_cache, key_tfm);
1973 }
1974 mutex_unlock(&key_tfm_list_mutex);
1975 return 0;
1976}
1977
1978int
1979ecryptfs_add_new_key_tfm(struct ecryptfs_key_tfm **key_tfm, char *cipher_name,
1980 size_t key_size)
1981{
1982 struct ecryptfs_key_tfm *tmp_tfm;
1983 int rc = 0;
1984
1985 tmp_tfm = kmem_cache_alloc(ecryptfs_key_tfm_cache, GFP_KERNEL);
1986 if (key_tfm != NULL)
1987 (*key_tfm) = tmp_tfm;
1988 if (!tmp_tfm) {
1989 rc = -ENOMEM;
1990 printk(KERN_ERR "Error attempting to allocate from "
1991 "ecryptfs_key_tfm_cache\n");
1992 goto out;
1993 }
1994 mutex_init(&tmp_tfm->key_tfm_mutex);
1995 strncpy(tmp_tfm->cipher_name, cipher_name,
1996 ECRYPTFS_MAX_CIPHER_NAME_SIZE);
1997 tmp_tfm->key_size = key_size;
5dda6992
MH
1998 rc = ecryptfs_process_key_cipher(&tmp_tfm->key_tfm,
1999 tmp_tfm->cipher_name,
2000 &tmp_tfm->key_size);
2001 if (rc) {
f4aad16a
MH
2002 printk(KERN_ERR "Error attempting to initialize key TFM "
2003 "cipher with name = [%s]; rc = [%d]\n",
2004 tmp_tfm->cipher_name, rc);
2005 kmem_cache_free(ecryptfs_key_tfm_cache, tmp_tfm);
2006 if (key_tfm != NULL)
2007 (*key_tfm) = NULL;
2008 goto out;
2009 }
2010 mutex_lock(&key_tfm_list_mutex);
2011 list_add(&tmp_tfm->key_tfm_list, &key_tfm_list);
2012 mutex_unlock(&key_tfm_list_mutex);
2013out:
2014 return rc;
2015}
2016
2017int ecryptfs_get_tfm_and_mutex_for_cipher_name(struct crypto_blkcipher **tfm,
2018 struct mutex **tfm_mutex,
2019 char *cipher_name)
2020{
2021 struct ecryptfs_key_tfm *key_tfm;
2022 int rc = 0;
2023
2024 (*tfm) = NULL;
2025 (*tfm_mutex) = NULL;
2026 mutex_lock(&key_tfm_list_mutex);
2027 list_for_each_entry(key_tfm, &key_tfm_list, key_tfm_list) {
2028 if (strcmp(key_tfm->cipher_name, cipher_name) == 0) {
2029 (*tfm) = key_tfm->key_tfm;
2030 (*tfm_mutex) = &key_tfm->key_tfm_mutex;
2031 mutex_unlock(&key_tfm_list_mutex);
2032 goto out;
2033 }
2034 }
2035 mutex_unlock(&key_tfm_list_mutex);
5dda6992
MH
2036 rc = ecryptfs_add_new_key_tfm(&key_tfm, cipher_name, 0);
2037 if (rc) {
f4aad16a
MH
2038 printk(KERN_ERR "Error adding new key_tfm to list; rc = [%d]\n",
2039 rc);
2040 goto out;
2041 }
2042 (*tfm) = key_tfm->key_tfm;
2043 (*tfm_mutex) = &key_tfm->key_tfm_mutex;
2044out:
2045 return rc;
2046}